Implementación de una Herramienta Didáctica para la Simulación de Redes IEEE 802.11b y g Orientada a Prácticas en el Laboratorio de Telecomunicaciones

Ing. Luis Vásquez¹, Jerry Barona², Rosa Serpa³, Hugo Torres⁴. Facultad de Ingeniería en Electricidad y Computación. Escuela Superior Politécnica del Litoral. Campus Gustavo Galindo, Km. 30.5 vía Perimetral, Guayaquil - Ecuador E-mail: [lufevave¹, jbarona², rserpa³, htorres⁴]@fiec.espol.edu.ec

Resumen

Este trabajo presenta una herramienta didáctica orientada a estudiantes de nivel superior sobre los estándares de comunicaciones inalámbricas 802.11b y g basada en Network Simulator (NS2) y su interfaz gráfica NAM. El objetivo principal es incentivar el conocimiento y aprendizaje de estas tecnologías y sus principales modos de operación por medio de prácticas de laboratorio las cuales siguen un esquema pedagógico cuidadosamente diseñado partiendo desde los procedimientos y componentes más simples hasta formar redes más complejas planteando preguntas clave en cada momento que motiven a describir en cada caso la explicación de los fenómenos que ocurren. También creamos una aplicación en lenguaje AWK para el tratamiento de datos que permite obtener estadísticas de throughput en relación al tiempo transcurrido y realizar un análisis de estos resultados.

Palabras clave: 802.11b y g, NS2, NAM, lenguaje AWK, throughput

Abstract

This paper presents a didactical tool for university-level students about 802.11b & g wireless communication standards based on Network Simulator (NS2) and its graphic interface NAM. The main goal of this paper is to encourage them to know and learn these technologies and their main operation modes by means of laboratory practices which follow a pedagogical scheme carefully designed beginning from the simplest procedures and components to creating more complex networks, stating key questions at every interesting moment thus motivating students to give a description and an explanation for the phenomena occurring. Also, we create an AWK application for data processing that allows us to obtain statistical throughput information respect to elapsed time and to analyze these results.

1. Introducción

Las redes inalámbricas son aquellas que utilizan al espacio como medio de transmisión; se valen de ondas electromagnéticas para establecer comunicación entre los dispositivos y así poder realizar transferencia de archivos, conexión a Internet, compartir recursos de red, etc. tal como se lo hace con las redes cableadas.

La tecnología inalámbrica más utilizada en la actualidad es aquella que se encuentra definida en el estándar 802.11, el cual con el paso de los años, ha tenido varios cambios y mejoras, como por ejemplo 802.11a, 802.11b, 802.11g, que trabajan a diferentes velocidades.

El estándar IEEE 802.11 se desarrolla en las 2 capas inferiores del modelo OSI: la capa física y la capa de enlace de datos, ya que lo único en que difiere con respecto a los estándares para las redes cableadas es en el medio utilizado para la comunicación entre los dispositivos, y en la forma en que estos dispositivos acceden a este medio. El estándar define 2 componentes: Una estación inalámbrica y un punto de acceso (AP). Una estación inalámbrica es básicamente una computadora que tiene incorporada una tarjeta de red inalámbrica. El AP es el dispositivo que nos permite la comunicación entre las estaciones inalámbricas y la red cableada. El estándar define también 2 modos de operación: Infraestructura y Ad-hoc.

El modo Infraestructura consiste en una o varias estaciones inalámbricas conectadas a un punto de acceso, el cual, proveerá a las estaciones de los servicios que nos ofrecen las redes cableadas como compartir impresoras, acceso a bases de datos, Internet, entre otros. A este conjunto: estaciones y punto de acceso, se lo denomina Conjunto de Servicio Básico (BSS). Un conjunto de 2 o más BSS se denominan Conjunto de servicio Extendido (ESS).

El modo Ad-hoc es un conjunto de 2 o más estaciones inalámbricas conectadas directamente una con otra sin la necesidad de un punto de acceso y de esta manera compartir recursos entre ellas. A este conjunto de estaciones se las denomina Conjunto de servicio Básico independiente (IBSS).

2. Simulación de redes 802.11b y 802.11g

En este apartado desarrollaremos las simulaciones de la tecnología de una forma didáctica, es decir, describiremos desde los pasos más básicos hasta llegar a la simulación completa y análisis de los casos existentes que se definen en el estándar.

Los procedimientos básicos se explicarán de una manera simple para que el estudiante o cualquier persona puedan familiarizarse rápidamente con el lenguaje NS2, con la finalidad de crear los componentes necesarios para compilar un escenario inalámbrico.

