ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Mecánica y Ciencias de la Producción

Diseño de una máquina despaletizadora de botellas semiautomática

TRABAJO FINAL DE GRADUACIÓN

Materia Integradora

Previo la obtención del Título de:

INGENIERO MECÁNICO

Presentado por:

Pablo César Orozco Bueno

GUAYAQUIL - ECUADOR

Año: 2016

AGRADECIMIENTOS

Agradezco a Dios, mi familia, profesores, compañeros y mi novia, porque gracias a todos ellos me esforcé para realizar este trabajo.

DECLARACIÓN EXPRESA

"La responsabilidad del contenido desarrollado en la presente propuesta de la materia integradora corresponde exclusivamente al equipo conformado por:

Autor: Pablo Orozco Bueno

Director 1: MSc. Ernesto Martínez Director 2: Phd. Ángel Ramírez

y el patrimonio intelectual del mismo a la Facultad de Ingeniería Mecánica y Ciencias de la Producción (FIMCP) de la ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL".

Pablo Orozco Bueno

Ing. Ernesto Martinez

PND. Angel Ramírez

RESUMEN

La línea de envasado de una cervecería local está diseñada para recibir botellas

usadas, pero en la práctica también recibe botellas nuevas. Ambas opciones ingresan

con diferentes disposiciones: las usadas sobre pallets armados con jabas, y las nuevas

como bultos sin jabas. Se requiere de veintidós personas para adaptar el ingreso de

botellas nuevas a la línea.

El presente proyecto tiene como finalidad aumentar la eficiencia en la producción

reduciendo tiempos, accidentes, y costos. El objetivo específico es diseñar una

máquina despaletizadora de botellas semiautomática, que se acople al presupuesto

del departamento de mantenimiento de la fábrica. La máquina debe adaptarse a los

cuatro formatos de botellas que utiliza la empresa actualmente. Además, debe cumplir

con la cifra requerida de botellas ingresadas diariamente.

La metodología consistió en analizar el proceso en campo, investigar sobre máquinas

despaletizadoras existentes, y registrar los recursos utilizados inicialmente en el

proceso de Encajonado. A partir de los requerimientos se hizo un diseño conceptual

para poder plantear alternativas, y se evaluó la solución en base a factores de diseño.

Para justificar la propuesta de crear un proceso nuevo, se acudió al Decreto 2393,

"Reglamento de Seguridad y Salud de los Trabajadores", el cual fue utilizado para

evaluar la condición de trabajo del personal que realiza el encajonado.

Para los cálculos del diseño final, se utilizaron factores de seguridad que certifican que

las vigas, moto-reductores, y demás mecanismos de traslación, podrán trabajar bajo

condiciones desfavorables. Se realizó un análisis de costos, de lo cual resultó más

favorable implementar la mejoría, ya que el uso de la máquina permitirá retornar su

inversión en cuatro meses, triplicará la productividad de la línea y mejoraría el Tiempo

de Inicio de producción a la mitad del tiempo tomado.

Palabras Clave: Productividad, Despaletizadora de botellas, Tiempo de Inicio.

Ī

ABSTRACT

The packaging line of a local brewery is designed for used bottles, but in practice also

receives new bottles. Both options enter with different arrangements: those used on

pallets armed with cases, and new like lumps without cases. It takes twenty-two people

to adapt to the entry of new line bottles.

This project aims to increase efficiency in reducing production times, accidents, and

costs. The specific objective is to design a semiautomatic bottles depalletizer, which

engages the budget of the maintenance department of the factory. The machine must

be adapted to the four formats of bottles the company currently uses. In addition, it

must meet the required number of bottles entered daily.

The methodology consisted of analyzing the process field, researching existing

depalletizers machines, and record the resources initially used in the process

Encasing. From the requirements, it was made a conceptual design to propose

alternatives, and the solution based on design factors were evaluated.

To justify the proposal to create a new process, the Decree 2393, "Regulations on

Safety and Health of Workers" was read, which was used to assess the working

conditions of staff performing encasing.

For calculations of the final design, safety factors certifying that the beams, gear

motors, and other translation mechanisms may work under unfavorable conditions

were used. A cost analysis was performed of which was more favorable to implement

the project, since the use of the machine permitted to return its investment in four

months, tripling the line productivity and improving the startup time of production to half

the time taken.

Keywords: Productivity, Bottle Depalletizer, Start-up time.

Ш

ÍNDICE GENERAL

RESUMEN		l
ÍNDICE GE	NERAL	III
ABREVIAT	URAS	VI
SIMBOLOG	9ÍA	VII
ÍNDICE DE	FIGURAS	X
ÍNDICE DE	TABLAS	XII
ÍNDICE DE	PLANOS	XIII
CAPÍTULO	1	1
1. INTRO	DUCCIÓN	1
1.1 De	scripción del problema	1
1.2 Ob	jetivos	4
1.2.1	Objetivo General	4
1.2.2	Objetivos Específicos	4
1.3 Ma	rco teórico	4
1.3.1	Marco Legal	4
1.3.2	Ergonomía	6
1.3.3	Principio de funcionamiento de una despaletizadora	7
CAPÍTULO	2	10
2. Metodo	ología del Diseño	10
2.1 Dis	eño Conceptual	18
2.2.1. F	Parámetros Iniciales	18
2.2.2. F	Parámetros de diseño	19
2.2 Sel	ección de Alternativas	20
2.3.1 S	istema de Elevación	21
2.3.2 S	istema de Barrido	23

	2.	3.3 Sistema de Sujeción	. 24
2	2.3	Diseño de forma	. 25
2	2.4	Diseño Detallado	. 26
	2.	5.1 Velocidad Nominal de la máquina Despaletizadora:	. 26
	2.	5.2 Diseño del Sistema de Barrido	. 28
	2.	5.2.1 Diseño del Carro Porta Botellas	. 36
	2.	5.2.2 Diseño por Cortante de los pernos	. 37
C/	۱PÍ	TULO 3	. 48
3.	RE	SULTADOS	. 48
(3.1	Bosquejo	. 48
(3.2	Características Principales	. 49
(3.3	Selección de elementos mecánicos	. 50
;	3.4	Dimensiones finales y equipos	. 53
(3.5	Simulaciones	. 54
(3.6	Costos	. 55
;	3.7	Análisis de costos de la máquina y tiempo de retorno de la inversión	. 56
	Aı	nálisis de ingresos	. 56
	Aı	nálisis de egresos de la máquina	. 56
	Aı	nálisis de ganancia neta por año	. 57
;	3.8	Análisis de ergonomía aplicada en la máquina	. 58
	Fa	actor de Distancia Horizontal (HM)	. 59
	Fa	actor de Desplazamiento Vertical (DM)	. 59
	Fa	actor de Asimetría (AM)	. 60
	Fa	actor de Agarre (CM)	. 61
	Aı	nálisis por medio de software	. 62
~ 1	ΔÞÍ٦		64

4. Discusión y Conclusiones	64
Recomendaciones	66
BIBLIOGRAFÍA	67
APÉNDICES	68
APÉNDICE A	69
APÉNDICE B	87
APÉNDICE C	118

ABREVIATURAS

ESPOL Escuela Superior Politécnica del Litoral

FIMCP Facultad de Ingeniería en Mecánica y Ciencias de la Producción

ASTM American Society for Testing and Materials

AISI American Iron and steel Institute

CAD Diseño Asistido por Computadora

NIOSH National Institute for Occupational Safety and Health

NTP Nota Técnica de Prevención

LPR Límite de Peso Recomendado

CDPI Corriente Directa con Polaridad Invertida

CA Corriente Alterna

SIMBOLOGÍA

h Altura

b Ancho De Sección Transversal

θ Ángulo. A Área

botellas/h Botellas por hora

Cr Carga Dinámica Equivalente Para Rodamientos Radiales

cm Centímetro

μ Coeficiente De Fricción Dinámico.

δ Densidadd Diámetro

c Distancia Desde Eje Centroidal A Extremo

ε Eficiencia

σa Esfuerzo De Flexión Alterno

σm Esfuerzo De Flexión Medio

т Esfuerzo Producido Por Cortante

σ Esfuerzo Producido Por Flexión

σ' Esfuerzo Von Misses

e Espesor

n Factor De Seguridad

F Fuerza

Fa Fuerza Axial

Pcr Fuerza Crítica De Columna

F' Fuerza Primaria Debido a Cortante

F" Fuerza Secundaria Debido a Par Torsional

R1, R2 Fuerzas De Reacción En Apoyos

^o Grados

gr Gramo

g Gravedad

Horas Horas J Joule

J/seg Joule Por Segundo

K Watts Kilo Vatios

Kg m² Kilogramo Metro Cuadrado Kg/m³ Kilogramo Por Metro Cúbico

Kg Kilogramos

Psi Libra Por Pulgada Cuadrada

Lb in Libra Pulgada

Lb Libras

Ssy Límite De Fluencia Elástico al Cortante

Se Límite De Resistencia a La Fatiga Corregido
Se' Límite De Resistencia a La Fatiga Sin Corregir

Sy Límite Elástico a Tensión

L Longitud

Leff Longitud Efectiva De Columna

m Masa

MPa Mega Pascales

m Metro

m⁴ Metro a la cuarta

m2 Metro cuadrado

m3 Metro cúbico

m/seg Metros por segundo

m/seg² Metros por segundo al cuadrado

mm Milímetro

E Módulo de elasticidad

M Momento

Iz Momento de inercia con respecto al eje Z

N Newton

N m Newton metro

N/m Newton por metro

N seg/m Newton segundo por metro

Pa Pascales

ft Pie

fpm Pies por minutos

Pot Potencia

In-1 Pulgada a la menos uno

in Pulgadas

in² Pulgadas al cuadrado

Rad Radianes

Rad/seg Radianes Por Segundo

Rad/seg² Radianes Por Segundo Cuadrado

r Radio

Ratio Relación De Velocidades.

rpm Revoluciones Por Minuto

Seg Segundos

t Tiempo

T Torque Watts Vatios

V Velocidad

ω Velocidad De Rotación O R.P.M.

L10h Vida Nominal Básica a 10 Revoluciones

V Volumen

ÍNDICE DE FIGURAS

Figura 1.1 Bultos de botellas de vidrio al granel apilados	2
Figura 1.2 Bulto de botellas de vidrio al granel, dañado por factores externos	3
Figura 1.3 Un grupo de personas proceden a encajonar antes de producción	3
Figura 1.4. Despaletizadora a granel con descarga a nivel bajo	8
Figura 1.5. Partes Constitutivas de una Despaletizadora	9
Figura 2.1 Diagrama de la Metodología de Diseño	. 10
Figura 2.2 Alimentación de cajas a la Línea de Envasado	. 11
Figura 2.3 Representación del funcionamiento de la Despaletizadora de Cajas	. 11
Figura 2.4. Representación del funcionamiento de la Desencajonadora	. 12
Figura 2.5. Representación del funcionamiento de la Lavadora de Botellas	. 12
Figura 2.6. Representación del funcionamiento del Inspector de Botellas	. 13
Figura 2.7. Representación del funcionamiento de la Envasadora	. 13
Figura 2.8. Representación del funcionamiento de la Pasteurizadora	. 14
Figura 2.9. Representación del funcionamiento de la Etiquetadora	. 14
Figura 2.10. Representación del funcionamiento de la Encajonadora	. 14
Figura 2.11. Representación del funcionamiento de la Paletizadora	. 15
Figura 2.12. Layout del área de Envasado	. 16
Figura 2.13. Diagrama del Proceso de Envasado	. 17
Figura 2.14. Ilustración de un pallet con placas intercaladas y bandeja invertida	. 18
Figura 2.15. Ilustración del Diseño de forma de la Despaletizadora de Botellas	. 25
Figura 2.16. Gráfica de la velocidad de la línea de Envasado	. 26
Figura 2.17. Diagrama de Cuerpo Libre de una cama de botellas	. 30
Figura 2.18. Perfiles de sujeción pegados a bandas plásticas color verde	. 30
Figura 2.19. Sección transversal del perfil para el Sistema de arrastre	. 31
Figura 2.20. Diagrama de Cuerpo Libre del perfil	. 31
Figura 2.21. Diagrama de Fuerza Cortante del perfil.	. 33
Figura 2.22. Diagrama de Momento Flector del perfil.	. 33
Figura 2.23. Diagrama de Cuerpo Libre del Carro Porta Botellas	. 37
Figura 2.24. Diagrama de Fuerzas de Viga Carrilera W	. 39
Figura 2.25. Diagrama de Fuerzas y Momentos de Viga Carrilera W	. 41

Figura 2.26. Diagrama de Fuerzas de la Columna	43
Figura 2.27. Diagrama de Schaeffler	45
Figura 2.28. Diseño detallado de la Despaletizadora de Botellas Semiautomática	. 47
Figura 3.1. Perno elegido para colocar ruedas del carro porta botellas	. 51
Figura 3.2. Vista Isométrica de las ruedas del carro porta botellas	. 52
Figura 3.3. Vista del perfil de las columnas	. 52
Figura 3.4. Simulación de Fuerzas Cortantes	54
Figura 3.5. Simulación de Momentos Flectores en el Perfil de Arrastre L	54
Figura 3.6. Simulación de Momentos Flectores en el Perfil de Arrastre L	. 54
Figura 3.7. Resultados del software de análisis de carga	62

