ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Mecánica y Ciencias de la Producción

"Elaboración de la aleación ASTM A-560 para temperaturas elevadas y atmósferas ricas en azufre"

TESIS DE GRADO

Previa la obtención del Título de:

INGENIERO MECÁNICO

Presentada por:

Juan Carlos Güisamano Lasso

GUAYAQUIL - ECUADOR

Año: 2010

AGRADECIMIENTO

A todas las personas que de una u otra manera colaboraron en la realización de este trabajo y especialmente al Ing. Ignacio Wiesner, Director de Tesis, por su invaluable guía y colaboración.

DEDICATORIA

A MIS PADRES

A MI FAMILIA

A FRANZISKA

TRIBUNAL DE GRADUACIÓN

Ing. Francisco Andrade S.

Decano de la FIMCP

PRESIDENTE

Ing. Ignacio Wiesner F.
DIRECTOR DE TESIS

Ing. Julián Peña E.
VOCAL

Ing. Clotario Tapia B.
VOCAL

DECLARACIÓN EXPRESA

"La responsabilidad del contenido de esta Tesis de Grado, me corresponde exclusivamente; y el patrimonio intelectual de la misma a la ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL"

(Reglamento de Graduación de la ESPOL).

Juan Carlos Güisamano Lasso

RESUMEN

El ámbito del presente trabajo, se centró en uno de los retos al que se enfrenta la Ingeniería de Materiales dentro del campo de la Metalurgia, que es la obtención de aleaciones metálicas que son útiles en aplicaciones prácticas como las condiciones: de temperatura extrema y ambientes altamente corrosivos.

El primer problema que fue solventado estaba vinculado a las características propias de la metalurgia de la aleación propuesta (ASTM A-560), la cual debido a sus propiedades específicas son ideales para resistir a los ataques corrosivos del azufre y el proceso de fluencia lenta (creep), por lo que su uso característico se encuentra en la industria petroquímica, en la construcción de partes en los hornos usados en las refinerías.

INTRAMET proporcionó el equipo de fusión que permitió realizar pruebas del proceso de fusión de la aleación ASTM A-560. En las mismas que se fundió acero inoxidable ASTM 304, y que sirvieron para ajustar las condiciones de operación del horno experimental con 100 g. de capacidad de fusión, luego se procedió a fundir cromo y níquel puros, hasta llegar a la composición normalizada del ASTM A-560, la calibración de la operación del horno permitió hacer coladas en menos de diez minutos.

Los análisis de las pruebas de fusión fueron realizadas por medio de los métodos de absorción atómica y rayos X, el primero de los métodos se efectuó en dos universidades diferentes (ESPOL y EPN) y el segundo método se pudo aplicar con la ayuda de la Refinería Estatal de Esmeraldas, dando como resultado la composición química muy cercana a la exigida por la norma.

Se realizaron 17 coladas durante la experimentación y es importante mencionar que la mayor dificultad que se encontró fue tener un resultado confiable de los análisis químicos, lo cual fue resuelto cuando se aplicaron los ensayos directamente en el laboratorio de materiales de la Refinería Estatal de Esmeraldas.

ÍNDICE GENERAL

	Pág.
RESUMEN	l
ÍNDICE GENERAL	III
ABREVIATURAS	VI
ÍNDICE DE FIGURAS	VII
ÍNDICE DE TABLAS	X
INTRODUCCIÓN	1
CAPITULO 1	
1. METALURGÍA DE LA ALEACIÓN	3
1.1. Ambientes corrosivos a temperaturas elevadas	3
1.2. Química de la zona de combustión rica en Azufre	28

	1.3. Características tecnológicas de los materiales para hornos	de
	refinerías	36
	1.4. Materiales normalizados resistentes a la corrosión y a la fluencia le	enta
	(creep)	41
	1.5. Normalización ASTM A-560	.47
CA	APÍTULO 2	
2.	TRABAJO EXPERIMENTAL	.54
	2.1. Procedimiento Experimental	.54
	2.2. Construcción de Equipo para fusión	.57
	2.3. Coladas de Prueba para fusión de materias primas	.64
	2.4. Evaluación Metalúrgica de Coladas de Prueba con Patrón	de
	Calidad	.67
	2.4.1. Control de composición química de muestras	.74
	2.4.2. Análisis de datos	76
	2.5. Coladas de Aleación Normalizada	.77
CA	APÍTULO 3	
3.	EVALUACION DE LA ALEACIÓN ASTM A-560	.89
	3.1. Evaluación Metalúrgica	.89
	3.2. Evaluación Tecnológica	.94

