1 621.3877 V112 /c.2

ESCUELA SUPERIOR POLITECTICA DEL LITORAL

Facultad de Ingeniería en Eléctricidad y Computación

Informe Técnico Previo a la Obtención del Título en Ingeniería en Eléctricidad Especialización Electrónica

TEMA:

PRUEBAS DE INSTALACION DE LOS EQUIPOS DE CONMUTACION TELEFONICA ADQUIRIDOS POR EMETEL PARA EL CONTRATO DE 36.000 LINEAS TELEFONICAS DEL SISTEMA DIGITAL DE ERICSSON.

Autora:

Shirley Natalia Willacis Cervantes

Profesor Supervisor: Ing. Raúl Noriega Medina

SEPTIEMBRE DE 1995

Guayaquil - Ecuador

AGRADECIMIENTO

Al ING. RAUL NORIEGA, Profesor Supervisor del presente Informe, por su ayuda y colaboración para el desarrollo de este trabajo.

DEDICATORIA

A Dios.

A mi amado esposo **Magnus**, por su amor, apoyo y comprensión.

A nuestro hijito **Oscar**, porque con su inocencia y ternura ilumina mi vida.

A mis padres **Hipólito** y **Aderita**, por haberme brindado su cariño y dedicación toda mi vida.

A mis hermanos **Mónica**, **Carolina**, **Romnie** y **Abraham**, por apoyarme en la formación de mi personalidad.

A mi hermana **Angela**, porque sé que su espíritu me acompaña en esta etapa de mi vida.

TRIBUNAL DE GRADUACION

ING. CARLOS VILLAFUERTE PEÑA
DECANO DE LA FACULTAD DE INGENIERIA DE ELECTRICIDAD Y
COMPUTACION

ING. RAUL NONTEGA MEDINA PROFESOR SUPERVISOR

ING FREDDY VILLAO QUEZADA MIEMBRO PRINCIPAL DEL TRIBUNAL

DECLARACION EXPRESA

"La responsabilidad por los hechos, ideas y doctrinas expuestos en este informe técnico, me corresponden exclusivamente, y, el patrimonio intelectual de la misma, a la ESCUELA SUPERIOR POLITECNICA DEL LITORAL".

(Reglamento de Exámenes y Títulos profesionales de la ESPOL).

Millantu

SHIRLEY NATALIA VILLACIS CERVANTES

INDICE Pág.

INTRODUCCION

	Entorno del Proyecto de Ampliación Alcance del Informe Objetivos Generales Objetivos Particulares	10
CA	APITULO 1	
BF	REVE DESCRIPCION DE LOS EQUIPOS DE LA AMPLIACION	. 11
1.1	Visión Global del Sistema Telefónico del tipo digital AXE	. 11
1.4 1.3	Sistema de control APZ	. 15 16
1.3	3.1 Subsistema de Selector de Abonados (SSS)	17
1.3	3.2 Subsistema selector de Grupo (GSS)	21
1.3	3.3 Subsistema de Enlaces y Señalización (TSS)	22
1.3	3.4 Subsistema de señalización por Canal Común (CCS)	23
CA	APITULO 2	
DII	MENSIONAMIENTO DE LAS CENTRALES	. 24
2 1	Tráfico Telefónico	24
2.2	₽Fórmula de Tráfico de Erlang	25
2.3	Parámetros y cálculos	26
2.3	B.1 Dimensionamiento de la Central MAPASINGUE	26
2.3	3.4 DISTRIBUCION DE AMPLIACIONES	32
CA	APITULO 3	
ME	ETODOLOGIA DE LAS PRUEBAS	. 35
3 1	Introducción a las pruebas	35
3.2	Pruebas del Subsistema de Selector de Grupo (GSS)	36
	Pruebas del Subsistema de Troncal y Señalización (TSS)	
3.3	3.1 Prueba de los enlaces de señalización R2-MFC	38
	3.2 Prueba de los enlaces de señalización para Sistema No. 7	
3.4	Pruebas del Subsistema de Selector de Abonados (SSS)	41

3.5 Pruebas del Subsistema de Selector Remoto (RSS)CAPITULO 4	45
DESARROLLO DE LAS PRUEBAS	47
4.1 Pruebas del Subsistema de Selector de Grupo (GSS)	48
4.2 Pruebas del Subsistema de Troncal y Señalización (TSS)	
4.3 Pruebas del Subsistema de Selector de Abonados (SSS)	
4.3.1 Pruebas del Selector de Abonados Remotos (RSS)	72
CAPITULO 5 CONCLUSIONES Y RECOMENDACIONES	76
CONCLUSIONES & RECOMENDACIONES	/0
5.1 Conclusiones generales	76
5.2 Conclusiones por objetivos	76
GLOSARIO	79
BIBLIOGRAFIA	81
ANEXOS	82

INTRODUCCION

A. Entorno del Proyecto de Ampliación

El Proyecto de Ampliación de 36.000 líneas telefónicas de conmutación digital es un contrato establecido entre la Empresa Estatal de Telecomunicaciones EMETEL y la compañía española Intelsa (Subsidiaria de Telefonaktiebolaget LM Ericsson, Suecia).

El Proyecto comprende una ampliación de 36000 líneas telefónicas. a las centrales de tecnología ERICSSON ya existentes.

La ampliación se distribuye entre las centrales digitales tipo AXE 10 de la siguiente forma:

- a) En Guayaquil en las centrales de CENTRO3, NORTE2, BELLAVISTA, ALBORADA2, SUR3, MAPASINGUE, DURAN, TRANSITO DE GUAYAQUIL, ampliación de líneas de abonado y enlaces intercentrales;
- b) Puesta en operación de los pasos remotos de Lago de Capeira, Kennedy Norte, Terminal Terrestre y Guayacanes;
- c) En las ciudades de CUENCA y MACHALA en las centrales de su mismo nombre, para la ampliación de enlaces intercentrales.

La puesta en funcionamiento de esta ampliación pretende satisfacer la demanda de nuevas líneas telefónicas e incrementar los enlaces entre las centrales.

Este informe proporciona una visión global del sistema de conmutación digital AXE, luego se realizará el dimensionamiento de los equipos que seran ampliados para posteriormente hacer una síntesis de las pruebas realizadas a

los equipos. Se analizarán la metodología de las pruebas. Las pruebas se realizan de forma sucesiva hasta que los equipos queden perfectamente acoplados al sistema.

Para la elaboración de este informe se han utilizado las listas de los equipos adquiridos en conformidad al contrato original de EMETEL.

CUADRO GLOBAL DE LAS AMPLIACIONES

CENTRAL	CENTRAL MATRIZ	PASOS REMOTOS	TOTAL DE LINEAS LOCALES	TOTAL DE ENLACES
ALBORADA2	4992	2048	7040	1860
BELLAVISTA	3840	0	3840	2100
CENTRO 3	3712	1024	4736	2100
DURAN	1792	0	1792	1290
MACHALA	0	0	0	800
MAPASINGUE	5760	1024	6784	1530
NORTE 2	5504	2048	7552	1770
SUR3	3968	0	3968	1260
TRANSITO DE CUENCA	0	0	0	1984
TRANSITO DE GUAYAQUIL	0	0	0	8040
TOTAL:	29568	6144	35712	22734

PASOS REMOTOS

			بجو
CENTRAL MATRIZ	CONCENTRADOR	LINEAS	ENLACES
NORTE II	Kennedy Norte	1024	6x30
	Terminal Terrestre	1024	7x30
ALBORADA	Guayacanes	2048	12x30
CENTRO III	RSCEN3	1024	6x30
MAPASINGUE	Lago de Capeira	1024	6x30

B. Alcance del Informe

Objetivos Generales

El objetivo del presente informe es describir el desarrollo de un grupo de pruebas realizadas sobre equipos de conmutación digital telefónica. El sistema digital corresponde a la tecnología AXE de la compañía ERICSSON. Las pruebas realizadas son los requerimientos básicos según las recomendaciones de la CCITT. Al termino de las pruebas los equipos deberán funcionar perfectamente acoplados al sistema.

Las pruebas se realizaron en forma sucesiva hasta obtener resultados satisfactorios. Las unidades con fallas son removidas y reemplazadas por otras. Se considera que las centrales estan cursando tráfico telefónico siendo necesario no producir disturbios ni perjuicios al desarrollo del tráfico.

Objetivos Particulares

- Dar una visión general del sistema telefónico digital AXE.
- Establecer el método de dimensionamiento de los equipos que se van a ampliar.
- Identificar los parámetros utilizados para el dimensionamiento.
- Justificar y determinar el alcance de las pruebas.
- Tipificar el método de desarrollo de las pruebas utilizando una central como modelo.

CAPITULO 1

BREVE DESCRIPCION DE LOS EQUIPOS DE LA AMPLIACION

1.1 Visión Global del Sistema Telefónico del tipo digital AXE

Las centrales de conmutación AXE de ERICSSON corresponden a la tecnología digital de Programas de Control Almacenado (SPC). El diseño se basa en la existencia de diferentes módulos funcionales, que pueden combinarse de diferentes formas para cubrir una gran variedad de aplicaciones.

Arquitectura del Sistema AXE

La arquitectura del sistema AXE puede representarse gráficamente en forma de un árbol (ver figura No. 1 - Jerarquía funcional de AXE) con cada nivel jerárquico constituido por módulos específicos para ese nivel. Los cinco niveles jerárquicos son:

- ♦ Nivel de Sistema AXE
- ♦ Niveles de Sistema APT/APZ
- ♦ Niveles de Subsistema
- ♦ Nivel de Bloque Funcional
- ♦ Nivel de Unidad Funcional

Estructura del Sistema AXE

 Nivel de Sistema AXE Se refiere al conjunto del sistema AXE y comprende todos los niveles jerárquicos subordinados.

Niveles de Sistema APT/APZ El APT es el sistema de conmutación para aplicaciones telefónicas responsable de las llamadas telefónicas conmutadas en AXE. El APZ se encarga de controlar el equipo de conmutación de aplicaciones telefónicas.

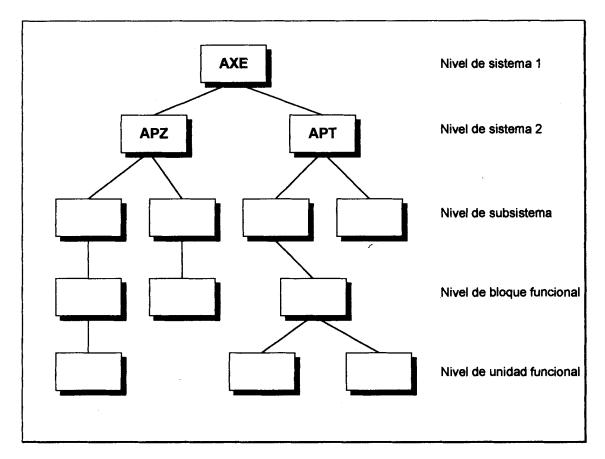


Figura No.1 - Jerarquía Funcional de AXE

- Niveles de Subsistema Tanto el APT como el APZ se dividen varios subsistemas que se encargan del control del sistema, APT se compone de subsistemas que soportan las aplicaciones telefónicas. Algunos subsistemas contienen sólo software, mientras que otros también disponen de hardware
- Nivel de Bloque Funcional Cada subsistema se compone de bloques funcionales individuales. Cada bloque funcional dispone de una interfase definida por señales discretas hacia el resto de los bloques funcionales. Los bloques funcionales son los bloques básicos con los que se constituye el

software AXE. Cada bloque funcional se compone de sólo software, o bien de unidades funcionales hardware y software que definen funciones específicas dentro de un Bloque de Función Individual. Los bloques funcionales son un conjunto de unidades funcionales.

Nivel de Unidad Funcional Los bloques funcionales pueden consistir en una unidad hardware, una unidad de software regional y una unidad de software central. En general, el software regional se ocupa de las tareas simples y muy repetitivas, como la comprobación de los dispositivos hardware. El software central se ocupa de funciones más complejas, que requieren mayor inteligencia.

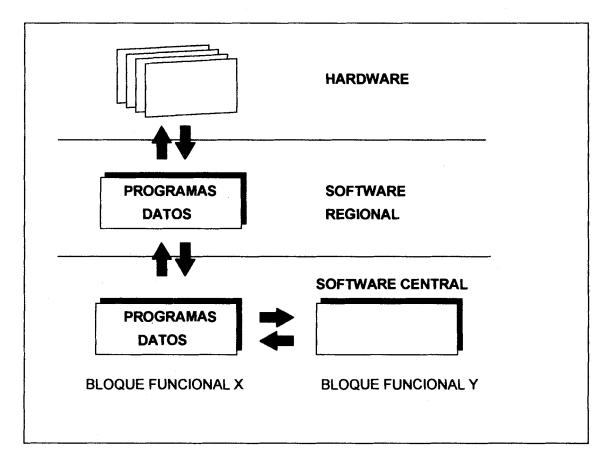


Figura No. 2 - Estructura de los Bloques Funcionales

Estructura de los bloques funcionales

Un bloque funcional puede consistir en una unidad hardware, una unidad de software regional y una unidad de software central. Los bloques funcionales sin hardware precisan únicamente software central, mientras que los bloques funcionales con hardware, requieren software regional además del central. la distinción dentro de las unidades funcionales de software, entre regionales y centrales responde a la división entre central y regional que se ha hecho en el sistema de control APZ (Figura No. 2- Estructura de Bloques Funcionales).

Las unidades software de los bloques funcionales se componen de programas y áreas de datos. El área de programas contiene instrucciones para la ejecución de tareas específicas, como incrementar o decrementar un contador o enviar una señal software hacia otro bloque funcional. El área de datos contiene los datos propios de cada central.

Dentro del proceso de pruebas, en la fase inicial es necesario accesar al área de datos. En esta área se modifican los datos de operación de la central, para introducir la información del equipo correspondiente a la ampliación. Se introducen también datos temporales útiles sólo durante el desarrollo de las pruebas.

Capacidad del Sistema

La capacidad del sistema se define como la capacidad terminal de líneas y enlaces, la capacidad de procesamiento de llamadas del procesador central (BHCA, Busy Hour Call Attempts), y la capacidad de manejo de tráfico del selector de grupo y del selector de abonados.

El sistema instalado en las centrales locales de Guayaquil es el denominado APZ 211, sólo en la central Tránsito de Guayaquil se tiene el sistema APZ 212. En las ciudades de Cuenca y Machala estan instalados los APZ 210 y APZ 211 respectivamente.

Sistema	Capacidad BHCA	Capacidad Nº abonados
APZ 210	144000	64000
APZ 211	150000	65536
APZ 212	800000	262144

1.2 Sistema de control APZ

APZ es un sistema de control basado en un procesador que trabaja el tiempo real y consta de:

- Procesador Centralizado (CP) para llevar a cabo funciones de procesamiento de datos requeridos por el sistema APT.
- Procesadores Regionales (RPs), para controlar los dispositivos hardware de APT.

El sistema emplea un conjunto especial de instrucciones microprogramadas en lenguaje de máquina dentro del Procesador Central (CP) con objeto de transmitir señales software entre los diferentes bloques funcionales.

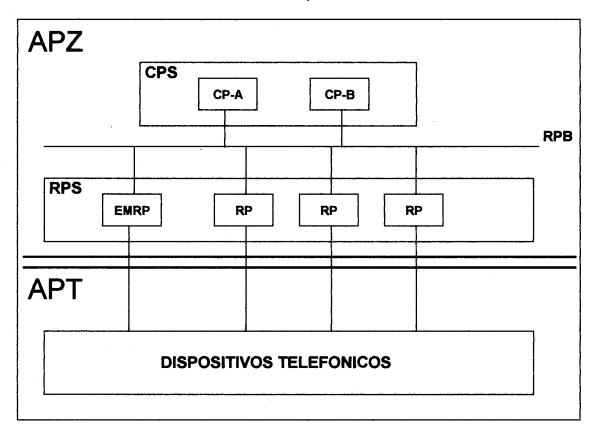


Figura No. 3 - Estructura de APZ

Unicamente pueden acceder a los datos de una unidad de software los programas del mismo bloque funcional. Todos los cálculos de direcciones se llevan a cabo automáticamente mediante microprogramas, de modo que resulta imposible para cualquier unidad de software alterar datos pertenecientes a otro bloque funcional.

Las comunicaciones entre el Procesador Central y los Procesadores Regionales se llevan a cabo mediante un bus de comunicaciones interprocesador duplicado llamado Bus de Procesadores Regionales (RPB) (ver figura No.3 - Sistema de Control APZ).

El sistema de control APZ incorpora una estructura jerárquica de dos niveles. Empleando control centralizado y distribuido a través del Procesador Central y los Procesadores regionales. Los RP's son responsables del manejo de las tareas simples y repetitivas.

1.3 Sistema de Conmutación APT

El sistema de conmutación APT, realiza la función de manejo de tráfico en el AXE (es decir, acceso de abonado y transporte). Proporciona la señalización y supervisa el proceso de conmutación del tráfico.

El APT contiene varios subsistemas que estan constituidos por software únicamente y otros dotados de software y hardware. El software asociado con el APT normalmente soporta tanto tareas rutinarias que requieren de alta capacidad, como funciones ejecutivas altamente complejas. Los subsistemas APT se implementan en software central y regional.

Subsistemas del APT

El sistema de conmutación APT se compone de vanos subsistemas. A continuación se enunciaran los subsistemas que estan involucrados con los equipos de la ampliación.

Subsistema Selector de Abonados (SSS). Maneja el tráfico de y hacia los abonados conectados a la central, bien local o remotamente a través del Selector Remoto de Abonados (RSS). Contiene software y hardware.

Subsistema Selector de Grupo (GSS). Establece, supervisa y libera las conexiones a través del selector de grupo. Contiene software y hardware.

Subsistema de Enlaces y Señalización (TSS). Maneja la señalización y la liberación de las conexiones a otras centrales. Contiene software y hardware.

Subsistema de Señalización por Canal Común (CCS). Contiene funciones de señalización, enrutamiento, supervisión y corrección de mensajes enviados de acuerdo con el sistema de Señalización Número 7. Contiene software y hardware.

1.3.1 Subsistema de Selector de Abonados (SSS)

El SSS (Ver figura No. 4 - Estructura del APT) proporciona los accesos de línea de abonado a AXE. Las principales funciones del SSS son seleccionar, conectar y desconectar canales vocales a través del conmutador de líneas de abonado. El SSS también realiza funciones de operación y conservación. Tanto líneas digitales como analógicas pueden conectarse a AXE.

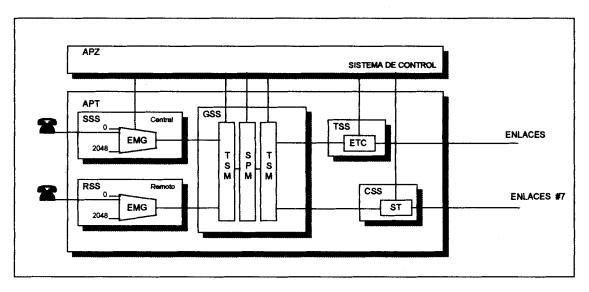


Figura No. 4 - Estructura del APT

Entre los principales componentes del SSS se destacan:

- Módulos de extensión (EMG)
- Módulo selector de Línea (LŚM)

Módulos de Extensión (EMG)

El SSS se compone de uno o varios EMG. Los EMG pueden utilizarse físicamente en la central telefónica o bien en el llamado Selector Remoto de Abonados (RSS). A su vez, cada EMG esta compuesto de varios Módulos Selectores de Línea (LSM) y/o Módulos de Extensión (EM), con las siguientes limitaciones:

- El número máximo de líneas por cada LSM es de 128
- El número máximo de LSM's por cada EMG es de 16
- Por lo tanto, el máximo número de líneas por cada EMG es de 2048.

El tráfico que proviene de las líneas de abonado, ya sea local o remoto se concentra en canales PCM, antes de enviarse al selector de grupo. Estos canales PCM en un Módulo de Extensión situado en la central reciben el nombre de Circuitos de Circuito de Conexión al Selector de Grupo (JTC) o bien tarjetas de terminación de Central (ETB), para el caso de EMG's situados en una ubicación remota.

Además, cada ETB tiene su correspondiente ETC (Circuito de Terminación de Central) en el extremo de la central.

Los LSM son unidades hardware básicas en el SSS (ver figura No. 5 - Módulo Selector de Línea), usados para conectar líneas analógicas a los EMG's.

En los LSM distinguimos:

- 128 circuitos de interfaz de línea (LIC)
- Una unidad de prueba de línea y de circuito (LCT)
- De uno a 3 circuitos de Conexión al Selector de Grupo (JTC) o tarjetas terminales de central (ETB) en caso de RSS's
- Una unidad de selector temporal (EMTS)
- Un procesador Regional de Módulo de Extensión (EMRP)
- Receptor de Código de Teclado (KR), 0-8 Receptores DTMF.
- a) Los circuitos de Interfaz de línea estan conectados al selector temporal, que no es más que una memoria para la toma de muestras digitales de voz. El circuito de interfaz de línea incorpora las siguientes funciones principales:
 - Alimentación de batería
 - Protección contra sobretensión
 - Emisión de señales de llamada
 - Supervisión de línea
 - Emisión de tonos
 - Conversión analógica/digital

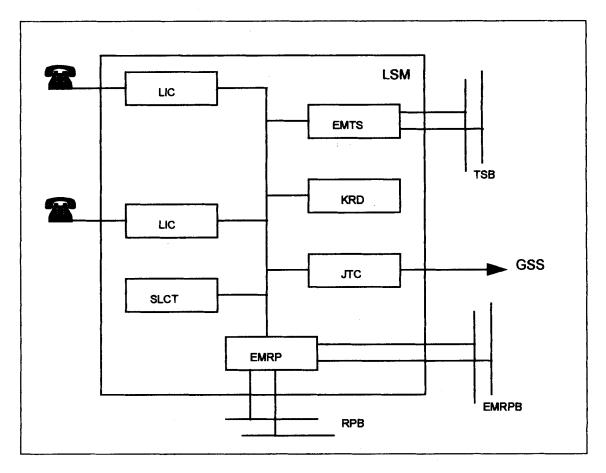


Figura No.5 - Módulo Selector de Línea (LSM)

- b) Cada magazine o almacen contiene una tarjeta de prueba de circuito de línea (SLCT).
- c) Los circuitos de Conexión al Selector de Grupo (JTC), se usan para conectar los abonados de la central al selector de grupo, constituyendo sistemas PCM internos de 32 canales. Igualmente, las tarjetas terminales de central (ETB), se usan para conectar los abonados de un RSS. Los ETC's como se mencionó, son las terminaciones de las líneas de abonados remotos en el selector de grupo. El dimensionamiento de los JTC's y los ETC's se realiza de acuerdo a las necesidades de tráfico.
- d) El selector temporal (EMTS). Los LSM dentro de un EMG se interconectan a través del Bus del Selector Temporal (TSB), lo que permite a cada uno de los 128 abonados de un LSM, alcanzar sus propias líneas PCM u otras

pertenecientes a otros LSM's. Hasta 16 LSM's (16 x 128 = 2048 líneas de abonados) pueden conectarse a un bus TSB (Ver figura No. 6 - Conexión de los EMG al selector de grupo). Debido a la ausencia de congestión interna en el selector temporal y a la alta capacidad de tráfico en el bus, no es necesario el equilibrado de la carga para igualar la distribución del tráfico en las distribucións se líneas.

- e) Procesador Regional de Módulo de Extensión (EMRP) es una variación del procesador regional diseñado para el Subsistema Selector de Abonados.
- f) El circuito Receptor de Código (KR) es un equipo común a varios abonados, y sirve para la recepción de dígitos procedentes de los teléfonos multifrecuencia (reciben señales DTMF).

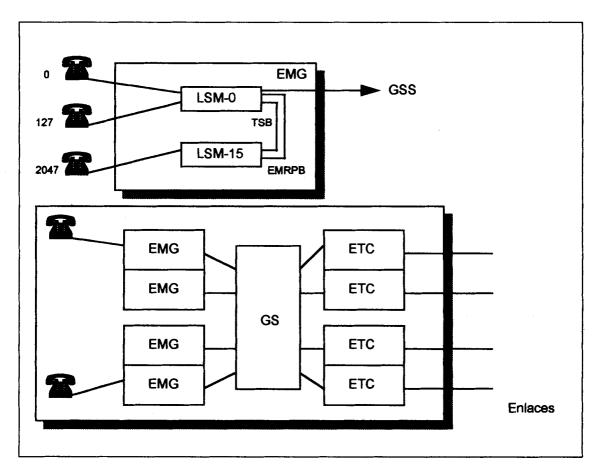


Figura No. 6 - Conexión de los EMG al selector de grupo

1.3.2 Subsistema selector de Grupo (GSS)

El Subsistema Selector de Grupo (Ver figura No. 4) realiza la conmutación entre sistemas PCM.

El proceso de conmutación se verifica estableciendo caminos de voz a través de una matriz Tiempo-Espacio-Tiempo (que está duplicada). Esta estructura del selector de grupo se implementa con **Módulos Selectores Temporales** (TSM's) y **Módulos Selectores Espaciales** (SPM's) . La conmutación temporal se logra mediante memorias temporales y la conmutación espacial mediante matrices electrónicas de puntos de cruce.

Puesto que el selector de grupo está sin congestión, cualquier enlace puede ser conectado a cualquier puerta libre del selector de grupo, independientemente de la influencia del tráfico de cualquier otro enlace. Por lo tanto no será necesario equilibrar cargas o reorganizar terminaciones de red existentes cuando se añadan nuevos enlaces.

Además la red de selectores se caracteriza por su accesibilidad completa, o sea, cualquier posición simple de la matriz tiene acceso a todas las demás posiciones.

Conmutación Temporal-Espacial-Temporal

Para conectar un canal de un sistema PCM a otro PCM, el selector digital debe realizar una conmutación espacial entre los dos PCM y una conmutación temporal entre los dos canales.

La señal PCM procedente del Subsistema de Señalización y Enlaces (TSS) es enviada al Módulo Selector temporal (TSM). Desde allí se envía la señal al punto de cruce apropiado que lo conectará al Circuito Terminal de central (ETC), a un conversor analógico/digital, a un emisor o un receptor de códigos.

Módulos de Selección Temporal (TSM)

El selector de grupo contiene 128 TSM's duplicados que operan en paralelo de forma síncrona. Todas las llamadas se conmutan simultáneamente en los dos planos del selector de grupo. Un Procesador Regional controla un máximo de 8 pares de TSM's.

Módulos de Selección Espacial (SPM)

El conmutador espacial es una matriz de 128 x 128 puntos de cruce, que son en realidad puertas electrónicas.

32 TSM's pueden conectarse como máximo a cada SPM, por lo que puede atender a 512 x 32 posiciones de múltiple. Conectando cada TSM a cuatro SPM's obtenemos una matriz de conmutación espacial con 128 entradas y salidas.

Un máximo de 16 Módulos de selección espacial con 32 x 32 puntos de cruce, formando una matriz de 128 x 128, puede soportar 65.536 posiciones de múltiple. (ver figura No. 7 - Configuración del selector de Grupo).

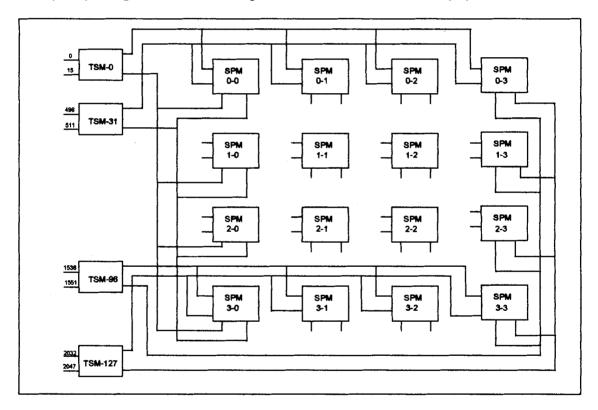


Figura No. 7 - Configuración del Selector de Grupo

1.3.3 Subsistema de Enlaces y Señalización (TSS)

El TSS (ver figura No. 4) es responsable de la señalización y la supervisión de los enlaces, incluyendo funciones que permiten la compatibilidad de AXE con los distintos sistemas de señalización en uso.

La comunicación entre el TSS y el resto de subsistemas del AXE se realiza a través de interfaces estándar, para el uso de los diferentes sistemas de señalización no afecte a los otros subsistemas. El TSS también realiza la traducción entre señales de los enlaces y las señales software internas.

Los equipos que se van a ampliar corresponden a los siguientes sistemas:

- R2-MFC. Este sistema de código multifrecuencial utiliza la señalización R2. El MFC envía las señales de registro mediante la combinación de dos tonos. Para manejar estos tonos se requiere de un equipo especial, estos equipos son el CR y el CS, Receptor de Código y Emisor de Código respectivamente. Los CR y los CS se conectan al GSD para permitir el enlace de habla. Dentro del sistema de AXE se definen para la señalización R2-MFC los equipos con la identidad de BTR2D. el hardware que maneja los BTR2D son los ETC que pueden tener 32 canales en cada ETC.
- Sistema CCITT No7. Este sistema utiliza la señalización CCITT No.7, funciona mediante el envío mensajes. Los equipos que trabajan con esta señalización se llaman C7BTC. El hardware de los C7BTC es el mismo ETC que puede funcionar como BTR2D, la diferencia en su uso se debe a los programas que se cargan en el Procesador Regional. Así mismo el ETC puede tener 32 canales para C7BTC.

1.3.4 Subsistema de señalización por Canal Común (CCS)

EL CCS (Ver figura No. 4) proporciona acceso a la red de señalización por canal común a través de enlaces de señalización número 7.

La red de señalización # 7 constituye una red de conmutación de paquetes que se relaciona con la red de voz/datos proporcionando la señalización adecuada para el control de las llamadas.

El sistema de señalización # 7 proporciona la flexibilidad necesaria en la configuración, gestión y control de la red.

CAPITULO 2

DIMENSIONAMIENTO DE LAS CENTRALES

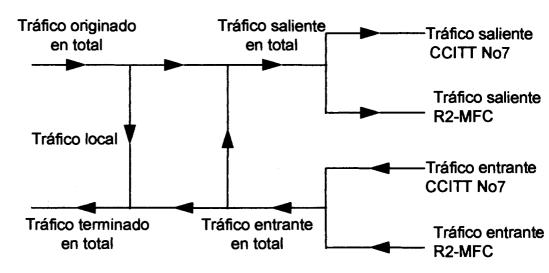
Como se ha mencionado anteriormente la ampliación de los equipos de conmutación se efectúa en las centrales telefónicas de CENTRO 3, NORTE 2, ALBORADA 2, SUR 3, BELLAVISTA, DURAN, MAPASINGUE, TRANSITO DE GUAYAQUIL, TRANSITO DE CUENCA, y MACHALA. El proyecto comprende ampliaciones sobre los equipos ya existentes. Las centrales Encisson son del tipo AXE 10. En el capítulo anterior se entregaron los conceptos básicos del sistema telefónico de AXE 10, así como una breve descripción de los equipos que serán ampliados. El dimensionamiento de los equipos para la ampliación es una respuesta a la demanda de servicio telefónico para cada central. Los datos de la demanda de tráfico son entregados por EMETEL para realizar el análisis de los requerimientos en cada caso. En este capítulo se presentan los conceptos básicos para realizar el dimensionamiento.

2.1 Tráfico Telefónico

El tráfico telefónico se define como la acumulación de llamadas telefónicas en un grupo de circuitos o troncales considerando tanto su duración como su cantidad, se puede decir que el flujo de tráfico (A), es

$$A = C \times T$$

donde C es la cantidad de llamadas por hora y T es la duración promedio por llamada. La unidad para el tráfico es el Erlang. El Erlang es una unidad sin



dimensiones. Un Erlang de intensidad de tráfico sobre un circuito significa la ocupación continua de tal circuito.

Según la recomendación Q.544 de la CCITT, se definen los siguientes conceptos:

- Tráfico local o interno, producido en la central hacia abonados de la misma central
- Tráfico saliente, producido en la central hacia otras centrales
- Tráfico originado, es el tráfico local mas el tráfico saliente
- Tráfico terminado o saliente de origen, es la suma de el tráfico local con el tráfico entrante local.

TIPO DE TRAFICO EN ERLANG

Tráfico conmutado = Tráfico originado en total + Tráfico entrante en total

Tràfico por abonado = <u>Tráfico originado en total + Tráfico entrante en total</u>
Número total de lineas

2.2 Fórmula de Tráfico de Erlang

Cuando se dimensiona una ruta, lo que se requiere es determinar el número de circuitos en la ruta. Para esto, se dispone de varias fórmulas que se basan en la carga de tráfico en la hora pico. La fórmula que vamos a utilizar es la fórmula B

de llamadas perdidas de Erlang. Aquí, pérdida significa la probabilidad de bloqueo en el conmutador debido a la congestión o al estado de "todas las troncales ocupadas". Esto se expresa como grado de servicio $E_{\rm B}$ o probabilidad de encontrar x canales ocupados. Los otros dos factores de la fórmula B de Erlang son el tráfico ofrecido/conmutado y el número disponible de troncales o canales de servicio. Entonces se tiene:

$$E_{B} = \frac{A^{n}/n!}{1 + A - A^{2}/2! + \dots + A^{n}/n!}$$

Donde: n = número de troncales o canales de servicio

A = promedio del tráfico ofrecido/conmutado

E_B = grado de servicio según la fórmula B de Erlang

Las suposiciones adoptadas en esta fórmula son:

El tráfico se ongina de un número infinito de fuentes

- las llamadas perdidas desaparecen del sistema considerando su duración igual a cero.
- El número de troncales es limitado.
- Existe accesibilidad completa.

Se debe tener en cuenta que la fórmula B de Erlang maneja tráfico ofrecido, cuya diferencia con el tráfico conmutado es el número de llamadas perdidas

2.3 Parámetros y cálculos

Para hacer el dimensionamiento se consideró: Criterio de servicio de 0.005. Se utilizaron como referencias los parámetros de **trafico originado** y **tráfico terminado** por cada central, los mismos que fueron proporcionados por EMETEL. Asimismo, EMETEL indicó cuantos abonados y troncales intercentrales deseaba ampliar por cada central. En 3.3.1 se dimensiona la Central Mapasingue, bajo este mismo analisis se dimensionan las otras centrales, posteriormente en el punto 3.3.2 se presenta un cuadro con el resultado de los dimensionamientos por central.

En el Anexo 1 se presenta el diagrama de la red intercentral incluida la ampliación del contrato 36k.

2.3.1 Dimensionamiento de la Central MAPASINGUE

Cabe indicar que la cantidad de abonados y cantidad de troncales intercentrales a ampliar por cada central es el resultado de una licitación hecha por EMETEL.

De esta forma el dimensionamiento de este informe comprende a los equipos que interactúan con estas líneas y troncales ampliadas acopladas a los equipos ya existentes en cada central de tal forma que se cumpla con la probabilidad de carga de E_B .

Para la central Mapasingue se ampliaran 6784 abonados, distribuidos de la siguiente forma:

Abonados en la central matriz : 5760 Abonados en los pasos remotos : 1024

3.3.1.1 Dimensionamiento del selector de abonados (SSS)

a) Para determinar el número de EMG:

Cada grupo EMG's puede tener un máximo de 2048 abonados:

La ampliación se formará de : 2 grupos de 2048 abonados

TOTAL: 1 grupo de 1664 abonados 5760 abonados

TOTAL: 5760 abonados

Cada EM contiene 128 abonados, de donde el número de EM :

El grupo de 2048 /128 = 16 EM El grupo de 1664 /128 = 13 EM

No. de EM's para ampliar = $(2 \times 16) + (1 \times 20) + (1 \times 20) = 45$

No. de EM's totales para ampliar = 45

b) Para determinar la cantidad de JTC a ampliar:

Los datos del tráfico indicados como requerimiento por EMETEL son:

Tráfico originado por abonado : $A_o = 0.080 \text{ Erl.}$ Tráfico terminado por abonado : $A_t = 0.066 \text{ Erl.}$

Consideramos A_{jtc} como el tráfico para los circuitos de conexión al selector de grupo JTC.

De esta forma para los grupos de 2048 abonados:

Tráfico originado por grupo de 2048 abonados : $0.080 \times 2048 = 163.840 \text{ Erl.}$ Tráfico terminado por grupo de 2048 abonados : $0.066 \times 2048 = 135.168 \text{ Erl.}$ Tráfico Total por grupo de 2048 abonados : $A_{inc} = 299.008 \text{ Erl.}$

Para el grupo de 1664 abonados:

Tráfico originado por grupo de 1664 abonados : $0.068 \times 1664 = 133.120 \text{ Erl.}$ Tráfico terminado por grupo de 1664 abonados : $0.061 \times 1664 = 109.824 \text{ Erl.}$ Tráfico Total por grupo de 1664 abonados : $A_{jtc} = 242.944 \text{ Erl.}$

Aplicamos la Fórmula de Erlang (Ver Anexo 2. Tablas de Erlang) con grado de servicio E=0.005 y obtenemos la cantidad necesaria de circuitos JTC:

 N_{jtc} (2048) = 330 N_{itc} (1664) = 272

Cada enlace JTC contiene 32 canales de conversación (circuitos JTC):

Para el grupo de 2048 abonados : 330/32 = 11 Para el grupo de 1664 abonados : 272/32 = 9

Por lo tanto el número total de JTC de la ampliación es de :

JTC de esta ampliación = $(2 \times 11) + (1 \times 9) = 31$ JTC existentes en la central = 32TOTAL de JTC = 63

2.3.1.2 Dimensionamiento del PASO REMOTO (RSS)

El Paso Remoto a ampliar corresponde a Lago de Capeira con 1024 líneas de abonados

a) Para determinar el número de EM:
Cada grupo EM tiene 128 abonados de donde : 1024 /128 = 8
No de EM's para ampliar = 8

b) Para determinar el número de ETC a ampliar:

Tráfico originado por abonado : $A_o = 0.080$ Erl. Tráfico terminado por abonado : $A_t = 0.066$ Erl. Consideramos A_{etc} como el tráfico para los circuitos de conexión al selector de grupo ETC

Tráfico onginado por grupo de 1024 abonados : $0.080 \times 1024 = 81.920 \text{ Erl.}$ Tráfico terminado por grupo de 1024 abonados : $0.066 \times 1024 = 67.584 \text{ Erl.}$ Tráfico Total por grupo de 1024 abonados : $A_{\text{etc}} = 149.504 \text{Erl.}$

Aplicamos la Fórmula de Erlang con grado de servicio E=0.005 y obtenemos la cantidad necesaria de circuitos ETC es de 174.

Esto corresponde a la siguiente cantidad de enlaces ETCC, de 31 canales de conversación cada uno: 174/31 =6.

2.3.1.3 Dimensionamiento del subsistema de troncales intercentrales GSS

La cantidad de abonados y enlaces troncales intercentrales para ampliar son definidas por EMETEL. Los equipos cooperantes con las rutas de las troncales intercentrales son los CR y CS. Una vez realizada la ampliación de los abonados aumentará también la demanda de equipos cooperantes a las rutas intercentrales. En esta parte se dimensiona la cantidad de estos equipos CS y CR necesaria para no producir congestión en estas rutas. Para realizar el dimensionamiento EMETEL proporciona el valor del tráfico que soportaran estas rutas.

Dimensionamiento de RECEPTORES Y EMISORES de código.

Se utilizará la siguiente fórmula:

$$A_{cr} = \frac{A_t \times h_{cr}}{h}$$
 o bien $A_{cs} = \frac{A_t \times h_{cs}}{h}$

Donde:
$$A_{CR,CS} = Tráfico ofrecido a los CR y CS$$

Luego de la ampliación la central Mapasingue contará con:

Abonados en la central matríz : 12800 Abonados en los pasos remotos : 1024 Número total de abonados : 13824

a) Cálculo de Receptores CR para señalización MFC-LME

Datos: $A_t = 144.5 \text{ Erl.}$

 $h_{cR} = 4 \text{ seg}$

h = 135 seg

De donde:

 $A_{CR} = (144.50 \times 4)/135 = 4.28$

Para el cálculo de CR se considera grado de servicio = 0.005 y con el tráfico de A_{CR} = 4.28, se obtiene de la tabla de ERLANG (ver Anexo 2. Tabla de Erlang) que la cantidad de CR es de 12.

Los almacenes de CR tiene capacidad para 4 circuitos.

Número total de Almacenes CR para los 13824 abonados : 12/4 = 3
Almacenes CR necesarios : 3
Almacenes CR existentes : 2
Almacenes CR para esta ampliación : 1

b) Cálculo de Emisores CS para señalización MFC-LME

Datos: $A_t = 163.46 \text{ Erl.}$

 $h_{cs} = 3.50 \text{ seg} \\ h = 135 \text{ seg}$

 $A_{cs} = (163.46 \times 3.5)/135 = 4.24 \text{ Erl.}$

Para el cálculo de CS se considera grado de servicio = 0.01 y tráfico A_{cs} =7.50, de la tabla de ERLANG (Ver Anexo No. 2. Tabla de Erlang) se tiene que la cantidad de CS es de 8

Los almacenes de CS tiene capacidad para 4 circuitos.

Número total de Almacenes CS para los 13824 abonados : 8/4= 2
Almacenes CS necesarios : 2
Almacenes CS existentes : 2
Almacenes CS ampliación : 0

c) Cálculo de convertidores Analógico/Digital PCD

Las señales de los equipos CS, CS, ASAM y TCON son analógicas, para permitir el ingreso de estas señales al GSD se utiliza el Convertidor Analógico/Digital PCD que convierte las señales a digitales, De esta forma para dimensionar si se ampian o no se procede de la siguiente forma:

Cada convertidor analógico PCD tiene capacidad de 32 entradas analógicas

EQUIPO	ENTRADAS A PCD		DAD CALCULO UIPOS	ALMACENES PCD
ASAM	16	1	(16 x 1)/32	0.5
TCON	32	1	(32 x 1)/32	1
CRD	4	3	(4 x 3)/32	0.375
CSD	4	2	(4 x 2)/32	0.25
	TOTAL DE ALMACENES PCD:			2.125 = 3

PCD necesarios : 3
PCD existentes : 2
PCD de la ampliación : 1

2.3.1.4 Dimensionamiento del GSS

Para dimensionar los TSM necesarios para manejar la central se consideran todas las entradas digitales existentes hacia este tipo de equipo, Se procede de la siguiente forma:

Cálculos de Módulos de selector Temporal TSM

Cada TSM tiene capacidad para 512 entradas de multiple

	Número de	Entradas	Entradas
Equipos	equipos	por Equipo	Totales
JTC	63	32	2016
PCD	3	32	96
PCD-D	2	32	64
MJD	1	32	32
BTR2D	19	32	608
C7BTC	67	32	2144
ETCC	6	32	192
TOTAL DE	ENTRADAS		5152

Para obtener el número de TSM totales: 5152/512= 10.06

Lo que corresponde a 11 TSM

TSM necesarios : 11
TSM existentes : 5
TSM de la ampliación : 6

2.3.4 DISTRIBUCION DE AMPLIACIONES

Para dimensionar los equipos a ampliar en cada central se utilizó el procedimiento indicado en 3.3.1 en las centrales involucradas en la ampliación. Luego de procesar los datos se obtiene el siguiente cuadro donde se describen llos equipos a ampliar tanto en la misma central como en los concentradores.

Ampliacion de los equipos por central:

CENTRAL	No. LSM	No.de Líneas	No. ETC Sist.7	No. ETC Sist.R	No. CR	No. CS	No. PCD	No. TSM
MAPASINGUE	45	5760	31	20	1	0	1	5
DURAN	14	1792	36	7	1	0	1	4
BELLAVISTA	30	3840	64	6	3	0	1	6
ALBORADA2	39	4992	42	20	2	1	1	7
NORTE2	43	5504	53	6	2	1	1	5
SUR3	31	3968	33	9	1	0	1	4
CENTRO3	29	3712	70	0	6	3	2	4
TRANSITO DE GUAYAQUIL	0	0	247	21	4	5	1	17
MACHALA	0	0	25	0	0	0	0	0
TRANSITO DE CUENCA	0	0	62	0	0	0	0	4

Ampliación de los equipos por pasos remotos

PASOS REMOTOS	MATRIZ	No. LSM	No. Líneas	No. Enlaces
KENNEDY NORTE	NORTE2	8	1024	6
TERMINAL	NORTE2	8	1024	7
TERRESTRE				
LAGO DE CAPEIRA	MAPASINGUE	8	1024	6
GUAYACANES	ALBORADA2	16	2048	12
RSCEN3	CENTRO3	6	768	6

En la figura No. 9 se ilustra el diagrama de los equipos existentes antes y con la ampliación de la central MAPASINGUE

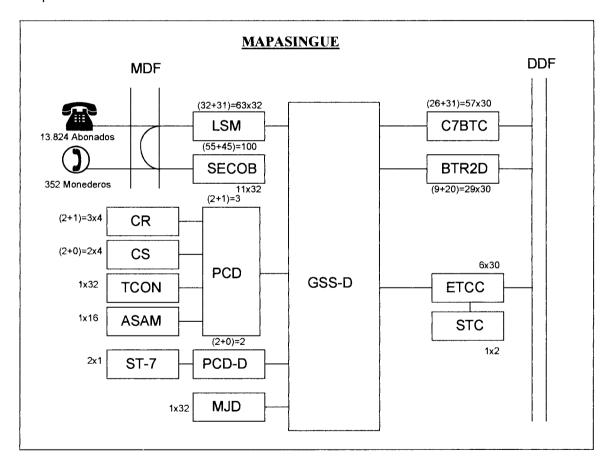


Figura No.9 - Esquema de la central Mapasingue

En la figura No.9 considerar:

A + B donde A lo que existe antes de la ampliación

B lo que se amplía

C x D donde C cantidad total de la ampliación

D entradas digitales al GS

CAPITULO 3

METODOLOGIA DE LAS PRUEBAS

3.1 Introducción a las pruebas

El sistema telefónico de AXE está respaldado por la compañía de origen sueco Telefonaktiebolaget LM ERICSSON. En el marco de la compañía constan Centros de Desarrollo tanto en hardware como en software, fábricas desde microprocesadores, elementos semiconductores, cables hasta llegar a la generación de las mismas centrales con todo su tecnología y diferentes sistemas de soporte y asesoría; dentro de este marco encontramos, las plantas de pruebas en las mismas fàbricas, en ellas se hace la primera verificación de cada producto antes de llegar al mercado al que van a ser entregadas. El equipo es pre- probado en fábrica. Al llegar a su destino este se instala para formar parte de el sistema particular de cada mercado. En el caso de la ampliación del contrato de 36.000 líneas, los productos son el resultado de los requerimientos solicitados por EMETEL y que entran dentro de las recomendaciones de la CCITT. Los equipos de conmutación corresponden a las especificaciones dadas por la recomendación Q.543 y Q.544 de la CCITT (Ver Anexo 3). La cantidad y tipos de equipos necesarios por central estan de acuerdo al cuadro de distribuciones de 3.3.2.

El proceso de pruebas de instalación entonces será sobre el marco particular de cada central. Se requiere conocer los datos y situación operacional de cada una de las centrales (ej. puntero para direccionar los procesadores regioanles RP, número de equipos utilizados, puntero para direccionar los equipos a ampliar) para proceder a realizar las modificaciones necesarias sin afectar al trabajo y

operación normal de la central. En este informe hablaremos del proceso general de pruebas utilizando como referencia la central Mapasingue. Se eligió como referencia a esta central porque en ella se amplian todos los tipos de equipos que existen en las otras centrales (Observar cuadro de distribución de ampliaciones en 3.3.2.).

3.2 Pruebas del Subsistema de Selector de Grupo (GSS).

El hardware del GSS a probar son los TSM. Como se vío anteriormente los TSM se encargan de seleccionar, conectar y desconectar los enlaces de habla tales como las señales de los PCM de los equipos ya sea BTR2D o de C7BTC. Los TSM se comunican al Procesador Central por medio de los RP. Como se vee en la Figura No.10 - Conexión de los TSM, es necesario habilitar inicialmente los RP que manejan a los TSM, de esta forma los pasos a seguir son:



Figura No. 10 - Conexión de los TSM

- 1 Identificar y definir los RP's que manejarán los EM's, y su distribución. El RP para conectar TSM puede tener un máximo de 8 EM's.
- 2 Definir los equipos TSM que se conectaran a cada EM.
- 3 Definir los datos y realizar las conexiones de los equipos TSM a los PCM de los equipos ETC o PCD. Cada TSM puede manejar máximo 16 PCM de diferentes tipos de equipos.
- 4 Realizar las pruebas de TSS y verificar el estado de TSM en cada prueba.
- 5 En el caso de la central de Mapasingue probar los 5 TSM en todas sus posiciones.
- 6 Confirmar que las 16 posiciones de cada TSM realizan las conexiones de habla.

Como se puede observar una vez puestos en funcionamiento los equipos hasta el nivel de TSM, será necesario probar al equipo con carga, esto es cursando el tráfico de los PCM ya sea para BTR2D o C7BTC, los resultados deben ser satisfactorios en cada caso. En caso de sospecha de falla se procede al reemplazo de la unidad involucrada y se repiten las pruebas. Los pasos para la prueba de TSS se indican en la siguiente parte.

3.3 Pruebas del Subsistema de Troncal y Señalización (TSS)

El hardware de ETC se prueba generalmente realizando llamadas normales en cada circuito troncal. Para proporcionar una prueba mas rápida se hacen conexiones de lazo (loop) en los enlaces PCM entre los pares de los magazines ETC.

Los Datos de Central se activan de manera que la llamada se transmite vía la Ruta Saliente, y se recibe en la Ruta Entrante, y a través de un lazo hasta que todos los circuitos troncales en los dos magazines ETC estén ocupados. Después la llamada se vuelve a direccionar a un teléfono local.

En el Anexo 1 se observa el Diagrama de los enlaces intercentrales existentes en la red de Guayaquil al realizarse esta ampliación. Como ejemplo del proceso de pruebas se tomará a la central Mapasingue. Los equipos para probar en este subsistema:

20 enlaces PCM con señalización R2-MFC 31 enlaces PCM con señalización No. 7

3.3.1 Prueba de los enlaces de señalización R2-MFC

Como se mencionó anteriormente, los equipos que utilizan la señalización R2-MFC son los denominados BTR2D. Inicialmente se debe preparar los datos de adaptación de la central para recibir los equipos de prueba sin afectar el tráfico normal de la central de prueba; los cambios en datos son particulares para cada central. En la figura No.11-Prueba de Enlaces BTR2D se presenta un esquema de la conexión de los equipos para realizar las pruebas.

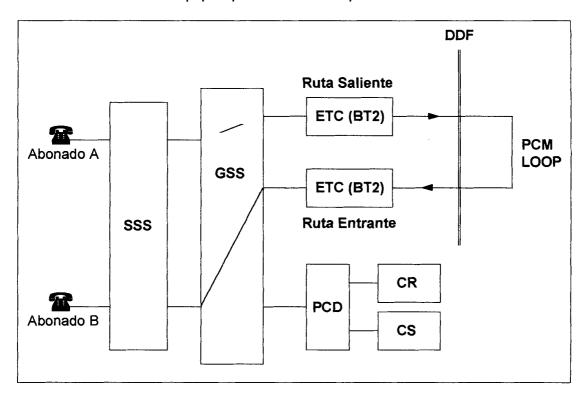


Figura No .11 - Prueba para enlaces BTR2D

En términos generales los pasos son los siguientes:

- 1 Se crean dos rutas de prueba para los BTR2D, una para liamadas entrantes y otra para llamadas salientes.
- 2 Se definen los PCM de BTR2D que van a funcionar dentro de estas rutas.
- 3 Determinar los equipos BTR2D que se conectarán en cada PCM.
- 4 Identificar y definir los RP's que manejarán los EM's, y su distribución. El RP para BTR2D puede tener un máximo de 8 EM's.
- 5 Definir una ruta de prueba para los CR y otra para los CS.
- 6 Realizar las conexiones necesarias para el CR y el CS al PCD.
- 7 Conectar el PCD al GSD.

- 8 Definir el PCD hacia el GSD
- 9 Definir el número de abonado A desde donde se realizaran las llamadas de pruebas, este número sólo debe accesar a la ruta de prueba.
- 10 Definir número de abonado B que recibirá las llamadas en prueba.
- 11 Probar con comandos de central los equipos, si la prueba es satisfactoria poner los equipos en operación.
- 12 Realizar el loop en el distribuidor de PCM (DDF), en cada loop se prueban 2 PCM, uno como saliente y el otro como entrante.
- 13 Realizar una llamada desde abonado A hacia abonado B.
- 14 Verificar la ocupación de los equipos mediantes comandos de la central.
- 15 Verificar la calidad de habla.
- 16 Cambiar al siguiente par de PCM, y continuar hasta haber probado los 20 enlaces.
- 17 Intercambiar la conexión de los equipos de salientes a entrantes y viceversa y repetir la prueba hasta cubrir los 20 enlaces.

En esta prueba todos los resultados deben ser satisfactorios. Si al probar el equipo se detecta una falla o mala calidad de habla, se procede al cambio de la unidad sospechosa, se repite la prueba hasta que al ocupar el equipo en prueba la calidad de habla es satisfactoria.

3.3.2 Prueba de los enlaces de señalización para Sistema No. 7

Para esta prueba se realiza una conexión directa a otra central denominada central cooperante. En sistema No.7 las rutas son bidireccionales, esto significa que el mismo equipo puede ser entrante o saliente dependiendo del tipo de llamada que cursa.

En la prueba de la central Mapasingue se utilizó como central cooperante la central Centro3. Los datos se prepararon para utilizar un PCM con tráfico real para conectarse a la ruta de prueba, de esta forma la llamda de prueba generada por el abonado A llegará hasta la central cooperante, a su vez la central cooperante leerá sus datos (modificados para la prueba) y regresará la llamada a la central de prueba direccionándola al abonado B. En el caso de la central Mapasingue se probarán los 31 enlaces PCM uno a uno, la figura No.12- Prueba para enlaces con Señalización No.7 muestra el esquema de la conexión necesaria para la prueba.

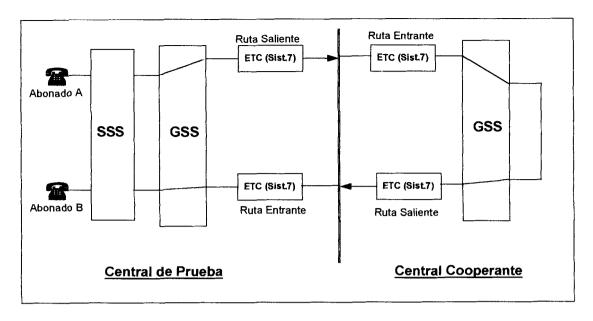


Figura No. 12 - Pruebas para enlaces con Señalización No.7

En términos generales los pasos son:

- 1 Se crean dos rutas de prueba para los C7BTC. Las rutas son bidireccionales, aquí se discriminan los parámetros con los que funcionará la ruta cuando sea saliente o entrante, según sea el caso de ocupación.
- 2 Se definen los PCM de C7BTC que van a funcionar dentro de estas rutas.
- 3 Determinar los equipos C7BTC que se conectarán en cada PCM.
- 4 Identificar y definir los RP's que manejarán los EM's, y su distribución. El RP para C7BTC puede tener un máximo de 16 EM's.
- 5 Definir el número de abonado A desde donde se realizaran las llamadas de pruebas, este número sólo debe accesar a la ruta de prueba.
- 6 Definir número de abonado B que recibirá las llamadas en prueba.
- 7 Probar con comandos de central los equipos, si la prueba es satisfactoria poner los equipos en operación.
- 8 Realizar el enlace en el distribuidor de PCM (DDF), sólo se podrá probar un PCM a la vez, por el mismo PCM va a salir y regresar la llamada, esto se debe a que la ruta es bidireccional.
- 9 Definir un número de abonado exclusivo para la prueba.
- 10 Realizar una llamada desde abonado A hacia abonado B.
- 11 Verificar la ocupación de los equipos mediantes comandos de la central.
- 12 Verificar la calidad de habla.
- 13 Cambiar al siguiente enlace PCM, y continuar hasta haber probado los 31 enlaces.

