ESTUDIOS DE COORDINACIÓN DE LAS PROTECCIONES POR MÉTODOS COMPUTARIZADOS APLICADOS A LA CENTRAL TÉRMICA TRINITARIA

Aguirre Marrett Pedro Roberto, López Cáceres Leonardo Marcelo, Zambrano Cañizares José Manuel, Juan Saavedra M.Sc Facultad de Ingeniería Eléctrica y Computación Escuela Superior Politécnica del Litoral (ESPOL) Campus Gustavo Galindo, Km. 30.5 vía Perimetral Apartado 09-01-5863. Guayaquil-Ecuador praguirr@espol.edu.ec; llopez@espol.edu.ec; jmzambra@espol.edu.ec; jsaavedra@hidronacion.org

Resumen

El presente estudio abarca el análisis del sistema eléctrico de la Central Térmica Trinitaria, se realizó el estudio de Flujo de Potencia para determinar el estado actual del sistema Guayaquil y verificar que el Generador sea capaz de suplir toda la carga conectada a sus barras sin contar con la aportación del Sistema Nacional Interconectado S.N.I.; adicionalmente, se realizó el estudio de cortocircuito para conocer las corrientes máximas y mínimas de falla que circulan por el sistema eléctrico con la finalidad de determinar, el ajuste correcto de las protecciones eléctricas de la Central lo cual se comprobó con los datos tomados de la información proporcionada por las áreas de operación y mantenimiento de dicha Central.

Palabras Claves: Coordinación de protecciones aplicados a la Central Térmica Trinitaria

Abstract

This study deals with the analysis of the electrical system of the Electrical Thermal Trinitaria of the study Power Flow to determine the current state of Guayaquil system and verify that the generator is capable of supplying the entire load connected to its bar without the contribution of the National Interconnected system SNI, in addition, the study was conducted to know the short-circuit current fault maximum and minimum flowing through the electrical system in order to determine the correct setting of the Central electrical protection which is checked with data taken from the information provided by the areas of operation and maintenance of the plant

Keywords: Protection coordination applied to the thermal Trinitaria System

1. Introducción

El presente documento corresponde al proyecto de graduación "Estudio de la Coordinación de las Protecciones por Métodos Computarizados Aplicados a la Central Térmica Trinitaria" en donde inicialmente se describen las instalaciones eléctricas existentes en la Central de Generación, las características técnicas del Generador, Turbina, Sistema de Excitación y Transformador Principal. Así mismo se describe brevemente el principio de operación de la Central.

Para el análisis de este trabajo se realizó una simulación del sistema Guayaquil tomando como barra de oscilación la Subestación Pascuales la cual se estableció como equivalente del SNI, con el estudio de flujo de carga de la Central considerando la carga máxima como caso base cuyos resultados se usaron para el estudio de cortocircuito determinando las corrientes de falla trifásica como también de falla fase a tierra en cada barra del sistema de la Central.

Se presenta el esquema de protección aplicado a la Central Térmica Trinitaria, donde se indican las posiciones de cada relé según su protección con respecto al generador y al transformador principal. Los ajustes de la mayoría de los relés del esquema de protección son determinados de conformidad a las especificaciones técnicas y procedimientos recomendados por el fabricante de los relés que en nuestro caso es la marca ABB (Asea Brown Boveri).

Finalmente, se muestra la coordinación de los relés de protección considerando una falla producida en la barra de salida de la Central.

2. Estudio de Flujo de Carga

En el estudio se consideró el caso base para carga máxima, donde todas las cargas instaladas están a su potencia nominal, considerando un factor de potencia de 0,85. Para la simulación se uso el software Powerworld donde los datos de impedancias de líneas y de transformadores fueron cargados en por unidad tomando una potencia aparente base de 100 MVA

2.1 Criterios adoptados para el estudio.

Flexibilidad Operacional. Niveles de Confiabilidad. Niveles de Sobrecarga. Regulación de Voltaje.

2.2 Datos del Sistema.

A continuación se presentan varios de los datos técnicos de la Central usados para el estudio.

