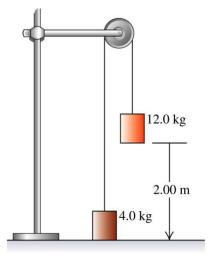


# ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA



# PRIMERA EVALUACIÓN DE FÍSICA A JULIO 1 DE 2013

| Yo,                                             |                                                                                                                                                                                                                      |  |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                 |                                                                                                                                                                                                                      |  |
| Parte 1: Preguntas de desarrollo (3 puntos c/u) |                                                                                                                                                                                                                      |  |
| 1.                                              | Se suelta una pelota desde el reposo y experimenta resistencia del aire mientras cae, alcanzando una velocidad terminal. Dibuje una gráfica que represente la aceleración de la pelota en función del tiempo         |  |
| 2.                                              | Algunas personas dicen que la "fuerza de la inercia" lanza a los pasajeros hacia adelante cuando un auto frena abruptamente. ¿Qué error tiene esa explicación?                                                       |  |
| 3.                                              | Las básculas (balanzas) pueden dividirse en las que usan resortes y las que usan masas estándar para equilibrar masas desconocidas. ¿Cuál grupo sería más exacto en una nave espacial en aceleración? ¿Y en la Luna? |  |




#### Parte 2: Ejercicios

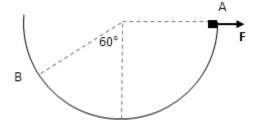
#### PROBLEMA 1 (10 puntos)

Un sistema que consta de dos bloques conectados por una cuerda ligera se suelta del reposo con el bloque de 12.0 kg a 2.00 m sobre el piso. Haga caso omiso de la fricción y la inercia de la polea.

- a) Determine la rapidez con que el bloque de 12.0 kg golpea el piso. (5 puntos)
- b) ¿Cuál es la máxima altura que alcanza el bloque de 4.0 kg? (5 puntos)



## PROBLEMA 2 (12 puntos)


El vector velocidad del movimiento de una partícula viene dado por  $\mathbf{v} = (3t - 2)\mathbf{i} + (6t^2 - 5)\mathbf{j}$  m/s. Si la posición de la partícula en el instante  $\mathbf{t} = 1.0$  s es  $\mathbf{r} = 3\mathbf{i} - 2\mathbf{j}$  m, calcular:

- a) El vector posición del móvil en cualquier instante. (4 puntos)
- b) El vector aceleración y las componentes tangencial y normal de la aceleración en el instante t = 2.0 s (8 puntos)

| NOMBRE: | PARALELO: |
|---------|-----------|
|---------|-----------|

### PROBLEMA 3 (20 puntos)

Un bloque de 4.0 kg desliza por una pista semicircular sin fricción de radio 4.0 m, iniciando con una rapidez de 5.0 m/s en B y aplicándole una fuerza constante de 10 N dirigida todo el tiempo hacia la derecha. Calcular



- a) el trabajo producido por cada una de las fuerzas que actúan sobre el bloque al ir desde B hacia A (4 puntos)
- b) el trabajo neto desde B hacia A (4 puntos)
- c) la rapidez en A (4 puntos)
- d) la fuerza que ejerce la pista sobre el bloque en B (4 puntos)
- e) en el supuesto que el bloque alcanzara el punto A con una rapidez de 0.5 m/s, ¿cuál debería ser la fuerza constante F aplicada al bloque? (4 puntos)