Una vez que se haya expuesto la primera etapa esencial, procederemos con la simulación de los modos de operación, que como sabemos son el modo Ad-hoc y el modo infraestructura y posteriormente presentaremos el análisis de los resultados de nuestras simulaciones.

3. Procedimientos para la creación de una red inalámbrica

Para que el estudiante tenga una idea de lo que comprende un ambiente inalámbrico primero debe tener en cuenta qué partes lo integran, por lo tanto mencionaremos y explicaremos secuencialmente como simular dichos componentes de la red. Para ello, creamos un script que contendrá nuestra programación en lenguaje Otcl.

Una red inalámbrica en principio consta de uno o más nodos móviles, un punto de acceso, el establecimiento de una transferencia de datos entre ellos y en algunos casos la conectividad con una LAN alámbrica. A continuación describiremos como crear dichos componentes.

3.1. Creación de un nodo móvil

Para la elaboración del script abrimos el editor de texto de FEDORA e ingresamos los comandos esenciales en lenguaje Otcl para la creación del nodo móvil.

En la creación del nodo móvil se necesita declarar varios parámetros que definirán las características que poseerá de tales como la Capa de Enlace (LL), Interfase de Colas (IFQ), capa MAC, el canal inalámbrico en donde se transmite y recibe señales desde los nodos, el tipo de antena, el modelo de propagación, el tipo de protocolo de enrutamiento, etc. La configuración API consiste en definir estos tipos de componentes.

Primero, nosotros configuramos los nodos antes de crearlos. La configuración API típica se define así:

\$ns_node-config -adhocRouting AODV

```
-llType
                        LL \
         -macType
                     Mac/802_11 \
         -propType
"Propagation/TwoRayGround" \
         -ifqType
"Queue/DropTail/PriQueue"
         -ifqLen
                        50\
                        "Phy/WirelessPhy" \
         -phyType
                        "Antenna/OmniAntenna" \
         -antType
        -channelType "Channel/WirelessChannel"
         -topoInstance $topo \
         -agentTrace ON
         -routerTrace ON
         -macTrace
                     ON
         -movementTrace OFF
```

Lo próximo es crear el nodo móvil, para ello escribimos la siguiente sentencia:

set node_(0) [\$ns_ node]
\$node_(0) random-motion 0

Sabemos que el lenguaje Otcl es un programa orientado a objetos, por tal razón, al crear este nodo se le da la dirección de la configuración de los parámetros, así se puede manipular la información de los nodos. El *random-motion* permite que las posiciones y movimientos (velocidad y dirección) de los nodos sean aleatorios. Por este motivo lo hemos deshabilitado (0) para reservarnos la opción de asignarles movimientos específicos.

3.2. Creación de un Punto de Acceso

Al crear un punto de acceso hay que tener en claro que éste sólo existe en el modo Infraestructura, lo cual quiere decir que en el escenario deben coexistir un ambiente inalámbrico y otro alámbrico. Por esta razón, el "GOD" (General Operations Director), el cual es una conjetura especifica para el NS2 que establece en secuencia los eventos concernientes a los nodos inalámbricos, se define de la siguiente manera:

create-god expr[\$opt(nn) + 1]

Donde la suma de un nodo adicional es para crear el AP que aquí, se define como Estación Base (BS). Para crear el nodo fijo previamente se debe definir una configuración jerárquica tal como se muestra:

\$ns_ node-config -addressType hierarchical
AddrParams set domain_num_ 2
lappend cluster_num 1 1
AddrParams set cluster_num_ \$cluster_num
lappend eilastlevel 1 2
AddrParams set nodes_num_ \$eilastlevel

Realizando esta configuración se especifica el número de dominios, clusters y nodos en esta

simulación, donde la parte alámbrica es un dominio y la inalámbrica es otro dominio. El cluster es una entidad jerárquica interna del dominio. El número de clusters y nodos depende del tipo de simulación, en este caso se trata de un cluster para cada dominio. Se debe especificar a cada nodo a qué dominio y cluster va a pertenecer. En nuestro presente caso hay un nodo en el primer cluster y dos nodos para el segundo como muestra la sentencia *lappend eilastlevel 1 2*. La creación del nodo fijo se realiza de la siguiente forma:

set W(0) [\$ns_node 0.0.0] \$W(0) set X_10.0 \$W(0) set Y_10.0 \$W(0) set Z_0.0

Siendo el dominio 0, cluster 0 y nodo 0. La sentencia W(0) set $X_10.0$ es para dar una posición al nodo en la parte gráfica.