2.2.1 Diagrama unifilar

El diagrama unifilar de la Central Térmica Trinitaria utilizando el programa PowerWorld, es como se muestra en la figura 2.1

Trinitaria

2.2.2 Datos de barras de carga

La carga está dada en MW y MVAR a voltaje nominal. Para las cargas de los servicios auxiliares de la Central Térmica Trinitaria de la Barra MC1 - 4,16 KV, se consideró un factor de potencia de 0,85 y para las demás cargas del sistema el factor de potencia es superior a 0,92.

Tabla 2.1 -	Datos	de Barras	de carga
-------------	-------	-----------	----------

NÚMERO DE BARRA	NOMBRE DE BARRA	MW	MVAR	MVA
9	TRINITARIA 138 KV	75,12	29,38	80,66
13	PASCUALES 138 KV	128,46	53,80	139,27
13	PASCUALES 138 KV	65,24	24,31	69,62
14	PASCUALES 69 KV	108,83	31,45	113,28
20	GENEROCA 13.8 KV	26,00	0,96	26,02
21	POSORJA 138 KV	19,20	5,60	20,00
32	TINAJERO 69 KV	268,88	78,42	280,08
42	CARGA CHILLERS	5,68	0,00	5,68
43	MC1 4.16 KV	1,02	0,63	1,20
43	MC1 4.16 KV	0,28	0,17	0,33
43	MC1 4.16 KV	0,85	0,53	1,00
43	MC1 4.16 KV	3,62	2,24	4,25
43	MC1 4.16 KV	2,13	1,32	2,50
43	MC1 4.16 KV	0,19	0,12	0,22

2.2.3 Datos de líneas y conductores.

 Tabla 2.2 - Datos calibre y tipos de conductores en Líneas.

LÍNEA	DESDE BARRA	HASTA BARRA	VOLTAJE (KV)	Calibre del Conductor (AWG o MCM)	Nº DE CIRCUITOS
1	S/E Electroquil 69 KV	Salitral 69KV	69	477 ACSR FLICKER	2
2	Salitral 69KV	Aníbal Santos	69	477 ACSR FLICKER	1
3	Salitral 69KV	A. Tinajero	69	477 ACSR FLICKER	2
4	Salitral 69 KV	G.Zevallos 69 KV	69	477 ACSR FLICKER	2
5	Pascuales 138 KV	Salitral 138 KV	138	477 ACSR FLICKER	2
6	Pascuales 138 KV	S/E 138 KV Electroquil	138	397,5 ACSR BRANT	1
7	S/E 138 KV Electroquil	POSORJA 138 KV	138	397,5 ACSR BRANT	1
8	S/E 138 KV salitral	S/E138 KV Trinitaria	138	750 ACAR	1
9	S/E 230 KV Trinitaria	S/E pascuales 230 KV	230	1113 ACSR BLUEJAY	1

2.3 Resultados de los Estudios de Flujo de Carga

Los resultados de Flujo de carga son presentados principalmente en forma gráfica por ser el método más conciso y usualmente más informativo. El flujo del sistema puede ser rápidamente analizado con la presentación gráfica y relacionar la configuración del sistema, condiciones operativas y resultados.

El análisis del flujo de carga muestra lo siguiente:

- a) Voltaje en barras.
- b) Carga sobre todos los conductores y transformadores, verificar que la carga este dentro de la capacidad de transmisión para condiciones normales y contingencias operativas.
- c) Ajustes de TAPS de los Transformadores.

Vista general del subsistema Trinitaria:

Figura 2.2. Flujo de Carga de la Central Térmica Trinitaria

2.3.1 Voltajes en barras.

La tabla 2.7, muestra los voltajes en cada barra del Sistema de Guayaquil.