ÍNDICE DE TABLAS

Tabla 1. Pesos que puede soportar un trabajador	5
Tabla 2. Factores de la Ecuación de NIOSH	7
Tabla 3. Descripción de las Partes Constitutivas de una Despaletizadora	9
Tabla 4. Especificaciones Técnicas de las botellas	. 19
Tabla 5. Matriz de Decisión para la selección del Tipo de Despaletizadora	. 20
Tabla 6. Matriz de Decisión para la selección del Sistema de Elevación	. 21
Tabla 7. Matriz de Decisión del Mecanismo de Transmisión de Potencia	. 22
Tabla 8. Matriz de Decisión para la selección del Sistema de Barrido	. 23
Tabla 9. Matriz de Decisión del Mecanismo de Transmisión de Potencia	. 23
Tabla 10. Matriz de Decisión para la selección del Sistema de Sujeción	. 24
Tabla 11. Tabla de tiempos y velocidades para el proceso de despaletizado	. 27
Tabla 12. Tabla de propiedades físicas del perfil de barrido	. 32
Tabla 13. Dimensiones y parámetros para el Sistema de Barrido	. 35
Tabla 14. Parámetros en el factor de la condición Superficial de Marin	. 38
Tabla 15. Constantes de Condición de Extremo	. 43
Tabla 16. Composición química de acero AISI 304	. 44
Tabla 17. Factores de Concentración de esfuerzos	. 46
Tabla 18. Propiedades del moto-reductor	. 50
Tabla 19 Clase métrica de propiedad mecánica de perno Clase 4.6	. 51
Tabla 20. Materiales y dimensiones	. 53
Tabla 21. Costos de materiales de la máquina	. 55
Tabla 22. Costos Generales de Construcción	. 56
Tabla 23. Tabla de Ingresos y Egresos	. 57
Tabla 24. Ganancia Neta por la inversión por año	. 58
Tabla 25. Resultados de Van y Tir	. 58
Tabla 26. Análisis de NIOSH	. 59
Tabla 27. Repeticiones y velocidad del Trabajo Manual	. 60
Tabla 28. Tiempo del Trabajo Manual	. 60
Tabla 29. Tipo de agarre de cajas	. 61
Tabla 30. Factores para los distintos niveles	. 61

ÍNDICE DE PLANOS

- PLANO 1 Implementación general del muelle
- PLANO 2 Ubicación de ánodos en tablestacado frontal
- PLANO 3 Ubicación de ánodos en tablestacado lateral norte y sur

CAPÍTULO 1

1. INTRODUCCIÓN

Para la industria de las bebidas, las máquinas de despaletizado cumplen una función muy importante, la cual es darles en el menor tiempo posible la cantidad requerida de botellas para empezar la producción.

La línea de Envasado de la fábrica en mención, no cuenta con un sistema de transporte que ingrese los bultos de botellas, y los envíe directamente fila por fila hacia las cadenas transportadoras. El problema de comprar una despaletizadora de botellas, es que no se fabrican en el país, tienen un alto costo, incluyendo el de instalación e importación y la demora de repuestos.

Al no tener esta máquina, en su reemplazo se realiza el proceso llamado "Encajonado", pero al ser un trabajo manual cuenta con varias desventajas. La solución para todo esto es la construcción de una despaletizadora de botellas sencilla, económica, utilizando elementos que se puedan encontrar en la misma empresa o en la industria ecuatoriana.

1.1 Descripción del problema

Una cervecería local produce cervezas en botellas retornables y no retornables; para producir ambos tipos, se requiere dos procesos distintos para que las botellas pasen de estar en jabas sobre pallets, a circular unitariamente por la línea de producción. La mini planta está diseñada para trabajar únicamente con botellas retornables usadas, que llegan en jabas, por lo que la fábrica se tuvo que adaptar al diseño actual y crear un proceso para incluir también las botellas nuevas, que pueden ser de tipo retornable o no.

El primer caso, es cuando regresan en jabas las botellas retornables usadas por el consumidor, y pasarán por el proceso normal para el cual fue diseñada la línea de Envasado.

El otro caso, se da cuando se compra envases nuevos a una empresa fabricante de vidrio; éstos no vienen en cajas, sino empaquetados en pallets llamados "bultos", y para este tipo de entrega, no se cuenta con una máquina que realice un proceso de descarga directa hacia la línea de Envasado. En la Figura 1.1 se puede apreciar un grupo de bultos de botellas que luego serán encajonados.

Por tal motivo, cuando se debe envasar cerveza con botellas nuevas, de tipo retornable o no retornable, un grupo de 22 personas con alta rotación de personal, se encarga de ubicar las botellas en jabas y luego agruparlas para armar un pallet, tal como se visualiza en la Figura 1.3. El procedimiento se realiza retirándolas manualmente de cada piso, siendo un proceso ineficiente por la utilización de muchas horas hombre, lento y casualmente con caídas de botellas ya que las botellas a veces se encuentran inclinadas; en la Figura 1.2 se muestra un bulto que puede causar accidentes al momento de encajonar. Este trabajo también causa riesgos ergonómicos debido a las posturas y esfuerzos realizados, a pesar de esto, no logran lo más importante que es entregar las botellas a una velocidad mayor que la de la Envasadora, que es de 30000 botellas/hora.

Es factible analizar una propuesta de una máquina que cumpla efectivamente con un requerimiento mayor al de la Envasadora, y adicionalmente permita recuperar su inversión en un tiempo adecuado.

Figura 1.1 Bultos de botellas de vidrio al granel apilados

Fuente Elaboración propia.

Figura 1.2 Bulto de botellas de vidrio al granel, dañado por factores externos Fuente Elaboración propia.

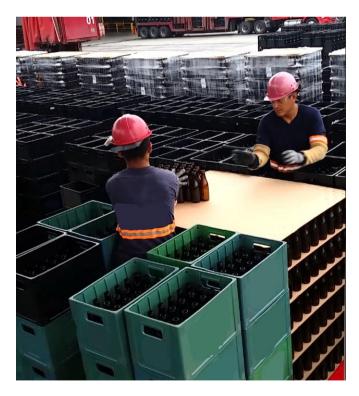


Figura 1.3 Un grupo de personas proceden a encajonar antes de producción Fuente Elaboración propia.

1.2 Objetivos

1.2.1 Objetivo General

Diseñar a base de los requerimientos de una cervecería local, una despaletizadora de botellas de vidrio semiautomática, y construir un prototipo de la máquina para mostrar sus movimientos principales.

1.2.2 Objetivos Específicos

- Diseñar una máquina despaletizadora semiautomática de bajo costo, que se acople a la planta de Envasado de la fábrica.
- Realizar un análisis de costos para verificar la rentabilidad de la construcción de la máquina a nivel local.
- Realizar el prototipo a escala con su sistema de control, para que realice la demostración de sus movimientos.
- Realizar los planos de construcción del diseño de la máquina despaletizadora de botellas.

1.3 Marco teórico

1.3.1 Marco Legal

El Código del Trabajo en el Art. 347, define los Riesgos del trabajo en los siguientes términos; "Riesgos del trabajo son las eventualidades dañosas a que está sujeto el trabajador, con ocasión o por consecuencia de su actividad." Para los efectos de la responsabilidad del empleador se consideran riesgos del trabajo las enfermedades profesionales y los accidentes.

El Art. 348 define al accidente de trabajo en los siguientes términos; "Es todo suceso imprevisto y repentino que ocasiona al trabajador una lesión corporal o perturbación funcional, con ocasión o por consecuencia del trabajo que ejecutada por cuenta ajena".

El Decreto Ejecutivo 2393 Reglamento de Seguridad y Salud de los trabajadores, en El Capítulo V. Manipulación y Almacenamiento, art. 128 Manipulación de Materiales, detalla lo siguiente:

- El transporte o manejo de materiales en lo posible deberá ser mecanizado, utilizando para el efecto elementos como carretillas, vagonetas, elevadores, transportadores de bandas, grúas, montacargas y similares.
- Los trabajadores encargados de la manipulación de carga de materiales, deberán ser instruidos sobre la forma adecuada para efectuar las citadas operaciones con seguridad.
- Cuando se levanten o conduzcan objetos pesados por dos o más trabajadores, la operación será dirigida por una sola persona, a fin de asegurar la unidad de acción.
- 4. El peso máximo de la carga que puede soportar un trabajador será el que se expresa en la tabla siguiente:

Tabla 1. Pesos que puede soportar un trabajador

Varones hasta 16 años	35 libras
Mujeres hasta 18 años	20 libras
Varones de 16 a 18 años	50 libras
Mujeres de 18 a 21 años	25 libras
Mujeres de 21 años o más	50 libras
Varones de más de 18 años	Hasta 175 libras.

Fuente Decreto Ejecutivo 2393 Reglamento de Seguridad y Salud de los trabajadores, en el Capítulo V. Manipulación y Almacenamiento, art. 128 Manipulación de Materiales.

No se deberá exigir ni permitir a un trabajador el transporte manual de carga cuyo peso puede comprometer su salud o seguridad.

 Los operarios destinados a trabajos de manipulación irán provistos de las prendas de protección personal apropiadas a los riesgos que estén expuestos En el Art. 101. Manipulación de las cargas, del Reglamento de Seguridad y Salud de los Trabajadores y Mejoramiento del Medio Ambiente de Trabajo se expresa: "La elevación y descenso de las cargas se harán lentamente, evitando toda arrancada o parada brusca y efectuándose siempre que sea posible, en sentido vertical para evitar el balanceo."

Todos estos reglamentos deben ser considerados al analizar la condición de trabajo en el proceso de Encajonado, ya que los trabajadores soportan cargas y realizan bastantes movimientos corporales con velocidad, incluyendo arranques o paradas bruscas.

1.3.2 Ergonomía

1.3.2.1 Ecuación del NIOSH

El manejo y el levantamiento de cargas son las principales causas de lumbalgias. Éstas pueden aparecer por sobreesfuerzo o como resultado de esfuerzos repetitivos.

El National Institute for Occupational Safety and Health (NIOSH) desarrolló una ecuación para evaluar el manejo de cargas en el trabajo. Su intención era crear una herramienta para poder identificar los riesgos de lumbalgias asociados a la carga física a la que estaba sometido el trabajador y recomendar un límite de peso adecuado para cada tarea en cuestión; de manera que un determinado porcentaje de la población pudiera realizar la tarea sin riesgo elevado de desarrollar lumbalgias.

La ecuación contempla varios factores: el manejo asimétrico de cargas, la duración de la tarea, la frecuencia de los levantamientos y la calidad del agarre. Fue elaborada teniendo en cuenta tres criterios: el biomecánico, que limita el estrés en la región lumbosacra, que es más importante en levantamientos poco frecuentes pero que requieren un sobreesfuerzo; el criterio fisiológico, que limita el estrés metabólico y la fatiga asociada a tareas de carácter repetitivo; y el criterio psicofísico,

que limita la carga basándose en la percepción que tiene el trabajador de su propia capacidad, aplicable a todo tipo de tareas, excepto a aquellas en las que se da una frecuencia de levantamiento elevada (de más de 6 levantamientos por minuto).

Para el levantamiento de cargas, se puede determinar el límite de peso recomendado (LPR), a partir del producto de siete factores, que serán detallados en la Tabla 2.

 $LPR = LC \cdot HM \cdot VM \cdot DM \cdot AM \cdot FM \cdot CM$

Tabla 2. Factores de la Ecuación de NIOSH

Constante de Carga	LC
Factor de Distancia Horizontal	НМ
Factor de Altura	VM
Factor de Desplazamiento Vertical	DM
Factor de Asimetría	AM
Factor de Frecuencia	FM
Factor de Agarre	СМ

Fuente Nogareda Cuixart, S.; Canosa Bravo, M.M. NTP 477: Levantamiento manual de cargas: Ecuación del NIOSH. (1998)

1.3.3 Principio de funcionamiento de una despaletizadora

Con la ayuda de varios montacargas, los bultos son depositados en el transportador de paletas, esta es la alimentación principal del proceso de Despaletizado, para el cual existen varios tipos de máquinas, con una misma función, descargar en su totalidad los envases colocadas sobre el pallet, de forma que se vayan colocando piso por piso todos los envases desde el pallet hasta la mesa de carga. Esto puede realizarlo, debido a que la máquina genera dos movimientos principales, en el eje "x" e "y".

Figura 1.4. Despaletizadora a granel con descarga a nivel bajo

Fuente Direct Industry, 2016

1.3.3.1 Despaletizadora a granel con descarga a nivel bajo

Una despaletizadora de botellas con accionamiento de empuje de botellas empieza su función, con un mecanismo de desplazamiento vertical que permite que el cabezal del carro porta botellas se ubique gracias a sensores, por encima del producto que se desea barrer por capas, hasta dejar el pallet vacío. Se dispone de un pequeño puentegrúa que permite la colocación de las botellas desde el pallet hasta la cadena transportadora. Este se encarga del transporte de las botellas y el agarre de las mismas mediante un sistema de sujeción que utiliza aire comprimido, el proceso consiste en introducir el elemento de inflado entre los cuellos de las botellas, y una vez que todas las botellas estén colocadas, se les da a éstos dispositivos la entrada de aire para proceder al inflado; cada botella es agarrada por dos de estos dispositivos de inflado para que haga el barrido de las botellas mediante el desplazamiento horizontal del carro porta botellas. Algunas cuentan con componentes que retiran cada lámina de cartón, e incluso apilan los pallets vacíos.