Lo siguiente es la creación de la BS; tenemos que definir los parámetros de sus componentes como ya hemos mencionado. Hay que recordar que la BS debe tener conectividad con la parte alámbrica, por esta razón, la sentencia $$ns_n onde-config$ -wiredRouting ON \ tiene mucha importancia para su configuración. Después procedemos a crear la BS tal como se crea un nodo móvil, ubicándola en su respectiva jerarquía que corresponde como se muestra:

set BS(0) [\$ns_node 1.0.0] \$BS(0) random-motion 0 \$BS(0) set X_ 1.0 \$BS(0) set Y_ 1.0 \$BS(0) set Z_ 0.0

Luego creamos los nodos móviles que necesitamos para nuestro análisis de la misma forma que en la sección anterior, sólo que si se trata de más de un nodo se utiliza un lazo *for*. Debemos además asignar la jerarquía correspondiente a los nodos, siendo importante desactivar la configuración alámbrica para comenzar la inalámbrica como se muestra:

\$ns_ node-config -wiredRouting OFF
set temp {1.0.1}
set node_(0) [\$ns_ node [lindex \$temp 0]]
\$node_(0) base-station [AddrParams addr2id
[\$BS(0) node-addr]]
\$node_(0) random-motion 0

3.3. Creación de la red alámbrica

En esta sección realizamos las conexiones alambradas entre los nodos, claro está, que para ello utilizamos lo que aprendimos en las secciones anteriores. Adicionalmente, escribimos las sentencias para crear los enlaces fijos dúplex entre ellos tal como se muestra a continuación: \$ns_duplex-link \$W(1) \$BS(0) 100Mb 2ms DropTail \$ns_duplex-link-op \$W(1) \$BS(0) orient right

Se necesita de la sentencia $ns_duplex-link-op$ W(1) BS(0) orient right donde se relaciona los nodos enlazados con su debida orientación para una mejor visualización en la NAM.

3.4. Creación de la transferencia de paquetes entre nodos

La transferencia de datos se realiza con la ayuda de los siguientes protocolos de transporte (TCP y UDP), que utilizan a su vez las siguientes aplicaciones y fuentes de tráfico (FTP, Web, Telnet, CBR, VBR, On-Off).

Al crear una conexión TCP, se deben especificar ciertos parámetros, tales como la fuente, el destino y la conexión entre ellos, es por esta razón que a un nodo se le atribuye el tipo agente (fuente) y al otro nodo el tipo sumidero o sink (destino).

set tcp [new Agent/TCP] set tcpsink [new Agent/TCPSink] \$ns attach-agent \$W(0) \$tcp \$ns attach-agent \$node_(0) \$tcpsink \$ns connect \$tcp \$tcpsink

Para generar tráfico sobre TCP se requiere de la aplicación FTP o Telnet. Nosotros escogimos FTP por su amplia utilización en nuestro medio tal como se muestra:

set ftp [new Application/FTP] \$ftp attach-agent \$tcp \$ns_ at 1.0 "\$ftp start" \$ns_ at 23.0 "\$ftp stop"

4. Simulación de modo Ad-hoc

Para desarrollar la simulación en modo Ad-hoc necesitamos recordar algunos pasos ya aprendidos como por ejemplo, la creación de nodos móviles, y la transferencia de paquetes, puesto que la arquitectura de modo Ad-hoc es puramente inalámbrica y no necesitamos crear un punto de acceso.

Comenzamos creando 3 nodos móviles con un lazo *for*. Para esto, la configuración utilizada es la API, en donde elegimos como protocolo de enrutamiento al AODV que por su definición es para redes Ad-hoc solamente. También declaramos nuestra librería que es la *Mac*\802_11, y todos los parámetros ya expuestos.

for {set i 0} {\$i < \$opt(nn) } {incr i} { set node_(\$i) [\$ns_ node] \$node_(\$i) random-motion 0 }

```
.
```

Luego, creamos la transferencia de datos. Para ello utilizaremos el agente TCP. La razón es que el protocolo TCP tiene propiedades de reconocimiento, es decir que verifica si los paquetes han llegado a su destino, claro que posee su desventaja que es más consumo de ancho de banda del canal inalámbrico. La transferencia de datos se la realiza entre los nodos 0 a nodo 2 en los respectivos tiempos.

