

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Facultad de Ingeniería en Mecánica y Ciencias de la Producción

"Elaboración de Sopa Instantánea a Partir de Harina de Camote (Ipomoea Batatas)"

INFORME DE PROYECTO DE GRADUACIÓN

Previo a la obtención del Título de:

INGENIEROS DE ALIMENTOS

Presentado por:

Carlos Miguel Albán Jiménez Astrid Anani Figueroa Gómez

GUAYAQUIL- ECUADOR Año: 2011

AGRADECIMIENTO

A Dios primeramente por darme la vida y contar con su ayuda todos los días, a mi madre por su incondicional apoyo, dedicación y paciencia, a mi familia y amigos por mantenerse siempre junto a mí.

A la M. Sc. Fabiola Cornejo, directora de tesis, por su invaluable ayuda y guía en el desarrollo de este proyecto, a mi madre por su amor y paciencia, a mi abuela que desde el cielo me guía por el camino del bien todos los días, y a todas las personas que de una u otra manera colaboraron en la finalización de este trabajo.

Carlos Albán Jiménez.

AGRADECIMIENTO

A la M. Sc. Fabiola Cornejo, Directora de Tesis, por su ayuda en el desarrollo de la Tesis, a mi mami por su apoyo y su amor incondicional, a mi enamorado por su amor y comprensión, a todas las personas que de uno u otro modo ayudaron a la finalización de este trabajo.

DEDICATORIA

A MI MADRE

A MI ABUELA

A MIS HERMANOS

A MI FAMILIA

A MIS AMIGOS

DEDICATORIA

A Dios primeramente por darme la vida y brindarme su ayuda. A mis padres por su amor, dedicación y paciencia. A mis hermanos por su apoyo emocional en esos días de debilidad. A mis amigos por aportar con un granito de arena para la culminación de este trabajo. A todos y cada uno de ustedes, muchas gracias y que Dios los bendiga siempre.

TRIBUNAL DE GRADUACIÓN

Ing. Francisco Andrade S.

DECANO DE LA FIMCP
PRESIDENTE

Ing. Fabiola Cornejo Z.

DIRECTORA DE TESIS

Ing. Grace Vásquez V. VOCAL

DECLARACIÓN EXPRESA

"La Responsabilidad del contenido de este Informe de Proyecto de Graduación, nos corresponde exclusivamente; y el Patrimonio Intelectual del mismo a la ESCUELASUPERIOR POLITÉCNICA DEL LITORAL"

(Reglamento de Graduación de la ESPOL)

Carlos Albán Jiménez Astrid Figueroa Gómez

RESUMEN

El desarrollo de este proyecto es rescatar el uso de productos autóctonos. En el Ecuador se cultiva camote que es una raíz reservante que aporta grandes beneficios para la salud ya que es rico en almidones, carotenos, calcio y fósforo pero no existe a nivel industrial.

Por lo tanto, nuestro objetivo fue elaborar una sopa de camote que contribuya un aporte nutricional a la sociedad ya que tiene beneficios para la salud y es de fácil adquisición.

Para lograr este objetivo se realizaron diversas pruebas como la caracterización físico-química de la materia prima y de harina de camote. Luego, se determinó el mejor pre-tratamiento al secado.

Posteriormente, se elaboró isotermas del camote y las curvas de secado. Después de la obtención de la harina se realizó diferentes formulaciones con el propósito de determinar si existen o no diferencia significativas mediante la prueba de t de student, una vez obtenida está se evaluó el aporte nutricional y energético, y la rehidratación.

Así mismo, se determinó la estabilidad del producto mediante la elaboración de la isoterma del producto terminado. Por último, se realizaron diferentes cálculos para determinar el tiempo de vida útil de la sopa.

ÍNDICE GENERAL

DECLIMENT	Pág.
RESUMEN	
ÍNDICE GENERAL	
ABREVIATURAS	
SIMBOLOGÍA	
ÍNDICE DE FIGURAS	VII
ÍNDICE DE TABLAS	VIII
INTRODUCCIÓN	1
CAPÍTULO 1	
1. GENERALIDADES	2
1.1. Materia Prima	2
1.1.1. Cultivos y Disponibilidad	2
1.1.2. Composición Química y Valor Nutricional	4
1.2. Proceso de Secado	6
1.3. Sopas Instantáneas	8
1.3.1. Tipos y Características	8
1.3.2. Ingredientes y Especificaciones	10
1.3.3. Proceso de Elaboración	10
1.3.4. Principales Alteraciones	14
1.4. Rehidratación de Polvos	15
CAPÍTULO 2	
2. PROCESO DE OBTENCIÓN DE LA HARINA	17
2.1. Características de Materia Prima	17
2.2. Metodología de Trabajo	21

2.2.1. Ensayos Físicos-Químicos	21
2.2.2. Secado	22
2.3. Isotermas de Sorción	26
2.4. Proceso de Secado	29
2.4.1. Curvas de Secado	33
2.5. Caracterización de la Harina	37
CAPÍTULO 3	
3. OBTENCIÓN DE SOPAS INSTANTÁNEAS A BASE DE HARINA DE CAMOTE	41
3.1. Ingredientes	41
3.2. Formulaciones	42
3.2.1. Evaluación Sensorial	42
3.2.2. Aporte Nutricional y Energético	52
3.2.3. Rehidratación	54
3.3. Estabilidad	55
3.3.1. Determinación de la Humedad Crítica	55
3.3.2. Elaboración de Isoterma del producto terminado	59
3.3.3. Cálculos de Permeabilidad al Vapor de Agua en Empaque	61
CAPÍTULO 4	
4. CONCLUSIONES Y RECOMENDACIONES	66
BIBLIOGRAFÍA	
ANEXOS	