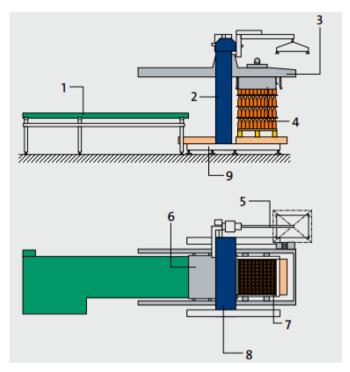


Figura 1.5. Partes Constitutivas de una Despaletizadora

Fuente Krones Alemania S.A., 2016

Tabla 3. Descripción de las Partes Constitutivas de una Despaletizadora

Descripción del Objeto	No.
Mesa de salida de envases	1
Estación de empuje estacionaria con	2
cabezal de agarre integrado para placas	
intercaladas	
Columna	3
Unidad de centrado de la pila por 3 lados	4
Unidad elevadora de pallets	5
Dispositivo para la aplicación de placas	6
intercaladas	
Carro de empuje con centrado por los	7
cuatro lados	
Mecanismo elevador	8
Marco de fondo	9

Fuente Krones Alemania S.A., 2016

CAPÍTULO 2

2. Metodología del Diseño

En esta sección se detalla la metodología del diseño aplicada, realizando un enfoque sobre el problema y los factores que lo causan. Se estudia a las propuestas de diseño elaboradas, basadas en los parámetros iniciales, y posteriormente se evalúan para escoger la opción más viable. La figura siguiente muestra paso a paso la metodología utilizada:

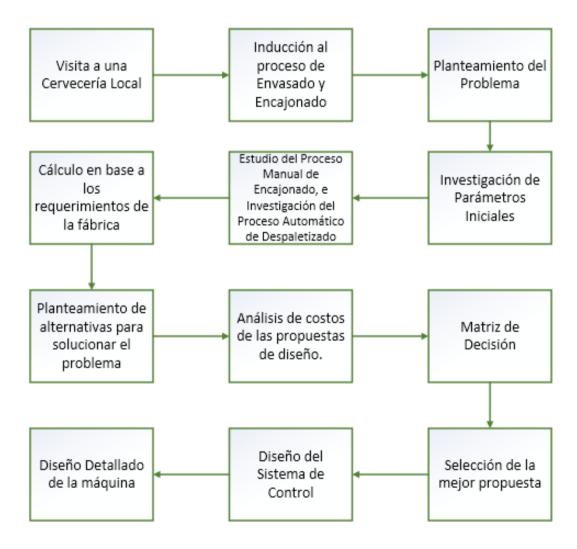


Figura 6 Diagrama de la Metodología de Diseño

Fuente Elaboración propia.

Descripción del Proceso de Envasado

El proceso empieza desde que el producto llega del mercado en cajas retornables que se apilan sobre pallets, éstos se transportan en montacargas, tal como se visualiza en la Figura 2.2, hacia la bodega de despacho antes del arranque de línea, donde se colocarán en la despaletizadora de cajas.

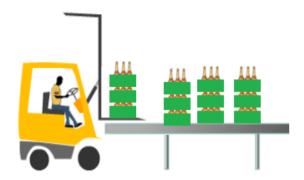


Figura 7 Alimentación de cajas a la Línea de Envasado

Fuente Sarmiento, J. (2014). Tesis "Investigación y análisis de los costos en gestión de seguridad para evitar accidentes en el área de producción de Cervecería Nacional"

a) Despaletizado: Las jabas con envases vacíos son retiradas por pisos de los pallets y colocadas en una cadena transportadora de cajas. La figura 2.3 muestra representativamente su trabajo principal.

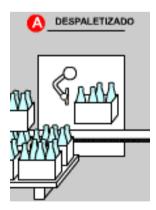


Figura 8 Representación del funcionamiento de la Despaletizadora de Cajas

Fuente Coca Cola Embonor S.A., 2016.

b) Desencajonado: En la Figura 2.4, se visualiza cómo las cajas ingresan y luego las botellas se retiran, colocándolas en la cadena transportadora.

Figura 9. Representación del funcionamiento de la Desencajonadora

Fuente Coca Cola Embonor S.A., 2016.

c) Lavado y Esterilizado: Primero se realiza una Inspección, retirando manualmente las botellas en malas condiciones, luego se realiza el lavado en una máquina por inyección de una solución cáustica caliente, que limpia las botellas y las enjuaga a presión con agua fresca, obteniendo una botella limpia

y estéril. En la figura 2.5 se representa un esquema básico de la máquina.

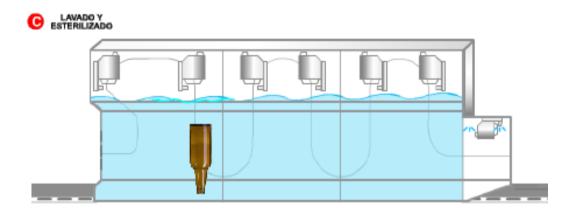


Figura 10. Representación del funcionamiento de la Lavadora de Botellas

Fuente Coca Cola Embonor S.A., 2016.

d) Inspección Post-Lavado: Las botellas ya lavadas se revisan para asegurar perfectas condiciones previo a su llenado, tal como se visualiza en la Figura 2.6.

Figura 11. Representación del funcionamiento del Inspector de Botellas

Fuente Apunte, F. (2014). Tesis "Análisis y optimización del desperdicio de agua en el área de embotellado de cervecería nacional planta pascuales"

e) Llenado y Tapado: La cerveza es transferida por gravedad hasta el interior del envase, el llenado se detiene cuando alcanza el nivel adecuado, e inmediatamente se corona. La Figura 2.7 muestra un esquema de la máquina.

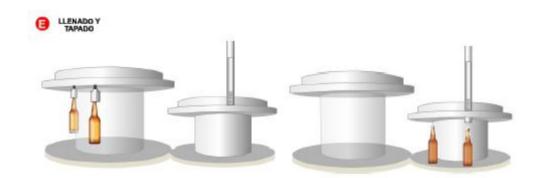


Figura 127. Representación del funcionamiento de la Envasadora

Fuente Apunte, F. (2014). Tesis "Análisis y optimización del desperdicio de agua en el área de embotellado de cervecería nacional planta pascuales"

f) Pasteurizado: Es el proceso térmico, donde se controlan las Unidades de Pasteurización, para poder reducir la presencia de agentes patógenos que pueda contener la cerveza. La figura 2.8, muestra una vista del Pasteurizador.

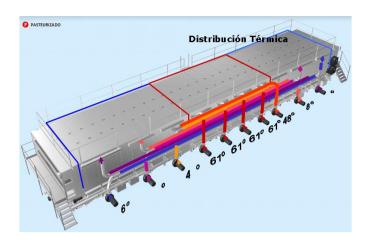


Figura 13. Representación del funcionamiento de la Pasteurizadora

Fuente ABInBev S.A., 2016

g) Etiquetado: Las cervezas ya pasteurizadas, ahora se identifican con sus respectivas etiquetas, donde se ubica su fecha de elaboración y costo. La Figura 2.9 a continuación, representa una serie de botellas a etiquetarse.

Figura 14. Representación del funcionamiento de la Etiquetadora

Fuente Apunte, F. (2014). Tesis "Análisis y optimización del desperdicio de agua en el área de embotellado de cervecería nacional planta pascuales"

h) Encajonado: Las botellas etiquetadas, llegan a una máquina, cuyo trabajo es poner las botellas sobre cada caja y se representa en la Figura 2.10.

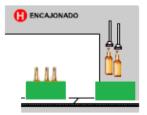


Figura 15. Representación del funcionamiento de la Encajonadora

Fuente Coca Cola Embonor S.A., 2016.

i) Paletizado: El último proceso, las cajas llenas, se guían hacia los pallets para ser ordenados en la Paletizadora. La figura 2.11 muestra un gráfico del proceso de Paletizado.

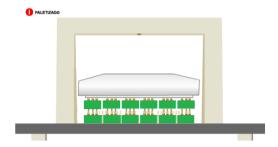
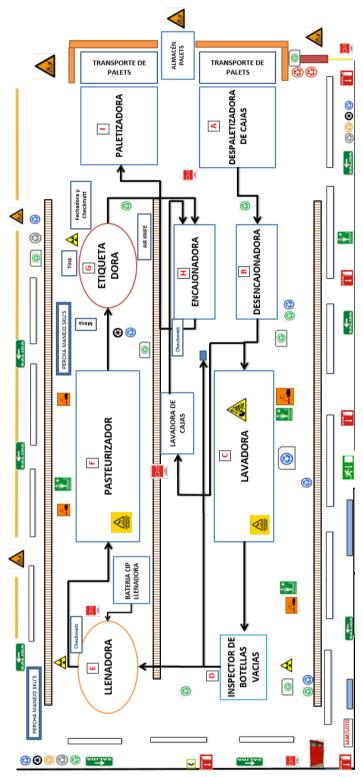



Figura 16. Representación del funcionamiento de la Paletizadora

Fuente Apunte, F. (2014). Tesis "Análisis y optimización del desperdicio de agua en el área de embotellado de cervecería nacional planta pascuales"

Para visualizar en un esquema general todas las máquinas, a continuación, en la Figura 2.12 se mostrará un Layout de la Línea de Envasado.

EXTERIORES DEL AREA

Figura 17. Layout del área de Envasado

Fuente Elaboración propia.

Como se mencionó anteriormente, la línea de Envasado no fue diseñada para ser alimentada directamente de botellas al granel, pero sí se puede incorporar la máquina despaletizadora de botellas para que mejore su diseño y efectúe este trabajo. El proceso actual y el nuevo proceso incorporado se muestran representados en la Figura 2.13.

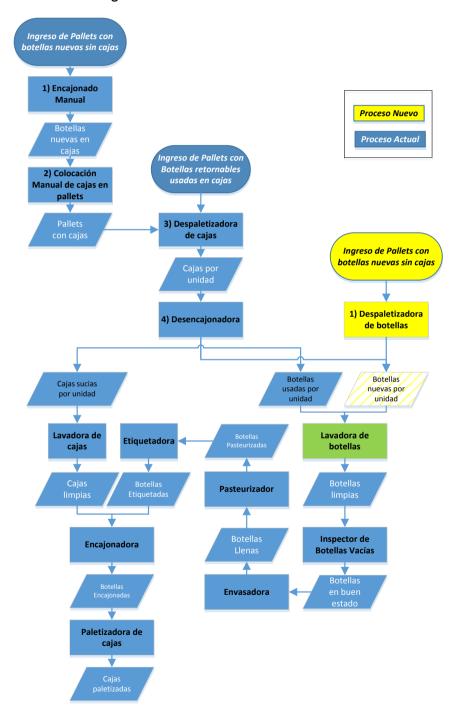


Figura 18. Diagrama del Proceso de Envasado

Fuente Elaboración propia.

2.1 Diseño Conceptual

2.2.1. Parámetros Iniciales

Se requiere diseñar una máquina despaletizadora de botellas, que pueda ser utilizada para los cuatro formatos de botellas que utiliza la fábrica, y con la capacidad suficiente para que despaletice una serie de bultos los cuales están montados sobre una estiba de madera, tal como se muestra en la Figura 2.14.

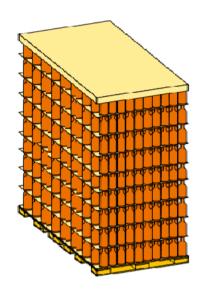


Figura 19. Ilustración de un pallet con placas intercaladas y bandeja invertida

Fuente Elaboración propia.

Su instalación y mantenimiento no deben ser dificultosos, la automatización del sistema debe manejar todos los movimientos para que automáticamente se coloque encima del pallet y barra todos pisos, además debe controlar la parada del equipo por seguridad, ya que el operador debe retirar el pallet a mano cada que se barren todas las botellas que contiene. Es importante que la programación de los movimientos y los sensores sean de alta precisión, debido a que se trabaja con material frágil y cualquier desviación puede causar roturas.

• **Dimensiones del pallet:** La paleta que contiene las botellas que ingresarán a la máquina, mide 1200 x 1000 x 140 mm, la altura aproximada es de 1900 mm cuando contiene botellas.

Las demás especificaciones técnicas necesarias para los cuatro formatos de botellas se detallan en la Tabla 4.

Tabla 4. Especificaciones Técnicas de las botellas

Características	Formato A	Formato B	Formato C	Formato D
Volumen de la botella (ml)	300	330	343	608
Altura de la botella (mm)	200	228	245	291
Diámetro de la botella (mm)	60	62	62	74
Masa de la botella (g)	217	239	334	444
Número de pisos por pallet	9	12	8	6
Formación	19x18	19x12	18x18.5	20x12
Número de botellas por piso	342	228	333	240
Número de botellas por pallet	3078	2736	2664	1440
Masa de un piso de botellas (kg)	74	55	111	107

Fuente Elaboración propia.

2.2.2. Parámetros de diseño

- Selección de la Ubicación: A partir del conocimiento de la ubicación de la máquina en la línea, se podrá escoger la velocidad de la máquina. Dado a que debe enviar las botellas hacia la Lavadora de Botellas, se planteó colocarla justo antes de ese lugar, pero analizando la logística, se alargaban las distancias de recorrido para el montacargas, adicionalmente el espacio es reducido y no habría facilidades en el manejo de ambas máquinas, y por temas de seguridad, podrían ocasionar muchos accidentes. El sitio ideal es junto a la Despaletizadora de Cajas, por la facilidad con los montacargas, y por la conexión hacia transportadores para la descarga de botellas.
- Velocidad de la máquina Despaletizadora: La máquina debe ser capaz de trabajar considerando un día pico en que la máquina crítica, o sea la Envasadora, trabaje 24 horas, produciendo un total de 720000 botellas.

2.2 Selección de Alternativas

Existen varios tipos de despaletizadoras, y dentro de esta variedad, hay distintos sistemas de trabajo para cumplir su función de descargar camas de botellas. Para realizar la selección del tipo de despaletizadora, se respeta los parámetros más influyentes consultados con el cliente, los cuales son: costo, velocidad, tiempo de construcción y espacio ocupado. La Tabla 5 muestra varias alternativas de diseño y la ponderación para cada requisito.