Al igual que en las pruebas para BTR2D los resultados deben ser satisfactorios. Si al probar el equipo se detecta una falla o mala calidad de habla, se procede al cambio de la unidad sospechosa, se repite la prueba hasta que al ocupar el equipo en prueba la calidad de habla es satisfactoria.

3.4 Pruebas del Subsistema de Selector de Abonados (SSS).

La prueba de abonados se realiza en dos etapas, la primera es la puesta en operación de los equipos, segun su jerarquía, y luego la segunda que es la generación de tráfico.

Para la puesta en operación de los equipos se deben seguir los siguientes pasos:

- Identificar y definir en datos los EMRP's que manejarán los EMG necesarios para la ampliación. En la fig. 13 se nuestra la conexión del SSS y RSS al GS.
- 2 Definir los EMG que formarán cada grupo. En la parte 3.3.1.1 se dimensionaron 2 grupos EMG de 2048 abonados cada uno y otro grupo EMG con 1664 abonados. Cabe indicar que de acuerdo a las condiciones de la central Mapasingue, el tercer grupo de 1664 abonados se distribuirá entre el último grupo ya instalado SS3 que estaba incompleto agregando 1152 abonados y un último grupo SS6 con 512 abonados
- 3 Luego de definir los EMG, definir los elementos de los LSM, esta definición se inicia declarando primero los EM's. En el caso de Mapasingue se formaran el grupo SS3 completando el grupo con 9 EM's, 2 grupos de EMG denominados SS4 y SS5 con 16 EM'scada uno y un último grupo SS6 con 4 EM's.
- 4 Definir los EMTS, estos corresponden a la misma cantidad de EM que se tengan, siendo: 2 grupos de 16, un grupo de 4 y se completa otro con 9.
- Identificar y definir los equipos que forman parte de los LSM. Estos son Los JT, KR, SLCT y LI. En el caso de la central Mapasingue se amplian para los grupos SS4 y SS5 11 enlaces de JT (11 x 32 = 330 circuitos), para el grupo SS6 son 3 enlaces (3 x 32= 96) y para el SS3 se completa 1 enlace de JT (1 x 32 = 32 circuitos). Por diseño se definen los KR en todos los EM's de cada grupo. En cada EM se definen los circuitos SLCT y los grupos de abonados LI de 128 en 128.
- 6 Se crean dos rutas para conectar los circuitos JT, estas rutas sirven para ocupar las posiciones en los TSM. En la Fig. No. 13- Se observa la conexión de los EMG al GS.
- 7 Probar con comandos de central los equipos, si la prueba es satisfactoria poner los equipos en operación de acuerdo al orden de jerarquía. La jerarquía de mayor a menor es:

EMRP, EMG, EM, EMTS JT, LI, KR, SLCT

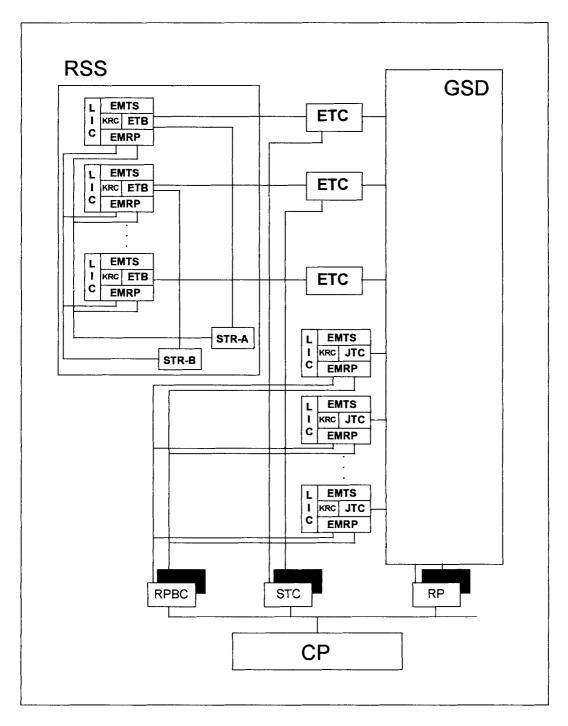


Figura No. 13 - Esquema de conexión para SSS y RSS hacia el GSD

- 8 Verificar que todos los equipos del SSS estan en operación
- 9 Proceder a las pruebas de tráfico

En la segunda etapa de las pruebas se realiza la simulación de tráfico sobre cada circuito LI. Para esta prueba utilizaremos el Programa Emulador de Tráfico de Conmutación PEST. Se adjuntan las especificaciones técnicas y caracteristicas del equipo PEST. Este equipo consta de un programa que emula las señales de generación de llamadas de abonados, el programa se carga en un computador al que se le acoplan las tarjetas de interface para que ingresen los tonos de los abonados reales provenientes de la central. El PEST esta diseñado para probar 64 circuitos LI simultaneamente. En la figura No. 14 se presenta el esquema de la conexión del equipo PEST en el repartidor de abonados. El emulador tomará los tonos reales de la central desde el repartidor para introducirlos al PC por medio de la interface.

Dentro de las pruebas de tráfico se tienen 2 tipos:

♦ Pruebas de tráfico A En esta fase se prueba uno a uno los LI, para esto se procede a conectar la interface de prueba en los primeros 64 abonados, Para probar 64 abonados las recomendaciones de CCITT indican realizar 1200 llamadas con una intensidad entre 60 y 80 llamadas por minuto, en esta prueba no se aceptan llamadas en falla. Durante el proceso de generación de tráfico se obligará al equipo a utilizar ademas de los JT propios del EM los JT que corresponden a otros EM, esto se realiza mediante el bloqueo por comando de los dispositivos propios, de tal forma que las llamadas en curso deben utilizar el bus TSB para conectarse a los JT de otros EM. Se debe verificar por comando la ocupación normal de los circuitos. En el caso de la central Mapasingue se realizaron las pruebas en orden secuencial de 64 en 64. Las fallas comunes se debían en general a equivocaciones en el cableado.

La conexión de abonados como se vee en la figura No.14 se hace en el repartidor. La conexión se hace por medio de 4 cables para 16 conexiones que se acoplan perfectamente a las posiciones de los LI a nivel de repartidor.

Los pasos a seguir para la prueba son los siguientes:

- 1 Definir los parámetros de prueba para el sistema teléfonico de EMETEL.
- 2 Declarar en el PEST los datos para los 64 LI de prueba. (Serie Numérica, número de llamadas, Intensidad de tráfico).
- 3 Colocar los cables de pruebas en las posiciones correspondientes a los LI de pruebas.
- 4 Leer los contadores de llamadas de los abonados en prueba.
- 5 Generar las llamadas en prueba.
- 6 Controlar el estado de los equipos desde los terminales de la central.

- 7 Controlar la pantalla de errores del PEST
- 8 Si existen fallas detectadas, proceder al análisis de la falla y solucionar la falla
- 9 Si se solucionó la falla proceder desde el paso 4, sino continuar.
- Si han cursado unas 600 llamadas sin falla, proceder al bloqueo de los JT propios del EM para obligar a la llamadas en curso a utilizar el TSB y ocupar los JT de otros equipos.
- 11 Si se han efectuado las llamadas requeridas sin falla, leer los contadores de los abonados y comparar los resultados. Controlar que los resultados sean compatibles.
- 12 Proceder al cambio de definición y conexión a los siguientes 64 LI, y continuar desde el paso 1
- 13 Proceder de igual manera hasta completar las pruebas sobre todos los L1

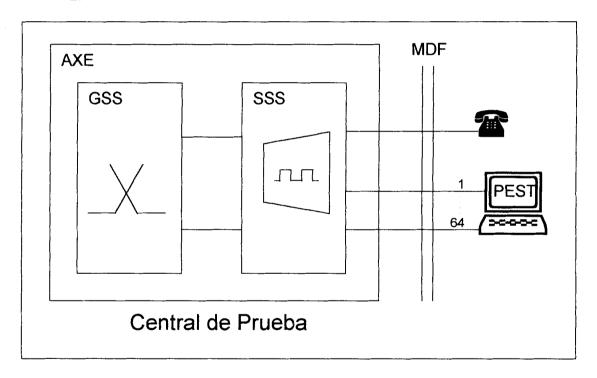


Figura No. 14 - Conexiòn del PEST

♦ Pruebas de tráfico B Este es el tráfico de carga distribuida. En esta prueba se distribuirán los 64 LI del equipo PEST entre todos los equipos de la ampliación. La intención de esta prueba es someter a toda la ampliación a una carga real. Para esto utilizaremos el equipo PEST, las recomendaciones de CCITT para este caso son de utilizar una intensidad de llamadas entre 120 y 150 llamadas por minuto, la cantidad de llamadas a realizar depende de los

requerimientos de EMETEL. Para el caso de la central Mapasingue, esta prueba se realizó en 2 etapas debido a que la ampliación es grande, Estas 2 etapas consisten en dividir la central en 2 grupos de pruebas de 2880 abonados y distribuir sobre cada grupo los 64 abonados de prueba. EMETEL solicitó para cada grupo realizar 300000 llamadas para cubrir el tráfico por 3 días.

Los pasos a seguir para esta prueba son:

- 1 Declarar en el PEST los datos para los 64 LI de prueba. (Serie Numérica, Intensidad de tráfico).
- 2 Colocar los cables de pruebas en las posiciones correspondientes a los LI de pruebas, por tratarse de distribuir los 64 abonados sobre los 2880 existentes, estos cables se colocaran en pasos de 45 abonados.
- 3 Leer los contadores de llamadas de los abonados en prueba.
- 4 Generar las llamadas en prueba.
- Controlar durante el día cada 4 horas el estado de los equipos desde los terminales de la central. y desde el PEST.
- Si no existen fallas proceder a leer los contadores de los abonados y la cantidad de llamadas realizadas por abonado segun el PEST. controlar que los resultados sean compatibles.
- Proceder a colocar los cables distribuyéndolos sobre los siguientes 2880 abonados y repetir desde el paso 1

3.5 Pruebas del Subsistema de Selector Remoto (RSS)

Los RSS son LSM colocados en forma remota. EL paso remoto Lago de Capeira dependerá de la central matriz Mapasingue. En la fig No. 4 se representa la configuración del paso remoto y en la fig. No. 7 se presenta la conexión de los equipos del RSS a la central Matriz.

El paso remoto de Lago de Capeira esta formado por 8 LSM (8 x 128 = 1024 abonados) y 6 enlaces (6 x 32 = 192 circuitos) hacia la central matriz. Los pasos remotos se conectan a la central matriz por medio de los ETC de las tarjetas ETB, estos adoptan las siglas de RT. El paso remoto tiene dos equipos STR . Los STR ejercen el control de las tareas rutinarias en el remoto y se comunican a la central por medio de los equipos STC. Los STR se conectan a los dos primeros LSM del paso remoto.

Al igual que las pruebas de los SSS las pruebas para RSS se realizan en 2 etapas, los pasos a seguir para la primera etapa son:

- 1 Se crean dos rutas para conectar los circuitos RT, estas rutas sirven para ocupar las posiciones en los TSM. En la Fig. No. 6- Se observa la conexión de los EMG de los remotos al GS.
- 2 Identificar y definir los STC's que manejarán los EMG.
- 3 Definir el EMG que funcionará como remoto.
- 4 Luego de definir los EMG, definir los elementos de los LSM, esta definición se inicia declarando primero los EM's. En el caso de Lago de Capeira el grupo se formará de 6 EM's.
- 5 Definir los EMTS, estos corresponden a la misma cantidad de EM que se tengan, en este caso seran 6 EMTS.
- 6 Identificar y definir los equipos que forman parte de los LSM. Estos son Los RT, KR, SLCT y LI. En el caso de nuestra el concentrador de lago de Capeira se amplian 6 enlaces de RT (6 x 32 = 192 circuitos). Al igual que en los pasos locales por diseño se definen los KR en todos los EM's de cada grupo. En cada EM se definen circuito SLCT y los grupos de abonados de 128 en 128.
- 7 Se realiza la conexión en datos de los circuitos RT a las rutas de Prueba, estas rutas sirven para ocupar las posiciones en los TSM, tal como se observa en la fig. No 6.
- 8 Probar con comandos de central los equipos, si la prueba es satisfactoria poner los equipos en operación de acuerdo al orden de jerarquía. La jerarquía de mayor a menor es:

STC

EMG

ΕM

EMTS

RT, LI, KR, SLCT

- 9 Verificar que todos los equipos del RSS estan en operación
- 10 Proceder a las pruebas de tráfico

En la segunda etapa de las pruebas se realiza la simulación de tráfico sobre cada circuito LI. Para esta prueba utilizaremos el Programa Emulador de Tráfico de Conmutación PEST, el mismo empleado para las pruebas de SSS. Se realizan los 2 tipos de prueba de tráfico es decir la prueba A y B.

CAPITULO 4

DESARROLLO DE LAS PRUEBAS

La central de referencia para el desarrollo de las pruebas es la central de Mapasingue, ubicada en la ciudadela la Florida de la ciudad de Guayaquil, a continuación se presenta una fotografía del edificio de EMETEL donde se ubica la Central y otra donde se observa parte de la central y el terminal de comunicación.

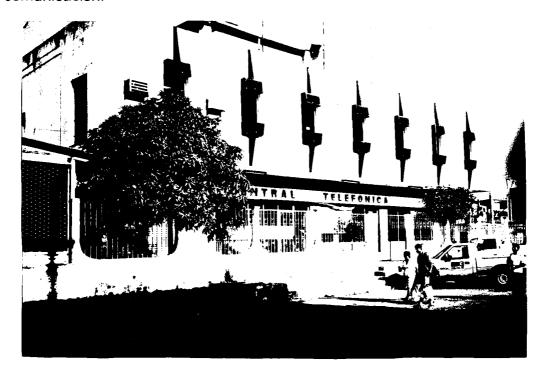


Foto 1. Edificio de EMETEL donde está ubicada la Central Mapasingue

Foto 2. Vista parcial de la Central Mapasingue

Las pruebas se realizaron desde el 29 de agosto al 20 de septiembre de 1992. Para la realización de las pruebas utilizamos como medio de prueba las funciones del sistema AXE implementadas en el software de la central para cada tipo de subsistema, un multímetro, un equipo medidor de continuidad eléctrica, una maleta de herramientas y el PC con Programama Emulador de Tráfico (PEST). La comunicación operador-sistema se realizó desde un terminal que se conecta en la misma central, para esto empleamos los comandos propios del sistema AXE. Estos comandos estan formados por 5 letras, el lector encontrará una explicación breve de la función de los comandos.

Como se ha indicó anteriormente el proceso de las pruebas de instalación se repitió hasta que los equipos de la ampliación quedaron acoplados al sistema.

4.1 Pruebas del Subsistema de Selector de Grupo (GSS).

De acuerdo al cuadro de la distribución de ampliaciones de 3.3.4 en la central Mapasingue se ampliarán 5 TSM's.

En la parte anterior se explicó en términos generales la metodología de las pruebas, en esta parte particularizaremos los detalles de las pruebas a los TSM.

1) Para conocer los TSM que existen en la central y su estado de operación se introdujo el siguiente comando:

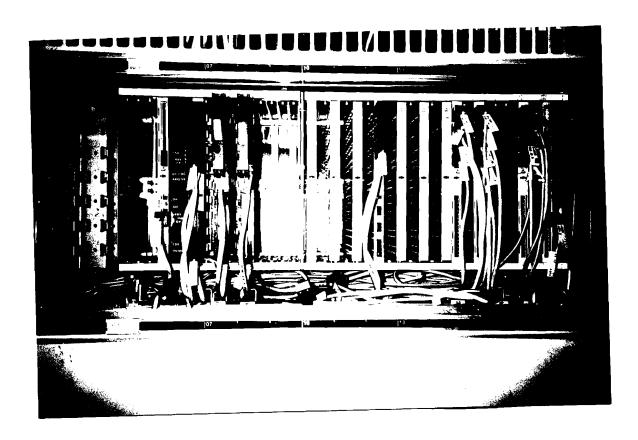
<GSSTP: TSM=ALL;

La impresión de respuesta es amplia, un ejemplo de esta respuesta es:

GROUP SWITCH STATE

UNIT STATE BLSTATE VARIANT UNIT STATE BLSTATE

TSM-A-0 WO 11 TSM-B-0 WO TSM-A-1 WO 11 TSM-B-1 WO


END

De la impresión anterior se conoce el número de TSM instalados y el estado de operación, en esta central los equipos estaban en estado normal WO. Del análisis de los datos se determinó que los TSM para la ampliación corresponden a los TSM del 6 hasta el TSM 10. n la foto 3 se observa el hardware de un TSM

2) Se procedió a solicitar el comando

EXEMP: EM=ALL, RP=ALL;

Con el comando EXEMP se identificó a los RP 64 y 65 que manejan los TSM del 0 al 5. Considerando que los RP que manejan los TSM pueden manejar hasta 8 TSM deducimos que se dispone de dos posiciones libres, en estas posiciones ubicaremos a los TSM 6 y 7. Para instalar los otros 3 TSM de la ampliación se necesitó de otro grupo para 8 TSM, Esto implica instalar un grupo completo dispuesto para 8 TSM de los cuales sólo ocuparemos las primeras 3 posiciones. De acuerdo a la configuración de la sala de la central y a la disponibilidad de los punteros para los RP se decidió utilizar para el nuevo grupo los RP 74 y 75. En la foto 2 se observa el hardware de un magazine para TSM.

Foto 3. Hardware del TSM

- 3) Una vez definidos e identificados los datos para la ampliación se procedió de la siguiente forma:
- Se amplió la memoria para los bloques funcionales involucrados con el comando: SAAII;
- Se definió las conexiones hacia el CP del nuevo grupo de TSM mediante la declaración de los RP, con el comando:

EXRPI: RP= 74, RPT= 75, TYPE=RPM1A;

El parámetro TYPE depende del tipo de hardware instalado.

- Se definieron los 2 TSM's que completaban el grupo ya existente, con el siguiente comando:

EXEMI:EM= 12, RP= 64, RPT=65, EQM=GS-6, PP=4;

Cada vez que se definió un TSM se repitió el comando anterior con el dato particular de cada caso.

- Se definieron los TSM mediante el comando

GSCOI: TSM=X, TSMV= 11;

El parámetro TSMV depende del tipo de hardware instalado, para todos los equipos de esta ampliación será 11.

- 4) Se procedió con la instalación del hardware de la siguiente manera:
- Se instalaron los magazines en las posiciones correspondientes.
- Se instalaron las conexiones a tierra de los equipos.
- Se probó la continuidad de los cables antes de proceder a su conexión al los equipos.
- Se midió la alimentación de -48 v de entrada a los equipos con el multímetro.
- Se conectaron los cables de alimentación a los magazines, se encendieron las fuentes de cada uno y se midió el voltaje de salida de cada equipo.
- 5) Desde el terminal se ordenaron los comandos de debloqueo de los equipos, según su jerarquía, de la siguiente forma:
- Para el caso los TSM 6 y TSM 7 se procedió directamente a desbloquear los EM, ya que los RP ya estaban funcionando, con el siguiente comando:

BLEME: EM= 12, RP= 64, RPT=65;

El comando se repitió por cada TSM instalado. Si el equipo funciona correctamente, el sistema convierte al EM directamente del estado de bloqueo BLOC al estado de trabajo WO, caso contrario se genera una señal de alarma y se imprimen las razones mas probables del fallo y/o los equipos sospechosos del fallo. Para esta prueba se encontraron 3 problemas debidos a la colocación equivocada de los cables en el magazine.

Impresión de la alarma:

PARTLY EXECUTED
DEBLOCKING OF EM FAILED

Impresión del resultado de la prueba

EM DIAGNOSIS

```
TESTRESULT FAULT
```

```
RP EM PCB REPLACED REASON
64 12 RPBU-A
RPBU-B
ALU
EMBU
POU
```

END

Del ejemplo anterior se encontró que fallaban los cables de interconexión a la tarjeta EMBU que correspondieron a los cables del bus del EM.

El comando de desbloqueo BLEME se repitió luego de atender el problema y los equipos del EM pasaron al estado de WO. Para confirmar que en EM esta en WO, se pide el comando:

```
<EXEMP:EM=ALL;RP=64;
```

EM DATA

RP	TYPE	EΜ	EQM	TWIN	CNTRL	PP	STATE
64	RPM1A	12	GS-6	65	PRIM	4	WO

En la columna STATE de la impresión anterior se lee WO lo que concluye que el equipo probado está en estado de operación normal.

Para el caso de los TSM del 8 al 10 se procedió primeramente a desbloquear los RP 74 y 75, con el comando.

```
<BLRPE: RP=74;
```

El comando sólo acepta el desbloqueo de un RP a la vez. Si el equipo funciona correctamente, el sistema pasa al RP directamente del estado de bloqueo BLOC al estado de trabajo WO, caso contrario se genera una señal de alarma y se produce una impresión en el terminal donde se indica la posible razón de error o el equipo que se sospecha tiene alguna falla. En el caso de los RP no se

detectaron fallas, por lo que el equipo entró directamente en WO, para confirmar el estado del RP se pide el siguiente comando:

<EXRPP:RP=74;

RP DATA

RP STATE TYPE TWIN STATE DS MAINT.STATE
74 WO RPM1A 75 WO 2552 IDLE
END

Cuando se confirmó que el RP estaba en WO se procedió a desbloqear los EM que manejan los TSM con el comando BLEME de la misma forma como se indicó anteriormente.

- Se confirmó mediante el comando GSSTP que todos los EM estaban en estado WO. En este nivel se procedió a realizar las pruebas mediante los comandos del sistema de los TSM de la siguiente forma:

GSTEI: TSM=TSM-A-6;

El comando se aplica sobre un TSM a la vez, de tal forma que se prueba uno a uno los TSM, el resultado de la prueba se muestra automáticamente en el terminal, si el equipo esta bien se presenta la respuesta NO FAULTS, si existe algún problema se indica un código de falla dependiendo de cual es la parte sospechosa. En la central Mapasingue, se encontraron dos errores en la ubicación de los cableados. Estos errores se detectaron al producirse los siguientes códigos de falla:

Fcode 4 Error al recibir las señales Debido a un cable mal hecho Fcode 1 No reconoce al equipo Debido a un cable mal colocado

Se realizó la corrección y luego se repitió la prueba con el comando GSTEI, es esta ocasión los resultados fueron satisfactorios.

- Se solicitó el comando GSSTP; para confirmar que los equipos de la ampliación se encuentran en estado WO.

Una vez que los TSM estanban en estado WO se puedió a definir las conexiones de otros equipos que se comunican al GS. A continuación se presenta la impresión completa del resultado al comando GSSTP, luego de haber probado los TSM:

<GSSTP;

GROUP SWITCH STATE

UNIT	STATE	BLSTATE	VARIANT UNIT	STATE BLSTATE
CLM-0	WO	1		
CLM-1	WO	1		
CLM-2	WO	1		
SPM-A-0	-0 WO	1	SPM-B-0-0 W	o
TSM-A-0	wo	11	TSM-B-0 WO)
TSM-A-1	WO	11	TSM-B-1 WO	•
TSM-A-2	WO	11	TSM-B-2 WO	
TSM-A-3	WO	11	TSM-B-3 WO	•
TSM-A-4	WO	11	TSM-B-4 WO	•
TSM-A-5	WO	11	TSM-B-5 WO	
TSM-A-6	WO	11	TSM-B-6 WO	
TSM-A-7	WO	11	TSM-B-7 WO	•
TSM-A-8	WO	11	TSM-B-8 WO	
TSM-A-9	WO	11	TSM-B-9 WO	
TSM-A-1	OW 0	11	TSM-B-10 W	0
END				

En la columna STATE de la impresión anteior se encuentró que los TSM del 6 al 10 estan en WO, por lo cual se concluye que los equipos ampliados para este subsistema se encuentran funcionando bajo condiciones normales de operación.

4.2 Pruebas del Subsistema de Troncal y Señalización (TSS).

En la central Mapasingue se probaron 20 enlaces PCM con señalización R2-MFC. y 30 enlaces PCM con señalización No.7

Para identificar las definiciones de los equipos de la ampliación se solicitó el comando

NTCOP:SNT=ALL;

Con este comando se pidieron los datos de los equipos conectados a la red de conmutación, del análisis de la impresión de respuesta se obtuvo que existían en la central Mapasingue lo siguiente:

- 9 SNT para sistema R2-MFC, conequipo BTR2D,
- 26 SNT para sistema No.7, el equipo es el C7BTC.
 - 2 SNT para PCD ocupados completamente

A partir de los datos anteriores se prepararon los datos de central. Cabe recordar que el hardware para los equipos BTR2D y C7BTC es igual, en la foto 4 se presenta una visión del equipo.

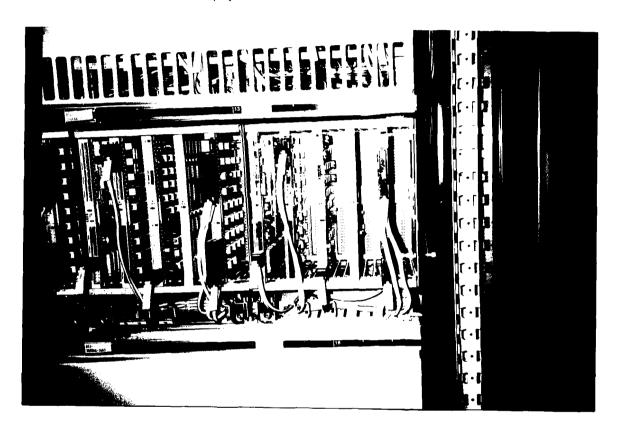


Foto 4. Hardware del ETC

4.2.1 Pruebas de los enlaces de señalización R2-MFC

Analizando la distribución de las ampliaciones y los datos disponibles de la central Mapasingue se obtuvo:

- -Los 20 enlaces PCM de la ampliación empezaran su numeración desde el 288 hasta el 927, cada PCM lleva 32 canales.
- -Se conectará un equipo PCD que se asignara con el número 2.
- -Se conectará al PCD el equipo CR que tendrá las asignaciones del 8 al 11.

Acogiendo lo anterior se procedió:

- 1) Se procedió a ampliar las áreas de memoria a los bloques involucrados a estos equipos con el comando SAAII.
- 2) Se procedió a la creación de las rutas de prueba, definiendo como ruta saliente BT2O y ruta entrante BT2I, la secuencia de comandos es:

EXROI:

Para crear la ruta

EXRBC:

Para introducir los parámetros de la ruta saliente y entrante

EXROP:

Para monitorear los datos de la ruta

Con la respuesta a este último comando se obtiene los datos de la ruta de prueba:

EES=1

<EXROP:

ROUTE DATA

R ROUTE PARAMETERS

BT2I DETY=BTR2D PRI=3

FNC=1 R1=CR1 LSV=1 CO=NO

BT2O DETY=BTR2D EES=1 FNC=2

R1=CS1 LSV=1

END

En la impresión anterior se encuentran varios campos como son

DETY: Tipo de dispositivo, en este caso BTR2D.

FNC: Código refernte al tipo de ruta, si es saliente o entrante.

R1: Ruta cooperante, si son papra CS o CR

EES: Tipo de señalización es fin a fin.

LSV: Variante de la señalización de línea.

CO: Origen de cobro.

- 3) De acuerdo a la disposición física de la central y al análisis de datos se procedió de la siguiente forma:
- A los RP 54 y 55 que tienen posiciones disponibles se les conectaron los equipos BTR2D desde el 288 hasta el 479, ocupando las posiciones, se conectaron con el comando EXEMI.

- Se necesitó otra pareja de RP para manejar los dispositivos faltantes, Se definieron los RP 86 y 87 para conectar los BTR2D desde 450 hasta el 927, con el comando EXRPI, luego se definieron los EM con el comando EXEMI.
- 4) Se procedió con la instalación del hardware de la siguiente manera:
- Se instalaron los magazines ETC en las posiciones correspondientes.
- Se instalaron las conexiones a tierra de los equipos.
- Se probó la continuidad de los cables antes de proceder a su conexión al los equipos.
- Se midió la alimentación de -48 v de entrada a los equipos con el multímetro.
- Se conectaron los cables de alimentación a los magazines , se encendieron las fuentes de cada uno y se midió el voltaje de salida de cada equipo.
- 5) Se procedió con la puesta en funcionamiento de los equipos RP y EM mediante los comandos BLRPE y BLEME, al igual que en el desbloqueo de los EM y RP se realizaron las pruebas repitiéndolas hasta que el equipo entre en estado de operación WO, durante esta fase se encontraron 2 fallas en las tarjetas EMB y 3 fallas en el cableado.

Luego de superar las fallas se pidió el comando EXEMP para verificar que los equipos estan en estado normal, a continuación se presenta la respuesta a este comando:

<EXEMP: EM=ALL,RP=54;

EM DATA

RP	TYPE	EM EQM	TWIN C	NTRL PP	STATE
54	RPM1A	0 BTR2D-224&&-	255 55	PRIM 2	WO
54	RPM1A	1 BTR2D-256&&-	287 55	SEC 2	WOTWIN
54	RPM1A	2 BTR2D-288&&-	319 55	PRIM 2	WO
54	RPM1A	3 BTR2D-320&&-	351 55	SEC 2	WOTWIN
54	RPM1A	4 BTR2D-352&&-	383 55	PRIM 2	WO
54	RPM1A	5 BTR2D-384&&-	415 55	SEC 2	WOTWIN
54	RPM1A	6 BTR2D-416&&-	44 7 55	PRIM 2	WO
54	RPM1A	7 BTR2D-448&&-	479 55	SEC 2	WOTWIN

END

- Se necesitó otra pareja de RP para manejar los dispositivos faltantes, Se definieron los RP 86 y 87 para conectar los BTR2D desde 450 hasta el 927, con el comando EXRPI, luego se definieron los EM con el comando EXEMI.
- 4) Se procedió con la instalación del hardware de la siguiente manera:
- Se instalaron los magazines ETC en las posiciones correspondientes.
- Se instalaron las conexiones a tierra de los equipos.
- Se probó la continuidad de los cables antes de proceder a su conexión al los equipos.
- Se midió la alimentación de -48 v de entrada a los equipos con el multímetro.
- Se conectaron los cables de alimentación a los magazines , se encendieron las fuentes de cada uno y se midió el voltaje de salida de cada equipo.
- 5) Se procedió con la puesta en funcionamiento de los equipos RP y EM mediante los comandos BLRPE y BLEME, al igual que en el desbloqueo de los EM y RP se realizaron las pruebas repitiéndolas hasta que el equipo entre en estado de operación WO, durante esta fase se encontraron 2 fallas en las tarjetas EMB y 3 fallas en el cableado.

Luego de superar las fallas se pidió el comando EXEMP para verificar que los equipos estan en estado normal, a continuación se presenta la respuesta a este comando:

<EXEMP: EM=ALL,RP=54;

FM DATA

RP	TYPE	EM EQM	TWIN CI	NTRL PP	STATE
54	RPM1A	0 BTR2D-224&&-	255 55	PRIM 2	2 WO
54	RPM1A	1 BTR2D-256&&-	287 55	SEC 2	WOTWIN
54	RPM1A	2 BTR2D-288&&-	319 55	PRIM 2	2 WO
54	RPM1A	3 BTR2D-320&&-	351 55	SEC 2	WOTWIN
54	RPM1A	4 BTR2D-352&&-	383 55	PRIM 2	2 WO
54	RPM1A	5 BTR2D-384&&-	415 55	SEC 2	WOTWIN
54	RPM1A	6 BTR2D-416&&-	447 55	PRIM 2	2 WO
54	RPM1A	7 BTR2D-448&&-	479 55	SEC 2	WOTWIN

END

<EXEMP:EM=ALL,RP=86;

EM DATA

RP	TYPE	EM EQM	TWIN C	NTRL P	Р	STATE
86	RPM1A	0 BTR2D-736&&-	767 8 ⁻	7 PRIM	2	WO
86	RPM1A	1 BTR2D-768&&-	799 8	7 SEC	2	WOTWIN
86	RPM1A	2 BTR2D-800&&-	831 8 ⁻	7 PRIM	2	WO
86	RPM1A	3 BTR2D-832&&-	863 8	7 SEC	2	WOTWIN
86	RPM1A	4 BTR2D-864&&-	895 8°	7 PRIM	2	WO
86	RPM1A	5 BTR2D-896&&-	927 8	7 SEC	2	WOTWIN

END

De la impresión anterior se concluye que los EM para los BTR2D de la ampliación estan en estado WO.

6) Para la conexión hacia el GS, se definieron los SNT con sus respectivos equipos BTR2D mediante el comando:

NTCOI: SNTP= TSM-5-2, SNTV=4, DEV=BTR2D- 288&&- 319;

El parámetro SNTP le indica al sistema que los BTR2D del 288 al 319 se conectan al GS en la segunda posisción del TSM 5, el TSMV es constante ya que este valor depende del tipo de equipo. Como se observa en el comando la conexión al GS se hace de 32 en 32 canales.

Luego de definir los equipos se introdujo el comando EXDUI, este comando es obligatorio para realizar el proceso de conexión de los equipos BTR2D a los SNT, en el comando EXDUI sólo se necesita indicar los equipos ya que el sistema automaticamente conecta los equipos al SNT correspondiente. Para cubrir la ampliación se definieron los SNT del 9 al 28. Un ejemplo del comando EXDUI:

EXDUI: DEV= BTR2D- 288&&-319;

En el comando EXDUI se conectan los equipos de 32 en 32. Los SNT van ligados a los enlaces de comunicaciones DIP. Para ligar al SNT y al DIP en datos se hace utiliza el comando DTDII, un ejemplo:

DTDII:DIP= 9BT2, SNT=SNTETBTR2D-9;

El comando anterior se ejecuta para cada SNT. Una vez conectados los equipos se confirman los datos con el comando NTCOP:

<NTCOP:SNT=SNTETBTR2D-9&&-19;

SWITCHING NETWORK TERMINAL CONNECTION DATA

SNT	SNT	✓ SNTP	DIP	DEV	DEVP
SNTETBTR2D-9	4	TSM-5-2	9BT2	BTR2D-288&&-319	
SNTETBTR2D-10	4	TSM-5-3	10BT2	BTR2D-320&&-351	
SNTETBTR2D-11	4	TSM-5-4	11BT2	BTR2D-352&&-383	
SNTETBTR2D-12	4	TSM-5-5	12BT2	BTR2D-384&&-415	
SNTETBTR2D-13	4	TSM-5-6	13BT2	BTR2D-416&&-447	
SNTETBTR2D-14	4	TSM-5-7	14BT2	BTR2D-448&&-479	
SNTETBTR2D-15	4	TSM-5-8	15BT2	BTR2D-480&&-511	
SNTETBTR2D-16	4	TSM-5-9	16BT2	BTR2D-512&&-543	
SNTETBTR2D-17	4	TSM-5-10	17BT2	BTR2D-544&&-575	
SNTETBTR2D-18	4	TSM-5-11	18BT2	BTR2D-576&&-607	
SNTETBTR2D-19	4	TSM-10-3	19BT2	BTR2D-608&&-639	
SNTETBTR2D-20	4	TSM-10-4	20BT2	BTR2D-640&&-671	
SNTETBTR2D-21	4	TSM-10-5	21BT2	BTR2D-672&&-703	
SNTETBTR2D-22	4	TSM-10-6	22BT2	BTR2D-704&&-735	
SNTETBTR2D-23	4	TSM-10-7	23BT2	BTR2D-736&&-767	
SNTETBTR2D-24	4	TSM-10-8	24BT2	BTR2D-768&&-799	
SNTETBTR2D-25	4	TSM-10-9	25BT2	BTR2D-800&&-831	
SNTETBTR2D-26	4	TSM-10-10	26BT2	BTR2D-832&&-863	
SNTETBTR2D-27	4	TSM-10-11	1 27BT2	BTR2D-864&&-895	
SNTETBTR2D-28	4	TSM-10-12	2 28BT2	BTR2D-896&&-927	
END .					

De la impresión anterior se leyó que los BTR2D se conectaron al GS en las posiciones correctas y en sus correspondientes SNT y DIP por lo tanto se concluye que en datos los equipos estan listos para proceder a las pruebas con los comandos del sistema.

7) Se procede a la prueba uno a uno de los SNT para BTR2D mediante el comando NTTEI, ejemplo.

NTTEI: SNT= SNTETBTR2D-9;

Este comando analiza al equipo, si no encuentra fallas da el mensaje NO FAULTS, en caso contrario se indica el tipo de falla y los posibles equipos involucrados, para el caso de Mapasingue se encontraron 6 fallas de cableado.

Una vez confirmado que el equipo no tiene falla se procedió a desbloquearlos en forma manual, mediante:

NTBLE: SNT= SNTETBTR2D-9;

Una vez desbloqueados todos los SNT se verificó su estado mediante el comando NTSTP.

8) Para el equipo CR se procedió de manera similar que con los BTR2D, del análisis de datos se eligió el RP 59, en el EM 8 que se encontraba disponible, se procedió a su definición mediante el comando EXEMI. Luego se procedió a colocar el equipo hardware en la posición indicada y repetir los pasos de instalación del hardware indicados para BTR2D. Una vez colocados los equipos se procedió a su desbloqueo, el equipo no presentó fallas. Para verificar el estado de operación y los datos del equipo se utilizó el comando EXEMP:

<EXEMP:EM=ALL,RP=59;

EM DATA

RP TYPE EM EQM TWIN CNTRL PP STATE 58 RPM1A 8 CR1-8&&-11 59 SEC 4 WO END

Luego de definidos los CR se conectaron los equipos nuevos a la ruta de CR ya existente mediante el comando EXDRI, a continuación los datos de la ruta, solicitados con el comando EXROP:

<EXROP:R=CR;

ROUTE DATA
R ROUTE PARAMETERS
CR DETY=CR FNC=1
END

Una vez conectados los equipos se procedió a desbloquearlos mediante el comando BLODE y se verificó su estado mediante el comando STDEP de la siguiente forma:

<STDEP:DEV=CR-8&&-11;

DEVICE STATE DETAILS

DEV	STATE	BLS/FS ADM	ABS
CR-8	IDLE	H'0D	
CR-9	IDLE	H'0D	
CR-10	IDLE	H'0D	
CR-11	IDLE	H'0D	
END			

END

De la impresión anterior se concluyó que los equipos CR estan en estado normal IDLE, que significa disponible para ser ocupado por otro equipo, recordemos que los equipos CR son cooperantes a las rutas que llevan los equipos BTR2D.

9) De acuerdo a la metodología y a la figura 11, se procedió a definir el número 250110 como número de prueba para abonado A, y el número 250011 como abonado B.

Se modificaron los datos en las tablas de análisis de número de B de tal forma que se puedan accesar los números de pruebas únicamente por las rutas de prueba.

10) Tal como se describió en la metodología los BTR2D se pruebaron haciendo un lazo en el DDF, los dispositivos se conectaron de 32 en 32 primero a la ruta saliente y luego a la ruta entrante, se hizo el lazo en el DDF y luego se procedió a realizar una llamada desde el abonado A ocupando la ruta de prueba hasta timbrar en el abonado B. Si la llamada pasa y el nivel de habla percibido por los operadores esta bien se considera al equipo probado. Para realizar la conexión de los equipos a las rutas se utilizó el comando EXDRI:

EXDRI: BTR2D-288&&-319, R=BT2O; EXDRI: BTR2D-320&&-351, R=BT2I;

Una vez conectados los equipos se los desbloqueó con el comando BLODE y entonces se puede procedió a realizar la llamada, en la figura No.11 se presentó un detalle de la conexión. Luego de probar los 2 primeros PCM y de verificar que la llamada desde el abonado A timbró en el abonado B, con el nivel de habla normal se procedió a conectar el siguiente par de PCM. Para desconectar los equipos inicialmente se procede a bloquearlos con el comando BLODI, se los desconectó con EXDRE y se procedió a conectar siguientes equipos, de esta forma se realizó la prueba hasta que se probaron todos los equipos, si todos los pasos anteriores se realizaron con cuidado al llegar a esta etapa no habran errores. En este caso no se detectaron fallas, una vez probados todos los equipos se procedió a realizar la hoja de reporte para EMETEL en la que se indicó que los resultados a estas pruebas eran satisfactorios.

4.2.2 Pruebas de los enlaces de señalización No.7

El desarrollo de las pruebas sobre los equipos de señalización No.7 se realizó en concordancia a la metodología del capítulo anterior y a lo ilustrado en la figura No. 12. La primera parte de preparación de datos e instalación de hardware es similar a la de los equipos BTR2D, aquí detallaremos las particularidades para la prueba de No. 7.

Luego de analizar los datos en la central Mapasingue se definió que los 31 enlaces PCM de la ampliación empezaran su numeración desde el 832 hasta el 1824, cada PCM lleva 32 canales.

La prueba se realizó mediante una conexión hacia otra central, para probar la central Mapasingue se eligió como central cooperante a Centro3. Se modificaron los datos en las dos centrales de tal forma que al cursar la llamada de prueba no se perturbe al tráfico normal.

1) Se definieron en la central Mapasingue y Centro3 las rutas de prueba con el mismo nombre en las dos: C7TEO y C7TEI, las rutas son bidirecionales

```
<EXROP:DETY=C7BTC;
```

```
ROUTE DATA
R ROUTE PARAMETERS
C7TEO DETY=C7BTC FNC=3 DPC=4360
LSV=3 MIS1=1
R=C7TEI
C7TEI DETY=C7BTC PRI=3 FNC=3
DPC=4360 LSV=3 MIS1=1 CO=NO
R=C7TEO
```

En la impresión anterior se encuentra el parámetro DPC que corresponde an código de destino de central, para Mapasingue es 4360 y para Centro3 es 4354.

2) Para determinar los RP y los EM se realizó el análisis de los datos. Se aplicaron los comandos de definición, luego de lo cual los datos fueron:

```
<EXEMP:EM=ALL,RP=42;
```

FM DATA

RP	TYPE	EM	EQM	TWIN	CNTF	RL PP		STATE
42	RPM1A	10	C7BTC-832&&-86	63	43	PRIM	4	WO
42	RPM1A	11	C7BTC-864&&-89	95	43	SEC	4	WOTWIN
42	RPM1A	12	C7BTC-896&&-9	27	43	PRIM	4	WO
42	RPM1A	13	C7BTC-928&&-9	59	43	SEC	4	WOTWIN
42	RPM1A	14	C7BTC-960&&-99	91	43	PRIM	4	WO
42	RPM1A	15	C7BTC-992&&-1	023	43	SEC	4	WOTWIN

END

<EXEMP:EM=ALL,RP=76;

EM DATA

RP	TYPE	EM EQM	TWIN	CNTR	L PP	STAT	Έ
76	RPM1A	0 C7BTC-1024&&-	1055	77	PRIM	2&&7	WO
76	RPM1A	1 C7BTC-1056&&-	1087	77	SEC	2&&7	WOTWIN
76	RPM1A	2 C7BTC-1088&&-	1119	77	PRIM	2&&7	WO
76	RPM1A	3 C7BTC-1120&&-	1151	77	SEC	2&&7	WOTWIN
76	RPM1A	4 C7BTC-1152&&-	1183	77	PRIM	2&&7	WO
76	RPM1A	5 C7BTC-1184&&-	1215	77	SEC	2&&7	WOTWIN
76	RPM1A	6 C7BTC-1216&&-	1247	77	PRIM	2&&7	WO
76	RPM1A	7 C7BTC-1248&&-	1279	77	SEC	2&&7	WOTWIN
76	RPM1A	8 C7BTC-1280&&-	1311	77	PRIM	2&&7	WO
76	RPM1A	9 C7BTC-1312&&-		77	SEC	2&&7	WOTWIN
76	RPM1A	10 C7BTC-1344&&-	1375	77	PRIM	2&&7	WO
76	RPM1A	11 C7BTC-1376&&-	1407	77	SEC	2&&7	WOTWIN
76	RPM1A	12 C7BTC-1408&&-	1439	77	PRIM	2&&7	WO
76	RPM1A	13 C7BTC-1440&&-	1471	77	SEC	2&&7	WOTWIN
76	RPM1A	14 C7BTC-1472&&-	1503	77	PRIM	2&&7	WO
76	RPM1A	15 C7BTC-1504&&-	1535	77	SEC	2&&7	WOTWIN
END	1						

- 3) Para la conexión hacia el GS, se definieron los SNT con sus respectivos equipos C7BTC, los SNT corresponden a los SNTETC7BTC-25 hasta el 56, tambien se definieron los DIP desde el 25C7BTC hasta el 56C7. El procedimiento de definición fue el mismo que se utilizó para los BTR2D.
- 4) Se mantuvieron los mismos números de pruebas para abonado A y abonado B que se usaron para las pruebas de los BTR2D. Se modificaron los datos en las

tablas de análisis de número de B en la central de prueba como en la cooperante de tal forma que se puedan accesar los números de pruebas únicamente por las rutas de prueba.

- 5) En la central de prueba se procede a la conexión de los equipos C7BTC a la ruta de prueba mediante el comando EXDRI, para completa la conexión a este tipo de equipo posteriormente a la conexión con EXDRI se le aplica los comandos EXDUI y EXDAI para luego realizar el desbloqueo con BLODE. De igual manera se procede en el lado de la central cooperante donde se aplican los comandos anteriores sólo para un enlace PCM, ya que en el lado cooperante se definiran una sóla vez.e dure la prueba. En el DDF se realizó la conexión de los equipos para la prueba.
- 6) Cuando estan desbloqueados y en etado WO los equipos de los dos lados de la central se procede a realizar la llamada de prueba, se controla el nivel del canal de habla, para verificar que se ocupan los dispositivos de prueba se monitorea el estado de estos mediante el comando STRDP, como reultado de este comando se imprimió el estado del equipo en este caso los implicados deben dar el estado BUSY que es ocupado, por lo que se considera que el equipo esta en estado satisfactorio. Una vez verificada la ocupación de los equipos de este PCM se procedió a su bloqueo con el comando BLODI y su desconexión con los comandos EXDAE, EXDUE y EXDRE de estos equipos al SNT y en su lugar se conectó el siguiente equipo PCM. Los pasos de prueba se repitieron hasta completar las pruebas sobre los 31 PCM. Durante el desarrollo de las pruebas no se encontraron fallas. Una vez probados todos los equipos se procedió a realizar la hoja de reporte para EMETEL en la que se indicó que los resultados a estas pruebas eran satisfactorios.

4.3 Pruebas del Subsistema de Selector de Abonados (SSS).

En la metodología se describió en detalle el desarrollo de las pruebas sobre este subsistema. De acuerdo a las necesidades de la ampliación y al análisis de los datos de la central de Mapasingue se ampliaron 5.670 líneas de abonados distribuidos en los siguientes grupos:

```
Grupo SS3 desde LI- 7040 al LI- 8191
Grupo SS4 desde LI- 8192 al LI- 10239
Grupo SS5 desde LI- 10240 al LI- 12287
Grupo SS6 desde LI- 12288 al LI- 12799
```

En la siguiente foto se visualiza el hardware de un magazine para abonados:

Foto No. 5. Hardware para un magazine de abonados

ETAPA I

Para proceder a la puesta en operación de los equipos se procedió de la siguiente manera:

- 1) Una vez identificados los datos para los equipos, se procedió a realizar la ampliación de la memoria de datos mediante el comando SAAII.
- 2) El grupo SS3 contenía posiciones disponibles para ser ocupadas a partir del EM 7, recordemos que para los grupos de abonados los EM se cuentan desde el 0 al 15, de tal forma que se utilizaron las posiciones disponibles en el SS3. El SS3 tenía definidos los RP 38 y 39. Para los otros grupos se procedió a definir los RP mediate el comando EXRPI. Para el grupo SS4 se definieron los RP 44 y 45, para el SS5 los RP 84 y 85, para SS6 los RP 66 y 67. Una vez definidos los RP se procedió a declarar la conexión de los RP a los EMG, mediante el comando EXEPI, de la siguiente forma:

EXEPI: EMG= SS4, EM=0, CONTROL= PAIR, TYPE=EMRP3;

Luego mediante el comando EXEGI se procedió a la conexión de los links de control CLC para cada grupo, un ejemplo :

<EXEGI: EMG=SS4, EQM= RPA=44;

Luego se procedió a la conexión de los links de control CLC para cada grupo, con el comando BLCLI, un ejemplo del comando:

<BLCLI: EQM= CLC-8:

Los RP que manejan los EMG se cargaron con los bloques de programas que manejan los equipos de interface par LI, esto se hizo mediante el comando EXEUI, en el comando, se especificó el EM y el grupo de abonado, por ejemplo:

EXEUI: EMG= SS4, EM=0, SUNAME=LIR;

Una vez definidos los bloques de programas para cada EM se procedió a definir los equipos identificando los punteros en cada caso, esto se hizo con el comando EXEEI, por ejemplo:

EXEEI: EMG= SS3, EM=7, EQ= LI-7040&&-7167;

Una vez definidos todos los comandos, se procedió a verificar los datos mediante el comando EXEDP, este resultado es extenso, para ilustrar la presentación de ellos se editaron los datos del EM 0 y EM 15 del grupo SS3.

<EXEDP:EMG=SS3,EM=7& 15;

EMGEM SOFTWARE UNIT AND EQUIPMENT DATA

EMG SS3

EM SUNAME SUID **EQM** 7 TEETR 2/CAA 117 067/1 C R1A01 2/CAA 117 054/1 C **EMGFDR** R1A01 REPER 2/CAA 117 063/1 F R3A06 CDR 1875/CAA 117 1062/197A R1A01 **CD-55** KR2R 1876/CAA 117 043/197C R7A02 KR2-384&&-391

	1876/CAA 117 1036/19 1879/CAA 117 1031/19 1876/CAA 117 1001/197 1876/CAA 117 1061/19	7C R2A03 7A R6A02	JT-1184&&-1215 LI-7040&&-7167 SLCT-55 TS-103
15 TEETR EMGFDR REPER CDR KR2R LIR	2/CAA 117 067/1 0 2/CAA 117 054/1 0 2/CAA 117 063/1 1875/CAA 117 1062/1 1876/CAA 117 043/19	R1A01 F R3A06 97A R1A01 97C R7A02	CD-63 KR2-448&&-455 LI-8064&&-8191
SLCTR TSR	1876/CAA 117 1001/1 1876/CAA 117 1061/1	97A R6A02	SLCT-63 TS-111
END			

En la columna SUNAME de la impresión anterior se presentan las identidades de los bloques cargados al EM, en la columna SUID se presenta el código de identidad del bloque y en EQM se indican los equipos que propiamente forman parte del EM. Luego de leer y analizar la impresión de respuesta al comando EXEDP se concluyó que los datos de la ampliación de abonados estaban correctos.

- 3) Se procedió con la instalación del hardware de la siguiente manera:
- Se instalaron los magazines de abonados en las posiciones correspondientes.
- Se instalaron las conexiones a tierra de los equipos.
- Se probó la continuidad de los cables antes de proceder a su conexión al los equipos.
- Se midió la alimentación de -48 v de entrada a los equipos con el multímetro.
- Se conectaron los cables de alimentación a los magazines , se encendieron las fuentes de cada uno y se midió el voltaje de salida de cada equipo.
- 4) Una vez confirmados los datos se procedió al desbloqueo de los equipos. Inicialmente se desbloquean los RP mediante el comando BLRPE, luego de desbloqueó el link de control mediante el comando BLGLE, ejemplo

BLGLE:EQM=CLC-8;

Luego se desbloquearon los EM mediante el comando BLEEE, y posteriormente los EMTS con el comando BLSTE, de la siguiente forma:

BLEEE: EMG=SS4, EM=0;

BLSTE: EMG=SS4, EMTS=TS-0;

Se confirmó el estado de los equipos mediante los comandos EXEPP y STSTP, como ejemplo se ilustra los equipos del grupo SS6:

<EXEPP:EMG=SS6,EM=ALL;

EMGEM PROCESSOR CONTROL STATE

EMG	EM PROCESSOR	TYPE PATH	STATE	MAINT.STATE
SS6	0 A	EMRP3 B	WORKING-	EX IDLE
	1 A	EMRP3 A	WORKING	-EX IDLE
	2 A	EMRP3 B	WORKING	-EX IDLE
	3 A	EMRP3 A	WORKING	-EX IDLE
END				

<STSTP:EMG=SS6,EMTS=ALL;

DISTRIBUTED SWITCH STATE SURVEY

TSB DATA

EMG TSB TSBSTATE TSBBLS

SS6 TS-A EX

TS-B SB

EMTS DATA

EMG	EMTS	EMTSSTATE EMTSBLS	EMTSCLSTATE	GSCONN
SS6	TS-0	WORKING	M-EX	YES
	TS-1	WORKING	M-SB	YES
	TS-2	WORKING	SLAVE	YES
	.TS-3	WORKING	SLAVE	NO

END

5) Se crearon las rutas para JT denominadas SS3O y SS3I y para KR denominada KR2SS3. Se realizaron los cambios en las tablas de análisis del abonado B y se realizó la ampliación de series numéricas. Se conectaron los equipos LI a sus respectivos abonados de prueba:

<STDEP:DEV=LI-7040 &&-7043;

DEVICE STATE DETAILS

DEV	STATE	BLS/FS ADM	ABS	SNB
LI-7040	IDLE		H'0D	257040
LI-7041	IDLE		H'0D	257041
LI-7042	IDLE		H'0D	257042
LI-7043	IDLE		H'0D	257043
END				

END

6) Para realizar la conexión de los equipos al GS se procedió de manera similar que al conectar BTR2D o C7BTC, inicialmente se definieron los SNT con sus respectivos JT, mediante el comando:

NTCOI: SNTP= TSM-8-9, SNTV=2, DEV=JT-1184&&- 1215

El parámetro SNTP le indica al sistema que los JT del 1184 al 1215 se conectaron al GS en la novena posición del TSM 8, el TSMV es constante ya que este valor depende del tipo de equipo. Como se observa en el comando la conexión al GS se hace de 32 en 32 canales.

Luego de definir los equipos se introdujo el comando EXDUI, este comando es obligatorio para realizar el proceso de conexión de los equipos JT a los SNT, en el comando EXDUI sólo se necesita indicar los equipos ya que el sistema automáticamente conecta los equipos al SNT correspondiente. Para cubrir la ampliación se definieron los SNT del 37 al 62. Un ejemplo del comando EXDUI:

EXDUI: DEV= JT-1184&&-1215

En el comando EXDUI se conectan los equipos de 32 en 32. Los SNT para JT nonecesitan del DIP. Los SNT se denominan JTM. Para verificar que los datos se introdujeron correctamente se solicitó el comando NTCOP, a continuación se presenta un ejemplo de los JTM del 37 al 39:

<NTCOP:SNT=JTM-37&&-39;

SWITCHING NETWORK TERMINAL CONNECTION DATA

ONT	01.7	/ ONTO	515	5 . 5 . 7	D (C) (D
SNT	SNI	∨ SNTP	DIP	DEV	DEVP
JTM-37	2	TSM-8-9		JT-1184&&	-1215
JTM-38	2	TSM-8-10		JT-1216&&-	-1247
JTM-39	2	TSM-8-11		JT-1248&&	-1279
END					

De la lectura al NTCOP completo se comprobó que los JT se conectaron al GS en las posiciones correctas y en sus correspondientes SNT por lo tanto se concluye que en datos los equipos estan listos para proceder a las pruebas con los comandos del sistema.

7) Se procedió a la prueba uno a uno de los SNT para JT. En la central se probaron los JTM del 37 al 62 y se probaron mediante el comando NTTEI, el procedimiento para la prueba es el mismo que para los SNT de los BTR2D y C7BTC. Una vez probados todos los equipos se solicitó el comando NTSTP de todos los equipos, de donde:

<NTSTP:SNT=SNTETC7BTC-37&&-62;

SWITCHING NETWORK TERMINAL STATE

SNT	STATE	BLS	
JTM-37	WO		
JTM-38	WO		
JTM-39	WO		
JTM-40	WO		
:			
JTM-62	WO		
END			

De la impresión anterior se dedujo que los SNT estaban listos para entrar en funcionamiento. Los equipos de los grupos de abonados tambien estaban listos para entrar en operación y los datos de la central se habían modificado para proceder a generar las llamadas de tráfico. Por la tanto se concluyó que se podía proceder con la ETEPA II.

ETAPA II

En esta etapa se procedió a la generación del tráfico por medio de un PC cargado con el programa emulador de Tráfico PEST. En la metodología se describió en detalle la forma de proceder para esta etapa. La figura No.14 ilustra la conexión del PEST.

