## **EXAMEN DE GERENCIA DE OPERACIONES I**

| NOMBRE: |      |
|---------|------|
|         | <br> |

## PROBLEMA 1: (40 puntos)

Una compañía farmacéutica va a empezar la producción de 3 nuevas drogas. La Función Objetivo diseñada para minimizar los costos de los ingredientes y 3 restricciones de producción son:

Min. Z(costos) = 50X1 + 10X2 + 75X3

Sujeto a : X1 - X2 = 1000

2X2 + 2X3 = 2000 $X1 \le 1500$ 

 $X1, X2, X3 \ge 0$ 

- A) Encuentre la solución óptima a este problema
- B) ¿Cuáles son los precios sombras?
- C) ¿Cuál sería la variación del coeficiente de X3 para que se conserve la solución óptima?

| Minimize          |          |          |
|-------------------|----------|----------|
| X1                | Basic    | 1.500,   |
| X2                | Basic    | 500,     |
| X3                | Basic    | 500,     |
| artfcl 1          | NONBasic | 0,       |
| artfcl 2          | NONBasic | 0,       |
| slack 3           | NONBasic | 0,       |
| Optimal Value (Z) |          | 117.500, |

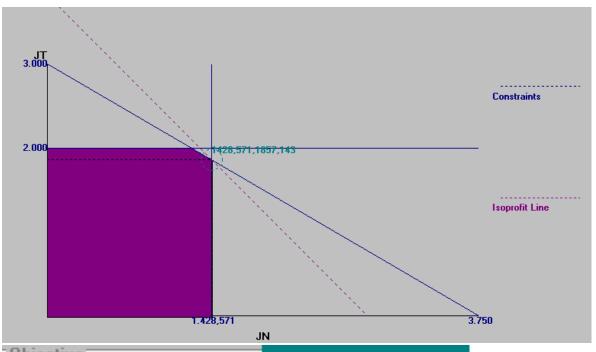
| ◆ Ranging           |            |         |              |                    |             |  |  |  |
|---------------------|------------|---------|--------------|--------------------|-------------|--|--|--|
| <unt< th=""></unt<> |            |         |              |                    |             |  |  |  |
| Variable            | Value      | Reduced | Original Val | <b>Lower Bound</b> | Upper Bound |  |  |  |
| X1                  | 1.500,     | 0,      | 50,          | -Infinity          | 65,         |  |  |  |
| X2                  | 500,       | 0,      | 10,          | -Infinity          | 25,         |  |  |  |
| X3                  | 500,       | 0,      | 75,          | 60,                | Infinity    |  |  |  |
| Constraint          | Dual Value | Slack   | Original Val | Lower Bound        | Upper Bound |  |  |  |
| Constraint 1        | -65,       | 0,      | 1.000,       | 500,               | 1.500,      |  |  |  |
| Constraint 2        | -375,      | 0,      | 2.000,       | 1.000,             | Infinity    |  |  |  |
| Constraint 3        | 15,        | 0,      | 1.500,       | 1.000,             | 2.000,      |  |  |  |

| Cį          | Basic<br>Variables | Quantity  | 50 X1 | 10 X2 | 75 X3 | 0 artfcl 1 | 0 artfcl 2 | 0 slack 3 |
|-------------|--------------------|-----------|-------|-------|-------|------------|------------|-----------|
| Iteration 1 |                    |           |       |       |       |            |            |           |
| 0           | artfcl 1           | 1.000,    | 1,    | -1,   | 0,    | 1,         | 0,         | 0,        |
| 0           | artfcl 2           | 2.000,    | 0,    | 2,    | 2,    | 0,         | 1,         | 0,        |
| 0           | slack 3            | 1.500,    | 1,    | 0,    | 0,    | 0,         | 0,         | 1,        |
|             | zj                 | -3.000,   | 49,   | 9,    | 73,   | 0,         | 0,         | 0,        |
|             | cj-zj              |           | 1,    | 1,    | 2,    | 0,         | 0,         | 0,        |
| Iteration 2 |                    |           |       |       |       |            |            |           |
| 0           | artfcl 1           | 1.000,    | 1,    | -1,   | 0,    | 1,         | 0,         | 0,        |
| 75          | X3                 | 1.000,    | 0,    | 1,    | 1,    | 0,         | 0,5        | 0,        |
| 0           | slack 3            | 1.500,    | 1,    | 0,    | 0,    | 0,         | 0,         | 1,        |
|             | zj                 | -1.000,   | 49,   | 11,   | 75,   | 0,         | 1,         | 0,        |
|             | cj-zj              |           | 1,    | -1,   | 0,    | 0,         | -1,        | 0,        |
| Iteration 3 |                    |           |       |       |       |            |            |           |
| 50          | X1                 | 1.000,    | 1,    | -1,   | 0,    | 1,         | 0,         | 0,        |
| 75          | X3                 | 1.000,    | 0,    | 1,    | 1,    | 0,         | 0,5        | 0,        |
| 0           | slack 3            | 500,      | 0,    | 1,    | 0,    | -1,        | 0,         | 1,        |
|             | zj                 | 0,        | 50,   | 10,   | 75,   | 1,         | 1,         | 0,        |
|             | cj-zj              |           | 0,    | 0,    | 0,    | -1,        | -1,        | 0,        |
| Iteration 4 |                    |           |       |       |       |            |            |           |
| 50          | X1                 | 1.000,    | 1,    | -1,   | 0,    | 1,         | 0,         | 0,        |
| 75          | X3                 | 1.000,    | 0,    | 1,    | 1,    | 0,         | 0,5        | 0,        |
| 0           | slack 3            | 500,      | 0,    | 1,    | 0,    | -1,        | 0,         | 1,<br>0,  |
|             | zį                 | -125.000, | 50,   | -5,   | 75,   | -50,       | -37,5      | 0,        |
|             | cj-zj              |           | 0,    | 15,   | 0,    | 50,        | 37,5       | 0,        |
| Iteration 5 |                    |           |       |       |       |            |            |           |
| 50          | X1                 | 1.500,    | 1,    | 0,    | 0,    | 0,         | 0,         | 1.        |
| 75          | X3                 | 500,      | 0,    | 0,    | 1,    | 1,         | 0,5        | -1,       |
| 10          | X2                 | 500,      | 0,    | 1,    | 0,    | -1,        | 0,         | 1,        |
|             | zj                 | -117.500, | 50,   | 10,   | 75,   | -65,       | -37,5      | 15,       |
|             | cj-zj              |           | 0,    | 0,    | 0,    | 65,        | 37,5       | -15,      |