Tabla 5. Matriz de Decisión para la selección del Tipo de Despaletizadora

Tipo de despaletizadora	Costo	Velocidad de despaletizado	Tiempo de construcción	Disponibilidad de espacio	Evaluación
Requisitos	\$ 25.000	36000 botellas/h	2 meses	16 m2	
Factor de Ponderación	0,4	0,25	0,2	0,15	1
Despaletizadora de botellas Semi- automática	10 4	7 1,75	10 2	8 1,2	8,95
Despaletizadora de botellas automática	5 2	8 2	7 1,4	6 0,9	6,3
Brazo Robótico	0,4	2,5	4 0,8	1,5	5,2

Fuente Elaboración propia.

Dada la evaluación de la Tabla 5, el tipo de despaletizadora a diseñar es la Semiautomática, ya que superó a los otros dos modelos basados en los requisitos establecidos.

Lo siguiente es decidir con qué tipo de sistema trabajará y finalmente los mecanismos adecuados para los trabajos que debe realizar.

Los sistemas de trabajo, se eligen a partir de la necesidad de las funciones de la máquina y la aplicabilidad para cada una de estas.

2.3.1 Sistema de Elevación

En las máquinas despaletizadoras los sistemas de elevación se encargan de soportar la carga de una cama de botellas más la estructura encargada del movimiento horizontal; debido a que la aplicación de esta máquina es para una industria alimenticia, los sistemas hidráulicos no se consideran para los diseños, ya que pueden existir riesgos de que entre en contacto el aceite con el producto. La Tabla 5 muestra que es preferible diseñar un sistema mecánico para el sistema de elevación, sobre todo debido a la facilidad en su construcción y por precio. Uno de los factores limitantes, sería el desgaste debido a la fatiga o calidad de los materiales. A continuación, se muestra la comparación:

Tabla 6. Matriz de Decisión para la selección del Sistema de Elevación

Sistema de Elevación	Costo	Tiempo de construcción	Complejidad	Evaluación
Factor de Ponderación	0,4	0,2	0,15	1
Mecánico	10 4	10 2	8 1,2	7,2
Elevador Hidráulico	1,6	6 1,2	0,75	3,55
Elevador Neumático	5 2	7	6 0,9	4,3

Fuente Elaboración propia.

2.3.1.1 Elementos para transmisión de Potencia.

A continuación, se muestra la comparación con respecto a seis criterios, de los elementos mecánicos que se pueden utilizar para elevar la estructura horizontal y ubicarse en distintas posiciones en el eje "y". La Tabla 6 representa que es preferible diseñar un sistema mecánico con piñones y cadenas, especialmente por su precisión, y la facilidad en su montaje o adquisición de repuestos. Adicionalmente en la fábrica existen muchos mecanismos que utilizan piñón – cadena, por lo que en Bodega siempre se tendrá repuestos por cualquier eventualidad.

Tabla 7. Matriz de Decisión del Mecanismo de Transmisión de Potencia

	Alternativa 1	Alternativa 2	Alternativa 3
Criterio	The same of the sa	Charlette Charlette	6
	Tornillo de Potencia	Husillo de Bolas	Piñón - Cadena
Velocidad	Menor	Mayor	Mucho mayor
Complejidad	Fácil	Difícil	Fácil
Eficiencia	Menor (50%)	Mayor (90%)	Mayor (90%)
Fricción	Media	Baja	Media
Precisión	Buena	Muy Buena	Excelente
Costo	Bajo	Medio	Alto

Fuente Elaboración propia

2.3.2 Sistema de Barrido

El sistema de barrido escogido, gracias a la evaluación de la matriz de decisión, es con cadenas, piñón y moto reductor, por lo que se asemeja al mecanismo en el sistema de elevación, así se trabaja igual en ambos ejes.

Tabla 8. Matriz de Decisión para la selección del Sistema de Barrido

Sistema de Barrido	Costo	Tiempo de construcción	Complejidad	Evaluación
Factor de Ponderación	0,4	0,2	0,15	1
Mecánico (Banda- Polea Sincrónica)	3,2	10 2	10	6,7
Hidráulico	6 2,4	8 1,6	5 0,75	4,75
Neumático	5 2	7	6 0,9	4,3

Fuente Elaboración propia

2.3.2.1 Elementos para Sistema de Guías.

El sistema de guiado que se escogió, gracias a las aplicaciones presentadas en la Tabla 8, fue la utilización de ejes guías con rodamientos lineales, éstos soportarán el peso de los mecanismos para su funcionamiento en el eje "x".

Tabla 9. Matriz de Decisión del Mecanismo de Transmisión de Potencia

	Alternativa 1		Alternativa 2	Alternativa 3
	Ejes :	guías	215	2
Criterio	Con rodamientos lineales		Guiado Especial	Sistema de rulinas
Complejidad	Fácil	Fácil	Media	Fácil
Lubricación	Alta	Media	Baja	Baja
Fricción	Media	Baja	Mínima	Baja
Precisión	Baja	Alta	Alta	Buena
Costo	Bajo	Medio	Alto	Alto

Fuente Elaboración propia

El sistema de guías es importante que sea preciso, ya que la máquina trabaja manejando precisión en el desplazamiento y la carrera.

2.3.3 Sistema de Sujeción

El sistema de apriete de las botellas que servirá para poder tener un buen agarre y barrerlas hacia la mesa de descarga, se escogió analizando distintos sistemas, tal como se visualiza en la Tabla 9, no se escogió un sistema neumático de inflado de colchones que se acoplan al cuello de las botellas de forma suave, debido a la dificultad que hubo en encontrar estos componentes, en cambio la tercera opción tenía mayor facilidad de ejecución.

Tabla 10. Matriz de Decisión para la selección del Sistema de Sujeción

Sistema de Sujeción	Costo	Tiempo de construcción	Complejidad	Evaluación
Factor de Ponderación	0,4	0,2	0,15	1
Hidráulico	0,8	3 0,6	0,45	1,85
Neumático - Inflado	5 2	5	0,75	3,75
Neumático - Barra de barrido	6 2,4	8 1,6	1,5	5,5

Fuente Elaboración propia

2.3 Diseño de forma

Dados los principios de funcionamiento resultantes de las matrices de decisión, se realiza un diseño de forma con los sistemas de trabajo que utilizará la máquina. La figura 2.15 muestra sus mecanismos principales.

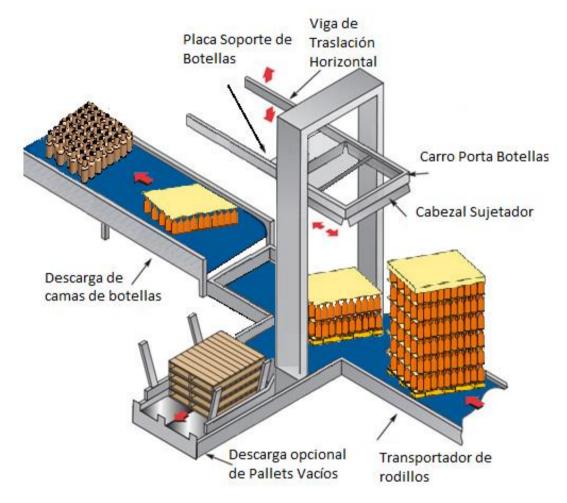


Figura 205. Ilustración del Diseño de forma de la Despaletizadora de Botellas

Fuente Elaboración propia.

2.4 Diseño Detallado

En esta sección se detallarán los cálculos necesarios para realizar el diseño final a partir de los parámetros iniciales.

2.5.1 Velocidad Nominal de la máquina Despaletizadora:

La Figura 2.16, muestra la velocidad nominal con que cada equipo debería trabajar para no causar paradas en la Envasadora. La teoría de la Velocidad de la línea, sugiere que la Despaletizadora de Botellas trabaje a 36000 botellas/h.

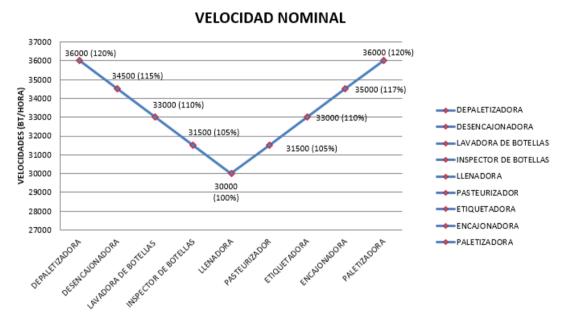


Figura 216. Gráfica de la velocidad de la línea de Envasado

Fuente Elaboración propia.

La cantidad de botellas a despaletizar es de 36.000 botellas por hora, en base a este dato, hay que calcular los tiempos y velocidades para los distintos formatos, ya que los pallets que las contienen vienen ordenados con distinta cantidad de pisos.

A continuación, la Tabla 10, presenta los tiempos requeridos para descargar un pallet en su totalidad, y las velocidades de barrido y retorno.

En los tiempos totales de descarga del pallet y de cada piso, se incluye el tiempo tomado para el posicionamiento del carro transportador sobre el pallet, barrido de cada fila, ascenso del carro transportador, retorno hacia la siguiente cama del pallet.

Tabla 11. Tabla de tiempos y velocidades para el proceso de despaletizado

Características	Formato A	Formato B	Formato C	Formato D
Altura de la botella (mm)	200	228	245	291
Cantidad de botellas por piso	342	228	333	240
Cantidad de botellas por pallet	3078	2736	2664	1440
Cantidad de pisos por pallet	9	12	8	6
Masa de un piso de botellas (kg)	74	55	111	107
Velocidad (Pallets/h)	12	13	14	25
Tiempo para descargar un pallet (min)	5,1	4,6	4,4	2,4
Tiempo de descarga de un piso (seg)	34	23	33	24
Tiempo de barrido (s)	23	12	22	13
Tiempo de retorno (s)	11	11	11	11
Velocidad de barrido (mm/s)	105	158	108	150
Velocidad de retorno (mm/s)	211	316	216	300

Fuente Elaboración propia

2.5.2 Diseño del Sistema de Barrido

Para diseñar el sistema de barrido de botellas, primero se analiza la parte cinemática y luego la dinámica. Este sistema estará compuesto por un carro transportador que contiene cuatro cilindros neumáticos que se encargarán de acercar cuatro perfiles al ras de la forma de la cama de botellas, y por medio bandas y poleas sincrónicas, se trasladará al carro cuando empiece el movimiento generado por un moto-reductor, logrando desplazar las botellas hasta la mesa de descarga. Para estos estudios se consideran los siguientes factores:

- Velocidad de barrido: En base a la velocidad que debe trabajar la máquina, se calcula la cantidad de pallets que debe entregar por hora y a la vez, la velocidad del barrido para cada piso y el tiempo que le toma hacerlo. El desplazamiento es el triple del ancho de cada cama, es decir 3600 mm.
- Velocidad de retorno: Dado que el carro transportador regresa sin carga, para disminuir el tiempo del proceso, la velocidad de retorno puede ser más rápida, con el mismo desplazamiento de 3600 mm. Esta velocidad se propuso como el doble de la velocidad de barrido, es decir de 320 mm/s, y el tiempo de retorno de 11.3 seg.
- Peso de cada piso: Para hacer el diseño de un sistema de barrido que trabaje con todas las botellas que utiliza la fábrica, se debe escoger el mayor de todos los pesos, en este caso el Formato C, ya que el peso a barrer sería de 111 Kg por piso.

 Fuerza de barrido: Al conocer el valor de la masa que se moverá, se calcula la fuerza mínima para realizar el barrido de la carga más pesada de todos los formatos de botellas.

Para conocer la aceleración con la que llega el carro a su velocidad deseada, se tiene la ecuación 2.1

$$a = \frac{V_f - V_o}{t} \tag{2.1}$$

Donde Vf es la Velocidad final deseada para el carro porta botellas, V_0 es la velocidad inicial y t corresponde al tiempo tomado para alcanzar la Velocidad de barrido.

Para hallar la fuerza necesaria para hacer el barrido de una cama de botellas, se toman como consideraciones: un coeficiente de fricción cinemático de 0.2 entre la botella y el cartón, un tiempo estimado para cambiar su estado de reposo a la velocidad final, de 0.4 s.

La Figura 2.17 muestra el Diagrama de Cuerpo Libre del grupo de botellas, donde F es la fuerza externa que se aplica para arrastrar las botellas, W es el peso de la cama de botellas, N la normal, fk es el coeficiente de fricción dinámica entre el vidrio y el cartón, m representa la masa total del conjunto de botellas y a_c es la aceleración.

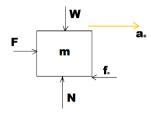


Figura 22. Diagrama de Cuerpo Libre de una cama de botellas

Fuente Elaboración Propia

Para la obtención de la Fuerza de barrido, se realiza la siguiente sumatoria de fuerzas en el eje x, y en el eje y, donde N corresponde a la fuerza Normal, m a la masa de la cama de botellas, g a la gravedad, μ_{k} el coeficiente de fricción dinámica y F a la fuerza externa de arrastre hacia las botellas.

$$\sum_{N=m} Fy = 0 \tag{2.2}$$

$$\sum Fy = 0$$

$$N = m.g$$

$$\sum Fx = m.a$$

$$F = \mu_k . N + m.a$$
(2.2)

Para empujar el grupo de botellas, se puede armar una estructura que bordee por el largo y ancho del pallet, con un perfil que esté pegado a las láminas de plástico color verde que estarán tocando las botellas.