Al crear una red Ad-hoc 802.11b tenemos que añadir información de capa física, para ello utilizaremos los parámetros de una tarjeta inalámbrica 802.11b que se encuentra en el mercado, como por ejemplo la tarjeta de Orinoco con los siguientes parámetros:

Antenna/OmniAntenna set Gt_ 3.0 Antenna/OmniAntenna set Gr_ 3.0

Phy/WirelessPhy set CPThresh_10.0 Phy/WirelessPhy set CSThresh_5.011872e-12 Phy/WirelessPhy set RXThresh_5.82587e-09 Phy/WirelessPhy set bandwidth_11Mb Phy/WirelessPhy set Pt_0.031622777 Phy/WirelessPhy set freq_2.437e9 Phy/WirelessPhy set L_1.0

Mac/802_11 set CWMin_	31	
Mac/802_11 set CWMax_	1023	
Mac/802_11 set SlotTime_	0.000	020
Mac/802_11 set SIFS_	0.000	010
Mac/802_11 set PreambleLength_	_	144
Mac/802_11 set ShortPreambleLe	ength_	72
Mac/802_11 set PreambleDataRa	te_	2.0e6
Mac/802_11 set PLCPHeaderLen	gth_	48
Mac/802_11 set PLCPDataRate_		1.0e6
Mac/802_11 set ShortPLCPDatal	Rate_	2.0e6
Mac/802_11 set RTSThreshold_		3000
Mac/802_11 set ShortRetryLimit_	. 7	
Mac/802_11 set LongRetryLimit_	4	

Mac/802_11 set dataRate_11Mb Mac/802_11 set basicRate_1Mb

Los parámetros que arriba se muestran son absolutamente necesarios para poder obtener la simulación de la tecnología 802.11b puesto que hemos manipulado los datos de la MAC así como los datos de potencia y de ancho de banda.

Para realizar la simulación Ad-hoc 802.11g, escribimos el script de la misma forma que hicimos la simulación de 802.11b, con la diferencia de los parámetros que se insertó en dicho script, por ello vamos a mostrar la diferencia de estos parámetros:

Antenna/OmniAntenna set Gt_ 3.0 Antenna/OmniAntenna set Gr_ 3.0

Phy/WirelessPhy set CPThresh_10.0 Phy/WirelessPhy set CSThresh_5.011872e-12 Phy/WirelessPhy set RXThresh_5.82587e-09 Phy/WirelessPhy set bandwidth_54Mb Phy/WirelessPhy set Pt_0.031622777 Phy/WirelessPhy set freq_2.437e9 Phy/WirelessPhy set L_1.0

Mac/802_11 set CWMin_ 15	
Mac/802_11 set CWMax_ 1023	
Mac/802_11 set SlotTime_ 0.000009	
Mac/802_11 set CCATime_ 0.000003	
Mac/802_11 set RxTxTurnaroundTime_	0.000002
Mac/802_11 set MaxPropagationDelay	0.0000005
Mac/802_11 set SIFSTime_ 0.	000010
Mac/802_11 set PreambleLength_	72
Mac/802_11 set PreambleDataRate_	6.0e6
Mac/802_11 set PLCPHeaderLength_	40
Mac/802_11 set PLCPDataRate_	6.0e6
Mac/802_11 set ShortPLCPDataRate_	2.0e6
Mac/802_11 set RTSThreshold_	3000
Mac/802_11 set ShortRetryLimit_	7
Mac/802_11 set LongRetryLimit_	4
Mac/802_11 set CCAtime_	0.000003

Mac/802_11 set dataRate_ 54Mb Mac/802_11 set basicRate_ 6Mb

Aquí utilizamos la tasa básica de transmisión de datos para OFDM en 6 Mbps y su ancho de banda en 54Mbps como nos indica el estándar, también el preámbulo corto es necesario según la tecnología.

5. Simulación de modo infraestructura

Para desarrollar la simulación en modo infraestructura, recordamos los procedimientos para crear una red alámbrica, un nodo móvil, y un Punto de Acceso. Al igual que se hizo en la sección anterior se puede realizar la simulación de los estándares 802.11b y 802.11g añadiendo los parámetros necesarios para dichas simulaciones.

Primero tenemos que desarrollar una red infraestructura 802.11b en la cual incluimos los parámetros ya mencionados, un nodo móvil, un nodo fijo y la BS, también necesitamos la transferencia de datos, siendo el agente TCP el que usamos por los argumentos ya expuestos anteriormente. Configuramos el nodo móvil con los siguientes componentes: el protocolo de enrutamiento DSDV, elegimos nuestra librería que es la *Mac\802_11*, la interfase de colas IFQ, y los demás componentes con los valores ya usados.

Creamos además la configuración con el tipo de direccionamiento jerárquico con dos dominios, un cluster en cada dominio y un nodo en un dominio y dos nodos en el otro, siendo que el primer dominio representa la parte fija y el otro dominio la parte móvil. Utilizamos la creación de la red alámbrica y colocamos la jerarquía correspondiente siendo el nodo fijo la jerarquía 0.0.0, la BS 1.0.0 y el nodo móvil que registraremos a la BS con la jerarquía 1.0.1. De este modo la BS sabe que sólo se puede transmitir al nodo móvil a través de ella.