Tabla 2.7 - Datos de Voltajes en barras – Carga Máxima

NÚMERO DE BARRA	NOM BRE DE BARRA	VOLTAJE NOMINAL (kV)	VOLTAJE (pu)	VOLTAJE (kV)	ÁNGULO (GRADOS)
1	PASCUALES 230 KV	230	1,000	230	0
2	TRINITARIA 230 KV	230	0,997	229,269	0,661
9	TRINITARIA 138 KV	138	0,988	136,31	1,986
11	TRINITARIA 13,8 KV	13,8	1,000	13,8	5,437

2.3.2 Carga de los Transformadores.

 Tabla 2.8 Datos de Carga de los Transformadores de Fuerza

DESDE BARRA	NOM BRE DE TRANSFORMADORES	HASTA BARRA	MVA	MVA LÍMITE	% Sobrecarga
9	Traf Trinitaria 138-230	2	47,25	225	21
9	Traf U1 Trinitaria 138-13.8	11	126,4	160	79
11	Traf Servicios Auxiliares Trinitaria	43	9,5	12,5	76

2.4 Conclusiones del Estudio de Flujo.

Los resultados obtenidos conllevan a las siguientes conclusiones:

- La potencia activa entregada al Sistema Nacional Interconectado (S.N.I.) para el caso de carga máxima es de 30 MW, en cambio, la potencia reactiva suministrada por el S.N.I. es de 172 MVAR.
- El voltaje de operación en la barra de generación #11 de la Central Térmica Trinitaria es de 1,00 pu; por otra parte, el voltaje de operación en la barra de carga #43 de los servicios auxiliares de la Central es de 1,00 pu. Debido al buen funcionamiento del sistema, los valores antes mencionados se encuentran dentro de los rangos permitidos y no fue necesario realizar ningún tipo de regulación ya sea de generación o por medio de los TAP de los transformadores de fuerza.
- El flujo de potencia a través de los transformadores de fuerza principales de la Central, no exceden de su capacidad; el transformador de fuerza de 160 MVA (1-MC-MT1) está cargado al 79% de su capacidad OFAF y por otro lado, el transformador de fuerza de servicios auxiliares de 12,5 MVA (1-MC-UT1) está cargado al 76% de su capacidad ONAF.

2. Estudio de Corto Circuito

En el análisis de corto circuito, las fallas del sistema se manifiestan como condiciones anormales de operación que nos podrían conducir a uno de los siguientes fenómenos:

- Indeseables flujos de Corrientes.
- Presencia de Corrientes de magnitudes exageradas que podrían dañar los equipos.
- Caída de Voltaje en la vecindad de la falla que puede afectar adversamente la operación de las maquinas rotatorias.
- Creación de condiciones peligrosas para la seguridad del personal.

Los estudios se realizarán con los siguientes objetivos:

- Determinar el efecto de las corrientes de falla en los componentes del sistema tales como cables, barras y transformadores durante el tiempo que persista la falla.
- Los estudios determinaran las zonas del sistema en donde la falla puede resultar en depresión inaceptable de voltajes.
- Proveer la información para el ajuste de los equipos de protección, los cuales son establecidos considerando el sistema bajo condiciones de falla.

3.1 Alcance de los Estudios de Corto Circuito.

Considerando que el Sistema de la Central Térmica Trinitaria se caracteriza por ser un sistema típicamente aterrizado, el estudio de corto circuito considera los siguientes tipos de falla:

- Falla Trifásica a tierra
- Falla de línea a tierra

La falla trifásica a tierra es a menudo, para este tipo de sistema, la más severa de todas, por ello es costumbre de simular solamente la falla trifásica cuando se busca las magnitudes máximas de corriente de falla; sin embargo se verificará que la corriente de falla a tierra no exceda la corriente trifásica.

El estudio de corto circuito se realizó con el programa powerworld en donde se obtuvieron varios resultados como la verificación de la capacidad momentánea de los interruptores usando la reactancia subtransitoria y para el estudio de Protecciones se utilizó la Reactancia Transitoria.

3.2 Impedancias Equivalentes en el Punto de Entrega de S.N.I.

El S.N.I. nos ha entregado los MVA de Corto Circuito y las Impedancias de Thévenin en la Barra de Interconexión del Sistema de Generación con el S.N.I. La información ha sido trasladada a la base de 100 MVA y 230 KV, tal como se indica en la tabla 3.1.