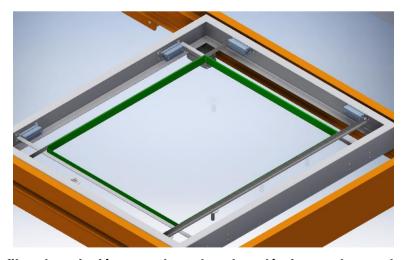


Figura 23. Perfiles de sujeción pegados a bandas plásticas color verde

Fuente Elaboración Propia

Los datos obtenidos para analizar el perfil que arrastrará las botellas, se muestran en la Figura 2.19:

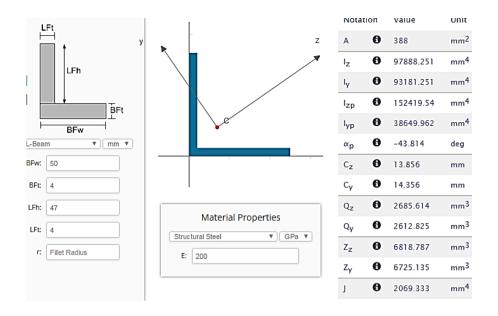


Figura 24. Sección transversal del perfil para el Sistema de arrastre

Fuente Catálogo de productos de la empresa IPAC

Dado que las botellas sólo tocan el área encauchada y no toda la viga, las botellas son tomadas como la carga distribuida hacia el perfil. La Figura 2.20, muestra la distribución de cargas.

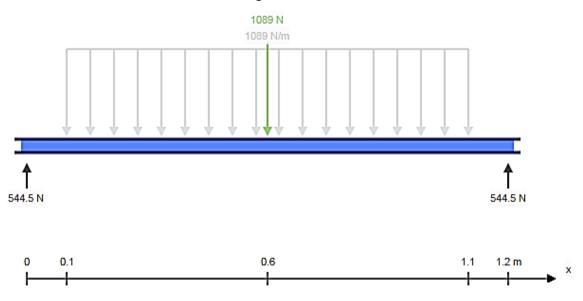


Figura 25. Diagrama de Cuerpo Libre del perfil.

Fuente Elaboración Propia

Del gráfico de la Figura 2.17, se realiza análisis de sumatoria de fuerzas, de lo cual se obtiene:

$$\sum F = 0$$

$$R1 = R2 = \frac{wl}{2}$$
(2.4)

A continuación, la Tabla 12 muestra las propiedades del perfil a utilizar para el barrido de las botellas. Donde, A refiere al Área transversal del perfil, W_{perfil} al Peso distribuido del perfil, I_{perfil} la Inercia del perfil, L la longitud del perfil y w la carga distribuida, que se calculó con la mayor de las masas de los tipos de formato, es decir Formato C, y con una longitud de 1200 mm, el cual es el ancho del pallet.

Tabla 12. Tabla de propiedades físicas del perfil de barrido

А	3.89 cm ²
W _{perfil}	3.06 Kg/m
Iperfil	0.79 cm ⁴
L	120 cm
W	1089 N/m
Sy	276 MPa

Fuente Elaboración Propia.

Para determinar el factor de seguridad con el que se trabaja, se requiere de los valores críticos de fuerza cortante y momento flector, los cuales se pueden visualizar en las Figuras 2.21 y 2.22 como los valores más altos en ambos diagramas, o sea a una distancia x= L/2.

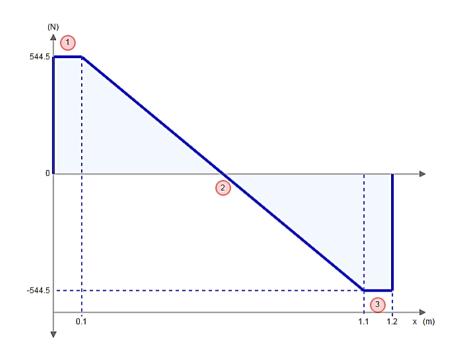


Figura 26. Diagrama de Fuerza Cortante del perfil.

Figura 27. Diagrama de Momento Flector del perfil.

Fuente Elaboración Propia

Las fórmulas para hacer el análisis de flexión del perfil, son las siguientes:

$$\sigma_{\text{max}} = \frac{M_{\text{max}} * c}{I_{x}}$$
 (2.5)

$$\tau_{\text{max}} = \frac{3V}{4} \qquad (2.6)$$

Para la Ecuación 2.5, σ_{\max} es el esfuerzo máximo en las fibras externas del perfil, M es el momento flexionante en la sección de interés, c a la distancia del eje centroidal del perfil a las fibras externas, e I al momento de inercia de la sección transversal con respecto a su eje centroidal. En la Ecuación 2.6, los términos V y A, corresponden al valor máximo de fuerza cortante y al área transversal del perfil respectivamente.

Ya que, en el perfil, se aplican ambos esfuerzos, según la Teoría de Von Misses, para esfuerzos combinados se aplica la fórmula mostrada a continuación:

$$\sigma' = \sqrt{\sigma^2 + 3\tau_{xy}^2} \qquad (2.7)$$

Para el cálculo del factor de seguridad de la Ecuación 2.8, se toma el valor de Esfuerzo de Fluencia de la Tabla 10, correspondiente a un acero inoxidable AISI 304:

$$\eta = \frac{S_y}{\sigma'} \tag{2.8}$$

La carga a transportar no es muy pesada, no es necesario tener un factor de seguridad alto, se necesita una superficie que sirva como agarre para el empuje de botellas.

Para el diseño del carro transportador, se requiere calcular el torque que se debe aplicar para que se ejecute el movimiento, con la capacidad de soportar los actuadores y la cama de botellas, con velocidades de barrido y retorno de 158 y 316 mm/seg.

Tabla 13. Dimensiones y parámetros para el Sistema de Barrido

Radio de la polea sincrónica. (r)	4.03 cm
Velocidad lineal de barrido. (V1)	0.108 m/seg
Velocidad lineal de retorno. (V2)	0.216 m/seg
Peso máximo de un piso de botellas (Wpiso)	1088.91 N
Peso del carro + cilindros + perfiles. (Wcarro)	350 N

Fuente Elaboración Propia.

A partir de los datos de la polea y la velocidad deseada, obtenida de la Tabla 11, se procede a calcular la velocidad angular *w*, con la ecuación 2.9, donde *V*, corresponde a la velocidad lineal y *r* al radio de la polea. El cálculo se debe realizar para ambas velocidades lineales.

$$w = \frac{V}{r} \tag{2.9}$$

Luego de obtener dos velocidades angulares, se requiere conocer el torque *T* aplicado, para este cálculo se aplica la ecuación 2.11. La variable *F* representa la fuerza aplicada y *W* al peso.

$$T = F * r \tag{2.10}$$

$$T = (W_{piso} + W_{carro}) * r$$
 (2.11)

La finalidad de los cálculos previos, es hallar la potencia para seleccionar un moto-reductor, que se encargue de hacer el barrido. La ecuación 2.12 relaciona los dos datos obtenidos en la ecuación 2.9 y 2.11.

$$Pot = T * \omega \tag{2.12}$$

La potencia mecánica calculada se determinó mediante la ecuación 2.12, para saber la potencia eléctrica se considera una eficiencia de 60% en el proceso.

$$P_{El\acute{e}ctrica} = \frac{P_{Mec\acute{a}nica}}{\rho} \tag{2.13}$$

Los valores de potencia eléctrica, representan el requerimiento para barrer una carga y otra para regresar sin carga, pero a mayor velocidad lineal, es por esto la diferencia en sus valores. A partir de estas potencias se selecciona un motor.

2.5.2.1 Diseño del Carro Porta Botellas

En los datos, se conoce que el peso del carro porta botellas es aproximadamente de 350 N. Por criterio del diseñador de este proyecto, el carro se soportará mediante pequeñas ruedas instaladas en cuatro pernos, y se utilizará un factor de incertidumbre *F* debido al desconocimiento del peso de otros componentes, como el sistema de control, cables, tornillos, entre otros.

Condición de diseño

Perno M6

Carga cortante

Aplastamiento de los pernos

Factor de diseño= 4

Perno ISO 4767

Longitud total= 30mm

Longitud roscada=20mm

Material del perno: acero inoxidable A2 DIN→ Sp= 700 MPa

Material del elemento base → Sye=205 MPa

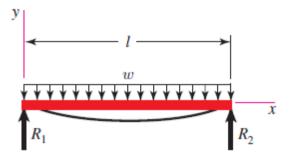


Figura 28. Diagrama de Cuerpo Libre del Carro Porta Botellas

Fuente Diseño en Ingeniería Mecánica de Shigley 8va Ed. Apéndice A Tabla A-9.

La Fuerza *F*, aplicada en la ecuación 2.4, es igual a las fuerzas resultantes, que se encuentran realizando sumatoria de fuerzas en *y*:

$$\sum F = 0$$

$$F = R1 = R2 = \frac{wl}{2}$$
(2.4)

2.5.2.2 Diseño por Cortante de los pernos.

Para evitar una falla por aplastamiento de la placa, se debe calcular el esfuerzo de aplastamiento, tal como se expresa en la Ec. 2.14, donde el área proyectada del perno es A= td, t es el espesor de la placa más delgada y d es el diámetro del perno. Para las ecuaciones 2.16 y 2.17, el térmito Sut, corresponde a la resistencia última a la tensión y Sp, la resistencia mínima del perno.

Aplastamiento del perno, perno cargado:

$$\sigma = \frac{F}{A} = \frac{F}{t*d} (2.14)$$

$$\sigma = \frac{S_p}{nd} \qquad (2.15)$$

$$S_p = \frac{F*nd}{t*d} \qquad (2.16)$$

• Aplastamiento del elemento, perno activo:

$$\frac{F}{t*d} = \frac{S_y}{nd}$$
 (2.17)

$$nd = \frac{S_y * t * d}{F} (2.18)$$

• Cortante del perno, perno activo:

$$\tau = 0.577 \frac{\text{Sp}}{\text{nd}} = \frac{F}{\frac{\pi d^2}{4}}$$
 (2.19)

$$Sp = \frac{4F * n * d}{0.577 \pi d^2}$$
 (2.20)

2.5.2.3 Diseño por fatiga del perno.

El tipo de carga que se aplica es repetitivo. Se aplicará la Teoría de Goodman para determinar el factor de diseño. La carga debido al peso del carro portabotellas es F_{max} = 350 N.

Se=
$$ka*kb*kc*ke*kf*$$
 Se' (2.21)

$$Se' = 0.5Sut$$
 (2.22)

Ka: Factor de superficie.

$$Ka = aSut^b$$
 (2.23)

Tabla 14. Parámetros en el factor de la condición Superficial de Marin

Acabado	Fac	Exponente	
	S _{or} kpsi	S _{ar} MPa	ь
Esmertlado	1.34	1.58	-0.085
Maquinado o laminado en frío	2.70	4.51	-0.265
Laminado en caliente	14.4	57.7	-0.718
Como sale de la forja	39.9	272.	-0.995

Fuente Diseño en Ingeniería Mecánica de Shigley 8va Ed. Tabla 6-2, Pag 279, Ecuación 6-19

$$de = 0.370d$$
 (2.24)

Kb= Factor de tamaño

$$Kb = 1.24 de^{-0.107}$$
 (2.25)

Kc: Factor de carga (Torsión)

Kd: Temperatura (Ambiente)

Ke: Factor de confiabilidad (99.99%)

Kf: Factores varios

Teoría de Goodman

$$\frac{1}{n} = \frac{\sigma_a}{Sse} + \frac{\sigma_m}{Ssut} \tag{2.24}$$

$$n = \frac{1}{\frac{\sigma_a}{Sse} + \frac{\sigma_m}{Ssut}}$$
 (2.25)

Al haber diseñado el carro porta botellas, se procede a realizar el diseño del perfil donde se trasladará, es decir la viga carrilera donde se podrá desplazar el carro transportador.

2.5.2.4 Diseño por deformación para la viga carrilera "W"

Se asume que la viga se comporta como una viga en voladizo y para realizar un diseño más conservador, que la carga se ubica a una distancia L= 2.25 m de la columna como una carga puntual.

En voladizo: carga en extremo

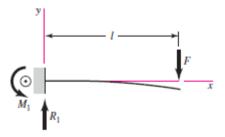


Figura 29. Diagrama de Fuerzas de Viga Carrilera W

Fuente Diseño en Ingeniería Mecánica de Shigley 8va Ed. Apéndice A Tabla A-9.

Se trabaja sólo con una de las vigas porque horizontales soporta cada una la mitad del peso, por eso se considera F= W/2, conociendo que la longitud es de 2.25 m. La masa de las vigas horizontales se tomó del dibujo realizado en 3D del programa Autodesk Inventor, su resultado

fue igual a 79.7 kg, más toda la masa de las botellas que es 111 Kg por línea de barrido y 40 kg de los perfiles en L que sujetan la cama incluyendo el sistema neumático y pernos, más el carro que sujeta los cilindros neumáticos que tiene de masa 23 kg, además del reductor que tiene de masa 10 kg, y el motor trifásico de 10 kg, serían en total 274 kg, pero se considera la mitad del peso soportado en un lado.

$$y_{\text{max}} = -\frac{Fl^3}{3EI} \tag{2.26}$$

Deformación máxima elegida: 3 mm

$$I = \frac{Fl^3}{3Ey_{\text{max}}} \tag{2.27}$$

Con esta inercia encontrada, se calculará el esfuerzo de flexión.

2.5.2.5 Diseño por fatiga en la viga carrilera "W"

Para el diseño de esta viga se utilizará la Teoría de Goodman ya que la teoría es conservadora. El tipo de esfuerzo al que estará sometida la viga es tipo fluctuante, ya que el carro transportador se va hacia el extremo donde recoge las botellas ,estará la mayor carga (motor, reductor, botellas, etc) y tendrá carga mínima cuando éste se ubica en el centro F= 0.