Realización de las pruebas de Tráfico A:

- 1) En la central de Mapasingue se asignó a los abonados de la ampliación la serie desde el 257040 al 262799. En esta etapa se cursó tráfico por cada uno de los abonados de la ampliación.
- 2) Se declaró en el equipo PEST la serie numérica correspondiente a los primeros 64 abonados es decir desde el 257040 al 257103, además se definió la intensidad de tráfico de 70 llamadas por minuto y un límite de 1200 llamadas, indicándose que la ocupación se realice en forma secuencial.
- 3) Desde el terminal del sistema AXE se solicitó la lectura de los contadores de abonados, siendo los equipos nuevos se confirmó que los contadores estan con cero llamadas.

- 4) Se conectaron los cables del PC al repartidor de abonados en las primeras 64 posiciones. Desde el PC se inició la generación del tráfico mediante comandos.
- 5) Se controló desde el PC la ocupación de los equipos, en esta etapa se produjeron fallas, mediante los tipos de falla se determinaron fallas en el cableado que se superaron. Una vez reconectados los abonados se reinició la prueba otra vez con 1200 llamadas, en esta parte la prueba siguió su curso normal, en el PC no se produjeron fallas, y en el terminal de la central se supervisó la ocupación de los equipos por medio de los comando STDEP, STRSP, las pruebas se desarrollaron en forma normal, una vez verificada la ocupación normal de las primeras 600 llamadas, entonces se procedió a realizar el cambio de planos del TS, mediante el comando EXTBC, esto se realiza para obligar a los equipos a que mientras se cursa el tráfico los JT tengan que cambiar el uso de los TS de un plano al otro. Esta prueba no produjo fallas, se monitoreó nuevamente el desarrollo de las llamadas. Al finalizar las llamadas programadas, se determinó en esta etapa cero fallas. Se procedió a leer desde el PC el número de llamadas realizadas por abonado y desde el terminal de AXE se leyeron los contadores de abonados, en esta etapa se comprobó que los contadores avanzaron en igual número que las llamadas realizadas. Con esto se confirmó que el primer grupo de 64 LI estaba funcionando correctamente.
- 6) Se desconectaron los 64 primeros LI y se continuó con el siguiente grupo de 64, se declararon las series correspondientes a estos en el PC y se repitió la prueba.
- 7) De la forma descrita anteriormente se probaron de 64 en 64 los 5760 abonados. Luego de probar todos los equipos se concluyó que la central esta lista para iniciar las pruebas de tráfico B.

Realización de las pruebas de tráfico B:

Los pasos descritos en la metodología se particularizaron en la central Mapasingue de la siguiente forma:

- 1) La prueba de carga distribuida se realizó en 2 grupos de 2880 abonados cada grupo. A cada grupo de 2880 se le distribuyeron los 64 abonados de prueba, esto se realizóen pasos de 45 abonados.
- 2) Se declararon en el PC del PEST la serie numérica de los 64 LI que serían probados en el primer grupo de 2880 abonados. La intensidad de llamadas se declaró en 120 llamadas por minuto. A solicitud de EMETEL el límite de llamadas de prueba fue de 300000.

- 3) Se procedió a conectar en el repartidor los cables de conexión al PC en pasos de 45. Desde el terminal del sistema AXE se leyeron los contadores de los abonados involucrados en la prueba.
- 4) Desde el PC del PEST se inició la generación del tráfico. Una vez iniciado el tráfico se controló la ocupación correcta de los equipos y la salida de los contadores de fallas al empezar y terminar la jornada de trabajo y cada 4 horas durante el día. El tiempo de prueba fue de 42 horas. Una vez concluída la prueba se leyeron los contadores de llamadas de abonados desde el terminal y los datos se compararon con la lectura del PEST del número de llamadas realizadas por abonados. Se comprobó que los resultados eran correctos, por lo tanto se concluyó que la prueba se concluyó que la prueba de carta distribuida era satisfactoria.

inició al mediodía.

5) Se procedió a declara el siguiente grupo de 2880 abonados y se repitió el procedimiento antes indicado. Los resultados a estas pruebas fueron satisfactorios.

Habiendo realizado las pruebas a los grupos de abonados con resultados satisfactorios se concluye que el subsistema de grupos de abonados cumplió con los requerimientos de EMETEL.

4.3.1 Pruebas del Selector de Abonados Remotos (RSS).

La central Mapasingue es la matriz para el remoto de Lago de Capeira. En el concentrador se instalaron 1024 abonados. En la parte 4.5 se se detall'las cantidades y distribucuón de los equipos. Siendo el RSS parte del subsistema SSS el proceso de pruebas se realizó en forma similar a la indicada para los abonados locales De acuerdo a la metodología el proceso de pruebas se realizó en dos etapas, la primera que es la puesta en funcionamiento de los equipos y la segunda que es la generación de tráfico. Para la puesta en funcionamiento de los equipos:

1) Se identificaron los parámetros de la ampliación. Para el concentrador se de consideraron los RP 68 y 69, estos RP son del tipo STR. El grupo se definió como RSCAP con 8 EM's. Para los LI se utilizaron los punteros del 12800 al 13699. Los KR2 desde el 800 al 863. Se conectaron 6 enlaces PCM del tipo RT con los punteros desde el 0 al191. De la misma forma como se indicó para los SSS la definición se realizó mediante los comandos EXRPI, EXEGI, EXEPI, EXEUI, EXEII. Luego de introducir los datos se solicitaron las impresiones de resultado, de las cuales se obtuvo lo siguiente:

<EXEMP:EM=ALL,RP=66;

EM DATA

RP TYPE EM EQM 68 STR1A 1 CLC-14 CNTRL PP STATE PRIM WO

END

<EXEGP:EMG=ALL;

EMG DATA

EMG TYPE SIDE RP LINK ST STR TYPE MAST EMGNUM

RSCAP REMOTE A 68 CLC-14 WO STR1A IDLE 3

REMOTE B 69 CLC-15 WO STR1A IDLE 3

END

<EXEDP:EMG=RSCAP,EM=ALL;

EMGEM SOFTWARE UNIT AND EQUIPMENT DATA

EMG RSCAP

EM SUNAME SUID **EQM** 0 TSR 1876/CAA 117 1061/197C R2A01 TS-128 CDR 1875/CAA 117 1062/197A R1A01 CD-64 ATLR 1875/CAA 117 1039/197C R3A03 ATL-0 1876/CAA 117 1001/197A R6A02 SLCTR SLCT-100 LI-12800&&-12927 LIR 1879/CAA 117 1031/197C R2A03 KR2R 1876/CAA 117 043/197C R7A02 KR2-800&&-807 1875/CAA 117 1063/197A R1A01 RTR RT-0&&-31 2/CAA 117 054/1 C **EMGFDR** R1A01 2/CAA 117 067/1 C TEETR R1A01 REPER 2/CAA 117 063/1F R3A06 1876/CAA 117 1061/197C R2A01 7 TSR TS-135 CDR 1875/CAA 117 1062/197A R1A01 **CD-71** 1875/CAA 117 1039/197C R3A03 ATL-7 ATLR SLCTR 1876/CAA 117 1001/197A R6A02 SLCT-107 LIR 1879/CAA 117 1031/197C R2A03 LI-13696&&-13823 1876/CAA 117 043/197C R7A02 KR2R KR2-856&&-863

EMGFDR	2/CAA 117 054/1 C	R1A01
TEETR	2/CAA 117 067/1 C	R1A01
REPER	2/CAA 117 063/1F	R3A06

2) Una vez colocado el hardware involucrado en la ampiación se procedió a desbloquear y probar los equipos de la ampliación mediante los comandos de central BLRPE, BLEEE, BLSTE, a continuación presentan los resultados a los comandos de lectura del estado de los equipos:

<EXEPP:EMG=SS6,EM=ALL;

EMGEM PROCESSOR CONTROL STATE

EMG	EM PROCESSOR	TYPE F	PATH	STATE	MAINT.STATE	Ε
RSCAP	0 A	STR1A	В	WORKING	-EX IDLE	
	1 A	STR1A	Α	WORKIN	G-EX IDLE	
	2 A	STR1A	Α	WORKIN	G-EX IDLE	
	3 A	STR1A	Α	WORKIN	G-EX IDLE	
	4 A	STR1A	Α	WORKIN	G-EX IDLE	
	5 A	STR1A	Α	WORKIN	G-EX IDLE	
END						

<STSTP:EMG=RSCAP,EMTS=ALL;

DISTRIBUTED SWITCH STATE SURVEY

TSB DATA

EMG TSB TSBSTATE TSBBLS

RSCAP TS-A SB

TS-B EX

EMTS DATA

EMG	EMTS	EMTSSTATE E	MTSBLS	EMTSCLSTATE
GSCONN				
RSCAP TS-0	WORKING	M-SB	YES	
TS-1	WORKING	M-EX	YES	
TS-2	WORKING	SLAVE	YES	
TS-3	WORKING	SLAVE	YES	
TS-4	WORKING	SLAVE	YES	
TS-5	WORKING	SLAVE	YES	
TS-6	WORKING	SLAVE	NO	
TS-7	WORKING	SLAVE	NO	

END

- 3) Se crearon las rutas de prueba para RT con el nombre RSCAPO y RSCAPI ,tambien se creó la ruta para KR denominada KR2LAGO. Como se ha explicado anteriormente la creación se realizó con los comandos EXROI, EXRBC.
- 4) Los SNT para los equipos RT se denominaron SNTRT. Se definieron los SNTRT desde el 0 al 6. Luego de definidos los equipos se procedió a la prueba de los equipos por comandos, se determinó que los equipos funcionaban correctamente y se los dejó listos para proceder a la etapa de las pruebas de tráfico.

Para las pruebas de tráfico:

Procedió de la misma forma que con los abonados locales. La serie numérica utilizada es desde el 262800 al 263823. Luego de realizar las pruebas de tráfico sobre cada LI se procedió a la prueba de carga distribuida de los 1024 abonados que forman la ampliación. Los cables de pruebas se conectaon al repartidor de Lago de Capeira en pasos de 16 para luego proceder a la prueba total. Se generaron 200000 llamadas con una intensidad de tráfico de 120 llamadas por minuto, la prueba se realizó en 28 horas. Al igual que en abonados locales se compararon los valores de los contadores de abonados. Luego de analízar los datos se determinó que los equipos en el remoto de Lago de capeira estaban listos para entrar en tráfico real y que cumplía con los requerimientos de EMETEL.

CAPITULO 5

CONCLUSIONES Y RECOMENDACIONES

5.1 Conclusiones generales

- ◆ El diseño modular del sistema AXE facilita la ampliación de nuevas unidades hardware. Las identidades y facilidades de las unidades para ampliar se definen en el Area de Datos de los bloques funcionales, estos datos son leídos por el software central. Debido a la autonomía de los bloques se evita que datos errados de un bloque afecten a otro.
- ♠ Es importante conocer el estado de operación de cada central, conocer que equipos y en que cantidad estan funcionando y bajo que condiciones, de tal forma que al introducir los nuevos datos se mantengan los standares del diseño de la central.
- Para evitar producir disturbios se recomienda que aquellos datos para los cuales el probador/operador no tiene seguridad del resultado hacerlo en horas de bajo tráfico, para esto de debe analizar la carga de cada central. En términos generales se recomienda en la introducción de datos complejos trabajar en la noche.
- En el presente informe se describieron los métodos y forma de probar los equipos a fin de cubrir los requerimientos de EMETEL y seguir las recomendaciones de la CCITT.

Como se ha observado el objetivo principal del informe ha sido describir el desarrollo de las pruebas realizadas a los equipos de conmutación telefónica digital el mismo que se cumplió al tipificar las pruebas en la central Mapasingue. Cabe indicar que el proceso realizado en la central Mapasingue se repitió en todas las centrales, a fin de cubrir todos los equipos de la ampliación. A esta fecha todos los equipos que formaban parte del proyecto se encuentran funcionando perfectamente acoplados a la red de EMETEL.

5.2 Conclusiones por objetivos

Respecto a la visión global del sistema:

Se ha presentado una visión general de lo que es un sistema SPC, en este caso aplicado a la telefonía. El trabajo de conmutación que anteriormente realizaba una operadora en forma manual y luego los relés en centrales analógicas ha sido reemplazada por el uso de semiconductores. El sistema AXE presenta una arquitectura modular tanto en hardware como en software. Dentro de su arquitectura el sistema es accesible para los operadores hacia cada bloque, permitiendo que el desarrollo de las pruebas se realice ágil y eficientemente.

Respecto al método de dimensionamiento:

La ampliación de los equipos obedece a la solicitud de EMETEL de ampliar nuevas líneas teléfonicas en el sistema de centrales AXE instalado en la Regional Dos. El dimensionamiento presentado en este informe da como resultado la cantidad de equipos internos (por ej. TSM, RP, EM) de la central necesarios para cubrir la demanda solicitada por EMETEL. Se utilizó como ejemplo la central Mapasingue que es la central donde se ampliaron todos los tipos de equipos incluidos en la ampliación.

Respecto a los parámetros utilizados:

Los parámetros utilizados para el dimensionamiento son:

1 Los requerimientos de EMETEL:

Las cantidades y tipos de equipos para aumentar Los datos de tráfico originado y terminado por central Los parámetros de grado de servicio para centrales. Los parámetros de grado de servicio para remotos

2 Las capacidades del sistema:

La capacidad de conmutación del sistema dada por GS La capacidad de memoria para datos. Las unidades que puede llevar un determinado tipo de RP. La capacidad de los EMG.

3 Las referencias:

La recomendación Q.544 de la CCITT Las tablas de tráfico de Erlang Las fórmulas para determinar los tipos de tráfico

Respecto al alcance de las pruebas:

En este informe se han descrito las pruebas de instalación de los equipos del sistema digital teléfonico AXE. Las pruebas se resumen en cinco fases:

- 1 Preparación e introducción de datos.
- 2 Preparación del hardware y cableado.
- 3 Determinación del estado de los circuitos por comandos.
- 4 Desarrollo de pruebas reales con tráfico.
- 5 Puesta en operación del sistema.

Respecto al método de las pruebas:

Se ha utilizado la central Mapasingue como modelo de la metodología de las pruebas. En el capítulo 3 de este informe se describieron los pasos a seguir dependiendo del tipo de subsistema. La descripción se ayuda por medio de esquemas que ilustran las conexiones de prueba. El capítulo 4 presenta el desarrollo de las pruebas en la central Mapasingue, al igual que la metodología estas se describieron por subsistemas proporcionando una idea global de la interrelación entre las funciones de los equipos.

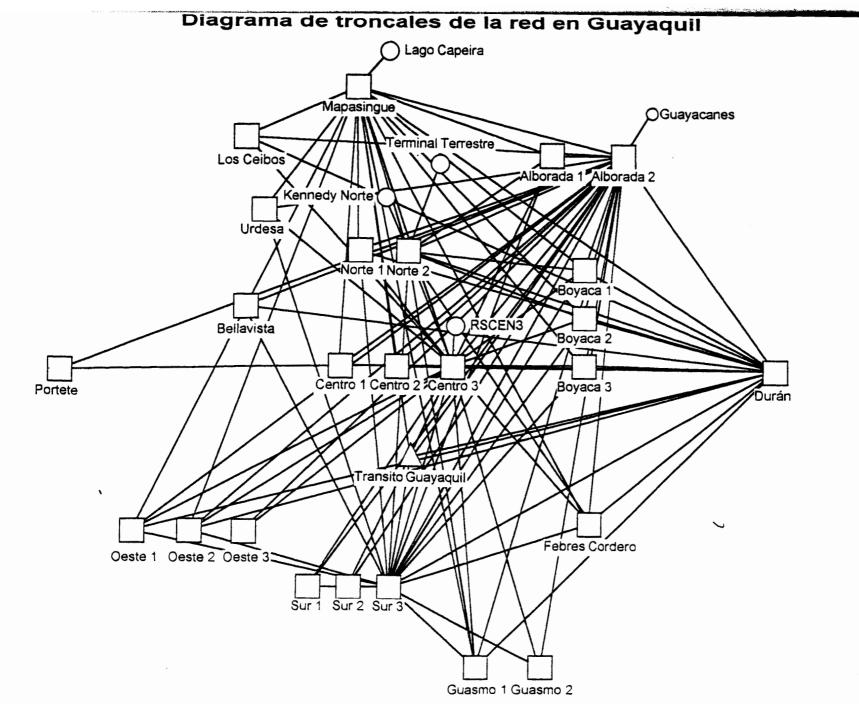
GLOSARIO

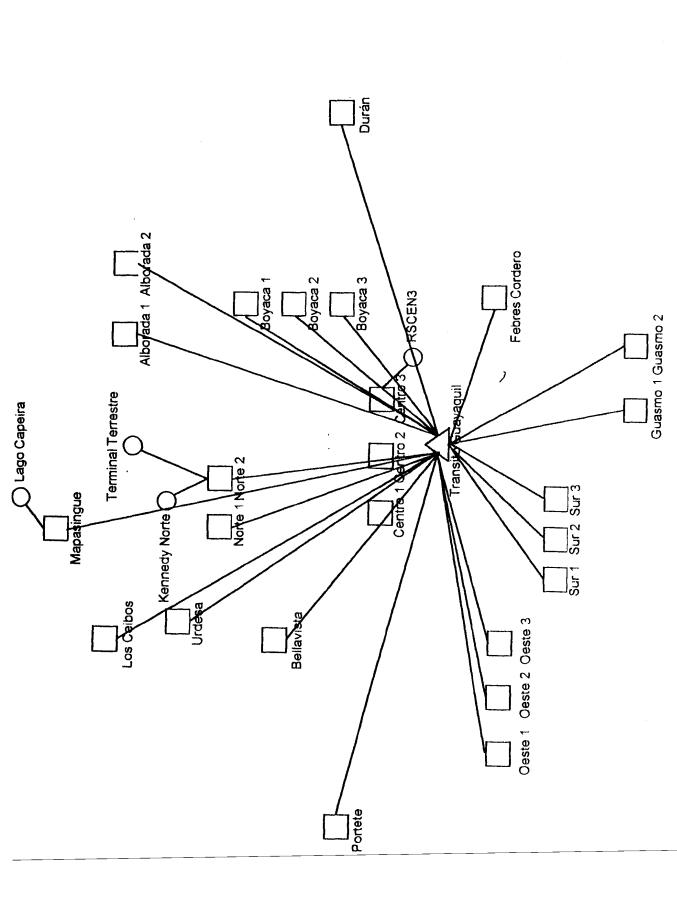
SIGLAS	DESCRIPCION EN INGLES	DESCRIPCION EN ESPAÑOL
ASAM	Announcer Machine	Maquina de mensajes
CCS	Common Channel Signalling Subsystem	Subsistema de señalización por Canal Común
CP	Central Procesor	Procesador Central
CR	Code Receiver	Receptor de código
CS	Code Sender	Emisor de código
DDF	Distribute Digital Frame	Distribuidor de tramas digitales
EM	Module Extension	Módulo de Extensión
EMG	Extension Module Group	Grupo de Módulo de Extensión
EMRP	Extension Module regional	Procesador Regional de los
	procesor	Módulos de Extensión
EMTS	Extension Module Time	Selector en tiempo del módulo de
	Switch	extensión
ETB	Exchange Terminal Board	Tarjeta terminal de Central
ETCC	Exchange Terminal Circuit Central	Circuito Terminal de Central
GSS	Group Switching Subsystem	Subsistema de Selector de Grupo
JT	Juntor Terminal	Terminal de unión
JTC	Juntor Terminal Circuit	Circuito de terminal de unión
KRC	Key-set code reception circuit	Circuito de Recepción de Código de Teclado
LCT	Line Circuit Tester	Probador de circuito de línea
LIC	Line Interface Circuit	Circuito de interface de línea
LSM	Line Switching Module	Módulo Selector de Línea
MFC	Multy frecuency code	Sistema de señalización por
	signalling system	código multifrecuencial

SIGLAS	DESCRIPCION EN INGLES	DESCRIPCION EN INGLES
MJD	Multi-juntor device	Dispositivo Multijunctor
PCD	Pulse Code Modulation	Convertidor Analógico/Digital
PCD-D	Pulse Code Modulation - Digital	Convertidor Analógico/Digital (digital)
RP	Regional Procesor	Procesador Regional
RSS	Remote Subscriber Switching	Selector Remoto de abonados
SECOB	Special Equipment Coin Box	Equiipo Especial monederos
SPC	Stored Program Control	Control de programa almacenado
SPM	Space Switch Module	Modulo Selector de Espacio
SSS	Subscriber Switching Subsystem	Subsistema de Selectorde abonado
ST-7	Signalling Terminal for CCITT No.7	Terminal de señalización Nº 7
STC	Switching Terminal Circuit	Circuito terminal de Conmutación
TCON	Test conexion	Conexiones de Prueba
TSB	Time switch Bus	Bus de selector de tiempo
TSM	Time Switch Module	Modulo Selector de Tiempo
TSS	Trunk and Signalling Subsystem	Subsistema de troncales y señalización

BIBLIOGRAFIA

- 1 Crister Åker/ Jan Forslöw. "THE AXE LOCAL EXCHANGE SYSTEM- AN OVERVIEW". Ericsson Telecom AB 1991. X/LM 91 012 Rev.A 1991-01-24.
- 2 Otto Castillo Alvarado/ Jesús Silva. "PRUEBAS DE INSTALACION I" . Teleindustria de México TIM/Centro de entrenamiento latinoamericano CELE. 84-05-06.
- 3 Peter Rydqvist. "GETTING TO KNOW AXE". Telefonaktiebolaget L M Ericsson. Stockholm. Junio/1986.
- 4 Requerimientos del contrato de 36.000 líneas entre La Empresa Estatal de Telecomunicaciones EMETEL del Ecuador e Industrias de Telecomunicaciones S.A. INTELSA (Subsidiaria de ERICSSON C.A.). 91.0301.
- 5 Roger L.Freeman. "INGENIERIA DE SISTEMAS DE TELECOMUNICACIONES". Versión en español de la obra "TELECOMMNUNICATION SYSTEM ENGINEERING". John Wiley & Sons, Inc. 1995. México.
- 6 "CCITT. Comité Consultivo Internacional Telegráfico y Telefónico. Libro Azul. Unión Internacional de Telecommunicaciones UIT. IX Asamblea Plenaria". Melbourne, 14-25 de Noviembre de 1988. Ginebra 1989.
- 7 "TABLE OF ERLANG LOSS FORMULA". Telefonaktiebolaget L M Ericsson. Stockholm 1979.


ANEXOS


- ANEXO 1 Diagrama de los enlaces troncales intercentrales de la red de Guayaquil al realizarse la ampliación de 36k.

 ANEXO 2 Tablas de tráfico ofrecido, aplicando la fórmula de ERLANG. Tomadas del libro "Table of erlang loss fórmula".
- ANEXO 3 Recomendación Q.543. Tomadas del Fascículo VI.5 de la colección de Libro Azul del "CCITT. Comité Consultivo Internacional Telegráfico y Telefónico. Unión Internacional de Telecommunicaciones UIT. IX Asamblea Plenaria"

ANEXO 1

Diagrama de los enlaces troncales para la red de Guayaquil con la ampliación de 36k

ANEXO 2

Tablas de tráfico ofrecido, aplicando la fórmula de ERLANG

Flujo de tráfico ofrecido A en Erlang

	1		Pro	bilid	ad de pê	erdida, (E)				
n	.007	.008	.009	.01	.02	en.	.05	. 1	. 2	4	"
1	.00705	.00806	20000	01010	02041	03093	05263	1111	25000	acas;	١,
2	1	.13532	.14416	15259	22347	28155	38132	59543	1.0000	2.0000	,
3		.41757	.43711	45549	15509	71513	ROOAD	1 2708	1 0200	1 1700	,
4		.81029	84085	86942	1.0923	1.2589	1.5246	2 0454	2 0452	51 110	4
5		1.2810	1.3223	1.3608	1,6671	1.8752	2 2185	2 8811	4.0104	G State	
8		1.8093	1.8610	1,9090	2 2759	2 5431	2 9603	3.7581	5 Jone	g · · · o ·	_
7	1	2.3820	2,4437	2,5009	2 9354	3 2497	3 7378	4 6662	6 2 302	n , ran	,
8		2.9902	3.0615	3 1276	3 6271	3 9865	4.5430	5 5071	7 3892	11 119	n
9		3.6274	3,7080	3 7825	4,3447	4 7470	5 3702	6.5464	8 5217	11045	7
10		4.2889	4.3784	4.4612	5 0840	5 5294	6.2157	7.5106	9 6850	14 677	10
11	ł	4.9709	5.0691	5,1599	5.8415	6 3280	7.0764	R 4R7 I			
12	1 .	5.6708	5,7774	5.4760	6.6147	7 1410	7 9501	9.4740	10 857	16 211	11
				6.5072	7 4015	7 9667			12 0 16	17.054	12
13	6.2607	6.3863	6.5011				8 8 7 4 9	10 470	11 222	10 700	1 '
14 15	6.9811 7.7139	7,1154 7,8568	7-2002 7.9874	7 3517 8 1080 ;	8-2003 9-0096	8 8600 9 6500	9.7295 10.633	11 4, 1 12 484	14 4 Ft 15 GOA	21 111	1.1
	ł										ĺ
18 17	9.2119	8.6092 9.3714	8 7474 9.5171	8 8750 9 6516	9 8284 10 656	10 505 11 368	11 544 12 461	13 500	16 207	22 (11	10
18	9.9751	10,143	10 296	10 437	11 491	12 238	13 385	14 522 15 548	18 010	26 10 1	1.0
19	10.747	10,713	11 082	11 230	12 3 13	12 235	14 315	16 579	10.216	27 241	1
20	11.526	11,709	11.876	12 0.11	10 102	13.007	15,249	17.613	20 424 21 635	20 108 11 167	20
21	12.312	12,503	12.677	12 838	14,036	EA BRS	16 189	18 65 1			
22	13.105	13.303	13 484	13 65 1	14.896	15 778	17 132	10 605	22 RAR 24 ORA	34.464	21
23	13.904	14.110	14 297	14 470	15.761	16.675	18 080	20.737	29 081	36 121	23
24	14,709	14.922	15 116	15 205	16.631	17.577	19 031	21.784	26 400	37.770	21
25	15.519	15,739	15,939	16 125	17.505	18 483	10 085	22 8 1 1	27 720	10 117	25
28	16.334	16,561	16.768	16 950	18.383	19 302	20.943	23 PR5	28.941	44 096	28
27	17.153	17.387	17 501	17 797	19.265	20.305	21 904	24 020	30 164	19 716	2.
28	17.977	18.218	18 438	18.640	20. 650	21.221	22 867	25 995	31 388	14 (14	211
29	18.805	19.053	19,279	19.487	21.039	22 140	23 833	27.053	32 614	46.07.1	20
30	19.637	19,891	20.123	20/337	21 932	23.062	24 802	28 113	33 830	1, 72%	30
31	20.473	20.734	20.972	21 191	22 827	23.987	25 773	29 174	35 067	40.30%	7.1
32	21.312	21.580	21.823	22 048	23 725	24 914	26.746	30.237	36 295	51.056	12
33	22.155	22,429	22,678	22 900	24 626	25 844	27 721	31.301	37 524	7,2 7.19	111
34	23.001	23.281	23.536	23 772	25 529	26.776	28 698	32.367	38.754	51 170	314
35	23.849	24.136	24 397	24 638	26 435	27.711	29 677	33.434	70 9315	55 011	15
38	24.701	24,994	25.261	25,507	27,343	28 647	30.657	34.503	41.216	57.703	38
37	25.556	25 854	26,127	26 378	28 254	29,585	31.640	35 572	42 A4R	50 365	37
38	26.413	26.718	26,006	27.252	54 100	30.526	32 624	aninaa y	43 680	GLOPE	эл
39 40	27.272 28.134	27.583 28.451	27,867	28 129	30 001	31.468	001.00	37,715	44.913	62 600	30
- 1			28,741	29.007	30,997	32 412	34 596	38 787	46 147	क्षा गहाः	40
41	28.999	29,322	29.616	5a uuu	31.916	33,357	35 504	39 864	47 DR1	010-00	41
42	29.866	30,194	30,494	30 771	32.836	34 305	36.574	40 93G	48.616	67.579	42
,	30.734	31,069	31.374	31.656	0.1.758	35 253	37.565	42 011	49 854	60 312	4,1
45	31.605 32.478	31.946	32 256	32 543	34,682	35 203	30, 557	43 008	51.086	71 006	44
	32.478	32.824	33,140	33 432	35,607	37 155	39 550	44 165	52,322	72.660	15
48	33.353	33.705	34.026	34 322	36 534	ant ac	40.545	45 243	5.1550	74 3,23	16
47	34.230	34.587	34,913	35.215	37,462	39,062	41.540	46 122	51.706	75.007	4)
48	35.108	35,471	35.803	36,109	38 392	40.018	42 537	47.401	56 03 (77 tita)	49
19	35.988	36.357	36.694	37.004	39 323	40 975	43 534	बह्म बहुत	57.270	70-274	10
50	36.870	37.245	37.58G	37,901	40.255	41.933	44.537	49.562	58 560	na ora	ፕሮ
51	37,754	38 134	38 480	38 800	41 1110	42 892	45 5001	50.634	50.746	rp 650	51
n	.007	.008	.009	.01	.02	.03	.05	. 1	.2	4	
''			Dro	babi1ida	.1 1	(E)			j	11

Flujo de tráfico ofrecido A en Erlang

1000	.00005	.0001	.0005	.001	.002	.003	004	.005	.006	•
	00005	00010	.00050	00100	00200	00304	00402	00503	.00604	
0001	.00005 .01005	01424	03213	04576	06534	00064	09.373	10540	11608	ĺ
0448	.06849	08683	15170	19384	24872	28851	32099	34900	37395	i
)3967 2853	.19544	.23471	.36235	43927	53503	.60209	65568	70,720	74124	ĺ
7526	.38848	.45195	.64857	76211	89986	99446	1.0692	1 1320	1 1870	
17569	63922	.72822	.99566	1 1459	1 3252	1.4468	1 5421	1.6218	1 6912	ĺ
72365	.93919	1.0541	1 3922	1.5786	1.7984	1.9463	2.0614	2 1575	2 2408	
0132	1 2812	1.4219	1.8297	2 0513	2 3 1 0 5	2.4837	2.6181	2,7299	S 9566	l
3391	1.6593	1.8256	2 3016	2 5575	2.8549	3 0526	3 2056	3 3326	3 4422	l
6970	2.0688	2 2601	2.8028	3 0920	3 4265	3 6480	3.8190	3 9607	4 0829	
.0831	2.5058	2.7216	3.3294	3.6511	4.0215	4.2661	4 4545	4 6104	4 7 4 4 7	
4944	2.9670	3.2069	3 8781	4 2314	4 6368	4 9038	5 1092	5 2789	5.4250	
9283	3.4499	3.7133	4.4465	4.8305	5 2700	5 5588	5.7807	5 9638	6 1214	1
3826	3.9522	4 2387	5.0324	5.4464	5 9 190	6.2290	6 4670	6 6632	6.8320	
8553	4.4721	4.7811	5 6339	6.0772	6 5822	6 9159	7 1665	7.3755	7 5552	
3448	5.0079	5 3389	6.2496	6 7215	7.2582	7 609 1	7.8780	8 0995	8 5868	
8498	5.5582	5.9109	6.8782	7.3781	7.9457	8 3 16 4	8 6003	8 8340	9.0347	
3690	6 1220	6 4958	7.5186	8 0459	8.6437	9.0339	9.3324	9.5780	9.7889	
.9013	6.6980	7.0927	8.1698	8.7239	9.3514	9.7606 10.496	10 073 10 823	10 33 L 11 092	10 552 11 322	;
.4458	7.2854	7.7005	8.8310	9.4115	10.068					J
.0015	7 0834	8.3186	9.5014	10.108	10.793	11 239	11.580	11 860 12 635	12.100 12.885	
5679	8.4913	8.9462	10 180	10.812	11 525	11 989	12 344 13 114	13.416	13 676	;
7207	9.1084	9 5826	10.868	11.524	12.265	12 746 13 510	13 114	14.204	14.472	:
.7297 .3239	9.7341 10.368	10.227 10.880	11.562 12.264	12 243 12.969	13.011 13.763	13 510	14 673	14 997	15.274	
	•								16 08 1	
.9264 0.537	11.009 11.858	11.540 12.207	12 972 13 686	13.701 14.439	14 522 15.285	15 054 15 835	15 46 1 16 254	15-795 16-598	16.893	
1.154	12.314	12.800	34.406	15.182	16 054	16 620	17 05 1	17 406	17.709	
1.779	12.976	13.560	15.132	15.930	16 828	17.410	17.853	18 218	18 530	:
2.410	13.644	14.246	15.863	16 684	17 606	18 204	18 660	19 034	19 355	:
3.048	14.318	14.937	16.599	17 442	18.389	19 002	19 470	19.854	20.183	1 :
3.691	14.997	15.633	17 340	18.205	19.176	19 805	20.284	20.678	23 015	1
4.341	15.682	16.335	18.085	18.972	19 966	20 611	21.102	21 505	21.850	1 :
4.995	16.372	17.041	18.835	19.743	20.761	21,421	21 923	22 336	55 688	:
5.655	17.067	17.752	19.589	20.517	21.559	22.234	22,748	23.169	23 531	:
6.321	17.766	18.468	20.346	21 296	22 361	23 050	23 575	24 006	24 376	:
6 990	18.470	19.188	21.108	22 078	23 166	23 870	24 406	24 846	25 223	:
7.665	19.178	19.911	21.873	22.864	23 974	24 692	25 240	25 689	26 074	1
0.344	19.890	20.639	22.642	23.652	24 785	25.510	26 076	26.534	26 926	3
9.027	20.606	21.371	23 414	24.444	25 599	26 346	26 915	27.382	27.782	Í
9.715 0.40c	21.326	22 106	24.189	25 239	26 4 16	27 177	27.756	28 232	28 640	1
0.406	22.049	22.845	24.967	26.037	27 235	28 010	28 600	29 085	29 500	1
21.101 !1.800	22 776 23.507	23.587 24.332	25.748 26.532	26.837 27.641	28 057 28 882	28 846 29 684	29 447 30 295	29 940 30 797	30.352 31.227	1
2.503	24.240	25.080	27.319	28 447	29 708	30.525	31 146	31 656	32 093	1
3 209	24.977	25.832	28 109	29 255	30 538		31 999	32.514	32 962	ı
3918	25,717	25.832 26.586	28 90 L	29 255 30 066	30 538	31 367 32 212	32 854	33 381	33 032	1
4631	26 460	27.343	29.696	30.879	32 203	33 059	33 711	34 246	34 704	1
5 346	27 206	28.103	30 493	31.694	33 039	33 908	34.570	35 113	35.578	,
6 065	27.954	28 866	31.292	32 512	33 876	34.759	35 431	35,982	36 454	!
5 787	28 706	29.631	32 094	33 332	34,716	35 611	36 293	36 852	37 331	!
1 000	.00005	.0001	.0005	.001	.002	.003	.004	.005	.006	

Flujo de tráfico ofrecido A en Erlang

10				D				17.)				
1000000000000000000000000000000000000								•	· nn.t	nos	pos	11
52 57 511 29 450 30 310 31 31 31 31 35 560 32 57 32 23 32 30 31 31 31 31 31 31 31)(0001	.00005	,0001	0005	.004	,002	.00.1		,007	. 11101	
59 29 29 29 21 21 189 21 24 25 26 27 27 27 28 29 29 20 21 21 21 22 26 20 20 20 20 20 20	G	3.787	28,706	29.631	32 094	33, 132	34.716	35.611	36,793	ga ns,	77.711	51
\$6	į	.511	29 459	30,399	32 808	34 153	ar eru	26 466	37 157	37.721	34 514	r. 7
56 29,702 31,736 32,717 36,922 36,600 30,004 30,004 30,004 30,760 40,355 30,437 30,500 30,201 30,701 30,701 30,701 40,630 41,502 42,105 57,31,175 33,266 34,273 36,930 30,221 40,645 41,620 42,360 30,761 30,761 30,703 41,400 42,400 41,502 42,000 31,265 34,303 37,761 30,921 41,400 42,403 41,502 41,400 30,303 41,400 42,403 41,502 41,400 41,400 31,402 35,577 36,623 30,401 40,705 42,353 41,360 44,127 44,75 41,402 41,	ņ	3 536	30.216	31 169	33.704	34 077	36 401	37 302	30.023	🗸 (เก.ศกก	39 (194	5.1
56 30,437 32,500 31,404 36,111 37,400 30,042 30,901 40,630 41,225 57 31,175 33,206 34,273 36,910 30,701 30,701 40,761 42,207 42,10 59 31,915 31,014 35,034 37,761 30,901 41,400 42,403 41,201 41,407 42,376 74,20 60 33,402 35,603 30,401 40,601 40,603 41,400 42,303 44,75 44,75 44,000 44,209 45,603 46,603 44,407 44,603 45,603 46,603 44,407 44,603 45,603 46,603 44,407 44,603 45,603 46,603 47,714 46,603 47,714 46,603 47,714 46,603 47,716	8	3.969	30 975	31 942	24 512	25 863			an no i	39 474	30.07.1	54
\$\frac{97}{88} 31,175 33,266 34,273 36,918 30,261 30,124 40,648 41,670 42,162 42,165 42,672 42,165 42,657 33,1034 35,034 31,914 30,039 41,400 42,191 43,251 43,07 44,75 42,672 42,085 43,000 33,402 35,577 36,623 39,401 40,076 42,253 41,300 44,127 44,75 44,75 44,75 44,031 44,220 45,005 44,675 44,000 45,005 45,005 45,005 44,000 45,005	9	3.702	31.736	32 717	05 022	(36 630)	38 094	.19 040	20.760	40 351	40 857	55
57 31,176 32,266 34,273 36,918 30,291 30,743 40,763 41,502 42,10 58 31,915 31,014 36,938 31,911 30,934 40,043 41,600 42,267 42,40 43,263 42,40 43,251 41,07 41,07 42,103 43,251 41,07 41,07 42,103 43,251 41,07 41,07 42,03 43,203 44,120 43,251 41,07 44,203 43,203 44,120 44,203 45,003 46,63 46,63 46,63 46,63 38,68 37,411 40,203 41,633 43,203 45,003 45,003 46,63 46,63 46,64 47,44 48,003 41,633 43,003 41,003 46,003 40,003 41,003 41,003 47,164 47,164 47,164 47,164 48,003 47,164 48,003 48,003 48,003 48,003 48,003 48,003 48,003 48,003 48,003 48,003 48,003 48,003 48,003	(1	1,437	32,500	33 494	36 134	37,460	38 942	100 001	40 630	41.229	41.742	50
50			33,266	34 273	36 9 18	38.291	39 793	40.763	41,502	42,400	42,620	57
00 33 402 35 577 36 621 39 401 40 705 42 353 43 360 44 427 44 45 56 34 449 36 30 37 40 37 40 39 37 40 39 37 40 39 37 40 39 37 40 39 37 40 39 37 40 39 39 41 105 42 47 24 40 60 45 46 47 41 40 36 40 30 40 30 40 30 40 40	ı	.915	31034	35 054	37.764	30 124	40 G45	41.628	42 376	7 42 1100	43.516	5.0
61 34 149 36 361 37 411 40 222 41 633 42 10 44 220 45 605 45 66 12 52 34 809 37,127 30,200 41 645 42 472 44 666 45 60 46 60 45 60 46 60 46 60 47,716 46 60 37,159 39 460 40,579 43,521 45 600 46 660 47,716 40,520 49 19 66 37,159 39 460 40,579 43,521 45 600 46 660 47,716 40,520 49 19 66 37,159 39 460 40,579 43,521 45 600 46 660 47,716 40,520 49 19 66 37,159 39 460 40,579 43,521 45 600 46 660 47,716 40,520 49 19 66 37,917 40,262 41,375 44,352 45 600 46 660 47,716 40,520 49 19 66 37,917 40,262 41,375 44,352 45 600 46 660 47,716 40,520 49 19 66 39,917 40,262 41,375 44,352 45 80 40 40,407 50,207 50 07 60 30 676 41,030 42,173 45 80 40 40 40 40 40 40 40 40 40 40 40 40 40	2	.657	34 804	35 838	38 581	30.040	41,498	42 493	43.251	4.1.873	44 406	59
92 34 999 37,127 30,200 41 045 42,472 44 060 45 076 46 764 47 41 64 35,650 37,006 30,991 41 060 44 156 45 760 46 60 43 764 47 41 64 35,400 46 660 37,159 39,460 40,579 43,523 45 000 46 660 47,716 40,520 49,190 66 37,917 40,252 41,375 44,352 45 000 46 660 47,716 40,520 49,190 67 30,676 41,030 42,173 46 103 46 601 40,472 40,412 50 60 70,676 41,030 42,173 46 103 46 601 40,472 40,412 50 60 70,473 40,966 43,4105 42,971 46 601 47,540 49,243 50 315 51,103 51,073 70 40,966 43,405 44,577 47,601 49,243 50 315 51,103 51,073 70 40,966 43,405 44,577 47,601 49,240 50 970 52,103 59,050 51,666 43,405 44,577 47,601 49,240 50 970 52,103 59,050 51,666 43,405 44,577 47,601 49,240 50 970 52,103 59,050 51,666 43,405 44,577 47,601 49,240 50 970 52,103 59,050 51,667	3	402	35 577	36,623	39.404	40.795	42.353	43 360	44 127	44.757	42 500	0.0
92 34 999 37,127 30,200 41 045 42,472 44 060 45 060 46 076 47 48 070 46 764 47 41 41 660 32,159 39,460 40,579 43,520 45 000 46 660 47,716 40,570 49,190 66 37,159 39,460 40,579 43,520 45 000 46 660 47,716 40,570 49,190 66 37,917 40,252 41,375 44,352 45 000 46 660 47,716 40,570 49,190 66 37,917 40,252 41,375 44,352 45 000 46 660 47,716 40,570 49,190 60 37,917 40,252 41,375 44,352 45 000 46 660 47,716 40,412 50 000 67 30 47,640 49,243 50 315 51,103 51,070 69 40,291 42,615 43,774 46 644 47,640 49,243 50 315 51,103 51,070 40,965 43,405 44,577 47,641 49,210 50 970 52,101 52,051 52,771 52,770 40,965 43,405 44,677 47,641 49,210 50 970 52,101 52,961 51,660 51,660 51,771 50,960 51,660 51,771 50,960 51,660 51,771 50,960 51,771 50,960 51,771 50,960 51,771 50,960 51,771 50,960 51,771 57,741 50,960 51,771 50,960 51,771 50,960 51,771 50,960 51,771 50,960 51,771 50,960 51,771 50,960 50,960 50,960 50,960 51,960 50,960	1	1.40	18.751	27.411	40.222	A 1 G33	42.210	44.220	45 005	45 642	46 188	0.1
										46 528	47 081	n2
65 30,404 30,606 30,704 42,605 44,156 45,700 46,650 47,716 40,520 40,160 60,000 60,000 40,579 43,523 45,000 46,650 47,716 40,520 40,100 60,00										47 416	47 975	n 3
65 37,159 39,460 40,579 43,523 45,000 46,650 47,716 40,520 49,19 66 37,917 40,252 41,375 44,352 45,045 47,545 47,545 40,667 40,467 50,207 50,007 60 39,430 41,020 42,073 46,015 47,540 40,243 50,316 51,103 51,107 69 40,291 42,615 43,774 46,040 40,345 50,116 51,223 52,071 52,76 40,296 43,405 44,577 47,013 40,310 50,970 52,103 52,950 53,666 47,713 44,692 46,605 44,597 47,013 40,209 50,970 52,103 52,950 53,666 72,272 45,707 46,096 50,196 51,299 51,290 51,290 51,290 51,290 51,290 51,290 50,136 54,405 54,405 54,405 54,405 54,405 54,405 54,405 54,405 54,405 54,405 54,405 56,520 57,256 57,416 51,405 5										49 305	40.070	0.4
66 37,917 40.252 41.375 44.352 45.845 47.513 48.591 40.412 50.00 67 38.626 41.038 42.173 45.193 46.601 48.753 40.407 50.297 50.297 50.297 39.438 41.025 42.73 45.193 46.601 48.728 40.402 50.015 51.183 51.07 50.207 40.201 42.615 43.774 46.848 48.309 50.110 61.223 52.071 52.265 40.296 43.405 44.577 47.603 40.200 50.970 52.103 52.0571 52.265 40.296 43.405 44.577 47.603 40.200 50.970 52.103 52.0571 52.265 40.296 43.405 44.577 47.603 40.200 50.970 52.103 52.0571 52.057 52.057 40.296 43.405 44.577 47.603 40.200 50.970 52.103 52.050 51.600 51.600 51.203 44.108 45.302 48.510 50.001 51.033 62.103 52.051 52.050 51.052 52.050 51.052 52.050 52.053 43.272 45.707 46.906 50.105 51.200 53.500 51.718 65.035 56.33 56.33 57.257 54.108 47.303 48.515 51.077 53.511 55.037 56.512 57.415 58.155 75.418 49.202 48.703 48.505 50.240 53.563 55.227 57.087 58.200 50.205 50.053 47.148 49.207 51.051 54.408 56.037 56.512 57.415 58.155 60.250 48.709 51.397 52.687 50.041 55.207 57.087 58.200 50.205 50.053 47.148 49.207 51.051 54.408 56.037 56.521 57.415 58.055 60.20										49 195	49,766	n s
67 30 676 41 030 42 173 45 103 46 601 48 370 40 467 50 207 50 37 69 40 201 42 615 43 774 46 046 47 540 40 243 50 315 51,103 51 77 70 40 966 43 405 44,577 47 603 40 209 50 970 52 103 52 950 53 66 71 41 703 44 108 45 382 48 540 50 001 51 84 52 103 52 950 53 66 72 42 502 44,902 46 108 40 357 50 004 57 18 53 80 57 18 53 80 54 19 54 38 73 43 272 45 177 46 906 50 195 51 79 53 900 51 78 53 93 56 70 57 415 56 10 57 415 56 10 57 27 53 511 57 415 56 10 57 415 58 10 57 415 56 11 57 415 56 10 57 415 58 10 57 415 58 11 57 415 58 11 57 415 <th></th> <th>50 504</th> <th>97</th>											50 504	97
00 39 430 44 825 42 973 46 015 47 540 49 243 50 318 51 183 51 177 07 40 201 42 615 43 774 46 918 40 201 50 270 52 201 52 205 52 605 07 40 206 43 405 44 577 47 681 40 208 50 970 72 103 52 205 52 605 07 41 733 44 188 45 310 40 357 50 601 51 81 83 85 84 10 55 85 07 42 502 44 692 46 188 40 357 50 604 52 718 53 85 10 55 35 07 43 272 45 787 46 906 50 105 51 209 53 500 51 718 55 600 63 718 07 44 404 46 595 47 805 51 613 52 854 54 463 56 612 86 692 62 25 07 45 404 46 595 47 805 51 613 52 854 53 45 63 55 65 72 57 415 58 15 07 46 370 48 985 50 240 53 563 55 227 57 67 57 415 58 15 07 47 48 49 49 49 49 49 49 49											51 562	6.7
69 40 291 42,615 43 774 46 048 40 389 50 110 51 293 52 071 52 700 70 40 968 43 408 44,577 47 601 40 210 50 920 52 101 52 000 51 66 71 41 730 44 198 45 302 40 902 46 108 40 307 50 001 51 10 52 001 52 000 51 60 72 42 502 44 902 46 108 50 103 51 700 53 500 51 718 65 600 50 33 74 44 044 46 505 47 805 51 035 52 064 54 463 56 612 56 629 62 56 75 44 18 47 303 40 15 51 035 52 064 54 463 56 612 56 629 62 50 52 05 76 45 509 40 18 47 303 40 15 51 035 55 227 57 007 50 20 50 05 77 46 370 40 9707 51 061 54 306 56 227 57 007 50 20										51.070	52 462	nn
70											53 362	ng
71											51.264	70
72 42,502 44,802 46,108 40,357 50,044 52,718 50,055 64,30 50,48 73 43,272 45,707 46,906 50,105 51,709 53,500 51,718 50,00 50,35 74 44,044 46,505 47,805 51,035 52,054 54,463 55,032 56,502 57,241 50,35 75 44,018 47,303 40,615 51,077 50,511 57,307 56,517 57,415 50,15 76 45,593 40,103 40,427 52,719 54,369 56,211 57,402 50,00 50,00 77 46,370 40,905 50,240 53,563 55,227 57,007 50,200 50,00 50,00 78 47,140 49,707 51,051 54,400 56,007 57,004 50,127 60,00 50,00 50,00 80 48,709 51,307 55,264 56,004 50,623 60,40 50,623 60,00												1
73										54 554	95 166	7.1
74 44.044 46.595 47.805 \$1.035 \$2.654 \$3.463 \$55.032 \$6.502 \$7.25 75 44.018 47.303 49.615 \$1.077 \$3.911 \$55.307 \$6.517 \$7.415 \$6.15 78 45.593 48.103 49.427 \$6.719 \$64.369 \$6.211 \$7.402 \$6.310 \$6.035 78 47.140 49.707 \$1.051 \$41.00 \$6.007 \$7.964 \$9.177 \$61.01 \$60.08 79 47.140 49.707 \$1.051 \$64.00 \$6.007 \$7.964 \$61.77 \$60.101 \$60.00 80 48.709 \$1.397 \$52.687 \$61.01 \$7.810 \$69.720 \$60.005 \$61.005 \$62.605 81 49.492 \$52.204 \$3.506 \$6.049 \$6.673 \$60.000 \$61.845 \$62.704 \$63.57 \$62.605 81 49.492 \$52.204 \$63.506 \$6.049 \$6.673 \$60.000 \$61.845 \$62.704 <th></th> <th>66 070</th> <th>7.2</th>											66 070	7.2
75 44.0.18 47.303 49.615 51.077 50.611 56.007 56.517 57.415 50.15 76 45.693 48.103 49.427 52.719 54.369 56.211 57.402 50.010 50.06 77 46.370 48.985 50.240 50.563 55.227 57.007 50.200 50.205 50.06 78 47.148 49.787 51.061 54.400 56.007 57.964 59.177 60.101 60.00 80 48.792 50.592 51.870 58.264 56.001 50.720 60.005 60.005 60.005 60.005 60.005 60.005 60.005 61.005 60.005 61.005 60.005 60.005 61.005 60.005 61.47 60.005 61.47 60.005 61.47 60.005 61.47 60.005 61.47 60.005 61.47 60.005 61.47 61.47 61.47 61.47 61.47 61.47 61.47 61.47 61.47 61.47											56.074	7.1
78 45.593 48.183 49.427 52.719 54.369 56.211 57.492 58.310 59.05 77 46.370 48.985 50.240 53.563 55.227 57.087 58.200 59.205 59.06 78 47.148 49.707 51.061 54.408 56.087 57.964 59.177 60.101 69.83 79 47.926 50.592 51.870 55.254 56.948 58.742 60.085 60.098 61.76 80 48.709 51.397 52.687 56.101 57.810 50.720 60.005 61.805 62.08 81 49.492 52.204 53.506 56.949 58.673 60.000 61.845 62.704 63.57 82 50.276 53.012 54.325 57.708 59.537 61.430 62.002 63.603 64.152 83 51.062 53.822 55.146 58.619 60.403 62.002 63.603 63.403 65.003 66.203 </th <th></th> <th>57 880 58 786</th> <th>71</th>											57 880 58 786	71
77	٠.	.010	47,303	30 513	;)1 ///	21(1-21-1-1	001,337	30 517	37 415	(48-13.1	,,,,,,,,,,	7.5
78							56 211	57 402	5# 340	sglesa y	<u>ፍን ሰባ,</u> ኒ	7.5
78 47,928 50,592 51,870 58,264 56,940 58,842 60,065 60,065 60,068 61,865 62,665 81 48,709 51,397 52,687 56,101 57,810 60,720 60,065 61,865 62,665 81 49,492 52,204 53,506 56,949 58,673 60,600 61,845 62,794 63,677 82 50,276 53,012 54,325 57,790 59,537 61,400 62,737 63,693 61,479 83 51,062 53,822 55,146 58,619 60,403 62,262 63,620 64,504 65,306 84 51,849 54,633 59,686 59,500 61,268 63,241 64,622 65,405 66,20 85 52,637 55,445 56,791 60,352 62,135 64,127 65,415 62,266 62,136 67,205 67,205 69,206 67,205 69,206 67,205 69,206 67,205 69,205									59,205	50.956	eo eat	7.7
80										60 859	61.540	7.8
81 49.492 52.204 53.506 56.049 58.673 60.600 61.845 62.704 63.57 702 50.276 53.012 54.325 57.708 59.537 64.480 62.737 63.693 64.57 83 51.062 53.822 55.146 58.619 60.403 62.362 63.629 64.594 65.409 74 51.849 54.633 55.968 59.500 61.268 63.241 64.522 65.405 66.29 85 52.637 55.445 56.791 60.352 62.135 64.127 65.415 66.396 67.205 86 53.427 56.258 57.615 61.208 63.003 65.011 66.310 67.205 67.205 67.205 67.205 67.205 67.205 67.205 67.205 67.205 67.205 67.205 67.205 67.205 67.205 67.205 67.205 67.205 67.205 67.001 70.011 70.041 70.041 70.041 70.041 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>61.763</th> <th>62 119</th> <th>7.0</th>										61.763	62 119	7.0
102 50,276 53,012 54,325 57,798 59,537 61,430 62,737 63,693 64,17 83	5.	.709	51,397	52 687	56 101	57,810	59,720	60 955	61.895	GP GGN	U1 1140	D (1)
83 51,062 53,822 55,146 58,019 60,403 62,062 63,629 64,504 65,004 84 51,849 54,633 55,968 59,500 61,268 63,241 64,522 65,405 62,203 85 52,637 55,445 56,791 60,352 62,135 64,127 65,415 66,306 67,205 63,306 67,205 63,306 67,205 68,405 67,206 68,111 68,310 67,206 67,206 67,206 68,111 68,310 67,206 68,101 68,202 68,806 67,206 68,202 68,101 68,806 67,206 68,202 68,101 68,806 67,206 68,202 68,806 67,206 68,202 68,806 67,206 68,202 68,806 67,206 68,101 69,002 69,002 69,002 69,002 69,002 69,002 69,002 69,002 69,003 69,003 69,003 69,003 69,003 69,003 69,003 69,003 69,003 69,00	9.	.492	52.204	53.506	56 949	58 673	60 600	61.845	62.724	63 573	64.241	nı
84 51,849 54,633 55,968 59,500 61,268 63,241 64,522 65,405 66,200 85 52,637 55,445 56,791 60,352 62,135 64,127 65,415 66,300 67,200 68,415 66,300 67,200 68,415 66,300 67,200 68,415 67,200 68,11 67,200 68,11 67,200 68,11 67,200 68,200 67,200 68,800 67,200 68,200 68,800 67,200 68,200 68,800 67,200 68,200 68,800 67,200 68,200 68,200 68,800 67,200 68,200 68,200 68,800 67,200 68,200 68,200 68,800 67,200 68,200 68,800 67,200 68,200 68,800 67,200 68,100 69,200 69,200 69,200 69,200 69,200 69,200 69,200 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 <td< th=""><th>).</th><th>.276</th><th>53 012</th><th>54 325</th><th>57.79n</th><th>59.537</th><th>61.480</th><th>62.737</th><th>63 693</th><th>64 179</th><th>05 154</th><th>no -</th></td<>).	.276	53 012	54 325	57.79n	59.537	61.480	62.737	63 693	64 179	05 154	no -
85 52 637 55 445 56 791 60 352 62 135 64 127 66 416 60 306 67 207 88 53.427 56.258 57 615 61 208 63.003 65 011 66 310 67 290 67 11 67 290 67 11 67 290 67 11 67 290 67 11 67 290 67 11 67 290 67 11 67 290 67 11 67 290 67 11 67 12 67 68 67 12 67 68 67 12 67 68 12 67 68 67 68 67 67 68 12 67 68 67 68 67 67 68 67 68 68 78 68 78 78 78	١.	.062	53.822	55 146	58 6 19	60 403	62 362	63 629	64.594	65 '016	Ed ace	n i
88 53,427 56,258 57,615 61,208 63,003 65,011 66,310 67,209 67,209 67,11 88 54,218 57,072 58,441 62,000 63,872 65,806 67,205 67,206 67,205 67,205 67,205 67,205 67,205 67,205 67,205 67,206 67,206 67,207 <							63.241	64 522	65 405	66.294	pp 470	7.1
87 54.218 57.072 58.441 62.000 63.872 65.896 67.205 69.202 69.202 69.202 69.202 69.202 69.202 69.202 69.202 69.202 69.202 69.202 69.202 69.202 69.612 67.669 69.008 70.011 70.041	•	637	55 445	. 56 791	60,352	62 135	64 127	65 415	86 396	67 202	tel nad	กร
87 54.218 57.072 58.441 62.060 63.872 65.806 67.205 69.202 69.202 69.202 69.202 69.202 69.202 69.202 69.202 69.202 69.302 69.302 69.302 69.302 69.302 69.302 69.203 70.303 71.603 72.703 71.704	J.	127	56.258	57.615	61 203	63,003	65 011	66.310	67 290	68.111	en non	ng
89 55.803 58.704 60.095 63.772 65.612 67.669 68.008 70.011 70.041 90 56.598 59.522 60.920 64.629 66.481 68.566 60.806 70.017 71.757 91 57.394 60.341 61.753 65.017 67.356 60.444 70.764 71.021 72.669 92 58.191 61.161 62.504 66.016 68.220 70.333 71.603 72.730 71.400 93 58.900 61.902 63.415 67.206 69.103 71.222 72.603 73.617 71.400 94 59.789 62.304 61.248 68.067 69.978 72.113 73.403 74.515 75.410 95 60.590 63.627 65.082 68.928 70.853 73.004 74.301 75.464 76.326 96 61.391 64.451 65.917 69.791 71.729 73.895 75.200 76.064 77.216	١.	218	57 072	58.441	62 000	61.872	65,826	67,205		69 651	60 721	n7
90 56.598 59.522 60.920 64.629 66.401 60.556 60.006 70.017 71.757 91 57.394 60.341 61.753 65.107 67.356 60.444 70.754 71.021 72.669 92 58.191 61.161 62.504 66.316 60.220 70.333 71.603 72.730 71.504 93 58.990 61.902 63.415 67.266 69.104 71.222 72.603 73.617 71.407 94 59.789 62.304 61.248 68.097 60.970 72.113 73.403 74.515 75.416 95 60.590 63.627 65.002 60.920 70.053 73.004 74.301 75.454 76.327 96 61.391 64.451 65.917 69.791 71.729 73.895 75.296 76.364 77.211 97 62.194 65.276 66.752 70.654 72.606 74.708 76.199 77.274 78.157 98 62.298 66.102 67.589 71.510 73.404 75.681 77.102 78.105 79.074	,	010	57.887	59,267	62 915	61,742	66.782	64,101	69 106	60 0.12	70.640	ηn
91 57,384 60,341 61,763 65,107 67,356 60,444 70,794 71,021 72,667 92 58,191 61,161 62,504 66,016 69,229 70,033 71,603 72,730 71,604 93 58,990 61,902 63,415 67,206 69,104 71,222 72,503 73,617 71,400 94 59,789 62,304 61,248 68,097 69,978 72,113 73,403 74,515 75,416 95 60,590 63,627 65,082 68,928 70,853 73,004 74,301 75,454 76,327 96 61,391 64,451 65,917 69,791 71,729 73,895 75,206 76,064 77,211 97 52,194 65,276 66,752 70,654 72,606 74,788 76,199 77,274 78,152 98 62,298 66,102 67,589 71,510 73,484 75,681 77,102 78,185 79,074 <th>.</th> <th>.803</th> <th>58 704</th> <th>60 095</th> <th>61 772</th> <th>65.612</th> <th>67 669</th> <th>ва пов</th> <th>70.011</th> <th>70.043</th> <th>71.557</th> <th>מת</th>	.	.803	58 704	60 095	61 772	65.612	67 669	ва пов	70.011	70.043	71.557	מת
92 58.191 61.161 62.504 66.046 68.229 70.033 71.603 72.709 73.647 92 58.990 61.902 63.445 67.266 69.104 74.222 72.603 73.617 71.403 94 59.789 62.304 61.248 68.007 69.978 72.113 73.403 74.515 76.416 95 60.590 63.627 65.002 68.928 70.853 73.004 74.391 75.454 76.325 96 61.391 64.451 65.917 69.791 71.729 73.895 75.206 76.064 77.211 97 52.194 65.276 66.752 70.654 72.606 74.788 76.109 77.274 78.157 98 62.298 66.102 67.589 71.518 73.484 75.681 77.102 78.185 79.022	. !	598	59,522	60 923	64 629	66 48 1	64.556	60 506	70.917	71.755	72 474	0.0
92 58.191 61.161 62.504 66.046 68.229 70.033 71.603 72.709 73.647 92 58.990 61.902 63.445 67.266 69.104 74.222 72.603 73.617 71.403 94 59.789 62.304 61.248 68.007 69.978 72.113 73.403 74.515 76.416 95 60.590 63.627 65.002 68.928 70.853 73.004 74.391 75.454 76.325 96 61.391 64.451 65.917 69.791 71.729 73.895 75.206 76.064 77.211 97 52.194 65.276 66.752 70.654 72.606 74.788 76.109 77.274 78.157 98 62.298 66.102 67.589 71.518 73.484 75.681 77.102 78.185 79.022		104	60.341	61.753	65 102	67.456	CO 3AA	20.201		20.000		21
93 58,900 61,902 63,415 67,206 69,104 71,222 72,504 73,617 71,400 94 59,789 62,304 61,249 68,007 60,979 72,113 73,403 74,515 75,416 95 60,590 63,627 65,002 60,020 70,053 73,004 74,301 75,454 76,325 96 61,391 64,451 65,917 60,701 71,729 73,895 75,206 76,064 77,211 97 52,194 65,276 66,752 70,654 72,606 74,700 70,102 70,102 70,103 70,024 98 62,298 66,102 67,589 71,510 73,484 75,681 77,102 70,105 70,024											74 304 74 444	0.7
94 59.789 62.394 61.249 68.067 69.978 72.113 73.493 74.515 76.416 95 60.599 63.627 65.082 68.928 70.853 73.004 74.391 75.454 76.328 96 61.391 64.451 65.917 69.791 71.729 73.895 75.296 76.364 77.211 97 62.194 65.276 66.752 70.654 72.606 74.788 76.199 77.274 78.157 98 62.298 66.102 67.589 71.518 73.484 75.681 77.102 78.185 79.028		-									75.211	201
95 60.590 63.527 65.082 68.928 70.853 73.004 74.301 75.454 76.328 96 61.391 64.451 65.917 69.791 71.729 73.895 75.296 76.364 77.219 97 62.194 65.276 66.752 70.654 72.606 74.788 76.199 77.274 78.167 98 62.298 66.102 67.589 71.518 73.484 75.681 77.102 78.185 79.078											76 151	0.1
98 61.391 64.451 65.917 69.791 71.729 73.895 75.296 76.364 77.211 97 62.194 65.276 66.752 70.654 72.606 74.788 76.199 77.274 78.157 98 62.998 66.102 67.589 71.518 73.484 75.681 77.102 78.185 79.078											77.072	05
97 52,194 65,276 66,752 70,654 72,606 74,748 76,199 77,274 78,157 98 62,998 66,102 67,589 71,518 73,484 75,681 77,102 78,185 79,072												
98 62 998 66 102 67 589 71 510 73,484 75,681 77,102 78,185 79.074											77 001	96
											7N 015	9:
the following defines and desired to the value of the following the field to the field the following the field the f											70 J 17 90 700	n n
- NO 64.609 67.757 69.265 79.248 75.242 77.469 78.940 80.009 80.010										70 010		
										111111111	лт сл 1	100
101 65 4 1 6 68,586 70,104 74 115 75,122 78 364 79 815 80,020 8 1 829	1	416	68,586	70,104	74-115	76,122	7.0 DA	79.815	A0,920	B1 B29	מווח כת	101
	`(100	.00005	.0001	,0005	.001	.002	.003	.004	.005	POR	
Probabilidad de pérdida (E)				Pro	obabilid	lad de né	Srdida	(E)				n