Tabla 3.1 - Corrientes y MVA de Corto Circuito

Tipo de Falla	Corriente de Falla (p.u.)	Ángulo (Grados)	Corriente de Falla (Amperios)	(MVA) de Cortocircuit o
Trifásica	42,241	-84,65	10603,40	4224,10
Línea-Tierra	48,895	-85,67	12273,60	1629,82

Tabla 3.2 - Impedancias Equivalentes

Tipo de		Ángulo	R+jX
Falla	Magnitud (p.u.)	(Grados)	(Ohmios)
Positiva	0,042	90	j22,21
Cero	0,020	90	j10,58

Estas Impedancias se aplicarán para los cálculos de la Corriente Momentánea y la corriente a interrumpir debido a que el S.N.I. es considerada siempre como una barra infinita que se caracteriza por no tener decremento AC.

3.3 Caso Base.

En el Anexo No. 3 del documento final, se adjuntan los resultados gráficos de las corridas de Corto Circuito del Caso base. En este resumen se presenta el resultado de una falla en la barra #2 en la Subestación Trinitaria de 230 KV.

Almentación a M. Bomba Agua M. Bomba Agua M. Bomba Extracción M. Ventilador de M. Ventilador de Trafo AT1-A de Circulación "A" de Almentación "A" de Condensado "A" Tiro Forzado "A" Recirculación Gases

Figura 3.1 Falla trifásica en la Barra #2, Trinitaria 230 KV

3.3.1 Corriente de Falla en cada barra.

En la tabla 3.3, se muestran las corrientes de falla trifásica para cada barra en por unidad y en amperios.

Tabla 3.3 -	Corriente	de fal	la trifá	isica	en	cada	barra
	del	Siste	ma.				

NÚMERO DE		F	ALLA TRIFÁSIC	4
BARRA	NOM BRE DE BARRA	CORRIENTE [pu]	CORRIENTE [A]	ÁNGULO [GRADOS]
1	PASCUALES 230 KV	42,241	10.603,400	-84,65
2	TRINITARIA 230 KV	25,896	6.500,520	-83,92
9	TRINITARIA 138 KV	29,908	12.512,600	-81,08
11	TRINITARIA 13,8 KV	17,044	71.307,600	-81,86
12	G VICTORIA 13,8 KV	7,298	30.533,300	-86,33
13	PASCUALES 138 KV	38,640	16.165,900	-82,30
14	PASCUALES 69 KV	18,927	15.836,600	-84,44
15	G PASCUALES 13.8 KV	10,320	43.177,000	-83,08
43	MC1 4.16 KV	16,872	231.934,000	-81,89

En la tabla 3.4 se muestran las corrientes de falla línea a tierra en por unidad y en amperios.

Tabla 3.4 - Corriente de Falla línea a tierra en cadabarra del Sistema.

		FALLA LÍNEA A TIERRA		
BARRA	NOM BRE DE BARRA	CORRIENTE [pu]	CORRIENTE [A]	ÁNGULO [GRADOS]
1	PASCUALES 230 KV	48,895	12.273,600	-85,67
2	TRINITARIA 230 KV	25,346	6.362,330	-84,80
9	TRINITARIA 138 KV	33,083	13.840,900	-82,42
11	TRINITARIA 13,8 KV	13,761	57.571,800	-83,12
12	G VICTORIA 13,8 KV	7,469	31.248,400	-86,75
13	PASCUALES 138 KV	42,524	17.790,800	-83,87
14	PASCUALES 69 KV	20,136	16.840,300	-86,06
15	G PASCUALES 13.8 KV	12,056	50.439,400	-83,48
43	MC1 4.16 KV	24,988	343.490,000	-81,94

3.4.1.2 Capacidad de Interrupción

Tabla 3.5 - Corriente de Interrupción

NÚMERO DE BARRA	NOM BRE DE BARRA	VOLTAJE [KV]	CORRIENTE DE INTERRUPCIÓN [KA]	M VA DE INTERRUPCIÓN
9	Trinitaria 138 KV	138	15,23	3640
11	Trinitaria 13,8 KV	13,8	85,68	2048

3.4 Conclusiones del Estudio de Corto Circuito.

El presente estudios de Corto Circuito preparado para la Central Térmica Trinitaria ha permitido cumplir los siguientes objetivos:

- Determinar el efecto de las corrientes de falla en los componentes del sistema tales como cables, barras y transformadores durante el tiempo que persista la falla.
- La corriente de falla a línea a tierra fue limitada a la corriente de falla trifásica a tierra, por medio de la instalación de una resistencia puesta a tierra en el generador, a través de un transformador de distribución.
- Las corrientes de cortocircuito han sido calculadas considerando los estándares de la IEEE aplicables para el cálculo de falla para voltajes medio y alto. IEEE Std C37.010-1979, IEEE Std C37.5-1979, IEEE Std 141-1993, IEEE Std 241-1990, y la IEEE Std 242-1986.
- Las fallas Trifásica a tierra y línea a tierra fueron aplicadas a cada barra del sistema de la Central Térmica Trinitaria, los resultados se muestran en el Anexo No. 3 del documento final.
- El ajuste de los equipos de protección, los cuales son determinados considerando el sistema bajo condiciones de falla, será estudiada en la tercera parte de este trabajo relacionada con la coordinación de las protecciones.

4. Coordinación de las Protecciones

Los estudios de flujo de carga y Corto Circuito de la Central Térmica Trinitaria son la base para el ajuste y coordinación de las Protecciones del Sistema de Generación. Los estudios tienen los siguientes objetivos:

- Determinar el ajuste de los equipos de protección, los cuales son establecidos considerando el sistema bajo de condiciones falla.
- Determinar la coordinación de las Protecciones del sistema de la Central Térmica Trinitaria propiamente y respaldo al SIN.
- La aplicación del Estudio permitirá el despeje oportuno y selectivo de las fallas del sistema.

4.1 Esquema de Protecciones.

En el Anexo No. 4, se muestra el Esquema General de Protecciones de la Central Térmica Trinitaria, tanto para el Generador como para el Transformador Principal, constituidos por los relés de protección marca ABB que se detallan posteriormente.

4.1.1 Relés de Protección de la Central Térmica Trinitaria.

A continuación se indican los relés de protección que corresponden al Generador, al Transformador Principal y al Transformador de Servicios Auxiliares.

4.1.1.1 Relés de Protección para el Generador.

Figura 4.1- Reles de proteccion para el generador

Relé diferencial del generador (87G)

Relé de secuencia negativa de generador (46G) Relé de pérdida de excitación de generador (40G) Relé de retorno de energía de generador (32AG-32BG) Relé de sobrecarga de generador (49G) Relé de sobretensión del generador (59G) Relé de mínima tensión del generador (27G) Relé de mínima frecuencia de generador (81AG-81BG) Relé de baja potencia de generador (37G) Relé de desequilibrio de tensiones (60AG-60BG) Relé de falla a tierra del estator (64 SG) Relé de impedancia de generador (21G)

Relé de sobrexcitación V/Hz (59/81)

4.1.1.2 Relés de Protección para el Transformador Principal.

Figura 4.2-Reles de proteccion para el transformador principal

Relé diferencial del generador - transformador (87GT) Relé de sobre intensidad de transformador principal (51 MT)

Relé de sobre intensidad homopolar de transformador principal (51N MT)

4.1.1.3 Relés de Protección para el Transformador de Servicios Auxiliares.

Relé diferencial de transformador auxiliar (87 UT1) Relé de sobre intensidad de transformador auxiliar (51 UT1)

Relé de sobre intensidad homopolar de transformador auxiliar (51N UT1)

4.2 Ajuste y Coordinación de las Protecciones.

La información básica para el ajuste de las protecciones proviene de los estudios de flujo de carga, cortocircuito y de los esquemas de protección indicados en la sección anterior.