Teoría de Falla: Goodman

Material: Acero inoxidable 304

Sy= 205 MPa

Sut= 515 MPa

$$\frac{1}{n} = \frac{\sigma_a}{Sse} + \frac{\sigma_m}{Ssut} \tag{2.24}$$

$$n = \frac{1}{\frac{\sigma_a}{Sse} + \frac{\sigma_m}{Ssut}}$$
 (2.25)

2.5.2.6 Diseño por deformación de la columna del Sistema de Elevación

Dado que la columna se encuentra sometida a un momento flector, ésta tenderá a flexionarse, por esto se utiliza la tabla de vigas para diseñar por medio de un dato deseado sobre deformación de la columna. El valor de la Deformación máxima es elegido por el diseñador de este proyecto.

Deformación máxima (Y_{max}): 3 mm

Longitud de la columna: 2.25m

$$M=F x d (2.26)$$

En voladizo: carga de momento

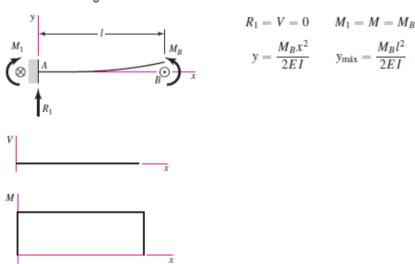


Figura 30. Diagrama de Fuerzas y Momentos de Viga Carrilera W

Fuente Diseño en Ingeniería Mecánica de Shigley 8va Ed.

$$y_{\text{max}} = \frac{Ml^2}{2EI} \tag{2.27}$$

$$I = \frac{Ml^2}{2E * y_{\text{max}}} \tag{2.28}$$

2.5.2.7 Selección del tipo de columna

Para que se puedan ubicar las ruedas, catalinas y cadenas dentro de la viga se necesita una con suficiente altura y que tenga mayor o igual inercia a la calculada.

Diseño por fatiga

Tipo de esfuerzo: Alternante

Material: Acero Inoxidable 304 Laminado en frío

Sy= 205 MPa

Sut= 515 MPa

$$Se = ka*kb*kc*ke*kf* Se'$$
 (2.21)

$$\sigma = \frac{M}{S} \tag{2.29}$$

$$n = \frac{Se}{\sigma} \tag{2.30}$$

Luego se calculará si la columna será estable o no, por medio del cálculo de la carga crítica, y se designa como Pcr en la Ec.2.31. Cuando una carga axial coincide al valor de la Pcr, se pandea la columna y se visualizan deformaciones laterales.

La viga se modela como libre en un extremo y empotrada en el otro. La constante de condición de extremos a utilizar se detalla en la figura a continuación.

Tabla 15. Constantes de Condición de Extremo

	Constante C de condición de extr					
Condiciones de extremos de columnas	Valor teórico	Valor conservador	Valor recomendado*			
Empotrado-libre	1/4	1/4	1/4			
Articulado-articulado	1	1	1			
Empotrado-articulado	2	1	1.2			
Empotrado-empotrado	4	1	1.2			

Fuente Diseño en Ingeniería Mecánica de Shigley 8va Ed.

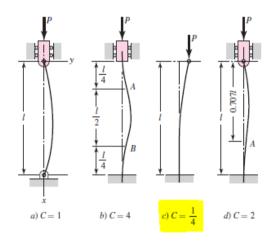


Figura 31. Diagrama de Fuerzas de la Columna

Fuente Diseño en Ingeniería Mecánica de Shigley 8va Ed.

F= 672 N

k_{x-x}: 11.60 cm

k_{y-y}: 3.58 cm

A=21.33 cm²

$$\frac{Pcr}{A} = \frac{C\pi^2 E}{(\frac{l}{k})^2} \tag{2.31}$$

$$Pcr = \frac{C\pi^2 E}{(\frac{l}{k})^2} * A \tag{2.32}$$

2.5.2.8 Soldadura de columnas con la Base

El material del cual está formado cada columna es AISI 304, entre sus propiedades, este requiere menos calor para producir la fusión, por lo que es rápido para soldar, pero conduce el calor más lentamente que los aceros al carbono, por lo que hay que evitar que la zona soldada permanezca mucho tiempo caliente, para que no reduzca la resistencia a la corrosión.

Para el cálculo, se verifica el momento originado con la Ec. 2.33.

$$M = \frac{w}{2}x d \tag{2.33}$$

Perfil: Correa laminada en frío

Material: Acero Inoxidable AISI 304

Sy= 205 MPa

Su_T= 515 MPa

La composición química de este acero se detalla en la siguiente tabla.

Tabla 16. Composición química de acero AISI 304

	%C	%Mn	%Si	%Cr	%Ni	%P	%S
AISI	0.08	2	1	18-20	8-10.5	0.045	0.03
304							

Fuente Diseño en Ingeniería Mecánica de Shigley 8va Ed.

Para seleccionar el electrodo para este tipo de acero inoxidable se utilizó el diagrama de Schaeffler, mostrado en la figura a continuación, en la misma se detalla en los ejes, las ecuaciones para determinar el níquel equivalente en el eje de las "y", y el cromo equivalente en el eje de las "x".

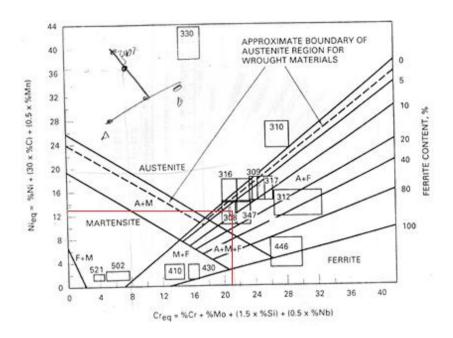


Figura 32. Diagrama de Schaeffler

Fuente Diseño en Ingeniería Mecánica de Shigley 8va Ed.

$$Ni_{eq} = \%Ni + (30 \times \%C) + (0.5 \times \%Mn)$$
 (2.34)

$$Cr_{eq} = %Cr + %Mo + (1.5 x %Si) + (0.5 x %Nb)$$
 (2.35)

2.5.2.9 Diseño por fatiga de la soldadura para Flexión

El tipo de esfuerzo al que estará sometida la viga es tipo fluctuante, ya que el carro transportador se va hacia el extremo donde recoge las botellas, estará la mayor carga (motor, reductor, botellas, etc) y tendrá carga mínima cuando el carro se transporte hacia otro extremo.

$$\tau_a = \frac{\tau_{max} - \tau_{min}}{2} \tag{2.36}$$

$$\sigma_{max} = \frac{M_{max}}{I/c} \tag{2.37}$$

$$\sigma_{min} = \frac{M_{min}}{I/c} \tag{2.38}$$

$$\tau_m = \frac{\tau_{max} + \tau_{min}}{2} \tag{2.39}$$

Para el análisis de la fatiga del cordón de soldadura, se aplica la teoría de Goodman, con el fin de hallar el factor de seguridad con el cual se trabaja. Para los cálculos de Goodman se utilizan las ecuaciones previas.

Sse=Ka Kb Kc Kd Ke Kf Sse'

$$Ka = a S_{ut}^{\ \ b} = 272(520)^{-0.995} = 0.54$$

Soldadura para flexión

$$\tau' = \frac{V}{A} = 0$$

$$\tau'' = \frac{Mc}{I} x K_{fs}$$

$$I = 0.707 H I_{u}$$

Tabla 17. Factores de Concentración de esfuerzos

Tipo de soldadura	K_{fs}
A tope reforzada	1.2
De filete transversal, en la punta	1.5
De filetes paralelos, en el extremo	2.7
A tope en T, con esquinas agudas	2.0

Fuente Tabla 9-5 Diseño en Ingeniería Mecánica de Shigley 8va Ed

$$\tau'' = \frac{K_{fs} M c}{0.707 h \frac{d^2}{12} (6b + d)}$$
$$\frac{\tau a}{Sse} + \frac{\tau m}{Ssut} = 1/n$$

En la figura 2.28 se muestran los componentes de la máquina despaletizadora de botellas:

- Sistema de Elevación
- Sujeción de cama de botellas
- Barrido de Botellas

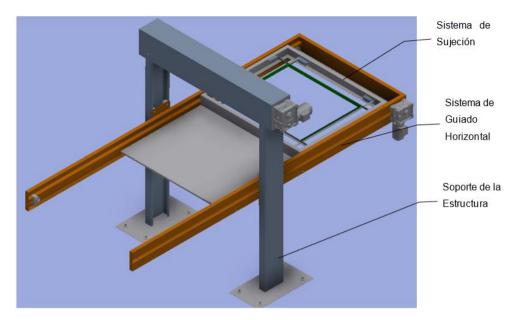


Figura 33. Diseño detallado de la Despaletizadora de Botellas Semiautomática

Fuente Elaboración propia.

CAPÍTULO 3

3. RESULTADOS

3.1 Bosquejo

Esta despaletizadora está construida utilizando una estructura de acero en U con uniones soldadas y atornilladas que eliminan las vibraciones y aseguran una larga vida útil de la máquina. Cuenta con ejes sólidos de 1-1/4" en las unidades de accionamiento de la cinta transportadora de pallets y la barra de barrido, y eje de accionamiento de la mesa elevadora de 1-1/2" para lograr resistencia. Una cadena industrial de rodillos de alta resistencia desplaza la mesa elevadora. Estas características de diseño eficiente y producción de calidad aseguran una operación confiable y de alto volumen.

Puede trabajar en forma intercambiable con envases de plástico, vidrio, aluminio, acero y materiales compuestos, sin necesidad de partes de recambio opcionales. Puede manejar cargas de 222 kg por piso del pallet.

Opera de forma que mientras se barre la capa primaria para descargarla del pallet, placas de fricción de acero controladas neumáticamente sujetan la capa secundaria por los cuatro costados. Debajo, la hoja de intercalación se mantiene en posición mediante sujetadores que la sostienen firmemente durante el barrido.

El carro de barrido que transfiere los envases desde el pallet a la mesa de transferencia tiene cuatro dispositivos de contención para asegurar la estabilidad de las botellas; dos placas laterales ajustables, una barra trasera de barrido, y una barra frontal de soporte. Durante el barrido, la fricción entre las bases de los envases y la hoja intermedia tienden a reposicionar la camada hacia la barra trasera de barrido. La barra de soporte ajustable permite eliminar los espacios, asegurando una transferencia completa. El mecanismo de barrido con cadena y piñón de precisión proporcionan la confiabilidad deseada

La barra de apoyo motorizada se desplaza junto con la carga de botellas durante el barrido, para evitar que la fricción provoque inestabilidad en ellas. La barra de apoyo es ajustable a fin de asegurar una contención total de las botellas durante toda la transferencia. Las barras de barrido y soporte operan independientemente, motores de frecuencia controlada aseguran la estabilidad del envase.

3.2 Características Principales

Características de alto rendimiento:

- Construcción de estructura de acero pesado; soldada y atornillada para obtener resistencia por la vibración.
- Detector automático de altura de envases
- Dispositivos de contención en los cuatro costados en el carro de barrido: placas laterales ajustables, barra trasera de barrido y barra delantera estabilizadora Mesa de transferencia de acero inoxidable reforzada.

Características para una operación confiable:

- Control de operación con lógica programable
- Transmisiones con motor de frecuencia variable

Pasos de trabajo del Diseño final

- Pallet con carga completo, plástico y bandas removidas, es alimentado por un transportador hacia la estación de despaletización.
- 2. El carro porta botellas sube hasta alcanzar la lámina encima del pallet.
- La camada superior, lámina superior y la estructura son barridas hacia la mesa del elevador.
- 4. La mesa del elevador se mueve al nivel de la mesa de descarga. Los envases son barridos hacia la mesa de descarga.
- La mesa de descarga es controlada para que haga una pausa mientas la lámina intermedia es removida y apilada.
- 6. Los envases son canalizados en la mesa de descarga.

3.3 Selección de elementos mecánicos.

Si una persona encajona 38 cajas/h y cada caja contiene 24 botellas, por lo tanto las 22 personas entregan 20064 cajas/hora y al final de su turno de 8 horas, un total de 160512 botellas, representadas en 6688 cajas, significa que no logran culminar en un turno la producción requerida y con esa tasa de encajonado de botellas, ellos podrían terminar una producción de 16000 cajas, que representan 384000 botellas.

La máquina que se propuso para cumplir con la demanda se diseñó con la fuerza necesaria para barrer la cama con botellas de formato "D", se obtuvo de la ecuación (2.3). Dado este valor, se encontró la fuerza necesaria para realizar el barrido y luego seleccionar el motor. A continuación, se muestra un moto-reductor que contempla el rango. Los datos del moto-reductor se muestran en la Tabla 15.

Tabla 18. Propiedades del moto-reductor

Totalmente Cerrado, Enfriado por Ventilador, Montaje con Brida C CM3539
56 C
Trifásico
1200 rpm
½ HP / 0.3728 KW
2.3 lb-ft / 3.12 N-m
230 / 460
1 °A
72%
Quantis – Baldor
Angular
1200 rpm
25 rpm
2213 in-lb / 250 N-m
1 x 1.97 in
B B 38 3 C N 56C

Fuente Elaboración Propia.

El carro porta-botellas utiliza pernos con ruedas para rodar, la Resistencia de prueba más cercana a la obtenida, es la primera en la tabla 8-11, por lo tanto, la Clase de propiedad del perno es 4.6.

Tabla 19. Clase métrica de propiedad mecánica de perno Clase 4.6

	de tamaños,	Resistencia de prueba mínima, [†] MPa	mínima a la tensión,†	mínima a	Material	Marca en la cabeza
4.6	M5-M36	225	400	240	Acero de bajo o medio carbono	4.6

Fuente Diseño en Ingeniería Mecánica de Shigley 8va Ed. Pág 448, Tabla 8.11.

