

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Eléctrica y Computación

"Diseño de una Máquina Enjuagadora Automática de Botellas no Retornables"

TESIS DE GRADO

Previo la obtención del Titulo de:

INGENIERO EN ELECTRICIDAD, ELECTRÓNICA Y AUTOMATIZACIÓN INDUSTRIAL.

Presentada por:

Cecilia Cumandá Casal Arteaga

GUAYAQUIL - ECUADOR

Año: 2006

AGRADECIMIENTO

A todas las personas que de uno u otro modo colaboraron en la realización de este trabajo y especialmente el ing. Ernesto Martínez Director de Tesis, por su incondicional ayuda.

DEDICATORIA

MIS PADRES
A MIS HERMANOS
A MI ESPOSO
A MIS HIJAS

TRIBUNAL DE GRADUACIÓN

Ing. Gustavo Bermúdez. DECANO DE LA FIEC Ing. Ernesto Martínez L. DIRECTOR DE TESIS

Ing. Holger Cevallos. VOCAL

Ing. Otto Alvarado M. VOCAL

DECLARACIÓN EXPRESA

"La responsabilidad del contenido de esta
Tesis de Grado, me corresponden
exclusivamente; y el patrimonio intelectual de
la misma a la ESCUELA SUPERIOR
POLITÉCNICA DEL LITORAL"

(Reglamento de Graduación de la ESPOL).

. Cecilia Casal Arteaga.

RESUMEN

El presente trabajo desarrolla el diseño y la implementación de una máquina automática enjuagadora de botellas no retornables, para el embotellado de agua y jugos, ajustando el diseño a la materia prima existente en el mercado, teniendo como meta final ser más competitivos y eficientes.

El proyecto surgió de una necesidad real, es el caso de la empresa Daule Foods,"DAFOODSA", ubicada en la ciudad de Guayaquil, ya que la empresa estaba migrando de botellas de vidrio a botellas de plástico, debido a que estaban reemplazando el tipo de bebida que producían, de licor hacia jugos y agua embotellada.

Inicialmente el enjuague era manual, esto es el operador introduce las botellas en una tina con cierto nivel de agua, luego las saca, las agita y las voltea para escurrir el agua, para posteriormente colocarlas en el transportador, siendo así su limpieza; el sistema no es confiable ya que no garantiza la higiene total del envase y el tiempo utilizado encarece el proceso.

Una de las metas de la empresa, es usar un equipo que de una limpieza a la botella en forma confiable, sin emplear más de un operador en el proceso y que cumpla con las normas establecidas.

Se realiza un estudio de las necesidades de la planta, basándose en los resultados obtenidos se selecciona el tipo de enjuagadora, para a partir de esto realizar el diseño. Según las necesidades de la empresa, se decide por una enjuagadora lineal automática.

Al analizar los costos, considerando materiales, equipos, y mano de obra, se establece la diferencia entre el precio de una maquina diseñada localmente y una maquina importada. El resultado del análisis es: un equipo económico, de fácil manejo, fácil mantenimiento, bajo costo de mantenimiento, y sobre todo es un producto nacional.

INDICE GENERAL

	Pág.
RESUMEN	ا
INDICE GENERAL	
ABREVIATURAS	IV
SIMBOLOGÍA	V
INDICE DE FIGURAS	V
INDICE DE TABLAS	VII
INDICE DE DIAGRAMAS	VII
INTRODUCCIÓN	1
CAPITULO 1	
1. EL MUNDO DE LAS BEBIDAS	3
1.1 Clases de bebidas	5
1.2 Proceso de envasado	10
1.2.1 Tratamiento de agua	12
1.2.2 Tratamiento de jarabe	22
1.2.3 Descrinción del proceso de embotellado	20

CAPITULO 2

2. ANÁLISIS DE SITUACIÓN INICIAL DE LA EMPRESA	34
2.1 Requerimientos de la planta para la producción	45
2.2 Programa de trabajo a ejecutar	50
CAPITULO 3	
3. TIPOS DE MÁQUINAS ENJUAGADORAS DE ENVASES QUE PUEDEN INSTALAR EN LA PLANTA DAULE FOODS	
S.A	57
3.1 Selección de máquina enjuagadora a instalar en la planta.	66
3.2 Máquinas enjuagadoras lineales que se pueden adquirir	70
CAPITULO 4	
4. DISEÑO DE UNA MAQUINA ENJUAGADORA AUTOMÁTICA	
DE BOTELLAS NO RETORNABLES	78
4.1 Parámetros de diseño	79
4.2 Manejo de parámetros de diseño	80
4.2.1 Secuencia de funcionamiento	85
4.2.2 Calculo de los tiempos para cada etapa del proceso	88
4.3 Diseño eléctrico	98
4.3.1 Diagrama de control	.117
4.3.2 Programación del plc	.120

CAPITULO 5

5. CALCULO DE MATERIALES ELÉCTRICOS	135
5.1 Implementación	175
CAPITULO 6	
6. MANUAL DE OPERACIONESY MANTENIMIENTO	
DELEQUIPO	182
6.1 Arranque y calibración	182
6.2 Teoría de operación	185
6.3 Especificaciones técnicas	185
6.4 Requerimientos	186
6.5 Identificación de componentes	186
6.6 Mantenimiento	190
6.7 Frecuencia de mantenimiento	190
6.8 guía de solución de problemas	194
CAPITULO 7	
7. COSTOS	196
CONCLUSIONES Y RECOMENDACIONES	199

ANEXOS

BIBLIOGRAFÍA

ABREVIATURAS

A Amperios

B Bomba de enjuague de enveses

BKB Breaker para la bomba de enjuague de botellas
BKM Breaker para motor de transportador de botellas

Breaker de 3 polos 20 amperios

BKP Breaker principal

BK1 Breaker de 2 polos 30 amperios BK2 Breaker de 2 polos 20 amperios Breaker de tres polos 150 amperios BK3 BK4 Breaker de tres polos 300 amperios BK5 Breaker de tres polos 125 amperios BK6 Breaker de 3 polos 20 amperios BK7 Breaker de 3 polos 20 amperios BK8 Breaker de 3 polos 20 amperios BK9 Breaker de 3 polos 20 amperios BK10 Breaker de 3 polos 20 amperios **BK11** breaker de 3 polos 20 amperios. BK12 Breaker de 3 polos 20 amperios **BK13** Breaker de 3 polos 100 amperios

cc. Centímetro cúbico

cm. Centímetro

BK14

Co2 Dióxido de carbono

Diag. Diagrama

EEE. Empresa Eléctrica del Ecuador

Enj 1 Tablero de control para enjuagadora número 1 Enj 2 Tablero de control para enjuagadora número 2

FIG. Figura

For Tablero de control para formador de paquetes

Hz. Hertz Km. Kilómetro KV. Kilo vatio

KVA Kilo voltio amperios

Lp Luz piloto para señalización de voltaje
Ll 1 Tablero de control para llenadora número 1
Ll 2 Tablero de control para llenadora número 2
L1-L2 Entrada de voltaje 220 voltios alternos
M Motor del transportador de botellas

m. Metro

MC Metro cúbico

MCPD Metros cúbicos por día MCPH Metros cúbicos por hora

min. Minuto ml. Mililitro

m/min. Metros por minuto

M.rot Tablero de control para mesa rotativa

m2 Metro cuadrado

m3 /h Metro cúbico por hora NEC. Código Eléctrico Nacional

NC Contacto normalmente cerrado NO Contacto normalmente abierto

P Pararrayos

Pcu Platina de cobre

PD-PA Panel de distribución planta alta, administración PD-PB Panel de distribución planta baja, ventas y recepción

PE Paro de emergencia del sistema

Pet Tetraftalato de polietileno

PLC Programador lógico de control

PP Policarbonato
ppm Partes por millón
Psi Unidad de presión

Pulgada pulg

PVC Polivinil cloruro RO Osmosis inversa

R 1 Tablero de control para roscador-taponador # 1 R 2 Tablero de control para roscador-taponador # 2

seg. Segundos

Tb1 Tubería de 3/4 de pulgada Tb2 Tubería de 3/4 de pulgada Tb3 Tubería de 2 pulgadas Tb4 Tubería de 4 pulgadas Tb5 Tubería de 5 pulgadas Tb6 Tubería de 3/4 de pulgada Tb7 Tubería de 3/4 de pulgada Tb8 Tubería de 3/4 de pulgada Tubería de 3/4 de pulgada Tb9 Tb10 Tubería de 3/4 de pulgada Tb11 Tubería de 3/4 de pulgada Tb12 Tubería de 3/4 de pulgada Tb13 Tubería de 1 ½ de pulgada Tb14 Tubería de 3/4 de pulgada TD-1 Tablero de distribución uno TD-2 Tablero de distribución dos TD-3 Tablero de distribución tres TM. Tablero de medición principal

Trafo Banco de transformadores T.T Tablero de control para túnel de termo contracción

Luz ultravioleta uν ٥С Grado centígrado

SIMBOLOGÍA

CB	Contactor para bomba de enjuague
CF.	Caja portafusibles
CM	Contactor para transporte de botellas
C1 C2 C3	Contador de botellas a la entrada del equipo Contador de botellas a la salida de la máquina Contador de inicio de secuencia
C4 Fus.C	Contador para manejar la entrada del tope de salida Caja de fusibles de dos polos 6 amperios
F1- F2	Fusibles de 6 amperios
I1	Señal de entrada para accionamiento manual del tope de salida
12	Señal de entrada para inicio de secuencia
13	Señal de entrada del sensor de salida
14	Señal de entrada del sensor de entrada
l5	Señal de entrada para accionamiento manual del giro de la mordaza
16	Señal de entrada para accionamiento manual del cierre de la mordaza
17	Señal de entrada para accionamiento manual de la bomba de enjuague
18	Señal de entrada para accionamiento manual del transportador de botellas
OLB	Rele térmico para la bomba de enjuague
OLM	Rele térmico para transportador de botellas
Q1	Señal de salida para transportador de botellas
Q2	Señal de salida para tope de salida
Q3	Señal de salida para tope de entrada

Señal de salida para el cierre de la mordaza
Señal de salida para girar la mordaza.
Señal de salida para bomba de enjuague de botellas.
Reset del contador C1
Reset del contador C2 Reset del contador C3
Reset del contador C4
Rele de inicio de secuencia
Reset de Rele SM1
Solenoide de giro
Solenoide de la mordaza
Solenoide de tope de entrada
Solenoide de tope de salida
Selector manual ó automático del equipo de limpieza
Selector de transportador de botellas
Selector de tope de salida
Selector de la mordaza
Selector del giro de la mordaza
Selector de la bomba de enjuague
Sensor de botellas de entrada
Sensor de botellas de salida
Tiempo que demora en apagar la mordaza desde
que se apagó la bomba de enjuague
Tiempo margen de seguridad para resetear el contador de botellas a la entrada del equipo, después de haber
contado las primeras doce botellas
Tiempo en que demora la última botella en llegar al grupo,
para empezar a cerrar la mordaza.
Tiempo que tarda en cerrar la mordaza para poder
iniciar el giro
Tiempo que demora en girar la mordaza hasta llegar a las boquillas de limpieza para el encendido de la bomba
de enjuague
Tiempo de encendido de la bomba de enjuague.
Tiempo para escurrir el líquido (agua), que quede dentro
de la botella
Tiempo que tarda en iniciar otra secuencia

ÍNDICE DE FIGURAS

		Pág.
Figura 1.1	Bebidas gasificadas	6
Figura 1.2	Bebidas no gasificadas	7
Figura 1.3	Presentaciones de agua de mesa	9
Figura 1.4	Tipos de envases	12
Figura 1.5	Proceso de osmosis inversa	14-15
Figura 1.6	Tanques de almacenamiento de jarabes	22
Figura 1.7	Tanque de mezcla	23
Figura 1.8	Pasteurizador y Homogenizador	27-28
Figura 1.9	Paletizado de jugos de varios sabores	33
Figura 1.10	Paletizado de agua envasada	33
Figura 2.1	Ubicación de la empresa Daule Foods	34
Figura 2.2	Tanques de almacenamiento de agua	36
Figura 2.3	Almacenamiento de materiales	37
Figura 2.4	Equipos de procesar café - fuera de uso	38
Figura 2.5	Equipos de procesar café - fuera de uso	38
Figura 2.6	Equipos colocados en la sala de llenado	
	en forma de la letra U	39
Figura 2.7	Sala de embalaje	40
Figura 2.8	Recipiente donde se enjuagan los envases	42
Figura 2.9	enjuagado de botellas a mano	42
Figura 2.10	Túnel de termo contracción	45
Figura 3.1	Enjuagadora lineal tipo twister	60
Figura 3.2a	Twister para botellas pequeñas	60

Figura 3.2b	Twister para botellas grandes61
Figura 3.3	Enjuagadoras de botellas semiautomática
	rotativa64
Figura 3.4	Enjuagadoras de botellas automática
	rotativa66
Figura 3.5	Roscador-taponador manual # 167
Figura 3.6	Roscador-taponador manual # 267
Figura 3.7	llenadora lineal # 168
Figura 3.8	llenadora lineal #268
Figura 4.1	Cilindros neumáticos utilizados en el equipo83
Figura 5.1	Recorrido del conductor principal de
	alimentación al tablero de la enjuagadora
	de botellas160
Figura 5.2	Instalación del tablero eléctrico de la
	enjuagadora de botellas176
Figura 5.3	Instalación del bloque de válvulas solenoides177
Figura 5.4	Instalación del sensor de entrada y el sensor
	de salida177
Figura 5.5	Recorrido de la alimentación principal del
	tablero de la enjuagadora de envases179-180
Figura 6.1	Identificación de elementos 188-189

ÍNDICE DE TABLAS

		Pág.
Tabla 1.1	Diferencia entre ozono y luz	
	Ultravioleta	21
Tabla 2.1	Estimado de botellas a producir en el	
	mes, para la línea de proceso # 1	.46
Tabla 2.2	Estimado de botellas a producir en el	
	mes, para la línea de proceso # 2	.48
Tabla 2.3	Estimado de botellas a producir en el	
	mes, para la línea de producción en	
	proyecto a futuro	.49
Tabla 3.1	Matriz de decisión	.76
Tabla 5.1	Breakers de protección para motores de	
	Tres polos1	45
Tabla 5.2	Amperajes de los contactores de diferentes	
	fabricantes	149
Tabla 5.3	Rangos para relés de sobrecarga o relés	
	Bimetálicos de diferentes fabricantes	153
Tabla 5.4	Capacidad máxima de conductores	
	aislados1	59
Tabla 5.5	Número máximo de conductores aislados	
	En una tubería EMT	162
Tabla 6.1	Guía de soluciones	195

ÍNDICE DE DIAGRAMAS

		Pág.
Diagrama 1.1	Diagrama de flujo del proceso	10
Diagrama 1.2	Diagrama de flujo de tratamiento de agua	13
Diagrama 1.3	Diagrama de flujo de preparación de jarabe.	24
Diagrama 3.1	Clases de enjuagadoras	58
Diagrama 3.2	Clases de enjuagadoras lineales	59
Diagrama 3.3	Clases de enjuagadoras rotativas	63
Diagrama 4.1	Diagrama de secuencia de enjuagado de	
	botellas	84
Diagrama 4.2	Diagrama de tiempo de enjuagado de botella	as87
Diagrama 4.3	Diagrama de recorrido de recorrido en	
	Centímetros de la botellas	90
Diagrama 4.4	Diagrama unifilar de la planta Daule	
	Foods S.A	
Diagrama 4.5	Tablero de distribución principal	106
Diagrama 4.6	Tablero de distribución dos-sala de	
	llenado y zona de empaque	108
Diagrama 4.7	Diagrama de secuencia para el diseño eléctri	co111
Diagrama 4.8	Diagrama de identificación de elementos a	
	usarse en el diseño eléctrico (parte 1)	112
Diagrama 4.9	Diagrama de identificación de elementos a	
	usarse en el diseño eléctrico (parte 2)	113

Diagrama 4.10	Tablero para enjuagadora 1-diagrama
	de fuerza116
Diagrama 4.11	Diagrama de control de la máquina
	enjuagadora de botellas118
Diagrama 4.12	Programación para el plc de la máquina
	enjuagadora de botellas122-117
Diagrama 4.13	Diagrama de control corregido de la
	máquina enjuagadora de botellas131
Diagrama 4.11	Programación para el plc corregida de la
	máquina enjuagadora de botellas132-134
Diagrama 5.1	Diagrama de recorrido del conductor principal
	de alimentación del tablero de la enjuagadora
	de botellas 130

INTRODUCCIÓN

En el mercado de productos de bebidas gasificadas y no gasificadas existe mucha competencia, lo que ha permitido que aparezcan una serie de empresas dedicadas al embotellado de estos productos; no necesariamente estas empresas al iniciar sus operaciones tienen los equipos de producción completos o adecuados.

Es por eso, y con la finalidad de ser más competitivos y eficientes, se requiere el uso de maquinarias económicas, sencillas de manejar y fácil mantenimiento.

Las máquinas compradas en el exterior pueden ser competentes, pero no siempre tienen la capacidad de producción requerida, sus repuestos a veces son difíciles de obtener localmente, siendo necesario importar los repuestos y mantener un stock, lo cual encarece su mantenimiento.

Una alternativa de solución a este problema es la construcción de maquinaria en el país, que nos permite competir en el mercado con maquinaria de bajo costo y fácil mantenimiento, sin dejar de cumplir con los parámetros establecidos por las normas sanitarias

El presente trabajo detalla el "Diseño e implementación de una maquina automática enjuagadora de botellas no retornables para el embotellado de agua y jugos.

Este proyecto surgió de una necesidad real: Es el caso de la empresa Daule Food S.A. DAFUDSA, su propietario solicitó que se construya la máquina antes mencionada ya que la empresa estaba migrando de botellas de vidrio a botellas de pet, además las máquinas existentes en la planta estaban diseñadas para envasado de licor, y en vista de que el mercado para este tipo de producto no era rentable para ésta, se decide cambiar de bebida; por lo que se me asigno este proyecto ya que desempeño el cargo de supervisión de los diseños y construcción de las maquinarias, la cual fue una excelente oportunidad de aplicación de los conocimientos adquiridos durante la formación académica de la "Escuela Superior Politécnica del Litoral" y conocimientos adquiridos en la práctica, durante más de 7 años de trabajo en diferentes empresas de bebidas gaseosas.

Se obtuvo una máquina de costo menor que las importadas con igual desempeño la cual se la instalo en Enero del 2005 y esta operando actualmente con 80 % de su eficiencia ya que la empresa no requiere mas por el momento.

CAPITULO 1

1. EL MUNDO DE LAS BEBIDAS.

En el mercado de productos de bebidas gasificadas y no gasificadas, existe una gran demanda, lo que ha permitido que aparezcan una serie de empresas dedicadas al embotellado de estos productos; debido a esto las marcas famosas de bebidas gasificadas, han optado por elaborar productos sin gas, el cual resulta mas barato en lo que respecta a costos de producción; dejando mayor margen de utilidad. Es por eso, y con la finalidad de ser más competitivos y eficientes, se requiere el uso de maquinarias económicas, sencillas de manejar y de fácil mantenimiento.

Las máquinas compradas en el exterior pueden ser competentes, pero no siempre tienen la capacidad de producción requerida, sus repuestos a

veces son difíciles de obtener localmente, siendo necesario importar lo cual encarece su mantenimiento.

Una alternativa de solución de este problema es la construcción de máquinas en el país, que dé mejores alternativas al pequeño empresario.

El mercado de embotellado de agua ha crecido bastante en estos últimos tiempos; lo que se quiere y se piensa es que se mantenga así durante los siguientes años.

El material más común usado es el Pet (tetraftalato de polietileno) para la elaboración de botellas, ya que su presentación es la más aceptada por el mercado local.

Las embotelladoras de bebidas famosas como por ejemplo Coca Cola, Cervecería Nacional y otras han generado un aumento alto en las ventas de agua envasada, además se ha desarrollado una competencia en precios. Los tamaños que más se destacan son las de tamaño personal.

1.1 Clases de bebidas.

En el área de bebidas de los supermercados se puede observar que existen más de 30 marcas diferentes de bebidas, ya sean éstas naturales, concentradas, con saborizantes, o las de última moda las llamadas bebidas energizantes.

Dentro del grupo de bebidas tienen bebidas "gasificadas" y bebidas "no gasificadas".

a.- Bebidas gasificadas:

Entre el grupo de las bebidas gasificadas se tiene dos tipos de bebidas las gaseosas y minerales.

El agua mineral viene de fuentes naturales ó de fuentes artificiales.

Las gaseosas son las que en su formulación contienen dióxido de carbono (CO2), concentrados, preservantes, saborizantes, azúcar y colorantes.

FIG. 1.1 BEBIDAS GASIFICADAS.

b.- Bebidas no gasificadas:

Últimamente el mercado de las bebidas sin gas ha crecido considerablemente, sobre todo en el caso del agua de mesa que es la más común entre todas.

Gracias al crecimiento de las bebidas no gasificadas la mayoría de los pequeños empresarios han optado por elaborar este tipo de producto. Existen diferentes marcas y tamaños; las presentaciones más comunes que se encuentran en la plaza son: desde 250cc hasta 20000cc.

Dentro de las bebidas sin gas se puede encontrar las siguientes:

- Bebidas energizantes.
- Bebidas vitaminizadas.
- Bebidas artificiales.
- Jugos naturales.
- Té y agua de mesa.

FIG. 1.2 BEBIDAS NO GASIFICADAS.

Las bebidas de moda son las energizantes van dirigidas al consumidor deportista hoy en día la gente busca lo sano para su salud. Se componen de agua, sales minerales, complejo B y vitaminas.

Las bebidas vitaminizadas son escogidas para calmar la sed; poseen vitaminas A, B, D, etc., esta bebida va dirigida al consumidor que quiere cuidar su salud.

El té y las bebidas artificiales se elaboran en agua, el sabor y color se lo aumenta artificialmente.

Existe un mercado extenso que prefiere lo natural, es decir bebidas concentradas de frutas sin preservantes y sin aditivos.

Los jugos naturales al igual que los concentrados son elaborados basándose en frutas, pero éstas a diferencia de los concentrados llevan mayor cantidad de agua.

Los pequeños empresarios embotelladores, observaron que había una gran oportunidad de mercado en la purificación y envasado de agua; ya que en todo lugar era necesario el consumo del agua de mesa, gracias a esta necesidad surgió la idea.

Hay variedad de presentaciones entre las cuales se tiene; 300cc, 350cc, 500cc, 2000cc, 4000cc, y 20 litros.

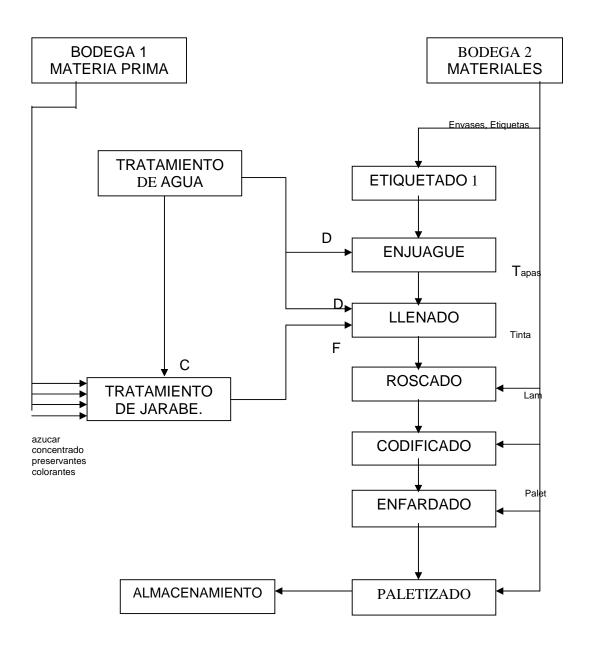

FIG. 1.3 a

FIG. 1.3b

FIG. 1.3 PRESENTACIONES DE AGUA DE MESA

1.2 Proceso de envasado.

DIAG. 1.1 DIAGRAMA DE FLUJO DE PROCESO DE EMBOTELLADO

C.- agua tratada.

D.-agua tratada pasada por ultravioleta.

F.- entrada de jarabe.

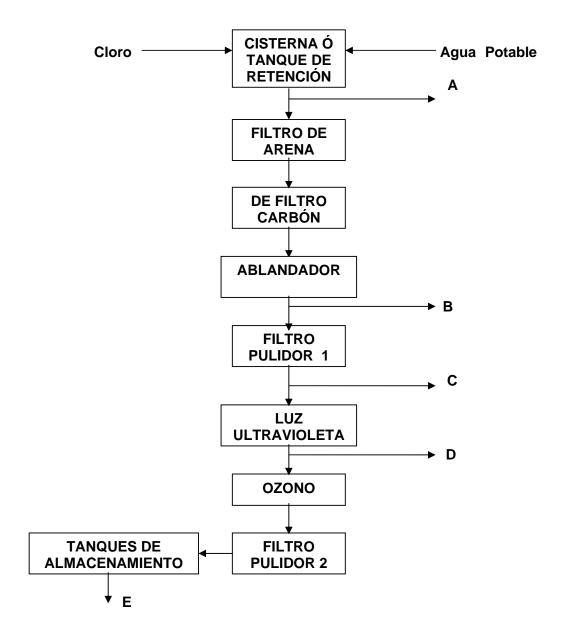
La selección de envases que contendrá y mantendrá el producto en buenas condiciones tiene que ser el adecuado: existen muchos tamaños y formas, entre los más comerciales se tiene de 250cc, 360cc, 500cc, 2000cc, 4000cc y garrafones de 20 litros.

Los fabricantes utilizan diversos materiales para la elaboración de la botella, como por ejemplo el polímero artificial (plástico) que se amolda fácilmente para cualquier modelo; entre los plásticos más comunes que se tienen son:

- PVC (polivinil cloruro).
- PET (polietileno tetraftalato)
- PP (policarbonato).

Los envases de vidrio (boro-silicato), han salido prácticamente del negocio del agua embotellado, por su elevado costo de fabricación, cada día el mercado prefiere consumir productos que vengan en envases no retornables por comodidad del consumidor final.

La forma del envase tiene mucho que ver con el mercado, una botella con modelo caprichoso capta la atención del consumidor, éstas son estrategias de marketing. Muchos embotelladores prefieren la botella genérica, común y corriente, diseño estándar y redonda es la que se encuentra fácilmente en la plaza, otros se inclinan por diseños especiales dados por sus propios dueños de la marca.


FIG. 1.4 VARIOS TIPOS DE ENVASES QUE EXISTEN EN EL MERCADO LOCAL.

1.2.1 Tratamiento de agua.

El tratamiento de agua tiene que cumplir una serie de pasos de acuerdo al recorrido en el diagrama 1.2, se va teniendo distintos tipos de agua:

- A- Aguas de servicios generales.
- B- Agua blanda para calderas, banco de hielo, etc.
- C- Agua tratada.

- D- Agua tratada pasada por luz ultravioleta.
- E- Agua purificada ozonizada.

EDIAG. 1.2 DIAGRAMA DE FLUJO DE TRATAMIENTO DE AGUA.

Según el origen del agua que tenga la planta, será el proceso de purificación que utilice:

Hay diferentes procesos de purificación dependiendo del agua fuente que tenga como materia inicial. Si se desea purificar agua de río, que posee muchos sólidos en suspensión, es necesario precipitarlos.

Si se tiene agua de pozo como fuente, con abundante hierro, magnesio, manganeso, etc., es necesario usar resinas tipo aniónica ó catiónicas, sino usar proceso de floculación. Existe otro proceso denominado "PROCESO DE OSMOSIS INVERSA".

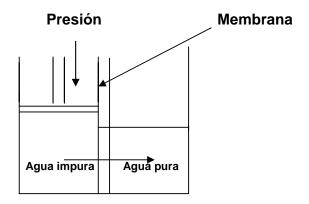


FIG. 1.5 a PROCESO DE OSMOSIS INVERSA - ESTADO INICIAL

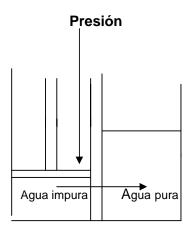


FIG.1.5 b PROCESO DE OSMOSIS INVERSA-DESPÚES DE EQUILIBRIO

Científicos encontraron que aplicando presión en el lado de la membrana de mayor concentración, (Fig.1.5 a y Fig. 1.5 b); el proceso podría ser reversible, y moléculas de agua pura podrían ser forzadas a salir a través de la membrana a la solución de menor concentración. Las membranas usadas en el proceso de osmosis inversa tienen poros muy finos, 1/100.000.000. de una pulgada. La membrana actúa como un filtro, la salida del agua de la osmosis inversa es un agua pura, libre de minerales, coloides y bacterias.