A continuación se detallaran los datos técnicos y ajustes de dos relés

4.2.1 Protecciones del Generador.

4.2.1.1 Relé diferencial del Generador (87 G).

El relé tipo RADHA marca ABB, es el utilizado en la Central para la protección diferencial del generador. El RADHA es un relé diferencial de alta velocidad, sensible de alta impedancia para protección de fallas de fase y de tierra de barras, autotransformadores, reactores, generadores y motores. La utilización del relé no está limitada por la saturación de los transformadores de corriente para fallas internas ni para fallas externas, esto está considerado en las fórmulas de ajustes. La tensión de saturación de los transformadores de corriente involucrados debe ser por lo menos el doble del valor de operación seleccionado de RADHA y no se pueden realizar correcciones de las relaciones de los transformadores de corriente. Se utilizan resistencias no lineales en cada fase para proteger los transformadores de corriente contra picos elevados de tensión durante las fallas internas.

En los esquemas convencionales de corriente balanceada de tipo diferencial, puede ocurrir un considerable desequilibrio de corriente durante las fallas pasantes, debido a la saturación de los transformadores de corriente. La saturación es ocasionada por los transitorios de corriente continua de la corriente de falla. Esto puede suceder aún si los transformadores de corriente tienen factor de saturación de sobrecorriente, el cual excede el valor máximo simétrico de la corriente de falla. A fin de evitar disparos incorrectos en esas condiciones se utilizan relés retardados o de acción lenta con un frenado elevado.

El relé RADHA es del tipo de frenado de alta impedancia y ha sido diseñado con circuitos de filtro, los cuales atenúan la componente de corriente continua.

4.2.1.1.1 Datos técnicos del relé tipo RADHA.

En la tabla 4.1, se muestran los datos técnicos principales del relé de protección diferencial tipo RADHA.

Tabla 4.1-Datos técnicos	principales del relé tipo
RADHA	(87 G).

Característica	Descripción
Función	cortocircuitos en
Тіро	: RADHA
Fabricante	: ABB
Modelo	: RK 646 009-CA
Esquema	: 7417 015-CA
Intensidad nominal del relé	: 5 A
Voltaje de operación U _{s1} /U _{s2}	67/97; 100-400* V
Corriente de operación del	
relé aproximado	: 20 mA; 75 mA*
Frecuencia	: 60 Hz
Tensión Auxiliar	: 125 Vcc
Conexión	corriente de lado de neutro
	generador.
Disparo	(Generador)
	Excitación
	Turbina

La práctica ha mostrado que un ajuste del relé, de acuerdo a la fórmula de abajo, es suficiente para garantizar la operación correcta del relé, incluso para la saturación transitoria más extrema del transformador de corriente. Us es calculado para la corriente máxima de falla usando la siguiente fórmula:

Us > I2R2

Donde,

Us = Ajuste del voltaje de operación.

I2 = Corriente secundaria a la máxima corriente de falla.

R2 = Suma de la máxima resistencia secundaria del transformador de corriente y de la resistencia del conductor hasta el punto de unión.

Cuando ocurre una falla a tierra, rápidamente se genera una tensión a lo largo del circuito del relé. A fin de prevenir que esa tensión llegue a valores muy elevados, el relé puede conectarse en paralelo con una resistencia de pendiente. El relé opera cuando la corriente primaria a tierra asciende a:

 $IF > n (In + \sum IM + IRes)$

Donde;

n = Relación de espiras del transformador de corriente.

In = Corriente de operación del relé (normalmente 20 mA).

 \sum IM = Suma de la corriente de magnetización en la tensión de operación US de todos los transformadores de corriente involucrados.

IRes = Corriente en la resistencia no lineal a tensión Us, ver la figura 4.2.

En la figura 4.2, se muestran las curvas características corriente-voltaje para las resistencias no lineales.

Figura 4.2 - Curvas característica corriente-voltaje para las resistencias no lineales.

En la tabla 4.2, se indica la curva característica de acuerdo al valor de operación Us.

Tabla 4.2 - Curva característica según el valor Us.

Valor de operación U _s	Tipo de Resistencia	Curva característica
10-50 V	5248 831 - B	С
50-100 V	5248 831 - C	b
100-130 V	5248 831 - D	b (0,5 x resistencia total)
130-400 V	5248 831 - D	a (resistencia total)

4.2.1.1.2 Ajustes del relé tipo RADHA.

Para el cálculo de la corriente máxima de falla en el generador, nos pondremos en la situación más desfavorable, es decir, aquella que provocaría la mayor corriente de cortocircuito. Para el generador usaremos la reactancia Subtransitoria (Xd" = 11,4%) y despreciaremos las impedancias de los contactos de interruptores, barras, etc.