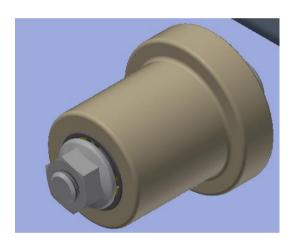


Figura 34. Perno elegido para colocar ruedas del carro porta botellas

Fuente Elaboración Propia

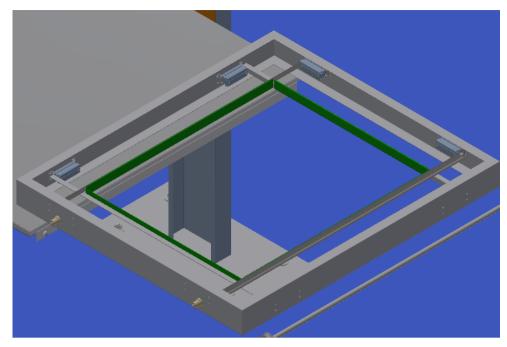


Figura 35. Vista Isométrica de las ruedas del carro porta botellas

Fuente Elaboración Propia

Para la selección de la columna se optó por una que tenga mayor o igual inercia a la calculada que fue 632 cm⁴. La columna elegida en este caso es de tipo G y tiene una inercia de 2860 cm⁴. Su perfil se muestra en la Figura 3.3, a continuación.

Figura 36. Vista del perfil de las columnas

Fuente Catálogo de Aceros DIPAC

La columna es estable debido a que las cargas críticas son mayores a la fuerza ejercida, por lo que la carga de 672 N, no causará ningún problema en la columna.

Pcr x-x = 2658 KN

Pcr y-y = 252.79 KN Pcr x-x > Pcr y-y > F

3.4 Dimensiones finales y equipos

Tabla 20. Materiales y dimensiones.

Material	Dimensiones		
Viga G	Ancho 150mm, Espesor 4mm, longitud 2400mm		
Viga UPN 260	Longitud 2200mm		
Viga W	Ancho 250mm, 33mm espesor 9,1mm longitud 4500mm		
Viga U	Ancho 250mm, Altura 125mm, Espesor 18, longitud		
	1760mm		
Eje de Transmisión			
Piñones para cadena	20 dientes, 50 tipo B		
Cadena Simple No.5			
Chumaceras			
Viga UPN100	Longitud 1640 mm		
Viga UPN100	Longitud 1430mm		
Viga Cuadrada	Ancho 25mm Espesor 2mm longitud 1600 mm		
Viga Cuadrada	Ancho 25mm Espesor 2mm longitud 1430 mm		
Plancha de Acero Inoxidable	Espesor 6mm, 1600mm x 1400mm		
Cilindros Neumáticos			
Mangueras de sistema	1 Rollo de manguera Neumática		
neumático			
Rodamientos para carrilera			
Guías plásticas para			
deslizamiento			
Soldadura E6011			
Moto-Reductor	1 HP 120RPM		
Sensor de distancia			
Sensor de objetos			
Tarjeta Electrónica	Tarjeta Electrónica con programación Arduino		
	Fuente Elaboración Propia		

3.5 Simulaciones

A continuación, se muestran las simulaciones para el Perfil de Arrastre L.

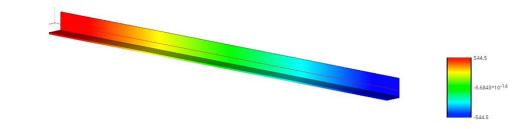


Figura 37. Simulación de Fuerzas Cortantes

Fuente Elaboración Propia

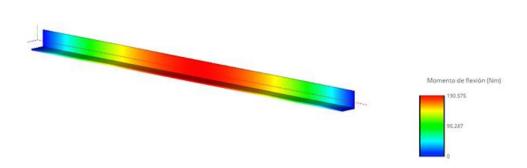


Figura 38. Simulación de Momentos Flectores en el Perfil de Arrastre L

Fuente Elaboración Propia

En los resultados de deflexión vertical, la curva elástica muestra deflexión de 0.9 mm en el centro.

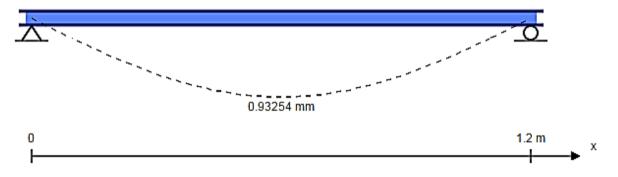


Figura 39. Simulación de Momentos Flectores en el Perfil de Arrastre L

Fuente Elaboración Propia

Con los cálculos se obtuvo la clasificación AWS del tipo de electrodo a usar, el cual fue E308L-16, este electrodo se utiliza para aceros de alta resistencia a la

oxidación y la corrosión. Es un electrodo de fácil aplicación, encendido y reencendido de arco para aplicaciones en todas posiciones, suelda con corriente directa electrodo positivo + (CDPI) y con corriente alterna (CA). Posee un núcleo sólido tipo austenítico de la familia de inoxidables Cr/Ni. Su resistencia a la Tensión (Sut) es de 520 MPa y Sy: 345 MPa.

3.6 Costos

Para realizar el costo de los materiales, se analizaron los proveedores, de los cuales se escogieron a los de menor precio y se obtuvieron las siguientes cotizaciones.

Tabla 21. Costos de materiales de la máquina.

Can	tidad	Material	Precio unitario	Precio Final
2	Un	Viga G	\$ 198,81	\$ 397,62
2	Un	Viga UPN 260	\$ 126,87	\$ 253,74
2	Un	Viga W	\$ 265,12	\$ 530,24
1	Un	Viga U	\$ 98,15	\$ 98,15
2	Un	Eje de Transmisión	\$ 202,00	\$ 404,00
8	Un	Piñones para cadena	\$ 10,80	\$ 86,40
8	Un	Cadena Simple No.5	\$ 2,75	\$ 22,00
8	Un	Chumaceras	\$ 175,00	\$ 1.400,00
2	Un	Viga UPN100	\$ 87,56	\$ 175,12
2	Un	Viga UPN100	\$ 87,56	\$ 175,12
2	Un	Viga Cuadrada	\$ 12,89	\$ 25,78
2	Un	Viga Cuadrada	\$ 12,89	\$ 25,78
1	Un	plancha de Acero Inoxidable	\$ 430,32	\$ 430,32
4	Un	Cilindros Neumáticos	\$ 95,00	\$ 380,00
1	Un	Mangueras de sistema neumático	\$ 14,25	\$ 14,25
8	Un	Rodamientos para carrilera	\$ 10,12	\$ 80,96
5	Un	Guías plásticas para deslizamiento	\$ 24,48	\$ 122,40
3	Kg	Soldadura E6011	\$ 25,35	\$ 76,05
2		Motor Reductor	\$ 1.250,00	\$ 2.500,00
2		Sensor de distancia	\$ 26,00	\$ 52,00
4		Sensor de objetos	\$ 23,58	\$ 94,32
1		Tarjeta Electrónica	\$ 230,00	\$ 230,00
			Subtotal	\$ 7.574,25

	IVA	\$ 1.060,40
	Total	\$ 8.634,65

Fuente Elaboración Propia

Tabla 22. Costos Generales de Construcción

	Costo
Materiales y equipos de la	\$8.634,65
máquina	
Automatización de la Maquina	\$7.000,00
Montaje de Estructura	\$4.000,00
Costos del Diseñador	\$4.908,66
Costos Indirectos	\$1.963,47
Total	\$24.543,31

Fuente Elaboración Propia

3.7 Análisis de costos de la máquina y tiempo de retorno de la inversión

3.7.1 Análisis de ingresos

Como se explicó en el Capítulo 1, la empresa contrata una tercera para la contratación de 22 obreros que se encargan de sacar de los pallets las botellas y ponerlas en la banda transportadora para ser llenadas y empaquetadas, eso es un gasto para la empresa, la cual se puede obviar con la fabricación e instalación de la máquina.

La factura producida por la empresa tercera, es de 8,000 más los equipos de protección personal que equivalen a \$320.00 dólares anuales por persona. Al poner en uso la máquina, el ahorro anual seria \$130,040.00 dólares equivalente a los ingresos.

3.7.2 Análisis de egresos de la máquina

Uno de los costos más caros de la máquina, es el de mantenimiento preventivo; se deben realizar mínimo tres al año, el cual tiene un costo de 4500 dólares

anuales. El costo de mantenimiento mayor, costo de reparación por gran daño, incluye repuestos, materiales, y horas hombres es de 4.200.00 dólares anuales. Los costos por mantenimiento incluyen el mantenimiento eléctrico, mecánico, e instrumentista y los de automatización, costo total \$5,200.00 dólares anuales. El costo de la energía eléctrica anual solo de la maquina sería aproximadamente \$200.00 dólares, ya que la maquina solo tiene dos motores de 1 HP cada uno. Se necesitan 2 operarios con sueldos de \$600.00 dólares mensuales más los EPP \$640.00 dólares, esto sería \$15,040 dólares anuales.

Teniendo un total de egresos de \$29,140.00 dólares anuales, para el cálculo de los siguientes años, se aumenta el valor en el 10%, como se muestra en la tabla. Para el análisis del tiempo de retorno, se observó que el tiempo era menor a un año y se procedió a desglosar el rubro mensual y mediante formula se comprobó que el tiempo de retorno es de cuatro meses.

3.7.3 Análisis de ganancia neta por año

En la tabla 20 se realizó el cálculo del VAN y el TIR, ya que el TIR sale más del 100% se concluye que el proyecto es altamente rentable

Tabla 23. Tabla de Ingresos y Egresos.

	Ingresos		Egresos	Flujo de Efectivo Neto	Formulac	ión de datos
A1	\$103,040.00	A1	\$43,540.00	\$59,500.00	f1	59500
A2	\$103,040.00	A2	\$45,717.00	\$57,323.00	f2	57323
А3	\$103,040.00	А3	\$48,002.85	\$55,037.15	f3	55037.15
A4	\$103,040.00	A4	\$50,402.99	\$52,637.01	f4	52637.0075
A5	\$103,040.00	A5	\$52,923.14	\$50,116.86	f5	50116.8579

Fuente Elaboración Propia.

Tabla 24. Ganancia Neta por la inversión por año

Mes	Ganancia	Ganancia
	Mensual	Neta
1	\$4.958,33	-\$19.584,98
2	\$4.958,33	-\$14.626,65
3	\$4.958,33	-\$9.668,31
4	\$4.958,33	-\$4.709,98
5	\$4.958,33	\$248,35
6	\$4.958,33	\$5.206,69
7	\$4.958,33	\$10.165,02

Fuente Elaboración Propia.

Tabla 25. Resultados de Van y Tir

VAN	\$30.395,90
TIR	238%

Fuente Elaboración Propia.

3.8 Análisis de ergonomía aplicada en la máquina

En la Ecuación de Niosh LC es la constante de carga y el resto de los términos del segundo miembro de la ecuación son factores multiplicadores que toman el valor 1 en el caso de tratarse de un levantamiento en condiciones óptimas, y valores más cercanos a 0 cuanto mayor sea la desviación de las condiciones del levantamiento respecto de las ideales. Así pues, RWL toma el valor de LC (23 kg) en caso de un levantamiento óptimo, y valores menores conforme empeora la forma de llevar a cabo el levantamiento.

La ecuación NIOSH se refiere a la carga máxima que un operador debe alzar en un cierto tiempo.

 $RWL = LC \cdot HM \cdot VM \cdot DM \cdot AM \cdot FM \cdot CM$

LC se refiere a la carga máxima, 23 Kg, multiplicada por el factor de edad, el personal que realiza esta operación son hombre entre 20 y 24 años

Tabla 26. Análisis de NIOSH

Masa de referencia	Población laboral protegida
15	Mujeres menores de 18 y mayores de 45 años.
20	Mujeres entre 18 y 45 años y hombres, menores de 18 y mayores de 45 años.
25	Hombres, entre 18 y 45 años.

Fuente Elaboración Propia.

3.8.1 Factor de Distancia Horizontal (HM)

Distancia horizontal desde el punto medio entre ambas manos en posición de agarre al punto medio entre ambos tobillos, calculada con la ecuación siguiente.

$$HM = \frac{25}{H}$$

Si H es menor de 25 cm. Se dará a HM el valor de 1 Si H es mayor de 63 cm. Se dará a HM el valor de 0

Factor de Distancia Vertical (VM)
Si V > 175 cm. Se dará a VM el valor de 0

3.8.2 Factor de Desplazamiento Vertical (DM)

$$DM = 0.82 + \frac{0.045}{D}$$

Si D ≥ 25cm ⇒ daremos a DM el valor 1 D no podrá ser mayor de 175 cm

3.8.3 Factor de Asimetría (AM)

AM = 1 - (0.0032 * A)

Si A > 135° daremos a AM el valor 0

Factor de Frecuencia (FM)

Duración=Larga >8horas

Frecuencia = 0.63 Elev/min = 1

Tabla 27. Repeticiones y velocidad del Trabajo Manual.

FRECUENCIA	Corta		Modera	ada	Larga	
elev/min	V<75	V>75	V<75	V>75	V<75	V>75
< 0,2	1,00	1,00	0,95	0,95	0,85	0,85
0,5	0,97	0,97	0,92	0,92	0,81	0,81
1	0,94	0,94	0,88	0,88	0,75	0,75
2	0,91	0,91	0,84	0,84	0,65	0,65
3	0,88	0,88	0,79	0,79	0,55	0,55
4	0,84	0,84	0,72	0,72	0,45	0,45
5	0,80	0,80	0,60	0,60	0,35	0,35
6	0,75	0,75	0,50	0,50	0,27	0,27
7	0,70	0,70	0,42	0,42	0,22	0,22
8	0,60	0,60	0,35	0,35	0,18	0,18
9	0,52	0,52	0,30	0,30	0,00	0,15
10	0,45	0,45	0,26	0,26	0,00	0,13
11	0,41	0,41	0,00	0,23	0,00	0,00
12	0,37	0,37	0,00	0,21	0,00	0,00

Fuente Elaboración Propia

Tabla 28. Tiempo del Trabajo Manual.