En nuestro medio lo más usado es el agua proveniente de la red pública y su proceso siguiendo el diagrama 1.2, se detalla a continuación:

a) Cloración del agua.

El tratamiento de cloración del agua, solo puede ser aplicado en plantas abastecidas por fuentes de agua que cumplan con las especificaciones físico-químicas y microbiológicas.

El agua es derivada de un tanque a una cisterna de retención, en el que permanecerá en contacto con el cloro mínimo dos horas, tiempo adecuado para eliminar la mayor parte de las bacterias, hongos, virus, esporas y algas presentes en el agua. El proceso de cloración elimina impurezas, componentes del color y parte del hierro quedaran retenidas en el fondo.

El valor de la concentración de cloro esta dada por el método de la ortotolidina, aunque éste método debe eliminarse por riesgo a la salud. El tanque de retención debe ser diseñado para asegurar un mínimo de contacto del cloro con el agua de dos horas; también debe ser susceptible a ser convertido en un tanque de coagulación en caso de ser necesario. La dosis de cloro inicial debe asegurarse que a la salida del filtro de arena quede un cloro residual de 6-8 ppm.

17

b) Filtro de arena.

El filtro de arena tiene la función de retener todas las

impurezas grandes, componentes del color y parte del hierro

quedaran retenidas en este filtro.

Al pasar el agua por los lechos de gravas le quita la turbidez.

Los filtros de arena se los regenera periódicamente dándoles

retrolavados a presión de 5-6 veces la presión del filtrado, para

ir desalojando impurezas retenidas en él, sus especificaciones

son:

Caudal de filtración: 5-9 m3/h por m2 de superficie.

Altura mínima del lecho: 25 pulg.

Lecho de soporte: grava y arena.

Cámara para expansión: 30% de la altura del lecho de arena.

Caudal de retrolavado: 5-6 veces el de filtración.

c) Filtro de carbón.

Este filtro tiene la función de retener el cloro, así como el sabor y el olor. El carbón activado ha sido seleccionado considerando las características físico-químicas del agua, eliminando gran variedad de contaminantes químico-orgánicos, catalogados como productos químicos dañinos como: pesticidas, hervicidas, metilato de mercurio e hidrocarburo clorinado., sus especificaciones son:

Caudal de filtración: 5-9 m3/h por m2 de superficie.

Altura mínima del lecho: 25 pulg.

Lecho de soporte: grava y arena.

Tipo de carbón: carbón activado.

Cámara para expansión: 40% de la altura del lecho de arena.

Caudal de retrolavado: 5-6 veces el de filtración.

Materiales de construcción: adecuados para resistir tratamiento en agua caliente (90 grados centígrados).

d) Ablandador.

La función del ablandador es quitarle la dureza del agua, como carbonatos de calcio; para que su uso no cause incrustaciones

19

en tuberías. El agua blanda se la usa para calderas,

lavadoras, sistemas de refrigeración, intercambiadores de

calor, y otras aplicaciones.

e) Filtro pulidor.

Este filtro tiene la función de retener impurezas pequeñas

mayores ó iguales a 1 micra, dependiendo del valor de las

micras del filtro. En el tratamiento que se detalla hay dos

etapas, la primera filtro pulidor 1 puede retener hasta 5 micras

y la segunda filtro pulidor 2 retiene hasta 1 micra, se lo hace

en escala.

Terminado este paso se tiene agua brillante y cristalina, sus

especificaciones son:

Materiales: carcasa de acero inoxidable.

Tipo: cartucho.

Medio filtrante: filtros de polipropileno ó algodón.

f) Luz ultravioleta.

La función que desempeña la uv es como la de un germicida, ya que elimina bacterias, gérmenes, virus algas y esporas que viven en el agua, mediante la uv.

Los microorganismos no pueden proliferarse porque mueren con el contacto de la luz.

g) Ozono.

El ozono es eficaz en la eliminación de hongos, bacterias y virus, se aplicó por primera vez a inicios del siglo XX en el agua potable en Francia, es 57 veces más eficaz que los oxidantes tradicionales (cloro), su eficacia de desinfección es 25, 2500 y 5000 veces más efectivo que el ácido hipocloroso, el hipoclorito y la cloramina.

El ozono además de eliminar bacterias elimina malos olores.

La acción del ozono es ampliamente reconocida en el tratamiento de AGUAS RESIDUALES INDUSTRIALES.

El ozono tiene un sin número de aplicaciones en la medicina.

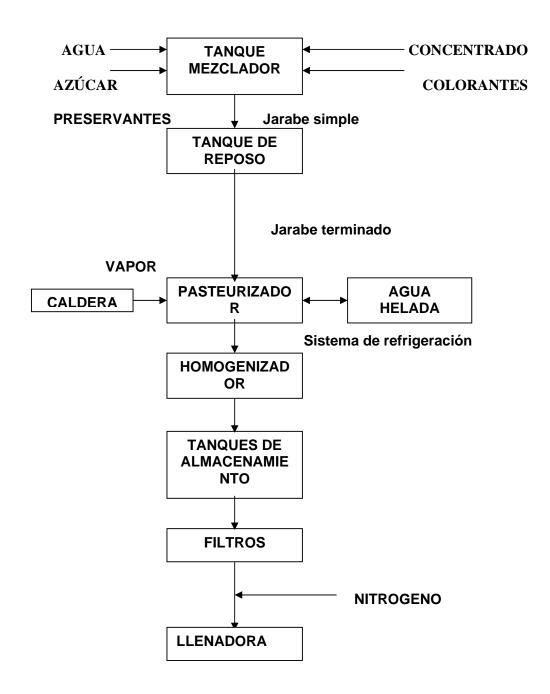
DIFERENCIAS	OZONO	UV
PELIGROSO	INOCUO	ALTAMENTE
CANCERIGENO	INOCUO	ALTAMENTE
PUEDE TRABAJAR CON ÉL	SI	NO
LLEGA A TODOS LOS SITIOS	SI	DONDE TOCA LA LUZ
PRODUCE CEGUERA	NO	SI
EFECTOS DE LA PIEL	TRATAMIENTOS	LESIONES DE
	DERMATOLOGICOS	DERMATITIS ATOPICA
MANTENIMIENTO	CADA 6 MESES	CAMBIAR TUBOS
		CADA/6 MESES
COSTO	BAJO	ELEVADO

TABLA 1.1 DIFERENCIA ENTRE OZONO Y LUZ ULTRAVIOLETA.

h) Tanques de almacenamiento.

En este tanque se hace la mezcla del agua con el ozono, hace las veces de tanque de contacto y tanque de almacenamiento, los tanques pueden ser de acero inoxidable ó de polipropileno.

FIG. 1.6 TANQUES DE ALMACENAMIENTO DE JARABES.


1.2.2 Tratamiento de jarabe.

Para cualquiera de los sabores que se quiera preparar el método de preparación es el mismo.

FIG. 1.7 TANQUE DE MEZCLA.

DIAG. 1.3 DIAGRAMA DE FLUJO DE PRAPARACION DE JARABE.

a) tanque de mezcla

En este tanque se hace la preparación del jarabe, posee un agitador y en la parte superior un cono para vaciar los elementos.

La preparación consiste en mezclar cuidadosamente todos los componentes de la formula, a fin de tener un producto de buena calidad.

El procedimiento es el siguiente:

- 1. Pesar todos los ingredientes de la formula.
- 2. Colocar el agua en el tanque mezclador.
- 3. Prender el agitador.
- 4. Agregar uno a uno los componentes.
- Mantener la agitación hasta que todos los componentes estén totalmente disueltos.
- Tomar muestras y verificar que la formula cumpla con todos los parámetros físico-químicos.

7. Si todo esta dentro de parámetros, proceder a pasar el producto a un tanque de almacenamiento para la siguiente entrada del proceso: pasteurización y homogenización.

b) Pasteurización y homogenización.

La pasteurización es la eliminación de las bacterias que pudieran estar presentes en el producto, se logra por medio de un choque térmico, esto es calentado y enfriado simultáneamente el producto.

La homogenización es la estabilización mecánica del producto y se logra aplicando una gran presión hidráulica por medio de una bomba con la ayuda de una válvula de restricción.

El proceso es el siguiente:

Llenar con agua el sistema pasteurizador-homogenizador.

- Encender las bombas de recirculación agua, agua caliente y agua fría.
- Abrir la válvula de ingreso de vapor hasta alcanzar la temperatura de trabajo de 90° C (Temperatura del producto).
- 3. Estabilizar el sistema de agua caliente y agua fría.

- Regular por medio de la válvula la presión de trabajo del homogenizador.
- 5. Desalojar el agua del sistema e ingresar producto.
- 6. Procesar todo el producto.
- 7. Ingresar agua al sistema.
- 8. Cerrar válvula de ingreso de vapor.
- 9. Enfriar sistema
- 10. Apagar bombas de recirculación de agua, agua caliente y agua fría.

PASTEURIZADOR

HOMOGENIZADOR

FIG. 1.7 PASTEURIZADOR Y HOMOGENIZADOR.

c) filtros

La función de este filtro es para retener las partículas en suspensión de hasta de 10 micras, son de tipo acero inoxidable.

El nitrógeno sirve para eliminar el aire que queda dentro de la botella.

1.2.3 Descripción del proceso de embotellado.

Para la elaboración de agua y jugos se sigue los siguientes pasos:

a) Bodegas

El almacenaje de materia prima y materiales se lo hace en dos tipos de bodega, una con refrigeración para concentrado, colorantes, preservantes, etc. La otra para almacenar materiales como botella, tapas, etiquetas, etc.

b) Etiquetado

La rotulación del envase es adhesiva ó pegable, normalmente para las aguas de tamaño personal son tipo manga y para los jugos son etiquetas ó mangas.

El envase tiene una sección determinada para colocar la identificación.

c) Enjuague

Las botellas son enjuagadas con agua ver DIAG.2, como pertenecen al grupo de botellas no retornables este enjuague es el adecuado.

Los envases al ser enjuagados con agua, deben eliminar todo tipo de bacterias que podría existir, aunque sólo es posible que exista polvo, debido a que son botellas no retornables.

d) Llenado

Si el líquido de agua ver DIAG.2, el llenado es con agua de calidad E. Si el líquido es jugo ver DIAG.3, para ambos casos es la misma forma de llenado; las botellas llegan a la llenadora, entra el líquido en el envase desalojando el aire logrando llegar al nivel deseado previamente determinado.

e) Roscado

Se tiene un surtidor de tapas, que al girar va encarrilándolas hacia una bajante, donde quedan listas para ser pescadas por las botellas para luego ser roscadas

Por un cabezal.

f) Codificador

El codificador es el que se encarga de colocar las fechas, tanto de caducidad como de elaboración, el lote de producción, y en algunos empresas colocan la hora para efectos de control interno, por cuanto de acuerdo a la normas y requerimientos de grandes cadenas de supermercados.

g) Túnel de termocontracción.

La formadora es la que se encarga de empaquetar las botellas en diferentes tamaños, se compone de dos etapas el ordenador y el horno termo formador.

El ordenador es donde se colocan las botellas según se quiera el fardo de 12 ó 24 botellas, para después ser impulsadas hacia el túnel. A medida que avanza el grupo de botellas se va cubriendo de plástico termoencogible, para ser encogido por el horno.

h) Paletizado.

En palets de madera son colocados los paquetes, uno sobre otro hasta máximo 5 filas de alto para agua, y 7 filas de alto jugos para evitar deformaciones en los paquetes.

FIG. 1.9 PALETIZADO DE JUGOS DE VARIOS SABORES.

FIG. 1.10 PALETIZADO DE AGUA ENVASADA.

CAPITULO 2

2. ANÁLISIS DE SITUACIÓN INICIAL DE LA EMPRESA.

DAULE FOOD S.A., es una empresa establecida en la ciudad de Guayaquil, se encuentra ubicada en una zona industrial en el km. 7 ½ de la vía a Daule, Calle 2da y Callejón 2do, (ver FIG.2.1). Siendo sus principales productos de elaboración licores y cocktail, ésta empresa tuvo que disminuir su producción hasta paralizarla completamente en el año 2002, en vista que el mercado para este tipo de producto no era rentable debido a la alta competencia y variación de precios en la que intervienen pequeños productos, sus propietarios toman la decisión de cambiar de producto cambiar de producto, inclinándose hacia el mercado de jugos, agua de mesa y aguas saborizadas, ya que en el medio estos productos

tienen una alta demanda, por lo que realizan el estudio de marcado, lo cual da como resultado, que la decisión tomada es acertada.

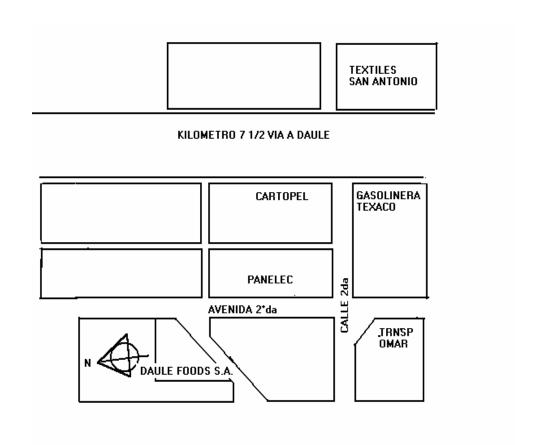


FIG. 2.1 UBICACIÓN DE LA EMPRESA DAULE FOOD SA.

Además en esta empresa se encuentran equipos que se utilizan para procesar café en grano, negocio perteneciente a uno de los accionistas de la empresa.

A continuación se describe la situación inicial de la empresa:

La empresa posee dos líneas de proceso utilizadas para envasar licor, de las cuales sólo una está en operación, aunque no se encuentra en condiciones rentables.

No existe climatización en la sala de llenado, ni ozonización permanente.

Se observa que los equipos existentes en la planta fueron colocados sin utilizar algún tipo de criterio establecido, para este tipo de planta.

La planta almacena el agua en tres tanques de pvc montados sobre estructuras metálicas. Los tanques existentes para el almacenamiento de agua tienen capacidad de 1500 litros cada una ver FIG. 2.2.

FIG. 2.2 TANQUES DE ALMACENAMIENTO DE AGUA.

El almacenamiento de materia prima, materiales, y producto terminado se lo realiza en los diferentes espacios libres que tiene la empresa, en la FIG.2.3, se observa al fondo de la caldera, una plataforma donde están almacenadas las tapas de aluminio.

FIG. 2.3 ALMACENAMIENTO DE MATERIALES.

Como se mencionó los equipos de procesar café, están fuera de uso sin embargo ocupan espacio en diferentes sectores de la planta, por cuanto la geometría de la misma no permite almacenar en un solo lugar. Ver FIG. 2.4 y FIG. 2.5 a continuación:

FIG. 2.4 EQUIPOS DE PROCESAR CAFÉ- FUERA DE USO.

FIG. 2.5 EQUIPOS DE PROCESAR CAFÉ- FUERA DE USO.

En la sala de llenado los equipos se encuentran colocados en forma secuencial formando una letra U (FIG. 2.6), esto es que las máquinas se han colocado siguiendo el proceso, así enjuague de botellas-llenadoracerrado ó roscado-codificado-sello de seguridad de tapa y por último la parte de embalaje.

FIG. 2.6 EQUIPOS COLOCADOS EN LA SALA DE LLENADO EN FORMA DE UNA LETRA U.

Existe un equipo de codificación que está ubicado en una de las líneas de proceso.

El espacio físico donde etiquetan envases es reducido.

FIG. 2.7 SALA DE EMBALAJE.

En la sala de embalaje existe almacenamiento de botellas ver figura 2.7.

Existen además tableros de distribución de energía eléctrica, que alimentan a diferentes secciones, así como un mismo sector tiene alimentación de tableros diferentes, existen mezclas de cableado para iluminación y maquinarias, los controles no quedan cerca de las maquinarias para casos de emergencias, no existen planos eléctricos No existe sistema contra incendios.

Para medir la eficiencia de las líneas de producción se hicieron varias pruebas:

a) Proceso de enjuague:

No existe máquina de enjuague de envases, el proceso de enjuague es el siguiente:

En una tina de plástico en la que manualmente se realiza el enjuagado de los envases, se la llena con agua hasta cierto nivel; luego un operador va sacando los envases desde la funda donde están empacadas para ir sumergiéndolas una a una dentro de la tina , para después agitarlas manualmente, se escurre el agua que queda dentro de las botellas; una vez enjuagada la botella se las coloca en el transportador de envases que las traslada hasta llegar a la llenadora., en la mayoría de los casos es necesario colocar dos operadores para el enjuagado de los envases, lo que provoca el encarecimiento de la mano de obra, ésta forma de enjuagar las botellas no es la adecuada, debido a que no cumple con los parámetros establecidos por las normas sanitarias, y existe excesiva manipulación de botellas después del enjuagado.

En la FIG. 2.8 se ve la tina que es utilizada para el enjuague de los envases, en la FIG. 2.9 se puede observar como se hace manualmente la limpieza de las botellas.

FIG. 2.8 RECIPIENTE DONDE SE ENJUAGAN LOS ENVASES.

FIG. 2.9 ENJUAGADO DE BOTELLAS A MANO.

A medida que se programan los cambios, se decide probar los equipos con nuevos productos, esto es para determinar las deficiencias de las máquinas.

a) Llenado.

Esta máquina se la utiliza para llenar agua y jugos, de acuerdo a la producción deseada, se observa que no se puede controlar el nivel de llenado, existe rebose, el llenado provoca mucha espuma, posee un rendimiento de 10 BPM, y tiene desperdicio del orden del 60 % por excesiva presencia de espuma del jugo que se envasaba para la prueba. Estas llenadoras son para envasar en botellas de vidrio, el cabezal daña los envases de plástico ya que son muy flexibles y de poco peso, debido a esto hay desperdicios elevados de líquido y envases.

b) Roscado.

El coronador roscador que está instalado en la línea de producción es para tapas de aluminio, la velocidad del taponador es de 18 botellas por minuto.

En la salida del taponador se viran las botellas, ya que la banda es rápida, en muchas ocasiones se ha optado por tapar manualmente porque no se logra un buen sellado con el taponador.

El tapado de botellas con tapa plástica se la utiliza en forma manual, siendo muy lenta esta operación.

d) Túnel de termo contracción.

Existe túnel de termo contracción de plástico que enfarda ó embala botellas, pero tiene fallas de diseño, no tiene encausadores de aire para que no queme el film, está incompleto. No posee mesa de ingreso para almacenaje de plástico y faltan dos cortadores eléctricos.

No existe transportador a la salida del túnel de termo contracción ver FIG. 2.10.

Este equipo no funciona ya que desde el segundo día que se lo probó y, ocurrió el daño durante la prueba, el proveedor no reconoce la garantía ya que durante el hecho no estuvieron presentes los representantes.

FIG. 2.10 TUNEL DE TERMOCONTRACCION.

2.1 Requerimientos de la planta para la producción.

De acuerdo al estudio de mercado y la demanda que se proyecta cubrir, se establece que se utilizara dos líneas de producción, las cuales deben ser reemplazadas ó realizar arreglos necesarios y en caso de requerir comprar equipos adicionales a los existentes.

De acuerdo a la demanda, se establece una producción para la línea # 1 de:

PRESENTACION	SABOR	UNIDADES MES
POLIETILENO 250 ml	NARANJA	100000
POLIETILENO 250 ml	DURAZNO	15000
POLIETILENO 250 ml	LIMON	10000
POLIETILENO 250 ml	UVA	10000
POLIETILENO 500 ml	NARANJA	10000
TOTAL BOTELLAS		145000

Tabla 2.1. ESTIMADO DE BOTELLAS A PRODUCIR EN EL MES PARA LA LINEA DE PROCESO # 1.

Cálculo de botellas por minuto para la línea de proceso # 1

El cálculo de botellas por minuto se lo obtiene de dividir la cantidad de botellas a producir, para tiempo trabajado en minutos y la eficiencia (se tomará la eficiencia de 80%).

Representando matemáticamente:

$$BPM = TBM/ (TM X n)$$
 (1)

BPM =17

De acuerdo a los datos obtenidos en la tabla 2.1 el total de botellas:

Total de botellas mensuales: TBM= 145000 unidades

Tiempo en minutos empleado en producción mensual=TM

TM= 22 días trabajados X (1 día/ 8 horas)X(1 hora/ 60 minutos)

TM =22/((1/8)(1/60))=10560 minutos

n = eficiencia =80%

Botellas por minuto BPM =145000/(10560x0.8)=145000/8448=17

La línea de producción # 1 va a requerir de 17 botellas por minuto.

De acuerdo a la demanda que ésta empresa va a cubrir, se establece una producción para la línea de proceso # 2 de:

PRESENTACION	SABOR	UNIDADES MES
PET 360 ml cristal	NARANJA	40000
PET 360 ml cristal	DURAZNO	20000
PET 360 ml verde	LIMON	40000
PET 500 ml cristal	AGUA	50000
PET 600 ml cristal	AGUA	50000
TOTAL BOTELLAS		200000

Tabla 2.2 ESTIMADO DE BOTELLAS A PRODUCIR EN EL MES PARA LA LINEA DE PROCESO # 2.

Cálculo de botellas por minuto para línea de proceso # 2.

Utilizando la formula (1), del cálculo de BPM de la línea #1, se tiene:

BPM = TBM/(TMXn) (1)

De acuerdo a los datos obtenidos en la tabla 2.2:

TBM = 200000 unidades

TM = 22 días trabajados X (1 día/ 8 horas)X(1 hora/ 60 minutos)

TM =22/((1/8)(1/60))=10560 minutos

N = eficiencia =80%

BPM =200000/((10560x0.8))=200000/8448=23.67=24

BPM =24

La línea de producción # 2 va a requerir 24 botellas por minuto.

En tamaños mayores para un proyecto a futuro se tiene un estimado de:

PRESENTACION	SABOR	UNIDADES MES
POLIETILENO DE 4 LITROS	AGUA	12000
POLIPROPILENO DE 20 LITROS	AGUA	4000
TOTAL		16000

Tabla 2.3. ESTIMADO DE BOTELLAS A PRODUCIR EN EL MES PARA LINEA DE PRODUCCIÓN EN PROYECTO A FUTURO.

2.2 Programa de trabajo a ejecutar.

Para adecuar las dos líneas de proceso, agua y jugos, se utilizara parte de equipos que estaban fuera de uso, que existen en la planta, la idea principal es colocar las dos líneas de producción en paralelo.

Para llevar a cabo el proyecto, los trabajos se realizaran de acuerdo al siguiente cronograma de trabajo:

a) Determinación de la capacidad de almacenamiento de agua potable.

La cantidad de agua que la planta necesita para una producción fluida, es de un estimado de 50 metros cúbicos por día, la red de agua potable solo entrega 1.5 metros cúbicos por hora, valor que se necesita, por lo tanto, en un día de 24 horas sólo entregaría 36 MCPD, se debe cambiar a través de interagua el medidor y circuitos de distribución de entrada de agua, así como construir una cisterna de 40MC, para almacenamiento de agua.

b) Parte eléctrica.

Diseñar diagramas unifilares para todos los equipos existentes en la planta, y proyectar para equipos a instalarse después, colocar paneles de distribución para cada sala, colocar breakers independientes para cada máquina de controles.

Construir electro canales para el cableado de toda la línea en general, así como la iluminación para toda la sala de llenado, bodegas, sala de jarabes, etc.

c) Aire comprimido.

Cambiar diámetro de tuberías de ½ pulg. a tuberías de 1 pulg. desde salida de compresores de aire hasta líneas de sala de llenado, con sus respectivas derivaciones de ½ pulg. para cada equipo, colocar separadores de humedad a la salida de los compresores.

d) Circuito de tuberías de acero inoxidable (circuitos sanitarios).

Construir circuito sanitario para alimentar llenadoras y enjuagadoras de botellas.

e) Climatización.

Climatizar por medio de una central de aire acondicionado sistema split de 24000 BTU/H la sala de llenado adquirir e instalar electromecánicamente equipo de ozonizador de ambiente.

f) Distribución de la planta.

Se debe mejorar la actual distribución de la planta, por lo que se debe:

Hacer trabajos civiles, electromecánicos, circuitería para agua, aire, diesel, vapor aislado y recuperación de condensado para caldera de 40 HP. Movilizar a lugar convenido.

Equipos de procesar café deben salir de inmediato de la planta.

g) Bodega.

Armar perchas metálicas para almacenaje por pisos, con ayuda de montacargas.

Reforzar estructuras del mezanine de las líneas de envasado, esta área servirá como bodega de almacenaje de botellas vacías y tapas para producción de las dos líneas.

h) Producción.

En el mezanine se realizara el etiquetado de las botellas vacías a llenar con agua ó jugos, así como la alimentación de las tapas plásticas a los coronadores para las dos líneas. Las botellas vacías etiquetadas serán guiadas desde el mezanine a cada uno de los transportes de ambas líneas para que sean enjuagadas.

Construir escalera de acceso a mezanine.

Construir tolva de acero inoxidable para bajante de botellas.

Construir mesa de acero inoxidable para etiquetar botellas vacías, y dos transportadores para alimentar botellas vacías etiquetadas a cada línea.

Mejorar luminosidad del área de mezanine.

i) Mantenimiento.

Instalar encausadores para aire dentro del túnel formador existente, construcción de mesa de ingreso para almacenaje de plástico y

construcción de dos cortadores eléctricos, construcción de envolvedor de film y transportador para paquetes en la salida del túnel.

Movilizar la línea de envasado de jugos, de tal manera que permita proyectar espalda con espalda, la instalación de la primera línea de envasado de agua.

Adquirir ó fabricar enjugadora de botellas que no existe.

Trabajos electromecánicos para posicionar las llenadoras, colocar faltantes de control de nivel de mando, tanque de gobierno, colocar bomba de desplazamiento positivo, rediseñar el programa de control de PLC para mejorar la velocidad de llenado.

Construir guías de cuello, comandados con un par de pistones que cierren y abran guías al mismo tiempo que baje cabezal que comanda válvulas de llenado, colocación de censores a la entrada y salida de la máquina para trabajar por conteo.

Trabajos electromecánicos para dejar a punto coronadores existentes en la planta, adquirir y colocar cabezal para roscar tapa plástica, cambiar de moto reductor para plato guía de entrada de botellas, para aumentar velocidad de roscado de 24 BPM a 40 BPM, colocar guía de cuello desde la entrada del plato guía hasta la salida.

Proveer material para armar transportador unifilar sanitario de cadena table-top de 3 ¼ de pulgada para todos los equipos, incluyendo la llegada del plato giratorio final de recepción de botellas llenas etiquetadas y codificadas.

Construcción de mesa de acumulación de botellas llenas, colocar al lado de túnel de termo contracción.

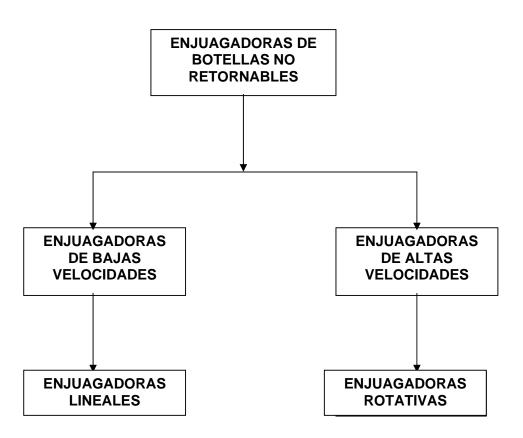
Movilizar la línea de envasado de agua 40 cm. hacia la pared, de tal manera que permita proyectar espalda con espalda, la instalación de la segunda línea de envasado de jugos.

Adquirir equipo codificador con características semejantes al que posee una de las dos líneas de proceso, construir circuitería eléctrica y de aire comprimido para su instalación.

De acuerdo a nuevos requerimientos se tiene que adquirir varios equipos, casi todos se compran localmente como el caso del codificador; ozonizador, aire acondicionado.