La reactancia subtransitoria de acuerdo a las bases del sistema (100 MVA, 13,8 KV), es:

$$X_{d}^{"} = 0,114 * \left(\frac{13,8}{13,8}\right)^{2} * \left(\frac{100}{156,5}\right) = 0,0728 pu$$

Entonces, la corriente máxima de falla en el generador en por unidad es:

$$I_{F3\phi} = \frac{1}{X_d^{"}} = \frac{1}{0,0728} = 13,74 \, pu$$

La corriente base de lado del generador es:

$$I_{BASE-13,8} = \frac{100000KVA}{\sqrt{3} * 13,8 KV} = 4.183,70 Amp$$

Por lo tanto, la corriente máxima de falla trifásica en el generador es:

$$I_{F3\phi} = 13,74 * 4183,70 = 57.484 Amp$$

Este valor es menos de ocho veces la corriente nominal de los transformadores de corriente, y siendo estos de clase 5P20, es decir, 20 veces la corriente nominal del TC, siempre trabajarán en la zona lineal, y por lo que no habría problemas de saturación.

La relación de los transformadores de corriente es de 8.000/5, por consiguiente, la máxima corriente de falla que observa el relé es:

$$I_2 = 57,484 * \frac{5}{8.000} = 35,92 \, Amp$$

Se asume una resistencia máxima R2 de 1,9 ohmios. Entonces, la tensión máxima desarrollada a través del relé Us, es:

 $U_s > I_2 R_2 > 35,92*1,9$ $U_s > 68,25V$

Por lo tanto, el ajuste del relé diferencial tipo RADHA es como se muestra a continuación:

Tabla 4.3- Ajustes del relé tipo RADHA 87 G.

Ajuste del	relé 87 G
Voltaje de	
operación (U _{s)}	: 69 V
Tiempo de	
operación para	
disparo	: 30 ms

4.4 Resumen de Ajustes

Tabla 4.31 - Resumen de ajustes de la Central

Térmica Trinitaria

ÍTEM	RELÉ	TIPO	M ODELO	AJUSTE	DATOS TÉCNICOS
٢	Diferencial del Generador (87G)	RADHA	RK-646.009-CA	69 V , t _{disp} =30 ms	60 Hz; 70/100 V; 125 V cc
2	Secuencia Negativa Generador (46G)	RARIB 2	RK-648.012-CA	Alarma: I _{rsc} = 8% I;; t _{alarm} = 0,1 s Disparo: I _{rsc} = 10% I,; t _{alsp} = K(I,I _{hsc}) ²	60 Hz; In=54; 125 Vcc; M=0,7-1,1 xh; Insc alarm=3-9%xh; Insc start=4-16%xM; K=1-63 s; talarm=0,1-6 s
e	Pérdida de Excitación Generador (40G)	RAGPC	RK-641.010-CA	Uhidad Direccional (35%), 1,75 A Uhidad Sobrecorriente (110%), 15,5 A Uhidad Baja Tensión (90%U), 103,50 V Tiempo de operación: 2 8	60 Hz; h≔5A; Uh=100-120 V; b=1-4 A; 125 Voc
4	Retorno de Energía Generador	RXPE-40	RK-651.241-AA	l₅=30 mA; t _{op} =1 s	30-120mA; 20ms-99s; 60 Hz; 125 V cc
5	Sobretensión Generador (59G)	RXEG-21	RK-651.264-BA	115%V _n = 132,25 V ca; t _{op} =2 s	60 Hz; 80-240 Vca; 20ms-99s
9	Minima tensión Generador (27G)	RXEG-21	RK-651.200-BB	$80\%V_n = 92$ Vca; $t_{qp}=55$ ms	80-240 V; U>=40-120 V; 125 Vcc
7	Minima Frecuencia Generador	RXFE-4	RX-651.270-CA	57 Hz; t _{op} =3 seg	Un=110 V; 125 Vcc; 53-60 Hz; 20ms-99s
8	Desequilibrio de Tensiones (60AG)	RXBA 4	XEC-500105-XB	Ud > 20 V ; t _{op} =8 ms	60 Hz; Un=110 V
6	Desequilibrio de Tensiones (60BG)	RXBA 4	XEC-500105-XB	$Ud > 20 V; t_{op}=8 ms$ (alarma)	60 Hz; Un=110 V
10	Falta a Tierra Estator Generador (64SG)	RAGEA	RK-646.001-CB	Sobrevottaje (0-95%): 6 V Bajo Vottaje (95-100%): 0,36 V Tiempo de retardo: 0,44 s Supervisión 85%V, _n =102 V	80 Hz; Un>(0-95%)= 5-15 V; Un<(95-100%)= 0.15-0.45 V; U>80-240 V; 125 V cc
11	Minima Impedancia Generador (21G)	RAKZB	RK-654.001-BB	$Z_{t\text{-selid}}{=}70\%Z_{c\text{-arga min.}}{=}11,33~\Omega/\text{fase;}~t_{op}{=}0.5$ s	h= 5A; Uh=110v; 5,7-213 ohm; 60 Hz; 125 V cc
12	Diferencial del Grupo (87GT)	RADSB	RK-625.005-DA	3ld> 0,35h; 3ld>> 13h;	60 Hz; h=1A; 125 Vcc; 20-50%In
13	Sobreintensidad Transformador Principal (51 MT1)	RACID	RK-671-213-AA	l_{b} =1,25* $l_{1-e6.6}$; k=0,1 (DIA L)	60 Hz; h=5A; 48-220 V cc; b=(0.5-2.5) x h; b>>=(2-30)xh; Tiempo definido t>0.1-12s; Tiempo inverso K=0.05-1.1