La comunicación TCP se la realizó de igual forma que en el procedimiento para la creación de la transferencia de paquetes siendo el nodo W(0) la fuente y el nodo $node_{-}(0)$ el destino.

Para la simulación del estándar 802.11g vamos a realizar una red infraestructura con IP móvil. Éste es un protocolo el cual permite a un nodo móvil cambiarse de la cobertura de un AP a otro manteniendo su misma dirección IP.

Necesitamos incluir los parámetros para el estándar 802.11g, un nodo fijo, la creación de los APs y un nodo móvil, así como también la transferencia de paquetes TCP.

Entonces creamos la jerarquía como se muestra a continuación:

\$ns_node-config -addressType hierarchical
AddrParams set domain_num_3
lappend cluster_num 1 1 1
AddrParams set cluster_num_\$cluster_num
lappend eilastlevel 1 2 1
AddrParams set nodes_num_\$eilastlevel

Luego creamos el God donde aumentamos 2 nodos adicionales para representar a los APs. Creamos los nodos APs que en nuestro caso los nombraremos como *HA* y *FA* respectivamente como se muestra:

create-god [expr \$opt(nn) + 2] set HA [\$ns_node 1.0.0] set FA [\$ns_node 2.0.0] \$HA random-motion 0 \$FA random-motion 0

La creación del nodo fijo se realiza como ya se ha explicado, pero para el nodo móvil tenemos que efectuar unos cambios en los cuales registramos el nodo móvil *MH* al nodo AP llamado *HA*, para ello desactivamos la parte alámbrica como se muestra:

\$ns_ node-config -wiredRouting OFF
set MH [\$ns_ node 1.0.1]
set node_(0) \$MH
set HAaddress [AddrParams addr2id [\$HA nodeaddr]]
[\$MH set regagent_] set home_agent_ \$HAaddress

La transferencia de paquetes TCP se la realiza de igual forma que en el estándar anterior siendo el nodo W(0) la fuente y el nodo MH el destino.

6. Análisis de los resultados

En esta sección, nosotros efectuaremos el análisis de los resultados obtenidos en las simulaciones descritas en la sección anterior, teniendo en cuenta que nuestro objetivo principal es dar a conocer a los estudiantes este tipo de alternativa didáctica para una mejor comprensión de la tecnología inalámbrica utilizada.

Empezaremos por el análisis del archivo Adhoc_80211b.tcl, que como su nombre nos indica se trata de una red Ad-hoc bajo el estándar IEEE 802.11b. Al compilarlo nos muestra los resultados en la NAM de la siguiente forma:

Los nodos móviles son representados por los círculos de color negro, numerados de 0 a 2 respectivamente. Al transcurrir el tiempo, observamos que los nodos 2, nodo 1 y nodo 0 comienzan a desplazarse hacia las coordenadas descritas en el script y a transmitir entre ellos paquetes RTS y CTS representados por círculos concéntricos crecientes. En el instante 6 seg comienza la transmisión de paquetes TCP y ACK entre los nodos 0 y 2 identificados por los rectángulos puntiagudos azules y rectángulos más pequeños, siendo el nodo 0 la fuente y el nodo 2 el destino. Este procedimiento dura hasta el instante 23.2 seg durante el cual los nodos se movilizan continuamente. Después de este lapso, los paquetes comienzan a perderse debido a que los nodos están fuera de cobertura, por lo tanto el nodo 0 busca un puente para seguir transmitiendo hasta concluir y escoge al nodo 1 por la cercanía con el nodo 2.

Figura 1. Instante en el que el nodo 1 hace de puente

Al ejecutar la herramienta AWK para que realice el procesamiento del archivo de salida de la simulación, podemos observar los siguientes resultados:

	And in case of the local data	CONTRACTOR CONT	
Edt Yew Search Inda 1	Jocuments Help		
3	G 9 P	5 0 0 8 9	
New Open Save	Pier Unit Date	Cut Copy Paste Find Replace	
tats.out *			
Tiempo	Throughput[Mbps]	Eficiencia[%]	
6.00768	0.00197081	0.0179164	
7,00881	4.54145	41,2859	
8.00938	4.44932	40.4483	
9.01094	4.43309	40.3008	
10.0115	4.36645	39.695	
11,0126	4.29319	39.029	
12,0138	4.38742	39,8856	
13.0138	4.29777	39.0706	
14.0176	4.25838	38,7126	
15.0192	4.26708	38,7916	
16.0205	4.20975	38.2705	
17.0211	4.20077	38,1888	
18.0243	4.26069	38.7335	
19.0279	4.4475	40.4318	
20.0306	4.26273	38.7521	
21.0307	4.29762	39.0692	
22.0319	4.32814	39.3468	
23.0339	4.32459	39.3144	
24.0355	2.0451	18.5918	
25.0372	2.17487	19.7716	
26.0405	2.17149	19.7408	
ID del flujo:	0		
Tipo de Flujo:	tcp		
Nodo Fuente:	0		
			Let. Cell INS