Los otros elementos como: transportes de botellas, mesa rotativa, perchas, tuberías, etc. Son elementos que no necesitan de un diseño detallado; pero en el caso de las enjuagadoras de envases, existen varias opciones para adquirirla se tiene que hacer un estudio de las opciones que hay en el mercado, y sobre todo que el costo sea conveniente para la empresa.

CAPITULO 3

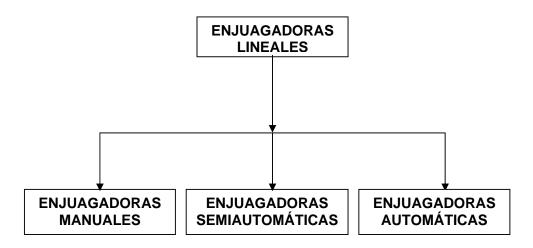

3. TIPOS DE MÁQUINAS ENJUAGADORAS DE ENVASES QUE SE PUEDEN INSTALAR EN LA PLANTA DAULE FOOD SA.

Existe variedad de diseños de máquinas enjuagadoras de botellas no retornables, que se podrían instalar en la planta DAULE FOODS.S.A, de acuerdo a sus necesidades.

En el mercado existen máquinas de diferentes formas y diseños, las enjuagadoras se dividen en dos grandes grupos:

- a) Enjuagadoras de bajas velocidades.
- b) Enjuagadoras de altas velocidades.

En el DIAG. 3.1 se puede observar las clases de enjuagadoras existentes en el mercado industrial, que se podrían instalar en la planta, dependiendo de sus requerimientos se seleccionara el equipo adecuado.



DIAG. 3.1. CLASES DE ENJUAGADORAS

a) Enjuagadoras de bajas velocidades:

Las máquinas enjuagadoras de bajas velocidades son las que su rapidez no es mas allá de 40 botellas por minuto, normalmente se las usa en procesos lineales, estas máquinas son usadas en plantas pequeñas que inician sus actividades y no requieren de velocidades altas de producción, en caso de requerir aumentar la producción y por lo tanto la necesidad de incrementar velocidades, se las coloca varias máquinas en paralelo, que resulta mas económico que comprar una máquina rotativa.

Enjuagadoras lineales:

DIAG. 3.2 CLASES DE ENJUAGADORAS LINEALES

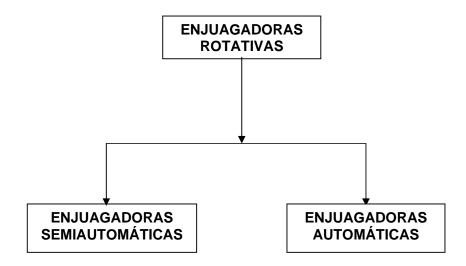
FIG. 3.1 ENJUAGADORA LINEAL TIPO TWISTER.

FIG. 3.2a. TWISTER PARA BOTELLAS PEQUEÑAS.

FIG. 3.2b. TWISTER PARA BOTELLAS GRANDES.
FIG. 3.2 TIPOS DE TWISTER.

Las enjuagadoras de clase lineal se las puede encontrar como: enjuagadoras manual, semiautomáticas y automáticas en la FIG 3.1, Se puede observar una enjuagadora lineal llamada twister, en el interior se encuentran las guías que permiten que las botellas roten 180 grados mientras se produce el avance estas guías tienen el nombre de twister tal como se observa en la FIG 3.2a y FIG 3.2b dependiendo del formato que se va a procesar. En esta máquina el enjuagado no es confiable, no todos los envases alcanzan a ser enjuagados, y otros no tienen el tiempo necesario de contacto con el agua para una buena limpieza, por lo tanto este equipo no garantiza la limpieza total de la botella, ya que depende de la velocidad con que se alimentan las botellas y por lo tanto, el tiempo que la botella está sobre el rociador ó boquilla varía.

Existen enjuagadoras lineales que si garantizan el enjuague, ya que las botellas durante el periodo de enjuague permanecen sobre la boquilla que realiza el proceso de limpieza.


b) Enjuagadoras de altas velocidades:

Los equipos de altas velocidades son las que se usan en plantas que sobrepasan velocidades de 40 botellas por minuto, estas enjuagadoras son rotativas.

Enjuagadoras rotativas:

Las máquinas enjuagadoras rotativas son usadas por plantas que necesitan obtener una mayor producción horaria para efecto de cubrir su demanda, generalmente son empresas que se encuentran posicionadas en el mercado.

Esta clase de máquinas se clasifican en semiautomáticas y automáticas, en la FIG 3.3 se puede observar un equipo rotativo semiautomático y en la FIG.3.4 un equipo rotativo automático.

DIAG. 3.3 CLASES DE ENJUAGADORAS ROTATIVAS.

Enjuagadoras manuales:

Las enjuagadoras manuales son aquellas máquinas en las que el hombre maneja totalmente el proceso, que permite introducir el envase en la boquilla de limpieza, seguidamente accionar la bomba para producir su enjuague; luego debe abrir la cámara de enjuague para ir retirando las botellas de una en una, y posicionarlas sobre el transportador de botellas, obteniéndose producciones de hasta 20 botellas por minuto. Esta clase de máquinas se las puede considerar lineal aunque ellas no tienen ningún elemento o mecanismos en movimiento

Enjuagadoras semiautomáticas:

Las enjuagadoras semiautomáticas, son aquellos equipos en los cuales se requiere la acción de un operador ó persona, para iniciar el ciclo de enjuague, normalmente este tipo de máquinas corresponden a la familia de enjuagadoras lineales aunque existen también enjuagadoras semiautomáticas rotativas.

FIG. 3.3. ENJUAGADORA DE BOTELLAS SEMIAUTOMÁTICA ROTATIVA.

En la FIG 3.3 se tiene un modelo de enjuagadora rotativa de operación semiautomática, posee 12 brazos interiores con 2 canastillas intercambiables cada columna y accionada por medio de perillas para el

ajuste del tamaño de la botella. Tiene una velocidad de 23-30 botellas por minuto.

Enjuagadoras automáticas:

Estos equipos son aquellos en que no se requiere que el operador realice una operación para producir la limpieza de las botellas, esto es la botella ingresa a ser enjuagada, se posiciona en la pinza que la sujetara durante el proceso, se produce el giro de la botella posición en la que recibirá el agua durante el ciclo siguiente, se produce el ciclo de enjuague y luego el de drenado del líquido remanente, luego de lo cual la botella volverá a su posición inicial, para posteriormente por medio de un molinete pasar al transportador de botellas el cual las conduce hacia la llenadora. Existen máquinas automáticas lineales y rotativas.

FIG. 3.4. ENJUAGADORA DE BOTELLAS AUTOMÁTICA ROTATIVA.

En la FIG 3.4 se muestra un modelo de enjuagadora rotativa operación automática, posee 8 brazos, sistema de recirculación de agua, producción media de 40 a 60 por minuto.

3.1 Selección de máquina enjuagadora a instalar en la planta DAULE FOODS S.A.

Al realizar el análisis en la empresa DAULE FOOD SA., y realizar el levantamiento de la planta, todos los equipos existentes en las líneas de producción son de tipo lineales; éstos son las llenadoras y los roscadores o taponadores son manuales de un cabezal, no existiendo enjuagadoras operativas.

FIG. 3.5 ROSCADOR-TAPONADOR MANUAL #1.

FIG. 3.6 ROSCADOR-TAPONADOR MANUAL #2.

FIG. 3.7 LLENADORA LINEAL #1.

FIG. 3.8 LLENADORA LINEAL #2.

En las FIG. 3.5 y FIG. 3.6 se muestran roscadores-taponadores manuales y en las FIG. 3.7 y FIG. 3.8 llenadoras lineales que están instaladas en la empresa DAULE FOODS. S.A., por lo que para completar la línea de producción será conveniente colocar enjuagadoras lineales requeridas, por otro lado no se tiene el espacio suficiente para la colocación de una enjuagadora rotativa, y el costo elevado de la máquina no está en el presupuesto establecido.

En los equipos manuales el problema existente está en que son lentos, dependen bastante del operador, y a veces se necesita más de una persona para acelerar el proceso, lo cual encarece la mano de obra, y la manipulación del envase después de la limpieza no es el adecuado.

El método de limpieza con equipos manuales no son confiables, no hay seguridad por lo que se descarta la posibilidad de instalar estos elementos de proceso.

En los equipos semiautomáticos, el gobierno de su proceso lo tiene el operador, no hay una velocidad constante de producción; la colocación de la botella y el tiempo de contacto del agua con la misma, la da la persona que hace el proceso.

Para obtener un trabajo continuo y seguro que cumpla con todos los parámetros sanitarios establecidos es recomendable instalar máquinas automáticas, el tiempo de operación la da el propio equipo y el hombre trabaja al ritmo de la maquina, se debe adquirir un equipo lineal-automático.

3.2 Máquinas enjuagadoras lineales que se pueden adquirir.

Para desarrollar este proyecto, se presentan varias alternativas de solución como:

Comprar nuevas ó usadas, ya sean de mercado nacional ó extranjero, también se plantea la posibilidad de construir el equipo considerando el mercado local y las normas correspondientes. Todas las alternativas, entre otras son importantes para el desarrollo de cualquier sistema.

Máquinas enjuagadoras nuevas.

Existen representantes de compañías extranjeras que venden esta clase de e quipos, siendo de gran ayuda para empresas grandes y medianas.

El costo del equipo, el pago de aranceles y el tiempo de desaduanización son las principales causas para que la pequeña empresa en el Ecuador, descarte esta opción, ya sean estas (SIDEL, AKUPAK, KHS, KAPS ALL PACKAGING SISTEMS, etc.), conlleva a rubros excesivamente altos.

Las importaciones de los equipos requieren tiempo y dinero.

Ventajas de un equipo nuevo:

- Se ajusta a la necesidad.
- Mayor producción.
- Mejor tecnología.
- Pocos daños.
- Bajo mantenimiento.

Desventajas de un equipo nuevo:

- Inversión inicial excesivamente alta.
- Tiempo de importación largo.

- Demora en reparación de daños por garantía.
- Fuga de divisas.

Máquinas enjuagadoras usadas.

Otra de las posibilidades es la de adquirir un equipo usado. Este tipo de opción debe ser bien analizada por parte de los técnicos de la empresa. Muchas veces se opta por comunicarse con empresas que hayan comprado equipos usados, para así obtener una mejor información ó la posibilidad de localizar alguna empresa local que venda los equipos usados para embotellado; pero rara vez se presenta esta opción.

Por otra parte cada una de las empresas grandes cambian sus equipos, es por la ineficiencia de las mismas, escasez de repuestos, estado de vejez, innovación, entre otras consideraciones que hacen que estos equipos se vuelvan obsoletos, es por ello que no es recomendables adquirir equipos demasiado viejos, a menos que se haga una serie de estudios minuciosos que digan lo contrario.

Ventajas de un equipo usado:

- Menor inversión que equipo nuevo.
- Buena producción.
- Buena tecnología.
- Bajo mantenimiento.

Desventajas de un equipo usado:

- Adaptarse a su capacidad.
- Ajustarse a sus dimensiones.
- Demora en importaciones.
- Por ser equipo usado no es confiables para largos periodos de trabajo.

Máquinas enjuagadoras diseñadas localmente.

La construcción de un equipo localmente, es una oportunidad ya que debería sostenerse sobre todos los posibles materiales o sustentos en

el mercado nacional, utilizando la tecnología del medio y apoyándose en parámetros tales como:

Procesos de manufactura, tiempo y lo más importante el factor económico. Esta alternativa ofrece grandes ventajas, ya que se adaptará un equipo a la medida del espacio asignado aprovechando las instalaciones existentes, una máquina de bajo costo genera trabajo y mas que todo fortalece el área de la construcción de maquinarias en el país.

Ventajas de un equipo diseñado localmente:

- Equipo nuevo.
- Se adapta a la necesidad.
- Alta producción.
- Adquisición de repuestos locales.
- Desarrollo tecnológico para el país.
- Campo a la formación de nuevas industrias

Desventajas de un equipo diseñado localmente:

- Dificultad en la construcción de ciertos mecanismos.
- Dificultad en la adquisición de los componentes eléctricos.
- Dificultad en el montaje.

MATRIZ DE DECISION					
Objetivo	1º	2º	30	40	
	Adaptabilidad al área de instalación	Baja inversión \$	Acceso repuesto y tiempo	Confiabilidad	Satisfacción de objetivos
Valores (wi)	0,3	0,4	0,1	0,2	
Alternativa					∑(wi.xi)
Comprar equipo nuevo	90%	40%	30%	90%	64%
Comprar equipo usado	40%	70%	40%	50%	54%
Adaptar y construir equipo local	90%	80%	70%	60%	78%

TABLA 3.1 MATRIZ DE DECISION

En la tabla 3.1 se presenta la matriz de decisión, basada en consideraciones anteriores:

Se observa en la matriz la mejor alternativa de solución, sin embargo esto va a depender de aquel que realiza el proyecto y además de las consideraciones que se dispongan, tales como: espacio físico disponible, proceso de manufactura local, tiempo de construcción y diseño.

CAPITULO 4

4. DISEÑO DE UNA MÁQUINA ENJUAGADORA AUTOMÁTICAS DE BOTELLAS NO RETORNABLES.

Para iniciar el diseño de la máquina enjuagadora se requiere conocer la capacidad de éste equipo para lo cual se utilizará los datos obtenidos en las tablas 2.1 y 2.2 (ver capitulo 2).

Para la enjuagadora de la línea # 1 la capacidad de enjuague es de 17 botellas por minuto, y en la línea # 2 la capacidad de enjuague debe ser mínimo de 24 botellas por minuto, por lo cual se selecciona de las dos la de mayor capacidad, para tener mejor comportamiento a futuro cuando se incremente la producción.

4.1 Parámetros de diseño.

La máquina a ser diseñada será lineal, esto es que se colocará paralela al transporte de botellas, tomara un lote, la sujetará, rotará hasta invertir su posición en este momento introduce agua al envase, luego debe drenar casi completamente el agua del interior de la botella, se debe rotar el envase para depositarlo en el transporte, el cual continuará hasta la llenadora durante el proceso mismo del enjuague, el transporte debe estar detenido por lo que se requiere manejar los siguientes parámetros:

- La velocidad de enjuague de envases será de 24 botellas por minuto (BPM).
- Agua de recirculación con ozono.
- Alimentación de agua por medio de una válvula operada manualmente.
- Duración del ciclo por lo máximo 30 segundos.
- Duración de limpieza de la botella mínimo 3 segundos.
- Duración de escurrido del envase máximo de 2 segundos.

- La velocidad de la banda transportadora de botellas es de 9 metros por minuto (m/min.), establecida por el diseñador de la parte mecánica.
- La operación del sistema debe tener la opción de trabajar en forma manual y en forma automática.

4.2 Manejo de parámetros de diseño.

El sistema de enjuagado deberá tener el siguiente proceso:

- Entrada de botellas a la máquina enjuagadora.
- Tiempo de espera para completar la cantidad de botellas a ser enjuagadas
- Las botellas deben ser sujetadas para realizar la operación de volteo y no se resbalen durante la operación.
- Los envases se voltean hasta situarse sobre las boquillas de limpieza.
- Se enjuagan los envases durante 3 segundos, utilizando agua presurizada por medio de una bomba centrífuga, que recircula el agua que se encuentra en el depósito.
- Luego de lo cual:

• Durante 2 segundos se escurren las botellas.

• Las botellas deben voltearse a su posición original.

• Se debe aflojar los envases.

• Se debe iniciar el movimiento del transporte de botellas para

evacuar el sistema de apriete y recibir nuevas botellas para que se

realice otro ciclo

• Salen las botellas.

El equipo debe entregar como mínimo 24 botellas enjuagadas por

minuto, dato escogido en base al consumo estimado de botellas al

mes; por lo que con la velocidad requerida de 24 BPM y dato del

diseñador del equipo, se utilizaron 12 boquillas de limpieza, se

procede a determinar los ciclos por minuto y el tiempo máximo de

cada ciclo, dividiendo la cantidad de botellas por minuto para 12

boquillas de limpieza que tendrá la enjuagadora de botellas se

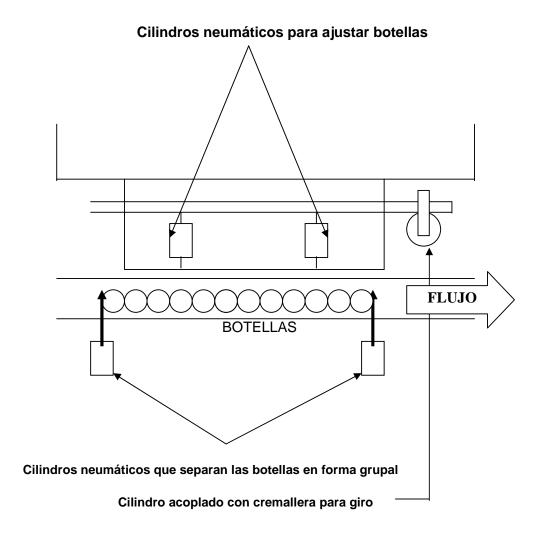
obtiene:

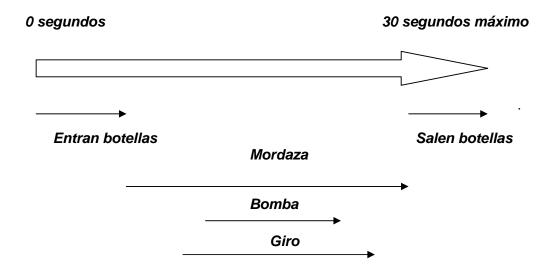
24BPM/12 boquillas =2

De donde:

El resultado es 2, que serán los ciclos de enjuagado en 60 segundos ó un minuto, en conclusión la secuencia de enjuague de botellas durará máximo 30 segundos para obtener la producción deseada.

Para lograr agrupar las botellas existirán dos cilindros neumáticos que causaran que las botellas se separen en forma grupal, también por medio de dos cilindros se procede a sujetar las botellas, se considera la mordaza y para producir el giro se utiliza un cilindro al cual se le acopla una cremallera para por medio de un piñón transformar el movimiento rectilíneo en movimiento rotacional, de acuerdo a la FIG. 4.1:



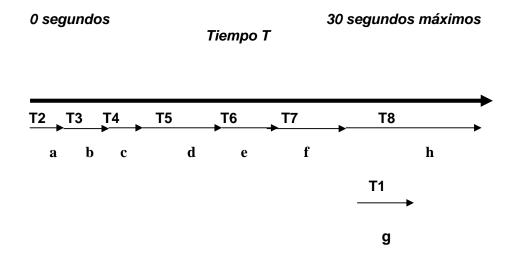

FIG. 4.1. CILINDROS NEUMÁTICOS UTILIZADOS EN EL EQUIPO.

Las partes que se utilizaran en la enjuagadora de botellas se encuentran distribuidas de la siguiente manera:

a) Banda transportadora de botellas--transporte

- b) Pistón neumático a la entrada de la enjuagadora --tope de entrada.
- c) Pistón neumático a la salida de la enjuagadora —tope de salida.
- d) Barra que sujeta a las botellas—mordaza.
- e) Giro de barra que sujeta las botellas—giro.
- f) Enjuague ó limpieza de envases—bomba.

A continuación en el DIAG. 4.1, se presenta el bosquejo de la secuencia de enjuague de la botella a emplearse para el proceso:


DIAG. 4.1 DIAGRAMA DE SECUENCIA DE ENJUAGADO DE BOTELLAS.

4.2.1 Secuencia de funcionamiento de la máquina en automático.

- Inicio de secuencia
- Se prende banda transportadora de botellas
- Sale un tope en la salida de la máquina (pistón neumático)
 para que los envases lleguen hasta él y puedan quedar alineados con las boquillas de limpieza
- Cuenta botellas que van ingresando al sistema
- Una vez que ya han entrado los 12 envases, se enciende el tope en la entrada de la maquina (pistón neumático), para que los envases no sigan entrando una vez que ya han pasado las 12 unidades
- Tiempo para mandar a cerrar la mordaza.
- Cierra mordaza para sujetar botellas.
- Tiempo que demora en cerrar la mordaza.
- Gira mordaza hacia boquillas de limpieza.
- Tiempo que demora en girar la mordaza.
- Prende bomba de enjuague
- Tiempo de enjuague.
- Apaga bomba de enjuague.

- Entra pistón en la salida de la enjuagadora para dar paso a la salida de las botellas ya enjuagadas.
- Tiempo de escurrido de la botella.
- Regresa mordaza.
- Tiempo que demora en regresar la mordaza.
- Abre mordaza.
- Tiempo que demora en abrir mordaza.
- Prende banda transportadora de botellas.
- Cuenta botellas que van saliendo del sistema (cuenta 6),
 hasta llegar al número deseado, para dar la orden que entre el siguiente grupo de botellas.
- Entra pistón en la entrada de la enjuagadora.
- Cuenta botellas de salida del sistema (12 botellas)
- Sale pistón en la salida de la enjuagadora.
- Fin de secuencia.

Teniendo en cuenta la secuencia de funcionamiento se puede ir deduciendo los tiempos en el proceso, a continuación en el DIAG. 4.2 se dará nombre a los diferentes intervalos de tiempo:

DIAG. 4.2 DIAGRAMA DE TIEMPO DE ENJUAGADO DE BOTELLAS.

Tgb- tiempo que pasa energizada la solenoide que comanda a la mordaza.

Tfc- tiempo que pasa energizada la solenoide que comanda al giro de mordaza.

Ted- tiempo que pasa encendida la bomba de enjuague de botellas.

Th0- tiempo que dura la secuencia.

4.2.2 Cálculo de los tiempos para cada etapa del proceso.

Se toma como inicio en el tiempo T=0, donde ya han ingresado las

Primeras doce botellas al sistema, se debe tener en cuenta que cuando inicia la primera vez la secuencia llevará un poco más de tiempo, por no tener todavía botellas en el proceso.

Se necesitará llevar el conteo de botellas, tanto a la entrada del sistema como a la salida.

Llamaremos a:

C1—contador de botellas a la entrada del equipo.

C2—contador de botellas a la salida del sistema de enjuagado.

T1—tiempo que demora en apagar la mordaza desde que se apagó la bomba de enjuague.

T2-tiempo margen de seguridad después de haber contado las primeras doce botellas 0.1 seg. por seguridad se lo considerara 0.2 seg.

T2 = 0.2 seg.

T3—tiempo en que demora la última botella en llegar al grupo, para empezar a cerrar la mordaza.

T4—tiempo que tarda en cerrar la mordaza para poder iniciar el giro.

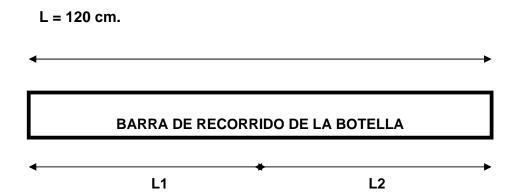
T5—tiempo que demora en girar la mordaza hasta llegar a las boquillas de limpieza para el encendido de la bomba de enjuague.

T6—tiempo de encendido de la bomba de enjuague.

T7—tiempo para escurrir el líquido (agua), que quede dentro de la botella.

T8—tiempo que tarda en iniciar otra secuencia.

Los cálculos para los diferentes tiempos para el proceso de enjuague se describen a continuación:


En el tiempo ta, el contador de entrada debe estar listo para el conteo de un nuevo tren de entrada de botellas porque aquí ya ha ingresado el primer grupo, estos intervalos de tiempo son pequeños se los escoge con un valor de 0.1 seg pero por seguridad se lo tomará como un valor de 0.2 seg.

Tiempo de recorrido de la botella.

El tiempo de llegada de la última botella (Tb.), que entra al sistema estará dado por:

Tb = T2 + T3

Se observa en el diagrama 3 el recorrido en centímetros, que hará la botella.

DIAG. 4.3 DIAGRAMA DE RECORRIDO DE LA BOTELLA EN CENTÍMETROS

La distancia total de recorrido de la botella (L), tiene un valor de 120 cm.

La distancia L2 es el conjunto de botellas una al lado de la otra se obtiene de multiplicar el número de botellas por el diámetro de ellas.

L2 = 12 botellas x el diámetro de la botella.

Considerando que el diámetro de la botella (Db.), más pequeña que se va a enjuagar, es de 5 centímetros, de donde el conjunto de botellas alineadas una al lado de la otra medirá 60 centímetros esto es:

 $L2 = 12xDb = 12 \times 5cm$

L2 = 60 cm.

De:

L = L1 + L2

L = L1 + 60 cm.

L1 = L - 60 cm.

L1 = 120 cm - 60 cm

L1 = 60 cm.

L1 es la distancia de recorrido de la última botella que entra al sistema de enjuague.

Teniendo L1 y la velocidad de la banda transportadora de botellas (Vtb.), Que es un parámetro de diseño, se puede obtener el tiempo (Tb.) Que el envase demora en recorrer L1.

Vtb = 9 m/min.

Llevando la velocidad Vtb a centímetros por segundo se tiene.

Vtb = (9m/min) x (100cm/1m) x (1min/60seg.)

Vtb = 15 cm/seg.

Como es un movimiento rectilíneo uniforme la formula a utilizarse:

d = v x t

Distancia recorrida por la botella = velocidad del transportador de botellas x tiempo que demora el envase en hacer el recorrido.

L1 = Vtb x tb

Tb = L1 / Vtb

Tb = 60 cm / (15 cm / seg)

Tb = 4 seg

Según DIAG. 4.2 se obtiene.

Tb = T2 + T3

T3 = Tb - T2

Como ta = T2 según diagrama de tiempo en el DIAG.4.2

T3 = 4 seg - 0.2 seg

T3 = 3.8 seg.

Tiempo de giro.

El tiempo que la mordaza tarda en cerrar es de 0.1 seg, pero para evitar que lo haga bruscamente y cause deformaciones en las botellas se le da una tolerancia mayor como por ejemplo de 0.1 seg a 0.2 seg, esto es:

T4 = 0.2 seg.

Una vez que la mordaza cerró completamente, esto es después de haber transcurrido el tiempo T4, en éste momento ya estarán listas las botellas para girar hasta llegar a las boquillas de limpieza.

La mordaza para hacer el giro desde 0 grados hasta 180

grados, y con el pistón neumático que maneja el giro de la

mordaza trabajando a una presión de aire comprimido de 50

psi, demora 4 segundos, de donde:

T5 = 4 seg.

Tiempo de limpieza.

El tiempo de enjuague T 6 es el tiempo de encendido de la

bomba, que es un parámetro de diseño,

T6 = 3 seg.

Tiempo de escurrido.

La botella necesita un tiempo T7 de escurrido del agua que

queda dentro de ella al hacer en enjuague de 2 segundos,

este dato es un parámetro de diseño.

T7 = 2 seg.

Tiempo de giro

El tiempo de giro de la mordaza T giro, se lo obtiene sumando

el tiempo que la mordaza demora en llegar a las boquillas de

limpieza T5, mas el tiempo de enjuagado de las botellas T6,

mas el tiempo de escurrido del envase T7 y el tiempo que la

mordaza demora en regresar a su punto de partida cero

grados.

El tiempo que la mordaza demora en ir de cero grados hasta

180 grados, es el mismo que demora en regresar desde 180

grados hasta cero grados por lo tanto se tendrá:

T giro = T5 + T6 + T7 + T5

T giro = 2T5 + T6 + T7

T giro = $2 \times 4 \text{ seg} + 3 \text{ seg} + 2 \text{ seg}$

T giro = 8 seg + 5 seg

T giro = 13seg.

Tiempo de mordaza.

El tiempo de mordaza estará dado por el tiempo que la

moraza demore en cerrar, mas el tiempo de giro, y mas el

tiempo que demore la mordaza en abrir que es el mismo

tiempo que demora en cerrar (T4).

T mordaza = T4 + T giro + T4

T mordaza = 2T4 + T giro

T mordaza = $2 \times 0.2 \text{seg} + 13 \text{seg}$

T mordaza = 0.4 seg + 13 seg

T mordaza = 13.4 seg

Se le dará una tolerancia de seguridad al tiempo de mordaza de 15 seg, para asegurar que llego la botella y no suelte en el aire los envases, por lo tanto:

T mordaza = 15 seg.

