

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN 2014 – 1S

SEGUNDA EVALUACIÓN DE MATEMÁTICAS PARA CIENCIAS, INGENIERÍAS Y EDUCACIÓN COMERCIAL GUAYAQUIL, 08 DE SEPTIEMBRE DE 2014 HORARIO: 08H30 – 10H30 VERSIÓN 0

- 1) Si $f(x) = \log_a(x)$, $g(x) = \log_a(2x)$, donde $(x \in \mathbb{R}^+)$ $\land (0 < a < 1)$, y se define la función de variable real $h(x) = f\left(\frac{1}{x}\right) + g\left(\frac{x}{2}\right)$, la regla de correspondencia de h es:
 - a) $h(x) = 0, x \in \mathbb{R}^+$

b)
$$h(x) = \frac{1}{2}, x \in \mathbb{R}^+$$

c)
$$h(x) = 1, x \in \mathbb{R}^+$$

d)
$$h(x) = \log_a\left(\frac{1}{2}\right), x \in \mathbb{R}^+ \land 0 < a < 1$$

e)
$$h(x) = \log_a\left(\frac{a}{2}\right), x \in \mathbb{R}^+ \land 0 < a < 1$$

- 2) Dada la función $f: \mathbb{R} \mapsto \mathbb{R}$ tal que $f(x) = 2 \left[\operatorname{sgn} \left(e^{\operatorname{sen}(x)} \right) 1 \right]$, el valor de $\sqrt{f\left(\frac{\pi}{2} \right)}$ es igual
 - a) 0
 - b) 1
 - c) 2
 - d) 3
 - e) e^{-1}
- 3) Si una de las raíces de la función polinomial $f(x) = x^4 ax^2 5x + b$ es 2 y se cumple que f(1) + 10 = 0, entonces el residuo de dividir f(x) entre (x-3) es igual a:
 - a) $\frac{160}{3}$
 - b) 60
 - c) $\frac{244}{3}$
 - d) 120
 - e) 150

- Sea el conjunto referencial $\operatorname{Re} = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ y el predicado p(x) : sen(3x) + sen(x) = 0, entonces el valor de $N\!\left(Ap\!\left(x\right)\right)$ es igual a:
 - a) 0
 - b) 1
 - c) 2
 - d) 3
 - e) 4

Al considerar los ángulos en el primer cuadrante, el valor numérico de la expresión trigonométrica

$$sen\left[arcsen\left(\frac{1}{3}\right) + arcsen\left(\frac{2}{3}\right)\right]$$

es igual a:

- b) $\frac{\sqrt{5} 4\sqrt{2}}{9}$
- c) $-4\sqrt{2}$ d) $\sqrt{5}$
- e) 1

6) Un valor numérico de la expresión

$$\left[\left(\cos\left(4560^{\circ}\right)\right)^{-3} + \left(\csc\left(\frac{5\pi}{3}\right)\cot\left(\frac{5\pi}{6}\right)\right)^{2}\right]^{sen(390^{\circ})}$$

es igual a:

- a) $\sqrt{\frac{17}{2}}$
- b) $\sqrt{\frac{15}{2}}$
- c) -2
- d) 2i

- 7) Sea el conjunto referencial $\operatorname{Re} = \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ y el predicado $p(x) : \operatorname{sgn}\left(\operatorname{sen}(x) + \frac{1}{2}\right) = -1$, entonces el conjunto de verdad $\operatorname{Ap}(x)$ es el intervalo:
 - a) $\left[\frac{4\pi}{3}, \frac{3\pi}{2}\right]$
 - b) $\left(\frac{4\pi}{3}, \frac{3\pi}{2}\right)$
 - c) $\left(\frac{7\pi}{6}, \frac{3\pi}{2}\right)$
 - d) $\left[\frac{7\pi}{6}, \frac{3\pi}{2}\right]$
 - e) $\left[\frac{7\pi}{6}, \frac{3\pi}{2}\right]$