CAPÍTULO 4	
4. CONCLUSIONES Y RECOMENDACIONES9)7
APENDICES	
BIBLIOGRAFIA	

ABREVIATURAS

Amp. Amperio

AISI American Iron and Steel Institute
ASTM American Society Testing Materials

ASM American Society for Metals

atm. Atmósfera g. Gramo m Metro

m² Metro cuadrado

mm milímetro pulg. Pulgada

ppm Parte por millón

s Segundos

SAE Society of Automotive Engineers

UNS Unified Numbering System

ÍNDICE DE FIGURAS

Pág.

-	Diagrama de Temperatura relacionado con el esfuerzo de varios metales5
•	Esfuerzos producidos por rupturas a las 100 horas, para ones8
•	Temperaturas de máximo servicio para varios materiales la fluencia lenta9
•	Capacidades de relativa oxidación/esfuerzos de ruptura de as de aleaciones9
•	Temperatura de trabajo de superaleaciones con su año le introducción13
•	Efecto de la temperatura sobre la resistencia y la ductilidad de ales16
propiedades	Efecto del tiempo de exposición y temperatura sobre las de tensión de la aleación de aluminio 2024-T4, naturalmente

constantes	esfuerzos 21
Figura 1.9. Fluencia lenta a temperaturas elevadas en un mate una función de esfuerzos	
Figura 1.10. Diagrama de estabilidad de un sistema Cr-S-O (1600°F)	
Figura 1.11. Elementos aleantes usados en las superaleacione níquel, beneficios y su ubicación en la periódica.	a tabla
Figura 1.12. Porcentaje de metal desgastado a temperatura de 760 a 920°C (1400-1700°f) para gasolinas con contenido de vana los 300 ppm	adio sobre
Figura 1.13 Los ensayos de oxidación cíclica a 980°C (1800 muestras calentadas con Na ₂ SO ₄ . Cada ciclo fue de 15 m calentamiento y 5 minutos de enfriamiento. Las especies fuero recen 65 horas de intervalo	ninutos de calentadas
Figure 2.1 Cuía matadalágica experimental	
Figura 2.1. Guía metodológica experimental	56
Figura 2.2. Horno de grafito maquinado	
	58
Figura 2.2. Horno de grafito maquinado	58
Figura 2.2. Horno de grafito maquinado Figura 2.3. Conector de cobre para acople a fuente	58 59 60
Figura 2.2. Horno de grafito maquinado	58 59 60 62 norno de
Figura 2.2. Horno de grafito maquinado	58 59 60 62 norno de 63
Figura 2.2. Horno de grafito maquinado	586062 norno de63
Figura 2.2. Horno de grafito maquinado	586062 norno de6365
Figura 2.2. Horno de grafito maquinado	586062 norno de6365

Figura 2.11. Metalografías de muestra de patrón de calidad73
Figura 2.12. Operación de analizador óptico por radiación, NILTON xLi, portable XRF
Figura 2.13. Colada normalizada Nó 381
Figura 2.14. Colada normalizada Nó 481
Figura 2.15. Colada normalizada Nó 582
Figura 2.16. Colada normalizada Nó 682
Figura 2.17. Colada normalizada Nó 783
Figura 2.18. Análisis de composición química de la colada normalizada Nó 786
Figura 2.19. Ataque electroquímico y observación de la colada normalizada Nó 787
Figura 2.20. Metalografía de colada normalizada Nó 788
Figura 3.1. Proceso de fundición de muestra normalizada ASTM A56089
Figura 3.2. Diagrama de fase de la aleación ASTM A56092
Figura 3.3. Muestra de material fallado por sulfurización, Refinería Estatal de Esmeraldas93