Para hallar el valor de T1, observando el DIAG.4.2 se lo obtiene sumando el tiempo de escurrido mas el tiempo de regreso de la mordaza a su punto de partida a cero grados.

T1 = T7 + T5

T1 = 2seg + 4seg

T1 = 6 seg

El tiempo T8 que es el tiempo que demora el sistema en prender el transportador de botellas después de que la

mordaza ha soltado los envases, sacando del DIAG.4.2 se

obtiene restando el tiempo que demora la mordaza en apagar

desde que se apagó la bomba de enjuague, del tiempo de

escurrido y sumándole el tiempo que demora la mordaza en

abrir.

T8 = T1-T7+T4

T8 = 6seg-2seg+0.2seg

T8 = 4.2 seg.

Resumiendo tenemos:

T1 = 6 seg

T2 = 0.2 seg.

T3 = 3.8 seg.

T4 = 0.2 seg.

T5 = 4 seg.

T6 = 3 seg.

T7 = 2 seg.

T8 = 4.2 seg.

Sumando toda la secuencia:

T = T2 + T3 + T4 + T5 + T6 + T7 + T8

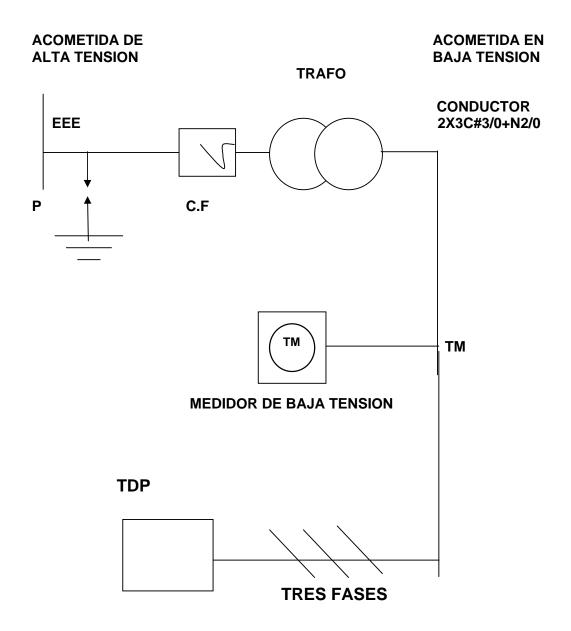
T = 0.2seg + 3.8seg + 0.2seg + 4seg + 3seg + 2seg + 4.2seg

T = 17.4 seg.

Según estudios y experiencias hechas en la empresa Daule Foods S.A, se requería que cada ciclo de enjuague de botellas sea de máximo 30 segundos, en los resultados obtenidos llegamos a 17.4 segundos por lo tanto la secuencia entra en el rango que se había estimado.

El resto del tiempo disponible, será para darle al cliente una mayor seguridad en la velocidad de enjuague de las botellas, que alcance lo requerido y quede tolerancia para futuro.

4.3 Diseño eléctrico.


La operación del sistema de enjuagado de botellas será en forma manual y en forma automática.

En el diseño eléctrico se tiene dos diagramas:

- El diagrama unifilar
- El diagrama de control.

Diagrama unifilar:

En el DIAG. 4.4 se puede observar el diagrama unifilar da la planta Daule Foods S.A.

DIAG. 4.4 DIAGRAMA UNIFILAR DE LA PLANTA DAULE FOODS.S.A.

A continuación se detalla la descripción de los elementos del DIAG. 4.4.

• **EEE**- empresa eléctrica del Ecuador.

Acometida de alta tensión.

La energía eléctrica es suministrada por la empresa eléctrica del Ecuador, mediante las líneas de alta tensión al nivel de 13.8 KV, desde la red existente, hasta un banco de tres transformadores monofásicos (ubicado en el mezanine de la edificación) para reducir el voltaje suministrado por la empresa eléctrica local al voltaje de servicio. La acometida de alta tensión es aérea, va desde un poste ubicado a un metro del cuarto de transformadores mediante tres líneas de cable # 2 ACSR y una línea de cable #2 ACSR para tierra, esta acometida va en el interior de una tubería rígida de 4 pulgadas con el reversible respectivo para evitar la entrada de agua al interior del cuarto de transformadores.

 P-pararrayos, son de tipo válvula de 9-10 KV, están conectados solidamente a tierra de un extremo indicado y en el extremo superior conectados a la línea de alta tensión. • **C.F**-caja portafusibles o seccionadores de alta tensión, son de tipo abierto para instalación exterior, son previstos de tira fusibles de 10 amperios, para disparo en caso de sobrecarga, las características de los seccionadores es de 100 amperios, 15 Kilo Vatios.

Tanto los seccionadores como los pararrayos hay uno por cada fase para protección de sobrecorriente, y sobre voltaje contra fallas en el sistema de energiza o a descargas provocadas por condiciones atmosféricas.

 Trafo- banco de transformadores monofásicos de tipo convencional de 3X50 KVA de 13200 voltios en el lado de alta tensión y de 240/120 voltios en el lado de baja tensión, su capacidad de potencia aparente 50KVA.

Acometida de baja tensión.

Esta acometida parte de los bornes del lado del secundario de los transformadores hasta los terminales de entrada del breaker de protección principal de tres polos 400 amperios, instalado en el interior del tablero de Protección y Distribución Principal.

Esta acometida de baja tensión está instalada sobre una parrilla porta cables de 30 centímetros de ancho. Los conductores son 2 cables # 3/0 por fase para las fases vivas y un conductor de # 3/0 para el neutro (2X3C#3/0+ N 2/0),

• Tablero de medición principal. (TM).

En el tablero de Medición Principal, se encuentran: la base socket clase 20, trifásica de 13 terminales para medición indirecta y el juego de borneras respectivo. El tablero es de dimensiones exteriores de 80 centímetros de alto por 40 centímetros de ancho y 30 centímetros de profundidad, con puerta abisagrada con calado y vidrio instalado para visualización del medidor desde afuera sin abrir la puerta.

• Tablero de protección y distribución principal.

En el tablero de Distribución Principal, se encuentra el Breaker de Protección Principal (**BKP**), de 3 polos 400 amperios, y las barras de distribución de cobre de 1 ¼ x ¼ de pulgada, para 450 amperios, las barras de distribución están debidamente sustentadas por

aisladores, y disyuntores de protección para las distintas cargas de salida (ver diagrama 4.5).

Este tablero es de dimensiones exteriores aproximadas de 100 centímetros de ancho, 67 centímetros de ancho y 25 centímetros de profundidad, puerta con seguridad para llave.

PANELES Y TABLEROS DE DISTRIBUCIÓN.

Paneles de Disyuntores:

Se refiere a los centros de carga que dan servicio a los circuitos derivados de alumbrado y tomacorrientes, se lo puede observar en el diagrama 4.5.

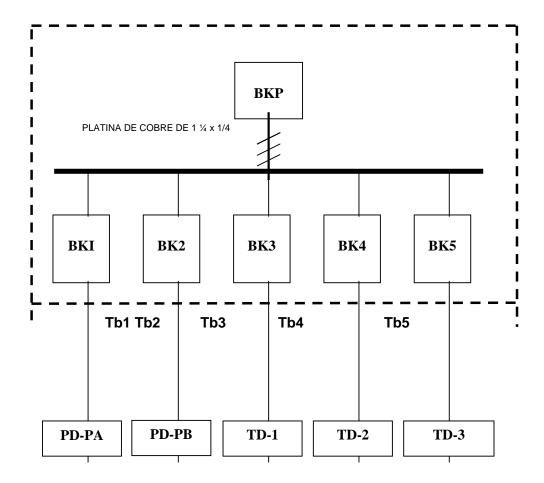
Circuitos derivados.

Son los que partiendo de los paneles de distribución reparten energía a los puntos de utilización como:

- -salidas de alumbrado.
- -salidas de tomacorrientes.
- -salidas especiales.

Sistema de puesta a tierra.

El sistema eléctrico esta debidamente puesto a tierra, todas las canalizaciones y cubiertas metálicas de los conductores y equipos están aterrizados.

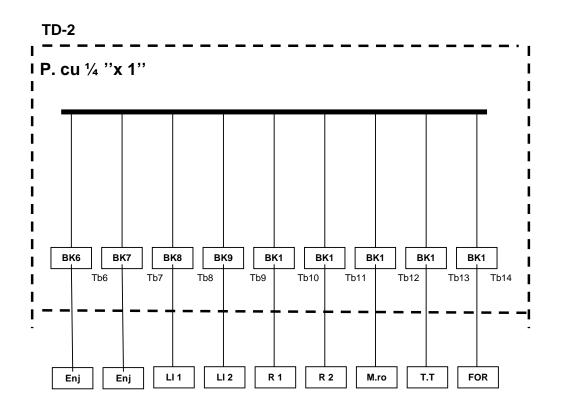

La puesta a tierra esta colocada mediante varillas cooperwell enterradas, donde se conectan los conductores de la red a tierra.

Tuberías para uso eléctrico.

Aquí se alojan los cables para los distintos recorridos, tubería de tipo metálica galvanizada EMT.

P.cu ¼"x 1¼". - 3 platinas de cobre de un cuarto de pulgada por una un cuarto de pulgada, ver diagrama 4.5 y diagrama 4.6, desde estas platinas se distribuye a los diferentes breakers de protección.

TDP


DIAG. 4.5 TABLERO DE DISTRIBUCIÓN PRINCIPAL.

La descripción de los elementos del DIAG. 4.5, se detallan a continuación:

BK1- breaker de 2 polos 30 amperios.

- **BK2** breaker de 2 polos 20 amperios.
- **BK3** breaker de tres polos 150 amperios.
- **BK4** breaker de tres polos 300 amperios.
- **BK5** breaker de tres polos 125 amperios.
- **Tb1** tubería de 3/4 de pulgada que lleva 2 cables número 10 para fases, y un cable número 12 para el neutro.
- **Tb2** tubería de 3/4 de pulgada que lleva 2 cables número 12 para fases, y un cable número 14 para el neutro.
- **Tb3** tubería de 2 de pulgadas que lleva 3 cables número 1/0 para fases, y un cable número 4 para el neutro.
- **Tb4** tubería de 3 de pulgadas que lleva 3 cables número 3/0 para fases, y un cable número 2 para el neutro.
- **Tb5** tubería de 2 de pulgadas que lleva 3 cables número 1/0 para fases, y un cable número 4 para el neutro.
- PD-PA-panel de distribución planta alta, administración.
- **PD-PB-**panel de distribución planta baja, ventas y recepción.
- **TD-1-**tablero de distribución uno, sala de jarabes y preparación.
- **TD-2-**tablero de distribución dos, sala de llenado y zona de empaque.
- **TD-3-**tablero de distribución tres, áreas de soporte, calderas, compresores de aire, etc.

En el DIAG. 4.6 se puede observar el tablero de distribución número 2, el cual posee los breakers de las maquinarias de la sala de llenado y de la zona de empaque.

DIAG. 4.6 TABLERO DE DISTRIBUCIÓN DOS—SALA DE LLENADO DE LLENADO Y ZONA DE EMPAQUE.

Los elementos contenidos en el tablero de distribución dos se detallan a continuación:

BK6- breaker de 3 polos 20 amperios.

- **BK7** breaker de 3 polos 20 amperios.
- **BK8** breaker de 3 polos 20 amperios.
- **BK9-** breaker de 3 polos 20 amperios.
- **BK10** breaker de 3 polos 20 amperios.
- **BK12** breaker de 3 polos 20 amperios.
- **BK13** breaker de 3 polos 100 amperios.
- **BK14** breaker de 3 polos 20 amperios.
- **Tb6** tubería de 3/4 de pulgada que lleva 3 cables número 12 para fases, y un cable número 14 para el neutro.
- **Tb7** tubería de 3/4 de pulgada que lleva 3 cables número 12 para fases, y un cable número 14 para el neutro.
- **Tb8** tubería de 3/4 de pulgada que lleva 3 cables número 12 para fases, y un cable número 14 para el neutro.
- **Tb9** tubería de 3/4 de pulgada que lleva 3 cables número 12 para fases, y un cable número 14 para el neutro.
- **Tb10-** tubería de 3/4 de pulgada que lleva 3 cables número 12 para fases, y un cable número 14 para el neutro.
- **Tb11** tubería de 3/4 de pulgada que lleva 3 cables número 12 para fases, y un cable número 14 para el neutro.
- **Tb12** tubería de 3/4 de pulgada que lleva 3 cables número 12 para fases, y un cable número 14 para el neutro.

Tb13- tubería de 1 ½ de pulgada que lleva 2 cables número 8 para cada fase (tres fases), y un cable número y un cable número 8 para el neutro.

Tb14- tubería de 3/4 de pulgada que lleva 3 cables número 12 para fases, y un cable número 14 para el neutro.

Enj 1-tablero de control para enjuagadora número 1.

Enj 2-tablero de control para enjuagadora número 2.

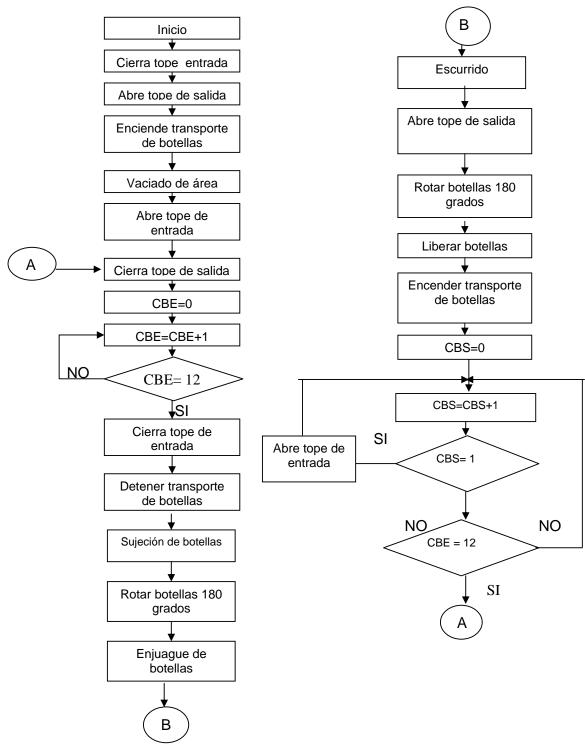
LI 1-tablero de control para llenadora número 1.

LI 2-tablero de control para llenadora número 2.

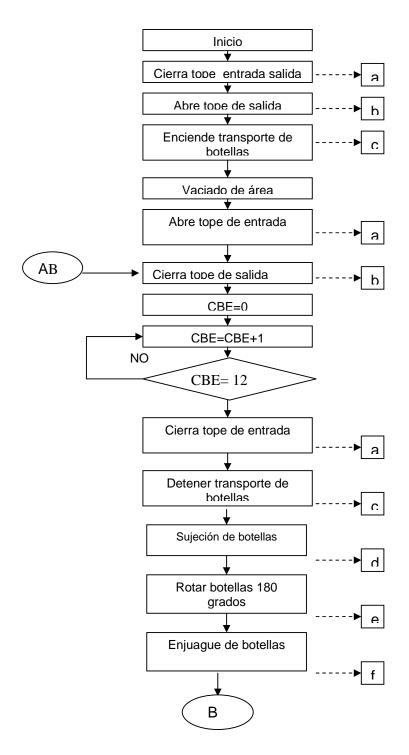
R 1-tablero de control para roscador-taponador número 1.

R 2-tablero de control para roscador-taponador número 2.

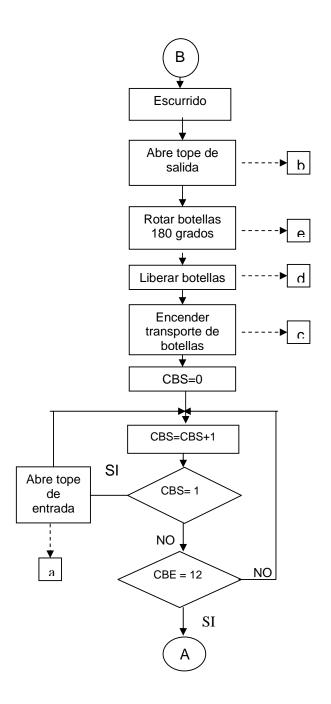
M.rot-tablero de control para mesa rotativa.


T.T-tablero de control para túnel de termo contracción número.

For.-tablero de control para formador de paquetes.


Para el diseño del tablero eléctrico de la máquina enjuagadora de botellas no retornables número 1, nos vamos a basar en el diagrama de bloques que se detalla a continuación (Diagrama 4.7):

CBE=contador de entrada de botellas


CBS=contador de salida de botellas

DIAG. 4.7 DIAGRAMA DE SECUENCIA PARA EL DISEÑO ELÉCTRICO.

DIAG. 4.8 DIAGRAMA DE IDENTIFICACION DE ELEMENTOS A USARSE. EN EL DISEÑO ELECTRICO (PARTE 1)

DIAG. 4.9 DIAGRAMA DE IDENTIFICACION DE ELEMENTOS A USARSE. EN EL DISEÑO ELECTRICO (PARTE 2)

Basándose en el diagrama 4.8 (parte 1 y parte 2), se tiene que para

las diferentes etapas del proceso, se debe especificar los elementos

que harán la ejecución así:

a.- para comandar el cilindro neumático del tope de salida, se

requiere del uso de una válvula solenoide a 220 voltios.

b.- en el caso del tope de salida, de igual manera que en el tope de

entrada se necesita una válvula neumática a 220 voltios alternos.

c.- para mover la banda transportadora de botellas se requiere de un

motor trifásico de ½ HP, (ya calculado por la parte mecánica), de las

siguientes especificaciones:

ALIMENTACION: TRIFASICA

POTENCIA: 1/2 HP

CORRIENTE NOMINAL: 1.9 / 0.96 AMPERIOS.

VOLTAJE DE ALIMENTACION: 220 / 440 VOLTIOS ALTERNOS.

TEMPERAURA AMBIENTE: 40 GRADOS CENTIGRADOS

FRECUENCIA: 60 HERTZ

REVOLUCIONES POR MINUTO: 1660 RPM

Para el funcionamiento del motor se necesitará de elementos de

arranque como contactor, térmico para una capacidad de ½ HP.

d.- para la mordaza será necesario instalar una válvula solenoide que

maneje a los dos cilindros neumáticos de apriete, será una válvula

solenoide a un voltaje de 220 alternos.

e.- en el caso del cilindro neumático acoplado con una cremallera

que da el giro a la mordaza, también será necesario la colocación de

una válvula solenoide a 220 voltios alternos que maneje la operación

del cilindro del giro.

f.- para la limpieza del interior de la botella, es necesario una bomba

trifásica de las siguientes especificaciones:

ALIMENTACION: TRIFASICA

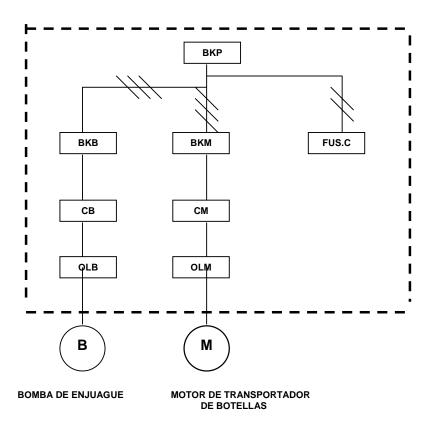
POTENCIA: 3/4 HP

CORRIENTE NOMINAL: 2.8 / 1.4 AMPERIOS.

VOLTAJE DE ALIMENTACION: 220 /440 VOLTIOS ALTERNOS.

TEMPERATURA DE TRABAJO: 40 GRADOS CENTÍGRADOS.

PRESION MÁXIMA: 145 PSI.


GALONES POR MINUTO: 13 GPM

FRECUENCIA: 60 HERZT

REVOLUCIONES POR MINUTO: 1600 RPM

En la FIG. 4.9 está descrito el diagrama de fuerza para la enjuagadora de botellas no retornables.

Enj. 1

DIAG. 4.10 TABLERO PARA ENJUAGADORA 1- DIAGRAMA DE FUERZA.

BKP- breaker principal de 3 polos 20 amperios para control general del tablero de la enjuagadora (parte de fuerza).

BKB- breaker de 3 polos 20 amperios para bomba de enjuague de botellas.

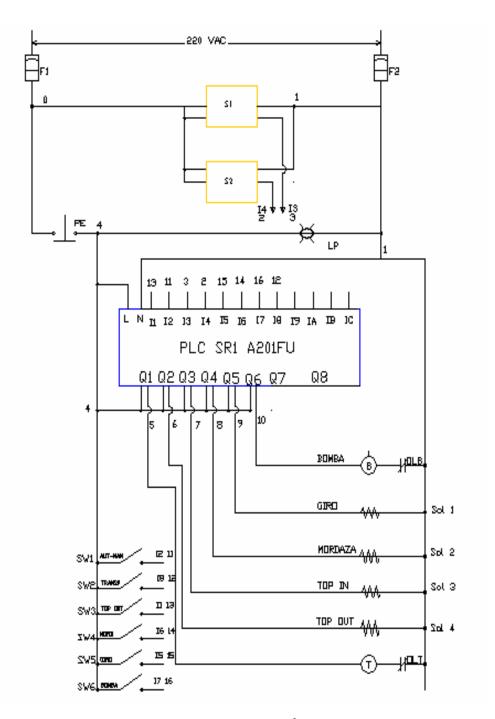
BKM- breaker de 3 polos 20 amperios para motor de transportador de botellas.

Fus.C- caja de fusibles de dos polos 6 amperios para protección de circuito de control.

CB- Contactor para bomba de enjuague.

CM- Contactor para transporte de botellas.

OLB-. Rele térmico para bomba de enjuague de envases.


OLM- Rele térmico para transportador de botellas.

M- motor del transportador de botellas.

B- bomba de enjuague de enveses.

4.3.1 Diagrama de control

De acuerdo al diagrama 4.8, y con los elementos escogidos se procede al diseño del diagrama de control para la operación de la enjuagadora de botellas no retornables, la operación de la máquina será en forma manual y en forma automática. Siguiendo los pasos del diagrama 4.8 de la parte 1 y de la parte 2 se tiene el siguiente diagrama:

DIAG. 4.11 DIAGRAMA DE CONTROL DE LA MÁQUINA ENJUAGADORA DE BOTELLAS.

- **L1-L2-** entrada de voltaje 220 voltios alternos.
- **F1- F2-** fusibles de 6 amperios para protección del tablero de control.
- **\$1-** sensor de botellas de entrada.
- **\$2-** sensor de botellas de salida.
- **B-** contactor que comanda la bomba de enjuague de las botellas no retornables.
- **T-** contactor que comanda transportador de botellas.
- **PLC-** programador lógico de control.
- **Sol 1-**solenoide que gobierna al pistón que provoca el giro de la mordaza.
- Sol 2- solenoide que gobierna a dos pistones que están en los extremos de la mordaza para producir su cerrado y la apertura.
- **Sol 3-** solenoide que gobierna el tope de entrada.
- **Sol 4-** solenoide que gobierna el tope de salida.
- **OLB-** Rele térmico para protección de la bomba de enjuague.
- **OLT-** Rele térmico para protección del transportador de botellas.
- Lp- luz piloto para señalización de voltaje.

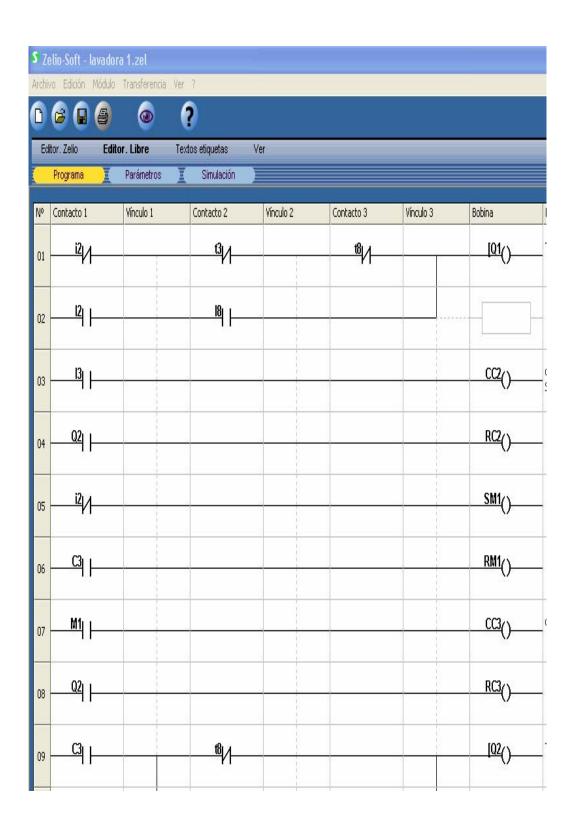
Sw1- selector de dos posiciones para controlar funcionamiento manual ó automático del equipo de limpieza.

Sw2- selector de dos posiciones para controlar transportador de botellas en forma manual.

Sw3- selector de dos posiciones para controlar tope de salida, en forma manual.

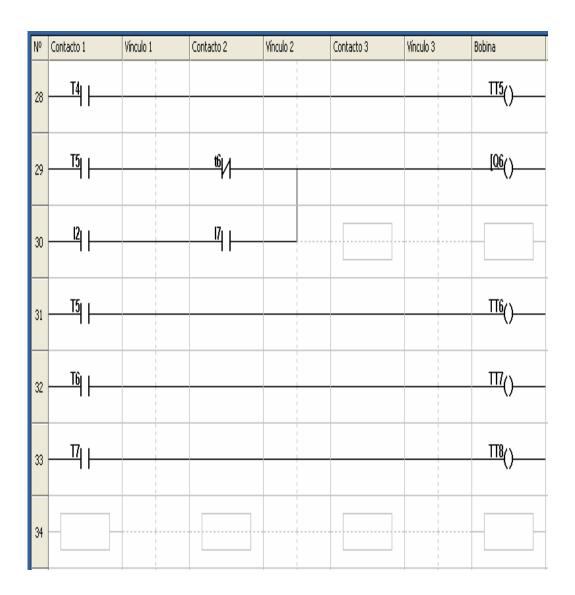
Sw4- selector de dos posiciones para controlar el cerrado de la mordaza en forma manual.

Sw5- selector de dos posiciones para controlar el giro de la mordaza en forma manual.


Sw6- selector de dos posiciones para controlar el encendido de la bomba de enjuague en forma manual.

PE- paro de emergencia del sistema, tanto para manual como para automático.

4.3.2 Programa del PLC.


A continuación se presenta el programa del programador lógico de control para enjuagadora de botellas no retornables: Este programa está hecho de tal manera, que su funcionamiento tanto en forma manual como en forma

automática trabajen por medio del PLC (programa lógico de control), ver DIAG. 4.9

No	Contacto 1	Vínculo 1	Contacto 2	Vínculo 2	Contacto 3	Vínculo 3	Bobina
10	<u>Q2</u>						
11	<u>""</u>						
12	<u> </u>		<u> 1</u>				
13	<u> </u>						<u>cc1</u> ()
14	<u>T2</u>						RC1()
15	<u> </u>		<u>t8</u> //				<u>TT2</u> ()
16	<u>T2</u>						
17	<u> </u>						<u>cc4</u> ()
18	<u>Q2</u>						RC4()

Мо	Contacto 1	Vínculo 1	Contacto 2	Vínculo 2	Contacto 3	Vinculo 3	Bobina
19	<u> </u>		^{c4} //				<u>[03</u> ()
20	<u>Q3</u>						
21	<u>T2</u>		<u>Q2</u>				П3()
22	<u> </u>						Π1()
23	<u></u>		11/1				<u>[Q4</u> ()
24	<u> </u>		<u> 6 </u>				
25	<u> </u>						П4()
26	<u> </u>		! /				[05()
27	<u> 5 </u>						

DIAG. 4.12 PROGRAMACIÓN PARA EL PLC DE LA MÁQUINA ENJUAGADORA DE BOTELLAS.

A continuación se detallan las funciones del programa:

Entradas al programador lógico de control.

- 11 señal de entrada para accionamiento manual del tope de salida.
- 12 señal de entrada para inicio de secuencia.
- 13 señal de entrada del sensor de salida.
- 14 señal de entrada del sensor de entrada.
- 15 señal de entrada para accionamiento manual de el giro de la mordaza.
- I6- señal de entrada para accionamiento manual de el cierre de la mordaza.
- 17 señal de entrada para accionamiento manual de la bomba de enjuague.
- 18 señal de entrada para accionamiento manual de el transportador de botellas.