- 8) Si A y B son dos matrices de orden 3×3 tales que $\det(A) = 4$ y $\det(B) = -3$, identifique la proposición VERDADERA.
 - a) $\det(A+B)=1$
 - b) $\det(2AB) = -24$
 - c) $\det\left(A^{T}\right) = \frac{1}{4}$
 - d) det(AB) = 12
 - e) $\det(B^T B) = 9$
- 9) Identifique la proposición VERDADERA.
 - a) La traza de una matriz cuadrada es la suma de los elementos de su primera fila con los elementos de su primera columna.
 - b) En una matriz triangular superior se cumple que $a_{ij}=0$, si i < j.
 - c) Una matriz identidad es una matriz escalar.
 - d) En una matriz singular su determinante no es igual a cero.
 - e) Si la multiplicación de dos matrices es la matriz nula, entonces necesariamente una de las matrices debe ser nula.
- 10) Dado el sistema de ecuaciones lineales $\begin{cases} ax + y + z = 1 \\ x + ay + z = a \end{cases}$ y las proposiciones p, q, r y s: $x + y + az = a^2$

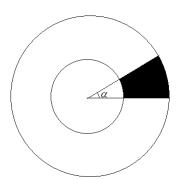
p: Si $a \ne 1$ y $a \ne 0$, el sistema tiene solución única.

q: Si a=2, el sistema tiene infinitas soluciones.

r: Si a = -3, el sistema es inconsistente.

s: SI a = 1, el sistema tiene infinitas soluciones.

Identifique la proposición VERDADERA.

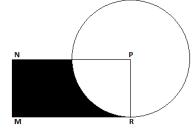

- a) *p*
- b) q
- c) r
- d) s
- e) $p \wedge q \wedge r \wedge s$

11) Sean z_1 y z_2 dos números complejos tales que $z_1 = -2e^{\frac{\pi}{3}i}$ y $z_2 = \sqrt{2} - \sqrt{2}i$, entonces el módulo y el argumento de z_1z_2 son respectivamente:

12) Se tienen dos circunferencias concéntricas de radios 1m y 2m de longitud respectivamente, tal como se muestra en la figura adjunta. Si la medida del ángulo central es $\frac{\pi}{6}$ radianes, entonces el área de la región sombreada, en m^2 , es igual a:

- b) $\frac{\pi}{3}$
- c) $\frac{\pi}{2}$
- d) π
- e) 3π

13) En la siguiente figura, \overline{PR} es el radio del círculo, el cual es congruente con un lado del rectángulo NPRM. Si el círculo tiene un área igual a $4\pi~cm^2$ y el rectángulo tiene un área igual a $8~cm^2$, entonces el perímetro de la región sombreada, en cm, es igual a:


a)
$$\pi + 8$$

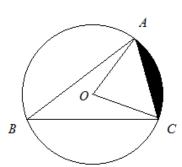
b)
$$\pi + 10$$

c)
$$\pi + 12$$

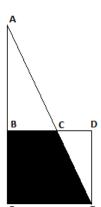
d)
$$2\pi + 8$$

e)
$$2\pi + 12$$

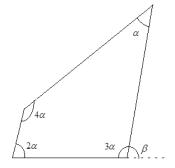
14) Se conoce que O es el centro de la circunferencia mostrada, $\overline{OA} = 10cm$ y $m \angle (CBA) = 30^{\circ}$, entonces el área del segmento circular, en cm^2 , es igual a:


a)
$$50\left(\frac{\pi}{3} + \frac{\sqrt{3}}{2}\right)$$

b)
$$50\left(\frac{\pi}{3} + \frac{1}{2}\right)$$


c)
$$50\left(\frac{\pi}{3} - \frac{\sqrt{3}}{2}\right)$$

d)
$$50\left(\frac{\pi}{3} - \frac{1}{2}\right)$$


e)
$$50\left(\frac{\pi}{3} - \frac{\sqrt{3}}{4}\right)$$

- 15) En la figura adjunta se tiene el cuadrado BDEF y se conoce además que $\overline{AB}=5cm$, $\overline{BC}=2cm$, entonces el área de la región sombreada, en cm^2 , es igual a:
 - a) $\frac{19}{8}$
 - b) $\frac{80}{9}$
 - c) $\frac{10}{3}$
 - d) $\frac{14}{3}$
 - e) $\frac{40}{9}$