Flujo de tráfico ofrecido A en Erlang

n	.007	.008	Prol	oabiLidac .ni	l de pêr	dida ('	E) .05	.1	2	4	11
		The state of the s) :
51	37.754	38, 134	38,480	38.800	41 100	42,892	45 533	50 6 14	59.746	87.652	" "
52	38 639	39.024	39.376	39.700	42 124	43.852	46 533	51.728 52.808	60 085	71 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.7
53	39,526	39 916	40,273	40.602	44.000	44 813 45 776	47 594 48 536	52 80 t	62 224 63 463	#5 061 #7 015	7.1
54	40.414	40 810 41,705	41 171 42 07 l	41 509 42 409	43 997 44 936	46 739	49.539	54.075	64 702	10 110	100
55	41,303]]
56	42,194	42.601	42.972	43 315	45 B75	47.703	50 543	56 050	65 912	00 0 (4	ηn i
57	43.087	43 499	43.875	44 222	46 016	48.669	51 548	57 144	67 181	92639	57
58	43.980	44.398	44,778	45 130	47.75B	49 635	52 553 53 559	58 220	68 421	94 30 1 95 068	5.0 5.0
59	44.875	45 298	45,683	46 009 46 950	48,700	50 602		50 (1) 5	69 662	97.034	50
80	45.771	46,199	46,589	465 9510	49,644	51.570	54.566	60 401	70.902	47 1. 11	1 "" 1
81	46.669	47.102	47,497	47 861	50 589	52,509	55 573	61 4BB	72 143	305 00	n:
82	47,567	48,005	48 405	48 774	51 534	53,508	56 581	62 575	7.0 (VIII.)	100.06	6.2
63	48,467	48,940	49 314	AO GAR	52 4R4	54.478	57 590	63 663	74 625	102.63	0.9
64	49,368	49.816	50.225	50.003	53.428	55 450	ga sao	64.750	75 RG6	101.70	0.1
85	50.270	50.723	51,137	51.518	54,376	56 421	50,600	65.839	77 TON	105.06	n.s
88	51,173	51.631	52,049	52 435	55 325	57 394	60.619	BB 927	78 (150)	107.62	E.U.
67	52.077	52,540	52,963	53 BBB	56 275	58 067	61.630	68 មាន	10.205	102.50	n 7
8.8	52.982	53 450	53.877	54 272	57.226	59.344	62 642	89 106	80 R34	110.0%	6.0
6.8	53.088	54,361	54 793	55, 191	59,177	80 316	63.654	70.106	82.076	117 62	4.0
70	54.795	55.273	55 709	56 112	59 129	61 291	64.667	71.286	73.31B	117 PR	7.0
71	55.703	56.186	56.626	57 033	60 082	62 267	65 680	72 376	84.561	115.05	71
72	56.612	57.099	57,545	57,956	81.036	63.244	66,694	7.73 467	85,803	117.61	72
73	57.522	58 0.14	58.464	5R 779	61.990	64 22 t	67.708	24,5 5 8	87,046	110.58	73
74	58.432	58.929	59.384	59,803	62 945	65 199	68.723	75 64g	ոս Տոժ	120.04	7.4
75	59.344	59.846	60,304	60,728	63.900	66, 177	69.738	76 741	A9 502	122.61	7.5
76	60.256	60.763	61,226	61 653	64.857	67 156	70.753	77 B 13	90.776	104.27	7.5
77	61.169	61.681	62.148	62 579	65,814	68.136	71.769	78 025	92 019	125.94	77
78	62.083	62.600	63,071	63 506	66.771	69 116	72.786	80 018	93 262	127.61	7.0
79	62.998	63.519	63,995	64,434	67,729	70.096	73.803	81 110	94 506	120 27	7.0
80	63.814	64,439	64,919	65,363	GR,GRB	71.077	74.820	82 203	95.750	130.04	80
81	64.830	65.360	65,845	66,292	69,647	72 059	75 838	BB 207	06.000	122.00	
82	65.747	66.282	66,771	67.222	70.607	73.041	76 856	84 390	96 993 98,237	132.60	R I
83	66.665	67.204	67.697	68, 152	7.1,508	74 024	77 B74	85 484	99.481	134-27 135-93	H2 N3
84	67.583	68.128	60.625	69 084	72 529	75 007	78,893	86 578	100.73	137.60	,,,
85	68.503	69.051	69.553	70.016	73 490	75,990	79 912	87 672	101,97	139.26	85
	ļ.										"
88	69.423	69.976	70,481	70 94B	74.452	76.974	RO 932	88 767	103.21	140 93	กก
87 88 :	70.343 71.264	70.901 71.827	71,410	71.881	75 415	77.050	81.952	89,863	104.46	14.2 GO	87
89	72.186		72.340	72 815	76 078	78 944	R2 972	90 956	105,70	144-26	nn
80	73.109	72.753 73.680	73.271	73,749	77.342	79 929	83.993	92 051	106.95	145 00	la to
•0	i	73.960	74.202	74 684	78.306	80.915	85 014	93 146	108-19	147 50	941
৪1	74.032	74.608	75, 134	75.620	79 271	81 901	n6 o35	94.242	109.44	649.26	D1
92	74.956	75.536	76 066	76.556	80,236	82 กกล	87.057	95 330	ttagg	150.92	92
93	75.880	76.465	76,999	77 493	81,201	83,875	88 079	96,4,64	111.93	152 50	9.1
94	76.805	77,394	77,932	78 400	B2 167	84,862	89 (0)	97,530	113.17	194.26	0.4
95	77.731	78.324	78 866	79.368	83, 133	85 850	90 123	99 626	114.42	155 92	05
98	78.657	79,255	79.801	80.306	B4 100	86 838	91146	99 722	115 GG	157.50	an
97	79.584	80,186	80,736	B1.245	85 068	87.826	92 169	100.02	116.01	157.50	0.7
RO	80.511	81,117	81.672	82 184	86 005	BB B15	93 193	101.92	118 15	100.05	оп
99	81.439	82,050	82 608	B3 124	87.003	RO ROA	91216	103 01	119.40	162.50	00
100	82.367	B2 982	83 545	84-064	87 972	90.794	95 240	101.11	170.64	16.1.26	ine
101	83.296	83,916	84 482	N5 005	នន ១ភា	01.784	ne 565	105.21	121.89	tr n ·	tot
	.007	.008	.009	.01	.02	.03	ุกร	.1	.2	1	
n	.001	*******						. 1	. /	1	11
			Pro	bab i Lida	id de né	rdida j	(E)				

Flujo de tráfico of cido A en Erlang

	00001	.00005	.0001	.0005	.001	.002	.001	.004	.005	.006
-						70.004	20.015		n L non	
•	55.416	68.586	70 104	74.115	76 122	78 364 78 360	79.815	BO 920 7	81 829 82 748	#5 eo#
	56.224	69 416	70,944	74 982	77 003	79 260	80 720 81 627	81 833 82 747	82 748 83 668	83 53 1 84 458
	57.033	70.247	71,785	75 850	77 884	80 157			84 588	85 JB4
	57 843	71.078	72.627	76 719	78 766	81 054	82,533 83,441	83.661 84.576	RS 509	86 340
- [68 655	71 911	73 470	77 5AR	79 649	81,951				
	59.467	72,744	74 313	78 458 50 330	80.532	82 850	84 349	85,492 86,407	1 E N A B	817 7 17 00 16 1
- 1	70 279	73,578	75 158	79 329	81 416	R3,74R	85 257	86 407	87 353	RR 161
	71.093	74.414	76 00:1	80.201	82 30 F	84 648	46 LCC	N7 324	RR 275	tra tra t
	71.908	75,249 76,086	76.849 77.696	81 073 81 946	R1 486 84 072	85,548 86,448	87 078 87 986	88 241 89 158	80 121	90 070 90 048
1	72.724							90.076	91 045	91.877
	73.541	76,924	78 543	82 B 19	85 846	87,350	ва лот по вол	90 904	91 970	92 807
	74.358	77.762	79 391	83 694	no nan ng 734	88 251. 89 154	90 7 19	91 913	02 805	91717
	75.176	78 60 1 70 44 1	81 090	84 568 85 444	87 622	90 056	91.632	92 033	93 820	94,660
	75.996 76.816	79 44 1 80 282	81 941	86 320	BB 511	90,960	92.544	93.753	94 746	95 509
i	77.637	81,123	82 792	87,197	89 401	91.864	91.458	94,673	95 672	96 530
	78.458	81,966	83.644	88 074	00 201	92.768	94,371	95 594	06 599	97,462
	79.281	82.809	84,496	88,952	91 181	93 673	95,285	96 5 15	97.526	Not. 86
	30.104	83.652	85 350	ren on	92.073	94.578	96 200	97,437	98 454	09 327
ı	10.929	84,497	86,204	90.710	02,064	95 484	97 115	on 359	00.302	100.26
18	11.753	85,342	87,058	91 500	93.857	96 391	98.031	99 282	100.31	101.10
	12.579	86,188	87,914	92 470	94.750	97 297	08 947	100.20	101.24	102 13
- 8	13.406	87.034	88,770	93,051	95 640	98.205	ស្នេង ខេត	101-13	102 17	103.06
1 3	14.233	87.881	80.626	94.232	96 537	00 113	100.78	102.05	100.10	101.00
8	15.061	88 729	90.483	95. E14	97,431	100.02	101.70	102.08	104 03	104 03
8	5.890	89.578	91,341	95 997	98.326	100.93	102-62	100.00	104.06	105 B7
- 8	6 7 19	90,427	92,200	96 000	00.222	101.84	103.53	104.83	105.89	106.80
8	7.549	91.277	93 059	97.764	100,12	102.75	104.45	105.75	106.82	107.74
- 8	8.380	92.127	93 919	aŭ 648	101.01	103,66	105.37	106 68	107.75	108.67
8	9.212	92,978	94 779	99.503	101.91	104.57	106-29	107,60	108 68	100.61
9	0.044	93.830	95 640	100.42	102.81	105.48	107.21	108.53	109.62	110.55
9	0.877	94.682	96 502	101.30	103.71	106.39	F1 R01	109.46	110.55	111.40
9	1,711	95.535	97,364	102 19	104.60	107 30	109.05	110.39	111.48	112.42
á	2 545	96.389	98 226	103.08	105.50	108 22	100.97	111.31	112.42	113 36
9	3.380	97,243	ã õ 0 ã 0	100,96	106 40	109, 13	110.89	112 24	113.35	114.30
9	1.215	98 098	99,953	104.85	107.00	110.04	111.82	113.17	114.28	115.24
9	5 052	98.953	100 82	105.74	108.20	110.95	112.74	114.10 2	115.22	116 18
Ô	5.889	99,809	101 68	106-63	109.10	111,87	00 C11	115 03	116 15	117 12
9	6.726	100.67	102 55	107.52	110.00	112.78	114.58	115.96	117,09	118.06
9	7.564	101.52	103 41	108.41	110,90	110.70	115.51	116,80	118.02	119,00
9	8.403	102.38	104.28	109.30	111 81	114.61	116 43	117.82	110.06	110.04
99	9.243	103.24	105 15	110-19	112.71	115.53	117.35	118.75	110.00	120 08
10	00.08	104.10	105 02	· 111 08	113.61	116.44	118.28	119.68	120 83	121 82
10	00 92	104.96	105.88	111.97	114,51	117.36	119.20	120.61	121 77	122.76
10	01.76	105.82	107.75	112,86	115 42	118.28	120-13	121.54	122.71	123.71
10	02 61	106.68	103 62	113,75	116.32	119 19	121.05	122.47	121.64	124.65
10	03.45	107.54	105.48	114.65	117.23	120.11	121 00	123,41	124.58	125 59
10	04.29	108.40	11036	115.54	F18 13	121 03	122.91	124.34	125 52	126 51
10	05.13	109.26	111 23	116.43	119.04	121.95	123 83	125.27	126.46	127 48
10	95.98	110,12	112 10	117,33	119.94	122,86	124.76	126.21	127 40	128 42
10	06 82	110.99	112 97	118.22	120.85	123.78	125.69	127 14	128.33	129 (In
.0	0001	.00005	1000.	.0005	.001	.002	.003	.001	.005	ลอก
1					lad de pê	1:1	E)			

Flujo de tráfico ofrecido A en Erlang

	}		Pro	babilida	id de péi	idida i (E	Ξ)				n
n	.007	.00A	.009	.01	.02	.03	.05	. 1	.2	۸	; ;
101	83 296	83 916	84 482	85 005	ภภ 941	91 784	96 265	105.21	121.09	183.00	in t
102	84.225	84 849	85 419	<u>ጽፍ 946</u>	vo atu	92 774	97.289	106 (10	123-13	167.58	115.2
103	85 155	85 783	86 357	ភូទ <i>ពព</i> ភ	90 880	93.765	98.314	107.40	124 Art	160 %	fn t
104	86.086	86 7 18	A7 20G	87.1030	94 856	94.756	on 1339	108 50	125 63	120.01	10.1
105	87.017	87,653	88 235	nn 773	92 #21	95 747	100/36	109 50	128.87	11.5 (1)	105
106	07.948	88.589	89 173	NO 716	93.794	96.738	101:39	110.70	128-12	174.95	108
107	88.880	89,525	90-115	90 660	94,763	97.730	102.42	FF F 7 9	120 36	115.91	107
108	09.812	90.462	91.055	91.604	95.734	98 722	103.44	112 49	130.61	177 50	109
109	90,745	91.399	91 996	02 548	96.706	99 715	104.47	113 00	171.86	170.04	102
110	91.678	92,336	92 937	93 493	97.678	100.71	105,49	115.00	133-10	190.01	110
111	92.612	93.274	93,879	94 438	98 651	101.70	106.52	146 19	134,35	182.58	111
112	93.546	94.212	94,821	95 384	99,624	102.69	107,55	117.29	135 59	124.21	112
113	94.481	95,151	95,764	96,330	100.60	103.69	ton 57	118 30	136.84	105.01	111
114	95 4 16	96 090	96.707	97.277	101.57	104.68	ነበስ የፀ	119,49	138 09	1P7 57	111
115	96.352	97,030	97,650	98/223	102 54	105 68	110.63	120 5B	139.33	180-24	115
118	97.287	97.970	98 594 98 598	00 171	103.52	106 67	111 66	121 68	140 SR	100.01	117
117	98.224	98.910	99,538	100 12	104 49	107.66	112.69	122.78	141.83	10 1 57	117
118	99.160	99.851	100 48 101 43	101 07 102 01	105 47 106 44	108.66 88.601	113.71	123 BB 124,9B	143 07 144 32	194.21 195.91	110
119 120	100.10 101.04	100,79 101,73	101 43 102 37	102.96	107.42	110.65	115.77	126.08	145.57	107.57	120
121	101.97	102.68	103 32	103.91	108 39	111.65	116.80	127 18	146.81	100.24	121
122	102.91	102.60	103.37	101.86	109.37	112.64	117.83	128 28	148 06	200.00	122
123	103.85	104.56	105.21	105.81	110.35	113.64	118.86	129 (18	149 31	202.57	123
124	194.79	105.50	105-16	106.76	111.32	114,64	119.89	130 48	150.55	201.21	124
125	105.73	106.45	107,10	107.71	112 30	115.63	120.92	131.58	151.80	205.00	125
126	106.67	107.39	108 05	tor gr	113.28	116,63	121.95	132 68	453.05	207 57	128
127	107.61	108 34	109,00	109,61	114.25	117.63	122 98	133.78	154.29	200.23	127
128	108.55	109.58	109.95	110.57	115.23	118.62	124.01	134.88	155 54	210.90	129
129 130	109.49 110.43	110.22 111,17	110.90 111.85	111.52 112.47	116.21 117,19	119 62 120.62	125 04 126 07	185 99 187 99	156 79 158 03	212 57 214 24	129
131				113.42							ŀ
132	111.37 112.31	112.12 113.06	112.79 113.74	114.38	118,17 119:15,	121.62 122.62	127 10 128 13	138 fn 139 29	159 28 160 53	215 90 217 57	111
133	113.26	114.01	114.69	115.33	120 12	123.61	129.16	140.39	161.77	210.21	133
134	114.20	114.95	115.64	116 28	121 10	124.61	130,19	141.49	163,02	220.00	131
135	115.14	115.90	116,59	117.24	122 08	125.61	131.22	142.59)	164.27	220 NG	135
136	116.09	116.85	117.54	118,19	123.06	126.61	132,25	143.69	165.52	224.23	179
137	117,03	117.80	118,50	119-14	124 04	127.61	133.28	144.80	166.76	225.90	127
138	117,97	118.74	119.45	120 10	125,02	128.61	134.32	145.90	168-01	227.56	138
139	118.92	119 69	120.40	124.05	126.00	129 61	135.35	147.00	169.26	229.23	139
140	119.86	£20 64	121,35	122,01	126.98	130.61	136.38	148 10	170.50	230.00	140
141	120.81	121.59	122 30	122 96	127.97	131.61	137.41	149.20	171.75	23256	141
142	121.75	122.54	123.26	123 92	128.95	132.61	138 44	150,30	173.00	234.24	142
143	122.70	123.49	124 21	124 88	129.93	133.61	139.48	151.41	174.25	215.89	141
144	123.64	124,44	125-16	125.83	130,91	134 61	140.51	152 51	175.49	237.56	144
145	124.59	125.09	126,11	126 79	131.89	135,61	141.54	153.61	176 74	239.23	145
148	125.54	126.34	127 07	127.75	132.87	136.61	142.57	154-21	177 99	240.89	140
147	126.48	127.29	128 (12	128.70	133.86	137.61	143.61	155.02	179.24	24.2 GB	147
148	127,43	128.24	128 98	129.66	COA AA	138.61	144-64	156 92	180 48	244.24	143
149	128.38	129 19	129 93	F30 G2	135 82	139.62	145 67	15B 02	181 73	547-60	119
150	129.32	130,14	130,88	131 58	1:1G #0	140 62	146.71	159-12	1R2 OR	947 SK	150
151	130.27	131 09	131.84	132 53	137.79	141.62	147 74	160-23	164.5.1	240 ()	151
	.007	.000	.009	.01	.02	.03	.05	1	.2	4	
n				1 1	.1 .1	ratida ((E)				11
1			l'ro	papitid	ad de né	petttik '	;) 				l

Flujo de tráfico ofrecido A en Erlang

106.82			Pro	þaþilid	lad de pérd	ida 🤈 (E))	
107.67 111.85 113.85 11 108.51 112.71 114.72 12 109.36 113.58 115.59 12 110.21 114.44 116.46 13 111.05 115.31 117.34 12 111.90 116.17 118.21 12 112.75 117.04 119.09 12 113.60 117.91 119.96 12 114.45 118.77 120.84 12 115.30 119.64 121.71 12 116.15 120.51 122.59 12 117.00 121.38 123.47 12 118.70 123.12 125.22 13 118.70 123.12 125.22 13 119.56 123.99 126.10 13 120.41 124.86 126.98 13 121.26 125.73 127.86 13 122.97 127.47 129.62 13 123.83 1	0001	.00005	.0001	.0005	.001	.002	F00,	.004	,ក្នុភិទ	.006
107,67 111,85 113,85 11 108,51 112,71 114,72 12 109,36 113,58 115,59 12 110,21 114,44 116,46 13 111,05 115,31 117,34 12 111,90 116,17 118,21 12 112,75 117,04 119,09 12 113,60 117,91 119,96 12 114,45 118,77 120,84 12 115,30 119,64 121,71 12 116,15 120,51 122,59 12 117,00 121,38 123,47 12 118,70 123,12 125,52 12 118,70 123,12 125,22 13 119,56 123,99 126,10 13 122,12 126,60 128,74 13 122,97 127,47 129,62 13 123,83 128,34 130,50 13 128,91 1	06.82	110.99	112.97	118 22	120,85	123.78	125.69	127 14	120.33	120.36
108.51 112.71 114.72 13 109.36 113.58 115.59 12 110.21 114.44 116.46 13 111.05 115.31 117.34 12 111.90 116.17 118.21 12 112.75 117.04 119.09 12 113.60 117.91 119.96 12 114.45 118.77 120.84 12 115.30 119.64 121.71 12 116.15 120.51 122.59 12 117.00 121.38 123.47 12 118.70 123.12 125.22 13 118.70 123.12 125.22 13 119.56 123.99 126.10 13 122.12 126.60 128.74 13 122.297 127.47 129.62 13 122.30 128.34 130.50 13 122.31 131.38 13 13 122.32 127.				119.12	121.75	124.70	126.61	128 07	129.27	1:00:31
110.21 114.44 116.46 12 111.05 115.31 117.34 12 111.90 116.17 118.21 12 112.75 117.04 119.09 12 113.60 117.91 119.96 12 114.45 118.77 120.84 12 115.30 119.64 121.71 12 116.15 120.51 122.59 12 117.00 121.38 123.47 12 117.85 122.25 124.35 12 118.70 123.12 125.22 13 119.56 123.99 126.10 13 120.41 124.86 126.98 13 121.26 125.73 127.86 13 122.97 127.47 129.62 13 122.87 127.47 129.62 13 123.83 128.34 130.50 13 124.68 129.21 131.38 13 122.97 1			114.72	120.01	122.66	125.62	127.54	129.01	130-21	131.25
111.05	19.36	113.58	115 59	120.91	123.57	126.54	128 47	150 04	121-15	132.19
111 90	10.21	114,44	116.46	121 80	124 47	127.46	129 40	130 88	132.09	133 14
12,75	11.05	115.31	117,34	122.70	125.38	128 38	f;t0:33	131.81	133.03	E34 OR
13.60 117.91 119.96 12 14.45 118.77 120.84 12 15.30 119.64 121.71 12 16.15 120.51 122.59 12 17.00 121.38 123.47 12 17.85 122.25 124.35 12 18.70 123.12 125.22 13 18.70 123.12 125.22 13 19.56 123.99 126.10 13 20.41 124.86 126.98 13 21.26 125.73 127.86 13 22.12 126.60 128.74 13 22.97 127.47 129.62 13 23.83 128.34 130.50 13 24.68 129.21 131.38 13 25.54 130.09 132.26 13 26.39 130.96 133.14 13 27.25 131.83 134.02 13 28.11 132.71	11.90	116.17	118.21	123,60	126,29	129.30	131.25	132.75	133.97	135.03
14,45	12.75	117.04	119,09	124 49	127-20	130,22	132 18	100.68	134-91	135.07
(15.30) 119.64 121.71 12 (16.15) 120.51 122.59 12 (17.00) 121.38 123.47 12 (17.85) 122.25 124.35 12 (17.85) 122.25 124.35 12 (18.70) 123.99 126.10 13 (19.56) 123.99 126.10 13 (20.41) 124.86 126.98 13 (21.26) 125.73 127.86 13 (22.12) 126.60 128.74 13 (23.83) 128.34 130.50 13 (24.68) 129.21 13.138 13 (24.68) 129.21 13.138 13 (24.68) 129.21 13.138 13 (25.54) 130.09 132.26 13 (25.54) 130.09 132.26 13 (26.39) 130.96 133.14 13 (27.25) 131.83 134.92 14 (28.96)	13.60	117,91	119 96	125/39	128.11	131,14	133 FT	134 62	135 #6	136 92
16,15 120,51 122,59 12 17,00 121,38 123,47 12 17,85 122,25 124,35 12 18,70 123,12 125,22 13 18,70 123,12 125,22 13 19,56 123,99 126,10 13 20,41 124,86 126,98 13 21,26 125,73 127,86 13 22,12 126,60 128,74 13 22,97 127,47 129,62 13 23,83 128,34 130,50 13 24,68 129,21 131,38 13 25,54 130,09 132,26 13 26,39 130,96 133,14 13 27,25 131,83 134,02 13 28,11 132,71 134,90 14 28,96 133,58 135,73 137,55 14 30,81 137,96 140,20 14 32,40	14.45	118.77	120.84	126,29	129 01	132 07	134-04	135.55	136,80	1.37 87
17,00	15.30	119.64	121.71	127.19	129,92	132,99	134 97	136 49	137-74	138.81
17.85 122.25 124.35 12 18.70 123.12 125.22 13 19.56 123.99 126.10 13 20.41 124.86 126.98 13 21.26 125.73 127.86 13 22.12 126.60 128.74 13 22.97 127.47 129.62 13 23.83 128.34 130.50 13 24.68 129.21 131.38 13 25.54 130.09 132.26 13 26.39 130.96 133.14 13 27.25 131.83 134.02 13 28.11 132.71 134.90 14 28.96 133.58 135.79 14 29.82 134.46 136.67 14 30.68 135.33 137.55 14 32.40 137.08 139.32 14 33.26 137.96 140.20 14 34.12 138.84	16.15	120.51		128,08	130.83	103.91	135.90	137,43	138.68	139.76
18,70 123,12 125,22 13 19,56 123,99 126,10 13 20,41 124,86 126,98 13 21,26 125,73 127,86 13 22,12 126,60 128,74 13 22,97 127,47 129,62 13 23,83 128,34 130,50 13 24,60 129,21 131,38 13 24,60 129,21 131,38 13 25,54 130,09 132,26 13 26,39 130,96 133,14 13 27,25 131,83 134,02 13 28,96 134,46 136,67 14 30,68 135,33 137,55 14 31,54 136,21 138,44 14 32,40 137,08 139,32 14 33,26 137,96 140,20 14 34,12 138,84 141,09 14 36,70 141,47				128,98	131.74	134.83	136.83	108 36	139.62	140.71
19,56				129 88	132 65	135.75	137 77	139 30	140.57	141.65
20 4 f 124.86 126.98 13 21,26 125.73 127.86 13 22,12 126.60 128.74 13 22,97 127.47 129.62 13 23,83 128.34 130.50 13 24,68 129.21 131.38 13 25,54 130.09 132.26 13 26,39 130.96 133.14 13 27,25 131.83 134.02 13 28.11 132.71 134.90 14 28.96 133.58 135.79 14 29.82 134.46 136.67 14 30.68 135.33 137.55 14 32.40 137.08 139.32 14 33.26 137.96 140.20 14 34.12 138.84 141.09 14 36.84 140.59 142.86 14 36.70 141.47 143.74 14 37.56 142.35	18.70	123,12		130,78	F33,56	136 68	138.70	140-24	141,51	142.60
21,26 125,73 127,86 13 22,12 126,60 128,74 13 22,97 127,47 129,62 13 23,83 128,34 130,50 13 24,68 129,21 131,38 13 25,54 130,09 132,26 13 26,39 130,96 133,14 13 27,25 131,83 134,02 13 28,11 132,71 134,90 14 28,96 133,58 135,79 14 29,82 134,46 136,67 14 30,68 135,33 137,55 14 32,40 137,08 139,32 14 31,54 136,21 138,44 14 32,40 137,08 139,32 14 33,26 137,96 140,20 14 34,12 138,84 141,09 14 36,84 140,59 142,86 14 37,56 142,35				131.60	134 4B	137.60	139.63	141 18	142.45	143.55
22.12 126.60 128.74 13 22.97 127.47 129.62 13 23.83 128.34 130.50 13 24.68 129.21 131.38 13 25.54 130.09 132.26 13 26.39 130.96 133.14 13 27.25 131.83 134.02 12 28.11 132.71 134.90 14 28.96 133.58 135.79 14 29.82 134.46 136.67 14 30.68 135.33 137.55 14 31.54 136.21 138.44 14 32.40 137.08 139.32 14 34.12 138.84 141.09 14 34.98 139.71 141.97 14 36.70 141.47 143.74 14 40.15 144.93 147.29 15 41.01 146.40 15 40.15 144.98 147.29				132 58	135 39	138 52	140,56	142 11	143 39	144.40
22,97 127,47 129,62 13 23,83 128,34 130,50 13 24,68 129,21 131,38 13 25,54 130,09 132,26 13 26,39 130,96 133,14 13 27,25 131,83 134,02 13 28,11 132,71 134,90 14 28,96 133,58 135,79 14 29,82 134,46 136,67 14 30,68 135,33 137,55 14 31,54 136,21 138,44 14 32,40 137,08 139,32 14 34,12 138,84 141,09 14 34,12 138,84 141,09 14 36,70 141,47 143,74 14 37,56 142,35 144,63 15 38,42 143,22 145,52 15 39,28 144,10 146,40 15 41,87 146,98				133.48	136 30 137,21	139.45	141.49 142.42	143 05 143 99	144-34 145-28	146 39
23.83				134-38 135-29	138.12	140,37 141,30	143,36	144 93	146 23	147 34
24 68 129,21 131,38 13 25,54 130,09 132,26 13 26,39 130,96 133,14 13 27,25 131,83 134,02 13 28,11 132,71 134,90 14 28,96 133,58 135,79 14 29,82 134,46 136,67 14 30,68 135,33 137,55 14 31,54 136,21 138,44 14 32,40 137,08 139,32 14 33,26 137,96 140,20 14 34,12 138,84 141,09 14 34,98 139,71 141,97 14 36,84 140,59 142,86 14 37,56 142,35 144,63 15 38,42 143,22 145,52 15 39,28 144,10 146,40 15 10,15 144,98 147,29 15 11,01 145,86										148.20
25.54 130.09 132.26 13 26.39 130.96 133.14 13 27.25 131.83 134.02 13 28.11 132.71 134.90 14 28.96 133.58 135.79 14 29.82 134.46 136.67 14 30.68 135.33 137.55 14 31.54 136.21 138.44 14 32.40 137.08 139.32 14 33.26 137.96 140.20 14 34.12 138.84 141.09 14 34.98 139.71 141.97 14 35.84 140.59 142.86 14 36.70 141.47 143.74 14 37.56 142.35 144.63 15 38.42 143.22 145.52 15 39.28 144.10 146.40 15 40.15 144.98 147.29 15 11.01 145.86				136, 19 137,09	139,04 139,95	142.22 143.15	144.29 145.22	145 B7 146 B1	147 17 148 11	140.24
26.39 130.96 133.14 13 27.25 131.83 134.02 13 28.11 132.71 134.90 14 28.96 133.58 135.79 14 29.82 134.46 136.67 14 30.68 135.33 137.55 14 31.54 136.21 138.44 14 32.40 137.08 139.32 14 33.26 137.96 140.20 14 34.12 138.84 141.09 14 34.98 139.71 141.97 14 35.84 140.59 142.86 14 36.70 141.47 143.74 14 37.56 142.35 144.63 15 38.42 143.22 145.52 15 39.28 144.10 146.40 15 40.15 144.98 147.29 15 11.87 146.74 149.95 15 12.74 147.62				137.99	140.86	144.07	146 16	147.75	149.06	150.10
27,25 131,83 134,02 13 28,11 132,71 134,90 14 28,96 133,58 135,79 14 29,82 134,46 136,67 14 30,68 135,33 137,55 14 31,54 136,21 138,44 14 32,40 137,08 139,32 14 33,26 137,96 140,20 14 34,12 138,84 141,09 14 34,98 139,71 141,97 14 35,84 140,59 142,86 14 36,70 141,47 143,74 14 37,56 142,35 144,63 15 38,42 143,22 145,52 15 39,28 144,10 146,40 15 40,15 144,98 147,29 15 11,87 147,62 149,95 15 12,74 147,62 149,95 15 13,60 148,50				138.89	141.77	145 00	147.09	148 69	150.00	151.11
28.96 133.58 135.79 14 29.82 134.46 136.67 14 30.68 135.33 137.55 14 31.54 136.21 138.44 14 32.40 137.08 139.32 14 33.26 137.96 140.20 14 34.12 138.84 141.09 14 34.98 139.71 141.97 14 35.84 140.59 142.86 14 36.70 141.47 143.74 14 37.56 142.35 144.63 15 38.42 143.22 145.52 15 39.28 144.10 146.40 15 40.15 144.98 147.29 15 41.87 147.62 149.95 15 42.74 147.62 149.95 15 43.50 150.84 15 15 44.77 149.38 151.73 15 45.20 151.15				139.80	142.69	145 92	148 02	149 63	150.95	152 00
28.96 133.58 135.79 14 29.82 134.46 136.67 14 30.68 135.33 137.55 14 31.54 136.21 138.44 14 32.40 137.08 139.32 14 33.26 137.96 140.20 14 34.12 138.84 141.09 14 34.98 139.71 141.97 14 35.84 140.59 142.86 14 36.70 141.47 143.74 14 37.56 142.35 144.63 15 38.42 143.22 145.52 15 39.28 144.10 146.40 15 40.15 144.98 147.29 15 41.87 147.62 149.95 15 42.74 147.62 149.95 15 43.50 150.84 15 15 44.77 149.38 151.73 15 45.20 151.15	8 11	132.71	134.90	140.70	143.60	146.45	148.96	150.57	151-80	15 1 0.1
30 68 135 33 137 55 14 31.54 136 21 138.44 14 32.40 137 08 139 32 14 33.26 137.96 140 20 14 34.12 138.84 141 09 14 34.98 139.71 141 97 14 35.84 140.59 142 86 14 36.70 141.47 143.74 14 37.56 142.35 144.63 15 38.42 143.22 145.52 15 39.28 144.10 146.40 15 40.15 144.98 147.29 15 11.87 146.74 149.97 15 12.74 147.62 149.95 15 13.60 148.50 150.84 15 14.47 149.38 151.73 15 15.33 150.26 152.62 15 16.20 151.15 153.51 15 17.06 152.03				141.60	144.52	147.78	149.89	151 51	152.84	153 98
31.54 136.21 138.44 14 32.40 137.08 139.32 14 33.26 137.96 140.20 14 34.12 138.84 141.09 14 34.98 139.71 141.97 14 35.84 140.59 142.86 14 36.70 141.47 143.74 14 37.56 142.35 144.63 15 38.42 143.22 145.52 15 39.28 144.10 146.40 15 40.15 144.98 147.29 15 41.87 146.74 149.07 15 42.74 147.62 149.95 15 43.60 148.50 150.84 15 44.47 149.38 151.73 15 45.33 150.26 152.62 15 46.20 151.15 153.51 15 47.06 152.03 154.40 16 47.93 152.91	9.82	134 46	136.67	142.51	145.43	148,70	150 83	152 45	153.79	154.03.
32.40 137.08 139.32 14 33.26 137.96 140.20 14 34.12 138.84 141.09 14 34.98 139.71 141.97 14 35.84 140.59 142.86 14 36.70 141.47 143.74 14 37.56 142.35 144.63 15 38.42 143.22 145.52 15 39.28 144.10 146.40 15 40.15 144.98 147.29 15 41.01 145.86 148.18 15 41.87 146.74 149.07 15 42.74 147.62 149.95 15 43.60 148.50 150.84 15 44.47 149.38 151.73 15 45.33 150.26 152.62 15 46.20 151.15 153.51 15 47.06 152.03 154.40 16 47.93 152.91				143.41	146.35	149.63	15 t 76	153,39	154.73	155 RR
33.26 137.96 140.20 14 34.12 138.84 141.09 14 34.98 139.71 141.97 14 35.84 140.59 142.86 14 36.70 141.47 143.74 14 37.56 142.35 144.63 15 38.42 143.22 145.52 15 39.28 144.10 146.40 15 40.15 144.98 147.29 15 41.01 145.86 148.18 15 41.87 146.74 149.07 15 42.74 147.62 149.95 15 43.60 148.50 150.84 15 44.47 149.38 151.73 15 45.33 150.26 152.62 15 46.20 151.15 153.51 15 47.06 152.03 154.40 16 47.93 152.91 155.29 16 48.80 153.79	1.54	136.21	138.44	144 32	147.26	150,56	152.70	154.33	155,68	156.84
34.12 138.84 141.09 14 34.98 139.71 141.97 14 35.84 140.59 142.86 14 36.70 141.47 143.74 14 37.56 142.35 144.63 15 38.42 143.22 145.52 15 39.28 144.10 146.40 15 40.15 144.98 147.29 15 11.01 145.86 148.18 15 12.74 147.62 149.95 15 13.60 148.50 150.84 15 14.47 149.38 151.73 15 14.47 149.38 151.73 15 16.20 151.15 153.51 15 17.06 152.03 154.40 16 17.93 152.91 155.29 16 18.80 153.79 156.18 16				145.22	148 18	151-49	153 G3	155.27	156.62	157.79
34.98 139.71 141.97 14 35.84 140.59 142.86 14 36.70 141.47 143.74 14 37.56 142.35 144.63 15 38.42 143.22 145.52 15 39.28 144.10 146.40 15 40.15 144.98 147.29 15 41.01 145.86 148.18 15 41.87 146.74 149.07 15 42.74 147.62 149.95 15 43.60 148.50 150.84 15 44.47 149.38 151.73 15 45.33 150.26 152.62 15 46.20 151.15 153.51 15 47.06 152.03 154.40 16 47.93 152.91 155.29 16 48.80 153.79 156.18 16				146.13	149 09	152 41	154.57	156-21	157.57	158.74
35.84 140.59 142.86 14 36.70 141.47 143.74 14 37.56 142.35 144.63 15 38.42 143.22 145.52 15 39.28 144.10 146.40 15 40.15 144.98 147.29 15 41.01 145.86 148.18 16 41.87 146.74 149.95 15 42.74 147.62 149.95 15 43.60 148.50 150.84 15 44.47 149.38 151.73 15 45.33 150.26 152.62 15 46.20 151.15 153.51 15 47.06 152.03 154.40 16 47.93 152.91 155.29 16 48.80 153.79 156.18 16				147.03	150 01	153 34	155.50	157 16	158 52	150 60
36.70 141.47 143.74 14 37.56 142.35 144.63 15 38.42 143.22 145.52 15 39.28 144.10 146.40 15 40.15 144.98 147.29 15 41.01 145.86 148.18 15 41.87 146.74 149.07 15 42.74 147.62 149.95 15 43.60 148.50 150.84 15 44.47 149.38 151.73 15 45.33 150.26 152.62 15 46.20 151.15 153.51 15 47.06 152.03 154.40 16 48.80 153.79 156.18 16				147,94 148,85	150.93 151.84	154-27 155,20	156,44	158 10	150 46 160 41	160 64 161 59
37.56 142.35 144.63 15 38.42 143.22 145.52 15 39.28 144.10 146.40 15 40.15 144.98 147.29 15 41.01 145.86 148.18 15 41.87 146.74 149.07 15 42.74 147.62 149.95 15 43.60 148.50 150.84 15 44.47 149.38 151.73 15 45.33 150.26 152.62 15 46.20 151.15 153.51 15 47.06 152.03 154.40 16 47.93 152.91 155.29 16 48.80 153.79 156.18 16							157.38	159 04		
38.42 143.22 145.52 15 39.28 144.10 146.40 15 40.15 144.98 147.29 15 41.01 145.86 148.18 16 41.87 146.74 149.07 15 42.74 147.62 149.95 15 43.60 148.50 150.84 15 44.47 149.38 151.73 15 45.33 150.26 152.62 15 46.20 151.15 153.51 15 47.93 152.93 154.40 16 48.80 153.79 156.18 16				149.75 150.66	152.76	156.13 157.06	158.31	159 98	161.36	162.54
39.28 144.10 146.40 15 40.15 144.98 147.29 15 41.01 145.86 148.18 15 41.87 146.74 149.07 15 42.74 147.62 149.95 15 13.60 148.50 150.84 15 14.47 149.38 151.73 15 15.33 150.26 152.62 15 16.20 151.15 153.51 15 17.06 152.03 154.40 16 48.80 153.79 156.18 16				151,57	153.68 154.69	157.96	159,25 160-19	160 93 161,87	162 31 163 25	163.50 164.45
40.15 144.98 147.29 15 41.01 145.86 148.18 15 41.87 146.74 149.07 15 42.74 147.62 149.95 15 13.60 148.50 150.84 15 14.47 149.38 151.73 15 45.33 150.26 152.62 15 46.20 151.15 153.51 15 47.06 152.03 154.40 16 48.80 153.79 156.18 16				151,37	155.51	157 99	161.12	162.81	164.20	164,45
11.01 145.86 148.18 15 11.87 146.74 149.07 15 12.74 147.62 149.95 15 13.60 148.50 150.84 15 14.47 149.38 151.73 15 15.33 150.26 152.62 15 16.20 151.15 153.51 15 17.06 152.03 154.40 16 17.93 152.91 155.29 16 18.80 153.79 156.18 16				153.38	156 43	159.84	162.06	163.76	165 15	166 35
1.87 146.74 149.07 15 2.74 147.62 149.95 15 3.60 148.50 150.84 15 4.47 149.38 151.73 15 5.33 150.26 152.62 15 6.20 151.15 153.51 15 7.06 152.03 154.40 16 17.93 152.91 155.29 16 18.80 153.79 156.18 16										
12,74 147,62 149,95 15 13,60 148,50 150,84 15 14,47 149,38 151,73 15 15,33 150,26 152,62 15 16,20 151,15 153,51 15 17,06 152,03 154,40 16 17,93 152,91 155,29 16 18,80 153,79 156,18 16				154,29 155-20	157-35 158-27	160 77 161 70	163 94	164-70 165-64	166, 10 167, 05	167.31
13.60 148.50 150.84 15 14.47 149.38 151.73 15 15.33 150.26 152.62 15 16.20 151.15 153.51 15 17.06 152.03 154.40 16 17.93 152.91 155.29 16 18.80 153.79 156.18 16				156.11	150 19	162 64	164.87	166 59	167 05	168.26 169.21
144,47 149,38 151,73 15 45,33 150,26 152,62 15 16,20 151,15 153,51 15 47,06 152,03 154,40 16 47,93 152,91 155,29 16 48,80 153,79 156,18 16				157.01	160 10	163.57	165.81	167.53	168 95	170 16
15.33 150.26 152.62 15 16.20 151.15 153.51 15 17.06 152.03 154.40 16 17.93 152.91 155.29 16 18.80 153.79 156.18 16				157.92	161 02	164.50	166.75	168 4B	169 90	171 12
16.20 151.15 153.51 15 17.06 152.03 154.40 16 17.93 152.91 155.29 16 18.80 153.79 156.18 16				158,83	161 94	165.43				
17.06 152.03 154.40 16 17.93 152.91 155.29 16 18.80 153.79 156.18 16				159.74	162.86	166.36	167-69 168-63	169 42 170 36	170 85 171 79	172 07 173 03
17.93 152.91 155.29 16 18.80 153.79 156.18 16				160.65	163.78	167.29	169 57	171 11	172 74	173 083
18.80 153.79 156.18 16				161.56	164.70	160 22	170.51	172 25	173.69	174.93
49.66 154.68 157.07 16				162 47	165 62	169 15	171.45	173.20	174 64	175 80
	9.66	154.68	157 07	163.38	166,54	170,09	172,39	174-15	175 60	176 84
0. 1000. 10005. 10001	0001	.00005	.0001	.0005	.001	.002	.003	.004	.005	.006
Probabili.			Probabi	Hebiti	de pérdida		(E)			

)

FLUJO DE TRAFICO OFRECIDO A EN ERLANG

			. PRO	OBABILID	AD DE PI	RDIDA (E)				
n	.007	.008	.009	.01	.02	.03	.05	.1	.2	4	l n
151	130.27	131.09	131,84	132,53	137.79	141.62	147.74	160.23	184-23	240.00	15.1
152		132.04	132.79	133 49	138.77	142.62	148.77	161.33	185 47	250.80	152
153		132.99	133.75	134,45	139.75	143.62	149.81	162 43	106 72	252.56	153
154	133.12	133.95	134.71	135 41	140.74	144.63	150.84	163.53	187 97	254.22	151
155	134.06	134.90	135,66	136,37	141.72	145-63	151.87	164,64	189 22	544 bu	155
156	135.01	135.85	136.62	137,33	142.70	146.63	152.91	165.74	190.47	257.56	150
157		136.80	137.57	138.29	143.69	147.63	153.94	166.84	191.71	250.22	187
158	136.91	137.76	138.53	139.25	144.67	148 64	154 98	167.95	192.96	260,89	153
159	137.86	138.71	139,49	140,21	145,66	149.64	156.01	169.05	194.21	262.56	150
180	138.81	139.66	140,44	141,17	146 64	150-64	157.05	170.15	195.46	ØB 1 22	100
181	139.76	140.62	141.40	142.13	147.63	151.65	158.08	17 25	196.70	265.80	101
182	140.71	141.57	142.36	143.09	140 61	152.65	159 12	172 39	197.95	267.55	182
183	141.66	142.53	143.32	144.05	149 GO	153.66	160 15	173.46	199.20	269.22	10.1
164	142.61	143.48	144.28	145.01	150.58	154.66	161 19	174.56	200.45	270.89	184
165	143.57	144.44	145 23	145,97	151.57	155 66	162.22	175.67	201,70	272.55	105
	ł										
166	144.52	145 39	146,19	146.93 %	152.55	156 67	163.26	176 77	202.94	274 22	100
167	145.47	146.35	147 15	147 89	153.54	157-67	164 29	177 RR	204 10	275 Bh	187
160	145.42	147 30	148 11	148.86	154.53	158 68	165.33	178 98	205 44	277.55	tnn
169	147.37	148.26	149.07	149.82	155.51	159,68	166 36	100 00	206.69	279 22	180
170	148.32	149.21	150,03	150.78	156 50	เดก คอ	167 40	181 19	207.94	рва во	170
171	149.28	150-17	150 99	151.74	157,48	161.69	168 43	182,29	209 18	282.55	171
172	150.23	151.13	151 95	152.71	158 47	162.70	169.47	183,39	210.43	284-22	172
173	151.18	152.08	152.91	153.67	159.46	163.70	170.50	184.50	211.68	285 88	173
174	152.14	153,04	153.87	154.63	100.44	164.71	171.54	185 60	212.93	287.55	174
175	153.09	154.00	154.83	155 60	161.43	165-71	172.58	186 7 E	214 IN	580.55	175
176	154.04	154.95	155.79	156.56	162 42	166.72	173.61	187.81	215.42	290 89	170
177	155.00	155.91	156.75	157.52	163,41	167.72	174.65	100.01	216.67	202.55	177
178	155.95	156.87	157.71	158,49	164,39	168.73	175 69	190 02	217.92	294.22	178
179	156.91	157.83	158 67	159,45	165 3B	169.73	176.72	191 12	219 17	295 AA	179
180	157.86	158,78	159 63	160,42	166.37	170.74	177.76	192.23	220 42	297.55	180
181	158.81	159.74	160.59	161,38	167.36	171.75	178.79	193 33	221.66	299 22	181
182	159.77	160.70	161.55	162.34	168 35	172.75	179.83	194 44	222 91	300 88	182
183	160.72	99.191	162.52	163,34	169.33	173.76	180 87	195 54 /	224 16	302.55	183
184	161.68	162.62	163.48	164.27	170 32	174 77	181 91	196,65	225 41	304.21	184
185	162.64	163.58	164.44	165.24	171.31	175.77	182 94	197.75	226.66	305 88	185
186	163.59	164.54	165,40	166.21	172 30	176.78	103.00	ton or			
187	164.55	165.50	166.37	167.17	173 29	177.79	183 98 185 02	198 75 199 76	227.91	207.55	186
188	165.50	166.46	167.33	168-14	174.28	178 79	186.05		229.15	309.21	187
109	166.46	167.42	168.29	169.10	175.27	179.80	187.09	201 06 202 17	230.40	310.88	188
190	167.42	168.37	169.25	170.07	176.26	180.81	188 13	202 17	231.65 232.90	312.55	189
191										314.21	190
192	168.37	169 34	170.22	171.03	177.25	18181	189 17	204 (1)	234.15	315 AB	191
193	169,33	170.30	171.18	172 00	178 24	182.82	190.20	205.48	235.40	317,55	192
194	170.29 171.24	171.26	172,14	172.97	179 23	183.83	191 24	206.59	236-64	319.21	193
195	171.20	172.22 173.18	173.11 174.07	173 93 174 00	180.22	184 84	102 28	207.69	237 119	320 88	194
- 1				174 90	181 21	185.85	193 32	208.80	239 14	322.55	185
196	173.16	174 14	175.04	175 87	182.20	186,85	194.35	508 40	240/19	324.21	190
197	174,12	175.10	176.00	176 84	183-19	187,86	105 39	211.01	241.64	152 gu	107
198	175.07	176.06	176 96	177,80	184.18	188 87	196.43	212.11	242 go	127.51	198
199	176.03	177 02	177 93	178.77	185 17	189 88	197 47	213.22	244.13	320.01	100
200	176.99	177.98	178.89	179.74	186 16	190.89	198.51	214.32	245.38	tan no	200
201	177.95	178.95	179.86	180,71	187,15	191 119	199.55	215.43	246.63	332.54	201
n	.007	.000	.009	.01	.02	.03	.05		.2	4	
			I	PROBABIL	LDAD DE	PERDTDA(E)				n