Salidas del programador lógico de control.

- **Q1-** señal de salida para energizar bobina del contactor C2 para manejar transportador de botellas.
- **Q2-** señal de salida para energizar válvula solenoide que comanda al tope de salida.

- Q3- señal de salida para energizar válvula solenoide que comanda al tope de entrada.
- **Q4-** señal de salida para energizar válvula solenoide que gobierna pistones que manejan el cierre de la mordaza.
- **Q5-** señal de salida para energizar válvula solenoide para comandar pistón para hacer girar la mordaza.
- **Q6-** señal de salida para bobina de contactor C1 para controlar bomba de enjuague de botellas.

Contadores.

- C1—contador de botellas a la entrada del equipo.
- C2—contador de botellas a la salida del sistema de enjuagado.
- C3—contador de inicio de secuencia.
- C4—contador para manejar la entrada del tope de salida.

Temporizadores

- **T1**—tiempo que demora en apagar la mordaza desde que se apagó la bomba de enjuague.
- T2 -tiempo margen de seguridad para resetear el contador de botellas a la entrada del equipo, después de haber contado las primeras doce botellas

T3—tiempo en que demora la última botella en llegar al grupo, para

empezar a cerrar la mordaza.

T4—tiempo que tarda en cerrar la mordaza para poder iniciar el giro.

T5—tiempo que demora en girar la mordaza hasta llegar a las

boquillas de limpieza para el encendido de la bomba de enjuague.

T6—tiempo de encendido de la bomba de enjuague.

T7—tiempo para escurrir el líquido (agua), que quede dentro de la

botella.

T8—tiempo que tarda en iniciar otra secuencia.

Otros elementos usados en el programa del PLC.

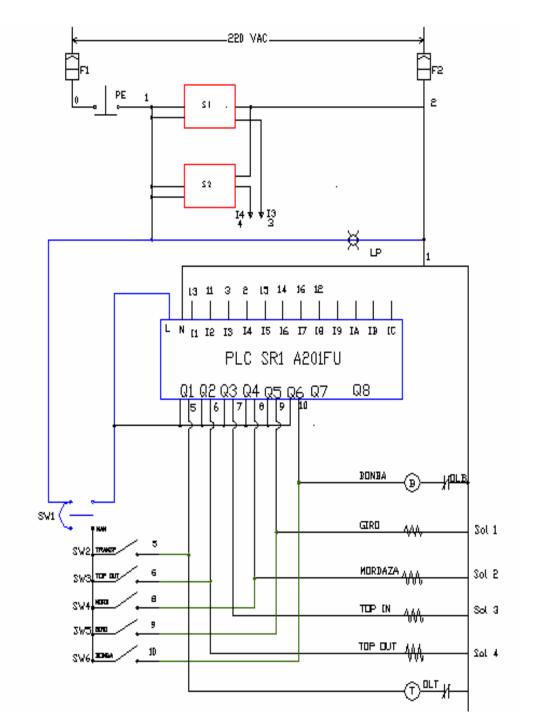
RC1—reset del contador C1.

RC2—reset del contador C2.

RC3—reset del contador C3.

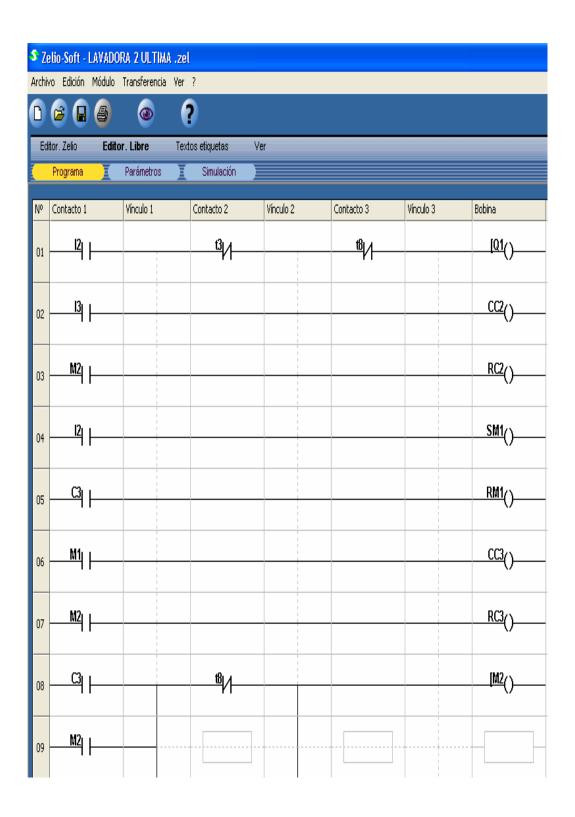
RC4—reset del contador C4.

SM1—Rele de inicio de secuencia.

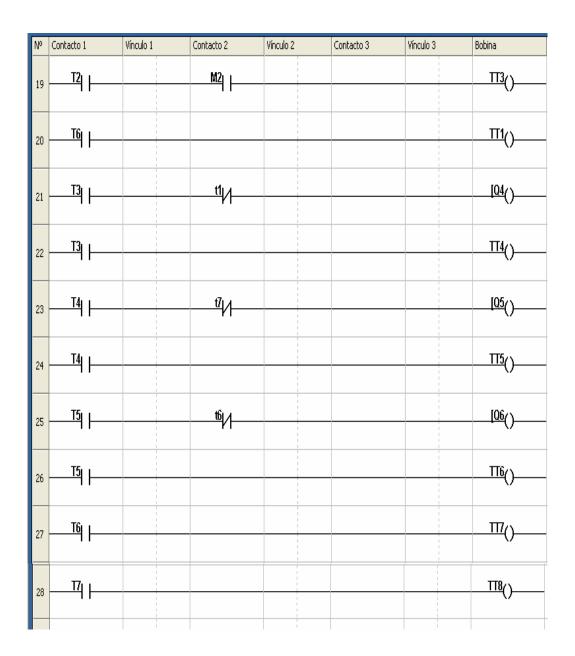

RM1—Reset de Rele SM1.

Corrida del programa del plc:

El equipo esta diseñado con un programa que hace que su ejecución, tanto en forma manual como en forma automática pasan por el plc, esto causará problemas a futuro, Ya que en el momento en que el plc sufra daños en su funcionamiento dejará sin operación al equipo, por lo tanto provocará perdidas en la producción que no se pueden recuperar, por lo que será necesario hacer los cambios pertinentes, para que la maquina trabaje en forma manual independientemente de el programador.


También es necesario hacer otro cambio en el programa, porque en el momento en que la mordaza regresa con las botellas a su punto de partida, el ultimo envase cae sobre el tope de salida, provocando que el resto de botellas se viren debido al poco peso que estas poseen; Para mejorar se hace una modificación en el programa, de tal manera que el tope de salida entre antes de que regrese la mordaza a su punto de partida, en el momento en que la bomba termine de enjuagar los envases también entrara el tope de salida, dejando así libre el transportador para el retorno de la mordaza junto con las botellas, lo cual ayudara a que la botella caiga en el transportador sin ningún problema.

En el DIAG. 4.10 se observa el diagrama eléctrico corregido, se hizo un cambio en los sensores, que se energicen después del paro de emergencia, para que se queden sin energía en el momento en que se apaga toda la máquina, ya que en el DIAG. 4.8, el circuito no permite que se apaguen los sensores, siempre quedaban encendidos provocando que se acorte su tiempo de vida útil.

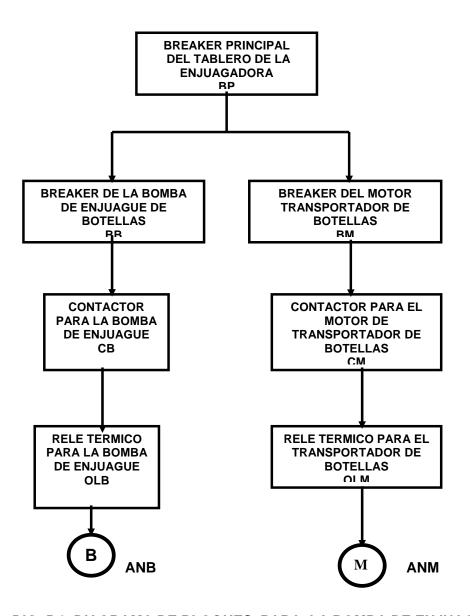


DIAG. 4.13 DIAGRAMA DE CONTROL

CORREGIDO DE LA MÁQUINA ENJUAGADORA DE BOTELLA.

No	Contacto 1	Vínculo 1	Contacto 2	Vínculo 2	Contacto 3	Vínculo 3	Bobina
10	<u>""</u>				t6 /		<u>[Q2</u> ()
11	14						<u>CC1</u> ()
12	<u> </u>						RC1()
13	<u> </u>		₆₈ /				<u>TT2</u> ()
14	<u>T2</u>						
15	<u> </u>						CC4()
16	<u> </u>						RC4()
17	<u> </u>		c4//				[Q3()
18	<u>Q3</u>						

DIAG. 4.14 PROGRAMACIÓN PARA EL PLC CORREGIDO DE LA MÁQUINA ENJUAGADORA DE BOTELLAS.


CAPITULO 5

5. CÁLCULO DE MATERIALES ELÉCTRICOS.

Existen formulas para calcular las especificaciones de los materiales eléctricos a emplearse, para luego ir a las tablas del código eléctrico nacional o a las tablas de los catálogos dados por los proveedores de las diferentes marcas, las tablas de los proveedores están dadas con referencias a sus propios códigos, los códigos son de acuerdo a la casa comercial donde pertenecen los elementos a emplearse.

A continuación se harán los cálculos, basándonos en fórmulas y tablas estudiadas en la "ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL".

Para tener una mejor idea y hacer los cálculos correctamente, nos ayudaremos con el diagrama de bloques, que se lo puede observar en la DIG. 5.1

DIG. 5.1 DIAGRAMA DE BLOQUES, PARA LA BOMBA DE ENJUAGUE Y EL TRANSPORTADOR DE BOTELLAS.

Cálculos para escoger los materiales eléctricos.

Basándose en las fórmulas y tablas dadas en la "ESCUELA SUPERIOR

POLITÉCNICA DEL LITORAL", y tomando los datos de placa de la

bomba de enjuague de botellas y del motor del transportador de envase

se tendrá:

Datos de placa de la bomba de enjuague:

MARCA: GRUNDFOS GERMANY

ALIMENTACION: TRIFASICA

POTENCIA: 3/4 HP

CORRIENTE NOMINAL: 2.8 / 1.4 AMPERIOS.

VOLTAJE DE ALIMENTACION: 220 /440 VOLTIOS ALTERNOS.

TEMPERATURA DE TRABAJO: 40 GRADOS CENTÍGRADOS.

FACTOR DE SERVICIO: 1.7.

PRESION MÁXIMA: 145 PSI.

GALONES POR MINUTO: 13 GPM

FRECUENCIA: 60 HERZT

REVOLUCIONES POR MINUTO: 1600 RPM

Datos de placa del motor del transportador de botellas:

MARCA: WESTERN ELECTRIC MOTOR CORP.

ALIMENTACION: TRIFASICA

FRAME: 1AI712- 4

POTENCIA: 1/2 HP

CORRIENTE NOMINAL: 1.9 / 0.96 AMPERIOS.

VOLTAJE DE ALIMENTACION: 220 / 440 VOLTIOS ALTERNOS.

TEMPERAURA AMBIENTE: 40 GRADOS CENTIGRADOS

FRECUENCIA: 60 HERTZ

REVOLUCIONES POR MINUTO: 1660 RPM

Dando nombre a las diferentes ampacidades para el circuito:

ABP = amperaje del breaker de alimentación principal del tablero de la enjuagadora de botellas.

ABB = amperaje del breaker que alimentara la bomba de enjuague.

ABM = amperaje del breaker del transportador de botellas.

ACB = amperaje del contactor para la bomba de enjuague.

ACM = amperaje del contactor para el motor de transportador de botellas

AOLB = Rele térmico para protección de la bomba de enjuague.

AOLM = Rele térmico para protección del motor para transportador de botellas.

AcP = amperaje del conductor principal del tablero de la maquina enjuagadora.

AcB = amperaje del conductor que alimentara la bomba de enjuague de envases.

AcM = amperaje del conductor que alimentara el transportador de botellas.

ANB = amperaje nominal de la bomba de enjuague de botellas, dato de la placa de la bomba de limpieza.

ANM = amperaje nominal del transportador de botellas, dato de la placa del motor del transportador.

AV = amperaje de las 4 válvulas solenoides a 220 voltios alternos el conjunto consume 1 amperio.

AS = amperaje de los 2 sensores de 0.2 amperios de consumo cada uno, por lo que entre los dos seria un consumo de 0.4 amperios.

A = unidad de amperios.

Cálculo del amperaje para el breaker principal de la enjuagadora de botellas

Para el cálculo del breaker principal primero se calcula la capacidad de corriente del breaker, para después con la tabla seleccionarlo.

El amperaje se lo calcula sacando el 200% del mayor valor de corriente del sistema, sumado el resto de los amperajes del circuito de tal manera que se obtiene:

Amperaje del breaker principal = 200 % x (amperaje mayor del circuito) + suma del resto de los amperajes del sistema.

El mayor valor del amperaje en el sistema, es el amperaje nominal de la bomba, que es de 2.8 amperios.

Al reemplazar el valor mayor del amperaje en la formula se obtiene:

$$ABP = 200 \% x (ANB) + ANM + AV + AS$$
 (1)

Reemplazando valores numéricos en la formula número (1):

$$ABP = 200 \% (2.8 A) + 1.9 A + 1 A + 0.4 A$$

$$ABP = 5.6A + 1.9 A + 1.4 A$$

De donde:

ABP = 8.9 A

El breaker principal da un valor de 8.9 amperios, lo cual significa que se tendría que instalar un breaker de 8.9 amperios de tres polos, ya que se trata de un circuito trifásico, pero en el mercado no existe breaker de 8.9 amperios, por lo tanto, se debe escoger el breaker apropiado más cercano, en el caso de los breakers siempre se escoge uno de mayor valor, esto es para la protección propia del elemento, de tal manera que se escogerá un breaker de 3 polos 10 amperios, el elemento puede ser de marca siemens ó Allen Bradley, ver tabla 5.1, de lo cual se tiene:

ABP = 10 A

Cálculo del amperaje para el breaker de la bomba de limpieza de botellas.

Para hacer el cálculo del amperaje del breaker de la bomba de limpieza de botellas, se hace el siguiente desarrollo:

Según el NEC (código eléctrico nacional), los elementos de protección, sean fusibles o breakers de múltiples polos, debe tener una carga limitada del 80 % de su capacidad, por lo tanto:

$$ANB = 80 \% x ABB$$
 (2)

Despejando ABB de la formula número (2) se tiene:

$$ABB = ANB / 80 \tag{3}$$

Reemplazando valores numéricos en la formula (3):

ABB = 2.8A / 80 %

De lo cual se obtiene:

ABB = 3.5 A.

El valor obtenido en la operación es de 3.5 amperios, como este valor no existe en el mercado se escoge un breaker de 3 polos 6 amperios para la protección del elemento. Además en la tabla 1, se observa que el fabricante recomienda, tanto de siemens como de Allen Bradley escoger el breaker de 3 polos 6 amperios de donde:

ABB = 6 A.

Cálculo del amperaje para el breaker del motor del transportador de

botellas.

Para el cálculo del amperaje del breaker del motor del transportador de

botellas, se utiliza la misma formula que se uso para el cálculo del

amperaje del breaker de la bomba de enjuague de envases así se tendrá

que:

ANM = 80 % x ABM (4)

Despejando ABM de la formula (4):

ABM = ANM / 80 % (5)

Reemplazando valores numéricos en la formula queda (5):

ABM = 1.9A / 80 %

De lo cual:

ABM = 2.375 A.

El valor obtenido en la operación es de 2.375 amperios, en vista de que

en el mercado no existe breaker de éste valor y buscando en la tabla 5.1,

se debe utilizar un breaker de 3 polos 6 amperios, dicho elemento puede

ser siemens o Allen Bradley.

ABM = 6 A.

Tabla indicativa para los breakers de protección.

Los valores de los amperajes nominales de los motores que están en la tabla que se presenta a continuación, son de acuerdo con el Código Eléctrico Nacional (NEC), éstos valores son indicativos, varían según el tipo de motor, # de polos y el fabricante.

En la tabla 5.1, se muestra una columna de valores calculados basándonos en formulas antes utilizadas, bajo el criterio que un breaker de protección soporta el 80% de su carga nominal, en la otra columna se muestra las protecciones recomendadas por el fabricante de siemens y Allen Bradley.

Potencia del motor	Amperaje nominal del motor	Breakers de protección 3 polos, otras marcas	Breakers de protección 3 polos siemens	Breakers de protección 3 polos Allen bradley	
(HP)	(A)	(A)	(A)	(A)	
0.5	2.0	6	6	6	
0.75	2.8	6	6	6	
1	3.6	6	6	6	
1.2	4.0	6	10	10	
1.5	5.2	10	10	10	
2	6.8	10	16	12	
3	9.6	16	20	16	
4	13.0	20	25	16	
5	15.2	20	32	20	
7.5	22.0	32	50	32	
10	28.0	50	50	40	
15	42.0	80	80	63	
20	54.0	80	100	80	
25	68.0	100	100	80	
30	80.0	100	160	100	
40	104.0	160	160	180	
50	130.0	250	250	220	
60	154.0	250	315	220	
75	192.0	250	315	300	
100	246.0	315	400	350	

Tabla. 5.1 BREAKER DE PROTECCIÓN PARA MOTORES DE 3 POLOS.

Cálculo del amperaje para el contactor de la bomba de enjuague de

botellas.

Para calcular el amperaje del contactor de la bomba de enjuague se

incrementa el valor del amperaje nominal en un 15% quedando el cálculo

de la siguiente manera:

ACB = 115 % x ANB (6)

Reemplazando valores numéricos en la formula (6)

ACB = 115 % x 2.8 A

De donde:

ACB = 3.22 A

El valor obtenido en el cálculo del amperaje para el contactor de la

bomba de enjuague, es de 3.22 amperios, llevando éste valor a la tabla

5.2 y comparándolo con los valores existentes en ella, se tiene que para

el caso del contactor de marca siemens el fabricante recomienda usar un

elemento de 7 amperios, si el contactor de la tabla 5.2 es de marca

telemecanique recomienda usar el de 9 amperios y si es de Allen Bradley

se debe usar un contactor de 9 amperios, la alimentación de la bobina

para cualquiera de los contactores que se escoja debe ser de 220 voltios

alternos, ya que todo el circuito de control tiene una alimentación a 220

voltios alternos.

Cálculo del amperaje para el contactor del motor del transportador

de botellas.

El amperaje para el contactor del motor del transportador de botellas, al

igual que en el caso del cálculo del amperaje del contactor de la bomba

de enjuague se obtiene aumentando al amperaje nominal un 15%

quedando:

ACM = 115 % x ANM (7)

Reemplazando valores numéricos en la formula número 7:

ACM = 115 % x 1.9 A

De donde:

ACM = 2.185 A

El cálculo para el amperaje del contactor del motor transportador de botellas es de 2.185 amperios, por lo que al compararlo con los valores de la tabla 5.2 recomienda que si el elemento es de marca siemens se usará un contactor de 7 amperios, si es el contactor telemecanique se recomienda según el fabricante usar uno de 7 amperios y para los elementos Allen Bradley se recomienda el uso de uno de 9 amperios.

Tabla indicativa para los amperajes correspondientes para los contactores

Los valores de los amperajes nominales de los motores que están en la tabla que se presenta a continuación, son de acuerdo con el Código Eléctrico Nacional (NEC), éstos valores son indicativos, varían según el tipo de motor, # de polos y el fabricante.

Para el caso de los contactores de marca telemecanique, la serie a usarse es LC1-D09......D150 incluyen 1 contacto auxiliar normalmente abierto (NO), y un contacto auxiliar normalmente cerrado (NC), las bobinas de control son a 110 voltios alternos y 220 alternos.

Para los contactores de marca Siemens, la serie a usarse es Sirius incluyen 1 contacto auxiliar normalmente abierto (NO), y un contacto

auxiliar normalmente cerrado (NC) sólo para el contactor de 7 amperios, y en los contactores a partir de 150 amperios hasta los contactores de 600 amperios, poseen 2 contactos normalmente abiertos y dos contactos normalmente cerrados, sus bobinas de control son a 110 voltios alternos y a220 voltios alternos.

Potencia del motor	Amperaje nominal del motor	Contactor (A)	Contactor (A)	Contactor (A)
				Allen
(HP)	(A)	Siemens	Telemecanique	Bradley
0.5	2.0	7	9	9
0.75	2.8	7	9	9
1	3.6	7	9	9
1.2	4.0	7	9	9
1.5	5.2	7	9	9
2	6.8	9	9	9
3	9.6	12	12	12
4	13.0	17	18	18
5	15.2	25	18	18
7.5	22.0	32	32	24
10	28.0	40	38	38
15	42.0	50	50	45
20	54.0	65	65	60
25	68.0	80	80	75
30	80.0	90	95	110
40	104.0	150	150	110
50	130.0	150	150	180
60	154.0	185	185	180
75	192.0	225	225	250
100	246.0	300	330	304

Tabla. 5.2 AMPERAJES DE CONTACTORES DE DIFERENTES FABRICANTES.

Cálculo de los amperajes para los relés térmicos:

Primero calculamos el amperaje que manejaran los reles térmicos, y en

base al amperaje se calcula el rango del rele bimetalico ó relé térmico

para luego compararlo con la tabla 5.3 se escoge el intervalo del

amperaje correspondiente:

Cálculo del amperaje del relé térmico para la bomba de enjuague de

botellas:

Para el cálculo del amperaje del relé térmico para la bomba de enjuague

se le incrementa un 25% al amperaje nominal de la bomba quedando la

formula de la siguiente manera:

AOLB = 125 % X ANB (8)

Reemplazando valores numéricos en la formula número (8):

AOLB = 125 % X 2.8 A

De lo cual se tiene:

AOLB = 3.5 A

El valor del amperaje para el relé térmico de la bomba de enjuague de envases no retornables es de 3.5 amperios; por lo que se escogerá el rango que contenga este valor, dependiendo de la marca del elemento, habrá pequeñas variaciones en el rango del amperaje entre uno y otro elemento de protección, en la tabla 5.3 se puede observar los rangos de los amperajes de los relés de diferentes marcas así se tiene que para el térmico del fabricante de siemens, el rango de trabajo que recomiendan es de 2.2 a 3.2 amperios; en el caso de los relés de marca telemecanique el rengo va desde 2.5 a 4.0 amperios; y por último para los relés Allen Bradley son de 2.8 a 4.2 amperios. El rango del amperaje calculado está por encima del rango que recomienda el fabricante de siemens, por lo que se recomienda usar el siguiente relé que es el de 2.8 a 4.0 amperios.

Cálculo del amperaje para el relé térmico para el motor del transportador de botellas:

Para calcular el amperaje del relé térmico para el motor del transportador de botellas, se utiliza la misma ecuación que se usó para el cálculo del relé de la bomba de enjuague así:

AOLM = 125 % X ANM (9)

Reemplazando valores numéricos en la formula número (9):

AOLM = 125 % X 1.9 A

De lo cual se obtiene

AOLM = 2.375 A.

El cálculo del amperaje para el relé bimetalico dio un valor de 2.375 amperios, por lo que se escogerá el rango del térmico en la tabla 5.3, para escoger el térmico si del fabricante Siemens el rango es de 1.4 a 2.0 amperios; si el relé es del fabricante Telemecanique será de un intervalo de 1.6 a 2.5 amperios, y si es marca Allen Bradley el fabricante recomienda usar el de 1.5 a 2.3 amperios pero al hacer los cálculos dio un valor de 2.375 amperios por lo que se escogerá uno de 2.0 a 3.0 amperios.

Tabla indicativa para rangos de amperaje para los relés de sobrecarga ó bimetálicos.

Los valores de los amperajes nominales de los motores que están en la tabla que se presenta a continuación, son de acuerdo con el Código Eléctrico Nacional (NEC), éstos valores son indicativos, varían según el tipo de motor, # de polos y el fabricante.

Potencia del motor	Amperaje nominal del motor	Siemens	Telemecanique	Allen Bradley
(HP)	(A)	(A)	(A)	(A)
0.5	2.0	1.4-2.0	1.6-2.5	1.5-2.3.
0.75	2.8	2.2-3.2	-	2.0-3.0
1	3.6	2.8-4.0	2.5-4.0	2.8-4.2
1.2	4.0	3.5-5.0	-	-
1.5	5.2	-	4.0-6.0	4.0-6.0
2	6.8	5.5-8.0	-	5.5-8.0
3	9.6	9.0-12.5	7.0-10.0	6.0-10.0
4	13.0	11.0-16.0	-	10.0-16.0
5	15.2	14.0-20.0	12.0-18.0	-
7.5	22.0	20.0-25.0	16.0-24.0	16.0-24.0
10	28.0	22.0-32.0	23.0-32.0	22.0-32.0
15	42.0	40.0-50.0	37.0-50.0	30.0-45.0
20	54.0	45.0-63.0	48.0-65.0	45.0-60.0
25	68.0	57.0-75.0	55.0-70.0	60.0-75.0
30	80.0	70.0-90.0	63.0-80.0	60.0-88.0
40	104.0	80.0-110.0	95.0-120.0	66.0-110.0
50	130.0	440.0.425.0	110.0-140.0	120.0-
50	130.0	110.0-135.0	110.0-140.0	180.0
60	154.0	135.0-160.0	132.0-220.0	120.0-
60	154.0	133.0-160.0	132.0-220.0	180.0
75	192.0	125.0-200.0	132.0-220.0	160.0-
13	132.0	123.0-200.0	132.0-220.0	240.0
100	246.0	160.0-250.0	200.0-330.0	240.0- 400.0

Tabla. 5.3 RANGOS PARA RELES DE SOBRECARGA Ó RELES BIMETÁLICOS DE DIFERENTES FABRICANTES.

Cálculo de los amperajes para los conductores:

Amperaje del conductor principal.

El amperaje del conductor principal se lo calcula: incrementando un 25 %

al amperaje nominal más la sumatoria del resto de los amperajes

consumidos en el sistema, donde el mayor valor del amperaje en el

sistema, es el amperaje nominal de la bomba de enjuague de botellas,

que es de 2.8 amperios.

Amperaje del conductor principal = 125 % x (amperaje mayor del

circuito) + suma del resto de los amperajes del sistema.

Al reemplazar el mayor valor del amperaje en la formula se obtiene:

AcP = 125 % x (ANB) + ANM + AV + AS (10)

Reemplazando valores numéricos en la formula número (10):

AcP = 125 % (4 A) + 1.9 A + 1 A + 0.4 A

AcP = 5A + 1.9 A + 1.4 A

De donde:

AcP = 8.3 A

El valor del amperaje para el conductor principal es de 8.3 amperios, con

este valor podemos escoger en la tabla 5.4 el tipo de conductor

adecuado, lo cual al compararlo entramos en el rango del cable TW

número 14 de cobre, de éste material por que es mejor conductor que el

de aluminio.

Calculo del amperaje para el neutro.

Para el cálculo del amperaje para el neutro se toma la misma capacidad

del breaker principal, por lo tanto corresponde a un conductor calibre #

14.

Cálculo del amperaje para el conductor que alimentará la bomba de

enjuague de botellas:

Para calcular el amperaje del conductor de la bomba de enjuague de

botellas se incrementa un 25% al amperaje nominal así quedará:

AcB = 125 % x ANB (11)

Reemplazando valores numéricos en la formula número (11):

AcB = 125 % x 4 A

De lo cual haciendo la operación matemática queda:

AcB = 5 A

El valor del amperaje para el conductor de la bomba de enjuague de

botellas es de 5 amperios, con este valor podemos escoger en la tabla 5.4

el tipo de conductor adecuado, lo cual al compararlo entramos en el rango

del cable TW número 16 de cobre, pero como se trata de un circuito

trifásico más el neutro se usará el conductor AWG 4x16, 4 hilos blindado.

