PRIMERA EVALUACIÓN

Fecha: viernes 09 de julio de 2010

Alumnos: __

PRIMER TEMA:

A una LTSP, cuya impedancia característica es $Z_o = 75$ $[\Omega]$, se conectan dos cargas idénticas Z_{La} y Z_{lb} tal como se muestra en la siguiente figura. Por una metodología apropiada, se determina que el valor del voltaje en el punto A es de 50 $[V]$. Determinar:

a) El máximo valor de voltaje que se presenta a lo largo de la línea de transmisión.

b) La ubicación más próxima al punto A a la cual éste voltaje ocurre.

c) El valor del voltaje que se presenta en el punto B.

\[V_A = 50 \ [V] \]

$Z_o = 75 \ [\Omega]$ $Z_{La} = 75 \ [\Omega]$ $Z_{lb} = 75 \ [\Omega]$

0.25λ
SEGUNDO TEMA:

Una línea de transmisión es construida mediante tres secciones de LTSP, cada una de ellas con diferente impedancia característica, tal como se muestra en la figura. Se conectan tres cargas, una al final de cada sección. Utilizando el Diagrama de Smith, determine la impedancia de entrada en el punto D.

\[Z_{D} \]
\[Z_{C} = 75 \, [\Omega] \]
\[Z_{B} = 50 \, [\Omega] \]
\[Z_{A} = 75 \, [\Omega] \]

Ing. Alberto Tama Franco
Profesor de la Materia Teoría Electromagnética II
FIEC-ESPOL – 2010 – 1S
TERCER TEMA:

Un estudiante de la materia *Teoría Electromagnética II*, determina que para acoplar una carga Z_L desconocida, a una LTSP cuya impedancia característica es $Z_o = 60 \, [\Omega]$, se requiere la conexión de un sintonizador de sección de línea única en cortocircuito (SSLU), tal como se muestra en la figura. Donde $d = 0.30\lambda$ y $l = 0.12\lambda$ son los valores necesarios para obtener un acoplamiento perfecto.

a) Encuentre el valor de la impedancia de carga que debe estar conectada para cumplir esa condición.

b) Determinado el valor de la impedancia de carga, encuentre la otra posible ubicación y longitud del STUB en cortocircuito. Esquematice las 2 alternativas e indique cuál es la óptima.

c) Determinar la razón de onda estacionaria entre la sección y la carga.
CUARTO TEMA:

A una LTSP, cuya impedancia característica es $Z_v = 75 \, [\Omega]$, se conecta una antena de transmisión con una carga $Z_L = 100 + j150 \, [\Omega]$. La Corporación Nacional de Telecomunicaciones – CNT, ha decidido contratar a un estudiante de la materia Teoría Electromagnética II con la finalidad de que determine la mínima distancia d (y su mínima longitud l) a la que debe conectarse una porción en serie de una LTSP (en el punto A), cuya impedancia característica es $Z_v = 100 \, [\Omega]$, para que la impedancia de entrada $Z_A = Z_L^*$; y de esta manera, que proceda a compensar la parte imaginaria de Z_A, obteniéndose una impedancia en el punto B puramente real. Adicionalmente, se le solicita que diseñe la conexión en el punto B de un transformador de $\lambda/4$, para obtener un acoplamiento perfecto y evitar las reflexiones hacia el generador.

\[Z_v = 75 \, [\Omega] \]
\[Z_L = 100 + j150 \, [\Omega] \]