FLUJO DE TRAFICO OFRECTDO A EN EPLANG

-1						F-1)		ł
	.00001	.00005	PRC .0001	BABILID. .0005	ΔD DE PF .001	(E) AGTGG	.003	.004	.005	006	1
										1.004	,
1	145.66	154.68	157.07	163 38	166 54 167 47	170 09 171 02	172 39 173 33	174.15 175.09	175 GA 176 55	176 84 177 80	
I	150.53	155.56	157.96	164 29			173.33	176 04	176.55	178.75	
1	151 40	156 44	158 85	165,20	168 39	171.95	175.21	176 98			
١	152.26	157 33	159 74	166,12	169.31	172.88			178 45	179 71	
I	153.13	158.21	160 63	167.03	170.23	173.82	176, 15	177.93	179.40	180 66	1
1	154.00	159.09	161.53	167.94	171-15	174.75	177.09	178 88	180.35	181.62	
١	154,87	159.98	162.42	168 85	172.07	175 68	178.03	179.82	181,30	182 57	l
١	155.74	160.86	163.31	169.76	173,00	176.62	178.97	180 77	182 25	193.53	
I	155.61	161.75	164.20	170 68	173.92	177.55	179 91	181.72	183.21	184 49	
١	157.48	162 64	165,10	171.59	174.84	178.49	180 85	182.66	184 16	185.44	l
1									105.11	400.40	
١	158.35	163.52	165 99	172 50	175 77	179.42	101 80	183.61	185 11	186 40	
١	159,22	164.41	166,88	173.42	176,69	180.36	182.74	184 56	Tue oe	187 36	ł
ı	160.09	165.29	167,78	174.33	177.61	181.29	183 68	185.51	187.01	LE RAL	
ı	160.96	166.18	168.67	175.24	178,54	182.22	184.62	186.46	187.97	189 27	1
1	161.83	167.07	169,57	176, 16	179,46	183.16	185.56	187,40	188 92	100.23	
1	162.71	167,96	170,46	177.07	180.38	184 10	186.51	184 35	189.87	191 18	
1	163.58	168.84	171,36	177.99	181,31	185.03	187.45	189.30	190 83	192 14	
I	164.45	169 73	172.25	178.90	182,23	185 97	188 39	190.25	191.78	193 10	1
1	165.32	170.62	173.15	179.82	103.16	186.90	189 34	191 20	192.73	194.05	
١	166.20	171.51	174.04	180,73	184.08	187.84	190.28	192 15	19.1.69	195.01	
١						707,04	7.50, 7.1	137 137			ì
I	167.07	172.40	174 94	181.65	185 01	188 77	191,22	193-10	194 64	105.07	
ı	167.94	173.29	175.84	182,50	185,93	189.71	192 17	194,04	105 50	100 00	
1	168.82	174.18	176.73	183 48	ារាក រាក	190.65	193 14	194 90	106.55	107 40	
١	169.69	175.06	177 63	ED4-39	107 78	191.58	194.05	195,94	F97.50	ton ns	
ı	170.57	175.95	178.53	185/34	FBR 7.1	192.52	195,00	196,89) 108.46	100 30	
١	171.44	176.84	179.42	186-23	189.64	193.46	195 94	197.84	199.11	200.76	
١	172.32	177.74	180 32	187.14	190,56	193 40	198 80	198 79	200.37	201.72	
١	173 19	178 63	181 22	188.06	191.49	195 33	197 03	199,74	201.32	202 62	
1	174.07	179.52	182.12	188 98	192.42	196 27				1	
١	174.95	180.41	183.02	189,90	193 34		198 78 199 72	200.69	202.28	204.00	
ı	114.55	100.41	103.02	103,307	18.1.19	197-21	199.72	201,64	203-23	204 60	
Į	175.82	181.30	183,91	190 81	194,27	198.15	200,67	505 60	204.19	205.56	
Ī	176.70	185 19	184 81	191.73	195.20	100,00	201.61	203.55	205.14	206.52	
ı	177.58	183.08	185.71	192.65	196.13	200.02	202.56	204.50	206.10	207 42	
l	178.45	183.98	186,61	193.57	197.05	500.00	203.50	205.45	207.05	2HP 44	
l	179 33	184 87	187.51	194 49	197 98	201.90	204.45	206.40	208.01	200.40	
l	180.21	185.76	100 41	195 40	100.01	202.84	205 (0	201.05	0.04.03		
ı	181.09	186.65	189.31	196.02	198.91	202.84	205.40	207.35	208.97	210 36	
1	181.09	185.55			199 84	203 78	206.34	208 30	209.92	211 32	
	182.84	188,44	190.21 191.11	197.24	200.77	204-72	207.29	209 25	210.80	212 20	
l				198 16	201.69	205.66	208-23	210 21	211.83	21.1.24	3
	183.72	189.33	192 01	188 08	202.62	50e eo	209 18	211.16	212 79	214 20	:
	104 60	190.23	192.91	200.00	203.55	207.54	210,13	212 11	213.75	215 16	:
	185.48	191.12	193.82	200.92	204,48	20E 48	211.07	213.06	214.70	216 12	
	186.36	192.02	194.72	201,84	205.41	209 42	212 02	214.02	215.66	217.00	:
i i	187.24	192 91	195 62	202.76	205 34	210.36	212.97	214.97	216.62	218 04	2
	188.12	193.81	196.52	203 68	207.27	211.30	213.92	215.92	217.58	219 00	:
									(11,10	- 1	
	189.00	194,70	197.42	204.60	208-20	212 24	214.86	216.87	21851	510.00	2
	189 88	195.60	198 33	205.52	209 13	213 18	215.81	217.83	219 49	220 02	:
	190.76	196 49	199 23	206.44	210.06	214 12	216.76	218 78	220.45	221 RO	2
	191.65	197.39	200.13	207.36	210.99	215.06	217.71	21977	22141	222 Ar	2
	192.53	198.29	201.03	208.29	211 92	216.00	218.65	220.69	222.36	223.81	2
	193,41	199 18	201.94	209.21	212.85	216.94	219.60	221.64	223 32	224.77	2
-	,00001	.00005	.0001	.0005	.001	.002	.003	.004	.005	.005	
١					DE PERD				,,		1
			13137 113	A 17 1 1 1 1 1 1 A 1							,

FLUJO DE TPAFICO OFPECTIO A EN EPLANG

1.007	,,		ΡΙ	ROBABILI	DAD DE	PERDIDA	(E	:)				1)
178 91 178 91 178 91 180 02 181 02 181 04 190 00 201 05 216 05 247 80 181 05 200 17 180 07 1	n	.007	.008	.009	10.	.02	.03	.05	.1	.2	.1	,,
202 178 Pt 100 Pt 101 Pt 102 Pt 103	201	177.95	178.95	179.86	180.71	187.15	191.89	199 55	215.43	246 63	332 54	201
	202	178.91	179.91	180.82	181.67	188 14	105.00	200.58	216 53	247 RA	331.51	202
206 181.76 182.76 183.76 184.66 185.56 192.10 196.91 201.76 229.85 259.87 340.86 270.76 285.87 286.87 285.87 286.87 285.87 286.87 285.87 286.	203	179.87	180 87	181.79	182 64	189 13	193.91	201.62	217,64	249 13	าวร กก	201
206 182 24 183.76	204	180.82	181.83	182.75	103.61						1	201
103 20	205	181.78	182.79	183.72	104.58	191 11	195.93	203.70	219.85	251.63	339.21	205
208	208	182.74	183.76	184 69	185.55	192.10	196,94	204.74	220,95	252.87	340.89	200
185 62 186 65 187 61 188 55 189 45 189 45 189 67 200 77 200 89 225 38 257 87 344 764 211 188 58 188 57 189 52 190 39 197 06 200 99 220 99 227 50 260 37 345 764 212 188 50 191 54 191 36 190 95 204 00 212 91 227 50 260 37 350 88 213 189 46 190 50 191 45 191 36 190 95 204 00 212 91 227 50 260 37 350 88 214 190 42 191 36 192 33 190 95 204 00 212 91 227 50 260 37 350 88 215 191 36 192 33 191 47 201 10 206 00 214 00 205 01 228 60 207 86 364 21 215 191 36 192 33 193 36 194 27 201 00 206 00 214 00 209 00 209 80 209 80 207 88 135 36 364 21 215 191 36 192 33 193 36 194 27 201 00 206 00 214 00 206 00 216 10 206 00 206 00 206 10 206 0	1	1		185.65	186.52	193.10	197,95	205.78	222.06	254-12	142.54	207
186.58 187.61 188.57 189.52 190.30 197.705 201.90 202.90 225.90 257.72 342.54 212 188.55 189.54 190.40 191.36 100.00 202.90 210.97 227.50 260.37 340.21 213.818.94 190.50 191.45 192.33 190.95 204.00 212.01 228.60 261.61 355.54 214.189.45 199.50 191.45 192.33 190.95 204.00 212.01 228.00 262.60 362.21 215.191.38 192.43 193.30 194.27 201.03 206.02 214.00 230.00 262.60 362.21 215.191.38 192.43 193.30 194.27 201.03 206.02 214.00 230.00 264.11 355.82 217.17 193.30 194.35 195.24 202.02 207.03 215.13 232.01 265.36 355.83 217.17 193.30 194.35 195.24 202.02 207.03 215.13 232.01 265.36 355.83 217.17 217.18 30.00 194.35 195.24 202.02 207.03 215.13 232.01 266.61 365.82 227.17 217.18 207.03 219.195.20 196.20 197.18 204.01 209.05 217.21 234.22 267.66 366.61 365.23 229.10 207.03 207.03 207.03 207.23 20	208	184.66	185.68	186 62	187 48	194 89	198 96	206.82	223 17	255 37	344.24	201
211 187.54 188.57 189.52 199.39 197.96 201.90 209.33 226.40 259.12 349.21 212 188.50 189.54 190.40 191.36 190.00 204.00 212.01 220.00 261.61 355.54 213 189.48 199.50 191.45 192.33 199.05 204.00 212.01 220.00 261.61 355.54 214.190.02 191.30 191.46 192.42 191.30 200.00 205.01 213.05 229.00 261.61 355.56 215.191.30 192.43 193.30 194.27 201.00 206.02 214.00 230.00 264.11 355.67 215.191.30 192.43 193.30 194.25 196.27 201.00 206.02 214.00 230.00 264.11 355.67 215.191.30 194.35 195.27 196.21 201.02 206.02 214.00 230.00 264.11 355.67 215.191.30 194.35 195.32 196.21 201.02 206.02 216.17 233.12 266.61 356.21 217.191.30 194.35 195.32 196.21 201.02 206.04 216.17 233.12 266.61 356.21 218.194.26 195.23 196.20 197.15 190.15 190.15 190.15 190.20 197.15 190.20 197.25 190.15 206.00 210.06 210.06 210.25 235.33 260.11 365.54 220.19 195.23 196.26 197.25 190.15 206.00 210.06 210.05 235.33 260.11 365.54 222 198.11 199.10 200.16 201.06 201.07 202.03 237.54 237.03 236.42 237.33 236.44 237.03 236.42 237.33 236.44 237.03 237	209	185.62	186.65	187.58	188 45	195.08		207.85		256.62	345 88	505
213 186 50 189 54 160 48 191 36 160 166 204 60 212 01 276 0 262 16 365 54 213 189 46 189 50 181 45 192 33 189 05 204 60 212 01 276 07 286 18 365 54 215 180 18 182 43 192 33 194 27 201 03 206 02 214 09 230 90 262 16 365 54 215 216 19 138 192 43 192 33 194 27 201 03 206 02 214 09 230 90 262 16 365 74 216 17 230 18 243	210	186.58	187.61	188.55	189 42	196 07	200,97	208 89	225 38	257.87	347.54	210
212 188.50 189.54 190.48 191.36 190.05 290.29 210.97 227.59 260.77 350.88 213 189.46 190.50 191.46 192.33 190.05 290.40 212.01 226.07 261.61 365.54 215.54 191.38 192.43 193.30 194.27 201.03 206.02 214.09 230.90 266.13 365.24 215.54 191.38 192.43 193.38 194.27 201.03 206.02 214.09 230.90 264.11 355.87 226.21 191.38 192.43 193.38 194.27 201.03 206.02 214.09 230.90 264.11 355.87 226.21 193.30 194.35 195.32 196.24 201.03 200.04 216.17 231.12 266.61 356.21 217.14 247.20 231.12 266.61 356.21 227.14 231.12 266.61 356.21 227.14 231.12 266.61 356.21 227.14 231.12 266.61 356.21 227.14 231.12 266.61 356.21 227.14 231.12 266.61 356.21 227.14 231.12 266.61 356.21 227.14 231.12 266.61 356.21 227.14 231.12 266.61 356.21 227.14 231.12 266.61 356.21 227.14 231.12 266.61 356.21 227.14 231.12	211	187.54	188.57	189.52	190,39	197,06	201.98	209.93	226 48	259 12	349.21	211
214 199, 46 190, 50 191, 45 192, 31 199, 95 204, 00 212, 01 220, 00 261, 61 345, 53 214, 199, 42 191, 30 190, 40 206, 10 213, 05 229, 80 263, 80 345, 21 215, 191, 38 192, 43 193, 38 194, 27 201, 03 206, 02 214, 09 230, 90 264, 11 365, 87 224, 123, 133, 134, 135, 135, 135, 135, 134, 134, 135, 135, 135, 134, 134, 134, 134, 134, 134, 134, 134											สรด คก	212
214 190.42 191.46 192.42 191.30 200.04 205.01 213.05 229.00 267.06 364.21 215.13 191.38 192.43 193.38 194.27 201.03 206.02 214.09 230.90 267.01 345.07 325.		1			192 33	199.05			228 69	261.61	352 54	217
216	,	1	191.46	192.42	193,30	200,04	205.01	213.05	229 BO	202.86	354.21	214
218 198.30 194.45 195.32 196.21 203.02 200.04 216.17 203.12 266.61 366.91 218.92 199.32 196.29 197.15 190.15 205.00 210.06 217.25 235.33 268.11 366.94 220.19 195.23 199.25 190.15 206.00 211.07 219.99 236.43 270.36 366.91 366.91 221.19 219.15 190.11 200.16 200.00 206.00 211.07 219.99 236.43 270.36 366.91 366.91 222 199.11 199.10 200.16 200.00 200.00 212.00 200.30 237.64 271.60 366.97 222 199.17 200.14 201.12 202.04 200.09 213.09 221.37 230.65 277.05 367.54 222 200.03 201.11 202.09 203.01 209.97 215.11 223.45 240.06 275.36 307.97 224 200.03 201.11 202.09 203.01 209.97 215.11 223.45 240.06 275.36 307.97 225 201.00 202.07 203.00 203.01 209.97 215.11 223.45 240.06 275.36 307.97 225 201.00 202.07 203.00 203.90 211.96 216.12 224.40 241.96 276.60 327.54 222.00 202.07 203.00 203.90 211.96 216.12 224.40 241.96 276.60 327.54 222.00 202.07 203.00 205.00 205.90 205.	215	191.38	192.43	193.38	194.27	201.03	206.02	214.09	230.90	264 11	355.87	215
218 198.30 194.45 195.32 196.21 203.02 200.04 216.17 203.12 266.61 366.91 218.92 199.32 196.29 197.15 190.15 205.00 210.06 217.25 235.33 268.11 366.94 220.19 195.23 199.25 190.15 206.00 211.07 219.99 236.43 270.36 366.91 366.91 221.19 219.15 190.11 200.16 200.00 206.00 211.07 219.99 236.43 270.36 366.91 366.91 222 199.11 199.10 200.16 200.00 200.00 212.00 200.30 237.64 271.60 366.97 222 199.17 200.14 201.12 202.04 200.09 213.09 221.37 230.65 277.05 367.54 222 200.03 201.11 202.09 203.01 209.97 215.11 223.45 240.06 275.36 307.97 224 200.03 201.11 202.09 203.01 209.97 215.11 223.45 240.06 275.36 307.97 225 201.00 202.07 203.00 203.01 209.97 215.11 223.45 240.06 275.36 307.97 225 201.00 202.07 203.00 203.90 211.96 216.12 224.40 241.96 276.60 327.54 222.00 202.07 203.00 203.90 211.96 216.12 224.40 241.96 276.60 327.54 222.00 202.07 203.00 205.00 205.90 205.	216	192 34	193.30	104.35	105.24	202 02	207.03	215 13	232.01	265.36	352 54	215
218 194.26 195.32 196.29 197.18 204.01 209.05 217.21 234.92 267.08 366.03 27.01 195.23 196.28 197.25 198.27 199.12 206.00 210.07 219.29 236.43 270.36 364.21 221 197.15 198.21 199.19 206.00 210.00 206.00 210.07 219.29 236.43 270.36 364.21 221 197.15 198.21 199.10 200.00 206.00 210.00 206.00 271.07 219.29 236.43 270.36 364.21 222 198.11 199.10 200.16 201.00 206.00 210.00 220.37 237.64 271.60 365.04 222 199.07 200.14 201.12 202.04 208.97 214.10 222.41 230.75 247.10 366.01 222 41 200.03 201.11 202.09 203.01 209.97 215.11 223.45 240.06 275.06 272.75 367.54 222 225 201.00 202.07 203.00 203.90 210.90 271.37 240.60 275.06 272.75 367.04 225 225 201.00 202.07 203.00 203.90 210.95 211.05 217.14 225.52 244.0 275.05 375.07 277.05 377.05 277		,										217
210 195.23 196.28 197.25 198.22 199.15 206.00 210.06 210.25 213.33 206.11 362.51 220 196.19 197.25 198.22 199.12 206.00 211.07 219.29 213.23 206.43 270.36 364.21 221 197.15 199.21 199.19 200.00 206.00 212.00 220.33 207.54 271.00 365.02 222 199.11 199.19 200.16 201.06 207.90 213.09 221.37 210.65 222.65 367.54 222 199.11 199.19 200.16 201.06 207.90 213.09 221.37 210.65 222.65 367.54 222 199.11 200.01 200.11 200.20 4 208.97 214.10 222.41 10 222.41 209.75 274.10 362.11 202.20 4 208.97 214.10 222.41 10 222.45 240.66 275.35 370.97 222 125 201.00 202.07 203.06 203.90 210.90 209.97 215.11 223.45 240.66 275.35 370.97 222 120.90 202.07 203.06 203.90 210.90 201.15 202.44 10 202.41 202.45 240.66 275.35 370.97 222 204.00 202.07 203.06 203.90 210.96 216.12 202.44 10 204.00 205.00 205.90 207.91 200.84 200.85 205.81 206.90 207.91 200.84 200.85 205.81 206.90 207.91 200.84 205.90 207.90 207.90 207.90 20												218
197.15 198.21 199.18 200.09 206.98 212.08 220.33 237.64 271.60 365.87 222 198.11 199.18 200.16 201.96 207.89 213.09 221.37 238.65 272.85 367.64 223 199.07 200.14 201.12 202.04 200.97 214.10 222.41 230.25 274.10 366.27 274.22 224.22 200.03 201.11 202.09 203.01 209.97 215.11 223.45 248.86 275.85 370.07 225 201.00 202.07 203.06 203.99 210.86 216.12 224.48 241.86 275.85 370.07 225 225 201.00 202.07 203.06 203.99 210.86 216.12 224.48 241.86 276.60 372.54 227 202.92 204.00 205.00 205.92 212.05 218.15 226.56 244.18 270.10 375.87 228 203.88 204.97 205.97 206.89 212.05 218.15 226.56 244.18 270.10 375.87 228 203.68 204.97 205.97 206.89 213.04 215.93 221.16 227.66 246.98 281.50 281.50 230.20 205.81 206.94 207.73 208.83 207.73 208.83 209.84 210.78 210.78 212.92 223.20 207.73 208.83 209.84 210.78 217.75 219.91 224.21 230.73 248.60 284.00 386.24 232.20 207.73 208.83 209.84 210.78 210.78 210.78 227.20 233.85 251.02 278.48 386.20 233.20 233.75 245.20 233.85 251.02 278.48 386.20 233.20 233.75 233.20 233.75 233.20 233.75	219	1	196 28	197.25	198.15	205.00	210.06		235.33			219
223 198.11 199.18 200.16 201.06 202.08 213.09 221.37 238.65 272.86 367.84 223.199.07 200.14 201.12 202.04 208.97 214.10 222.41 239.75 274.10 369.21 224.10 200.03 201.11 202.09 203.01 209.97 215.11 223.45 240.86 276.35 370.87 225.50 201.00 202.07 203.06 203.98 210.96 216.12 224.48 241.96 276.66 372.85 227.20 201.00 202.07 203.06 203.98 210.96 216.12 224.48 241.96 276.66 372.85 227.20 227.20 204.00 205.00 205.90 205.90 212.95 218.15 226.56 244.18 276.10 376.87 227.20 203.08 204.95 205.90 205.90 205.90 212.95 218.15 226.56 244.18 276.10 376.87 228.20 204.50 205.90 205.90 207.86 214.94 220.17 276.55 246.98 201.90 377.94 229.20 204.50 205.90 207.91 208.84 215.93 221.18 229.20 247.49 287.84	220	196.19	197.25	198.22	199,12	206,00	211.07	219,29	236.43	270.36	364.21	220
223 198.11 199.18 200.16 201.06 202.08 213.09 221.37 238.65 272.86 367.84 223.199.07 200.14 201.12 202.04 208.97 214.10 222.41 239.75 274.10 369.21 224.10 200.03 201.11 202.09 203.01 209.97 215.11 223.45 240.86 276.35 370.87 225.50 201.00 202.07 203.06 203.98 210.96 216.12 224.48 241.96 276.66 372.85 227.20 201.00 202.07 203.06 203.98 210.96 216.12 224.48 241.96 276.66 372.85 227.20 227.20 204.00 205.00 205.90 205.90 212.95 218.15 226.56 244.18 276.10 376.87 227.20 203.08 204.95 205.90 205.90 205.90 212.95 218.15 226.56 244.18 276.10 376.87 228.20 204.50 205.90 205.90 207.86 214.94 220.17 276.55 246.98 201.90 377.94 229.20 204.50 205.90 207.91 208.84 215.93 221.18 229.20 247.49 287.84	221	197.15	198.21	199.19	200.09	206.99	212 08	220.33	237.54	271.60	365.02	221
224 200.03 201.11 202.09 203.01 200.97 215.11 223.45 240.86 275.35 370.87 225 201.00 202.07 203.06 203.98 210.96 216.12 224.88 241.96 276.60 372.54 226 201.96 203.04 204.03 204.95 211.95 217.14 225.52 243.07 277.85 374.42 1 227 202.92 204.00 205.00 205.92 212.95 218.15 226.56 244.18 276.10 375.87 2 228 203.08 204.97 205.97 206.89 212.95 218.15 226.56 244.18 276.10 375.87 2 228 204.05 205.94 206.40 277.86 214.94 220.17 228.65 246.99 241.50 377.74 2 228 204.05 205.94 206.44 277.86 214.94 220.17 228.65 246.99 241.50 377.54 2 239 204.05 205.94 206.44 277.86 214.94 220.17 228.65 246.99 241.50 377.54 2 230 205.81 206.90 207.91 208.84 215.93 221.18 229.69 247.49 282.84 380.87 2 231 205.81 206.90 207.91 208.84 215.93 221.18 229.69 247.49 282.84 380.87 2 232 207.73 208.83 209.84 210.78 217.92 223.20 231.77 240.71 285.34 380.27 2 233 208.70 209.80 210.81 211.75 218.91 224.21 232.81 250.87 240.71 285.34 380.27 2 235 208.70 209.80 210.81 211.75 218.91 224.21 232.81 250.87 240.71 285.34 380.27 2 235 210.62 211.73 212.75 213.70 220.90 226.23 234.89 253.02 280.90 380.80 2 212.75 213.70 220.90 226.23 234.89 253.02 280.90 380.20 2 235 214.64 215.66 216.61 223.88 229.27 238.01 256.34 201.58 304.20 2 228.26 23.87 255.24 201.58 304.20 2 230 215.44 215.60 216.63 217.59 248.88 203.28 20.60 25.87 230.01 256.34 201.58 304.20 2 228.26 23.89 254.42 205.51 204.60 215.64 222.89 228.26 23.89 254.42 205.51 304.20 21.20 21.40 22.20 23.34 22.20 23.34 22.20 23.34 200.87 236.20 237.74 230.20 237												222
225 201.00 202.07 203.06 203.98 210.96 216.12 224.88 241.96 276.60 372.54 22 226 201.96 203.04 204.03 204.95 211.95 212.14 225.52 243.07 277.85 374.21 227 202.92 204.00 205.00 205.92 212.95 218.15 226.56 244.18 270.10 375.87 22 228 203.08 204.97 205.97 206.80 213.94 219.16 227.60 245.28 200.03 377.64 22 228 203.08 204.97 205.97 206.80 214.94 220.17 228.65 244.18 270.10 375.87 22 220 204.05 205.94 206.64 207.86 214.94 220.17 228.65 244.18 270.10 375.97 22 230 205.81 206.90 207.91 208.4 216.93 221.18 229.69 247.40 202.84 380.07 22 230 205.81 206.80 207.91 208.4 216.93 221.18 229.69 247.40 202.84 380.07 22 231 206.77 207.87 208.83 209.84 210.78 217.92 223.20 231.77 240.71 285.34 384.21 22 233 208.70 209.80 210.81 211.75 218.91 224.21 232.81 250.61 286.59 211.73 212.75 213.70 220.90 226.23 234.89 253.02 289.00 380.20 211.78 212.72 219.91 225.22 233.85 251.92 287.84 380.87 212.25 213.67 214.69 215.64 222.89 228.20 23.23 254.13 208.67 216.59 217.70 213.72 214.67 221.90 227.25 235.93 254.13 200.34 380.87 202.23 214.64 215.66 216.61 223.80 229.27 238.01 256.34 202.83 304.20 215.54 215.66 216.61 223.80 229.27 238.01 256.34 202.83 304.20 215.44 215.60 216.63 217.59 224.88 200.84 200.8 230.65 257.45 204.08 306.74 228.84 215.60 216.63 217.59 224.88 200.8 230.6 257.45 204.08 306.74 228.84 215.60 216.63 217.59 224.88 200.8 200.8 200.8 200.8 30.9 20.2 214.48 215.60 216.63 217.59 224.88 200.8 200.8 200.8 200.8 30.9 20.9 215.44 216.57 217.60 218.50 225.87 211.9 240.09 258.56 260.3 309.74 228.20 215.44 216.57 217.60 218.50 225.87 211.9 200.8 200.8 200.8 30.9 20.2 214.48 215.60 216.63 217.59 224.88 200.8 200.8 200.8 200.8 30.9 20.9 200.8	223	199.07	200.14	201.12	202.04	208.97	214.10	222.41	239.75	274.10	369.21	223
226 201.96 203.04 204.03 204.95 211.95 217.14 225.52 243.07 277.85 374.21 2 227 202.92 204.00 205.00 205.92 212.95 218.15 226.56 244.18 270.10 375.67 2 228 203.88 204.97 205.97 206.80 213.94 219.16 227.60 245.28 280.35 377.54 21 229 204.05 205.94 206.94 207.86 214.94 220.17 228.65 246.99 281.50 377.92 1 230 205.81 206.90 207.91 208.84 215.93 221.18 229.69 247.49 282.84 380.67 2 231 206.77 207.87 208.83 209.84 210.78 217.92 222.19 230.73 248.60 284.09 382.84 380.67 2 232 207.73 208.83 209.84 210.78 217.92 223.20 231.77 246.73 285.34 384.21 2 233 208.70 209.80 210.81 211.75 218.91 224.21 232.81 250.81 286.59 385.87 2 234 209.66 210.77 211.78 212.72 219.91 225.22 233.85 251.92 287.84 382.54 2 235 210.62 211.73 212.75 213.70 220.90 226.23 234.89 253.02 289.90 380.97 2 236 211.59 212.70 213.72 214.67 221.90 227.25 235.93 254.61 280.34 380.87 2 237 212.55 213.67 214.69 215.64 222.89 228.26 236.97 255.24 291.58 392.54 1 239 214.48 215.60 216.63 217.59 224.88 230.28 230.05 257.45 294.08 392.54 2 241 216.41 217.54 218.57 217.60 218.56 225.87 231.29 240.09 259.56 295.33 392.54 2 241 216.41 217.54 218.57 217.60 218.56 225.87 231.29 240.09 259.56 295.33 392.54 2 241 219.30 220.44 221.48 222.46 223.43 230.85 233.92 244.18 250.60 216.63 217.59 224.88 230.28 230.05 257.45 294.08 396.87 2 242 217.37 218.50 219.54 220.51 227.86 233.32 242.17 260.77 267.81 300.33 400.50 2 248 219.30 220.44 221.48 222.45 220.85 235.34 244.25 262.98 300.33 400.50 2 248 221.23 222.23 223.43 224.40 231.84 230.85 236.54 292.84 300.33 400.50 2 248 221.23 222.30 223.34 224.40 225.37 223.00 244.43 265.20 300.80 246.54 222.40 206.57 247.81 206.57 207.81 400.87 2 248 221.23 222.23 223.34 224.40 225.37 223.00 244.43 256.60 206.57 431.80 20.90 2 248 221.23 225.09 226.55 227.31 228.30 233.82 242.43 230.85 236.50 300.38 240.50 2 249 224.13 225.09 226.55 227.31 228.30 233.84 234.94 266.20 300.38 400.50 2 240 225.09 226.55 227.31 228.30 226.34 233.80 244.40 239.80 244.40 239.80 244.40 239.80 244.40 239.80 244.40 239.80 244.40 239.80 244.40 239.80 244.40 239.80		ı							240.86		370.87	224
227 202.92 204.00 205.00 205.02 212.95 218.15 226.56 244.18 270.10 375.87 228.88 204.97 205.97 206.80 213.94 219.16 227.60 245.28 280.93 377.54 232.90 204.85 205.94 206.90 207.91 208.84 220.17 221.18 220.17 229.69 247.49 281.59 287.92 230.20 205.81 206.90 207.91 208.84 215.93 221.18 229.69 247.49 282.84 380.87 232.20 207.73 208.83 209.84 210.78 211.75 218.94 223.20 231.77 249.71 285.34 383.21 233.208.70 209.80 210.81 211.75 218.91 224.21 232.81 250.81 286.60 210.77 211.78 212.72 219.91 225.22 233.85 251.92 287.84 387.54 232.23 233.85 211.59 212.73 212.75 213.70 220.90 226.23 234.89 253.02 289.90 236.33 234.89 253.02 289.90 236.33 234.89 253.02 289.90 236.33 234.89 253.02 289.90 236.34 236.24 236.34	225	201.00	202.07	203.06	203,98	210.96	216.12	224 48	241,96	276 60	372 54	225
228 203.88 204.97 205.97 206.90 213.94 210.16 227.60 245.20 200.35 377.54 228.90 205.81 206.90 207.91 200.00 215.93 221.10 229.69 247.49 201.60 379.21 230.205.81 206.97 207.87 208.83 209.84 210.78 215.93 221.10 229.69 247.49 207.40 300.07 232 207.73 208.83 209.84 210.78 217.92 223.20 231.77 240.71 205.34 303.21 233 200.70 209.80 210.81 211.75 218.91 224.21 232.81 250.01 206.69 210.77 211.78 212.72 219.91 225.22 233.05 251.92 207.73 208.83 209.84 212.72 219.91 225.22 233.05 251.92 207.74 300.59 300.00 230.00 230.00 230.00 220.00 226.23 234.89 253.02 209.90 300.00 230.00	228	201.96	203.04	204.03	204.95	211,95	217.14	225.52	243.07	277.85	374.21	228
228	1	,		205.00	205.92	212.95	218.15	226,56	244, 1B	279 10	375.87	227
230		1									377.54	278
231 206.77 207.87 208.87 209.81 216.92 222.19 230.73 248.60 284.00 382.54 2 232 207.73 208.83 209.84 210.78 217.92 223.20 231.77 249.71 285.34 384.21 2 233 208.70 209.80 210.81 211.75 218.91 224.21 232.81 250.81 286.59 386.82 210.77 211.78 212.72 219.91 225.22 233.85 251.92 287.84 388.22 2 235 210.62 211.73 212.75 213.70 220.90 226.23 234.89 253.02 289.90 389.20 2 236 211.59 212.70 213.72 214.67 221.90 227.25 235.93 254.43 290.34 390.87 2 237 212.55 213.67 214.69 215.64 222.89 228.26 236.97 255.24 291.58 392.54 22 239.21 24.64 215.66 216.61 223.88 229.27 238.01 256.34 292.83 394.20 239 214.48 215.56 216.61 223.88 229.27 238.01 256.34 292.83 394.20 239 214.48 216.57 217.60 218.56 225.87 231.29 240.09 258.56 295.33 397.54 22 217.37 218.50 219.54 220.51 227.86 233.32 241.13 259.66 296.58 399.7 54 241 216.41 217.54 218.57 219.53 226.87 232.30 241.13 259.66 296.58 399.7 54 242 217.37 218.50 219.54 220.51 227.86 233.32 242.17 260.77 297.83 400.87 2 242.21 218.34 219.30 220.44 221.48 222.46 223.43 223.83 242.17 260.77 297.83 400.87 2 242.21 219.30 220.44 221.48 222.46 223.43 223.85 244.25 62.98 300.33 404.20 2 244.25 262.98 300.33 404.20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2												229
232 207.73 208.83 209.84 210.78 217.92 223.20 231.77 240.71 285.34 384.21 233 208.70 209.80 210.81 211.75 218.91 224.21 232.81 250.61 286.59 385.87 234 209.66 210.77 211.78 212.72 219.91 225.22 233.85 251.92 28.80 385.87 34.23 210.62 211.73 212.75 213.70 209.90 226.23 234.89 253.02 289.90 389.20 236 211.59 212.70 213.72 214.67 221.90 227.25 235.93 254.13 290.34 390.87 2 237 212.55 213.67 214.69 215.64 222.89 228.26 236.97 255.24 291.58 392.54 238 213.52 214.64 215.66 216.61 223.88 229.27 238.01 256.34 292.83 394.20 239 214.48 215.60 216.63 217.59 224.88 230.28 230.28 230.05 257.45 294.08 395.87 240 215.44 216.57 217.60 218.56 225.87 231.29 240.99 258.96 295.33 397.54 221.21.21.21.21.21.21.21.21.21.21.21.21.		l							247 49	282 84	380.87	230
233 208.70 209.80 210.81 211.75 218.91 224.21 232.81 250.81 286.59 385.87 234 209.66 210.77 211.78 212.72 219.91 225.22 233.85 251.92 287.84 387.54 235 210.62 211.73 212.75 213.70 220.90 226.23 234.89 253.02 289.09 389.20 226.23 234.89 253.02 289.09 389.20 226.23 234.89 253.02 289.09 389.20 226.23 234.89 253.02 289.09 389.20 226.23 234.89 253.02 289.09 389.20 226.23 234.89 253.02 289.09 389.20 226.23 234.89 253.02 289.09 389.20 226.23 234.89 253.02 289.09 389.20 226.23 234.89 253.02 289.09 389.20 237 237 242.55 243.67 244.69 245.64 222.89 228.26 236.97 255.24 291.59 302.54 223.9 244.88 245.50 246.63 247.59 224.88 230.28 239.05 257.45 294.09 395.87 240.24 242.44 246.57 247.60 248.50 225.87 234.29 240.09 258.26 295.33 397.54 244 246.41 247.54 248.57 249.55 242.24 243.24 244.25 262.98 300.33 404.00.87 224.4 244.25 262.98 300.33 404.00.87 224.4 244.2 222.46 223.43 230.85 236.35 246.29 264.09 301.58 406.87 224.4 242.24 222.30 223.34 224.40 225.37 238.4 238.38 244.25 262.98 300.33 404.00.87 224.4 222.24 222.38 222.38 223.43 224.40 225.37 238.4 238.38 244.25 262.98 300.33 404.00.87 224.4 222.24 222.38 222.38 223.43 224.40 225.37 238.44 238.38 244.25 262.98 300.33 404.00.87 224.4 222.24 222.38 222.38 223.43 224.40 225.37 238.4 238.38 244.25 262.98 300.33 404.00.87 224.4 222.24 222.38 222.38 222.38 222.38 223.49 224.40 225.37 238.44 238.38 244.25 262.98 300.33 404.00.87 224.40 225.37 238.44 238.38 244.25 262.98 300.33 404.00.87 224.40 225.37 238.44 238.38 244.25 262.98 300.33 404.00.87 224.40 225.38 222.20 223.34 224.40 225.37 238.44 238.38 244.40 249.38 266.50 20.30.80 240.764 222.20 223.34 224.40 225.37 223.84 238.38 244.40 249.30 240.40 249.46 266.50 300.80 240.764 222.20 223.34 224.20 2												271
234 209.66 210.77 211.78 212.72 219.91 225.22 233.85 251.92 28.784 38.754 235 210.62 211.73 212.75 213.70 220.90 226.23 234.89 253.02 289.09 389.20 236 211.59 212.70 213.72 214.67 221.90 227.25 235.93 254.61 290.34 309.87 237 212.55 213.67 214.69 215.64 222.89 228.26 236.97 255.24 291.58 392.54 238 213.52 214.64 215.66 216.61 223.88 229.27 238.01 256.34 292.83 309.54 239 214.48 215.60 216.63 217.59 224.88 230.28 230.95 257.45 294.08 395.87 240 215.44 216.57 217.60 218.56 225.87 231.29 240.09 258.26 205.33 307.54 240 215.44 216.57 217.60 218.56 225.87 231.29 240.09 258.26 205.33 307.54 240 215.34 216.57 219.53 226.87 231.29 240.09 258.26 205.33 307.54 240 216.34 216.34 216.34 229.84 220.51 227.86 233.32 242.17 260.77 297.83 400.87 243 218.34 219.47 220.51 221.48 228.86 234.33 243.21 261.88 299.08 402.54 218.34 219.47 220.51 221.48 228.86 234.33 243.21 261.88 299.08 402.54 224.21 218.34 219.47 220.51 221.48 228.86 234.33 243.21 261.88 299.08 402.54 224.21 220.27 221.41 222.46 223.43 230.85 236.35 245.29 264.09 301.58 406.20 242.24 222.20 223.34 224.40 223.43 230.85 236.35 245.29 264.09 301.58 406.87 224.25 220.27 221.41 222.46 223.43 230.85 236.35 245.29 264.09 301.58 406.87 222.20 223.34 224.40 225.37 232.84 238.38 244.25 262.87 300.33 404.00 225.37 232.84 238.38 247.26 263.34 247.26 223.34 224.40 225.37 232.84 238.38 248.29 267.41 305.32 410.8. 222.48 223.16 224.31 225.37 226.35 233.84 239.39 248.42 267.41 305.32 410.8. 224.88 223.16 224.31 225.37 226.35 233.84 230.30 248.42 267.41 305.32 410.8. 222.48 223.16 224.31 225.37 226.35 233.84 230.39 248.42 267.41 305.32 410.8. 225.37 226.35 233.84 230.40 239.39 248.42 267.41 305.32 410.8. 222.48 223.16 224.31 225.37 226.35 233.84 230.40 239.39 248.42 267.41 305.32 410.8. 222.20 225.09 226.25 227.31 228.30 236.82 242.43 251.54 270.73 309.07 415.87 225.00 225.09 226.25 227.31 228.30 236.82 242.43 251.54 270.73 309.07 415.87 225.00 225.09 226.25 227.31 228.30 236.82 242.43 251.54 270.73 309.07 415.87 225.00 225.09 226.25 227.31 228.30 236.82 242.43 251.54 270.73 309.07		ì							,			232
235 210.62 211.73 212.75 213.70 220.90 226.23 234.89 253.02 289.09 389.20 2 236 211.59 212.70 213.72 214.67 221.90 227.25 235.93 254.13 290.34 390.87 2 237 212.55 213.67 214.69 215.64 222.89 228.26 236.97 255.24 291.58 392.51 2 238 213.52 214.64 215.66 216.61 223.88 229.27 238.01 256.34 292.83 394.20 2 239 214.48 215.60 216.63 217.59 224.88 230.28 239.05 257.45 294.08 395.87 2 240 215.44 216.57 217.60 218.56 225.87 231.29 240.09 258.86 295.33 397.54 2 241 216.41 217.54 218.50 219.53 226.87 231.29 240.09 258.86 296.53 397.54 2 242 217.37 218.50 219.54 220.51 227.48 228.86 238.32 242.17 260.77 297.83 400.87 2 243 218.34 219.47 220.51 221.48 228.86 234.33 243.21 261.88 299.08 402.54 2 244 219.30 220.44 221.48 222.45 220.85 235.34 244.25 262.98 300.33 404.20 2 245 220.27 221.41 222.46 223.43 230.85 236.35 245.29 264.09 301.58 406.87 2 246 221.23 222.38 223.43 224.40 231.84 237.36 246.34 265.20 303.82 407.64 2 247 222.20 223.34 224.40 225.37 232.84 238.38 247.38 266.30 104.07 409.20 2 248 223.16 224.31 225.37 226.35 233.84 240.40 249.46 265.20 303.82 407.64 2 249 224.13 225.28 226.34 227.32 231.83 240.40 249.46 265.52 306.57 410.8. 2 249 224.13 225.28 226.34 227.32 231.83 240.40 249.46 266.52 306.57 410.8. 2 249 225.09 226.25 227.31 228.30 235.83 241.41 250.50 260.62 307.82 414.20 2 251 226.06 227.22 228.28 229.27 236.82 242.43 251.54 270.73 309.07 415.87 2 251 226.06 227.22 228.28 229.27 236.82 242.43 251.54 270.73 309.07 415.87 2												23.1
236 211.59 212.70 213.72 214.67 221.90 227.25 235.93 254.13 290.34 300.87 212.55 213.67 214.69 215.64 222.89 228.26 236.97 255.24 291.58 302.54 238 213.52 214.64 215.66 216.61 223.88 229.27 238.01 256.34 292.83 304.20 213.44 215.60 216.63 217.59 224.88 230.28 230.05 257.45 294.08 305.87 215.44 216.57 217.60 218.56 225.87 231.29 240.09 258/56 205.33 307.54 215.44 216.57 217.60 218.56 225.87 231.29 240.09 258/56 205.33 307.54 217.37 218.50 219.54 220.51 227.86 233.32 242.17 260.77 207.83 400.87 243 218.34 219.47 220.51 221.48 228.86 230.33 242.17 260.77 207.83 400.87 244 219.30 220.44 221.48 222.45 220.85 235.34 244.25 262.98 300.33 404.00 254.24 21.33 220.27 221.41 222.46 223.43 230.85 236.35 245.29 264.09 301.58 405.87 246 222.20 223.34 224.40 225.37 232.84 234.24 236.35 245.29 264.09 301.58 405.87 248 222.20 223.34 224.40 225.37 232.84 234.34 244.25 262.98 300.33 404.00 20.24 248 222.20 223.34 224.40 225.37 232.84 233.85 245.29 264.09 301.58 405.87 246 223.16 224.31 225.28 226.34 227.32 241.83 240.40 249.45 265.20 303.82 407.64 222.48 223.16 224.31 225.28 226.34 227.32 241.83 240.40 249.46 265.20 303.82 407.64 222.48 223.16 224.31 225.28 226.34 227.32 241.83 240.40 249.46 265.20 303.82 407.64 222.48 223.16 224.31 225.28 226.34 227.32 241.83 240.40 249.46 266.50 303.82 407.64 222.48 223.16 224.31 225.28 226.34 227.32 241.83 240.40 249.46 266.50 303.82 407.64 222.48 223.16 224.31 225.28 226.34 227.32 241.83 240.40 249.46 266.50 303.82 407.64 222.48 223.16 224.31 225.28 226.34 227.32 241.83 240.40 249.46 266.50 303.82 407.64 222.48 225.16 224.31 225.28 226.34 227.32 241.83 240.40 249.46 266.50 303.82 410.8. 225.50 225.09 226.25 227.31 228.38 229.27 236.82 244.41 250.50 266.60 300.60 446.20 225.60 226.20 226.38 229.27 236.82 244.41 250.50 266.60 300.60 446.20 225.60 226.20 226.38 229.27 236.82 244.41 250.50 266.60 300.60 446.20 226.60												214
237 212.55 213.67 214.69 215.64 222.89 228.26 236.97 255.24 291.58 302.54 238 213.52 214.64 215.66 216.61 223.88 229.27 238.01 256.34 292.83 304.20 239 214.48 215.60 216.63 217.59 224.88 230.28 239.05 257.45 294.08 305.87 240 215.44 216.57 217.60 218.56 225.87 231.29 240.09 258/56 205.33 307.54 224.15.44 216.57 217.60 218.56 225.87 231.29 240.09 258/56 205.33 307.54 224.15.44 216.57 219.53 226.87 232.30 241.13 259.66 206.58 300.20 242.17 260.77 297.83 400.87 2242 217.37 218.50 219.54 220.51 221.48 228.86 233.32 242.17 260.77 297.83 400.87 2243 218.34 219.47 220.51 221.48 228.86 234.33 243.21 261.88 299.08 402.54 219.30 220.44 221.48 222.45 229.85 235.34 244.25 262.98 300.33 404.20 22.45 220.27 221.41 222.46 223.43 230.85 236.35 245.29 264.09 301.58 405.87 22.20.27 221.41 222.46 223.43 230.85 236.35 245.29 264.09 301.58 405.67 22.248 222.20 223.34 224.40 225.37 232.84 239.30 248.42 267.41 305.32 410.8. 224.48 223.16 224.31 225.37 236.35 245.29 264.09 301.58 407.64 22.248 222.20 223.34 224.40 225.37 232.84 239.30 248.42 267.41 305.32 410.8. 224.48 223.16 224.31 225.37 226.36 233.84 239.30 248.42 267.41 305.32 410.8. 224.88 223.16 224.31 225.37 226.36 233.84 239.30 248.42 267.41 305.32 410.8. 224.88 223.16 224.31 225.37 226.36 233.84 239.30 248.42 267.41 305.32 410.8. 224.40 225.37 236.80 246.40 249.46 268.52 306.57 412.54 225.37 226.36 224.31 225.37 226.36 233.84 240.40 249.46 268.52 306.57 412.54 225.37 226.36 224.31 225.37 226.36 233.84 240.40 249.46 268.52 306.57 412.54 225.37 226.36 224.31 225.37 226.36 233.84 240.40 249.46 268.52 306.57 412.54 225.37 226.36 225.39 226.25 227.31 228.30 236.83 241.41 250.50 269.62 307.82 4144.20 22.25.00 225.09 226.25 227.31 228.30 236.83 241.41 250.50 269.62 307.82 414.20 22.25.00 225.09 226.25 227.31 228.30 236.83 241.41 250.50 269.62 307.82 414.20 22.25.00 225.09 226.25 227.31 228.30 236.83 241.41 250.50 269.62 307.82 414.20 22.25.00 225.09 226.25 227.31 228.30 236.83 241.44 250.50 269.62 307.82 414.20 22.25.00 225.09 226.25 227.31 228.30 226.30 236.30 236.30 236.30 236.30											- 1	
238 213.52 214.64 215.66 216.61 223.88 229.27 238.01 256.34 292.83 304.20 2 2 314.48 215.60 216.63 217.59 224.88 230.28 239.05 257.45 294.08 305.87 2 315.44 216.57 217.60 218.56 225.87 231.29 240.09 258.96 295.33 307.54 2 315.44 216.57 217.54 218.57 219.53 226.87 232.30 241.13 259.66 296.58 309.20 2 317.37 218.50 219.54 220.51 227.86 233.32 242.17 260.77 297.83 400.87 2 315.34 219.37 220.51 221.48 228.86 233.32 242.17 260.77 297.83 400.87 2 315.34 219.37 220.51 221.48 228.86 233.32 243.21 261.88 209.08 402.54 2 315.34 219.30 220.44 221.48 222.45 220.85 235.34 244.25 262.98 300.33 401.20 2 320.27 221.41 222.46 223.43 230.85 236.35 245.29 264.09 301.58 405.87 2 321.23 222.38 223.43 224.40 231.84 237.36 246.34 265.20 302.82 407.54 2 323.16 224.31 225.37 232.84 233.84 233.8 246.34 265.20 302.82 407.54 234.31 225.36 224.31 225.37 232.84 233.84 233.8 246.34 265.20 302.82 407.54 234.34 223.16 224.31 225.37 232.84 233.84 233.8 246.34 265.20 302.82 407.54 234.34 223.16 224.31 225.37 232.84 233.84 233.8 247.38 266.30 304.07 409.20 224.43 225.36 224.31 225.37 232.84 233.84 233.8 247.38 266.30 304.07 409.20 224.43 225.36 224.31 225.37 226.35 243.84 239.39 248.42 267.41 305.32 410.8. 248.22 23.16 224.31 225.37 226.35 243.84 239.39 248.42 267.41 305.32 410.8. 248.22 23.16 224.31 225.37 226.35 243.84 239.39 248.42 267.41 305.32 410.8. 248.22 23.16 224.31 225.37 226.35 243.84 239.39 248.42 267.41 305.32 410.8. 248.22 23.16 224.31 225.37 226.35 243.84 239.39 248.42 267.41 305.32 410.8. 225.37 226.36 227.32 231.83 240.40 249.46 268.52 306.57 412.54 225.37 226.00 225.09 226.25 227.31 228.30 236.83 241.44 250.55 50 260.62 307.82 414.20 22.20 225.09 226.25 227.31 228.30 236.83 241.44 250.55 50 260.62 307.82 414.20 22.25 226.00 226.25 227.31 228.30 236.83 241.44 250.55 50 260.62 307.82 414.20 22.25 226.00 226.25 227.31 228.30 236.83 241.44 250.55 50 260.62 307.82 414.40 20.25 37 226.00 226.00 227.22 228.28 229.27 236.82 229.27 236.82 242.43 251.54 270.73 309.07 415.87 226.00 226.00 227.22 228.28 229.27 236.82 242.43 251.54 270.73 30											ı	210
239 214.48 215.60 216.63 217.59 224.88 230.28 239.05 257.45 294.08 395.87 2 240 215.44 216.57 217.60 218.50 225.87 231.29 240.09 258/56 295.33 397.54 2 241 216.41 217.54 218.57 219.53 226.87 232.30 241.13 259.66 296.58 309.20 2 242 217.37 218.50 219.54 220.51 227.86 233.32 242.17 260.77 297.83 400.87 2 243 218.34 219.47 220.51 221.48 228.86 234.33 243.21 261.88 299.08 402.54 2 244 219.30 220.44 221.48 222.45 229.85 235.34 244.25 262.98 300.33 404.20 2 245 220.27 221.41 222.46 223.43 230.85 236.35 245.29 264.09 301.58 405.87 2 246 221.23 222.38 223.43 224.40 231.84 237.36 246.34 265.29 303.82 407.54 2 247 222.20 223.34 224.40 225.37 232.84 238.38 247.38 266.30 304.07 409.20 2 248 223.16 224.31 225.37 226.35 233.84 239.39 248.42 267.41 305.32 410.8, 2 249 224.13 225.28 226.34 227.32 241.83 240.40 249.46 268.52 306.57 412.54 2 250 225.09 226.25 227.31 228.30 236.83 241.41 250.50 269.62 307.82 414.20 2 251 226.06 227.22 228.28 229.27 236.82 242.43 251.54 270.73 309.07 415.87 2												217
240 215.44 216.57 217.60 218.56 225.87 231 29 240.09 258,96 205.33 397.54 2 241 216.41 217.54 218.57 219.53 226.87 232.30 241.13 259.66 296.58 399.26 242 217.37 218.50 219.54 220.51 227.86 233.32 242.17 260.77 297.83 400.87 2 243 218.34 219.47 220.51 221.48 228.86 234.33 243.21 261.88 299.08 407.54 2 244 219.30 220.44 221.48 222.45 220.85 235.34 244.25 262.98 300.33 404.50 2 245 220.27 221.41 222.46 220.43 230.85 236.35 245.29 264.09 301.58 406.87 2 246 221.23 222.38 223.43 224.40 231.84 237.36 246.34 265.20 303.82 407.54 2 247 222.20 223.34 224.40 231.84 237.36 246.34 265.20 303.82 407.54 2 248 223.16 224.31 225.37 226.35 243.84 238.38 247.38 266.30 304.07 409.20 2 248 223.16 224.31 225.37 226.35 243.84 238.38 247.38 266.30 304.07 409.20 2 248 224.13 225.28 226.34 227.32 231.84 239.39 248.42 267.41 305.32 410.8. 2 249 224.13 225.28 226.34 227.32 231.83 240.40 249.46 268.52 306.57 412.54 2 250 225.09 226.25 227.31 228.30 236.83 241.41 250.50 269.62 307.82 414.20 2 251 226.06 227.22 228.28 229.27 236.82 242.43 251.54 270.73 309.07 415.87 2												238
241 216.41 217.54 218.57 219.53 226.87 232.30 241.13 259.66 296.58 309.20 2 242 217.37 218.50 219.54 220.51 227.86 233.32 242.17 260.77 297.83 400.87 2 243 218.34 219.47 220.51 221.48 228.86 234.33 243.21 261.88 209.08 402.54 2 244 219.30 220.44 221.48 222.45 229.85 235.34 244.25 262.98 300.33 404.20 2 245 220.27 221.41 222.46 223.43 230.85 236.35 245.29 264.09 301.58 406.87 2 246 221.23 222.38 223.43 224.40 231.84 237.36 246.34 265.20 302.82 407.54 2 247 222.20 223.34 224.40 225.37 232.84 238.38 247.38 266.30 304.07 409.20 2 248 223.16 224.31 225.37 226.35 233.84 239.39 247.38 266.30 304.07 409.20 2 248 223.16 224.31 225.37 226.35 233.84 239.39 248.42 267.41 305.32 410.8, 2 249 224.13 225.28 226.34 227.32 231.83 240.40 249.46 268.52 306.57 412.54 2 250 225.09 226.25 227.31 228.30 235.83 241.41 250.50 269.62 307.82 414.20 2 251 226.06 227.22 228.28 229.27 236.82 242.43 251.54 270.73 309.07 415.87 2												239
242 217.37 218.50 219.54 220.51 227.86 233.32 242.17 260.77 297.83 400.87 2 243 218.34 219.47 220.51 221.48 228.86 234.33 243.21 261.88 209.08 402.54 2 244 219.30 220.44 221.48 222.45 229.85 235.34 244.25 262.98 300.33 404.20 2 245 220.27 221.41 222.46 223.43 230.85 236.35 245.29 264.09 301.58 406.87 2 246 221.23 222.38 223.43 224.40 231.84 237.36 246.34 265.20 302.82 407.54 2 247 222.20 223.34 224.40 225.37 232.84 238.38 266.30 304.07 409.20 2 248 223.16 224.31 225.37 226.35 233.84 238.38 266.30 304.07 409.20 2 249 224.13 225.28 226.34 227.32 231.83 240.40 249.46 267.41 305.32 410.8, 2 249 224.13 225.28 226.34 227.32 231.83 240.40 249.46 268.52 306.57 412.54 2 250 225.09 226.25 227.31 228.30 236.83 241.41 250.50 269.62 307.82 414.20 2 251 226.06 227.22 228.28 229.27 236.82 242.43 251.54 270.73 309.07 415.87 2									,		i	ł
243 218.34 219.47 220.51 221.48 228.86 234.33 243.21 261.88 209.08 402.54 2 244 219.30 220.44 221.48 222.45 229.85 235.34 244.25 262.98 300.33 404.20 2 245 220.27 221.41 222.46 223.43 230.85 236.35 245.29 264.09 301.58 406.87 2 246 221.23 222.38 223.43 224.40 231.84 237.36 246.34 265.20 302.82 407.64 2 247 222.20 223.34 224.40 225.37 232.84 238.38 266.30 304.07 409.20 2 248 223.16 224.31 225.37 226.35 233.84 238.38 266.30 304.07 409.20 2 249 224.13 225.28 226.34 227.32 231.83 240.40 249.46 268.52 306.57 412.54 2 250 225.09 226.25 227.31 228.30 236.83 241.41 250.50 269.62 307.82 414.20 2 251 226.06 227.22 228.28 229.27 236.82 242.43 251.54 270.73 309.07 415.87 2											1	211
244 219.30 220.44 221.48 222.45 229.85 235.34 244.25 262.98 300.33 404.20 2 245 220.27 221.41 222.46 223.43 230.85 236.35 245.29 264.09 301.58 405.87 2 246 221.23 222.38 223.43 224.40 231.84 237.36 246.34 265.20 302.82 407.64 2 247 222.20 223.34 224.40 225.37 232.84 238.38 247.38 266.30 304.07 409.20 2 248 223.16 224.31 225.37 226.35 233.84 239.30 248.42 267.41 305.32 410.8, 2 249 224.13 225.28 226.34 227.32 231.83 240.40 249.46 268.52 306.57 412.54 2 250 225.09 226.25 227.31 228.30 235.83 241.41 250.50 269.62 307.82 414.20 2 251 226.06 227.22 228.28 229.27 236.82 242.43 251.54 270.73 309.07 415.87 2												212
245 220.27 221.41 222.46 223.43 230.85 236.35 245.29 264.09 301.58 405.87 2 248 221.23 222.38 223.43 224.40 231.84 237.36 246.34 265.20 302.82 407.54 2 247 222.20 223.34 224.40 225.37 232.84 238.38 247.38 266.30 304.07 409.20 2 248 223.16 224.31 225.37 226.35 243.84 239.39 248.42 267.41 305.32 410.8, 2 249 224.13 225.28 226.34 227.32 231.83 240.40 249.46 268.52 306.57 412.54 2 250 225.09 226.25 227.31 228.30 235.83 241.41 250.50 269.62 307.82 414.20 2 251 226.06 227.22 228.28 229.27 236.82 242.43 251.54 270.73 309.07 415.87 2											1	241
248												215
247 222.20 223.34 224.40 225.37 232.84 238.38 247.38 266.30 304.07 409.20 2 248 223.16 224.31 225.37 226.35 233.84 239.39 248.42 267.41 305.32 410.8, 2 249 224.13 225.28 226.34 227.32 231.83 240.40 249.46 268.52 306.57 412.54 2 250 225.09 226.25 227.31 228.30 236.83 241.41 250.50 269.62 307.82 414.20 2 251 226.06 227.22 228.28 229.27 236.82 242.43 251.54 270.73 309.07 415.87 2	i										i	-
248 223.16 224.31 225.37 226.35 243.84 239.39 248.42 267.41 305.32 410.8, 2 249 224.13 225.28 226.34 227.32 231.83 240.40 249.46 268.52 306.57 412.54 2 250 225.09 226.25 227.31 228.30 236.83 241.41 250.50 269.62 307.82 414.20 2 251 226.06 227.22 228.28 229.27 236.82 242.43 251.54 270.73 309.07 415.87 2												2411
249 224.13 225.28 226.34 227.32 231.83 240.40 249.46 268.52 306.57 412.54 2 250 225.09 226.25 227.31 228.30 236.83 241.41 250.50 269.62 307.82 414.20 2 251 226.06 227.22 228.28 229.27 236.82 242.43 251.54 270.73 309.07 415.87 2 .007 .008 .009 .01 .02 .03 .05 .1 .2 .4												217
250 225.09 226.25 227.31 228.30 235.83 241.41 250.50 269.62 307.82 414.20 2 251 226.06 227.22 228.28 229.27 236.82 242.43 251.54 270.73 309.07 415.87 2 .007 .008 .009 .01 .02 .03 .05 .1 .2 .4	- 1										,	248
251 226.06 227.22 228.28 229.27 2.36.82 242.43 251.54 270.73 309.07 415.87 2 .007 .008 .009 .01 .02 .03 .05 .1 .2 .4 DDODAR I I LIAD DE DEDDIJA												250
.007 .008 .009 .01 .02 .03 .05 .1 .2 .4	- 1										j	251
DDODAR I LIDAD DE PERDIDA												
PROBARILIDAD DE PERDIDA (E)		.007	.008					.05	.1	.2	.4	
\ \.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\	n			PROBA	RILIDAD	DE PERDI	DA 🕡	E١				-11
				and the second s			1,					

ANEXO 3

Recomendaciones Q.543 y Q.544 de la CCITT

Aplicación

61 CAC

Generalmente, cuando una Administración ha introducido o proyecta introducir controles automáticos de tión de red, se considera apropiado dotar a las centrales digitales de tránsito y a las grandes centrales digitales abinadas locales/de tránsito con las máximas posibilidades de CAC. Las centrales digitales locales y las trales combinadas locales/de tránsito más pequeñas de tales redes sólo se dotan de posibilidades de recepción totol CAC en recepción.