Cálculo del amperaje para el conductor que alimentará el motor del

transportador de botellas:

Para calcular el amperaje del conductor del motor transportador de

botellas, se utiliza la misma formula que se usó para calcular el amperaje

del conductor de la bomba de enjuague de botellas, de ésta manera se

tiene lo siguiente:

AcM = 125 % x ANM (12)

Reemplazando valores numéricos en la formula número (12):

AcM = 115 % x 1.9 A

Realizando la operación se obtiene:

AcM = 2.185 A

El valor del amperaje para el conductor de la bomba de enjuague de botellas es de 2.185 amperios, con este valor podemos escoger en la tabla 5.4 el tipo de conductor adecuado, lo cual al compararlo entramos en el rango del cable TW número 16 de cobre, como son tres fases más el neutro entonces tendremos conductor AWG 4x16,

Tabla indicativa de la capacidad máxima de los conductores aislados.

Los valores indicados en la tabla 5.4, representan la capacidad máxima de conductores aislados de 0 a 2000 voltios, y basados en una temperatura de 30 grados centígrados, (86 grados Farenheit).

Para temperaturas sobre 30 grados centígrados (°C), se multiplica las ampacidades indicadas en la tabla 5.4 por el factor de corrección, para determinar la máxima corriente permisible.

La capacidad de carga y la protección de sobre corriente para éstos conductores no debe exceder 15 amperios, para el 14 AWG, 20 amperios para el 12 AWG, y 30 amperios para 10 AWG, de cobre; ó 15 amperios para el 12 AWG y 25 amperios para el 10 AWG de aluminio ó aluminio cobrizado.

Calibre del	Capacidad máxima de conductores aislados 0 – 2000 voltios, basados a una temperatura ambiente de 30 grados centígrados.							
conduc	Tipos de conductores							
tor	Cobre			Aluminio ó aluminio cobrizado				
AWG MCM	RUW, T, TW, UF	FEPW, RH, RHW, RUH, THW, THWN, XHHW, USE, ZW	V, MI	TA, TBS, SA, AVB, SIS, TFEP, TFEPB, TRHH, TTHHN, TXHHW	RUW, T, TW, UF	RH, RHW, RUH, THW, THWN, XHHW, USE.	V, MI	TA, TBS, SA, AVB, SIS, TRHH, TTHHN, TXHHW
18 16 14 12 10 8	15 20 30 40	15 20 30 45	22 25 30 40 50	21 22 25 30 40 50	15 25 30	15 25 40	25 30 40	25 30 40
6 4 3 2	55 70 80 95 110	65 85 100 115 130	70 90 105 120 140	70 90 105 120 140	40 55 65 75 85	50 65 75 90 100	55 70 80 95 110	55 70 80 95 110
0 00 000 0000 250	125 145 165 195 215	150 175 200 230 255	155 185 210 235 270	155 185 210 235 270	100 115 130 155 170	120 135 155 180 205	125 145 165 185 215	125 145 165 185 215
300 350 400 500	240 260 280 320 355	285 310 335 380 420	300 325 360 405 455	300 325 360 405 455	190 210 225 260 285	230 250 270 310 340	240 260 290 330 370	240 260 290 330 370
700 750 800 900	385 400 410 435	460 475 490 520	490 500 515 555	490 500 515 555	310 320 330 355	375 385 395 425	395 405 415 455	395 405 415 455
1000 1250 1500 1750 2000	455 495 520 545 560	545 590 625 650 665	585 645 700 735 775	585 645 700 735 775	375 405 435 455 470	445 485 520 545 560	480 530 580 615 650	480 530 580 615 650
			Factor	es de corr	ección			
Temper atura ambien te °C	Para temperaturas sobre 30°C, multiplicar las ampacidades indicadas arriba por el factor de corrección para determinar la máxima corriente permisible.							
30 – 40	0.82	0.85	0.90	0.91	0.82	0.88	0.90	0.91
41 – 50	0.58	0.75	0.80	0.82	0.58	0.75	0.80	0.82
51 – 60		0.58	0.67	0.71		0.58	0.67	0.71
61 – 70		0.35	0.52	0.58		0.35	0.52	0.58
71 - 80			0.30	0.41			0.30	0.41

Tabla. 5.4 CAPACIDAD MÁXIMA DE CONDUCTORES AISLADOS.

Programador lógico de control (PLC).

El programador a escoger tiene que ser de fácil manejo, y ser Standard para todos los equipos de la línea de producción que posean programadores, para efecto de repuestos en stock, revisando los que las máquinas posen en su control, se observa que los elementos son de fabricante telemecanique.

Como los PLC de los otros equipos son telemecanique y además son de fácil manejo, se escoge para la enjuagadora de botellas uno de similares características.

Sensores de proximidad.

Se escogen dos sensores de proximidad, deben ser bastante sensibles porque los envases a embotellarse son transparentes.

Estos sensores son validos para botellas de material pet, polipropileno, e incluso para las botellas de colores, azul, verde, etc.

Cálculo de la tubería EMT que llevará el conductor de alimentación al tablero eléctrico de la enjuagadora de botellas.

En la tabla 5.5, se muestra el número máximo de conductores aislados en una tubería EMT. Se tienen tuberías desde ½ pulg. de material EMT hasta las tuberías de 6 pulgadas de diámetro.

Tamaño del conductor	Número máximo de conductores en tubería												
AWG MCM	Tuberías dadas en pulgadas												
	1/2	3/4	1	1 1/4	1 1/2	2	2 1/2	3	3 1/2	4	5	6	
18	7	12	20	35	49	80	115	176					
16	6	10	17	30	41	68	98	150					
14	4	6	10	18	25	41	58	90	121	155			
12	3	5	8	15	24	34	50	76	101	132	208		
10	1	4	7	13	17	29	41	64	86	110	173		
8	1	3	4	7	10	17	25	38	52	67	105	152	
6	1	1	3	4	6	10	15	23	32	41	64	93	
4	1	1	1	3	5	8	12	18	24	31	49	72	
3		1	1	3	4	7	10	16	21	28	44	63	
2		1	1	3	3	6	9	14	19	24	38	55	
1		1	1	1	3	4	7	10	14	18	29	42	
0			1	1	2	4	6	9	12	16	25	37	
00			1	1	1	3	5	8	11	14	22	32	
000			1	1	1	3	4	7	9	12	19	27	
0000				1	1	2	3	6	8	10	16	23	
250				1	1	1	3	5	6	8	13	19	
300				1	1	1	3	4	5	7	11	16	
350				1	1	1	1	3	5	6	10	15	
400					1	1	1	3	4	6	9	13	
500					1	1	1	4	4	5	8	11	
600						1	1	1	3	4	6	9	
700						1	1	1	3	3	6	8	
750						1	1	1	3	3	5	8	
800						1	1	1	3	3	5	7	
900						1	1	1	1	3	4	7	
1000						1	1	1	1	3	4	6	
1250							1	1	1	1	3	5	
1500								1	1	1	3	4	
1750								1	1	1	2	4	
2000								1	1	1	1	3	

Tabla. 5.5 NÚMERO MÁXIMO DE CONDUCTORES AISLADOS EN UNA TUBERÍA EMT.

El conductor para la alimentación principal del tablero de la enjuagadora es concéntrico flexible Nº 4x14 AWG, esto es 4 conductores de calibre # 14 cada uno, al ir con éste dato a la tabla 5.5 caemos en el rango de una tubería de ½ pulg. pero como usaremos cable concéntrico ó blindado se debe usar una tubería mayor, que es la que sigue en la tabla 5.5 que corresponde a la tubería de ¾ pulg.

Conectores EMT.

Los conectores que se usarán serán de ¾ pulg. EMT, uno se utilizará para conectar la tubería (E) de ¾ pulg. EMT al electrocanal principal (A) y el otro es para conectar la tubería (E) a la caja de paso. Por lo tanto se usarán 2 conectores de ¾ pulg. EMT. Ver FIG. 5.1

Uniones.

La tubería se extenderá por más de 3 m. por lo que será necesario hacer empates en dos puntos, de lo cual se usarán 2 uniones de ¾ pulg. EMT. Ver FIG. 5.1

Caja de paso.

Se utilizará una caja de paso de 20cm. x 20cm. x 10cm. para la colocación

de un toma sobrepuesto, para conectarse desde ahí por medio de una clavija macho hacia el tablero, de tal manera que cuando sea necesario se podrá trasladar con facilidad a otro lado el equipo.

Alimentación para la bomba de enjuague de botellas.

Para hacer la conexión eléctrica de la bomba es necesario colocar en los extremos del conductor, terminales tipo ojo para cable # 14, son 3 terminales para las fases y uno para el neutro. Para sujetar el conductor a la caja de la bomba se usará un conector romex de ½ pulg.

El recorrido del conductor para la alimentación de la bomba, desde el tablero es de 3 m. En conclusión el conductor será de 3 m. de calibre 4 x 16 flexible.

Alimentación para el transportador de botellas.

Para hacer la conexión eléctrica del motor del transportador de botellas es necesario colocar en los extremos del conductor, terminales tipo ojo

para cable # 14, son 3 terminales para las fases y uno para el neutro.

Para sujetar el conductor a la caja del motor del transportador se usará un

conector romex de ½ pulg.

El recorrido del conductor para la alimentación del motor del transportador de botellas, desde el tablero es de 5 m. En conclusión el conductor será de 5 metros de calibre 4 x 16 flexible.

Alimentación para los sensores de proximidad.

Para hacer la conexión eléctrica de la bomba es necesario colocar en los extremos del conductor, terminales tipo ojo para cable # 14, son 3 terminales para las fases y uno para el neutro. Para sujetar el conductor a la caja de la bomba se usará un conector romex de ½ pulg.

El recorrido del conductor para la alimentación de la bomba, desde el tablero es de 3 m. En conclusión el conductor será de 3 m. de calibre 4 x 16 flexible.

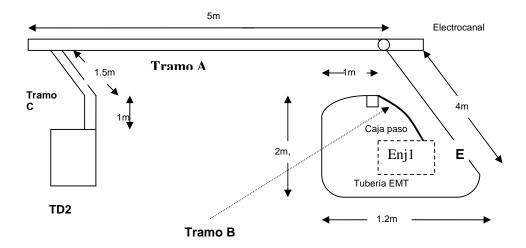


FIG. 5.1 DIAGRAMA DE RECORRIDO DEL CONDUCTOR PRINCIPAL

DE ALIMENTACIÓN DEL TABLERO DE LA ENJUAGADORA DE

BOTELLAS

Longitud del conductor principal.

Según la FIG. 5.1, el conductor para la alimentación principal del tablero de la enjuagadora de botellas, saldrá desde el tablero TD2 recorriendo por el electrocanal C, el electrocanal A, por la tubería E, llega a la caja de paso empatándose con un toma corriente trifásico, luego se conecta con un enchufe tipo clavija trifásico conectado con un tramo de conductor B

167

de 4 m. de largo hasta llegar al tablero Enj 1, por lo tanto el conductor

principal se lo obtiene de la siguiente manera:

Conductor principal = tramo A + tramo B + tramo C +tramo E

Conductor principal = 5m + 4m + 2.5m + 16m

Conductor principal = 27.5m

En conclusión el conductor principal será de calibre # 14, como es de 3

fases y el neutro será un conductor 4x14 y su largo redondeándolo medirá

28 metros de largo, por seguridad dejamos 30 m. para que el conductor

quede holgado.

Alimentación de los sensores de proximidad.

La distancia que existe desde el tablero de la máquina hasta el sensor de

entrada es de 3 metros, y la distancia del sensor de salida hasta el tablero

es de 6 metros, el consumo de cada sensor es de 0.2 amperios, se usará

un conductor # 16, en conclusión se usará 9 m. de conductor flexible

AWG 4x16, 4 conductores porque son 2 de alimentación y 2 para el

contacto normalmente abierto, se dejarán 10 m. para que quede holgado.

Alimentación de las válvulas solenoides.

El amperaje de las válvulas solenoides es de 0.25 cada una, por lo que usará el conductor # 18, y la distancia que existe desde el tablero hasta las 4 válvulas solenoides es de 3 metros, entonces como existen 4 válvulas se necesitan 18 metros de conductor.

Conductor de la válvulas solenoides = 4 x 3 m. (cada válvula) + 3m. del neutro + 3 m. para el común

Conductor de las válvulas solenoides = 18 m.

Conductor para cableado de circuito de control

Los amperajes manejados en controles de máquinas son bajos, por lo que se usan normalmente en la práctica cable flexible AWG calibre 18, por lo que se comprará un rollo de conductor flexible # 18.

Fusibles de control.

Los fusibles de control son tipo cilíndrico, que van colocados en una cápsula de portafusibles, el fusible de control se lo toma de 6 amperios es el valor escogido en la práctica, ya que en circuitería de control son bajos

los amperajes, se usarán fusibles para 2 polos ya que el control es de 220 voltios alternos.

Paro de emergencia.

El paro de emergencia que se usará es de tipo hongo con resistencia de seguridad, en parada de emergencia, tendrá 22 mm. de diámetro, dato estándar de fabricación, posee un contacto normalmente cerrado.

Selectores.

Se necesitan 1 selector de 3 posiciones de 22 mm para operación del equipo en manual o automático y 5 selectores de 2 posiciones también de 22 mm de diámetro para el resto de operaciones.

Luz piloto

La luz piloto que se necesita es de 22 mm de diámetro, color verde que indique la energización del tablero de control, en su interior llevará una bombilla de 220 voltios alternos.

Riel.

El riel se utilizará para la colocación de los elementos de fuerza y de control, se necesitará 1 metro de riel de aluminio de 35 mm de ancho.

Canaleta

Se necesitarán 2 metros de canaleta ranurada de 25mm x 25mm, para conducir los conductores dentro del tablero.

Borneras

Las borneras que se usaran son para usarlas sobrepuestas en la riel, serán dos docenas de borneras de un polo 20 amperios para conductor # 12

Marquillas ó anillos plásticos.

Son marcadores para conductores, se necesitan del 0-9, 1 paquete de cada uno.

Amarras plásticas

Se necesitará un paquete de amarras plásticas de 15 cm. de largo para el ordenamiento de los conductores.

Cinta aislante

1 cinta aislante 3M para el empate de los conductores.

Grapas EMT

A la tubería se la agarrará con grapas de ¾ pulg. de EMT, se necesitarán 6 grapas.

Tablero eléctrico

Según el tamaño de los elementos que se van a usar, el tablero eléctrico debe ser de 60 cm. de largo, 40 cm. de ancho y 20 cm. de profundidad.

Lista de materiales eléctricos.

A continuación el resumen de la lista de materiales eléctricos, que se emplearan para el hacer el cableado del tablero de control para la enjuagadora de botellas no retornables.

- 1 breaker de tres polos 10 amperios, 400 voltios para montaje sobre riel
- 2. 2 breakers de tres polos 6 amperios, 240 voltios para montaje sobre riel.
- 1 tablero de 60 cm. de alto por 40 cm. de ancho y 20 cm. de profundidad.
- **4.** 1 programador lógico de control, mini PLC SR1 A201FU a 220 voltios alternos con 12 entradas y 8 salidas, sin reloj marca telemecanique.
- 2 contactores de 9 amperios con bobina a 220 voltios alternos, telemecanique.
- **6.** 1 Rele térmico con margen de ajuste de 2.5 4.0 para D09......D38 telemecanique.
- 7. 1 Rele térmico con margen de ajuste de 1.6 2.5 para D09.....D38 telemecanique.
- 8. 1 juego de 4 válvulas senoides montadas en un solo bloque de 4.

- 9. 2 sensores fotoeléctricos reflectivos con 1 contacto normalmente cerrado y 1 contacto normalmente abierto de 12-49 voltios DC, con alimentación a 220 voltios alternos.
- **10.** 2 espejos reflectores de 50 mm telemecanique.
- **11.**1 pulsador tipo hongo rojo con retención para girar, 1 contacto normalmente cerrado.
- 12. 1 selector de 2 posiciones de 22 mm.
- 13.5 selector de 3 posiciones de 22 mm.
- 14. 2 seccionadores para fusibles cilíndricos 10x38 1 polo.
- **15.** 2 fusibles cilíndricos 10x38 de 6 amperios.
- 16. 1 luz piloto verde de 22 mm.
- 17. 1 foco incandescente tipo bayoneta a 220 voltios alternos.
- **18.** 24 borneras de 1 polo 20 amperios # 12
- 19. 2 tapas para borneras.
- **20.** 2 topes para borneras.
- **21.**1 juego de anillos plásticos de 0 9 para identificación de conductores.
- 22. 100 amarras plásticas de 15 cm. x 3mm.
- 23. 1 canaleta ranurada de 25mm por 25mm.
- 24.1 riel de 35 mm de aluminio.
- **25.** 2 conectores para cable blindado de ½ pulg.

- **26.** 2 conectores EMT de ¾ de pulg.
- 27.3 tubos de tres metros de largo EMT ¾ de pulg.
- 28. 2 uniones EMT de ¾ pulg.
- **29.** 1 caja de paso de 20 x 20 x 10 cm.
- **30.** 6 grapas para agarrar tubería de ¾ pulg.
- 31.30 metros de cable flexible AWG de 4 X 14.
- 32. 10 metros de cable flexible AWG de 4 X 16.
- 33.1 rollo de cable flexible AWG #18.
- **34.** 1 rollo de cinta aislante 3M.
- **35.** 1 caja de tornillos tripa de pato de 5/32 pulg. x ½ pulg.

5.1 Implementación

Implementación del tablero eléctrico.

Una vez que se tiene todos los elementos eléctricos, se procede a la colocación de los componentes de control en el tablero, ya posicionados los elementos se empieza a tejer el cableado de fuerza, luego el cableado de control correspondiente según DIAG. 4.10, del capitulo 4

Cuando ya se ha concluido el cableado de fuerza y control en el tablero de la máquina enjuagadora de botellas, se procede a colocarlo en la parte superior izquierda del equipo, donde existe una platina de acero inoxidable de 40 cm. X 20 cm. para el montaje del mismo, ver FIG. 5.2, la platina posee un orificio de 2 pulgadas de diámetro en el centro por donde se pasan todos los conductores para las conexiones de los elementos periféricos como son: la bomba de enjuague, el motor de la transportación de botellas, las válvulas solenoides, los sensores de proximidad y la alimentación principal del tablero.

TABLERO DE CONTROL

PLATINA de 40 cm. x 20 cm.

FIG. 5.2 INSTALACIÓN DEL TABLERO ELECTRICO DE LA ENJUAGADORA DE BOTELLAS.

En la parte inferior del equipo se instala el bloque de las 4 válvulas Solenoides. Ver FIG. 5.3.



FIG. 5.3 INSTALACIÓN DEL BLOQUE DE VÁLVULAS.

En la entrada del equipo se instala un sensor de proximidad, y en la salida el otro sensor. Ver FIG. 5.4.

FIG. 5.4 INSTALACIÓN DEL SENSOR DE ENTRADA Y SENSOR DE SALIDA, CON SUS RESPECTIVO ESPEJOS REFLECTIVOS.

Luego se van conectando las salidas desde el tablero hasta los sensores de proximidad, válvulas solenoides, motor del transportador, bomba de enjuague y alimentación principal del tablero. Ver FIG. 5.2, para la ilustración de la instalación del tablero eléctrico.

Se perfora el electrocanal principal (A), con orificio de ¾ pulg. para la conexión de la tubería de ¾ pulg. EMT, se doblan los tubos de ¾ pulg. con una dobladora, para las partes que hay que doblar el conductor a 90 grados (donde hay curvas), a medida que se va colocando la tubería se va pasando por dentro de ella el conductor de alimentación principal, el cual inicia desde el tablero principal de la sala de llenado TD2, pasa por el electrocanal A, por la tubería de ¾ pulg. E, hasta llegar a la caja de paso colocada en la pared, y desde allí hasta el tablero de la enjuagadora Enj. 1 por medio la toma corriente empatada con la clavija, y la clavija empatada con el conductor principal de alimentación. Ver FIG. 5.5.

FIG. 5.5a. TRAMO A, TRAMO C

FIG. 5.5b. TRAMO A, CONECTADO A LA TUBERIA E

FIG. 5.5c. TUBERIA E CONECTADO A CAJA DE PASO, Y CONECTADO A CLAVIJA QUE VA A TABLERO PRINCIPAL DE ALIMENTACIÓN.

FIG. 5.5 d. TRAMO B

FIG. 5.5c. RECORRIDO DE LA ALIMENTACIÓN PRINCIPAL AL TABLERO

DE LA ENJUAGADORA DE ENVASES.

Finalmente se ordena el cableado agrupándolas con las amarras plásticas, de la forma mas ordenada posible.

CAPITULO 6

6. MANUAL DE OPERACIONES Y MANTENIMIENTO DEL EQUIPO.

6.1 Arranque y calibraciones del equipo.

Una vez que ya se ha terminado de construir el equipo, se hacen los siguientes ajustes para el arranque:

 Se regula presión de aire comprimido a la entrada de la máquina a un valor de 50-60 psi.

- Se ajustan todos los terminales donde llegan los conductores tanto de fuerza como de control.
- Se revisa que halla continuidad en todo el circuito de control y fuerza del tablero de la enjuagadora de botellas, siguiendo el diagrama de control viendo DIAG. 4.10 del capitulo 4.
- Se energiza la entrada de voltaje al breaker principal.
- En la entrada del breaker principal se mide si existen las tres fases de fuerza, 220 voltios alternos entre fase y fase y 110 entre cada fase y neutro.
- Se verifica entrada y salida de tensión en los fusibles de control.
- Se prueban todos los pasos del proceso manualmente con la siguiente secuencia:
- Colocando el selector número SW1 de arranque en posición de

Manual:

- Se activa manualmente con el selector SW3 la válvula que comanda tope de salida de envases, después de unos segundos se lo desenergiza otra vez.
- Se enciende manualmente con el selector SW2 el transportador de botellas, después de probar que no hay ningún problema en el recorrido de la cadena se lo apaga.

- Manualmente con el selector SW 4 se activa válvula que maneja los pistones que comandan a la mordaza, se la apaga al cabo de unos segundos.
- Con el selector SW5 se activa la válvula que maneja el giro de la mordaza, se la apaga después de haber hecho varias veces el giro.
- Se enciende manualmente con el selector SW6 bomba de enjuague de botellas (colocando agua previamente en el tanque reservorio de agua), se colocan diferentes tamaños de envase para ver eficiencia de enjuague, se apaga la bomba.
- Prueba de los sensores de proximidad.
- Se pasan varias veces envases de diferentes alturas y colores para ver el comportamiento del sensor.

Arranque en forma automática del equipo:

- Se coloca el selector de arranque SW! en posición automática:
- Se empieza a colocar botellas en el transportador, las cuales entran de una en una mientras el sensor las va detectando, al mismo tiempo se va observando las señalizaciones que aparecen en el programador lógico de control (PLC).
- Cuando ya ingresaron los 12 envases se observa en el plc, el encendido de la válvula del tope de entrada. Y así se va observando en la pantalla del programador toda la secuencia hasta terminar el ciclo.

6.2 Teoría de operación

La operación de la enjuagadora de botellas no retornables, está basada en esterilizar el envase, sacando el polvo ó cualquier elemento extraño existente dentro de ella. El enjuague de la botella es producido por una bomba centrífuga que envía agua a presión por medio de boquillas de limpieza, en el cual el agua llega hasta el fondo de las botellas, removiendo cualquier impureza que se encuentre dentro de ella.

6.3 Especificaciones técnicas.

Las especificaciones del sistema se detallan a continuación:

Construcción:
 Acero inoxidable

Operación:
 Automática

• Tamaño del envase : 250ml-2000ml

• Cantidad de botellas: 12 botellas por ciclo

• Velocidad de enjuague: 2400 botellas por hora promedio.

• Tiempo de enjuague por ciclo:6 segundos

Enjuague: Agua purificada ozonizada

• Bomba: Centrífuga de ¾ HP

6.4 Requerimientos

• Electricidad: 220 voltios alternos, 3 fases, 60 Hz.

• Agua: Se recomienda agua purificada.

• Aire: Aire comprimido, mínimo 50 psi.

6.5 Identificación de componentes.

- 1. Caja de control.
- **2.** Switch de operación manual automático.
- 3. Parada de emergencia.
- 4. Bloque de válvulas solenoides
- **5.** Bomba de enjuague.
- 6. Tanque reservorio de agua purificada ozonizada.
- 7. Boquillas de limpieza.
- 8. Entrada de agua.
- 9. Drenaje de agua.
- 10. Mordaza.

- 11. Unidad de mantenimiento de aire comprimido.
- **12.** Pistón de giro.
- **13.** Pistones de mordaza.
- 14. Pistón de tope de entrada.
- **15.** Pistón de tope de salida.
- 16. Cortina de protección.
- **17.** Motor del transportador de botellas.
- **18.** Sensores de proximidad.
- **19.** Transportador de botellas table top.
- **20.** Entrada de aire.
- **21.** Espejos reflectivos.

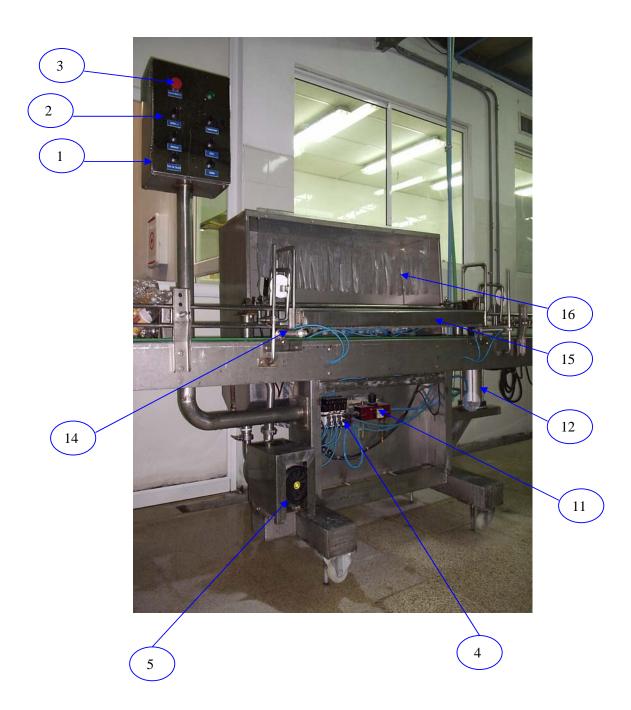
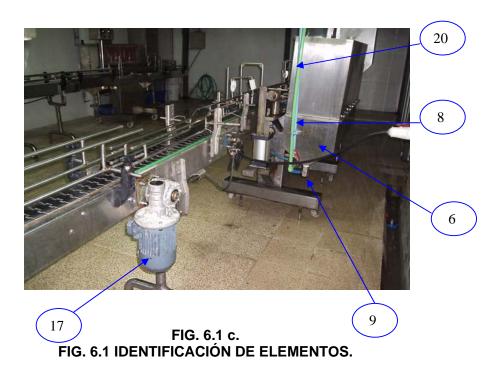



FIG. 6.1 a.

FIG. 6.1 b.

6.6 Mantenimiento.

La enjuagadora de envases no retornables es una máquina que está calibrada, y ajustada para una eficiencia máxima y vida útil larga.

Con simple mantenimiento y una apropiada condición de operación, tendrá la unidad funcionando de acuerdo a las especificaciones técnicas requeridas.

Cualquier modificación ó ajuste interno en el equipo, podría causar en la unidad funciones fuera de las especificaciones técnicas, ó podría causar daños en la máquina.

6.7 Frecuencia de mantenimiento.

Al inicio de la instalación es necesario después de 24 horas de trabajo, dar un ajuste a todos los terminales del cableado eléctrico.

El equipo de control industrial debe inspeccionarse periódicamente, los intervalos de inspección deben basarse en las condiciones ambientales, y de operación y ajustarse según lo que la experiencia indique.

Se sugiere una inspección inicial a los 3 ó 4 meses después de la instalación. Es necesario establecer pautas generales para establecer un programa de mantenimiento periódico.