5. Conclusiones

- Los estudios de flujo de carga revelan que el transformador principal y el transformador de servicios auxiliares de la subestación, no exceden de su capacidad y los voltajes de barras tanto para la Central como para el sistema en general están dentro de los rangos permitidos ±5% del voltaje.
- 2. Con relación a los estudios de cortocircuito, se observó que la corriente de falla con mayor magnitud es debida a la falla trifásica y la corriente falla de menor magnitud es debida a la falla de línea a tierra en la barra del generador.
- 3. Para los ajustes de las diferentes funciones de protección fue de vital importancia realizar un estudio de las características eléctricas y constructivas de los equipos eléctricos mediante el uso de Normas. Algunas de las funciones ajustadas fueron en base a valores típicos proporcionados por el fabricante.

6. Referencias

[1] The Power Engineering Educación Committee, Tutorial IEEE de Protección de Generadores Sincrónicos, 1992.

[2] Stevenson William, Análisis de Sistemas de Potencia, Editorial

McGRAW-HILL, México 2004.

[3] ABB, Type RADHA High impedance differential relay, 1MRK 509 015-BEN, April 2006.

[4] ASEA, Protección de corriente de secuencia negativa RARIB, RK 648-300 Sp, April 1981.

[5] ASEA, Loss-of-field relays type RAGPA and RAGPC for synchronous generators, Edition 1 RK 641-303 E, August 1978.

[6] ASEA, Relé direccional RXPE 4, RK 511-300 Sp, Febrero 1983.

[7] ABB, Type RXEG Voltage relay and protection assemblies, 1MDB09009-EN, March 1992.

[8] ABB, Types FCN, -81 and RXFE Frequency relays, 1MDB08007-EN, March 1992.

[9] ABB, Types RXBA and RXETA Fuse supervision relays, 1MDB08009-EN, March 1992.

[10]ABB, Type RAGEA 100% generator stator ground-fault relay, B03-4012E, January 1987.

[11ABB, Type RAKZB Impedance protection relay, 1MDB09016-EN, March 1992.

[12]ABB, Transformer differential protection RADSB,1MRK 504 002-UEN, September 1997.

[13]ABB, Type RACID Time-lag overcurrent and earth fault relay, 1MDU07006-EN, March 1991.