- 16) La medida del ángulo $\,eta\,$ que se muestra en la figura adjunta, es igual a:
 - a) 72°
 - b) 98°
 - c) 108°
 - d) 134°
 - e) 144°

- 17) Un tetraedro regular tiene una arista que mide 4cm, el área de su superficie total, en cm^2 , es igual a:
 - a) $\sqrt{3}$
 - b) $4\sqrt{3}$
 - c) $16\sqrt{3}$
 - d) 4
 - e) 16

- 18) Se ha inscrito un cilindro recto de altura h en un prisma recto de base cuadrada de lado L de longitud, tal como se muestra en la figura adjunta, entonces el volumen del cilindro, en unidades cúbicas, es igual a:
 - a) πhL^2
 - b) $2\pi hL^2$
 - c) $\frac{1}{2}\pi hL^2$
 - d) $\frac{1}{4}\pi hL^2$
 - e) $\frac{1}{3}\pi hL^2$

- 19) Dados los vectores en \mathbb{R}^3 , $\overrightarrow{V_1} = (k, 2+k, k)$; $\overrightarrow{V_2} = (k+2, -4, k-4)$; $\overrightarrow{V_3} = (0, 1, 2)$. El valor de
 - a) **–**2

k para que $\overrightarrow{V_1}$ + $\overrightarrow{V_2}$ sea ortogonal a $\overrightarrow{V_3}$, es:

- b) -1
- c) 0
- d) 1
- e) 2

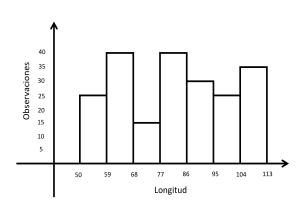
- 20) El área de la superficie del paralelogramo que tiene por vértices los puntos en \mathbb{R}^3 , P(1,-2,0), Q(1,1,1), R(-2,0,1), en u^2 , es igual a:

 - a) $\sqrt{39}$ b) $\sqrt{91}$ c) $\frac{\sqrt{39}}{2}$ d) $\frac{\sqrt{91}}{2}$ e) $\frac{\sqrt{91}}{4}$

- 21) Dados los puntos en el plano cartesiano A(1,1), B(6,-2), C(1,5), entonces la distancia entre el punto ${\it B}\,$ y la recta que contiene a los puntos ${\it A}\,$ y ${\it C}\,$, en unidades, es igual a:
 - a) $\sqrt{3}$ b) 5

 - c) $2\sqrt{5}$
 - d) 6
 - e) 10

- 22) Dada la circunferencia cuya ecuación es $x^2 + y^2 12x + 10y 11 = 0$, una de las rectas tangentes a ella y que sea paralela a la recta x + y + 4 = 0, es:
 - a) x + y 11 = 0
 - b) x + y + 3 = 0
 - c) x + y + 13 = 0
 - d) x + y + 11 = 0
 - e) x + y 12 = 0


23) Dados los conjuntos referenciales $\operatorname{Re}_x=\operatorname{Re}_y=\mathbb{R}$ y el predicado de dos variables $p(x,y):\begin{cases} x=\frac{y^2}{2}-3\\ x=y+1 \end{cases}$, la suma de las abscisas y de las ordenadas de todos los elementos del

conjunto de verdad Ap(x,y) es igual a:

- a) -6
- b) -5
- c) -4
- d) 0
- e) 6

24) Considere los datos organizados en la tabla adjunta y el histograma de frecuencias que se muestra a continuación:

Longitud	f_{i}	X_{MC}
[50, 59)	25	54.5
[59, 68)	40	63.5
[68, 77)	15	У
[77, 86)	x	81.5
[77, 86) [86, 95)	30	81.5 90.5
/		

El valor de la suma (x + y + z) es igual a:

- a) 140
- b) 172
- c) 181
- d) 212
- e) 284

- 25) Para calcular la media aritmética de las notas de un estudiante, se consideran las notas obtenidas en dos exámenes parciales y tres veces la nota de un examen final. Si la nota del examen final fue igual a 6 y las notas de los exámenes parciales fueron 8 y 9, entonces la media aritmética fue igual a:
 - a) 4.60
 - b) 6.67
 - c) 7.00
 - d) 7.67
 - e) 8.00