Figura 2. Tabla de resultados de una red Ad-hoc 802.11b utilizando el archivo AWK

En la figura anterior vemos el throughput en relación al tiempo transcurrido de la simulación, rindiendo una tasa promedio de 4.3 Mbps hasta el instante 23 seg a partir del cual disminuye a 2.1 Mbps. Estos valores se atribuyen a diversos factores que inciden en la degradación del throughput. El estándar 802.11b define una tasa de transmisión de datos de 11Mbps. Debido principalmente al mecanismo de acceso al medio usado en comunicaciones inalámbricas (CSMA/CA) y a otros factores como la distancia entre los móviles, la línea de vista entre ellos y las condiciones de propagación, el throughput disminuve drásticamente. Aun en condiciones ideales y sin retransmisiones, el máximo throughput que se alcanzaría es de 6.2 Mpbs. Esto se debe a que el paquete contiene información de sincronismo y corrección de errores que necesita ser transmitida a una tasa mucho más baja (1 Mbps). Además, los espacios entre trama, el tiempo de ejecución del algoritmo de backoff y la duración de la transmisión del paquete ACK afectan la eficiencia del throughput. En nuestro caso, ésta se ve aun más disminuida por el intercambio de paquetes RTS y CTS y considerando que hay retransmisiones.

La caída en el throughput al instante 23 seg tiene su explicación en que, por condiciones de la simulación, el nodo transmisor se aleja de la cobertura del receptor, haciéndose necesaria la intervención de un tercer nodo actuando como puente, lo cual es factible gracias al protocolo de enrutamiento AODV. Al adherirse el tercer nodo a la comunicación, se provoca una reducción del ancho de banda disponible debido a que hay un segundo nodo transmitiendo y recibiendo paquetes lo cual conlleva a la utilización de más retransmisiones, paquetes ACK y doble mecanismo de acceso al medio.

Ahora analizamos el archivo Adhoc_80211g.tcl, el cual contiene su topología igual a la simulación anterior pero basado en el estándar IEEE 802.11g.

La diferencia radica en la tasa de transferencia de datos, puesto que el estándar 802.11g utiliza la técnica de modulación OFDM, haciendo que esta tasa sea significativamente mayor (54 Mbps) y por lo tanto envíe mayor cantidad de paquetes.

/	511	szout (+)tracticasWiHiti – genit	
Ele Edit View Search Loois	Documents Help		
New Open Save	Pret State Rate	Cat Copy Paste Find Replace	
Adhoc_80211g.tcl × 2 stats2	out ×		
# Tiempo	Throughput[Mbps]	Eficiencia[%]	1
6.00142	0.00197287	0.00365346	
7.0015	23.465	43.4536	
8.00197	23.4321	43.3929	
9.00238	23.3746	43.2863	
10.0029	22.4372	41.5503	
11.0031	21.0243	38.9339	
12,0035	22.8636	42.34	
13,0039	21.6117	40.0216	
14.0042	21.0699	39.0183	
15.0049	21.1309	39.1313	
16,0054	21.0059	38.8999	
17.0058	20.9369	38.772	
18.0062	20.8995	38.7029	
19.0068	22.9794	42.5545	
20.0072	22.0624	40.8563	
21.0074	21.0829	39.0425	
22.0075	21.6414	40.0766	
23.0077	20.9989	38.8868	
24.0078	11.0107	20.3902	
25.0088	10.9408	20.2608	
26.0097	10.8002	20.0003	-
ID del fluio:	0		
Tipo de Flujo:	ten		
Nodo Fuente:	0		
			Ln 24, Col 1 INS

Figura 3. Tabla de resultados de una red Ad-hoc 802.11g utilizando el archivo AWK

En la figura 3 vemos el throughput en relación al tiempo transcurrido de la simulación, rindiendo una tasa promedio de 22.4 Mbps hasta el instante 23 seg a partir del cual disminuye a 10.9 Mbps debido a que el nodo transmisor se aleja de la cobertura del receptor, haciéndose necesaria la intervención de un tercer nodo actuando como puente. El throughput máximo que se puede alcanzar en condiciones ideales para este estándar es de 27 Mbps sin contar con los RTS/CTS y retransmisiones. Si consideramos estos parámetros, el throughput llega a ser igual a 23.3 Mbps, entonces el valor obtenido en nuestra simulación está dentro de este rango.