## PROBLEMA 2: (30 puntos)

HC tiene una máquina que muele semillas de Psyllium hasta producir un polvo fina a una velocidad de 30 libras por hora. La compañía también usa la máquina para hacer crema de cacahuate con cacahuates tostados a una velocidad de 60 libras/hr. El tiempo de fijación para cambiar la máquina de un producto a otro es despreciable. La demanda mensual y los costos de mantenimiento de inventario de cada producto se muestran en la tabla siguiente:

|       | DEMANDA<br>(LB)    |          | COSTOS DE MANTENIMIENTO |          |
|-------|--------------------|----------|-------------------------|----------|
|       | CREMA<br>CACAHUATE | DEVILLIA | CREMA<br>CACAHUATE      | PSYLLIUM |
| Mayo  | 400                | 600      | 0,1                     | 0,05     |
| Junio | 450                | 700      | 0,1                     | 0,05     |
| Julio | 500                | 650      | 0,12                    | 0,05     |


El inventario inicial para cada producto a principios de mayo es 0 y también debe ser 0 a finales de julio. En ningún momento el inventario de Psyllium puede exceder las 1000 libras ni el de mantequilla de cacahuate las 500 libras. Asimismo, cada mes hay 20 horas de tiempo de máquina disponible. Formule un programa de programación lineal para determinar un plan de producción para los meses de mayo, junio, y julio que minimice los costos totales de almacenamiento, suponiendo que se satisface la demanda al final de cada mes y que los costos de mantenimiento de existencia se basan en la cantidad de inventario a principios de mes.

## PROBLEMA 3: (30 puntos)

Florida Citrus, tiene una máquina que opera 150 horas a la semana destilando jugo de naranja y de toronja en concentrados. La máquina puede destilar jugo de naranja a una tasa de 25 galones por hora en 17.5 galones de concentrado o 20 galones de jugo de toronja en 10 galones de concetrado. Hasta 1000 galones de cada concentrado pueden almacenarse en tanques separados después de su procesamiento. La ganancia neta por cada galón de jugo de naranja procesado es de 0,55 dólares y del jugo de toronja es de 0,44 dólares. Resuelva el siguiente programa lineal para determinar el número de galones de jugo de naranja (JN) y de jugo de toronja (JT) por destilar para maximizar la ganancia neta:

Maximizar 0,55 JN + 0,40 JT Sujeto a 0,04 JN + 0,05 JT  $\leq$  150 0,70 JN  $\leq$  1000 0,50 JT  $\leq$  1000 JN, JT  $\geq$  0

- a) Resuelva el problema gráficamente. ¿Cuál es el plan de producción semanal óptimo y la ganancia total?
- b) Sobre la base de solución en la parte (a), ¿Cuál de los tres recursos es obligatorio?
- c) Del plan de producción de la parte (a) ¿Cuántos galones de cada concentrado producen?
- d) Determine gráficamente el intervalo de sensibilidad del valor del lado derecho de cada restricción
- e) Calcule el precio sombra asociado por cada intervalo de sensibilidad encontrado en la parte (d)



| Objective                  |  |  |
|----------------------------|--|--|
| <ul><li>Maximize</li></ul> |  |  |
| O Minimize                 |  |  |
|                            |  |  |

| Variable          | Status   | Value     |
|-------------------|----------|-----------|
| JN                | Basic    | 1.428,571 |
| JT                | Basic    | 1.857,143 |
| slack 1           | NONBasic | 0,        |
| slack 2           | NONBasic | 0,        |
| slack 3           | Basic    | 71,4285   |
| Optimal Value (Z) |          | 1.528,572 |

| Variable     | Value      | Reduced | Original Val | Lower Bound        | Upper Bound        |
|--------------|------------|---------|--------------|--------------------|--------------------|
| JN           | 1.428,571  | 0,      | 0,55         | 0,32               | Infinity           |
| JT           | 1.857,143  | 0,      | 0,4          | 0,                 | 0,6875             |
| Constraint   | Dual Value | Slack   | Original Val | <b>Lower Bound</b> | <b>Upper Bound</b> |
| Constraint 1 | 8,         | 0,      | 150,         | 57,1429            | 157,1429           |
| Constraint 2 | 3.285.715, | 0,      | 1.000,       | 875,0001           | 2.625,             |
| Constraint 3 | 0,         | 71,4285 | 1.000,       | 928,5715           | Infinity           |