A continuación se indican algunas pautas específicas para los elementos de control:

- Si la inspección revela que el equipo de control tiene polvo, suciedad, humedad u otro tipo de contaminación, la causa debe eliminarse.
- Los dispositivos de control sucios, húmedos, o contaminados deben ser reemplazados, a menos que puedan limpiarse efectivamente mediante la aspiración o con un trapo. No se recomienda usar aire comprimido para limpiar porque éste puede desplazar la suciedad, el polvo o materiales residuales a otras partes o equipos, o dañar piezas delicadas.
- Haga una revisión para verificar el funcionamiento correcto del equipo, y que no haya adhesiones ni atascos. Se debe reemplazar

las piezas o conjuntos rotos, deformados o desgastados, ver lista de partes para cambiar los elementos.

- Revise y apriete los terminales de todos los elementos, ya que a veces existen vibraciones que hacen que los conductores se aflojen y produzcan recalentamientos en los terminales de los elementos y pueden provocar falsas señales de control.
- Las conexiones flojas en los circuitos eléctricos pueden causar un sobrecalentamiento que puede ocasionar el mal funcionamiento o fallo del equipo. Las conexiones flojas en los circuitos de control pueden causar el mal funcionamiento de los controles.
- Las uniones o conexiones a tierra flojas pueden aumentar los riesgos de choque eléctrico y contribuir a las interferencias electromagnéticas, reemplace las piezas o cableado dañados por el sobrecalentamiento y las tiras de unión o cables rotos.
- Revise los contactos para determinar si tienen desgaste excesivo o acumulación de suciedad. Aspire o limpie los contactos con un trapo suave si fuera necesario para retirar la suciedad. Los

contactos no sufren danos por decoloración o picaduras pequeñas.

Los contactos jamás deben ser limados ya que esto solo acorta la vida del contacto. Los contactos deben reemplazarse solo después que la plata esté excesivamente gastada.

- Si las bobinas de los contactores muestran signos de sobrecalentamiento, aislamiento rajado, fundido, o quemado, verifique y corrija las condiciones de sobrevoltaje o bajo voltaje, las cuales pueden causar el fallo de las bobinas.
- Si las luces piloto están quemadas reemplace las bombillas.
- Los sensores requieren limpieza periódica con un trapo suave y seco.
- No use solventes ni agentes de limpieza en los sensores, reemplácelos si están defectuosos o dañados.
- Después del mantenimiento o reparación de los controles industriales, siempre pruebe el sistema de control para asegurar un

funcionamiento correcto bajo condiciones controladas, para evitar peligros en el caso de un mal funcionamiento del control.

6.8 Guía de solución de problemas.

Los problemas deben ser resueltos por personal eléctrico calificado, de acuerdo a las prácticas de seguridad establecidas.

A continuación se presenta en la tabla 6.1, de la página 189, los problemas más comunes que se presentan en la práctica:

Problema	Posible causa	Solución			
Unidad no enciende	La unidad no está energizada ó falta alguna fase.				
	Switch de arranque en mal estado.	Revise ó reemplace			
	Fusible dañado.	Remplace			
Unidad vuela los fusibles	Corto circuito.	Visualice e inspeccione la unidad, chequee cables de control y borneras.			
	El fusible instalado no es el adecuado.	Revise en el listado de material eléctrico el fusible adecuado.			
Transportador no prende	Térmico disparado	Verificar estado del motor repare ó reemplace			
Bomba no prende	Térmico disparado	Verificar estado de la bomba, repare ó remplace			
No sensa los envases	El sensor está mal calibrado	Alinearlo a la altura del cuello de la botella.			
	El sensor está sucio	Limpiar con paño suave.			
Programador no corre secuencia	Programador está en stop	Cambiar programador a run.			

Tabla. 6.1 GUÍA DE SOLUCIONES.

CAPITULO 7

7. COSTOS

Análisis de costos.

Costo del equipo diseñado localmente.

El costo total de la parte mecánica del equipo es de 6000 dólares incluida la mano de obra.

El costo de la parte eléctrica es de 2500 dólares incluida la mano de 0bra. El costo total de la máquina es:

Costo total = costo parte mecánica + costo parte eléctrica

Costo total = 6000 dólares + 2500 dólares

Costo total = 8500 dólares.

Analizando los costos se tiene que:

%parte eléctrica = (2500 dólares x 100%)/8500

% parte eléctrica = 29.4 % del costo total de la obra

% parte eléctrica = 41.6 % del costo de la parte mecánica

Costo del equipo importado.

El costo de una máquina importada es de 30000 dólares incluida la importación.

Análisis comparativo.

Comparando los resultados, se demuestra que existe un ahorro significativo al construir una máquina localmente, descartando la posibilidad de pagar 3.52 veces el valor del equipo, y sobre todo la demora con la importación. Estos últimos son puntos a favor para la fomentación en el área de la construcción de maquinarias nacionales.

CONCLUSIONES Y RECOMENDACIONES.

Conclusiones.

- Los conocimientos obtenidos en la "ESCUELA SUPERIOR POLITECNICA DEL LITORAL", me han permitido realizar este tipo de proyectos.
- En el país existe personal para hacer este tipo de equipo, mano de obra calificada.
- 3. Desarrollando este proyecto se evita fugas de divisas en el país.
- **4.** El costo de la parte eléctrica representa el 29.4 % del costo total de la obra y representa el 41.6 % del costo de la parte mecánica.

- Es mucho más económico fabricar máquinas dentro del país que importarlas.
- **6.** Los tiempos entre construir e importar son aproximadamente iguales.
- 7. La garantía sobre el equipo es más viable, por cuanto el fabricante se encuentra en el país, y puede realizar las modificaciones y cambio de repuestos inmediatos, y por supuesto el servicio es más inmediato.
- **8.** El equipo es adaptable a distintos tamaños y tipos de envases, con las intervenciones mínimas del operador.

Recomendaciones.

- Se recomienda que se incentive la construcción de estos equipos, ya que existe la demanda para este tipo de equipos.
- 2. Se puede mejorar el sistema de renovación del agua de enjuague de los envases, colocando un sensor de nivel para que envíe una señal a una válvula solenoide que permita el paso de agua nueva; y el agua que se va utilizando salga por rebose, de ésta manera se mejora sistema de limpieza.
- 3. En caso de que las empresas requieran altas velocidades de producción, se recomienda el uso de máquinas lineales en paralelo, o utilizar máquinas enjuagadoras de botellas automáticas rotativas.

BIBLIOGRAFÍA

- 1. ALLEN BRADLEY, Catálogo de controles eléctricos.
- 2. ELAINE KITCHEL, Enciclopedia medica "Dermatology online journiel (luz ultravioleta y proceso de ozono).
- 3. NEC, Código Eléctrico Nacional.
- 4. OZOTECH Inc, Designed and Manufactured.
- 5. BERCHI GROUP PRODUCT, Enjuagadoras.
- 6. PEPSICO (PEPSI-COLA), Manual de control de calidadtratamiento de agua.

7. SIEMENS, Catálogo de productos eléctricos industriales.

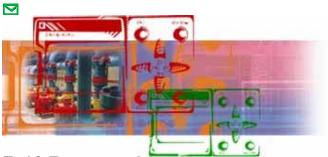
- 8. TELEMECANIQUE, design and programming of control system.
- 9. TROPICAL, Manual de control de calidad-tratamiento de agua.

APENDICE A

PROGRAMADOR LOGICO DE CONTROL

Telemecanique Zelio-Logic Smart Relay

Home Descripción


Aplicaciones

Novedades

Download Soporte Técnico

Presentación | Hardware | Software

Relé Programable hacia **la sencillez Zello, el paso** lógico

- >>Descripción [Hardware]
- >>Descripción [Software]
 >>Aplicaciones
- >>Area de Download
- >>Descripción [Presentación]

Funciones | Ergonomía | Gama

Zelio Software | Demos

Zelio-Soft Más en software menos en costes

Modos de introducción de los esquemas de control

- El modo de "introducción Zelio" permite al usuario, que ha realizado la programación directamente en el producto Zelio-Logic, encontrar la misma ergonomía en la primera utilización del software.
- El modo de "introducción libre", más sencillo e intuitivo, proporciona al usuario una comodidad de utilización inigualable y multitud de funciones adicionales. En efecto, Zelio-Soft, utilizado en el modo de "introducción libre", permite adaptarse al lenguaje del usuario ofreciendo 3 tipos de utilización:
 - símbolos Zelio
 - símbolos de Contactos
 - símbolos Eléctricos.

La "introducción libre" permite asimismo crear mnemónicos y comentarios asociados a cada línea de programa.

• Es posible pasar de un tipo o modo de introducción a otro en cualquier momento, simplemente haciendo clic con el ratón.

Prueba de coherencia e idiomas de aplicación

- Zelio-Soft supervisa de forma visible la aplicación gracias a la prueba de coherencia. Supone un ahorro de tiempo considerable, ya que desde el momento en el que se produce el mínimo error de introducción, pasa al color rojo. Basta con hacer clic sobre para localizar exactamente el problema.
- Zelio-Soft es un producto internacional. No sólo permite pasar en cualquier momento a cualquiera de los 6 idiomas de aplicación (inglés, francés, alemán, español, italiano y portugés), sino que además permite editar el informe de aplicación en dicho idioma. Zelio-Soft permite escoger el modo de representación (Zelio, Contactos o Eléctrico) para editar el informe.

Introducción de los mensajes visualizados en Zelio Logic

• Zelio-Soft permite configurar 4 bloques de funciones Texto, correspondientes a 4 pantallas de 4 líneas. 12 caracteres, visualizables sobre todos los módulos lógicos. Estas pantallas también se activan simplemente con una bobina en un esquema de mando. En tal caso, es posible visualizar solamente mensajes en texto o asociarlos a 1 o 2 variables. Estas últimas son valores normales y/o de ajuste de bloques de funciones utilizadas en el programa.

■ ¿Reducir los costes de puesta a punto?

- Es posible con Zelio-Soft. Gracias al simulador, se puede probar el conjunto del programa, es decir:
- Activar las entradas Todo o Nada
 (TON) y sus modos de contactos, normalmente abierto o cerrado, fugitivo o permanente.
 - Visualizar el estado de las salidas.
- Variar la tensión de alimentación de las entradas analógicas.
 - Activar las teclas de pulsadores "Zi".
- Simular el programma de aplicación en tiempo real o acelerado.
- Visualizar de forma dinámica y en rojo los distintos elementos activos del programa.

Una fijación sin accesorios

- Una instalación todo terreno con patas retráctiles o enganche en carril omega.
- Una gran compacidad para una integración perfecta
 - Reducción del volumen de armarios.
 - Fácil integración en una máquina.
- El respeto de los pasos modulares y una culata de 45 le permiten integrarse perfectamente en un cuadro o en un fondo de armario.

Una programación intuitiva

- La sencillez de la programación reduce al mínimo la utilización de la documentación.
- Diagramas de funcionamiento sencillos y claros, por ej., la temporización.
- Ahorro de tiempo gracias al trazado automático de los enlaces entre contactos y bobina.

Un relé Zelio Logic personalizado

- Posibilidad de insertar una etiqueta de identificación.
- Visualización del valor seleccionado directamente en la pantalla de presentación.

(Temporización del contador, valor analógico, etc.)

Utilización de la pantalla como visualizador

alfanumérico en miniatura configurable con Zelio-Soft

Una programación sin herramientas

- La utilización del lenguaje de contactos, el que más se aproxima a la representación de los esquemas eléctricos, responde a las expectativas y a los requisitos de los especialistas en automatismos.
- Se puede acceder directamente a todas las funciones desde el producto.
- Sin riesgo de error: la tecla verde, fácilmente reconocible, permite acceder directamente a la mayor parte de las operaciones.

El resto de las teclas tiene asignada 1 única función.

APENDICE B

SENSORES

Productos de tecnología óptica y láser - visión precisa a cualquier distancia.

Los objetos pueden ser detectados en distancias de hasta 50 metros y hasta las más pequeñas piezas como tornillos pueden ser detectados de manera precisa. Bero Fotoeléctricos distinguen colores de manera confiable hasta la más fina escala de grises. La serie 3RG7, utiliza lo último en tecnología óptica y láser, con la más alta precisión y velocidad a cualquier distancia. Por eso los sensores ópticos de BERO son indispensables en la automatización para numerosas aplicaciones: construcción de máquinas, industria alimenticia, empacadoras e impresoras.

El espectro de productos de nuestros sensores BERO cubre todo el rango de necesidades: desde los BERO miniatura —sólo 4 mm de diámetro pero con alcance de hasta 50mm, hasta las construcciones más robustas K80 tipo cúbicos para las aplicaciones industriales extremas, así como la más alta precisión de Láser BERO para la detección hasta 50 metros. Complemento a ello es la rápida capacidad de conmutación y fácil configuración.

Aplicación en la industria llantera, los sensores BERO ópticos detectan cualquier espacio inmediatamente, además de hacerlo de manera precisa aún en el lugar menos accesible

Todo la gama óptica: diferentes principios para diferentes aplicaciones. Cuando de tecnología óptica y láser se trate, BERO 3RG7 cubre todas las facetas. :

- Tecnología láser con transmisor y emisor en la misma pieza.
- Barreras directas con emisor y receptor por separado.
- Sensores de color BERO para una amplia gama de colores
- Lectores de marca para color y escala de grises, ideal para empaquetado e impresiones.

Los Opto-BERO están disponibles como:

- sensores difusos,
- barreras fotoeléctricas por reflexión o
- barreras fotoeléctricas directas,

a elección, con supresión de fondo o también para fibra óptica, aplicable preferentemente en los sectores:

• transporte y manutención,

- maquinaria,
- transformación de papel, textiles y plásticos,
- maquinaria de artes gráficas y
- industria del embalaje.

La amplia serie de Opto-BEROs trabaja con luz infrarroja, luz roja o luz de láser y cubre alcances de 3 cm. a 50 m. Estos sensores fotoeléctricos permiten detectar todo tipo de objetos con independencia de su naturaleza, ya sean de metal, madera o plástico. El Opto-BERO K 20 en caja miniatura es capaz incluso de detectar objetos transparentes.

Con las variantes especiales, como el sensor de color o el lector de marcas impresas, es posible detectar también diferencias de color o de contraste. La versión con láser analógico permite mediciones exactas de distancias y controles de posición.

Los Opto-BERO pueden ajustarse de forma rápida y cómoda por aprendizaje (Teach-In) o por potenciómetro. La gran gama de versiones cúbicas, cilíndricas y miniatura permite resolver cualquier aplicación.

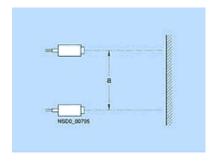
Los aparatos se pueden montar en cualquier posición. Si la situación lo permite, se recomienda montarlos en lugares que no estén expuestos a los efectos de la suciedad. Los accesorios disponibles permiten montar los aparatos con toda rapidez y facilidad.

Orientación

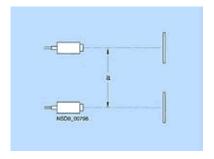
Sensores difusos

El sensor difuso deberá orientarse al objeto a detectar de forma que se garantice una detección segura. En los modelos con luz suplementaria tiene que estar activo el indicador correspondiente.

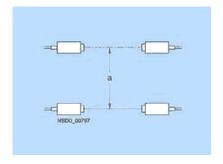
Barreras fotoeléctricas por reflexión


- En primer lugar hay que colocar y fijar el reflector en la posición adecuada.
- Tapar el reflector con cinta adhesiva de manera que sólo quede descubierto el centro (aprox. 25 % de su superficie.
- Montar la barrera por reflexión de modo que quede garantizada su activación.
- Por último, retirar la cinta adhesiva del reflector.

Barreras fotoeléctricas directas


- En primer lugar, colocar y montar el receptor en la posición adecuada.
- Acto seguido, orientar el emisor hacia el receptor con la mayor exactitud posible.

Distancia mínima


Los detectores de proximidad no deberán afectarse mutuamente. Por ello es necesario respetar entre los detectores una distancia mínima **a** referida a los ejes de los haces de luz. Los datos que figuran en la tabla tienen carácter orientativo. Están referidos a la sensibilidad máxima.

Sensor difuso

Barrera fotoeléctrica por reflexión

Barrera fotoeléctrica directa

Detector de proximidad Opto-BERO	Distancia mínima a
Serie D 4, M 5	50 mm
Serie M 12	250 mm
Serie M 18	250 mm
Serie K 31	250 mm
Serie K 30	500 mm
Serie K 40	750 mm
Serie K 80	500 mm
Serie L 18 (barrera fotoeléctrica con láser)	150 m¹)
Serie L 50 (sensor difuso con láser)	30 mm
Serie L 50 (barrera fotoeléctrica con láser)	80 mm

1) Enfocando a 50 m.

Ajuste de la distancia de detección

La sensibilidad se regula con el potenciómetro múltiple integrado. La sensibilidad aumenta

girándolo en sentido horario. El potenciómetro no puede dañarse por rebasar el límite de giro (no hay topes.

Sensores difusos

La sensibilidad o la distancia de detección deben ajustarse de forma de que se capte con seguridad el objeto a detectar; dado el caso debe estar activo el indicador de luz suplementaria. Después se retira el objeto. Si la salida permanece activada, habrá que reducir un poco la sensibilidad.

Barreras fotoeléctricas por reflexión y barreras fotoeléctricas directas

En el caso general el potenciómetro deberá girarse siempre a la posición de máxima sensibilidad (giro en sentido horario. Con ello se disfruta de una luz suplementaria máxima. La reducción de la sensibilidad puede resultar necesaria únicamente para captar objetos transparentes.

Longitud de cable

Los cables largos tienen los efectos siguientes sobre los aparatos:

- carga capacitiva adicional (protección contra cortocircuito),
- peligro mayor de acoplamiento de señales perturbadoras.

Por eso no se debe sobrepasar la longitud máxima indicada para los cables.

Los detectores fotoeléctricos de proximidad Opto-BERO reaccionan frente a cambios en la cantidad de luz recibida. El rayo de luz emitido por el diodo emisor es interrumpido o reflejado por el objeto a detectar.

Dependiendo del tipo de aparato se evalúa la interrupción o la reflexión del rayo de luz.

- Sensores difusos,
- Barreras fotoeléctricas por reflexión,
- Barreras fotoeléctricas directas,
- Versiones especiales para la industria de artes gráficas.

Debido a los diferentes principios físicos de estos sistemas, y considerando las mismas condiciones externas, las barreras fotoeléctricas directas ofrecen una zona de detección mayor que las barreras fotoeléctricas por reflexión. Los sensores difusos también pueden reaccionar a materiales de reflexión difusa. Por ello su zona de detección inferior al de las barreras fotoeléctricas por reflexión.

Sensores difusos (detectores ópticos de proximidad)

La luz del emisor choca con un objeto y se refleja de forma difusa. Una parte penetra en el receptor que también se halla en el detector. Si hay suficiente intensidad de recepción, se activa la salida.

El campo de detección depende del tamaño y del color del objeto así como de la naturaleza de su superficie. El potenciómetro incorporado permite modificar en amplio margen la zona de detección. El sensor difuso también es idóneo para detectar diferencias cromáticas.

Sensor difuso con supresión de fondo

Los sensores difusos con supresión de fondo están en condiciones de detectar objetos dentro de una zona de detección determinada. Todo lo que haya más allá de dicho límite se suprime. El plano de enfoque se puede modificar. La supresión del fondo se realiza modificando la geometría entre emisor y receptor.

Barreras fotoeléctricas por reflexión

La luz del diodo emisor se concentra con una lente y se orienta hacia un reflector a través de un filtro de polarización (principio del espejo triple. Una parte de la luz reflejada llega al receptor a través de otro filtro de polarización. Los filtros se han elegido y colocado de tal manera que sólo la luz reflejada por el reflector llega al receptor pero no la luz de otros objetos que se encuentren en el radio de alcance del rayo.

La salida se activa cuando un objeto se interpone en el camino del rayo desde el emisor hasta el receptor a través del reflector.

Rejillas fotoeléctricas (barrera fotoeléctrica por reflexión de 7 rayos)

Los siete emisores de este Opto-BERO especial irradian luz sobre un reflector que la refleja en siete receptores del BERO. La salida se activa tan pronto como se interrumpe alguno de los rayos. Con él se puede vigilar sin lagunas un área de 1,4 mm. Se aplica p. ej. en sistemas de transporte y manutención.

Barreras fotoeléctricas directas

Constan de un emisor y un receptor. El emisor se orienta de modo que incida la mayor cantidad de luz posible del diodo emisor en el receptor. Este evalúa la luz recibida distinguiéndola claramente de la luz ambiente y de otras fuentes luminosas. La salida se activa cuando se interrumpe el rayo luminoso entre el emisor y el receptor.

Aparatos para fibras ópticas

Su funcionamiento es idéntico con fibras ópticas de vidrio y de plástico. Delante del emisor y del receptor se montan unas fibras ópticas. Son el "segundo ojo" del Opto-BERO.

Gracias a su reducido tamaño y a su flexibilidad, las fibras sirven para solucionar tareas de reflexión en lugares de difícil acceso. Además, no hay transmisión de potencial eléctrico.

Sensores difusos por láser con salida analógica

El detector analógico Láser-BERO es capaz de medir la distancia exacta a un objeto que se halle dentro de su zona de detección. Gracias a la luz láser visible, la medición es sumamente exacta y el valor de salida muy lineal. Todos los detectores Láser-BERO cumplen clase de protección 2, es decir, son inofensivos y se pueden utilizar sin peligro para la salud (p. ej. para los ojos.

Barreras fotoeléctricas de horquilla

El objeto se introduce en la horquilla del BERO. La luz del sensor penetra en el objeto. Las diferencias de contraste, las fisuras y agujeros modifican la cantidad de luz que llega al receptor.

El BERO reacciona a los cambios experimentados en la cantidad de luz recibida.

Sensores de color

El sensor de color funciona con tres LEDs de color rojo, verde y azul. El objeto se expone a la radiación.

Al ajustar el BERO se mide el color del objeto al que se le asigna un estado básico. Durante la fase de aprendizaje, el BERO memoriza el color detectado en una EEPROM no volátil. Así no es necesario reajustar el BERO cada vez que se vuelve a conectar la tensión de empleo. En él se puede ajustar un color o una gama de colores.

Lector de marca impreso

El lector de marcas impresas funciona con luz verde o roja. El color se elige automáticamente en función del contraste. Con dos pulsadores se puede definir por separado el color de la marca y el color de fondo.

Función antiinterferencias

Esta función evita la interferencia mutua entre detectores Opto-BERO. En detectores con función antiinterferencias no es necesario respetar ninguna distancia mínima entre los mismos. Esto permite p. ej. orientar dos barreras fotoeléctricas por reflexión sobre un reflector común.

Función de las salidas

Activación en oscuro

La función "activación en oscuro" significa que la salida en cuestión se activa (conduce corriente) cuando <u>no</u> incide luz en el receptor.

Activación en claro

La función "activación en claro" significa que la salida en cuestión se activa (conduce corriente) cuando incide luz en el receptor.

Antivalente

Los aparatos con salida antivalente disponen de 2 salidas. Una tiene <u>activación en oscuro</u> y la otra <u>activación en claro</u>.

Función de luz suplementaria

Como opción alternativa, parte de los aparatos están disponibles con otra configuración de salidas, una salida tiene activación en claro, la otra señaliza la luz suplementaria disponible.

Intensidad de salida

Los aparatos están diseñados para una intensidad de salida máxima (intensidad asignada de empleo. Si se supera dicha intensidad, incluso brevemente, entonces interviene la protección de sobrecarga y cortocircuito incorporada. De este modo se previenen posibles averías del aparato.

Las lámparas incandescentes, los condensadores y otras cargas fuertemente capacitivas (p. ej. los cables largos) producen un efecto similar al de la sobrecarga.

No se requiere una intensidad de carga mínima. Gracias a las resistencias polarizadoras incorporadas siempre hay señal de salida.

Auto colimación

En estos aparatos, los ejes ópticos del emisor y del receptor son idénticos. El aparato sólo tiene un sistema óptico. Por eso no hay ninguna zona muerta delante del BERO y la precisión del punto de activación es aún mayor.

Impulsos intempestivos al conectar

Los aparatos están dotados de una supresión de impulsos intempestivos al conectar. Esta función impide la aparición de impulsos erróneos desde que se aplica la tensión de empleo hasta que se alcanza la disponibilidad para el servicio (aprox. 5ms)

Zona de detección

Es la zona en la cual puede ajustarse la distancia de detección. Este concepto sustituye al anterior concepto, alcance, usado en sensores difusos y en barreras fotoeléctricas.

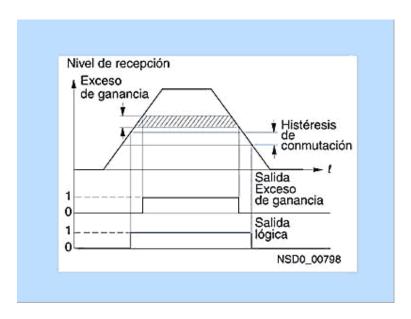
Factores de corrección

Las zonas de detección especificadas para barreras fotoeléctricas por reflexión se alcanzan con las superficies indicadas si se utiliza papel estándar blanco mate. Para otras superficies se han de aplicar los respectivos factores de corrección.

Factores de corrección	
Tarjeta de ajuste (mira)	100 %
Papel blanco	80 %
Madera clara	73 %
Plástico blanco	70 %
Corcho	65 %
Periódico	60 %
PVC, gris	57 %
Plástico negro	22 %
Neopreno, negro	20 %
Neumáticos	15 %
Chapa de aluminio	
 bruta 	200 %
 anodizado o negro 	150 %
 mate (cepillado) 	120 %
Acero inox., pulido	230 %

Entrada de habilitación

En el Opto-BERO este tipo de entrada se puede conectar y desconectar directamente el emisor. Evaluando adecuadamente la señal de salida esto permite implementar una función de vigilancia de funcionamiento (barrera fotoeléctrica: tramo de propagación luz libre / sensor difuso: objeto reflector presente.


Para inhabilitar el BERO hay que poner la entrada de habilitación a 0 V. Para poder funcionar, la entrada no tiene que estar conectada.

Límite de luz externa

La luz externa es la irradiada por fuentes de luz externas en el receptor. Se mide la intensidad luminosa en la superficie de entrada de la luz. Por principio los aparatos que utilizan luz alterna son insensibles a las luces externas. A pesar de ello existe un límite superior permitido para la intensidad de la radiación externa y que se denomina límite de luz externa. Este se especifica para la luz solar (luz no modulada) y para la luz halógena (luz modulada con una frecuencia de red doble. Con intensidades de iluminación superiores al límite de luz externa respectivo ya no es posible un funcionamiento seguro de los aparatos.

Función de luz suplementaria

La función de luz suplementaria es la radiación sobrante que incide en la superficie de entrada de luz y que es evaluada por el receptor. La suciedad, los cambios en el factor de reflexión del objeto y el envejecimiento del diodo emisor hacen que se reduzca la luz suplementaria en el curso del tiempo con lo que llega un momento donde el funcionamiento seguro ya no está garantizado.

Por eso, todos los aparatos poseen un indicador de la luz suplementaria. Además, se suministran otros modelos en los que dicha señal está aplicada a una de las salidas. Esto permite detectar a tiempo un estado ya no seguro.

Láser de semiconductor, diodos láser

Estos se caracterizan por la extrema densidad del rayo, emitiendo una luz fuertemente concentrada en rojo visible.

Los láser utilizados cumplen clase de protección 2.

Histéresis

La histéresis provoca un determinado comportamiento de los aparatos. Las zonas de detección indicadas están referidas siempre al punto de conexión durante la aproximación.

Luz IR

IR significa "infrarrojo". Frente a la luz visible (longitud de onda de 380 a 780 nm), en este caso se trata de una radiación electromagnética de onda larga (longitud de onda de 780 a 1500 nm.

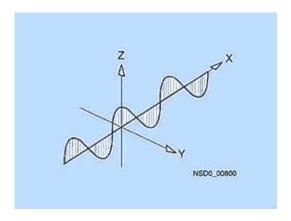
Fibras ópticas

Las fibras ópticas son de plástico o de vidrio que permiten guiar la luz también en curvas. Las fibras ópticas son especialmente aptas para espacios reducidos y condiciones ambientales críticas.

Diodos luminiscentes, LEDs

En los detectores Opto-BERO se utilizan LEDs como fuentes de radiación. Tienen una banda de emisión muy estrecha, son fáciles de modular y tienen una larga vida útil. También sirven para señalizar en el Opto-BERO el estado de detección o la luz suplementaria.