ÍNDICE DE TABLAS

ray.
Tabla 1: Etapas de la fluencia lenta22
Tabla 2: Nivel de daño de fluencia lenta28
Tabla 3: Tipos de corrosión en procesos industriales30
Tabla 4: Composición nominal y comercial de aleaciones usadas en la industria petroquímica42
Tabla 5: Datos de cambio de masa in H_2 - $45\%CO_2$ - $1\%H_2S$ para selección de aleaciones a 820 °C, prueba de duración de 1000 horas43
Tabla 6: Datos de cambio de masa en 2%SO ₂ -5%H ₂ O, para aleaciones seleccionadas a 700°C, 850°c y 1000°C, prueba de duración de 1000 horas
Tabla7: Tasas de corrosión isotérmica de aleaciones con incremento de níquel y variación de otros elementos en H ₂ - 1.5% H ₂ S, a 730°C, prueba de duración 96 horas
Tabla 8: Tasas de corrosión isotérmica de aleaciones con incremento de níquel y variación de otros elementos de cromo en H ₂ - 0.5% H ₂ S a 260°C y 370°C, basado en pruebas de duración de 3000 horas y para H ₂ - 2% H ₂ S a 480°C sobre las 4000 horas

Tabla 9: Diferencias de composiciones en estándares para aleaciones50
Tabla 10: Esfuerzo de ruptura, en función de la temperatura52
Tabla 11: Especificaciones técnicas de máquina de soldar60
Tabla 12: Selección de electrodos de carbono61
Tabla 13: Composición de colada de prueba Nó 267
Tabla 14: Composición del patrón de calidad68
Tabla 15: Composición de electrodos de níquel usados como materia prima de las coladas normalizadas79
Tabla 16: Resultados del análisis de la composición de las coladas normalizadas, método de absorción química (AQ) y método óptico por
radiación (OR)85

BIBLIOGRAFIA

- ASM INTERNATIONAL, "Handbook of Comparative World Steel Standards", DS67A 2nd Edition, John E. Bringas, Editor, 2002.
- 2. ASM INTERNATIONAL, "Handbook Volumen 9, Metallography and Microstructures", (1992).
- ASM INTERNATIONAL, "Heat Resistant Materials", Edición Especial,
 Edition J. R. Davis, Editor, (1997)
- 4. ASM, "Metallurgy, processing and properties of superalloys" Heat Resistant Materials pp 5-69, 219-254, ASM Materials Park Ohio (1997).
- ATXAGA G, ERAUZKIN E. E IRISARRI A. M. "Análisis microestructural de dos superaleaciones base níquel moldeadas" 1ª Jornada de Metalografía.
 San Sebastián, Marzo (2000).

- BOYER E., "Atlas of Creep and Stress Rupture Curves", ASM International, (1988).
- DOUGLAS SKOOG AND JAMES LEARY, "Análisis Instrumental", Cuarta edición Mc Graw Hill, (1994).
- 8. DURAND-CHARRE MADELEINE, "The microstructure of superalloys", CRC Press,(1998).
- FATTORI H. Y GUTTMANN V. "Creep studies of intermetallic alloys" The Materiais Challenge, Norton (1994).
- 10. IRISARRI A. M. "Cinética del envejecimiento de algunas aleaciones del sistema Ni – Al a temperaturas elevadas" Tesis Doctoral. E. S. Ingenieros Industriales, San Sebastián (1980).
- 11. VISWANATHAN R. Damage Mechanisms and Life Assessment of High Temperature Components. ASM International. Materials Park Ohio (1989)
- 12. WILLARD, H., MERRIT, "Métodos instrumentales de análisis", Grupo Editorial Iberoamericana, Mexico, (1991).