El archivo Infra_80211b.tcl es sujeto de análisis en este caso, en donde mostraremos una red infraestructura bajo el estándar IEEE 802.11b con su topología como se muestra a continuación.

Figura 4. Simulación de una red infraestructura 802.11b

En la figura 4 podemos observar una transferencia de paquetes entre un nodo fijo (nodo 0) y un nodo móvil (nodo 2). Esta comunicación se realiza a través de un punto de acceso (nodo 1), que nos permite comunicar la parte alambrada a la parte inalámbrica.

No.					200	STORICLE	FREDERSW	10 gedit					
Ele Ede	View Search	I Ioch [2ocuments	Help									
New	Open *	Save	Print	9. Untr	P.	Cut	Copy	Paste	Find	Replace			
C stats5.	out *												
þ	Tiempo	1	Through	put[M	bps]	Efi	cienci	a[%]					-
	1.01101		0.0	11711	1	0	.10646	4					
	2.01475		4	.2818	9		38.926	3					
	3.01526			2602	8		38.720	4					
	4.01547			2260	ĩ		38.416	8					
	5.01788	6	4	.2757	2		38.870	4					
	6.01881		4	.5541	9		41,401	7					
	7.02153		4	.4988	ž		40.898	4					
	8.02325			4.32	6		39.327	2					
	9.02515		4	.2777	7		38.888	8					
	10.0264		4	.2453	2		38.593	8					
	11.028	6	4	.4685	7		40.623	4					
	12.0294		4	.4692	2		40.621	3					
	13.0325	1. C	4	.5305	4		41.186	7					
	14.0356	k)	4	.2391	1		38.537	3					
	15,0366	£3.	- 4	.1874	7		38.067	9					
	16.0402		4	.3060	5		39.145	9					
	17.0431		4	.3206	4		39.278	16					
	20.1189	•	0.0	96236	3	0	.87487	5					
	21.1205	£.	4	.3012	9		39.102	6					
	22.1234		4	.3816	8		39.833	4					
	ID del	fluio:	0										-
	Tipo de	Flujo:	tcp										
	Nodo I	uente:	0										
	Nodo De	stino;	2										
Loaded fil	le */home/estudu	inte Practica	asWIFL/stat	s5.out"							La	1, Col 1	INS
Fig	ura	5	T	hl	2	do	re	- -	het	00	do	una	rod

Figura 5. Tabla de resultados de una rec infraestructura 802.11b utilizando el archivo AWK

Como estamos trabajando con el estándar 802.11b vemos que en la figura 5 nos muestra valores de throughput dentro de los valores aceptables para una comunicación TCP, pero en algún instante de tiempo el throughput cae a cero debido a que el nodo móvil se aleja lo suficiente como para estar fuera de cobertura del nodo 1 y comienza a perder paquetes hasta el momento que deja de transmitir.

Por último analizaremos el archivo Infra_IP.tcl que simula una topología de red infraestructura con protocolo IP móvil para el estándar 802.11g como se muestra en la siguiente figura:

Figura 6. Simulación de una red infraestructura 802.11g

Observamos que nuestra topología consta de de un nodo fijo (nodo 0), dos APs el Home Agent (nodo 1) y el Foreign Agent (nodo 2), y de un nodo movil (nodo 3). El nodo móvil está registrado al Home Agent para que se realice la comunicación a través de él. La transferencia de paquetes se realiza del nodo 0 al nodo 3. Como ya hemos mencionado utilizamos el protocolo Mobile IP que permite al nodo 3 trasladarse de cobertura de AP (de Home Agent a Foreign Agent) manteniendo la misma dirección IP.