6.2 *RSC*

Se considera apropiado dotar a las centrales digitales de tránsito digital y a las grandes centrales digitales abinadas locales/de tránsito con control de gestión de red de reserva selectiva de circuitos de dos umbrales. La nión de red de centrales digitales locales y centrales combinadas más pequeñas locales/de tránsito podrían poner, idealmente, de control de gestión de red de reserva selectiva de circuito de dos umbrales o de un solo abral. La decisión de proporcionar o no tal control en esas centrales se deja a discreción de las Administra-

63 DDA

Se considera apropiado dotar a las centrales digitales de tránsito y a las grandes centrales digitales abinadas locales/de tránsito (facultativamente, con un SO de gestión de red) de máximas posibilidades DDA, centrales digitales locales/de tránsito sólo deben dotarse de mol manual DDA y de control DDA (basado en el estado DDA), es decir, las posibilidades indicadas en los 5.4.1, c) y 5.5.4.2 de la presente Recomendación. También se recomienda agregar a las posibilidades CAC y de rva selectiva de circuitos modificaciones de control basadas en el estado DDA.

6.4 BTE

Se considera apropiado que se disponga BTE en las centrales digitales de tránsito y en las grandes trales digitales combinadas locales/de tránsito en aplicaciones nacionales. Puede ser particularmente útil en rentral que no puede dotarse de posibilidades CAC, como son las centrales locales.

Orden de aplicación de los controles

El orden en el que deberán aplicarse los diversos controles de gestión de red en la central debe ser objeto ulerior estudio.

mendación Q.543

OBJETIVOS DE DISEÑO PARA LA CALIDAD DE FUNCIONAMIENTO DE LAS CENTRALES DIGITALES

Generalidades

Esta Recomendación se aplica a las centrales digitales locales, de tránsito, combinadas e internacionales telefonia en la redes digitales integradas (RDI) y en las redes mixtas (analógicas/digitales), así como a las ales locales, de tránsito, combinadas e internacionales de una red digital de servicios integrados (RDSI).

El campo de aplicación de esta Recomendación se define con más detalle en la Recomendación Q.500. En lo a la aplicación en una RDSI, se tratan los tipos I, II, III y IV de conexiones de tránsito y conexiones de al definidos en la Recomendación Q.522 (véanse las notas I y 2). Otros tipos de conexión y variantes de estas tipos ser realizables en la RDSI, y serán objeto de ulterior estudio.

Estos objetivos de diseño de calidad de funcionamiento son aplicables a todos los diseños de central e todos los puntos del ciclo de crecimiento hasta el tamaño máximo. Estas cargas de referencia y los objetivos d comportamiento y disponibilidad pueden ser utilizados por los fabricantes al diseñar sistemas de commutación digital y por las Administraciones o EPER al evaluar un diseño de central específico o para comparar diferente diseños de central de posible aplicación en la realización prevista por la Administración.

Estos objetivos de diseño de calidad de funcionamiento se refieren a las posibilidades técnicas del diseño de la central. Se destinan a asegurar que las centrales que operan en su realización prevista serán capaces de proporcionar los grados de servicio de red recomendados en las Recomendaciones de la serie E.500, y ofrecerán un nivel de calidad de funcionamiento acorde con los objetivos de comportamiento de la red en su conjunto definidos en las Recomendaciones de la serie I. Los parámetros son objetivos de diseño que no deben se interpretados como requisitos de grado de servicio o de funcionamiento. En explotación real, las centrales estarán construidas de manera que proporcionen grados de servicio adecuados lo más económicamente posible y los requisitos de calidad de funcionamiento (retardos, bloqueo, etc.) de la central en explotación diferirán de los valores recomendados para estos objetivos de diseño de comportamiento.

2 Objetivos de diseño de funcionamiento

2.1 Cargas de referencia

Las cargas de referencia indicadas son condiciones de carga de tráfico bajo las cuales deben cumplirse los objetivos de diseño para el comportamiento de las centrales establecidos en los § 2.2 a 2.7. A fin de disponer de una caracterización detallada de las cargas de referencia de la central, deben tenerse en cuenta los servicios suplementarios y otros tipos de servicios. Las Administraciones pueden especificar hipotéticos modelos de centrales para utilizarlos al calcular la carga de las centrales. Estos modelos deben caracterizar los conjuntos de parámetros de tráfico y servicios que se consideran típicos en la aplicación prevista de la central, y deben tener en cuenta la mezcla de tráfico (de origen-interno, de origen-salida, de llegada-terminación, de tránsito, abandonado, ocupado, sin respuesta, etc.), la mezcla de clases de servicio (residenciales, comercial, centralitas automáticas privadas (CAP), de previo pago, etc.), los tipos y volumen de los servicios suplementarios (llamada en espera, transferencia de llamada, etc.) así como cualquier otra característica conveniente. Con la información anterior, debe poder construirse la central para producir el modelo. También debe poderse determinar el tamaño máximo de la central mediante los cálculos citados en el § 2.1.4.

La carga de referencia A se destina a representar el nivel medio superior normal de actividad que las Administraciones desearían prever en las líneas de abonado y circuitos intercentrales. La carga de referencia B se destina a representar un nivel más elevado, superior a los niveles de actividad planeada normal. (Las Recomendaciones E.500 y E.520 recomiendan que el dimensionamiento normal de los circuitos internacionales en explotación automática y semiautomática se base en una determinada probabilidad de pérdida durante la hora cargada media y el tráfico medio estimado en los «cinco días más cargados» que se establece en la Recomendación E.500.)

- Nota 1 Por el momento las siguientes definiciones y valores correspondientes sólo son aplicables a las conexiones con conmutación de circuitos a 64 kbit/s, es decir, incluidas las conexiones de tránsito y conexiones de los tipos I, II y III opción a). Otras velocidades y el modo transferencia requieren ulterior estudio.
- Nota 2 La aplicabilidad de este documento a conexiones con origen o terminación en CAP debe ser objeto de ulterior estudio.

2.1.1 Carga de referencia en los circuitos intercentrales entrantes

- a) Carga de referencia A
 - 0,7 erlangs de ocupación media en todos los circuitos entrantes

Tentativas de llamada/hora = $\frac{0.7 \times \text{número de circuitos entrantes}}{\text{tiempo medio de ocupación en horas}}$

Nota – Las tentativas de llamada ineficaces deben incluirse en las tentativas de llamada de referencia.

- b) Carga de referencia B
 - 0,8 erlangs de ocupación media en todos los circuitos entrantes

con 1,2 veces el número de tentativas de llamada/hora para la carga de referencia A.

Carga de referencia en las líneas de abonado (tráfico de origen)

Las características del tráfico ofrecido a las centrales locales presentan grandes variaciones que dependen as proporciones de las líneas de abonados residenciales y comerciales que son servidas. En el cuadro 1/Q.543 jente se indican características de carga del modelo de referencia de cuatro posibles aplicaciones para centrales les. También exponen casos RDSI representativos que se tratan a continuación. Las Administraciones pueden por utilizar otros modelos y/o cargas más adecuadas para la aplicación prevista.

En el texto que sigue, las líneas RDSI se denominarán líneas digitales y las líneas no RDSI líneas lógicas.

111 Carga de referencia A

CUADRO 1/0.543

Modelo de tráfico en las líneas de abonado

a) Líneas de abonado no RDSI con o sin servicios suplementarios

Tipo de central	Intensidad de tráfico media	Número medio de TLLHC
W	0,03 E	1,2
X	0,06 E	2,4
Y	0,10 E	4
Z	0,17 E	6,8

b) Acceso básico de abonado digital RDSI 2B+D

Los siguientes modelos y parámetros del tráfico RDSI son provisionales y podrán ser revisados en los los de estudios venideros.

:Tipo de línea	Intensidad media de tráfico por canal B	Número medio de TLLHC por canal B	Número medio de paquetes por segundo por canal D
Υ'	0,05 E	2	0,05 (señalización) + paquetes de datos ^{a)}
Y"	0,10 E	4	0,1 (señalización) + paquetes de datos ^{a)}
Υ'''	0,55 E	2	0,05 (señalízación) 4 paquetes de datos ^{a)}

IIIC Tentativa de llamada en la hora cargada.

Aun cuando sólo se dispone de datos de tráfico RDSI limitados, la especificación de las cargas de referencia correspondientes sigue siendo un factor importante en la evaluación de la central. Para el caso de las líneas de abonado digitales en la parte b) del cuadro 1/Q.543, el acceso se supone que utiliza acceso básico con canales 2B+D. Los canales B están disponibles para llamadas con conmutación de circuitos, en tanto que el canal D se utiliza para transportar información de señalización o puede utilizarse para transportar datos de teleacción y datos con conmutación de paquetes. Se supone que las lineas digitales suelen transportar un tráfico comparable con el de las líneas analógicas de fuerte tráfico designadas como caso Y en la parte a) del cuadro 1/Q.543. Se incluyen en el cuadro tres casos que representan posibles aplicaciones RDSI:

Caso Y' Tráfico por par de canales B comparable a 1 línea del caso Y.

Caso Y" Tráfico por par de canales B comparable a 2 líneas del caso Y.

Caso Y''' Tráfico por par de canales B comparable a 1 línea del caso Y más cierto tráfico muy elevado (por ejemplo, tráfico de datos con commutación de circuitos a 1 erlang).

Cada una de estas líneas digitales transporta también los correspondientes servicios de señalización y datos RDSI por el canal D. Para las tasas de llamadas con commutación de circuitos especificadas, la señalización RDSI se espera que contribuya con menos de 0,05 paquetes por segundo por línea de abouado digital. Las velocidades de paquetes para servicios de datos RDSI por canal D pueden ser muy superiores a este valor, pero se dejan para estudio ulterior.

2.1.2.2 Carga de referencia B

La carga de referencia B se define como un aumento de tráfico de 4.25%, en erlangs, sobre la carga A, con +35% en TLLHC (tentativas de llamada en la hora cargada).

Los niveles de la carga de referencia B para la actividad del canal D deben ser objeto de ulterior estudio.

2.1.3 Repercusión de los servicios suplementarios

Si la central del modelo de referencia supone que se hace un uso considerable de servicios suplementarios, el funcionamiento de la central puede ser gravemente afectado, especialmente en diseños de central en los que la capacidad del procesador puede resultar un elemento limitador. Los retardos de funcionamiento recomendados en los § 2.3 y 2.4 pueden alargarse considerablemente para una determinada carga de llamadas en tales circunstancias. La Administración que defina el modelo de referencia debe estimar las proporciones de llamadas que utilizan diversos servicios suplementarios para que pueda calcularse una repercusión media en el procesador con relación a una llamada telefónica básica (por ejemplo, para ello podría aplicarse una metodología similar a la indicada en el anexo A a esta Recomendación).

2.1.4 Capacidad de la central

Para evaluar y comparar los diseños de central, una Administración deseará normalmente conocer el máximo tamaño posible de la central para la realización prevista. Aunque varios valores puedan limitar la capacidad de la central, la capacidad de procesamiento será con frecuencia el factor limitador. El máximo número posible de líneas y circuitos atendidos por una central, pero cumpliendo los objetivos de calidad de funcionamiento, dependerá de la proporción, volúmenes y tipos de tráfico y de los servicios previstos en esa realización.

En los anexos a esta Recomendación se indican dos métodos para determinar la capacidad de procesamiento de la central:

- El anexo A da un ejemplo de la metodología para calcular la capacidad de procesamiento de una central utilizando información proporcionada por el fabricante y estimaciones de la proporción y carga de tráfico proporcionadas por la Administración.
- El anexo B expone un ejemplo de la metodología para estimar la capacidad de una central haciendo previsiones a partir de mediciones realizadas en una central en funcionamiento en el laboratorio o en condiciones reales. La central de prueba debe ser representativa de la proporción y carga de tráfico y servicios previstos para su tamaño máximo.

2.1.5 Carga de referencia en otros accesos e interfaces

Por el momento, otras aplicaciones, tales como n \times 64 kbit/s en el interfaz de velocidad primaria, se dejan para ulterior estudio.

2.2 tentativas de llamada tratadas inadecuadamente

2.2.1 Definición

Las tentativas de llamada tratadas inadecuadamente son tentativas que resultan bloqueadas (conforme se define en las Recomendaciones de la serie E.600) o excesivamente retardadas dentro de la central. Los «retardos excesivos» son los que son superiores a tres veces los valores correspondientes a la «probabilidad 0,95 de no exceder» recomendados en los cuadros de los § 2.3 y 2.4 (véase la nota).

Para llamadas de origen y de tránsito, este parámetro tentativa de llamada tratada inadecuadamente se aplica cuando existe al menos una safida apropiada disponible.

Nota — Provisionalmente, el retardo de petición de llamada no se incluye en este parámetro. Se requiere ulterior estudio.

22.2 Probabilidad de que existan tentativas de llamada tratadas inadecuadamente

Se recomiendan los valores del cuadro 2/Q.543.

CUADRO 2/Q.543

Tipo de conexión	Carga de referencia A	Carga de referencia B
Interna	10 -2	4 × 10 ²
De origen	5 × 10 ⁻³	3×10^{-2}
De destino	5 × 10 ⁻¹	3×10^{-2}
De trânsito	10 - 3	10:-2

Probabilidad de retardo - Entorno no RDS1 o mixto (RDS1 - no RDS1)

El entorno no RDSI se compone de líneas de abonado analógicas y/o circuitos que utilizan señalización asociada al canal o por canal común.

. — El entorno RDSI se compone de fineas y/o circuitos de abonado (RDSI) digitales que utilizan señalizaón por canal común.

Este punto define los parámetros de retardo relativos a un entorno no RDSI o mixto (RDSI - no RDSI).

Cuando un parâmetro de retardo, en esta sección, es también aplicable al puro entorno RDSI, se incluye m referencia a la parte apropiada del § 2.4 (probabilidad de retardo — entorno RDSI).

En los siguientes parâmetros de retardo se entiende que la temporización de retardo comienza cuando la mal es «reconocible», es decir, tras la conclusión de la verificación de la señal, cuando es aplicable. No incluye is retardos dependientes de la línea para el reconocimiento de las condiciones de tensión inducida o transitorios delínea.

Por término «valor medio» se entiende el valor esperado en sentido probabilístico.

Cuando se reciben varios mensajes en la central procedentes de un sistema de señalización de línea de honado digital (por ejemplo se reciben de una configuración multiusuario varios mensajes de aviso), el mensaje se acepta para el tratamiento de la llamada es el considerado al determinar el comienzo de un determinado mervalo de retardo.

Cuando interviene la señalización por canal común (incluida señalización intercentrales y señalización de línea de abonado), se utilizan los términos «recibido del» y «pasado al» sistema de señalización. En el sistema de señalización N.º 7 del CCITT, se designa esto como el instante en que se intercambia la información entre el enlace de datos de señalización (capa 1) y las funciones de enlace de señalización (capa 2). En la señalización de línea de abonado digital se designa como el instante en que se intercambia la información por medio de primitivas entre la capa de enlace de datos (capa 2) y la capa de red (capa 3). Por consigniente, los intervalos de tiempo excluyen los citados tiempos de capa 1 (sistema de señalización N.º 7 del CCITT) y de capa 2 (canal D). Sin embargo, incluyen los retardos de espera en cola que se producen en ausencia de perturbaciones, pero no los posibles retardos de espera en cola causados por la retransmisión.

2.3.1 retardo de respuesta entrante - conexiones de tráfico de tránsito y terminal entrante

El retardo de respuesta entrante es una característica que es aplicable cuando se utiliza señalización asociada al canal. Se define como el intervalo desde el instante en que una señal de toma de circuito entrante es reconocible hasta que la central devuelve una señal de invitación a marcar.

Se recomiendan los valores del cuadro 3/Q.543.

CUADRO 3/Q.543

	Carga de referencia A	Carga de referencia B
Valor medio	< 300 ms	≤ 400 ms
Probabilidad 0,95 de no exceder	400 ms	600 ms

2.3.2 retardo de petición de llamada de central local - conexiones de tráfico saliente de origen e interno

2.3.2.1 En las LÍNEAS DE ABONADO ANALÓGICAS, el retardo de petición de llamada se define como el intervalo desde el instante en que la condición descolgada se puede reconocer en el intervalo de línea de abonado de la central hasta que ésta empieza a aplicar a la línea el tono de marcar. El intervalo del retardo de petición de llamada se supone que corresponde al periodo, al comienzo de una tentativa de llamada, durante el cual la central no puede recibir ninguna información de dirección de llamada procedente del abonado.

Se recomiendan los valores del cuadro 4/Q.543.

CUADRO 4/Q.543

	Carga de referencia A	Carga de referencia B
Valor medio	≤ 400 ms	< 800 ms
Probabilidad 0,95 de no exceder	600 ms	1000 ms

Nota — Los valores anteriores se entiende que son aplicables cuando se utiliza un tono continuo, es decir, sin cadencia, y no incluyen los retardos causados por funciones tales como prueba de líneas, que pueden utilizarse en las redes nacionales.

2.3.2.2 En las LÍNEAS DE ABONADO DIGITALES que utilizan envio superpuesto, el retardo de petición de llamada se define como el intervalo desde el instante en que se ha recibido el mensaje ESTABLECIMIENTO procedente del sistema de señalización de abonado hasta que se devuelve al sistema de señalización del abonado el mensaje ACUSE DE ESTABLECIMIENTO.

Nota — En este caso, este parámetro es equivalente al retardo de acuse de recibo de señalización de usuario (véase el § 2.4.1).

)

Se recomiendan los valores del cuadro 5/Q.543.

CUADRO 5/Q.543

	Carga de referencia A	Carga de referencia B
Valor medio	< 400 ms	≤ 800 ms
Probabilidad 0,95 de no exceder	600 ms	1000 ms

2.3.2.3 En las LÍNEAS DE ABONADO DIGITALES que utilizan envío en bloque, el retardo de petición de llamada se define como el intervalo desde el instante en que se recibe el mensaje ESTABLECIMIENTO procedente del sistema de señalización de abonado hasta que se devuelve al sistema de señalización de abonado el mensaje llamada en curso.

Se recomiendan los valores del cuadro 6/Q.543.

CUADRO 6/Q.543

	Carga de referencia A	Carga de referencia B
Valor medio	< 600 ms	≤ 900 ms
Probabilidad 0,95 de no exceder	800 ms	1200 ms

2.3.3 retardo de establecimiento de la llamada en la central - conexiones de tráfico de tránsito y saliente de origen

El retardo de establecimiento de la llamada en la central se define como el intervalo desde el instante en que la información necesaria para la selección del circuito saliente está disponible para su procesamiento en la central, o se recibe del sistema de señalización la información de señalización necesaria para el establecimiento de la llamada, hasta el instante en que se envía a la central siguiente la señal de toma o se ha pasado al sistema de señalización la correspondiente información de señalización.

2.3.3.1 Retardo de establecimiento de la llamada en la central para conexiones de tránsito

2.3.3.1.1 En las conexiones de tráfico de tránsito en que intervengan circuitos que utilizan señalización asociada al canal o una combinación de señalización asociada al canal y señalización por canal común, se recomiendan los valores del cuadro 7/Q.543.

CUADRO 7/Q.543

	Carga de referencia A	Carga de referencia B
Valor medio	< 250 ms	< 400 ms
Probabilidad 0,95 de no exceder	300 ms	600 ms

- 2.3.3.1.2 En las conexiones de tráfico de tránsito entre circuitos que utilicen exclusivamente el sistema de señalización N.º 7 del CCITT, deben aplicarse los requisitos de la correspondiente Recomendación sobre el sistema de señalización, por ejemplo, las Recomendaciones Q.725 y Q.766 para el valor T_{cu} (caso de un mensaje intensivo de procesamiento).
- 2.3.3.2 Retardo de establecimiento de la llamada en la central para conexiones de tráfico saliente de origen
- 2.3.3.2.1 En las conexiones de tráfico saliente originadas desde LÍNEAS DE ABONADO ANALÓGICAS, se recomiendan los valores del cuadro 8/Q.543.

CUADRO 8/Q.543

	Carga de referencia A	Carga de referencia B
Valor medio	< 300 ms	< 500 ms
Probabilidad 0,95 de no exceder	400 ms	800 ms

2.3.3.2.2 En las conexiones de tráfico saliente originadas desde LÍNEAS DE ABONADO DIGITALES que utilicen envío superpuesto, el intervalo de tiempo comienza cuando el mensaje INFORMACIÓN recibido contiene una «indicación de envío completo» o cuando está completa la información necesaria para el stablecimiento de la llamada.

Se recomiendan los valores del cuadro 9/Q.543.

CUADRO 9/Q.543

Carga de referencia A Carga de referencia B

Valor medio < 400 ms < 600 ms

Probabilidad 0,95 de no exceder 600 ms 1000 ms

3.3.2.3 En las conexiones de tráfico saliente con origen en LÍNEAS DE ABONADOS DIGITALES que llicen envío en bloque, el intervalo de tiempo comienza cuando se ha recibido del sistema de señalización de sonado digital el mensaje ESTABLECIMIENTO.

Se recomiendan los valores del cuadro 10/Q.543.

CUADRO 10/Q.543

	Carga de referencia A	Carga de referencia B	
Valor medio	< 600 ms	≤ 800 ms	
Probabilidad 0,95 de no exceder	800 ms	1200 ms	

l retardo de transconexión

El retardo de transconexión se define como el intervalo entre el instante en que la información necesaria rel establecimiento de una transconexión está disponible para su procesamiento en una central, o el instante que se recibe del sistema de señalización la información de señalización necesaria para el establecimiento de transconexión y el instante en que el trayecto de transmisión adecuado está disponible para cursar tráfico e las terminaciones entrante y saliente de la central.

El retardo de transconexión de una central no incluye una verificación de continuidad intercentrales, si e, pero sí una verificación intracentral, de producivse una durante el intervalo definido.

Cuando la transconexión se establece durante el establecimiento de la llamada, se aplican los valores mendados de retardo de establecimiento de la llamada en la central. Cuando la transconexión en una central, e establece durante el intervalo de establecimiento de la llamada en la central, el retardo de transconexión e entonces contribuir al retardo de establecimiento de la llamada por la red.

2.3.4.1 Conexiones de tráfico de tránsito y saliente de origen

Se recomiendan los valores indicados en el cuadro 11/0.543.

CUADRO 11/Q.543

	Carga de 1	Carga de referencia A		Carga de referencia B	
	Sin equipo auxiliar	Con equipo auxiliar	Sin equipo auxiliar	Con equipo auxiliar	
Valor medio	≤ 250 ms	< 350 ms	≤ 400 ms	< 500 ms	
Probabilidad 0,95 de no exceder	300 ms	500 ms	600 ms	800 ms	

Los requisitos de las conexiones multiintervalo necesitan ulterior estudio.

2.3.4.2 Conexiones de tráfico internas y terminales

En las conexiones que terminen en LÍNEAS DE ABONADO ANALÓGICAS, el retardo de transconexión es el intervalo entre el instante en que la condición de descolgado del abonado llamado es reconocible en el interfaz de línea de abonado de la central y el instante en que la transconexión se establece y queda disponible para cursar tráfico o cuando la central devuelve la señal consiguiente.

Los máximos valores aplicables a este parámetro figuran en el § 2.3.5 con los del retardo de envío de indicación de llamada entrante.

En las conexiones que terminan en LÍNEAS DE ABONADO DIGITALES, el retardo de transconexión es el intervalo entre el instante en que se recibe el mensaje de CONEXIÓN del sistema de señalización y el instante en que la transconexión se establece y queda disponible para cursar tráfico, lo que se indica pasando a los respectivos sistemas de señalización los mensajes de RESPUESTA y de ACUSE DE CONEXIÓN.

Se recomiendan los valores indicados en el cuadro 12/Q.543.

7

CUADRO 12/Q.543

	Carga de referencia Λ	Carga de referencia B
Valor medio	< 250 ms	≼ 400 ms
Probabilidad 0,95 de no exceder	300 ms	600 ms

23.5.1 En las llamadas que terminen en LÍNEAS DE ABONADO ANALÓGICAS, el retardo de envío de indicación de llamada entrante se define como el intervalo entre el instante en que la última cifra del número llamado está disponible para su procesamiento en la central y el instante en que la central aplica la señal de llamada a la línea del abonado llamado.

Se recomienda que la suma de los valores del retardo de envío de señal de llamada y del retardo de transconexión para conexiones de tráfico interno y de destino no exceda los valores indicados en el cuadro 13/Q.543. Además, se recomienda que el valor del retardo de envío de la indicación de llamada entrante no exceda el 90% de estos valores ni que el valor del retardo de transconexión exceda el 35% de los mismos.

CUADRO 13/Q.543

2

	Carga de referencia A	Carga de referencia B
Valor medio	≤ 650 ms	≤ 1000 ms
Probabilidad 0,95 de no exceder	900 ms	1600 ms

Nota — Estos valores presuponen que se ha aplicado llamada «inmediata», y no incluyen retardos causados por funciones tales como pruebas de linea, que pueden utilizarse en redes nacionales.

23.5.2 En las llamadas que terminen en LÍNEAS DE ABONADO DIGITALES, el retardo de envío de indicación de llamada entrante se define como el intervalo entre el instante en que se recibe la información necesaria del sistema de señalización y el instante en que se pasa el mensaje ESTABLECIMIENTO al sistema de señalización de la línea digital del abonado llamado.

En el caso de envío superpuesto en el sistema de señalización entrante, se recomiendan los valores del madro 14/Q.543.

CUADRO 14/Q.543

	Carga de referencia A	Carga de referencia B
Valor medio	≤ 400 ms	≤ 600 ms
Probabilidad 0,95 de no exceder	600 ms	1000 ms

En el caso de envio en bloque en el sistema de señalización entrante, se recomiendan los valores del cuadro 15/Q.543.

CUADRO 15/Q.543

,	Carga de referencia A	Carga de referencia B
Valor medio	≤ 600 ms	< 8(N) ms
Probabilidad 0,95 de no exceder	800 ms	1200 ms

2.3.6 Retardo de envío de aviso - conexiones de tráfico de destino e interno

2.3.6.1 retardo de envío de aviso para tráfico de destino

2.3.6.1.1 En las llamadas que terminen en LÍNEAS DE ABONADO ANALÓGICAS, el retardo de envio de aviso se define como el intervalo entre el instante en que está disponible la última cifra para su procesamiento en la central hasta el instante en que se devuelve el tono de llamada hacia el usuario llamante.

Se recomiendan los valores del cuadro 13/Q.543.

2.3.6.1.2 En las llamadas que terminen en LÍNEAS DE ABONADO DIGITALES, el retardo de envío de aviso se define como el intervalo desde el instante en que se recibé del sistema de señalización de línea de abonado digital en mensaje AVISO hasta el instante en que se pasa el sistema de señalización intercentrales un mensaje DIRECCIÓN COMPLETA o se devuelve al usuario llamante el tono de llamada.

Se recomiendan los valores del cuadro 16/Q.543.

CUADRO 16/Q.543

	Carga de referencia A	Carga de referencia B
Valor medio	< 200 ms	≤ 350 ms
Probabilidad 0,95 de no exceder	400 ms	700 ms

2.3.6.2 retardo de envío de aviso para tráfico interno

2.3.6.2.1 En las llamadas que terminen en LÍNEAS DE ABONADO ANALÓGICAS, el retardo de envío de aviso se define como el intervalo desde el instante en que la información de señalización está disponible para su procesamiento en la central hasta que se aplica un tono de llamada a una linea de abonado llamante ANALÓGICA o se envía un mensaje AVISO al sistema de señalización de linea de abonado llamante DIGITAL.

En las llamadas desde LÍNEAS DE ABONADO ANALÓGICAS a LÍNEAS DE ABONADO ANALÓGICAS, se recomiendan los valores del cuadro 13/Q.543.

En las llamadas desde LÍNEAS DE ABONADO DIGITALES a LÍNEAS DE ABONADO ANALÓ-GICAS, se recomiendan los valores del cuadro 17/Q.543.

CUADRO 17/Q.543

	Carga de referencia A	Carga de referencia B
Valor medio	≤ 300 ms	≤ 500 ms
Probabilidad 0,95 de no exceder	500 ms	800 ms

)

2.3.6.2.2 En las llamadas internas que terminen en LÍNEAS DE ABONADO DIGITALES y procedentes de LÍNEAS DE ABONADO ANALÓGICAS, el retardo de envío de aviso se define como el intervalo desde el instante en que se recibe del sistema de señalización de la línea del abonado llamado un mensaje de aviso hasta que se aplica a la línea de abonado llamante un tono de llamada.

Se recomiendan los valores del cuadro 13/Q.543.

El retardo de envío de aviso en las llamadas internas entre LÍNEAS DE ABONADO DIGITALES se trata en el cuadro 28/Q.543.

2.3.7 retardo de supresión de la señal de llamada - conexiones de tráfico internas y terminales

El retardo de supresión de la señal de llamada es una característica que sólo es aplicable a las llamadas que terminen en LÍNEAS DE ABONADO ANALÓGICAS. Se define como el intervalo entre el instante en que es reconocible la condición de descolgado del abonado llamado en el interfaz de línea de abonado y el instante en que se suprime la señal de llamada en el mismo interfaz.

Se recomiendan los valores del cuadro 18/Q.543.

CUADRO 18/Q.543

	Carga de referencia A	Carga de referencia B
Valor medio	≤ 100 ms	≤ 150 ms
Probabilidad 0,95 de no exceder	150 ms	200 ms

23.8 retardo de liberación de la llamada en la central

El retardo de liberación de la llamada en la central es el intervalo entre el instante en que la última información necesaria para la liberación de una conexión está disponible para su procesamiento en la central y el instante en que deja de estar disponible la transconexión de la red de commutación en la central para cursar tráfico y se envía, en su caso, la señal de desconexión a la central siguiente. Este intervalo no incluye el tiempo necesario para detectar la señal de liberación, que puede ser importante durante ciertas condiciones de fallo, por ejemplo, en caso de fallos del sistema de transmisión.

2.3.8.1 En las conexiones de tráfico de tránsito en que intervengan circuitos que utilizan señalización asociada al canal y por canal común, se recomiendan los valores del cuadro 19/Q.543.

CUADRO 19/Q.543

	Carga de referencia A	Carga de referencia B
Valor medio	≤ 250 ms	≤ 400 ms
Probabilidad 0,95 de no exceder	300 ms	700 nts

En las conexiones de tráfico de tránsito en que intervengan circuitos que utilizan exclusivamente el sistema de señalización N.º 7 del CCITT, se recomiendan los valores del cuadro 35/Q.543.

2.3.8.2 En las conexiones de tráfico de origen, terminal e interno, se recomiendan los valores del cuadro 20/Q.543.

CUADRO 20/Q.543

	Carga de referencia A	Carga de referencia B
Valor medio	≤ 250 ms	< 400 ms
Probabilidad 0,95 de no exceder	300 ins	700 ms

2.3.9 retardo de transferencia de señalización en la central - distinta de la señal de respuesta

El retardo de transferencia de señalización en la central es el tiempo que tarda la central en transferir una señal, sin que se requiera ninguna otra acción. Se define como el intervalo entre el instante en que la señal entrante es reconocible, o se recibe información de señalización del sistema de señalización, y el instante en que se transmite la correspondiente señal de salida, o se pasa la información de señalización apropiada al sistema de señalización.

2.3.9.1 En las conexiones de tráfico de tránsito en las que intervengan circuitos que utilizan señalización asociada al canal o una mezcla de señalización asociada al canal y por canal común, se recomiendan los valores del cuadro 21/Q.543.

CUADRO 21/Q.543

	Carga de referencia A	Carga de referencia B
Valor medio	≤ 100 ms	≤ 150 ms
Probabilidad 0,95 de no exceder	150 ms	300 ms

2

En las conexiones de tráfico de tránsito entre circuitos que utilicen exclusivamente el sistema de señalización N.º 7 del CCITT, deben aplicarse los requisitos de la correspondiente Recomendación sobre el sistema de señalización, por ejemplo, la Recomendación Q.725 y Q.766 para el valor T_{cu} (caso de un mensaje simple).

2.3.9.2 Se deja para ulterior estudio el retardo de transferencia de señalización en la central para tráfico de origen, de destino o interno que involucre una mezcla de LÍNEAS DE ABONADO ANALÓGICAS y DIGITALES. El retardo de transferencia de la señal en la central entre sistemas de señalización de ABONADO DIGITAL o entre sistemas de señalización de LÍNEA DE ABONADO DIGITAL y el sistema de señalización N.º 7 del CCITT se trata en el § 2.4.2.

2.3.10 retardo de envío de respuesta

El retardo de envío de respuesta se define como el intervalo entre el instante en que se recibe la indicación de respuesta en la central y el instante en que la central pasa la indicación de respuesta hacia el usuario llamante. El objetivo de este parámetro es reducir al inínimo la posible interrupción del trayecto de transmisión en un intervalo de tiempo apreciable durante la respuesta inicial del abonado llamado.

2.3.10.1 En las conexiones en que intervengan circuitos que utilizan señalización asociada al canal o una combinación de señalización asociada al canal y por canal común, se recomiendan los valores del cuadro 22/Q.543.

CUADRO 22/Q.543

	Carga de referencia A	Carga de referencia B
Valor medio	≤ 100 ms	< 150 ms
Probabilidad 0,95 de no exceder	150 ms	300 ms

Se recomiendan parámetros más rigurosos cuando pueda encontrarse señalización dentro de banda en la parte nacional de una conexión establecida. Los valores recomendados se indican en el cuadro 23/Q.543.

CUADRO 23/Q.543

	Carga de referencia Λ	Carga de referencia B
Valor medio	≤ 50 ms	≤ 90 ms
Probabilidad 0,95 de no exceder	100 ms	180 ms

En las conexiones de tráfico de tránsito en las que intervienen circuitos que utilicen exclusivamente el sistema de señalización N.º 7 del CCITT, deben aplicarse los requisitos de la correspondiente Recomendación sobre el sistema de señalización, por ejemplo, las Recomendaciones Q.725 y Q.766 para el valor T_{cu} (caso de un mensaje simple).

2.3.10.2 En las conexiones en una central de destino, el retardo de envío de respuesta de la central se define como el intervalo desde el instante en que es reconocible la condición descolgado en el interfaz de LÍNEA DE ABONADO ANALÓGICA en una llamada entrante o se recibe de un sistema de señalización de LÍNEA DE ABONADO DIGITAL un mensaje CONEXIÓN y el instante en que se devuelve al usuario llamante una indicación de respuesta.

Se recomiendan los valores del cuadro 24/Q.543.

CUADRO 24/Q.543

	Carga de referencia A	Carga de referencia B
Valor medio	< 250 ms	≤ 350 ms
Probabilidad 0,95 de no exceder	300 ms	700 ms

2.3.10.3 En las conexiones en una central de origen, el retardo de envio de respuesta de la central se define como el intervalo desde el instante en que se recibe la indicación de respuesta del sistema de señalización del circuito saliente, o en el caso de una llamada interna, desde la línea del abonado llamado, hasta el instante en que se envía la indicación de respuesta al usuario llamante. En el caso de una llamada procedente de una LÍNEA DE ABONADO DIGITAL, la indicación de respuesta es un mensaje CONEXIÓN que se envía al sistema de señalización de LÍNEA DE ABONADO DIGITAL. Si la llamada procede de una LÍNEA DE ABONADO ANALÓGICA, la indicación de respuesta puede no enviarse.

Se recomiendan los valores del cuadro 25/Q.543.

CUADRO 25/Q.543

	Carga de referencia A	Carga de referencia B
Valor medio	≤ 250 ms	< 400 ms
Probabilidad 0,95 de no exceder	300 ms	700 ms

En caso de operación RDSI en que intervengan exclusivamente LÍNEAS DE ABONADO DIGITALES y disistema de señalización N.º 7 del CCITT, se recomiendan los valores del cuadro 28/Q.543.

2.3.11 temporización para el comienzo de la tasación (Hamadas con conmutación de circuitos)

Cuando se requiera la temporización para la tasación en la central donde se realice esta función, se iniciará tras el recibo de una indicación de RESPUESTA desde una central a la que se haya conectado o del usuario llamado. El comienzo de la temporización para la tasación debe producirse dentro de los intervalos recomendados en el cuadro 26/Q.543.

CUADRO 26/Q.543

1

	Carga de referencia A	Carga de referencia B
Valor medio	< 100 ms	≤ 175 ms
Probabilidad 0,95 de no exceder	200 ms	350 ms

Probabilidad de retardo — Entorno RDSI

Las siguientes notas se aplican a los parámetros de retardo incluidos en este punto:

- 1) Por término «valor medio» se entiende el valor esperado en sentido probabilístico.
- 2) Cuando se reciben varios mensajes en la central procedentes de un sistema de señalización de línea de abonado digital (por ejemplo, se reciben de una configuración multiusuario varios mensajes de aviso), el mensaje que se acepta para el tratamiento de la llamada es el considerado al determinar el comienzo de un determinado intervalo de retardo.
- 3) Se utilizan los términos «recibido del» y «pasado al» sistema de señalización. En el sistema de señalización N.º 7 del CCITT, se designa como el instante en que se intercambia la información entre el enlace de datos de señalización (capa 1) y las funciones de enlace de señalización (capa 2). En la señalización de línea de abonado digital, se designa como el instante en que se intercambia la información por medio de primitivas entre la capa de enlace de datos (capa 2) y la capa de red (capa 3). Por consiguiente, los intervalos de tiempo excluyen los citados tiempos de la capa 1 (sistema de señalización N.º 7 del CCITT) y de la capa 2 (canal D). Sin embargo, incluyen los retardos de espera que se producen en ausencia de perturbaciones, pero no los retardos de espera causados por retransmisiones.

2.4.1 retardo de acuse de recibo de señalización de usuario

El retardo de acuse de recibo de señalización de usuario es el intervalo entre el instante en que se la recibido del sistema de señalización de la línea de abonado un mensaje de señalización de usuario hasta el instante en que la central devuelve un mensaje de acuse de recibo de dicho mensaje al sistema de señalización de la línea del usuario. Ejemplos de dichos mensajes son ACUSE DE ESTABLECIMIENTO a ESTABLECIMIENTO, ACUSE DE CONEXIÓN a CONEXIÓN y ACUSE DE LIBERACIÓN a LIBERACIÓN.

Se recomiendan los valores del cuadro 27/Q.543.

CUADRO 27/Q.543

	Carga de referencia A	Carga de referencia B
Valor medio	< 400 ms	< 800 ms
Probabilidad 0,95 de no exceder	600 ms	1000 ms

2.4.2 retardo de transferencia de señalización

El retardo de transferencia de señalización en la central es el tiempo que tarda la central en transferir un mensaje desde un sistema de señalización a otro con un número mínimo de acciones de central necesarias o ninguna. El intervalo se mide desde el instante en que se recibe un mensaje de un sistema de señalización hasta el momento en que se pasa el mensaje correspondiente a otro sistema de señalización. Ejemplos de mensajes son AVISO a DIRECCIÓN COMPLETA, DIRECCIÓN COMPLETA a DIRECCIÓN COMPLETA, CONEXIÓN a RESPUESTA, LIBERACIÓN a DESCONEXIÓN, etc.

Se recomiendan los valores del cuadro 28/Q.543 para las conexiones de origen y de destino.

CUADRO 28/Q.543

	Carga de referencia A	Carga de referencia B
Valor medio	< 200 ms	≤ 350 ms
Probabilidad 0,95 de no exceder	400 ms	700 ms

En las conexiones de tránsito, deben aplicarse los requisitos de la correspondiente Recomendación sobre el sistema de señalización, por ejemplo, las Recomendaciones Q.725 y Q.766 para el valor T_{cu} (caso de un mensaje simple).

Nota — La señalización de usuario a usuario puede implicar funciones adicionales en las centrales, por ejemplo, tarificación, control de flujo, etc. Los requisitos de retardo en la transferencia de señalización de usuario a usuario y la repercusión de la señalización de usuario a usuario sobre el comportamiento de la central será objeto de ulterior estudio.

2.4.3 retardo de establecimiento de llamada

El retardo de establecimiento de llamada se define como el intervalo entre el instante en que se recibe del sistema de señalización entrante la información de señalización necesaria para la selección del circuito de salida hasta el instante en que se pasa al sistema de señalización saliente la correspondiente información de señalización.

- 2.4.3.1 En las conexiones de origen con conmutación de circuitos a 64 kbit/s [tipos I, II y III opción a)].
 - Si se utiliza envío superpuesto, el intervalo comienza cuando el mensaje de información recibido contiene una indicación de «envío completo» o está completa la información de dirección para el establecimiento de llamada.
 - ii) Si se utiliza envio en bloque, el intervalo de tiempo comienza cuando se ha recibido del sistema de señalización de usuario el mensaje ESTABLECIMIENTO.

En las tentativas de llamada que utilizan envio superpuesto, se recomiendan los valores del cuadro 29/Q.543.

CUADRO 29/Q.543

	Carga de referencia A	Carga de referencia B
Valor medio	< 400 ms	< 600 ms
Probabilidad 0,95 de no exceder	600 ms	1000 ins

En las tentativas de llamada que utilizan emisión en bloque, se recomiendan los valores del cuadro 30/Q.543.

CUADRO 30/Q.543

	Carga de referencia A	Carga de referencia B
Valor medio	< 600 ms	≤ 800 ms
Probabilidad 0,95 de no exceder	800 ms	1200 ms

2.4.3.2 Tentativas de llamada de origen a servicios suplementarios:

Para ulterior estudio.

2.4.3.3 En las conexiones de tránsito con conmutación de circuitos a 64 kbit/s entre circuitos que utilicen el sistema de señalización N.º 7 del CCITT, deben aplicarse los requisitos de las Recomendaciones Q.725 y Q.766 del CCITT para el valor T_{cu} (caso de un mensaje intensivo de procesamiento).

2.4.4 retardo de transconexión

2.4.4.1 En las conexiones con commutación de circuitos a 64 kbit/s de tráfico de tránsito y originado saliente, el retardo de transconexión se define como el intervalo entre el instante en que se recibe del sistema de señalización entrante la información de señalización entrante la información de señalización necesaria para establecer una conexión a través de la central y el instante en que el trayecto de transmisión está disponible para cursar tráfico entre las terminaciones entrante y saliente de la central.

Normalmente, se realizará la conmutación, al mismo tiempo, en ambos sentidos de transmisión. Sin embargo, en una central de origen, en ciertas llamadas, puede haber necesidad de efectuar la conmutación en dos etapas, en un sentido primero y después en el otro. En este caso, mensajes de señalización diferentes iniciarán las dos etapas de transconexión, aplicándose el retardo recomendado en cada etapa de la transconexión.

Se recomiendan los valores del cuadro 31/Q.543.

CUADRO 31/Q.543

	Carga de referencia A		Carga de referencia B	
	Sin funciones auxiliares	Con funciones auxiliares	Sin funciones auxiliares	Con funciones auxiliares
Valor medio	≤ 250 ms	≤ 350 ms	≤ 400 ms	≤ 500 ms
Probabilidad 0,95 de no exceder	300 ms	500 ms	600 ms	800 ms

2.4.4.2 En el caso de conexiones con conmutación de circuitos a 64 kbit/s de tráfico interno y de destino, la transconexión se define como el intervalo entre el instante en que se recibe, del sistema de señalización de línea llamada el mensaje CONEXIÓN hasta el instante en que la transconexión está establecida y queda disponible para cursar tráfico, y se han pasado a los sistemas de señalización apropiados los mensajes RESPUESTA y ACUSE DE CONEXIÓN.

Se recomiendan los valores del cuadro 32/Q.543.

CUADRO 32/Q.543

	Carga de referencia Λ	Carga de referencia B
Valor medio	< 250 ms	< 400 ms
Probabilidad 0,95 de no exceder	300 ms	600 ins

2.4.5 retardo de envío de indicación de llamada entrante — (para conexiones de tráfico de destino e interno)

El retardo de envío de indicación de llamada entrante se define como el intervalo desde el instante en que se recibe del sistema de señalización la información de señalización necesaria hasta el instante en que se pasa al sistema de señalización de la línea del abonado llamado el mensaje ESTABLECIMIENTO.

The state of the s

En el caso de envío superpuesto en el sistema de señalización entrante, se recomiendan los valores del cuadro 33/Q.543.

CUADRO 33/Q.543

	Carga de referencia A	Carga de referencia B
Valor medio	< 400 ms	< 600 ms
Probabilidad 0,95 de no exceder	600 ms	1000 ms

En el caso de envío en bloque en el sistema de señalización entrante, se recomiendan los valores del cuadro 34/Q.543.

CUADRO 34/Q.543

	Carga de referencia A	Carga de referencia B
Valor medio	< 600 ms	< 800 ms
Probabilidad 0,95 de no exceder	800 ms	1200 ms

2.4.6 retardo de libearación de conexión

El retardo de liberación de conexión se define como el intervalo desde el instante en que se recibe de un sistema de señalización el mensaje DESCONECTAR o LIBERAR hasta el instante en que la conexión ya no está disponible para su utilización en la llamada (y está disponible para usar en otra llamada) y se pasa un mensaje LIBERACIÓN o DESCONEXIÓN correspondiente al otro sistema de señalización que interviene en la conexión.

Se recomiendan los valores del cuadro 35/Q.543.

CUADRO 35/Q.543

	Carga de referencia A	Carga de referencia B
Valor medio	≤ 250 ms	≤ 400 ms
Probabilidad 0,95 de no exceder	300 ms	700 ms

2.4.7 Retardo de liberación de llamada

La desconexión y la liberación de llamada se realizarán normalmente al mismo tiempo. Sin embargo, en ciertas llamadas puede ser necesario que una central conserve las referencias de la llamada después de producirse la desconexión hasta que se reciba un mensaje de liberación. La central puede entonces desechar la información de referencia de la llamada. El correspondiente mensaje LIBERACIÓN debe pasarse a los otros sistemas de señalización que intervengan en el intervalo destinado al retardo de transferencia de la señalización (véase el § 2.4.2).

2.4.8 Temporización para el comienzo de la tasación (llamadas con conmutación de circuitos)

Cuando sea necesario, la temporización para la tasación en la central en la que se realiza esta función, deberá comenzar tras la recepción de una indicación RESPUESTA de la central de destino o del usuario llamado. El comienzo de la temporización para la tasación debe producirse dentro de los intervalos recomendados en el cuadro 36/Q.543.

CUADRO 36/Q.543

	Carga de referencia A	Carga de referencia B
Valor medio	< 100 ms	≤ 175 ms
Probabilidad 0,95 de no exceder	200 ms	350 ms

2.5 Objetivos de comportamiento del procedimiento de las llamadas

2.5.1 Conexiones conmutadas a 64 kbit/s

2.5.1.1 Liberación prematura

La probabilidad de que el mal funcionamiento de la central provoque la liberación prematura de una conexión establecida, en cualquier intervalo de un minuto, debe ser:

$$P \leq 2 \times 10^{-5}$$

2.5.1.2 Fallo de liberación

La probabilidad de que el mal funcionamiento de la central impida la liberación requerida de una conexión debe ser:

$$P \leq 2 \times 10^{-5}$$

2.5.1.3 Tasación o contabilidad incorrectas

La probabilidad de que una tentativa de llamada sea objeto de tratamiento incorrecto de tasación o de contabilidad, debido a un error de funcionamiento de la central, debe ser:

2.5,1.4 Encaminamiento incorrecto

La probabilidad de encaminamiento incorrecto de una tentativa de llamada tras recibir la central una dirección válida debe ser:

$$P \le 10^{-4}$$

2.5.1.5 Ausencia de tono

La probabilidad de que una tentativa de llamada no encuentre tono, tras recibir la central una dirección válida, debe ser:

$$P \leq 10^{-4}$$

2.5.1.6 Otros fallos

2.5.2

2.6

16.3

La probabilidad de que una central provoque el fallo de una llamada por cualquier otra razón no dentificada específicamente debe ser:

$$P \le 10^{-4}$$

Conexiones semipermanentes a 64 kbit/s

Han de estudiarse más a fondo teniendo en cuenta:

- la necesidad de reconocer una interrupción;
- la probabilidad de una interrupción;
- los requisitos para el restablecimiento de una conexión interrumpida;
- cualesquiera otros requisitos específicos.

2.5.3 Conexiones commutadas a n × 64 kbit/s

Se recomendarán sus objetivos cuando se definan servicios concretos.

2.5.4 Conexiones semipermanentes a $n \times 64$ kbit/s

Se recomendarán sus objetivos cuando se definan servicios concretos.

-

Calidad de transmisión

1.6.1 Conexiones conmutadas a 64 kbit/s

La probabilidad de que se establezca una conexión a través de la central con una calidad de transmisión naceptable será:

P (transmisión inaceptable) $\leq 10^{-5}$

Se considera que la calidad de transmisión de una conexión a través de la central es inaceptable cuando la asa de errores de bit excede la condición de alarma.

Nota – La condición de alarma todavía no se lia definido.

16.2 Conexiones semipermanentes a 64 kbit/s

Se recomendarán sus objetivos.

Conexiones conmutadas a n × 64 kbit/s

Se recomendarán sus objetivos cuando se definan servicios concretos.

\(\begin{aligned} \begin{aligned} \begin{align

Se recomendarán sus objetivos cuando se definan servicios concretos.

2.4.7 Retardo de liberación de llamada

La desconexión y la liberación de llamada se realizarán normalmente al mismo tiempo. Sin embargo, en ciertas llamadas puede ser necesario que una central conserve las referencias de la llamada después de producirse la desconexión hasta que se reciba un mensaje de liberación. La central puede entonces desechar la información de reserencia de la llamada. El correspondiente mensaje LIBERACIÓN debe pasarse a los otros sistemas de señalización que intervengan en el intervalo destinado al retardo de transferencia de la señalización (véase el § 2.4.2).

2.4.8 Temporización para el comienzo de la tasación (llamadas con conmutación de circuitos)

Cuando sea necesario, la temporización para la tasación en la central en la que se realiza esta función, deberá comenzar tras la recepción de una indicación RESPUESTA de la central de destino o del usuario llamado. El comienzo de la temporización para la tasación debe producirse dentro de los intervalos recomendados en el cuadro 36/O.543.

CUADRO 36/Q.543

	Carga de referencia A	Carga de referencia B
Valor medio	< 100 ms	≤ 175 ms
Probabilidad 0,95 de no exceder	200 ms	350 ms

2.5 Objetivos de comportamiento del procedimiento de las llamadas

2.5.1 Conexiones conmutadas a 64 kbit/s

2.5.1.1 Liberación prematura

La probabilidad de que el mal funcionamiento de la central provoque la liberación prematura de una conexión establecida, en cualquier intervalo de un minuto, debe ser:

$$P \leq 2 \times 10^{-5}$$

2.5.1.2 Fallo de liberación

La probabilidad de que el mal funcionamiento de la central impida la liberación requerida de una conexión debe ser:

$$P \leq 2 \times 10^{-5}$$

2.5.1.3 Tasación o contabilidad incorrectas

La probabilidad de que una tentativa de llamada sea objeto de tratamiento incorrecto de tasación o de contabilidad, debido a un error de funcionamiento de la central, debe ser:

$$P \le 10^{-4}$$

2.5.1.4 Encaminamiento incorrecto

La probabilidad de encaminamiento incorrecto de una tentativa de llamada tras recibir la central una dirección válida debe ser:

$$P \le 10^{-4}$$

2.5.1.5 Ausencia de tono

La probabilidad de que una tentativa de llamada no encuentre tono, tras recibir la central una dirección válida, debe ser:

$$P \le 10^{-4}$$

2.5.1.6 Otros fallos

2.5.2

6.3

La probabilidad de que una central provoque el fallo de una llamada por cualquier otra razón no identificada específicamente debe ser:

$$P \le 10^{-4}$$

Conexiones semipermanentes a 64 kbit/s

Han de estudiarse más a fondo teniendo en cuenta:

- la necesidad de reconocer una interrupción;
- la probabilidad de una interrupción;
- los requisitos para el restablecimiento de una conexión interrumpida;
- cualesquiera otros requisitos específicos.

