ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMATICAS ANALISIS NUMERICO

PRIMERA EVALUACION

GUAYAQUIL, 5 DE JULIO DE 2011

- 1. Determine de ser posible, el valor del parámetro $\alpha > 0$, tal que $\int_{\alpha}^{2\alpha} xe^{x} dx = 10$.
- a) Justifique la existencia del parámetro α .
- b) En caso de existir el parámetro α , aplicar el método de Newton para aproximar el valor de α , con una tolerancia de 10^{-4} .
- 2. Una empresa compra tres materiales A, B, C en cantidades en kg. como se indica en el cuadro. Se dispone de tres facturas en las que consta el total pagado en dólares, excepto en la segunda factura:

Factura	A	В	С	Total
1	2	5	4	35
2	3	9	8	k
3	2	3	1	17

- a) Construya el modelo matemático para resolver este problema.
- b) Con el método de Gauss-Jordan encuentre la solución en función de k.
- c) Luego de resolver el sistema nos comunican que el valor pagado en la segunda factura es 65 dólares. Sustituya en la solución anterior y encuentre la solución exacta.
- d) Para verificar que la solución es confiable, en la matriz de coeficientes sustituya 5 por
- 5.1 y obtenga nuevamente la solución con el método anterior con k=65. Compare con la solución anterior y comente el resultado obtenido.
- e) Encuentre el error relativo de la solución y compare con el error relativo de la matriz. Comente acerca del tipo de sistema.
- 3. Suponga que se tiene un automóvil viajando a lo largo de un camino recto. En diferentes puntos de su recorrido se mide lo siguiente:

Tiempo [s]	0	3	5	8	13
Distancia [m]	0	69	117	190	303
Velocidad [m/s]	22.9	23.5	24.4	22.6	21.9

Usando interpolación de Lagrange aproxime el valor de la velocidad del automóvil en t = 10 segundos.