Figura 7. Traspaso del Home Agent al Foreign Agent

Figura 8. Reconexión del nodo 3 con el Home Agent

z stats6.cort (~PracticasWIFT) - gedit													
Ele E	dit Yiew	Sear	h Iooks	Document	s Help								
9 Ner	Ope		Save	Print	9	<u>.</u>	E. Cut	Copy	Paste	Find	Replace		
(1) stat	s6.out ×												
¥	3	Tiemp	0	Throug	hput[M	bps]	Efi	cienci	a[%]				•
	1	6414	8	0.0	072130	1	0	013353	4				
	2	.6415	4		21.251	5		39.354	16				
	3	.6422	6		20.492	1		37.948	3				
	4	.6423	1		20.316	ŝ		37.62	12				
		5.642	4		20.469	4		37.906	3				
	6	.6426	7		21.791	ŝ		40.35	16				
	7	6429	4		20.548	7		38.05	12				
	8	.6432	4		20.63	1		38.205	6				
	9	.6437	8		20.898	2		38.700	13				
		13.15	5		3.0584	3		5.6633	7				
	16	6.350	8	0.0	037048	4	0.00686082						
	17	7.351	1		21.117	5		39.100	14				
	14	8.351	3		20.974	7	38.842						
	19	9.351	7		21.859	9	40.4812						
	20	0.352	4		21,699	5		40.184	12				
	23	1.352	7		21.033	s		38.95	1				
	п	D del	fluie	: 0									
	Tis	po de	Fluie	tcp									
	1	Nodo	Fuente	0 1									
	N	odo D	estine	: 3									
Te	anaño e	del P	aquete	: 1480	()								
Pa	queter	s Rec	ibidos	: 2510	6								
Tpt	at pros	sedio	[Mbps]	: 17.2	596								17
Reta	ardo pr	romed	io[ms]	: -0.0	003574	27							
												Int Call	IN/C-

Figura 9. Tabla de resultados de la red infraestructura 802.11g utilizando el archivo AWK

En la figura 9 se muestra la tabla de resultados donde los valores de throughput obtenidos concuerdan con los valores de throughput que debe tener la red para un paquete TCP. En los instantes que el throughput se vuelve cero es debido a que el nodo móvil se encuentra fuera de cobertura del Home Agent y por lo tanto no se realiza la transmisión.

7. Conclusiones

NS2 nos ha permitido el poder crear y simular escenarios básicos de tecnologías de redes inalámbricas, a las cuales le hemos dedicado todo nuestro esfuerzo y dedicación. Nos sentimos orgullosos de nuestro trabajo y seguros de que permitirá a futuras promociones entender e incorporar el conocimiento del funcionamiento y aspectos básicos que toda red 802.11b y 802.11g posee. Es por eso que hemos elaborado estas simulaciones y prácticas procurando que cada detalle quede cuidadosa y estratégicamente pulido para que el trabajo final sea un poderoso y significativo aporte para la comprensión de estas tecnologías comúnmente utilizadas en el mundo actual. El hecho de haber plasmado el proyecto a manera de prácticas de laboratorio, con esquema secuencial y pedagógico, planteando preguntas clave en los instantes críticos con la finalidad de despertar el interés, nos expande a la posibilidad de que éste pueda ser utilizado por centros de estudios superiores o por cualquier persona con deseos de aprender y evolucionar como profesional.

En conclusión, se realizó una investigación exhaustiva sobre las tecnologías inalámbricas 802.11b y 802.11g, se procedió a desarrollar las respectivas simulaciones en lenguaje Otcl utilizando el simulador NS2, se desarrollo una herramienta utilizando lenguaje de programación AWK que nos permite procesar los resultados que nos da el simulador y mostrarlos de una manera didáctica para el análisis posterior. Una vez cumplidos estos tres puntos, se han creado prácticas de laboratorio que nos permitan analizar más a fondo las tecnologías estudiadas. Estas prácticas contienen objetivos claros, marco teórico, experimentos e interrogantes, con la finalidad de involucrar más al estudiante en el aprendizaje de estos estándares.

El entendimiento y desarrollo de este proyecto no ha sido una tarea fácil, hemos recurrido constantemente al Internet, el cual nos ha permitido investigar y crear lazos de amistad con personas de otros países profesionales e involucradas al mundo de las redes inalámbricas, todo esto con el objeto de poder compartir o debatir nuevas ideas o puntos de vista que nos ayuden a comprender, analizar, e implementar todos estos conocimientos adquiridos de la teoría de los estándares y poder plasmarlos en el desarrollo de estas prácticas. Es por eso que recomendamos vehementemente tanto a los estudiantes como a los tutores que hagan uso de Internet, que realicen un autoaprendizaje previo de estas tecnologías para así obtener el máximo provecho de este trabajo.

6. Bibliografía

[1] Pablo Brenner, "A Technical Tutorial on the IEEE 802.11 Protocol", July 18, 1996

[2] Jesús Alberto Vidal Cortés, "El Lenguaje de Programación AWK/GAWK", Madrid, February 2002[3] Broadcom "White Paper IEEE 802.11g", July 2, 2003

[4] Wu Xiuchao, SOC, NUS, "Simulate 802.11b Channel within NS2"

[5] Cisco Systems, "Aironet Wireless LAN Fundamentals"

[6] The VINT Project, "The ns Manual (formerly ns Notes and Documentation)", June 29, 2007

[7] Jim Zyren, "IEEE 802.11g Explained", December 6, 2001

[8] IEEE Standards Board, "Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

Specifications" IEEE Std 802.11-1997, Nov 1997