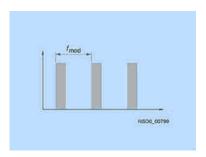
Conexión en paralelo


Los aparatos se pueden conectar fácilmente en paralelo para implementar enlaces lógicos. El uso mixto de salidas con activación en oscuro y salidas con activación en claro permite integrar muchas funciones.

A observar:

El consumo de corriente aumenta. Las intensidades de bloqueo se van sumando; la carga puede provocar una intensidad demasiado alta incluso en estado de bloqueo. Los diodos de los cables de salida sirven para desacoplar las resistencias polarizadoras; en caso de conexión en paralelo de un número reducido de aparatos puede prescindirse de ellos.

Luz polarizada


La luz natural (también la de los diodos emisores o los diodos láser) no está polarizada. Tras pasar por un filtro de polarización, sólo queda la cantidad de luz que oscila en el sentido de polarización del filtro.

Las barreras fotoeléctricas por reflexión utilizan esta luz polarizada para reducir al mínimo el efecto de las reflexiones parásitas. Instalando filtros de polarización delante del emisor y del receptor la barrera sólo responde a la luz reflejada por un espejo especial, el denominado espejo tripel. Las demás reflexiones no provocan ninguna reacción.

Luz modulada

Los detectores Opto-BERO funcionan con luz modulada, es decir, el emisor sólo se activa durante un breve intervalo de tiempo. La frecuencia $f_{\rm mod}$ de la luz alterna vale, según la ejecución, entre 5 y 30 Khz.

Si en la zona de radiación funciona un BERO con la misma frecuencia, entonces puede haber interferencias (ver Distancia mínima.

La operación con luz alterna tiene las ventajas siguientes:

- alta insensibilidad respecto a luz externa, mayores zonas de detección, menos calentamiento y, por lo tanto, mayor vida útil de los diodos de emisión.

APENDICE C ELEMENTOS DE CONTROL

CONTACTORES

		LC1- LP1- K06	LC1- LC1-	LC1- LP1-	LC1- LP1-	LC1- LP1-	LC1- LP1-	LC1- LP1-	LC1- LP1-	LC1- LP1- D40
≤ 440 V	Α	6	9	12	9	12	18	25	32	40
220/240 V	kW	1,5	2,2	3	2,2	3	4	5,5	7,5	11
380/400 V	kW	2,2	4	5,5	4	5,5	7,5	11	15	18,5
415 V	kW	2,2	4	5,5	4	5,5	9	11	15	22
440 V	kW	3	4	5,5	4	5,5	9	11	15	22
500 V	kW	3	4	4	5,5	7,5	10	15	18,5	22
660/690 V	kW	3	4	4	5,5	7,5	10	15	18,5	30
1.000 ∨	kW	-	-	-	-	-	-	-	-	22
mas de ciclos Potencia de empleo	s de maniobi	as/hora	(1)		LC1- LP1-	LC1- LP1-	LC1- LP1-	LC1- LP1-	LC1- LP1-	LC1- LP1-
В.										D40
0,5 P		-								
Р		-	-	-	1.800	1.800	1.800	1.800	1.200	1.200
otencia de	empleo	segúr	ı UL,	CSA	(θ ≤ 55 °	C)				
		LC1-	LC1-	LC1-	LC1-	LC1-	LC1-	LC1-	LC1-	LC1-
		LP1- K06	LP1- K09	LP1- K12	LP1- D09	LP1- D12	LP1- D18	LP1- D25	LP1- D32	LP1- D40
≤ 440 V	A									
	220/240 V 380/400 V 415 V 440 V 500 V 660/690 V 1.000 V mas de ciclos Potencia de empleo P	220/240 V kW 380/400 V kW 415 V kW 440 V kW 500 V kW 1.000 V kW mas de ciclos de maniobr Potencia de empleo P 0,5 P	EP1- K06 ≤ 440 ∨ A 6 220/240 ∨ kW 1,5 380/400 ∨ kW 2,2 415 ∨ kW 2,2 440 ∨ kW 3 500 ∨ kW 3 1.000 ∨ kW 3 1.000 ∨ kW - mas de ciclos de maniobras/hora Potencia de empleo P - 0,5 P - P -	LP1- LC1- K06 K09 ≤ 440 ∨	P	LP1- K06 K09 K12 LP1- LP1- LP1- LP1- K06 K09 K12 D09 ≤ 440 V A 6 9 12 9 220/240 V kW 1,5 2,2 3 2,2 380/400 V kW 2,2 4 5,5 4 415 V kW 2,2 4 5,5 4 440 V kW 3 4 5,5 4 500 V kW 3 4 4 5,5 660/690 V kW 3 4 4 5,5 1.000 V kW - - - - mas de ciclos de maniobras/hora (1) C1- LP1- D09 - - - 1.200 0,5 P - - - - 3.000 P - - - - 1.800	LP1- LC1- LP1- LP1- LP1- LP1- K06 K09 K12 D09 D12 ≤ 440 V A 6 9 12 9 12 220/240 V kW 1,5 2,2 3 2,2 3 380/400 V kW 2,2 4 5,5 4 5,5 415 V kW 2,2 4 5,5 4 5,5 440 V kW 3 4 5,5 4 5,5 500 V kW 3 4 4 5,5 7,5 660/690 V kW 3 4 4 5,5 7,5 1.000 V kW - - - - - Potencia de empleo LC1- LC1- LP1- LP1- D09 D12 - - - - 1.200 1.200 0,5 P - - - 3.000 3.000 3.000 3.000	P1	P1	P1 P1 P1 P1 P1 P1 P1 P1

230/240 V HP

460/480 V HP

575/600 V HP

1,5 3

3

3

5

5

3

7,5

10

2

5

7,5

3

7,5

10

5

10

15

7,5

15

20

10

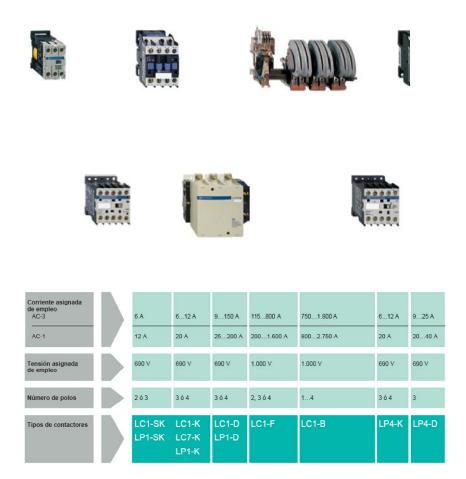
20

30

10

30

30

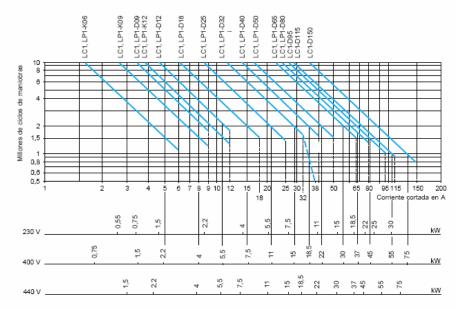

de empleo P (potencias

normalizadas de los motores)

60 Hz

⁽¹⁾ En función de la potencia de empleo y del factor de marcha (θ ≤ 55 °C).

Elección de contactores según la categoría de empleo AC-3



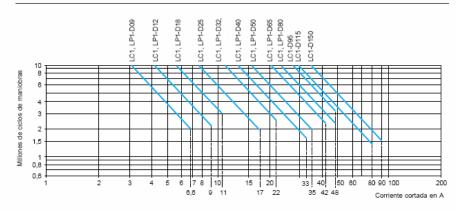
Elección de contactores según la categoría de empleo AC-3

Elección de los contactores según la durabilidad eléctrica

Tamaño de los contactores			LC1- LP1- K06	LC1- LC1- K09	LC1- LP1- K12	LC1- LP1- D09	LC1- LP1- D12	LC1- LP1- D18	LC1- LP1- D25	LC1- LP1- D32	LC1- LP1- D40
Corriente de empleo máxima en AC-3	≤ 440 V	Α	6	9	12	9	12	18	25	32	40
Potencia nomimal	220/240 V	kW	1,5	2,2	3	2,2	3	4	5,5	7,5	11
de empleo P (potencias normalizadas	380/400 V	kW	2,2	4	5,5	4	5,5	7,5	11	15	18,5
le los motores)	415 V	kW	2,2	4	5,5	4	5,5	9	11	15	22
	440 V	kW	3	4	5,5	4	5,5	9	11	15	22
	500 V	kW	3	4	4	5,5	7,5	10	15	18,5	22
	660/690 V	kW	3	4	4	5,5	7,5	10	15	18,5	30
	1.000 V	kW	-	-	-	-	-	-	-	-	22
Frecuencias máxir Factor de marcha	nas de ciclo Potencia de empleo	s de maniob	ras/hora	ı (1)		LC1- LP1- D09	LC1- LP1- D12	LC1- LP1- D18	LC1- LP1- D25	LC1- LP1- D32	LC1 LP1 D40
≤ 85 %	Р		-	-	-	1.200	1.200	1.200	1.200	1.000	1.00
	0,5 P		-	-	-	3.000	3.000	2.500	2.500	2.500	2.50
≤ 25 %	Р		-	-	-	1.800	1.800	1.800	1.800	1.200	1.20
Corriente y po	otencia de	e empleo	segúr	ı UL,	CSA	(θ ≤ 55 °	C)				
Tamaño de los contactores			LC1- LP1- K06	LC1- LP1- K09	LC1- LP1- K12	LC1- LP1- D09	LC1- LP1- D12	LC1- LP1- D18	LC1- LP1- D25	LC1- LP1- D32	LC1 LP1 D40
Corriente de empleo máxima en AC-3	≤ 440 V	Α	6	9	12	9	12	18	25	32	40
Potencia nominal	200/208 V	НР	1,5	2	3	2	3	5	7,5	10	10
de empleo P (potencias normalizadas	230/240 V	НР	1,5	3	3	2	3	5	7,5	10	10
potencias					7.5	5	7,5	10	15	20	30
potencias	460/480 V	HP	3	5	7,5	5	7,5	10	10	20	30

Empleo en categoría AC-3 (Ue ≤ 440 V)

Potencia de empleo en kW-50 Hz


Fiemple

Motor asíncrono con P = 5,5 kW – Ue = 400 V – Ie = 11 A – Ic = Ie = 11 A o motor asíncrono con P = 5,5 kW – Ue = 415 V – Ie = 11 A – Ic = Ie = 11 A

Objetivo: 3 millones de ciclos de maniobras.

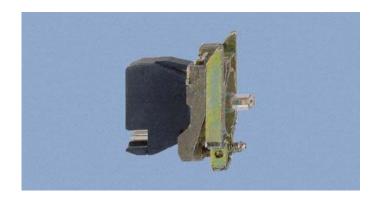
Las curvas de elección anteriores determinan qué calibre de contactor elegir: LC1 o LP1-D18.

Empleo en categoría AC-3 (Ue = 660/690 V) (1)

(1) Con Ue = $1.000 \, \text{V}$ utilizar las curvas $660/690 \, \text{V}$ sin superar la corriente de empleo correspondiente a la potencia de empleo indicada para $1.000 \, \text{V}$.

PARO DE EMERGENCIA CON RETENCIÓN.

	Unidades por Lote = 1								
	n°.	color	código RS	precio	unitario				
	de fabr.			1+	15+	25+			
Pedido	ZB4-BC2	negro	330-9013	9,48€	8,40 €	8,05€	Info técnica		
Pedido	ZB4-BC3	verde	330-9029	9,48€	8,40 €	8,05€	Info técnica		
Pedido	ZB4-BC4	rojo	330-9035	9,48€	8,40 €	8,05 €	Info técnica		
Pedido	ZB4-BC5	amarillo	342-2627	9,48€	8,40 €	8,05 €	Info técnica		


- Gama modular de botones pulsadores de 22mm y dispositivos de luz indicadora con molduras cromadas
- El cabezal se ajusta automáticamente en posición dentro de la abertura practicada
- Auto blocante, resistente a vibraciones y fijación en 3 puntos
- Inscripciones personalizables mediante software de etiquetado
- Conexiones rápidas
- Se pueden instalar hasta 9 bloques eléctricos mediante un simple montaje de encaje a presión
- Tecnología exclusiva y patentada de LED que ofrece 100.000 horas de vida útil, resistente a vibraciones e interferencias electromagnéticas

Homologaciones: UL, CSA Normas: IEC, JIS

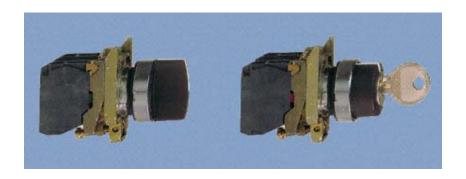
Características técnicas									
Alimentación	a.c. AC15 A 600								
U_e	600V	240V	120V						
l _e	1,2A	3A	6A						
Alimentación	d.c. DC13 Q 600								
U _e	600V	250V	125V						
l _e	0,1A	0,27A	0,55A						
Temperatura	de funcionamiento	de -25°C a +70°C							
Grado de pro	otección	IP65							

- Cabezales de seta coloreados de 40mm de \varnothing para botones pulsadores con retorno por resorte
- Requieren un collarín de fijación al cuerpo, de código **RS** <u>331-0142</u> y cuerpos de contactos de código **RS** <u>331-0158</u> etc.

LUZ PILOTO TELEMECANIQUE

	Unidades	por Lote = 1					
	color	n°	código RS	precio u	nitario		
	24V d.c.	Telemecanique		1+	15+	25+	
Pedico	blanco	ZB4-BVB1	330-9580	9,21 €	8,19 €	7,89 €	Info téc
Pedico	verde	ZB4-BVB3	330-9596	9,21 €	8,19 €	7,89 €	Info téc
Pedico	rojo	ZB4-BVB4	330-9603	9,21 €	8,19 €	7,89 €	Info téc
Pedico	amarillo	ZB4-BVB5	330-9619	9,21 €	8,19 €	7,89 €	Info téc
Pedico	azul	ZB4-BVB6	330-9625	9,21 €	8,19 €	7,89 €	Info téc
_	110-120V	a.c.					
Pedico	blanco	ZB4-BVG1	330-9647	12,14 €	10,79€	10,41 €	Info téc
Pedico	verde	ZB4-BVG3	330-9653	12,14€	10,79€	10,41 €	Info téc
Pedico	rojo	ZB4-BVG4	330-9669	12,14€	10,79€	10,41 €	Info téc
Pedico	amarillo	ZB4-BVG5	330-9675	12,14€	10,79€	10,41 €	Info téc
Pedico	azul	ZB4-BVG6	330-9681	12,14 €	10,79€	10,41 €	Info téc
	230-240V	a.c.					
Pedico	blanco	ZB4-BVM1	330-9697	17,50 €	15,56 €	14,98 €	Info téc
Pedico	verde	ZB4-BVM3	330-9704	17,50 €	15,56 €	14,98 €	Info téc
Pedico	rojo	ZB4-BVM4	330-9710	17,50 €	15,56 €	14,98 €	Info téc
Pedico	amarillo	ZB4-BVM5	330-9726	17,50 €	15,56 €	14,98 €	Info téc
Pedico	azul	ZB4-BVM6	330-9732	17,50 €	15,56 €	14,98 €	Info téc

- Gama modular de botones pulsadores de 22mm y dispositivos de luz indicadora con molduras cromadas
- El cabezal se ajusta automáticamente en posición dentro de la abertura practicada
- Auto blocante, resistente a vibraciones y fijación en 3 puntos
- Inscripciones personalizables mediante software de etiquetado
- Conexiones rápidas
- Se pueden instalar hasta 9 bloques eléctricos mediante un simple montaje de encaje a presión


Tecnología exclusiva y patentada de LED que ofrece 100.000 horas de vida útil, resistente a vibraciones e interferencias electromagnéticas

Homologaciones: UL, CSA Normas: IEC, JIS

Características técnicas								
Alimentación	n a.c. AC15 A 600							
U_e	600V	240V	120V					
l _e	1,2A	3A	6A					
Alimentación	n d.c. DC13 Q 600							
U_e	600V	250V	125V					
l _e	0,1A	0,27A	0,55A					
Temperatura	a de funcionamiento	de -25°C a +70°C						
Grado de pre	otección	IP65						
	[3] Telemecanique	•						

- Cuerpos completos integrales de LED con conectores de terminal fijado por tornillo
- Tres tensiones en cinco colores

SELECTORES

	Unidades por Lo	ote = 1				
	n° de fabr.	código RS	precio un	itario		
			1+	6+	12+	
Pedido	XB4-BG21	330-8723	27,63 €	24,57 €	23,69 €	Info técnica
Pedido	XB4-BG41	330-8745	27,63 €	24,57 €	23,69 €	Info técnica
Pedido	XB4-BG61	330-8751	27,63 €	24,57 €	23,69 €	Info técnica
Pedido	XB4-BG03	330-8717	31,30 €	27,85 €	26,83 €	Info técnica
Pedido	XB4-BG33	330-8739	31.30 €	27.85 €	26.83 €	Info técnica

- Gama modular de botones pulsadores de 22mm y dispositivos de luz indicadora con molduras cromadas
- El cabezal se ajusta automáticamente en posición dentro de la abertura practicada
- Auto blocante, resistente a vibraciones y fijación en 3 puntos
- Inscripciones personalizables mediante software de etiquetado
- Conexiones rápidas
- Se pueden instalar hasta 9 bloques eléctricos mediante un simple montaje de encaje a presión
- Tecnología exclusiva y patentada de LED que ofrece 100.000 horas de vida útil, resistente a vibraciones e interferencias electromagnéticas

Homologaciones: UL, CSA

Normas: IEC, JIS

Características técnicas

Alimentación a.c. AC15 A 600

 $\begin{array}{ccc} U_e & 600V & 240V & 120V \\ I_e & 1,2A & 3A & 6A \end{array}$

Alimentación d.c. DC13 Q 600

 $\begin{array}{ccc} U_e & 600V & 250V & 125V \\ I_e & 0,1A & 0,27A & 0,55A \end{array}$

Temperatura de funcionamiento de -25°C a +70°C

Grado de protección IP65

- Interruptores con llave y conectores de terminal con mordaza roscada
- Se suministra con bloques de contactos

Guía de selección

Código RS	Posición/Tipo	Extracción de la llave	Contactos
330-8723	2/enclavamiento	izda.	1 N/O
<u>330-8745</u>	2/enclavamiento	cualquiera de ambos	1 N/O
<u>330-8751</u>	2/resorte de retorno	izda.	1 N/O
<u>330-8717</u>	3/enclavamiento	cualquiera de los 3	2 N/O
330-8739	3/enclavamiento	centro	2 N/O

PROTECCION DE EQUIPOS

Entrelec proteje todo

SEGURIDAD y PROTECCION

Relés de Monitoreo

Proveen protección continua de equipo midiendo parámetros eléctricos contra un rango preestablecido. Cualquier salida del ajuste normal genera una señal que se puede utilizar para desconectar la carga o para funcionar un alarma, previniendo daño de equipo.

Interruptores

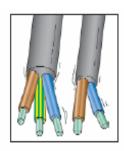
Nueva línea de alta calidad ofrece los disyuntores 100 amperios. Montaje a riel DIN de uno, dos, tres, y cuatro polos. Características incluyen abrazaderas de alambre de doble entrada para enlace de circuito, montaje y desmontaje fácil en riel.

Protectores de Sobretensión

"Protechíne" pararrayos que protegen el equipo de daños causados por relámpagos directos o cercanos. La familia incluye módulos de linea de alimentación y módulos de sobrecarga.

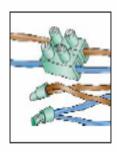
Relés de Seguridad

Cumplen con todos los estándares de seguridad de maquinaria. La familia incluye el paro de emergencia, control de dos manos, y monitoreo de interruptor de limite. Unidades de relé apagan el equipo en operación cuando las condiciones seguras establecidas no se cumplen.



Disyuntor automático

Estos disyuntores tienen una palanca o botón que cambia a la posición "fuera de servicio" en el momento que delectan una sobrecarga o un cortocircuito. Para volver a conectar la corriente debemos primero de todo arreglar la avería o desconectar el aparato defectuoso. Una vez solucionado el problema volveremos a levantar la palanca.


CONDUCTORES

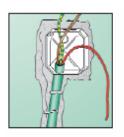
CABLEADO

Cables flexibles

Aparte de los conductores rígidos, existen cables flexibles que agrupan distintos conductores en una funda flexible: WB, VTLB, VTMB, etc. Estos cables también los pasaremos a través de un tubo y por el interior de los tabiques.


Conexiones

Para realizar empaimes y conexiones entre dos cables siempre lo haremos utilizando una regleta. Nunca los uniremos entrelazándolos directamente ni con cinta aislante.


Codos

Si utilizamos tubos de PVC como fundas para los cables deberemos tener en cuentas los codos para realizar las curvas que nos podamos encontrar. Para pasar los conductores por tramos largos haremos servir el alambre pasa cables.

Tubos exteriores

En los exteriores podremos pasar los tubos a la vista y los fijaremos a la pared mediante abrazaderas. En colocaciones horizontales deberemos colocar una abrazadera cada 30 cm y cada 45 cm en colocaciones verticales. Cuando utilicemos codos para los ángulos, las abrazaderas irán a una distancia máxima de 10 cm. de cada una de sus extremidades. La misma distancia de 10 cm la dejaremos entre las cajas de derivación, los enchufes y los interruptores.

El método

Por cuestiones estéticas los tubos y cajas de derivación se esconden en los tabiques, techos, suelos o en el interior de los armarios. Para esconderlos en los tabiques, con la maza y el cincel realizaremos una serie de regatas para empotrar los tubos y las cajas. Después las taparemos con cemento.

Tabla de equivalencias: AWG - milimetricas

En muchos sitios de la Internet y también en libros y manuales, especialmente de origen norteamericano, es común encontrar la medida de los conductores eléctricos (cables o alambres) indicados con la referencia AWG (American Wire Gauge). Esta tabla de conversión les permitirá saber el diámetro y superficie o área de sección del conductor, conociendo el número AWG.

AWG	Diam. mm	Area mm2	AWG	Diam. mm	Area mm2
1	7.35	42.40	16	1.29	1.31
2	6.54	33.60	17	1.15	1.04
3	5.86	27.00	18	1.024	0.823
4	5.19	21.20	19	0.912	0.653
5	4.62	16.80	20	0.812	0.519
6	4.11	13.30	21	0.723	0.412
7	3.67	10.60	22	0.644	0.325
8	3.26	8.35	23	0.573	0.259
9	2.91	6.62	24	0.511	0.205
10	2.59	5.27	25	0.455	0.163
11	2.30	4.15	26	0.405	0.128
12	2.05	3.31	27	0.361	0.102
13	1.83	2.63	28	0.321	0.0804
14	1.63	2.08	29	0.286	0.0646
15	1.45	1.65	30	0.255	0.0503

Comunidad Electrónicos <u>www.comunidadelectronicos.com</u> Luis Alberto Tamiet <u>Copyright</u> - Todos los derechos reservados.

?

AWG a milimétricas y pulgadas a milímetros AWG to millimetrics and inches to millimetres

Tablas útiles. Click en los símbolos de la derecha para imprimir. Useful tables. Click on rigth symbol to print.

Tabla de equivalencias: AWG a milimétricas (Equivalences chart: AWG to millimeters)

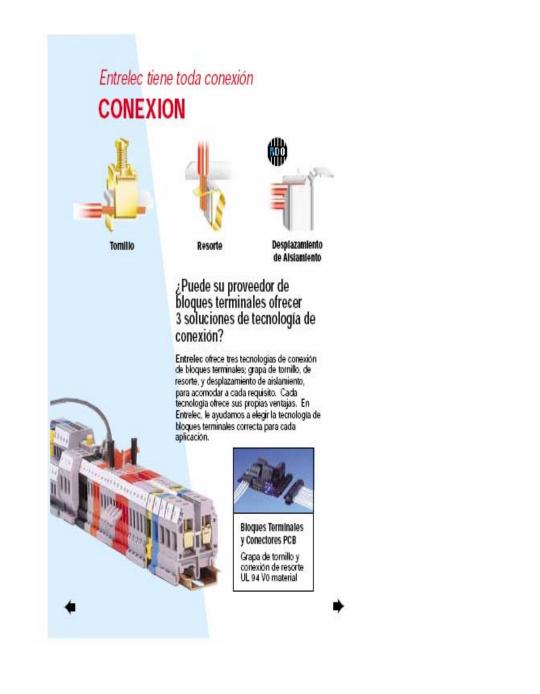
Esta tabla le permitirá conocer el diámetro y la sección del conductor electrico a partir del número AWG.

Medida de los conductores eléctricos (cables o alambres) indicados con la referencia AWG (American Wire Gauge).

This chart will allow you to know the diameter and the electric conductor section from AWG number.

Electric conductors measures (cables and wires) marked with AWG reference (American Wire Gauge).

AWG	Diámetro mm	Area mm ²	AWG	Diámetro mm	Area mm ²	AWG	Diámetro mm	Area mm ²
1	7,35	42,40	11	2,30	4,15	21	0,723	0,412
2	6,54	33,60	12	2.05	3,31	22	0,644	0,325
3	5,86	27,00	13	1,83	2,63	23	0,573	0,259
4	5,19	21,20	14	1,63	2,08	24	0,511	0,205
5	4,62	16,80	15	1,45	1,65	25	0,455	0,163
6	4,11	13,30	16	1,29	1,31	26	0,405	0,128
7	3,67	10,60	17	1,15	1,04	27	0,361	0,102
8	3,26	8,35	18	1,024	0,823	28	0,321	0,0804
9	2,91	6,62	19	0,912	0,653	29	0,286	0,0646
10	2,59	5,27	20	0,812	0,519	30	0,255	0,0503


Tabla de equivalencias: pulgadas a milímetros (Equivalence chart: inches to millimeters)

Esta tabla le permitirá conocer la equivalencia entre fracciones de pulgada y milímetros.
This chart will allow you to know the equivalence between inch fraction and millimeters.

Fracción pulgada	Decimal pulgada	mm	Fracción pulgada	Decimal pulgada	mm	Fracción pulgada	Decimal pulgada	mm	Fracción pulgada	Decimal pulgada	mm
1/64	0,015625	0,397	17/64	0,265625	6,747	33/64	0,515625	13,097	49/64	0,765625	19,447
1/32	0,031250	0,794	9/32	0,281250	7,144	17/32	0,531250	13,494	25/32	0,781250	19,844
3/64	0,046875	1,191	19/64	0,296875	7,541	35/64	0,546875	13,891	51/64	0,796875	20,241
1/16	0,062500	1,588	5/16	0,312500	7,938	9/16	0,562500	14,288	13/16	0,812500	20,638
5/64	0,078125	1,984	21/64	0,328125	8,334	37/64	0,578125	14,684	53/64	0,828125	21,034
3/32	0,093750	2,381	11/32	0,343750	8,731	19/32	0,593750	15,081	27/32	0,843750	21,431
7/64	0,109375	2,778	23/64	0,359375	9,128	39/64	0,609375	15,478	55/64	0,859375	21,828
1/8	0,125000	3,175	3/8	0,375000	9,525	5/8	0,625000	15,875	7/8	0,875000	22,225
9/64	0,140625	3,572	25/64	0,390625	9,922	41/64	0,640625	16,272	57/64	0,890625	22,622
5/32	0,156250	3,969	13/32	0,406250	10,319	21/32	0,656250	16,669	29/32	0,906250	23,019
11/64	0,171875	4,366	27/64	0,421875	10,716	43/64	0,671875	17,066	59/64	0,921875	23,416
3/16	0,187500	4,763	7/16	0,437500	11,113	11/16	0,687500	17,463	15/16	0,937500	23,813
13/64	0,203125	5,159	29/64	0,453125	11,509	45/64	0,703125	17,859	61/64	0,953125	24,209
7/32	0,218750	5,556	15/32	0,468750	11,906	23/32	0,718750	18,256	31/32	0,968750	24,606
15/64	0,234375	5,953	31/64	0,484375	12,303	47/64	0,734375	18,653	63/64	0,984375	25,003
1/4	0,250000	6,350	1/2	0,500000	12,700	3/4	0,750000	19,050	1	1	25,400

BORNERAS PARA RIEL