1.5.3 Conexiones conmutadas a $n \times 64$ kbit/s

Se recomendarán sus objetivos cuando se definan servicios concretos.

1.5.4 Conexiones semipermanentes a $n \times 64$ kbit/s

Se recomendarán sus objetivos cuando se definan servicios concretos.

.6 Calidad de transmisión

.6.1 Conexiones conmutadas a 64 kbit/s

La probabilidad de que se establezca una conexión a través de la central con una calidad de transmisión aceptable será:

P (transmisión inaceptable) $\leq 10^{-5}$

Se considera que la calidad de transmisión de una conexión a través de la central es inaceptable cuando la sa de errores de bit excede la condición de alarma.

Nota - La condición de alarma todavía no se ha definido.

6.2 Conexiones semipermanentes a 64 kbit/s

Se recomendarán sus objetivos.

Conexiones conmutadas a n × 64 kbit/s

Se recomendarán sus objetivos cuando se definan servicios concretos.

6.4 Conexiones semipermanentes a $n \times 64$ kbit/s

Se recomendarán sus objetivos cuando se definan servicios concretos.

Tasa de deslizamientos

1 Condiciones normales

.3

La tasa de deslizamientos en condiciones normales se trata en la Recomendación Q.541.

Pérdida temporal de control de temporización

El caso de una pérdida temporal de control corresponde a la «operación sujetar» (holdover operation) inida e indicada en la Recomendación G.812. La tasa de deslizamientos admisible corresponderá al EIT ativo máximo indicado también allí.

Condiciones anormales a la entrada de la central

La tasa de deslizamientos en caso de condiciones anormales (grandes desviaciones de fase, etc.) a la rada de la central es objeto de estudio adicional teniendo en cuenta los requisitos establecidos en la comendación G.823.

Funcionamiento de la central en condiciones de sobrecarga

Este punto se aplica a las centrales digitales que operan en periodos en que el número de tentativas de mada presentadas a la central sobrepasan su capacidad de procesamiento de llamadas durante un periodo portante de tiempo, con exclusión de las crestas momentáneas. En estas condiciones se dice que la central aciona en una condición de sobrecarga.

Esta Recomendación identifica los requisitos de calidad de funcionamiento de las centrales durante las precargas y de los mecanismos de sobrecarga de la central. Las funciones de gestión de red que debe apporcionar una central se definen en la Recomendación Q.542, § 5.

Explicación de los términos utilizados en la definición de los parámetros de sobrecarga

- carga: Número total de tentativas de llamada presentadas a una central en un intervalo de tiempo dado (es decir, carga ofrecida);
- sobrecarga: Parte de la carga total ofrecida a una central que sobrepasa la capacidad de procesamiento de tráfico proyectada de la central. La sobrecarga suele expresarse como un porcentaje de la capacidad proyectada.
- caudal: Número de tentativas de llamada procesadas con éxito por una central en la unidad de tiempo;
- capacidad proyectada: Carga media ofrecida en la que la central empieza a cumplir todos los requisitos de grado de servicio usados por la Administración para proyectar la central.

Procesamiento de llamadas en condiciones de sobrecarga

Una central debe seguir procesando una carga especificada cuando las tentativas de llamada ofrecidas prepasen su capacidad disponible de procesamiento de llamadas. El número de llamadas tratadas durante una indición de sobrecarga no debe ser considerablemente inferior que la capacidad proyectada de la central para una ido de servicio (GDS) especificado, como se señala en el § 3.7.

Dos requisitos básicos de funcionamiento de la central durante las sobrecargas son:

- mantener un caudal adecuado de la central en periodos de sobrecarga sostenida;
- reaccionar con suficiente rapidez a las crestas de carga y al comienzo repentino de la sobrecarga.

Al aumentar la carga ofrecida por encima de la capacidad de tentativas proyectadas de la central, el adal o la carga de tentativas cursada puede presentar la forma de la curva A de la figura 1/Q.543, es decir, el adal del procesador puede reducirse radicalmente si la carga ofrecida aumenta bastante por encima de la carga oyectada. La curva B de la figura 1/Q.543 representa el caudal máximo, y en ella el caudal permanece en el de diseño nominal en condiciones de sobrecarga. Deben incluirse mecanismos apropiados de protección ntra sobrecargas en el diseño global de la central de manera que la característica de caudal del procesador en ndiciones de sobrecarga se asemeje a la curva C de la figura 1/Q.543.

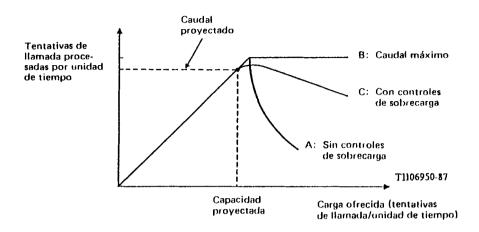


FIGURA 1/Q.543

Característica de caudal

Capacidad proyectada de la central

3.3

La capacidad proyectada de la central es la carga máxima que la central puede tratar cuando funciona en el modo «normal» (es decir, realizando todas las funciones operativas y administrativas necesarias) a la vez que satisface los requisitos de comportamientos especificados en el § 2 o los especificados por la Administración. No es necesariamente el punto de caudal máximo (véase la figura 1/Q.543).

Los controles de sobrecarga, cuando se aplican, pueden tener un efecto considerable en la capacidad de la central. La característica de caudal de sobrecarga debe especificarse con arreglo a la capacidad proyectada de la central cuando operan los controles de sobrecarga.

2

3.4 Estrategia de control de sobrecargas

Una estrategia eficaz de control de sobrecarga impedirá la rápida disminución de las tentativas de llamada procesadas al aumentar la sobrecarga (véase la curva A de la figura 1/Q.543); la disminución relativamente gradual cuando se aplican controles de sobrecarga (véase la curva C de la figura 1/Q.543) se debe al aumento de procesamiento general al ejercer los controles de sobrecarga.

La sobrecarga se define como el nivel de tentativas de llamada ofrecidas a la central en exceso de su capacidad proyectada. Por ejemplo, cuando se ofrecen a la central tentativas de llamada a razón de un 10% más de su capacidad proyectada, se dice que la central tiene una sobrecarga del 10%.

El caudal de la central para una sobrecarga superior en un Y% a la carga de capacidad proyectada debe ser al menos un X% del caudal a la capacidad proyectada. Este concepto se muestra en la figura 2/Q.543, que presenta la región de característica de caudal inaceptables. Es aceptable toda curva de caudal por encima del nivel X% hasta que alcanza el punto de una sobrecarga de Y%. Los valores recomendados son Y = 50% y X = 90%. Más allá del Y%, la central debe continuar procesando llamadas de manera aceptable.

Mientras el nivel de sobrecarga no sobrepase el Y% por encima de la capacidad proyectada de la central, el caudal de ésta no debe ser inferior al X% de la capacidad proyectada, como se representa en la figura 2/Q.543.

Las medidas que pueden arrojar datos que sirvan de base para calcular X e Y se especifican en el § 3.8.

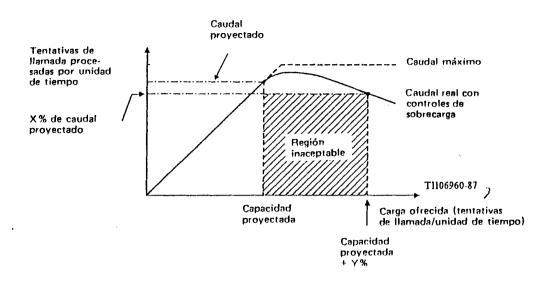


FIGURA 2/Q.543

Característica de caudal con control de sobrecarga activado

Detección de sobrecargas

3.5

La central debe contar con medios adecuados para detectar condiciones de sobrecarga.

El inicio de un estado de sobrecarga debe reconocerlo la lógica de procesamiento de la central, que a su vez invocará estrategias que eviten una grave degradación de la carga de caudal. Durante la sobrecarga, aumentarán tanto los retardos de servicio como de procesamiento, y se excederán normalmente los objetivos de comportamiento indicados para la carga B de referencia.

Las indicaciones de sobrecarga pueden darlas, por ejemplo: una medición continua de la ocupación de los recursos utilizados para el tratamiento de llamadas en periodos cortos (por ejemplo, de algunos segundos); comprobación de las longitudes de las colas en los diversos procesos de tratamiento de llamadas, etc. Deben darse al personal de la administración indicaciones para la activación de controles de sobrecarga.

3.6 Protección contra sobrecargas

Los métodos de control interno de sobrecargas utilizados en una central dependen de la organización técnica concreta del sistema de commutación, y no están sujetos a Recomendaciones del CCITT. Los controles de sobrecarga utilizados conjuntamente con centrales adyacentes se tratan en el § 5 de la Recomendación Q.542, «objetivos de diseño de gestión de red».

A fin de reducir la carga en la central causada por llamadas que no pueden procesarse durante la sobrecarga, puede ser necesario desalentar ulteriores tentativas de los usuarios durante esta situación. Los métodos empleados para lograr esta reducción no deben aumentar considerablemente la carga de los procesadores de la central, como por ejemplo, el encaminamiento de llamadas a anuncios grabados.

Los controles de sobrecarga, cuando se apliquen, deben eliminarse lo antes posible cuando se reduce el grado de sobrecarga, dada la necesidad de evitar comportamientos oscilatorios que podrían prolongar el periodo de degradación de servicio.

Como orientación para ofrecer servicio en condiciones de sobrecarga, son aplicables los siguientes principios generales:

- Dar preferencia al procesamiento de las llamadas de destino.
- Dar preferencia a las líneas de clase prioritaria, a las llamadas a destinos prioritarios sobre la base del análisis de dígitos y a las llamadas entrantes con indicaciones de prioridad en, por ejemplo, el mensaje inicial de dirección de una llamada que utilice el sistema de señalización N.º 7 del CCITT, si se ha invocado una prerrogativa esencial de protección del servicio.

- Diferir algunas o todas las actividades que no sean esenciales para el tratamiento del tráfico ofrecido, por ejemplo, algunos procesos de administración y mantenimiento en la central. (No obstante, deben siempre preservarse las comunicaciones hombre-máquina esenciales para tareas operacionales prioritarias. En particular, debe concederse gran prioridad a los terminales de gestión de red y a las funciones asociadas con los interfaces con sistemas de soporte de gestión de red, dado que las acciones de gestión de red pueden desempeñar un papel importante en la reducción de la sobrecarga de la central.)
- Mantener las funciones normales de tasación y supervisión, y las conexiones establecidas hasta la recepción de la señal de liberación apropiada.
- Asignar prioridades a medidas de central específicas, de manera que las medidas de baja prioridad cesen a un nivel de congestión predeterminado. Las medidas de mayor prioridad pueden interrumpirse a un nivel mayor de congestión, o realizarse continuamente, según su importancia para las funciones de tratamiento de las llamadas.
- Dar preferencia a las llamadas que ya se están procesando, antes de aceptar otras mevas.

3.7 Grado de servicio durante la sobrecarga

En general, el grado de servicio global apreciado por los abonados se deteriorará cuando la central sufra graves condiciones de sobrecarga y se hayan invocado mecanismos de protección contra la sobrecarga. Este fenómeno pude deberse a que los procedimientos de protección contra la sobrecarga pueden requerir que la central no acepte todas las tentativas de llamada ofrecidas.

Las llamadas aceptadas pueden o no recibir un grado de servicio igual al recibido por las llamadas de la carga B de referencia del § 2. En términos de comportamiento de sobrecarga de la central, es suficiente que las llamadas se acepten de manera que el caudal sea máximo.

3.8 Comprobación del funcionamiento durante la activación de controles de sobrecarga

Las medidas operacionales en la central deben ser suficientes para determinar el número de tentativas de llamadas aceptadas por la central, y el número que se completa con éxito, desde el punto de vista de la central. Debe poder disponerse de medidas separadas para contar el número de llamadas rechazadas por la central durante la sobrecarga, para que pueda estimarse la carga total.

Una tentativa de llamada aceptada se define como una tentativa de llamada que es aceptada para su procesamiento por la central. Esto no necesariamente significa que una tentativa de llamada aceptada se completará o recibirá un grado de servicio aceptable.

La tasa de llamadas completadas puede variar estadísticamente con el tiempo, según el proceso concreto de aceptación de tentativas de llamada invocado por los controles de sobrecarga. Por tanto, la tasa de llamadas completadas estimada a partir de medidas operacionales deberá tomarse en un periodo de tiempo suficientemente largo para verificar su conformidad con el requisito de caudal del X%.

ANEXO A

(a la Recomendación Q.543)

2

Un ejemplo de la metodología para calcular la capacidad de procesamiento de llamadas de una central digital teniendo en cuenta los servicios RDSI, incluido el tratamiento de paquetes de datos

A.1 Generalidades

Por lo general las centrales tendrán que tratar muchos tipos de llamadas, por cuanto proporcionan servicio asico de telefonía, servicios suplementarios de telefonía, servicio portador de la RDSI y servicios suplementarios de la RDSI. Se utilizará una variedad de tipos de señalización en las líneas de abonado y para cursar las llamadas or circuitos intercentrales. Se han recomendado objetivos de calidad de funcionamiento, que son aplicables en oda la gama de tamaños y cargas de la central hasta el límite de capacidad «proyectada» de la central a su amaño máximo para la combinación de tipos de llamada tratados y de tipos de señalización utilizados en la entral. Diferentes combinaciones de tipos de llamada y de tipos de señalización requieren diferentes volúmenes e capacidad de procesamiento. Por tanto, el máximo número de líneas de abonado que pueden atenderse y el máximo número de llamadas que pueden tratarse serán diferentes para cada combinación en el mismo sistema de sonmutación. Este anexo da un ejemplo de metodología que hace posible calcular la capacidad de procesamiento e una central para cualquier combinación de tipos de llamada y de señalización que puedan encontrarse en su calización. Naturalmente, deben también tenerse en cuenta, al determinar la capacidad de la central, otros esibles factores limitadores tales como configuración del soporte físico admisible, capacidad de memoria, etc.

El método para calcular la capacidad de procesamiento de llamadas aquí ilustrado es para un particular diseño de central de procesador múltiple, que se muestra en la figura A-1/Q.543. Sin embargo, los principios utilizados pueden aplicarse a cualquier diseño de central controlado por procesador para cualquier combinación de servicios, tráfico y señalización tratadas por la central. Este método exige que los fabricantes proporcionen información y datos sobre sus diseños de centrales en términos que las Administraciones puedan utilizar en las fórmulas obtenidas más adelante y que las Administraciones efectúen medidas y/o estimaciones para prever los volúmenes de tráfico esperados y la combinación de servicios, tipos de llamada y señalización.

Es importante examinar la arquitectura de la central para entender cómo se procesan las llamadas a fin de reconocer posibles elementos limitadores. Por ejemplo, las llamadas RDS1 que exigen conmutación de paquetes tendrán dos elementos separados a considerar: el establecimiento de llamadas y el tratamiento de paquetes. El establecimiento de llamadas de paquetes puede tratarse en la misma forma que el establecimiento de llamadas con conmutación de circuitos considerando estos tipos de tentativas de llamada en y con los orígenes y disposiciones de las tentativas de llamada con conmutación de circuitos. Sin embargo, el tratamiento de paquetes posterior requiere una capacidad de procesamiento continua, ocasionalmente durante largos periodos de tiempo, puede tratarse por procesadores distintos de los que intervienen en el establecimiento de la llamada, y por tanto, debe tratarse separadamente.

La figura A-1/Q.543 de este anexo muestra un diagrama de bloques de un diseño de central con varios procesadores, que se utiliza como ejemplo en este anexo.

- a) Las unidades de interfaz 1 a n proporcionan interfaces a las lineas de usuario, circuitos intercentrales, terminales de señalización y cualesquiera otros interfaces con entidades exterigres a la central. Una cierta cantidad de procesamiento de llamadas (por ejemplo, señalización de tratamiento hacia y desde centrales o circuitos intercentrales, análisis de dígitos, etc.) puede ser realizado por procesadores en estas unidades de interfaz. En este ejemplo, cada unidad de interfaz contiene también su propio procesador de tratamiento de paquetes (representado como TP). Las unidades de interfaz comunican con una unidad central de procesamiento por lineas interprocesadores de alta capacidad.
- b) La unidad central de procesamiento dirige el procesamiento de llamadas por la central. Recibe información sobre las tentativas de llamada procedentes de las unidades de interfaz, determina cómo deben tratarse y encaminarse y las dirige a su destino mediante las unidades de interfaz apropiadas. Con respecto a las llamadas de conmutación de paquetes, se supone que la uidad central de procesamiento participa sólo en el establecimiento y liberación de la llamada y que el tratamiento ulterior de los paquetes no requiere una capacidad significativa de procesamiento por parte de la UCP. La UCP también realiza otras tareas relacionadas con la llamada y administrativas, tales como el mantenimiento de la información de tasación, y efectúa otras funciones de administración y explotación para la central.

Para determinar la capacidad de este diseño, es necesario saber cuántas unidades de interfaz pueden conectarse a una central. A continuación, es necesario calcular la capacidad de procesamiento de llamadas de la unidad central de procesamiento y la capacidad de las unidades de interfaz para determinar cuál es el factor limitador. En algunos diseños, otros elementos, tales como un procesador de utilidades o la red de conmutación, pueden limitar el tamaño de la central. Por tanto, es necesario entender el diseño de la central y hacer luego cálculos apropiados en los que intervengan los elementos limitadores para determinar la capacidad de procesamiento de la central para la combinación de tráfico prevista.

A.2 Definiciones

A.2.1 unidad de capacidad

Capacidad de procesamiento necesaria de una central (o unidad de procesamiento) para procesar una tentativa de llamada compuesta por la porción de origen más la porción de destino (o disposición).

A.2.2 semiunidad

Capacidad de procesamiento necesaria para procesar ya sea la porción de origen o la porción de destino (disposición) de una tentativa de llamada tratada por una unidad de procesamiento o una central, por ejemplo una unidad de interfaz en el tipo de central ilustrado.

A.2.3 tipo de origen

Tipo de tentativa de llamada que llega a la central (por ejemplo, llamada telefónica procedente de una clase de linea designada para el servicio telefónico básico, o de una línea designada para servicios suplementarios, o servicios RDSI básicos, o servicios RDSI suplementarios, o llamada que llega a la central por un circuito intercentrales entrante, etc.)

A.2.4 (lpo de destino (disposición)

Tipo de tentativa de llamada que sale o es dispuesta por la central (por ejemplo, tentativa de llamada destinada a una clase de línea designada para servicio telefónico básico, o a una línea con servicios suplementarios o RDSI asignados, o a un circuito intercentrales saliente, etc.).

A.2.5 unidad de capacidad de referencia

Capacidad de procesamiento necesaria para procesar un par de semiunidades arbitrariamente seleccionado, una de las cuales es una tentativa del tipo de origen y la otra una tentativa del tipo de destino (disposición) que es normalmente un par que se cree que intervendrá en una porción significativa de la carga de tráfico de la central. La unidad de capacidad de referencia utiliza un estándar contra el que se comparan unidades de capacidad para otros tipos de tentativas. (Se sugiere que se utilice, como unidad de capacidad de referencia, una tentativa de llamada telefónica «local» saliente de origen procedente de una línea telefónica básica y de la que se dispone encaminándola por un circuito intercentrales que utiliza el sistema de señalización N.º 7 del CCITT.)

A.2.6 semiunidad de capacidad de referencia

Capacidad de procesamiento necesaria en una unidad de interfaz para procesar una semiunidad seleccionada arbitrariamente, ya sea del tipo de origen o del de destino (disposición) (normalmente, una que interviene en una porción significativa del tráfico que tratan las unidades de interfaz, por ejemplo, una tentativa de llamada telefónica de origen procedente de una línea telefónica básica). La semiunidad de capacidad de referencia se utiliza como norma con la que se comparan las semiunidades de otros tipos de tentativas. Cuando son necesarios cálculos separados para diferentes unidades de interfaz, lo que ocurre cuando diferentes combinaciones de clases de líneas y de tráfico son atendidas por diferentes unidades de interfaz, debe utilizarse para todos los cálculos la misma semillamada de referencia.

A.2.7 unidad de capacidad de referencia de la unidad central de procesamiento (UCP)

Capacidad de procesamiento necesaria de la UCP para procesar las porciones de tentativas asociadas con una unidad de capacidad de referencia. A la unidad de capacidad de referencia se le asigna un valor unidad. Así, si F es la fracción de unidad de capacidad de referencia necesaria para procesar la porción origen y F' es la fracción de unidad de capacidad de referencia necesaria para procesar la porción de destino (disposición), la suma es igual a la unidad (F + F' = 1).

A.2.8 unidad de capacidad de referencia de la unidad de interfaz (UI)

Capacidad de procesamiento necesaria en la UI, para el tipo de central que se muestra, para tratar adecuadamente una semiunidad de capacidad de referencia.

A.2.9 factor de ponderación

Relación entre la capacidad relativa de procesamiento necesaria para tratar cualquier porción, de origen o de destino (disposición), de cualquier tipo de tentativa, y la capacidad necesaria del mismo procesador para realizar las mismas funciones para la unidad de capacidad de referencia (porciones de origen y de destino (disposición)). Por ejemplo, si una unidad de capacidad de referencia requiere 1000 ciclos de procesador en la UCP y la porción de origen de una tentativa de llamada que llega a la central requiere 430 ciclos en la UCP, el factor de ponderación (UCP) para ese tipo de tentativa de origen sería 0,43.

Análogamente, en la unidad de interfaz, un factor de ponderación es la relación entre la capacidad de procesamiento de la UI necesaria para tratar un determinado tipo de semiunidad y la capacidad de procesamiento de la UI necesaria para tratar una semiunidad de capacidad de referencia. Así, si una UI requiere 600 ciclos para tratar una semiunidad de capacidad de referencia, y otro tipo de llamada que llega a la central a través de la UI requiere 725 ciclos de procesador de UI, el factor de ponderación (UI) para esa tentativa de media unidad sería 1,21.

Para poder realizar los cómputos de capacidad, es necesario contar con todos los factores de ponderación de todos los tipos de unidades y semiunidades de capacidad de origen y de destino (disposición) para cada unidad de procesamiento de la central. Estos factores de ponderación deben ser indicados por el fabricante.

A.2.10 capacidad de procesamiento de unidad (y semiunidad) de referencia (CPR)

Es la información de capacidad que debe proporcionar el fabricante. La CPR es el número total de unidades (y semiunidades) de capacidad de referencia que pueden ser tratadas por un procesador (o unidad de procesamiento) en una hora en una central, satisfaciendo los criterios de comportamiento especificados por la administración y al mismo tiempo realizando todas las tareas de explotación y administrativas necesarias para la operación normal de la central. Por tanto, la CPR es la capacidad de procesamiento disponible para el

tratamiento de llamadas. Es la capacidad instalada total disminuida en una cantidad requerida para tareas generales, administrativas, etc. Además de tener en cuenta las tareas administrativas fijas, puede ser también conveniente «reservar» un cierto porcentaje de capacidad para las adiciones de ampliación del programa que serían necesarias en una central de tamaño máximo a fin de añadir nuevas características en el futuro. Para poder realizar una comparación realista de los diferentes sistemas, es necesario que la Administración sepa por los fabricantes las funciones de tratamiento de no-llamadas que se tienen en cuenta y el porcentaje de capacidad que se reserva para las ampliaciones.

A.3 Cálculo de la capacidad de procesamiento (para una unidad central de procesamiento)

La información de capacidad y los factores de ponderación son facilitados por el fabricante.

Sea F_i = factor de ponderación para el tipo de origen i,

 F'_{i} = factor de ponderación para el tipo j de destino (disposición).

La combinación de tráfico en la UCP es especificada por la Administración.

Sea P_i = fracción de tentativas de llamada que se espera sean de tipo de origen i;

 P'_{i} = fracción de tentativas de llamada que se espera sean de tipo j de destino (disposición),

donde

$$\sum_{i=1}^{n} P_i = 1,0$$

y

$$\sum_{j=1}^{m} P_j' = 1,0$$

Si R es la tasa de tentativas de llamada expresada en términos de tentativas de llamadas en la hora cargada, entonces la cantidad de capacidad de procesamiento necesario para las unidades del trabajo del tipo de origen correspondiente al tráfico del i-ésimo tipo de tentativas de llamada es:

$$P_iF_iR$$

Análogamente, la capacidad de procesamiento necesaria para el trabajo de disposición correspondiente al tráfico del j-ésimo tipo de llamada es:

$$P'_{i}F'_{i}R$$

Para satisfacer los objetivos nominales de calidad de funcionamiento de la Recomendación Q.543, la capacidad de procesamiento de referencia (CPR) debe ser igual o superior al trabajo de origen total más el trabajo de destino (disposición) total:

$$CPR(UCP) \geqslant \left[\sum_{i=1}^{n} P_i F_i + \sum_{j=1}^{m} P'_j F'_j\right] R$$

de donde

$$R \text{ (máxima)} = \frac{CPR \text{ (UCP)}}{\sum_{i=1}^{n} P_i F_i + \sum_{j=1}^{m} P'_j F'_j}$$

A.4 Cálculo de la capacidad de procesamiento (para una unidad de interfaz)

La información de capacidad y los factores de ponderación son facilitados por el fabricante.

Sea H_i = factor de ponderación para el tipo de semillamada i.

La combinación de tráfico en la unidad de interfaz es especificada por la Administración.

Sea P_i = fracción de tentativas de llamada que han de ser semillamadas de tipo i

$$\sum_{i=1}^{n} P_i = 1,0$$

Si R es la tasa de tentativa en términos de semiunidades de la hora cargada, la capacidad de rocesamiento necesaria para las semiunidades del i-ésimo tipo es:

$$P_iH_iR$$

Para satisfacer los criterios de calidad de funcionamiento, la capacidad de procesamiento de referencia CPR) debe ser igual o superior a la carga de procesamiento total:

$$CPR(UI) \geqslant \left[\sum_{i=1}^{n} P_i H_i\right] R$$

ie donde

londe

$$R \text{ (máxima)} = \frac{CPR (UI)}{\sum_{i=1}^{n} P_i H_i}$$

A.5 Ejemplos de cálculos de la capacidad de procesamiento-

A.5.1 Para una unidad central de procesamiento

Datos:

Información facilitada por el fabricante:

- CPR = 100 000 unidades de capacidad de referencia en el procesador central/hora.
- Factores de ponderación (véase el cuadro A-1/Q.543).

CUADRO A-1/Q.543

Tipo de terminación	Porción de origen (F)	Porción de destino (disposición) (F')
Línea de acceso analógica básica	0,60	0,40
Línea de acceso anatógica con servicios suplementarios	0,72	0,48
Linea de acceso RDSI	0,72	0,56
Circuito intercentrales	0,50	0,40

. Información facilitada por la Administración:

Combinación de tráfico esperada (véase el cuadro A-2/Q.543).

CUADRO A-2/Q.543

Tipo de llamada de origen	Procedente de — Tipo de terminación	Combinación de tráfico (fracción del total)
Telefónica	Línea de acceso analógica básica	0,28
Telefónica	Línea de acceso analógica con servicios suplementarios	0,32
Conmutada a 64 kbit/s	Linea de acceso RDSI	0,05
Conmutación de paquetes (establecimiento)	Linea de acceso RDSI	0,02
Entrante - conmutación de circuitos	Circuito intercentrales (CIC)	0,33
	Tota	1,00
Tipo de llamada de destino	Destinada a – Tipo de destino	Combinación de tráfico (fracción del total)
Telefónica	Línea de acceso analógica básica	0,26
Telefónica	Linea de acceso analógica con servicios suplementarios	0,30
Conmutada a 64 kbit/s	Linea de acceso RDSI	0,05
Conmutación de paquetes (establecimiento)	Linea de acceso RDSI	0,02
Saliente – conmutación de circuitos	Circuito intercentrales	0,37
	Tota	1,00

Cálculo (véase el cuadro A-3/Q.543).

CUADRO A-3/Q.543

Tipo de terminación	Porción de origen	Porción de terminación
Línea de acceso básica analógica	$0.28 \times 0.60 = 0.168$	$0.26 \times 0.40 = 0.104$
Línea de acceso analógica con servicios suplementarios	$0,32 \times 0,72 = 0,230$	$0.30 \times 0.48 = 0.144$
Línea de acceso RDSI - conmutación de circuitos	$0.05 \times 0.72 = 0.036$	$0.05 \times 0.56 = 0.028$
Línea de acceso RDSI – conmutación de paquetes	$0.02 \times 0.72 = 0.014$	$0.02 \times 0.56 = 0.011$
Circuito intercentrales	$0.33 \times 0.50 = 0.165$	$0.37 \times 0.40 = 0.148$
Total	0,613	0,435

Máxima tasa de tentativas de llamada del procesador central para la combinación especificada de tráfico:

$$R \text{ máxima} = \frac{100\ 000}{0.613\ +\ 0.435} = 95\ 420\ \text{tentativas de llamadas por hora}$$

En este punto del cálculo, sería conveniente examinar el diseño de la central para verificar que la configuración del soporte físico, la capacidad de memoria, y cualesquiera otras posibles limitaciones, no impidan alcanzar esta capacidad calculada.

A.5.2 Ejemplo de cálculo de la capacidad de procesamiento de una unidad de interfaz (véase el cuadro A-4/Q.543)

Los factores de ponderación son facilitados por el fabricante.

La combinación de tráfico es estimada por la Administración.

CUADRO A-4/Q.543

	Tipo de llamada	Factor de ponderación	Combinación de tráfico (fracción del total)		
Procedente de:					
Línea de acceso analógica	Telefónica (llamada de referencia)	1,00	×	0,14	= 0,140
básica	Estación equivocada/abandono	1,16	×	0,005	= 0,006
Línea de acceso analógica	Telefónica	1,15	×	0,10	= 0,115
_	Estación equivocada/abandono	1,20	×	0,005	= 0.006
	Servicio suplementario N.º 1	1,52	×	0,05	= 0.076
	Servicio suplementario N.º 2	1,31	×	0,01	= 0.013
	Servicio suplementario N.º n	1,++	×	·	
RDSI	Soporte lógico a 64 kbit/s	1,20	×	0,025	= 0.030
	Establecimiento llamada de paquetes	1,15	×	0,01	= 0.012
	Servicio suplementario N.º 1	1.44	×	0	•
	Servicio suplementario N.º 2	1,20	×	0.01	= 0.012
	Servicio suplementario N.º n	1,++	×	•	,
CIC - CCITT N.º 5	Entrante	1,30	×	0,07	= 0,091
CIC - CCITT N.º 7	Entrante	0,90	×	0,08	= 0,072
Con destino a:					
Línea analógica básica	Telefónica	0,65	×	0,13	= 0,085
Línea analógica	Telefónica	0,75	×	0,12	= 0,090
.	Servicio suplementario N.º 4	0,80	×	0,035	= 0,028
RDSI	Soporte lógico a 64 kbit/s	0,75	×	0,02	= 0,015
	Establecimiento llamada de paquetes	0,75	×	0,01	
	Servicio suplementario N.º 5	0,80	*,,	0,01	= 0,008
CIC - CCITT N.º 5	Saliente	1,62	×	0,08	= 0,130
		m-ran.	7		
CIC - CCITT N.º 7	Saliente	0,83	×	0,10	= 0,083
and the state of t				Total	1,020

Facilitado por el fabricante:

Capacidad de referencia de una unidad de interfaz = 15 000 semiunidades de capacidad de referencia por hora.

Cálculo:

$$R \text{ máxima} = \frac{15000}{1,020} = 14705 \text{ semiunidades por hora o } 7352 \text{ tentativas de llamada por hora}$$

Si la carga de tráfico se distribuye en las proporciones arriba mencionadas entre todas las unidades de interfaz, el número de unidades de interfaz necesarias para cargar totalmente la unidad central de procesamiento seria de 13 (95 420 dividido por 7352). En este caso sería probablemente juicioso planificar sobre un máximo de 14 unidades de interfaz a fin de reservar alguna capacidad de procesamiento para futuras ampliaciones del programa. En este punto de cálculo, sería conveniente examinar el diseño de la central para verificar que la configuración del soporte lógico, la memoria o cualesquiera otras posibles limitaciones no impidan alcanzar esta capacidad calculada.

Esta metodología de cálculo de la capacidad puede también utilizarse para estudiar los efectos de diferentes combinaciones de tráfico en las unidades de interfaz.

A.6 Tratamiento de paquetes

A.6.1 Definiciones

A.6.1.1 paquete

Unidad de información intercambiada entre procesadores en la capa 3.

A.6.1.2 paquete de usuario

Paquete de información intercambiado entre los usuarios de origen y de destino en una conexión con conmutación de paquetes. La longitud de los paquetes puede variar, según el protocolo utilizado. El número de paquetes de usuario transferidos entre los usuarios de origen y de destino mide la cantidad de información transferida. La medida fundamental de capacidad de conmutación de paquetes se expresa como el número de paquetes de usuario de cierta longitud estándar convenida por segundo.

A.6.1.3 paquete de acuse de recibo

Los protocolos de commutación de paquetes tienen diversas estrategias para asegurar la transmisión fiable de paquetes entre usuarios. Estas estrategias suponen el envío de paquetes que no contengan datos de usuario para verificar la transmisión con éxito de los paquetes de usuario. Estos paquetes se denominan paquetes de acuse de recibo. La estrategia de acuse de recibo depende del protocolo de conmutación de paquetes que se utilice.

A.6.1.4 tipo de paquete de referencia

Tipo de paquete de usuario arbitrariamente seleccionado, normalmente perteneciente a un protocolo que se cree que intervendrá en una porción significativa del tráfico de paquetes que una central podría tratar.

A.6.1.5 unidad de trabajo del paquete de referencia

Cantidad de capacidad de procesador necesaria para tratar un paquete del tipo paquete de referencia con su «parte» de capacidad necesaria para tratar los correspondientes paquetes de acuse de recibo asociados. A la unidad de trabajo del paquete de referencia se le asigna el valor unidad.

A.6.1.6 factor de ponderación

Relación entre la cantidad de capacidad de procesamiento necesaria para tratar cualquier tipo de paquete (incluida su «parte» de paquetes de acuse de recibo correspondientes) y la cantidad de procesamiento necesario para tratar un paquete de referencia (incluida su «parte» de paquetes correspondientes de acuse de recibo). Por ejemplo, si un paquete de referencia completo requiere 1000 ciclos de procesador y un paquete de mensaje X.25 requiere 1200 ciclos, el factor de ponderación para ese tipo de paquetes seria de 1,2. Los factores de ponderación deben ser facilitados por el fabricante para cada tipo de paquete tratado por la central.

A.6.1.7 capacidad de procesamiento de paquetes de referencia (CPPR)

Número total de paquetes de usuario del tipo de referencia que puede tratar el procesador en un segundo, pero cumpliendo los criterios de calidad especificados. Este número debe facilitarlo el fabricante. Es importante señalar que la CPPR se obtiene de la capacidad de procesamiento reservada para el tratamiento de paquetes y generalmente es la capacidad instalada disminuida en una cantidad requerida para tareas generales, administrativas, etc.

A.6.2 Llamadas de paquetes

Las llamadas de paquetes constan de dos partes: establecimiento (y desconexión) de llamada de paquetes e intercambio de paquetes en curso (fase de tratamiento de paquetes).

- A.6.2.1 El establecimiento de llamada de paquetes puede tratarse del mismo modo que el descrito anteriormente para el establecimiento de llamadas con conmutación de circuitos. Se utilizan factores de ponderación apropiados para los diversos tipos de establecimiento de llamadas de paquetes y estimaciones de las llamadas de tipo paquetes en la combinación de tráfico para calcular la capacidad del procesador correspondiente (véase el § A.5. El establecimiento de llamadas de paquetes se incluyó en los ejemplos de cálculos de capacidad de procesamiento de tentativas de llamada). Como ocurre con los servicios con conmutación de circuitos, puede haber llamadas de paquetes con diferentes requisitos de procesamiento, por lo que será necesario tratar las diferentes llamadas de tipo paquetes individualmente en los cálculos.
- A.6.2.2 Tras el establecimiento de una llamada de paquetes, cada paquete intercambiado entre usuarios durante la llamada requiere procesamiento en las centrales de origen y destino. La cantidad total de trabajo de procesamiento necesario durante una llamada con conmutación de paquetes es función del número de paquetes intercambiados a lo largo de toda la llamada. Si se dedica un procesador al tratamiento de paquetes, la capacidad de procesamiento se expresa normalmente en términos del número de paquetes de usuario de una longitud estándar tratados por segundo. Para tener en cuenta la capacidad de procesamiento de paquetes que será necesaria en una central durante una hora cargada, deben preverse datos relativos al número medio (y tipo) de paquetes por llamada. Obsérvese que para llamadas de muy larga duración, por ejemplo, circuitos virtuales permanentes, sólo es necesario considerar los paquetes ofrecidos durante la hora cargada. Además, deben incluirse los paquetes de llamadas de larga duración originadas antes de la hora cargada pero que se extienden a la misma.

En la arquitectura de la central presentada en la figura A-1/Q.543, se supone que cada unidad de interfaz tiene un procesador de tratamiento de paquetes separados (representado como TP) dentro de la unidad. Este procesador interactúa con la línea digital o las unidades de circuito digital para tratar los protocolos que intervienen en la conmutación de paquetes. Una vez establecida una llamada de paquetes, no existen demanda posterior de trabajo de procesamiento en el procesador de la unidad de interfaz ni en el procesador de la unidad central de procesamiento hasta que se desconecta la llamada. Por ello, la única limitación de capacidad potencial debida al tratamiento de paquetes en la central será la que imponga la capacidad de procesamiento del procesador de tratamiento de paquetes de la unidad de interfaz. (En relación con los sistemas que utilizan el mismo procesador para el establecimiento de la llamada y el tratamiento de paquetes, véase el § A.7.)

A.6.2.3 Cálculo de la capacidad de procesamiento de un procesador de tratamiento de paquetes

Los factores de ponderación los facilita el fabricante. Sea G_k el factor de ponderación para el tratamiento de un paquete de usuario de tipo k (incluido el tratamiento de una «parte» apropiada de los correspondientes paquetes de acuse de recibo).

La combinación de tráfico de datos (fracciones del total) y los volúmenes son previstos por la Administración.

Sea Q_k la fracción de paquetes de usuario de tipo k. Obsérvese que:

$$\sum_{k=1}^{n} Q_k = 1$$

Si R_p = velocidad de llegada de paquetes de usuario, entonces la cantidad de capacidad de procesamiento necesaria para el trabajo asociado con el tráfico de paquetes de usuario del tipo k es:

$$Q_k G_k R_p$$

A fin de satisfacer los criterios de calidad de funcionamiento, la capacidad de procesamiento de paquetes de referencia (CPPR) debe ser igual o superior al trabajo total de tratamiento de paquetes. Por tanto:

$$CPPR > R_p \left[\sum_{k=1}^n Q_k G_k \right]$$

De donde se obtiene la capacidad máxima de procesamiento de paquetes R_p máx siguiente:

$$R_p \max = \frac{\text{CPPR}}{\sum_{k=1}^{n} Q_k G_k}$$
 paquetes por segundo.

A.6.2.4 Ejemplo de cálculo de procesamiento de paquetes en un procesador de paquetes de la unidad de interfaz

Información facilitada por el fabricante:

- a) CPPR = 1000 unidades de trabajo de paquetes de referencia por segundo.
- b) Factores de ponderación (G):
 - Datos de tipo X.25 = 1,00 (tipo de referencia)
 - Datos de tipo X.75 = 0.70

Combinación estimada de tráfico de datos (facilitada por la Administración):

Tipo	Porción de tráfico (Q)
X.25	0,52
X.75	0,48

Cálculo:

7

Máxima capacidad de procesamiento para la citada combinación de tráfico de datos:

$$R_p \text{ máx} = \frac{1000}{0.856} = 1168 \text{ paquetes por segundo}$$

Si el valer estimado de la velocidad de llegada de paquetes de datos (R_p) no sobrepasa el número anterior, la capacidad de tratamiento de paquetes en la unidad de interfaz no limitará el número de líneas o circuitos digitales que generan paquetes de datos que terminan en la unidad. Si se sobrepasa este valor, las líneas y circuitos digitales que generan el tráfico de paquetes tendrán que extenderse a más unidades de interfaz.

Si se utiliza el mismo procesador para el establecimiento de llamadas (llamadas con conmutación de cuitos y llamadas de paquetes) y para tratar el tráfico de paquetes de datos, la capacidad del procesador debe stribuirse entre las dos funciones. Esto puede hacerse calculando separadamente la capacidad del procesador ra cada función (suponiendo que se utiliza una capacidad nula para la otra función) y distribuyendo luego la pacidad entre las dos funciones como sea necesario. Así, si un procesador tiene una capacidad máxima de ocesamiento de llamadas de 100 000 llamadas por hora o de 1000 paquetes por segundo, para cada 100 paquetes r segundo de capacidad de tratamiento de paquetes necesaria, la capacidad de procesamiento de llamadas se ducirá en 10 000 llamadas.

Conclusión

La metodología presentada ilustra un posible planteamiento para determinar los factores limitadores en el seño de una central y para calcular su capacidad de procesamiento. Es sumamente importante que se entienda la quitectura de la central, que se identifiquen los elementos limitadores de la capacidad y que se efectúen los lculos adecuados para determinar la capacidad verdadera de la central. Estos procedimientos pueden utilizarse ra calcular con la máxima eficacia el dimensionamiento y la carga de la central. Pueden establecerse mpromisos entre el empleo de la capacidad para diversos fines. Por ejemplo, en la figura A-1/Q.543, puede rse un terminal de señalización conectado a una unidad de interfaz. En esa UI, la capacidad de procesamiento sponible se reducirá en la cantidad de trabajo necesario de la unidad de interfaz para sustentar ese terminal. El no de la capacidad de procesamiento puede asignarse eficazmente utilizando información generada en la todología de cálculo de procesamiento de llamadas.

Es también muy importante que la capacidad de una central no se calcule utilizando la capacidad total ra el procesamiento de llamadas. Debe efectuarse utilizando la capacidad de procesamiento disponible en ndiciones de operación «normales», con la central realizando todas las funciones de operación y administraas esperadas de la misma durante la hora cargada.

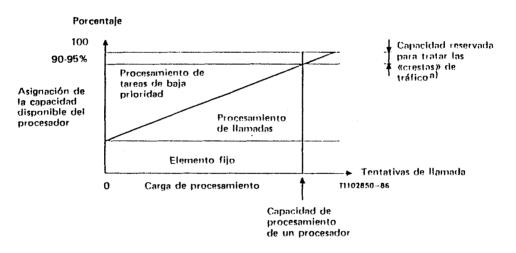
Unidad de interfaz

PUI Procesador de unidad de interfaz

Tramitador de paquetes

FIGURA A-1/Q.543 Ejempto de diseño de central con varios procesadores

(a la Recomendación O.543)


Ejemplo de la metodología para medir la capacidad de una central

B.1 Generalidades

La capacidad de una central utilizada para el procesamiento de llamadas puede medirse en laboratorio o en condiciones reales y a partir de ahí pueden hacerse previsiones sobre la máxima capacidad de procesamiento del diseño de la central para la configuración y características de carga que intervienen en las medidas. Este anexo sirve de ejemplo de una metodología que permite medir la capacidad de procesamiento de una central, con la configuración y las características de carga que intervienen en la medición.

B.2 Fundamento teórico del método de medida

La capacidad de tratamiento de llamadas de un procesador puede expresarse en forma del máximo número de llamadas (o tentativas de llamada) que pueden procesarse en un intervalo de tiempo fijo satisfaciendo todos los criterios de servicio. En condiciones normales, las funciones de trabajo realizadas por el procesador de un sistema de conmutación pueden dividirse en tres categorías (un nivel fijo y dos variables), como se muestra en la figura B-1/Q.543.

a) La cantidad de capacidad reservada depende de la arquitectura del sistema y de ja posición jerárquica del procesador.

FIGURA B-1/Q.543 Atribución de la capacidad de procesamiento

Con cargas normales, suele observarse una relación lineal entre la carga ofrecida y la utilización del procesador. Sin embargo, con cargas elevadas, algunos componentes del sistema pueden sobrecargarse, lo que puede producir la no linealidad de la característica de utilización del procesador en función de la carga.

En el caso de un sistema controlado por un solo procesador, la figura B-1/Q.543 representa la capacidad de procesamiento de la central. En un sistema de múltiples procesadores, la capacidad se distribuye entre los procesadores y la capacidad de la central se relaciona con la configuración del sistema, y la capacidad de procesamiento de la central es función de los procesadores que intervienen en las funciones de tratamiento de llamadas.

Como se muestra en la figura B-1/Q.543, la capacidad de procesamiento de un procesador se divide entre tres elementos:

- 1) elemento fijo relacionado con las tareas obligotorias (por ejemplo, programación y exploración de tareas);
- 2) trabajo de procesamiento de las llamadas (incluidas tareas generales relacionadas con el tráfico);
- 3) tareas aplazables (de baja prioridad) (por ejemplo, mantenimiento de rutina).

Las tareas que ejecuta un procesador son asignadas a tres niveles de prioridades, a saber, tareas de bajo nivel, medio y elevado [véanse las partes a) y b) de la figura B-2/Q.543].

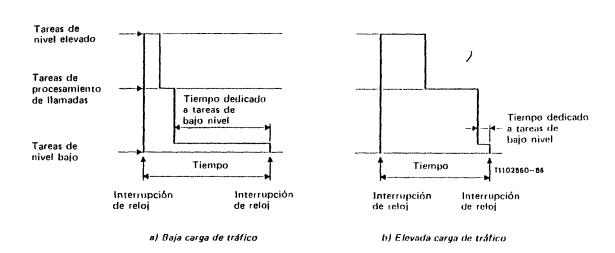


FIGURA B-2/Q.543

Atribución del tiempo del procesador a las tareas

A medida que aumenta la carga de tráfico (tentativas de llamada) crece el trabajo de procesamiento de llamadas y disminuye el procesamiento de las tareas aplazables.

La medida del porcentaje de tiempo dedicado por el procesador a realizar las tareas de bajo nivel da una indicación del porcentaje de capacidad de procesamiento necesario para una determinada carga del procesador.

En la parte a) de la figura B-2/Q.543, para baja carga de tráfico, el porcentaje de tiempo empleado para realizar tareas de nivel bajo es relativamente alto. En la parte b) de la figura 2/Q.543, para una elevada carga de tráfico, ese porcentaje es relativamente bajo. Por tanto, la medida del porcentaje de tiempo utilizado para realizar tareas de nivel bajo puede utilizarse para determinar la capacidad de procesamiento de llamadas.

B.3 Metodología de medida de la capacidad en las centrales

Las medidas en centrales pueden realizarse en laboratorio o en condiciones de explotación real para medir la capacidad de utilización para diversos níveles de carga y hacer luego una previsión de los datos para estimar la capacidad de procesamiento de llamadas de un procesador.

La recogida de datos dependerá de las facilidades disponibles para efectuar las medidas requeridas. La central puede diseñarse para que proporcione indicaciones del tiempo dedicado a realizar tareas de bajo nivel o puede ser necesario acceder al procesador del sistema a fin de medir este tiempo. Se necesitará equipo para crear cargas, o deben medirse las cargas en una central en funcionamiento a fin de establecer los puntos de carga. Deben observarse cargas de diversos niveles para los distintos tipos de llamadas (o servicios) a fin de establecer una base para proyectar la línea de carga para determinar la máxima capacidad de procesamiento para la combinación de servicios de tráfico supuestos o medidos. Al proyectar la capacidad de llamadas debe procurarse no extrapolar más allá de la región lineal de la relación de la utilización del procesador/tentativas de llamada ofrecidas.

Cuando intervienen múltiples procesadores, deben examinarse la configuración de la central, la distribución de los tipos de tráfico y la capacidad de procesamiento de cada procesador para determinar los factores limitadores que controlan la capacidad de la central (véase el anexo A, un ejemplo de la metodología para calcular la capacidad de procesamiento de llamadas de una central digital teniendo en cuenta los servicios RDSI, incluido el tratamiento de paquete de datos).

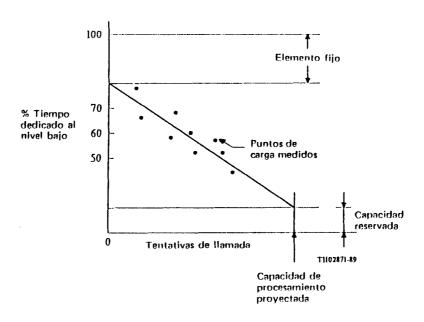


FIGURA B-3/Q.543

Medición de la capacidad de procesamiento

Recomendación Q.544

MEDIDAS EN CENTRALES DIGITALES

1 Generalidades

Esta Recomendación se aplica a las centrales digitales locales, de tránsito, combinadas e internacionales para telefonía en redes digitales integradas (RDI) y en redes mixtas (analógicas/digitales), así como a las centrales locales, de tránsito, combinadas e internacionales de una red digital de servicios integrados (RDSI). El campo de aplicación de esta Recomendación se describe con más detalle en la Recomendación Q.500. Algunas medidas sólo se aplican a cierto tipo (o tipos) de central. Cuando así ocurre, la aplicación se define en el texto. Cuando no se hace esta restricción, el objetivo es válido para todas las aplicaciones de central.

Esta Recomendación comprende medidas del tráfico y de la calidad de funcionamiento necesarias para el dimensionamiento y la operación de centrales que satisfaga los objetivos de grado de servicio prescritos en las Recomendaciones de la serie E.500. Por lo general, estas medidas se efectúan durante periodos de intervalos especificados, transcurridos los cuales se envían los resultados a ciertos terminales de central locales y/o distantes o a centros de operación y mantenmiento (COM), o a cualquier otro centro de tratamiento de datos apropiado. En algunos casos, los datos pueden utilizarse en su forma original, mientras que en otros tal vez haya que tratarlos para determinar si se han rebasado umbrales establecidos y/o se han detectado condiciones anormales. Esta Recomendación no implica que deban satisfacer determinadas exigencias respecto al diseño de sistema. En los diferentes diseños, los volúmenes de los datos que serán acumulados y procesados por la central o por un sistema externo podrán ser mayores o menores.

Las centrales de diferentes tipos y tamaños pueden requerir diferentes conjuntos de medidas. De la misma forma, las distintas Administraciones pueden tener que efectuar diferentes medidas, que dependerán de distintas circunstancias relacionadas con las políticas y los procedimientos aplicados, así como de otras consideraciones relativas a las redes nacionales. Así, una Administración puede considerar conveniente, en algunas aplicaciones, realizar medidas no tratadas en las Recomendaciones, mientras que en otras aplicaciones es posible que no se deseen efectuar algunas medidas.

Es preciso realizar medidas en centrales tanto para el servicio nacional como para el internacional. En cuanto al servicio internacional se tienen en cuenta las siguientes Recomendaciones:

- Recomendaciones E.401 a E.427: Gestión de la red telefónica internacional y comprobación de la calidad de servicio:
- Recomendaciones E.230 a E.277: Disposiciones operacionales relativas a la tasación y a la contabilidad en el servicio telefónico internacional.

Los aspectos de la ingeniería de tráfico se tratan en las Recomendaciones E.500 a E.543, y los concernientes a las medidas de tráfico para centrales con control por programa almacenado se consideran en las Recomendaciones E.502, E.503 y E.504.

Se necesitan otras medidas en una central, no especificadas en esta Recomendación, por ejemplo para:

- Características de transmisión (Recomendaciones Q.551, Q.552, Q.553 y Q.554).
- Señalización de acceso digital (Recomendaciones Q.920 a Q.931). Esto requiere ulterior estudio.
- Modo paquete (Recomendaciones X.25 y X.75). Esto necesita ulterior estudio.
- Sistema de señalización N.º 7 (por ejemplo, las mediciones especificadas en la Recomendación Q.791 para la parte transferencia de mensajes requieren más estudio para determinar su aplicabilidad a esta Recomendación).

Nota — Para los términos y definiciones de teletráfico utilizados en esta Recomendación, véase la Recomendación E.600.

2 Procesos de medida

2.1 Generalidades

Las actividades que entrañan las medidas en centrales pueden dividirse en los cuatro procesos representados en la figura 1/Q.544.

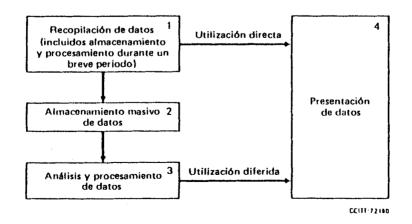


FIGURA 1/Q.544

Procesos de medida

A elección de cada Administración nacional, los cuatro procesos anteriores pueden estar integrados total o parcialmente en las centrales.

Sin embargo, se recomienda que:

- a) La recopilación de datos esté totalmente integrada en la central para todo tipo de datos.
- b) La presentación de datos esté integrada en la central y/o en el centro de operación y mantenimiento (COM), al menos para las medidas que ha de efectuar el personal del COM.

La presentación de los datos necesarios para las actividades de planificación y administración podría hacerse en los locales del personal del COM o en otros lugares que fuesen más centralizados, y por lo general es una operación diferida.

2.2 Recopilación de datos

Pueden distinguirse tres actividades distintas de recopilación de datos:

- registro de sucesos;
- registro de tráfico (intensidad y/o volumen de tráfico);
- registro de datos sobre llamadas (dicese también «registros de llamadas»).

Los datos generados por registro de sucesos y registro de tráfico son apropiados para la utilización directa (presentación inmediata).

Los registros de llamadas sólo pueden utilizarse después de un análisis «off-line». El procesamiento de registros de llamadas puede generar todo tipo de datos, incluido el registro de sucesos y el registro de tráfico.

2.3 Almacenamiento masivo, análisis y procesamiento de datos

Tal vez haya que almacenar los datos recopilados para constituir una base de datos adecuada para un ulterior análisis y procesamiento.

Esos datos pueden conservarse en la central para procesarlos allí mismo, o transferirse a centros administrativos y técnicos.

2.4 Presentación de datos

Esta es la función en virtud de la cual los datos recopilados pasan a ser legibles. Las características relativas a la presentación de datos son las siguientes:

- a) lugar de presentación;
- b) modalidades de presentación en función del tiempo dependen de la naturaleza de los datos y de su utilización. Las actividades de mantenimiento y gestión de red requieren una presentación inmediata;
- apoyo físico de los datos presentados y formato correspondiente estos aspectos se refieren sobre todo al tipo de datos y dependen de cada caso particular.

3 Tipos de datos de medida

Los datos de medidas están constituidos esencialmente por cuentas de diversos sucesos y valores de intensidad de tráfico observados en diversos dispositivos. Para algunos datos de medidas, utilizando técnicas de muestreo, o prorrateo en el tiempo, puede obtenerse un resultado con un nivel de exactitud aceptable. En algunos casos, las llamadas de prueba generadas externamente pueden constituir el método más práctico para la obtención de datos. En otros casos pueden utilizarse registros de llamadas, tales como los registros de la tasación detallada.

3.1 Cómputo de sucesos

Los sucesos, por ejemplo, las tomas de circuitos de llegada, las tentativas de llamada que encuentran una condición de ocupado, y las tentativas de llamada a determinados códigos de destino deben ser contables. Algunos cómputos de sucesos pueden acumularse sobre la totalidad de la central, en tanto que otros sólo pueden serlo sobre un subconjunto, por ejemplo, un haz de circuitos intercentrales. En algunos casos, los cómputos de sucesos pueden acumularse de varias formas.

3.2 Intensidad de tráfico

La intensidad de tráfico para un grupo de dispositivos viene dada por el volumen de tráfico dividido por la duración de la observación. Esta es, así, igual al número medio de dispositivos ocupados. Al igual que en el caso del cómputo de sucesos, los datos de intensidad de tráfico pueden referirse a la totalidad de la central o a diversos subconjuntos.

3.3 Registros de llamadas

Los registros de llamadas contienen datos utilizados por la central para el establecimiento de llamadas. Los datos pueden incluir la identidad y la clase de la línea de origen o del circuito de llegada, el número marcado, el encaminamiento y la forma en que ha terminado la llamada y, eventualmente, el tiempo en que se producen ciertos sucesos en el transcurso de la llamada.