ABREVIATURAS

Aw Actividad de agua

AOAC Association of AnalyticalCommunities

BET Brunauer-Emmett-Teller °C Grados Centígrados

cm Centímetros

cm² Centímetros cuadrados

Ec. Ecuación

GAB Guggenheim-Anderson-de- Boer

g Gramos

IU Unidades Internacionales

h Hora

Ha Hectáreas

HR Humedad Relativa

HRE Humedad relativa en equilibrio

Kcal Kilocalorías
Kg Kilogramos
min Minutos
mg Miligramos
mm Milímetros
s Segundo

Tm Toneladas métricas

% Por ciento

SIMBOLOGÍA

A Área

b.h. Base húmedab.s Base seca

DpDiámetro partículaDpsupDiámetro superior

H2O Agua

pH Potencial de Hidrógeno Rc Velocidad de Secado

s.s. sólido seco T Temperatura t Tiempo

 Δt Diferencial de tiempo

 Δx Diferencial de Humedad libre

 Δx_i Porcentaje de retenidos

X Humedad Libre

X_i Partícula más pequeña en el diámetro superior

X_{media} Humedad media Xc Humedad crítica

Xt Humedad en base seca
X* Humedad en equilibrio
W Peso de la muestra
Ws Peso de sólidos secos

ÍNDICE DE FIGURAS

	Pág.
Figura 1.1 Etapas Del Periodo de Secado	7
Figura 1.2 Diagrama de Flujo del Proceso de Elaboración de Harina	12
Figura 1.3 Degradación en Función de la AW	14
Figura 2.1 Evaluación del Camote VS el Tiempo	20
Figura 2.2 Prueba de Guayacol	24
Figura 2.3 Solución en Acido Cítrico y Ascórbico	26
Figura 2.4 Isoterma de Sorción del Camote	29
Figura 2.5 Humedad en Base Seca VS Tiempo	34
Figura 2.6 Peso VS Tiempo	35
Figura 2.7 Humedad Libre VS tiempo	35
Figura 2.8 Velocidad de Secado	36
Figura 3.1 Hidratación	54
Figura 3.2 Isoterma de Sorción de la Sopa de camote	55
Figura 3.3 AQUABATH	56
Figura 3.4 Apelmazamiento	56
Figura 3.5 Consistencia de la sopa de Camote	58
figura 3.6 Isoterma de la sopa de camote	60

ÍNDICE DE TABLAS

	P	ág.
Tabla 1	Características y Condiciones Recomendadas de Almacenamiento	. 4
Tabla 2	Composición Nutricional	5
Tabla 3	Características Físicas del Camote	18
Tabla 4	Relación Cáscara – Pulpa del Camote	19
Tabla 5	Características Sensoriales del Camote	21
Tabla 6	Métodos para Parámetros Químicos del Camote	22
Tabla 7	Datos para la Isoterma de Sorción	28
Tabla 8	Parámetros de Secado	30
Tabla 9	Condiciones de Operación de Secado	30
Tabla 10	Datos para Hallar Curva de Secado	34
Tabla 11	Características Sensoriales de la Harina de Camote	37
Tabla 12	Análisis Físico – Químicos de la Harina de Camote	38
Tabla 13	Cantidad de Harina Retenida por Malla	39
Tabla 14	Formulación A	43
Tabla 15	Formulación B	44
Tabla 16	Formulación C	45
Tabla 17	Formulación D	46
Tabla 18	Formulación E	47
Tabla 19	Resultados Obtenidos de la Evaluación Sensorial	51
Tabla 20	Composición Nutricional de la Sopa de Camote	53
Tabla 21	Consistencia vs Tiempo	57
Tabla 22	Datos para Determinar la Vida Útil	65

INTRODUCCIÓN

El camote llamado también Ipomoea Batatas, es una raíz reservante con alta concentración de azúcares, caroteno y provitamina A. Es reconocido como eficaz en la lucha contra la desnutrición debido al alto valor nutricional y terapéutico. Puede ser utilizado como un buen sustituto para la papa y la yuca ya que presenta los beneficios nutricionales como carbohidratos, almidones, fibra, azúcar entre otros, pero a un menor costo.

El objetivo de este proyecto es aprovechar los beneficios nutricionales y rescatar el uso de productos autóctonos. En consecuencia, se desarrollará una sopa instantánea a base de harina de camote, con el propósito que contribuya con las necesidades nutricionales de la población.

Primero, se determinará los parámetros óptimos de secado mediante la elaboración de isotermas de sorción, cálculos de velocidad y tiempo de secado. Después, se realizará la formulación de la sopa considerando sus características sensoriales, nutricionales y funcionales. Así mismo, se estudiará la estabilidad de la sopa instantánea analizando La humedad crítica. Finalmente, se calculará la permeabilidad del vapor de agua en el empaque.