APÉNDICES

Apéndice A: Norma ASTM A-560

Apéndice B: Suplemento de Pruebas Especiales ASTM A-560

Apéndice C: Cartilla Técnica IN-657

Apéndice D: Especificaciones INCOCLAD 671 (INCONEL)

Apéndice E: Especificaciones Máquina de Soldar INFRA

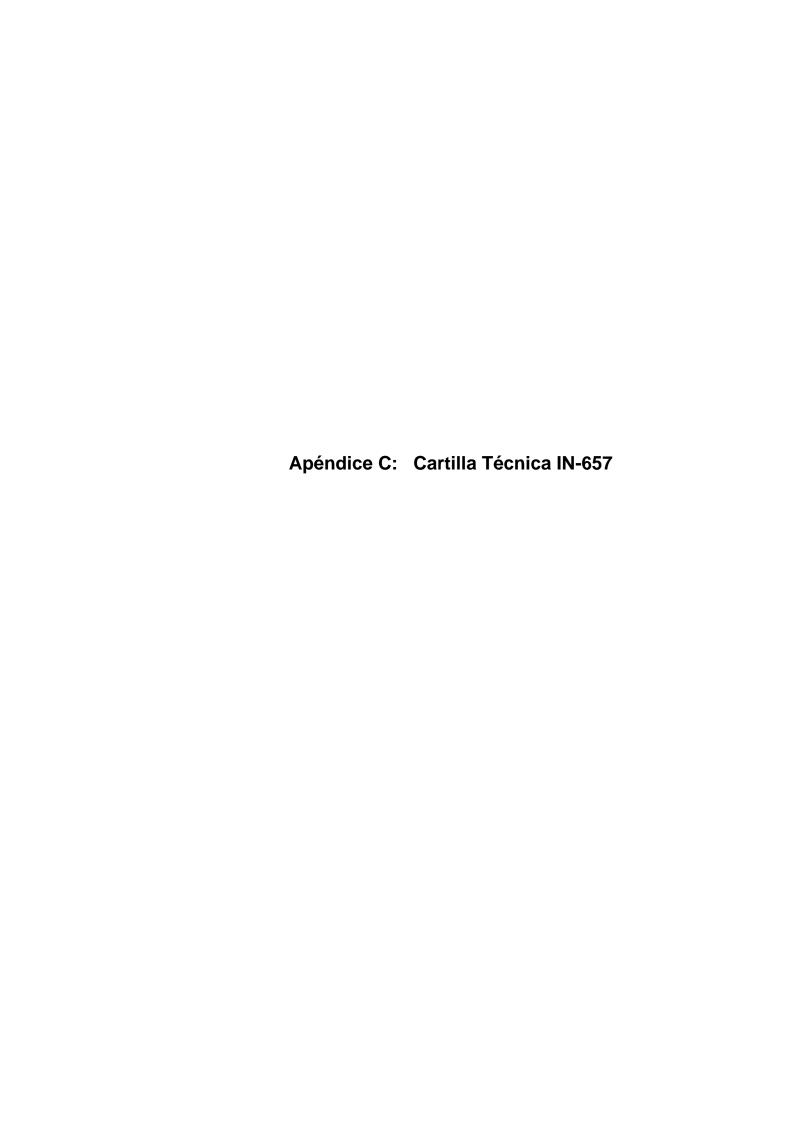
Apéndice F: Especificaciones Fibra Cerámica

Apéndice G: Standard Metals Designations

Apéndice H: Especificaciones Analizador NILTON, XRF, xLi

Apéndice I: Resultados de Análisis Químico EPN

Apéndice J: Refinería Estatal de Esmeraldas, Informe Técnico de


material IN-657 (A560). Agosto-2009.

Apéndice K: Refinería Estatal de Esmeraldas, Informe Técnico de

material ASTM A560. Febrero-2009.

Apéndice B: Suplemento de Pruebas Especiales ASTM A-560

Apéndice D: Especificaciones INCOCLAD 671
(INCONEL)

Apéndice E: Especificaciones Máquina de Soldar INFRA

Apéndice F:	Especificaciones Fibra Cerámica	a

Apéndice G:	Standard Metals Designations	

Apéndice H: Especificaciones Analizador NILTON, XRF, xLi

Apéndice I:	Resultados de Análisis Químico EPN	I

Apéndice J: Refinería Estatal de Esmeraldas, Informe Técnico de material IN-657 (A560). Agosto-2009.

Apéndice K: Refinería Estatal de Esmeraldas, Informe Técnico de material ASTM A560. Febrero-2009.