La central puede generar y extraer registros de llamadas con el fin de establecer una base de datos apropiada para el procesamiento «off-line» que permita determinar valores y características del tráfico. Para tal fin puede bastar con extraer registros de las llamadas en unión de una muestra estadística del total de llamadas.

4 Administración de las medidas

)

Las centrales deben proporcionar medios que faculten al personal de explotación para establecer calendarios de medida y encaminar los resultados («salidas») de las medidas hacia los puntos deseados. Los métodos para establecer los calendarios de medida deben diseñarse de manera que reduzcan al mínimo la introducción de errores al definir los parámetros pertinentes. Deberá ser posible tener activadas, simultáneamente, un número de medidas, con diferentes calendarios y encaminamientos de las salidas. Una sola medida debe poder disponer simultáneamente de más de un calendario de medida y/o encaminamiento de los resultados (salidas). El número de tipos de medidas concurrentes puede estar limitado, a fin de conservar los medios de almacenamiento y de procesamiento de la central. En la Recomendación E.500, así como en otras Recomendaciones de la serie E, pueden encontrarse criterios para la medida y el registro del tráfico.

4.1 Establecimiento de un calendario de medidas

4.1.1 Periodos de registro

Son los intervalos de tiempo durante los cuales se realiza una medida. Una medida puede activarse a petición o de acuerdo con un calendario.

Se pueden establecer diferentes periodos de medida para diferentes días de la semana. Por ejemplo, se puede establecer una medida de las 09.00 a las 18.00 horas de lunes a viernes y de las 09.00 a las 12.00 horas el sábado. Puede establecerse el calendario de medidas para toda una semana y repetirse el ciclo semanal hasta que se dé una nueva instrucción.

4.1.2 Periodos de acumulación de resultados

Un periodo de registro contiene uno o más periodos de acumulación de resultados. El comienzo y el final del periodo de registro corresponderá con el comienzo y el final de periodos de acumulación de resultados.

Las salidas de resultados de las medidas deben estar disponibles al final de cada período de acumulación de resultados y deberán hacer referencia a ese período.

Para una determinada medida puede requerirse más de un periodo de acumulación de resultados.

4.2 Criterios para la salida de datos

4.2.1 Según calendario

Normalmente, la salida de datos de la medida se produce poco tiempo después de terminado cada periodo de acumulación de resultados especificado por el calendario de la medida. Como otra posibilidad, la central puede almacenar los datos en su memoria, durante periodos limitados, por ejemplo en caso de congestión de los recursos de salida.

4.2.2 A petición

(Para ulterior estudio.)

4.2.3 En caso de excepción

La central podrá proporcionar datos de la medida cuando se cumplan determinados criterios, por ejemplo, cuando la tasa de tentativas de llamadas entrantes rebase un determinado valor.

4.3 Encaminamiento de las salidas de datos

4.3.1 Hacia un terminal local o distante

Los datos de las medidas se deberán poder encaminar, con vistas a su impresión o visualización, hacia determinados terminales que estarán conectados directamente a la central, o en un lugar distante por medio de circuitos dedicados o conmutados.

4.3.2 Hacia un centro de procesamiento externo

Los datos de la medida se deberán poder encaminar hacia puntos externos, por ejemplo, un centro de operación y mantenimiento (COM), que realice funciones de recopilación y análisis de datos para varias centrales.

4.3.3 Hacia medios de almacenamiento local

Una Administración puede necesitar que las centrales almacenen los datos de las medidas en memorias masivas, tales como cintas magnéticas, para su ulterior procesamiento y análisis. Esta solución pudiera ser una alternativa a la transmisión de los datos a un COM.

4.4 Prioridades

Se debe dar gran prioridad a ciertas mediciones esenciales, como por ejemplo las relacionadas con la reunión y presentación de datos utilizados para la detección de sobrecargas, la gestión de red y la contabilidad. Las mismas no deben interrumpirse durante los periodos de congestión del procesamiento de la central (véase la Recomendación Q.543, § 3.8). Las mediciones suspendidas deben reanudarse en orden inverso al de suspensión.

Cuando se invocan procedimientos de recuperación, deben conservarse los registros asociados con la contabilidad y facturación de las llamadas.

5 Aplicación de las medidas

5.1 Planificación e ingeniería

Para una planificación eficaz de redes de telecomunicaciones que satisfagan normas especificadas de grado de servicio es necesario servirse de datos obtenidos en medidas. Un análisis de los datos acumulados en un periodo de tiempo da la información necesaria para predecir futuras demandas y para planificar y diseñar ampliaciones de la red.

5.2 Operación y mantenimiento

Para las funciones de operación y mantenimiento se utilizan los siguientes tipos de datos de medida:

- i) Datos de comportamiento relativo a las irregularidades y retardos en el tratamiento de las llamadas.
- ii) Datos de disponibilidad de la central, sus subsistemas, así como de sus lineas de abonado y circuitos intercentrales.
- iii) Carga de los diversos componentes de la central.

Todos estos datos pueden utilizarse para evaluar el comportamiento de la central y de la red, y planificar reestructuraciones con el fin de mejorar el servicio proporcionado por el equipo de red existente.

5.3 Gestión de la red

Los datos sobre la gestión de la red incluyen ciertas medidas de tráfico y de comportamiento así como indicaciones de estado. Estas se utilizan para detectar anomalias en la red y activar los medios de control de la gestión de la red, tanto automática como manualmente. En algunos casos, los datos deben analizarse para determinar si se han rebasado ciertos límites especificados. Puesto que la eficacia de las acciones de gestión de la red depende de la medida en que se pueda responder a condiciones cambiantes en la red, en su conjunto, pudiera convenir realizar este análisis mediante un sistema de procesamiento que sirva a una o más centrales y presente los resultados en un centro de gestión de la red. Las funciones de gestión de la red se tratan en las Recomendaciones E.410 a E.414 y Q.542.

5.4 Contabilidad en el servicio internacional

La contabilidad en el servicio internacional debe ser objeto de acuerdo mutuo entre las Administraciones. Se aplican las Recomendaciones E.230 a E.277.

5.5 Reparto de ingresos

El reparto de ingresos debe ser objeto de acuerdo entre EPER del mismo país. Los requisitos a este respecto son de incumbencia nacional.

5.6 Estudios de tarificación y comercialización

Los estudios tienen por objeto identificar las necesidades y tendencias de los abonados. Los requisitos a este respecto son de incumbencia nacional.

6 Definición de sucesos de llamada

Este punto se aplica a las tentativas de llamada a 64 kbit/s con conmutación de circuitos. La aplicación a otros tipos de llamadas o servicios suplementarios requiere ulterior estudio.

6.1 Generalidades

Cada tentativa de llamada procedente de una línea de abonado o circuito intercentrales se desplaza a través de una rama del posible estado del diagrama de referencia de sucesos de llamada representado en la figura 2/Q.544.

6.2 Descripción detallada de los sucesos de llamada

6.2.1 Toma desde una línea de abonado o circuito entrante

Este es el punto de partida de una tentativa de llamada entrante/de origen.

6.2.2 Dirección válida

La toma entrante/de origen es aceptada con éxito por la central.

6.2.3 Tentativa de llamada no encaminada

Tentativa de llamada que no es encaminada a través de la central, quizá debido a una condición de central o recibo de una dirección que es incompleta o inválida.

6.2.3.1 Falso arranque

Señal de toma entrante que ha sido reconocida sin ser seguida por recepción de dígitos.

6.2.3.2 Marcación incompleta (temporización excedida, abandono)

Toma entrante que ha sido recibida, pero el número de cifras recibidas no es suficiente para llevar a cabo el encaminamiento de la llamada.

6.2.3.3 Dirección inválida

Tentativa en la que los dígitos recibidos no corresponden a un destino existente o permitido. Se da entonces a la llamada tratamiento de intercepción (tono, anuncios u operadora).

6.2.3.4 Llamada no encaminada a causa de la central

Tentativa de llamada en la que el sistema no puede efectuar el encaminamiento de llamada por razones internas (congestión):

1) Bloqueo en la red de conmutación

Aunque existe un circuito saliente/línea de abonado disponible para el destino requerido, la conexión no puede efectuarse a través de la red de conmutación, y no se dispone de otras opciones de encaminamiento.

2) Indisponibilidad de órganos comunes

Indisponibilidad de los circuitos de servicio u otros órganos comunes (por ejemplo, áreas de memoria).

3) Averias del sistema

Existe alguna avería interna en la central.

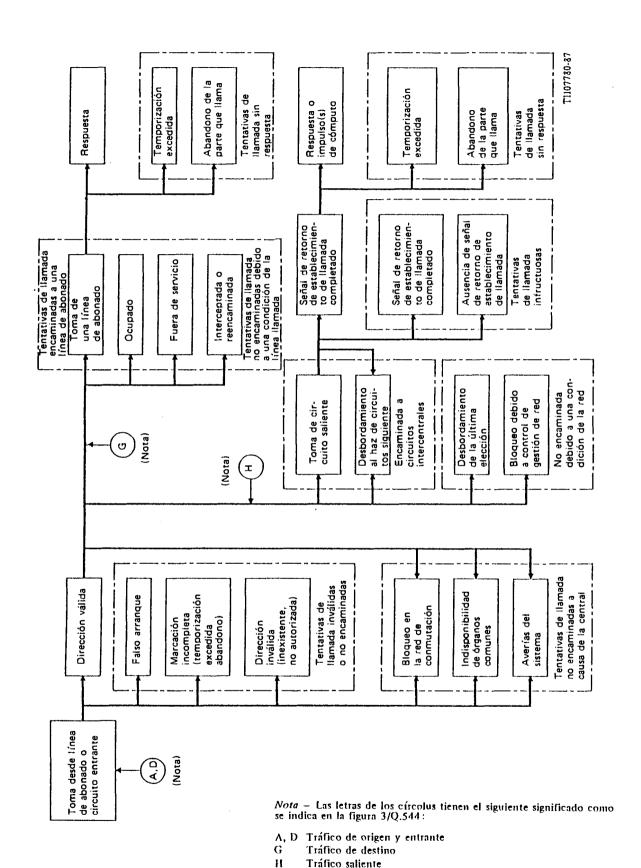


FIGURA 2/Q.544

Diagrama de referencia de los sucesos que se producen de las llamadas

6.2.4 Llamadas encaminadas a circuitos intercentrales

Llamadas que son encaminadas con éxito a un circuito saliente disponible para el destino requerido o encaminadas a otro haz de circuitos por razones de desbordamiento. Cuando se efectúan mediciones globales en las centrales, estas llamadas pueden computarse todas juntas.

6.2.4.1 Toma de circuito saliente

Llamadas que son encaminadas a un circuito concreto. Tienen que computarse por separado cuando se efectúen mediciones en el haz de circuitos salientes.

6.2.4.2 Desbordamiento al haz de circuitos siguiente

Se trata de las llamadas que no pueden encaminarse por un haz de circuitos concreto, pero que se encaminan al haz de circuitos siguiente en la programación del encaminamiento. Tiene que computarse por separado cuando se efectúen mediciones en el haz de circuitos salientes. La medida de los sucesos subsiguientes correspondientes a estas llamadas se asocian solamente al haz de circuitos por el que se encaminan las llamadas.

6.2.5 Llamadas no encaminadas debido a condiciones de la red

6.2.5.1 Llamadas originadas por el desbordamiento de la última elección de encaminamiento (todos los circuitos ocupados)

Llamadas en las que el sistema no puede efectuar el encaminamiento debido a la indisponibilidad de los circuitos salientes hacia el destino requerido.

6.2.5.2 Llamadas bloqueadas por controles de gestión de red

Tentativas de llamada que son suprimidas por la central a consecuencia de la aplicación de controles de red.

6.2.6 Señal de retorno de establecimiento de llamada completado

Llamadas para las que se recibe una señal de retorno, que indica la conclusión del encaminamiento de la llamada en una central distante, pero que no reciben respuesta. El conjunto de señales suele incluir:

- fin de selección,
- dirección completa,
- línea de abonado libre.

6.2.7 Tentativas de llamada infructuosas

6.2.7.1 Recepción de señal de retorno de establecimiento de llamada no completado

Se produce cuando se recibe una señal de retorno que indica la imposibilidad de establecer una llamada.

Estas señales de retorno son tipicamente:

- señales de congestión;
- señales de línea de abonado ocupada;
- señales definidas como parte del grupo de mensajes (MEI) (mensajes hacia atrás de información sobre establecimiento no completado) del sistema de señalización N.º 7 del CCITT (véase la Recomendación Q.723).

6.2.7.2 Ausencia de señal de retorno de establecimiento de llamada

Llamadas que son abandonadas o eliminadas antes de la recepción de cualquier señal de retorno de establecmiento de llamada. Se trata de:

Ilamadas abandonadas por el abonado llamante;

Obsérvese que dentro de estas categorías de llamada existen varios tipos de terminación de llamada que no pueden ser distinguidos por la central, ya que pueden caracterizarse por tonos, anuncios o silencio, por ejemplo:

- tono de llamada;
- tono de ocupado;
- tono de congestión;
- anuncios;
- ausencias de tonos o anuncios;
- Hamadas con marcación incompleta.

6.2.8 Llamadas encaminadas a una línea de abonado

Tentativas de llamada encaminadas con éxito a una línea de abonado.

6.2.9 Llamadas no encaminadas a causa de condiciones de la línea llamada

Tentativas de Hamada infructuosas que no llegan al estado de respondidas debido a una determinada condición de la linea del abonado Hamado:

- ocupado;
- fuera de servicio;
- Hamada reencaminada:
- ninguna salida libre;
- etc.

6.2.10 Llamadas respondidas

Llamadas que llegan al estado de «respondidas». Según el protocolo de señalización, este estado puede alcanzarse de una de las siguienes maneras:

- recepción de una señal de respuesta;
- recepción de un impulso de cómputo;
- estado de respuesta inmediata a toma (de la línea de abonado/circuito saliente intercentrales).

No se incluyen en esta clase de llamadas los sucesos siguientes:

- recepción de señal de repetición de respuesta;
- respuesta de un dispositivo interceptor (automático o manual) debido a desviación de llamada en la central de tránsito.

6.2.11 Tentativas de llamada no respondidas

Llamadas que no reciben una señal de respuesta tras recibirse una señal de retorno de establecimiento completado, o tras la toma de la línea del abonado llamado. Son éstas:

- llamadas eliminadas por expiración de los temporizadores;
- llamadas abandonadas por el abonado llamante después de escuchar el tono de llamada.

7 Medidas de tráfico

Este punto se aplica al tráfico de commutación de circuitos a 64 kbit/s. La aplicación a otros tipos de tráfico o servicios suplementarios requiere ulterior estudio.

7.1 Generalidades

La figura 3/Q.544 muestra cómo se establecen las categorías de tráfico en una central. Todas las mediciones enumeradas en esta sección pueden obtenerse registrando y analizando los acontecimientos que pueden experimentar las llamadas.

ANEXO 4

Información técnica del equipo emulador de tráfico PEST

Uppgjord - Prepared PJ/ETX/TS/SY Kjell Norman 9 8761

Codkind - Approved PJ/ETX/TS/SY

PEST PEST1.

Abstract

The PC Emulated Subscriber Traffic generator (PEST) is capable to deliver subscriber with various call patterns.

This particular version was designed while working on rationalization of RSS installation.

Contents

1	General
2	Equipment
2.1	PEST TG Kit CRL 117 01/n
2.1.1	PEST1 Volume Contents
2.2	Additional equipment
	,
3	Installation
3.1	Earthing
3.2	TG adapter board
3.2.1	I/O-space
4	Capacity estimations
5	The controlling DATA file
5.1	Explanation of the DATA file (*.DAT)
5.1.1	*.DAT File ID line
5.1.2	Test Site Name
5.1.3	Simulate Real Traffic?
5.1.4	Impulsed Dialling Data
5.1.5	Max Waiting times for Dial Tone
5.1.6	TG BASE address Definitions
5.1.7	Initial Start/Stop
5.1.8	Interval for Dial Wait Histogram
5.1.9	Link Trace
5.1.10	Blocked devices
5.1.11	Devices with impulsed Dialling
5.1.12	Dial Tone Data
5.1.13	Digit signalling Data
5.1.14	Ring Tone and Ring Signal Data
5.1.15	Through Connection Test Data (TCT)
5.1.16	Minimum Release Time
5.1.17	Call Sequence Patterns
5.1.18	Call Rate and Release Patterns
5.1.19	Automatic Error Blocking
5.1.20	Run Timer
5.1.21	Subscriber number sequences

| Datum | Date | Hev | Dokumentin | Document of | 1990-10-29 | A | 1551-CRL 117 01 Uet

5.2	Preparation of DATA files (*.DAT)
6	Start of execution
6.1	Using BATCH files
7	Choice of menus
7.1	Help screen - single keystroke commands
7.2	Main screen
7.3	Last TC error screen
7.3.1	Call abortions on error
7.3.2	Error trapping
8	Traffic Statistics
9	Utility program (UTIL.EXE)
9.1	Mass Call Test (m)
9.2	TG Diagnostic Test (d)
9.3	Open Loop Tone Indication (t)

3

2

1 GENERAL

a The main design objectives has been:

COMPACTNESS and SIMPLICITY

b Utilisation of VLSI componentets, such as dedicated Modem circuits and programable logic on a PC expansion board.

Each board adds another 16 Test Circuit Lines (TC).

c PEST is capable of controlling roughly 600 calls per minute.

The number of TC's needed for a specific call rate is directly related to the total duration of a call for both the originating and terminating party.

- d Both DTMF and Impulsed Dialling can be mixed.
- A variety of parameters for controlling the actions of PEST, such as call rate, response delays, abortion times, subscriber number sequences etc, should be defined in advance in a DATA file.
- f Extensive fault monitoring are carried out for each call.

An error report file containing total and individual error counters, can be compiled at any time.

| Datum Date | Hev | Dokumentor Document no | 1990-10-29 A | 1551-CRL 117 01 Uen

2 <u>EQUIPMENT</u>

2.1 PEST TG KIT CRL 117 01/N

n represent number of lines. It can be set to 16, 32 or 64.

ITEM	REMARKS	QTY/16	QTY/32	QTY/64
TG board	ROA 219 0144/1	1	2	4
Program Disk, 5.25"	LZY 201 516/1	1	1	1
Program Disk, 3.5"	LZY 201 516/2	1	1	1
Cables	TSR 902 0131	1	2	4
User's Manual	EN/LZB 101 2487	1	1	1

The Program Disk contains PEST PEST1

2.1.1 PESTI Volume Contents

Volume in drive A is ETXPEST Directory of A:

PEST	EXE	89117	88-06-10	15:55
v 3	DAT	1341	88-05-25	10:06
UTIL	EXE	30084	88-05-25	9:46
PEST1	DAT	1972	88-06-10	16:08
VOLUME	TXT	579	88-09-21	14:41
ΛX	BAT	118	88-06-02	9:01
Λ9	DAT	1356	88-04-12	13:19
SEQ	DAT	1207	88-06-15	10:21
X	BAT	161	88-06-15	10:30
	12 File(ន)	23552 byte	s free

Datum Date	16	I Datamanton D
1990-10-29		Dokumentor Document no 1551-CRL 117 01 Uen
1		

2.2 ADDITIONAL EQUIPMENT

This is the kind of equipment that may be ordered separately or has already been purchased. The software has been executed on an IBM compatible PC/XT or AT.

QTY ITEM

REMARKS

- 1 IBM compatible PC/XT/AT with EGA/VGA monitor
- 1 Isolation transformer for the PC power supply (if needed for proper grounding)

The PC/XT used has been equipped with an ERICSSON monochrome type video board operating in Color Emulation mode.

3 INSTALLATION

3.1 EARTHING

Check that the voltage difference between the grounds of the PC and the AXE-ground does not exceed 200 mV. (< 200 mV difference

- both AC and DC).

An isolation transformer (transient suppressor) of a suitable type can be used in order to allow the PC to be directly grounded to the AXE ground

3.2 TG ADAPTER BOARD

- a Turn off the power to the PC.
- b Check that the address switch SW1 is set according to the table in I/O-space.
- c Insert the TG adapter board in an empty expansion slot in the PC with the edge connector slightly tilted towards the rear. Gentle rocking chair move ments will do the trick.
- d Connect the adapter cable TSR 902 0131, between the TG-connector and the MDF.

The previously mentioned check of voltage differences between the grounds of the PC and the AXE ground (<200 mVs) should have been carried out.

e Turn on the power to the PC.

Datum - Date	TRev	Dokumentor Document no
1990-10-29	λ	1551-CRL 117 01 Uen

3.2.1 I/O-space

To be elaborated The I/O-space for the TG board covers 32 consecutive addresses: BASE thru BASE+31.

The BASE-address should be set with the switch SW1 according to the table below:

sw1-	Weight		PEST Base Address
	рех	dec	(340 Hex)
5	200	512	1 Open
4	100	256	1 Open
3	80	128	0 Closed
2	40	64	1 Open
1	20	32	0 Closed

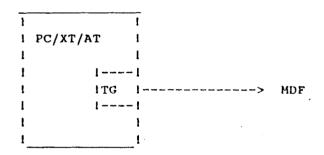


Fig 1

4 <u>CAPACITY ESTIMATIONS</u>

One aspect of system performance that could be investigated with a Petty load Traffic Generator is how the system copes with traffic overload during various conditions.

The TC's reside in idle buffers until they are engaged in calls. An originating TC (A-TC) is engaged from offhook until release. A certain idle time must elapse before it can be engaged again.

A terminating TC (B-TC) is engaged from digit mending point until release. A certain idle time must elapse before it can be engaged again.

Datum Date	Rev	Dokumentni Document no
1990-10-29	λ	1551-CRL 117 01 Uen

Example of call times

ACTION	Λ-TC (ms)	B-TC (ma)
Waiting for dial tone	300	
Check of dial tone	1000	
Digit sending (7 dig)	950	950
Waiting for through		
connection	400	400
Check of ringing	800	800
Check of speech path	200	200
Release time	250	250
TOTAL	3900	2600

A call rate of 2 calls/sec demands:

(3.9+2.60)*20 = 13 TC's

But it is logical to have some extra and to count in whole TG boards.

Here follows some estimations for AXE equipment:

Control	Estimated capacity	TC's needed
Level	(calls/sec)	(minimum)
LSM	2-5	13-33
EMG	10-20	65-130
APZ 211	40	260

5 THE CONTROLLING DATA FILE

Ease of use has been a major design objective. The PEST is controlled either by single keystroke commands or by a DATA file (\star .DAT) that is prepared in advance before execution.

Datum Date	TRev	Ookumintin Document no
1990-10-29	λ	1551-CRL 117 01 Uen

5.1 EXPLANATION OF THE DATA FILE (*.DAT)

The Grp numbers are used only for reference purposes. Explanations:

All time units are in 13.7 ms intervals except for Grp 20b (10 second units).

Ranges of value are 0 - 65535 (equivalent to 15 minutes).

A line terminated by -2 (data continuation) means that the same type of data continues on the next line.

A line terminated by -1 (data termination) means that this type of data is terminated.

```
BUST PEST1 .DAT-file
                         Grp 1
BUST Test Site
                        Grp 2
                        Grp 3 Simulate OK traffic?, Base addresses
true
0 0 3
                        Grp 4a Ratio (0/1) Freq. (0-15) TLC(0-3)
70 1
                        Grp 4b Interdigit pause, Dial type (1= Internat., 0=Swe)
150 150 150 150 150 150 150 150 Grp 5a Dial Tone Max Wait
150 150 150 150 150 150 150 150 Grp 5b Dial Tone Max Wait
#320 #340 -1
                        Grp 6 PEST Base adresses
TRUE
                        Grp 7 Initial start/stopp
10
                        Grp 8 Histogram interval
FALSE
                        Grp 9 Trace on
20 23 -2
                        Grp 10a Blocked devices (continued =-2)
12 - 1
                        Grp 10a End of definition
4 6 -1
                        Grp 10b Blocked devices Intervals
1 3 -1
                        Grp 11a Impulsed dialling
25 26 -1
                        Grp 11b Impulsed dialling Intervals
8 4 4
                        Grp 12 DIAL min intv numbsamp
2 5
                        Grp 13 DIG tone dur
8 300 250 14
                        Grp 14a RING min Rsig max Rtone max interval
21 - 1
                        Grp 14b RINGtone puls paus etc.
2 1 -1
                        Grp 14c RINGsignal puls paus etc.
8 5
                        Grp 15 TCT min intvl
8
                        Grp 16 Release delay time
true
                        Grp 17a Sequence Test
TRUE
                        Grp 17b Alternating A/B-sub
40
                        Grp 18a Call Separation
                        Grp 18b Cycle length
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 -1 Grp 18c Cluster sizes
TRUE
                        Grp 19a Error block on
1 1 1 1 1 1 1 1 1 1 1 1 1 -1 Grp 19b Error levels
false
                        Grp 20a Timer
2 1 1 -1 1 1 1 1 1 1
                        Grp 20b Timer values data
                        Grp 21a Number offset
0 30 60&000
                        Grp 21b Number sequences
2 1 *720#&
                        Grp 21b
5 3 08&740120
                        Grp 21b
-1
                        Grp 21c Definition terminattion row
```


| Datum | Date | TRev | | Dokumentni | Document no | 1990-10-29 | A | 1551-CRL 117 01 Uen

5.1.1 *.DAT File ID line

Grp 1 Contains the version number of the associated program. Execution is aborted if a mismatch is detected.

5.1.2 Test Site Name

Grp 2 The name of the SUT (System Under Test). The SUT will be appear in the error report file PEST1, ERR.

5.1.3 Simulate Real Traffic?

Grp 3 Set TRUE for simulated traffic , i.e no errors will be detected or error counters incremented. This is accomplished by fooling the program solely with expected testpoint (TP) readings.

Should be set FALSE when used for real traffic (with TG boards connected and for genuine TP readings).

•			
	Datum - Date	Rev	Dokumentne Document no
	1990-10-29	A	1551-CRL 117 01 Uen

5.1.4 Impulsed Dialling Data

Grp 4a

Three parameters:

The make/brake ratio

$$0 = 40/60$$

$$1 = 33/67$$

Impulse rate with nominal value 0 = 10 Hz. See the following table for detailed data:

```
7
         17.78 Hz
         16.00
 6
 5
         14.55
         13.33
 4
 3
         12.31
 2
         11.43
         10.67
 1
 0
         10.00
                 (Nominal value)
15
          9.11
14
          8.89
     æ
          8.42
13
          8.00
12
          7.62
11
10
          7.27
 9
          6.96
     =
```

Transmit Level Control with 3 for the highest level (se separate table for detailed information.

Grp 4b

Interdigit pause in 13.7 ms units and Dial type

6.66

1 = The Dial Starts with 1 (International standard)

0 = The Dial Starts with 0 (Used e.g in Sweden)

5.1.5 Max Waiting times for Dial Tone

8

Grp 5

Sixteen maximum waiting times are defined for TC modulo $16 \approx 0$, $1 \dots 15$.

To elaborate:

The first value is assigned to TC number 0, 16, 32, 48 and so on.

The second value is assigned to TC number 1, 17, 33, 49 $\,\mathrm{etc.}$

The nineth value (the first in the second line) is assigned to TC number 8, 24, 40, 56 and so on.

Datum Date	TRev	Dokumentor Document no
1990-10-29	λ	1551-CRL 117 01 Uen

The tenth value is assigned to TC number 9, 25, 41, 57 etc.

5.1.6 TG BASE address Definitions

Grp 6 BASE addresses for the first, second and so forth TG board.

The data should look like: BASE1 BASE2 ... with -1 as a terminator of the data

BASE1 Grp 6a TC 0 - 15 BASE2 Grp 6a TC 16 - 31

5.1.7 Initial Start/Stop

Grp 7 Set TRUE if traffic is to be commenced immediately, without having to press the "r"-key (run). Each time the "r"-key is pressed the program will alternate between RUN and HALT.

5.1.8 Interval for Dial Wait Histogram

Grp 8 An eight cluster histogram, showing the distribution of Waiting Times for Dial Tone will be presented in the PESTLERR file.

This row simply defines the time interval for each cluster.

5.1.9 Link Trace

Grp 9 Will generate a Link Map if set TRUE (PEST1.LNK) over the TC:s during an Error Trap. Should normally be set FALSE.

5.1.10 Blocked devices

Grp 10a List of blocked TC's. Terminated by -1. -2 at the end of a row indicates that data continues on the next row.

Grp 10b

The same as Grp 10a except that an interval of blocked devices is defined in the form of a pair <LOW> <HI>. E.g 5 18, means that all TC&gml.s from 5 to 18 are to be blocked. Terminated by -1. -2 at the end of a row indicates that data continues on the next row.

5.1.11 Devices with impulsed Dialling

Grp 11a List of TC's with Impulsed Dialling. Terminated by -1. -2 at the end of a row indicates that data continues on the next row.

The same as Grp 10a except that an interval of devices with impulse Dialling is defined in the form of a pair <LOW> <HI>.

E.g 33 41, means that all TCAgml.s from 33 to 41 are to have impulsed Dialling. Terminated by -1. -2 at the end of a row indicates that data continues on the next row.

1	Datum - Date	Tilev	Dokumentni Document no
	1990-10-29	λ	1551-CRL 117 01 Uen

5.1.12 Dial Tone Data

Grp 12

The first data is the minimum waiting time for dial tone. That is no sampling takes place before this time has elapsed.

The second data defines the sampling interval. Sampling is asynchronous with the time when the TC:s enters Dial Wait State.

The third data defines the number of accepted samples that must occur for an acknowledged dial tone.

If a non-tone sample is detected after a tone-present sample: An Incomplete Dial Tone error will be recorded. If no dial tone sample at all has been acknowledged before the Maximum Dail Waiting Times defined in Grp 5 has elapsed: A Missing Dial Tone error will be recorded and the call attempt is normally aborted. However if PREDIAL is activated, there will be a 50% probaility that the B-sub's number is dialled anyway before the call is aborted (So called Predials).

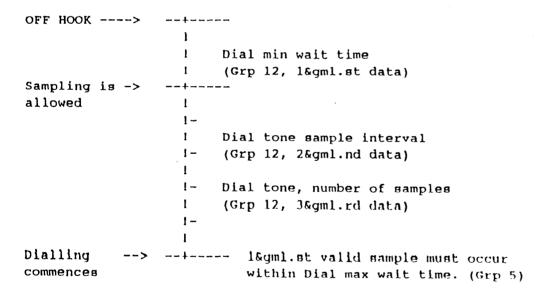


Fig 2. Dial Tone detection

ļ

| Datum | Date | They | Dokumentur | Document no | 1990-10-29 | A | 1551-CRL 117 01 Uen

5.1.13 Digit signalling Data

Grp 13

The first data define before which digit the cease of Dial Tone should be checked.

The second data defines the duration of the Tone and Pause for DTMF digit sending.

Dialling commences

```
<-- 1&gml.st digit
--+-
    Tone before digit check. (Grp 13, 1&gml.st data)
 1
        <-- 2&gml.nd digit
 1-
 1
 1 -
        <-- 3&gml.rd digit
    DTMF digit interval. (Grp 13, 2&gml.nd data)
        <-- 4&gml.th digit
 1
 1 -
        <-- 5&gml.th digit
                                            2
        <-- etc.
 1 -
```

Fig 3. DTMF Dialling

1

5.1.14 Ring Tone and Ring Signal Data

Grp 14a

First data: Minimum waiting time for Ring Tone and Ring Signal.

Second data: Maximum waiting time for Ring Signal

Third data: Maximum waiting time for Ring Tone

Fourth data: Sampling interval for Ring Signal and Ring Tone Identification

LAST DIGIT -->

```
ì
                     l
                          RING min wait time
                     ì
                          (Grp 14a, 1&gml.st data)
Sampling is ->
                   __+___
allowed
                     1
                     ì
                          RING sample interval
                     1-
                          (Grp 14a, 4&gml.th data)
                     ı
                     1 -
                          Puls/Paus Samples counts
                     1 --
                          specified in
                          (Grp 14b and 14c)
```

--+----

B-ANSWER --> --+--- All samples must occur within Ring max wait.

(Grp 14a, 2&gml.nd and 3&gml.data)

Datum Date 18ev 1990-10-29 A

Dokumentni Dacument no 1551-CRL 117 01 Uen

Grp 14b

Pulse and pause times for ring tone in alternating order. The sequence is terminated with -1 and can have a maximium of 20 elements (ten pulses and ten pauses).

Cadence counting technique:

The sampling starts after the minimum waiting time for ring tone has elapsed. The first sample may occur anytime from 0 to interval x 13.7 ms after minimum time, i.e the checks starts unsycnhronized to the sampling intervals. The ensuing samples will continue to occur at regular intervals (interval x 13.7 ms).

When the specified number of samples (the first number in the row) has indicated presence of tone (pulse), the check will move on to the second number in the row, provided it is not a zero (indicating termination of check). Any non-tone indicating sample will have no effect at all.

The second number indicates the number of non-tone samples (pause) that must be recognized before moving on to the third number in the row. Any tone indicating sample will have no effect at all.

In short - numbers with odd positions defines number of samples indicating tones, and even positioned numbers defines the number of non-tone samples. The checking procedure must have reached the terminating -1 in the row before the maximisum waiting time has elapsed.

Pulse and pause times for ring signal in alternating order. The sequence is terminated with -1 and can have a maximium of 20 elements (ten pulses and ten paunos).

Cadence counting technique:

The sampling starts after the minimum waiting time for ring signal has elapsed. The first sample may occur anytime from 0 to interval x 13.7 ms after minimum time, i.e the checks starts unsycnhronized to the sampling intervals. The ensuing namples will continue to occur at regular intervals (interval x 13.7 ms).

When the specified number of samples (the first number in the row) has indicated presence of signal (pulse), the check will move on to the second number in the row, provided it is not a zero (indicating termination of check). Any non-signal indicating sample will have no effect at all.

The second number indicates the number of non-signal samples (pause) that must be recognized before moving on to the third number in the row. Any signal indicating sample will have no effect at all.

Grp 14c

| Datum | Date | Rev | Dokumentor | Document no | 1990-10-29 | A | 1551-CRL 117 01 Uen

In short - numbers with odd positions defines number of samples indicating signals, and even positioned numbers defines the number of non-signal samples. The checking procedure must have reached the terminating -1 in the row before the maximimum waiting time has elapsed.

5.1.15 Through Connection Test Data (TCT)

Grp 15

Grp 16

Grp 17a

Grp 17b

Grp 18a

Grp 18b

Grp 18c

First data: Start time for speech path check (TCT) or duration of call state. The time is measured from B-sub's off-hook.

Second data: Interval for TCT. Four phases (three intervals) is needed for a complete TCT:

PHASE	TCT-ACTION	POSSIBLE ERROR (if failing)	
1	Check for silence on A-side Send TCT-tone from B-side	Unexpected tone at A-sub	
2	Detect TCT-tone on A-side Remove TCT-tone on B-side	No TCT-tone B->A received	
3	Check for silence on B-side Send TCT-tone from A-side	Unexpected tone at B-sub	
4	Detect TCT-tone on B-side Remove TCT-tone on A-side	No TCT-tone A->B received	
5.1.16	Minimum Release Time		
	Defines the minimum time a TC will be idling before a it can participate in a new call attempt.		
5.1.17	Call Sequence Patterns		
	If Sequence Tent is set TRUE TC's will particiapate in a sequential pattern.		
	If alternate Test is set TRUE each TC will alternate as $\Lambda\text{-sub}$ and B-sub in a regular fashion.		
5.1.18	Call Rate and Release Patterns		

The time interval between A-sub call attempts.

list of data is traversed in a circular manner.

ned in 18c.

The number of data defined in the call attempt cycle as defi-

Up to 16 different values may be defined. These data defined how many new calls attempts that will be made each time. The

	Datum - Date	Rev	Dokumentor Document no -
	1990-10-29	λ	1551-CRL 117 01 Uen i
1			

5.1.19 <u>Automatic Error Blocking</u>

Grp 19a

If set TRUE a TC will be error blocked if the corresponding error limit in Grp 19b is exceeded.

Grp 19b

Error limits for error types 0 through 12.

5.1.20 Run Timer

Grp 20a

If set TRUE, the run timer will be activated.

Grp 20b

Timer data. Up to eight values may be defined. Timer data is defined in 10 seconds intervals. When a timer value has elapsed the program will change from a RUN to a HALT condition or vice versa.

When the last timer value has been counted out, control will be returned to MS-DOS, thus making it feasible to execute the program from a BATCH file, if the timer is activated.

5.1.21 Subscriber number sequences

Grp 21a

The number offset (may be negative) are automatically added to the subscriber numbers in Grp 21b and onwards. Thus making it easy to shift the test connection left or right, provided that the subscriber numbers are defined consecutively, without having to redefine all the number sequences.

Grp 21b

Definition of subscriber number sequences. From left to right:

The first TC in the sequence.

The number of TC's in the sequence.

The fixed part of the subscriber numbers. May contain non-digit symbols i.e 'stars' and 'squares'.

An ampersand to separate from the variable part

The variable part of the first subscriber number in the sequence. May contain up to nine digits (0-9).

The full subscriber number is obtained by concatinating the fixed part with the variable part. The variable part is incremented by one for each consecutive TC in the sequence. The total numberlength may be up to 16 digits.

Grp 21c

Data defintion termination row (-1) for subscriber number sequence definitions.

Datum Date	Rev	Dokumentni - Document no
1990-10-29	λ	1551-CRL 117 01 Uen

5.2 PREPARATION OF DATA FILES (*.DAT)

One or more controlling DATA files should be prepared in advance before program execution.

The DATA files to be used can reside in another directory than the program file (PEST.EXE).

Each DATA file is usually less than one kbyte in size.

Use a simple text editor to make the alterations required in the default DATA file PEST1.DAT and save the modified file(s) with another name.

Grp 1 is used for identfication purposes and should never be changed.

Usually only rows containing such items as number of TC's, Subscriber number sequences and type of Test (sequence, alter) need to be changed.

The comments indicated in the PEST1.DAT DATA file are arbitrarily.

Only Grp 1 and Grp 2 are read in to STRING type variables. Commentary text in all other rows can be modified in any way you like.

6 START OF EXECUTION

Prepare DATA files according to the preceding section.

The default DATA file is PEST1.DAT.

To start execution with the default DATA file PESTI.DAT, issue the command:

PEST <return> <return>

A question (DATFILE?) will appear after the first <return>. An alternative is to give the proper file name (without the extension .DAT) before the second <return>.

A third alternative is to give the DATA file name on the same line (e.g for the DATA file SEQ.DAT):

PEST SEQ <return>

After a few seconds, depending mainly on the number of TC's, the Help Screen will turn up and the execution will begin.

The DATA files can even be referenced by using MS-DOS pathnames. In other words they can be located in another directory than the program file PEST.EXE.

| Datum | Date | Rev | Dokumentin | Document no | 1990-10-29 | A | 1551-CRL 117 01 Ue

6.1 USING BATCH FILES

If the the Timer On variable in the .DAT file (Grp 20 a) is set TRUE, it'll be possible to pass control automatically to and from a BATCH file. Two DEMO BAT files are included in the PEST1 volume.

X.BAT:

CLS
ECHO Running the 4.77 MHz version
DEL *.ERR
PEST V3
REN PEST1.ERR V3.ERR
PEST PEST1
ECHO That'll be all

AX.BAT:

CLS
ECHO Running the 8 MHz AT version
DEL *.ERR
ATPEST V3
REN PEST1.ERR V3.ERR
ATPEST PEST1
ECHO That'll be all

7 CHOICE OF MENUS

A Help Menu, which can be called up at any time will display the commands available.

7.1 HELP SCREEN - SINGLE REYSTRORE COMMANDS

Several commands may be typed in advance into the keyboard buffer, they will be executed one after another.

1

Hev Datum Date 1990-10-29 Λ 1551-CRL 117 01 Uen i

)

ERICSSON E PEST1

CNTL Paup

Help Screen ____________

TC state codes

0 Idle

Waiting for dial tone 1

Dialling 2

Waiting for Ringing 3

4 Speech path check (TCT)

B-gub R

Error blocked E

М Manually blocked

Trapped A-sub а

Trapped B-sub

Alt c Clear Total counters

Tab -> or <-, Change NEW CALL Cycle 0..9,: Set/Reset error trap

Keystroke Commands

State Display on/off (toggle) а

Increase of call rate fast

t Trapped errors screen

Increase call rate

Decrease call rate CNTL PgDn Decrease of call rate fast

> Release trapped TC's Т

Home Last TC error screen

REJECTS (Move cursor to TC) Ing

Alt e Create an error file (.ERR)

Freeze execution (toggle) Alt f

Alt r Stop traffic and reset counters

b/d Block/Deblock TC from active service

a

F1 Scroll through all screens

F10 Main screen

F9 Help Screen

Start/Stopp r

50% predial on/off р

Exit to DOS Alt F7

Simulation

Ser Id beta =================

Comments on the commands:

PaUp Pressing the key once will decrease the call inter-

val by one, thus increasing the call rate.

Pressing the Control key simultaneously will dec-

rease the call interval by ten.

PaDn Pressing the key once will increase the call inter-

val by one, thus decreasing the call rate.

Pressing the Control key simultaneously will inc-

rease the call interval by ten.

Tab Tab Left or Right. Will increase or decrease the

Release Cluster Cycle length as defined in the exp-

lanation of the DATA file. Grp 18.

By pressing a digit 0..9 or colon (:) a Trap will 0..9,:

be set/reset for the corresponding error. All traps

will be reset when the first anticipated g

occurs.

Toggles the TC state indication on the M

By not showing the TC states concurrently

possible to reach an even higher call peck

3

| Datum | Date | 18ev | | Dokumentor | Document or | 1551-CRI, 117 01 Uen

t Shows the most recently trapped errors. See The Error Trapping Section.

T Releases all trapped TC's. The trapped TC's are indicated on the Main Screen

Home last to error encountered Last TC Errors Screen.
Shows the most recently occurred errors for each TC as well as the blocked TC's.

By pressing the Arrow keys it is possible to move the blinking character that marks the TC, that is about to be inspected with the 'Ins' key.

Ins The Ins key will give you the Individual Statistics for the selected TC. See the Home key.

Alt e Pressing these keys will compile a result file containing the contents of the Perror counters for faulty TC's.

The compilation will take a few seconds during which the traffic will be suspended.

A message will be displayed on screen 3:

ERICSSON E PEST1

Wait while an Error report file is being Created ...

The execution can be freezed temporarily. May be used in order to simulate errors while in the simulation mode. Se the beginning of the DATA file.

Alt r Stops the traffic and resets all counters.

b/d By pressing the Home key and move the blinking character to the appropriate TC, it will be possible to block (b) or deblock (d) the TC. The blocked TC will be removed from traffic and marked with an 'M'.

F1 Will dimplay all uned acreens in according order

F10 Will show the main screen where the Total Error Counters and the concurrent TC states are displayed.

F9 Will display this screen with all the single keys troke commands.

r Start/Stopp toggle switch.

Datum Date IRev Dokumentor Document on A 1990-10-29 1551-CRL 117 01 Uen

p

50% predial Toggle switch. If activated (see the upper right corner in the Main Screen) an unrecognized Dial Tone will result in a 50% probability of the TC's dialling all the digits anyway and then hang up.

ERICSSON E PEST1

PEST Main Screen

v3.DAT

Predial 0

ACCEPTED NEW CALL Total Calls Calls/min Interval Cycle

;

TC states 01234567890123456789012345678901

1 10 3

Error trap

2BB00B0B4B003000402BB2220B000400 O MHO40BBB3B4BM00BBMB0403BB1002100

Alt F7 Exit to DOS

Clear Total Counters. Clears only the summary coun-Alt c ters as opposed to Alt r.

7.2 MAIN SCREEN

Displayed on the Main screen are such events as:

- Total number of accepted calls. Updated every six а second.
- b Call rate. Whenever you run out of idle TC:a, "No free A(B)-sub" will flash on the screen. It will disappear if you decrease the call rate sufficiently.

| Datum | Date | | Rev | | Dokumentor | Document on | 1990-10-29 | A | 1551-CRL 117 01 Uer

ERICSSON E PEST1 PEST Main Screen a9.DAT 0 ACCEPTED NEM CYLL No free A(B)-sub TC states 01234567890123456789012345678901 Total Calls Calls/min Interval Cycle EM-----00 1 1 O 01001000M1010001M001000M0M11M0MM Error trap 1 M110MM0100M101M1M11010000MM00101 Instant TC states а Blocked TC's b Summary counters for rejected calls. The counters are updated as the errors occur. ERICSSON E PEST1 PEST Main Screen PEST1.DAT 0 ACCEPTED NEW CYLL TC states Total Calls Calls/min Interval Cycle 01234567890123456789012345678901 211780 3800 1 2 FM------Error trap O 1210M0B22BB3M33B3B4B2B2M20BBBB2B 1 B1B030B4B423221B24B41B20BB3BB0B2 2 000BB02210210020B04BBB42B12BB310 NO. REJECTS 3 20BMMMMMMMB42B3303B3B0201B2BBBB ********** 4 B4003B220B2B2B24204B1B2103203232 4 0 Missing Dial tone 5 0BB4120420B4B10042B20B24B0410200 1 Incomplete Dial tone 2 Tone after digit 7 1B1B20B40B03222B1B0B41224010BBB2 3 Missing Ring signal 8 22222244BB3B0BBBBBBB02B4B0BB0B10 4 Incomplete Ring signal 9 2B0410BB20BB10BB003B0003B12B22B0 5 Missing Ring tone 10 1BB2010B04BBB2021443BB24B030044B 6 Incomplete Ring tone 11 22B42BBB02B0B3BBBB404B3B2B4002B4 7 Unexpected tone at A-sub 12 20022BB00BB2022B4BB0B0B0B0B242223 8 No TCT-tone B->A received 13 0B040BBB2B23100BB1300B002B3234B0 9 Unexpected tone at B-sub 14 OB10BB420B20B02B2020242B3B3B20BB 10 (:) No TCT-tone A->B received 15 13B022BB2B22B2100122B0B32B21BBBB Nr of Predials 01234567890123456789012345678901 Simulation

The call rate displays the intermission (in 13.7 ms units) between releasing TC's for call originations. Thus the same figure can mean different things due to variations in the release cluster profile (see the IN DATA file section).

1990-10-29

Tiles,

Dokumentor Document no 1551-CRL 117 01 Uen

7.3

LAST TC ERROR SCREEN

ERICSSON E PEST1 Last TC error end	countered 2
Individual TC Statistics Subcariber No. 60045	TC error 01234567890123456789012345678901
45 TC 5 A-calls 5 B-calls	0 ()()MO()()()MO(66)(O()5M()()()() 1 ()()()(O()()(6()(O()()(5()()()() 2 ()(4()()()()()()5)(O()(O(6()()()()6 3 ОО(НМИМИМИМ)О)О)()()()()()()()()()
No. REJECTS	4 (5()(0(0(0)(0()5)60()0)()()()6) 5 ()()()()()()()()()(6()()0)()()
O Missing Dial tone 1 Incomplete Dial tone	6 ()()()()6)()()()()()(0()6)()()(54) 7 ()()()()()()()()()()()()()()()()
2 Tone after digit 3 Missing Ring signal	8 ()()()()(6()()()()()()()()()()() 9 ()()()()66()5)()(0()()()()()6)()()
4 Incomplete Ring signal5 Missing Ring tone1 6 Incomplete Ring tone	10 (0()6)()()()(6()()()()6)(55)()() 11 ()()(0()(5(5()6)0)()()()()()()()()
7 Unexpected tone at A-sub 8 No TCT-tone B->A received	12 ()()()6)()()06()(0()0)()()()0)() 13 ()()()()55()()()(0()()5)()0)() 14 ()()()()()()()()()()()()()()5)
9 Unexpected tone at B-sub 10 (:) No TCT-tone A->B received	15 ()(5(4()()()()()()()()()()()()()
11 (;) No TCT-tone B->A sent 12 (<) No TCT-tone A->B sent	01234567890123456789012345678901 Simulation

7.3.1 Call abortions on error

Whenever an error is encountered the call is immediately aborted. The errors are checked in the order given by the error code. The sum of the errors for error code 0 through 10 in the Main Screen is the total number of errors encountered.

ERRC Error Codes. O Missing Dial tone 1 Incomplete Dial tone 2 Tone after digit 3 Missing Ring signal 4 Incomplete Ring mignal 5 Missing Ring tone I6 Incomplete Ring tone 7 Unexpected tone at A-nub 8 No TCT-tone B->A received 9 Unexpected tone at B-sub 10 (:) No TCT-tone A->B received 11 (;) No TCT-tone B->A ment 12 (<) No TCT-tone A->B sent

The abortion conditions for the various error codes EPPC are outlined in the following. References are made to the explanations of the DATA file (*.DAT).

| Datum | Date | URev | Dokumentor | Document no | 1990-10-29 | \hbfrac{\Lambda}{\Lambda} \hbrace 1551-CRL | 117 | 01 | Uen |

ERRC	Error code.
0	If the Dial Tone Max Wait for the TC (Grp 5a or 5b in the *.DAT file) elapses before the detection of any tone, then a call abort with ERRC=0 will occur.
1	If one tone sample is positive before the Dial Tone Max Wait elapsed, then all ensuing samples must also be positive or else a call abort with ERRC=1 will occur.
2	If a positive tone sample is detected before the digit, whose position is defined as the first data in Grp 13, then the call will be aborted with ERRC=2.
3	If no positive sample of the ring signal is encountered at the B-TC before the Rsig-max (2nd data in Grp 14a), then the call will be aborted with ERRC=3.
4	If not a complete set of samples of the ring signal is encountered at the B-TC before the Rsig-max (2nd data in Grp 14a), then the gall will be aborted with ERRC=4.
	The data in Grp 14c states in alternating order the minimum number of samples for pulse, paus, pulse etc. Up to 20 data can be defined.
5	If no positive sample of the ring tone is encountered at the A-TC before the Rtone-max (3rd data in Grp 14a), then the call will be aborted with ERRC=5.
6	If not a complete set of samples of the ring tone is encountered at the A-TC before the Rhone-max (3rd data in Grp 14a), then the call will be abouted with ERRC=6.
	The data in Grp 14b states in alternating order the minimum number of samples for pulse, paus, pulse etc. Up to 20 data can be defined.
7	If a tone is indicated at the Λ -TC after the time defined as the first data in Grp 15 has elapsed, then call abort with ERRC=7 will occur.
8	The tone sent from the B-TC to the A-TC was not detected on the first try. Call about with EPPC 8

for the A-TC and ERRC=11 for the B-TC is executed.

- 9 If a tone is indicated at the B-TC after the time defined as the first data in Grp 15 has elapsed, then call abort with ERRC=9 will occur.
- The tone sent from the A-TC to the B-TC was not detected on the first try. Call abort with ERRC-10 for the B-TC and ERRC=12 for the A-TC is executed.

0

atum Date | Hev | Dokumentor Cocument no | 1990-10-29 | \hbegin{align*} \hbegin{align*} \text{Dokumentor Cocument no} \\ 1551-CRL 117 01 Uen | \end{align*}

ERICSSON E PEST1 PEST Main Screen PEST1.DAT NEW CYLL TC states Total Calls Calls/min Interval Cycle 01234567890123456789012345678901 2 1636 1450 1 EM------Error trap 3 OOOMMMMMMM000000000000000000000 No. REJECTS ******* O Missing Dial tone 12 1 Incomplete Dial tone 2 Tone after digit 3 Missing Ring signal 4 Incomplete Ring signal 5 Missing Ring tone 6 Incomplete Ring tone 7 Unexpected tone at A-sub 8 No TCT-tone B->A received 9 Unexpected tone at B-sub 10 (:) No TCT-tone A->B received Nr of Predials 01234567890123456789012345678901

S

Simulation

3

After the error is trapped

ERICSSON E PEST1

09:35:16 Trapped error: 6 Incomplete Ring tone

TC EM Ptr Subscriber number

A-sub 238 7 14 60238 B-sub 351 10 31 60351

The Trapped error printout

8 TRAFFIC STATISTICS

Only faulty TC's will be printed in the PESTI.EPR file.

Excerpt from an Error file of a test run :

| Datum | Date | Rev | Dokumentii | Document in | 1990-10-29 | N | 1551-CRL | 117 | 01 | Uen |

ERICSSON Bulk Traffic Generator PEST1

*.DAT file = PEST1.DAT

TRAFFIC STATISTICS

EXCHANGE: US1 K2 Test Site

05-19-89 13:09:26

Total number of accepted calls= 9724
Total number of predial calls= 29

	SU	MMARY CO	DUNTERS			
DIVL	POST	RING	RING	THROUG	H CONNE	CTION
TONE	DIGIT	SIGNAL	TONE	Noise	Rec.	Send
none	tone	none	none	V	λ	A
short		partly	partly	В	В	В
30	n	10	8	0	0	0
0	Ü	10	29	0	0	0

Wait for Dial Tone distribution (ms)
Lower bounds 112 252 392 532 672 812 952 1092
Number 5098 608 0 0 0 0 0 18

INDIVIDUAL COUNTERS DIAL POST RING RING THROUGH CONNECTION CALLS TONE DIGIT SIGNAL TONE Noise Rec. Send Test Circ. Λ none tone none none Α Λ Λ Subscr. # В short partly partly B 9 0 0 0 2 0 0 () () *720**#** 13 0 1 0 0 0 Max Dial Wait= 150 Nr of Predials= 14 12 1 0 0 0 0 0 0 60014 11 0 0 () () Max Dial Wait= 150 Nr of Predials= ** 0 () 23 10 0 0 0 () 1 60023 () 13 Ω 0 0 () Max Dial Wait= 150 Nr of Predials= 30 10 O 0 () 0 0 0 () 60030 13 0 0 0 0 1 Max Dial Wait= 150 Nr of Predials=

i	Datum - Date	IRev	Dokumentor Document no -
	1990-10-29	λ	1551-CRL 117 01 Uen

Explanations (INDIVIDUAL COUNTERS), col 2 - col 9 are event counters:

Col 1 Test Circ. Test circuit number.

Subscr. No. Subscriber number.

Col 2 CALLS A. Number of originating calls.

CALLS B. Number of terminating calls.

Col 3 DIAL TONE none. No tone what so ever were detected.

DIAL TONE short. A tone has been detected, but the number of approved consecutive samples were too few.

- Col 4 POST DIGIT tone. A tone was detected after digit.
- Col 5 RING TONE none. No Ring tone at all was detected.

RING TONE partly. A Ring tone was only partially detected.

Col 6 RING SIGNAL none. No Ring signal at all was detected.

RING SIGNAL partly. A Ring signal was only partially detected.

THROUGH CONNECTION TEST (TCT)

Col 7 Noise A. An unidentified tone was detected by the originating TC.

Noise B. An unidentified tone was detected by the terminating TC.

Col 8 Rec. A. The through connection tone from B to A was not detected by A-sub.

Rec. B. The through connection tone from Λ to B wan not detected by the B-sub.

Col 9 Send A. The through connection tone from A to B was not detected by B-sub.

Send B. The through connection tone from B to Λ was not detected by Λ -sub.

| Datum Date | They | Dokumentor Document or | 1990-10-29 | N | 1551-CRI, 117 01 Uer

9 UTILITY PROGRAM (UTIL.EXE)

First you will be prompted of the number of Test Circuits.

Then a Menu will appear with three different subtests. You can obtain further explanation by entering the letter for the relevant test as a BLOCK letter.

9.1 MASS CALL TEST (M)

This subttest performs simultaneous OFFHOOK and ONHOOK operations on all defined Test Circuits.

The OFFHOOK and ONHOOK times are set in 55 ms units.

9.2 TG DIAGNOSTIC TEST (D)

This subtest performs three types of tests on the defined Test Circuits.

The TG-MDF cables should not be connected at the MDF end.

The three Tests in order of appearance are:

- a Crosstalk Open loop Test. Sends a tone from all but one Test Circuit at a time and checks that the tones is not detected by the silent TC. All TC's are in open loop condition.
- b Tone Detection Closed loop Test. Sends a tone from one TC at a time and checks that the presence of the tone can be detected by the TC's own detection circuit. The TC's loop is closed.
- c Loudspeaker Beep Test. Sends a short beep to one speaker at a time. The beep should be noticed by the operator.

9.3 OPEN LOOP TONE INDICATION (T)

This subtest puts all defined TC's in open loop condition and shows in real time with inversed video all TC's that indicate tones. Might be useful sometimes.