Tiempo	Duración	Tiempo de recuperación
≤1 hora	Corta	al menos 1,2 veces el tiempo de trabajo
>1 - 2 horas	Moderada	al menos 0,3 veces el tiempo de trabajo
>2 - 8 horas	Larga	

Fuente Elaboración Propia

3.8.4 Factor de Agarre (CM)

Se determinó que sí es bueno.

Tabla 29. Tipo de agarre de cajas

TIPO DE AGARRE	V < 75	V ≥ 75
Bueno	1.00	1.00
Regular	0.95	1.00
Malo	0.90	0.90

Fuente Elaboración Propia

Tabla 30. Factores para los distintos niveles

NIVEL	LC	НМ	VM	DM	AM	FM	CM	RWL	LI
8	20.7	1	0	0	0.712	0.75	1	0.000	
7	20.7	1	0	0	0.712	0.75	1	0.000	
6	20.7	1	1	0.865	0.712	0.75	1	9.562	1.089
5	20.7	1	1	0.8677	0.712	0.75	1	9.591	1.086
4	20.7	1	1	0.8245	0.712	0.75	1	9.114	1.143
3	20.7	1	1	0.8218	0.712	0.75	1	9.084	1.147
2	20.7	1	1	0.8209	0.712	0.75	1	9.074	1.148
1	20.7	1	1	0.8236	0.712	0.75	1	9.104	1.144

Fuente Elaboración Propia

En el caso de evaluaciones mono tarea el Índice de Levantamiento se calcula como el cociente entre el peso de la carga levantada y el límite de peso recomendado calculado para la tarea.

Índice de Levantamiento LI= Peso de la carga levantada / RWL

Finalmente, conocido el valor del Índice de Levantamiento puede valorarse el riesgo que entraña la tarea para el trabajador. Niosh considera tres intervalos de riesgo:

 Si LI es menor o igual a 1 la tarea puede ser realizada por la mayor parte de los trabajadores sin ocasionarles problemas.

- Si LI está entre 1 y 3 la tarea puede ocasionar problemas a algunos trabajadores. Conviene estudiar el puesto de trabajo y realizar las modificaciones pertinentes.
- Si LI es mayor o igual a 3 la tarea ocasionará problemas a la mayor parte de los trabajadores. Debe modificarse.

El índice de levantamiento esta entre los valores de 1 y 3, por lo que se considera reubicar a los trabajadores en otras áreas, para evitar lesiones o enfermedades laborable.

3.8.5 Análisis de la carga mediante software

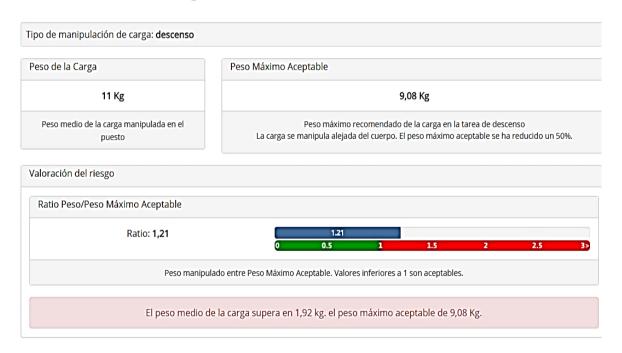


Figura 40. Resultados del software de análisis de carga

Fuente Elaboración Propia

El Peso máximo aceptable ha sido obtenido a partir de los siguientes criterios:

- Género: Hombre
- Percentil (% de población protegida) = 90
- Frecuencia:

Valor introducido = 38 descensos/hora

Valores utilizados para la interpolación

Frecuencia límite inferior (FI): 30 descensos/hora

Peso máximo aceptable para FI: 19 Kg.

- Anchura de la carga: Valor introducido = 24 cm.
- Distancia vertical recorrida por la carga = 175 cm.
- Altura inicial = 175 cm, Altura final = 0 cm.
- La distancia vertical excede el límite máximo de 76 cm. Contemplado en el método.
- Altura de levantamiento = Desde el nivel del suelo a la altura de los nudillos.
- El Peso máximo aceptable se ha reducido un 50% porque la carga se manipula separada del cuerpo.

CAPÍTULO 4

4. DISCUSIÓN Y CONCLUSIONES

La alternativa planteada para mejorar la productividad de una línea de envasado de una cervecería local, implica para los trabajadores una mejoría para las condiciones de seguridad y salud ocupacional, ya que se eliminan las tareas de levantamiento de carga, caída de botellas y estrés laboral.

En el aspecto económico, la máquina despaletizadora permite reducir costos debido a la disminución de las horas hombre generadas por el trabajo grupal de encajonado requerido anteriormente, en comparación a un proceso semiautomático, realizado con seguridad y eficiencia. Implica un ahorro de combustible para los montacargas ya que su trabajo es llevar únicamente al transportador de rodillos al inicio de la línea.

Si se cuantifica en tiempo y dinero el problema principal, el cual es no dar la cantidad requerida de botellas en un día con la producción al máximo, con el equipo de encajonadores; el déficit de botellas entre la capacidad de la envasadora y el encajonado realizado en un turno de 12 horas sería de 4968 cajas de 24 botellas, lo cual tiene un costo aproximado de \$69500, que no salió de fábrica debido a la velocidad con que entran botellas a la línea, con respecto al tiempo, el equipo de encajonado manual debe trabajar 1 hora y media para realizar el trabajo que la envasadora logra en 1 hora, la producción demoraría un 50% más de tiempo en culminarse, cada hora que la línea no produce botellas con cerveza se pierde \$5800.

Si cada encajonador obtiene de ingresos \$2.5/h, contando a los 22, se invierte aproximadamente al mes \$10000 para pagar sus sueldos. La máquina despaletizadora de botellas puede pagarse debido a que reemplazaría a este personal y se contrataría 1 persona para que opere la máquina, y ya que se gastan \$10000 mensuales, la máquina se pagará a corto plazo.

Se diseñó la maquina despaletizadora con los requerimientos de las botellas más grandes ya que ésta tendría el mayor peso, y la más pequeña por sus dimensiones y pesos, se realizaron los análisis de columnas, vigas, para verificar que la deformación

no exceda de 1mm, y el análisis por fatiga ya que está sometida a pequeñas vibraciones producidas por el movimiento de las botellas al mover lo pallets.

Mediante los análisis de costos de los materiales y los procesos de fabricación y montaje de la maquina se obtuvo que la inversión de ésta, es de \$21,192.47 dólares, y obteniendo una tasa de retorno de la inversión del 244% y su recuperación en cuatro meses, por lo que se la considera muy rentable.

Actualmente la competitividad de una empresa va de la mano con el nivel tecnológico aplicado en sus procesos de producción. La aplicación de este proyecto tiene los siguientes beneficios:

Seguridad: Ahorros en compra de implementos de seguridad para trabajos en zonas peligrosas (cascos, botas, guantes, iluminación, trajes especiales, arneses, etc.), seguros de vida, hospitalización y accidentes, indemnizaciones a familiares, costos de representación legal, multas provenientes de organismos reguladores de la actividad laboral, tiempo fuera de servicio de los equipos al producirse un accidente, reemplazo o reparación de equipos afectados.

Logística: Disminución de los costos operacionales por mayor rapidez y menos movimiento de montacargas, reduciendo así el consumo de combustible.

Una ventaja de eliminar el proceso de Encajonado, es la prevención para las demás áreas en contacto con este personal, del inicio, manifestación o evolución del hostigamiento psicológico en el trabajo, llamado "mobbing" según la NTP 476, ya que el área de Encajonado es en donde más probabilidades hay de generar esta condición, dado a que se dedican a hacer una tarea muy repetitiva bajo presión.

Esta automatización del proceso, impacta en el rendimiento general para la fábrica, ya que ciertas personas de Encajonado no influenciarán negativamente a otro equipo operativo debido a su estrés, lo cual causa: Disminución de la cantidad y calidad de trabajo, entorpecimiento o la imposibilidad del trabajo en grupo, problemas de comunicación, etc.

Por otra parte, se elimina el problema interno de la alta rotación del personal de Encartonado, el absentismo (justificado o no) de las personas.

Recomendaciones

Mediante el análisis de NIOSH se observó que el trabajo de los operadores, puede llevar a causarles lesiones o enfermedades laborales, por lo que se requiere cambiarlos de área y en su lugar poner una maquina despaletizadora con una velocidad igual a la lavadora de botellas.

Se recomienda utilizar los materiales y dimensiones descritas en el capítulo 3 para garantizar su confiabilidad. Antes de ser instalada la máquina, se recomienda nivelar el suelo y verificarla mediante un medidor de nivel una vez, montada en la fábrica.

Un panel de control con pantalla táctil proporcionaría: configuración para series por día, turno o partida, secuencia simple para funciones automáticas/manuales, pantalla de informe de estado de diagnóstico, estado de entrada/salida de la máquina.

BIBLIOGRAFÍA

- Joseph E. Shigley, Diseño en Ingeniería Mecánica, Mc Graw Hill, Sexta Edición, México, 2002.
- 2. Instrucciones Técnicas para el Proceso de Despaletizado. Obtenido de: Biblioteca de la Universidad de Sevilla.
- NIOSH Work practices guide for manual handling. Technical report nº 81122. US
 Department of Health and Human Services National Institute for Occupational
 Health, Cincinnati, Ohio, 1981
- Diego-Mas, Jose Antonio. Evaluación ergonómica del levantamiento de carga mediante la ecuación de Niosh. Ergonautas, Universidad Politécnica de Valencia, 2015.
- 5. Instituto Nacional de Seguridad e Higiene en el Trabajo. NTP 477: Levantamiento manual de cargas: Ecuación del NIOSH, Silvia Nogareda Cuixart, 1998.
- 6. Instituto Nacional de Seguridad e Higiene en el Trabajo. NTP 476: Levantamiento manual de cargas: Ecuación del NIOSH, Silvia Nogareda Cuixart, 1998.
- 7. Siemens, Catálogo de motores trifásicos.
- Diego-Mas, Jose Antonio. Análisis ergonómico global mediante el método LEST. Ergonautas, Universidad Politécnica de Valencia, 2015. Levantamiento manual de cargas: Ecuación del NIOSH, Silvia Nogareda Cuixart, 1998.
- 9. Cómo Justificar Proyectos de Automatización. Revista de Investigación Industrial Data, páginas 7-11. Velasquez C., J. (2004).
- Normas Técnicas Complementarias para Diseño y Construcción de Estructuras Metálicas.

APÉNDICES

APÉNDICE A

Perfil de arrastre de carro porta-botellas

			DIM	ENSIO	NES	CE	ANCIA NTRO AVEDA	DE	P	ROPIEI	DADES	SECCIO	ONALE	S EN C	ADA E	JE
Designa- ción	Área	Masa							Х	-X = Y-	Y	U-	·U		V-V	
			н	t	r _i	C,EC	G	Cv	l,=l,	r _x =r _y	Z,=Z,	L	r _u	Į,	r _v	Z,
	cm²	kg/m	mm	mm	mm	am	am	cm	cm ⁴	am³	cm	cm⁴	cm	cm ⁴	cm³	am
20/20/3	1.12	0.88	20	3	35	0.598	141	085	039	0.59	028	062	0.74	0.17	038	0.19
25253	142	1.12	25	3	3.5	0723	1.77	1.02	080	0.75	045	127	0.95	0.33	0.48	0.33
25254	1.85	1.45	25	4	3.5	0.762	1,77	1.08	102	074	0.59	161	0.93	0.43	0.48	040
30303	1.74	1.36	30	3	5	0835	212	1,18	1.40	090	065	222	1.13	0.59	0.58	0.50
30304	227	1.78	30	4	5	08781	212	1,24	180	089	0.85	285	1,12	0.75	0.58	061
35354	267	209	35	4	5	00	247	1.42	295	1.05	1.18	468	1.32	123	068	087
35355	328	257	35	5	5	1.04	247	1.48	356	1.04	145	564	1,31	149	068	1.01
40403	235	1.84	40	3	6	1.07	283	1,52	345	121	1,18	545	1.52	1,44	0.78	095
40404	308	242	40	4	6	1.12	283	1.58	447	121	1.55	709	1,52	1,86	0.78	1,17
40405	379	297	40	5	6	1,16	283	1.64	543	120	1.91	860	1,51	226	0.77	138
45454	349	274	45	4	7	123	318	1.75	643	136	197	102	1.71	268	088	153
45456	430	338	45	5	7	128	318	181	784	135	243	124	170	326	087	180
50604	3,89	3,06	50	4	7	1,36	354	1,92	897	1,52	246	142	1,91	3,73	0,98	1,94
50606	4,80	3,77	50	5	7	1,40	3,54	1,99	11,0	1,51	3,05	17,4	1,90	4,55	Q97	229
50606	569	4,47	50	6	7	1,45	354	2,04	12,8	1,50	361	20,3	1,89	5,34	0,97	261
60605	5,82	4,57	60	5	8	1,64	424	2,32	19,4	1,82	445	30,7	2,30	8,03	1,17	3,46
60606	6,92	5,42	60	6	8	1,69	424	2,39	22,8	1,82	529	36,1	2,29	9,44	1,17	3,96
60608	9,03	7,09	60	8	8	1,77	424	2,50	292	1,80	6,89	46,1	2,26	12,2	1,16	4,86
65656	7,53	5,91	65	6	9	1,80	460	2,55	292	1,97	621	46,3	2,48	12,1	1,27	4,74
65658	9,85	7,73	65	8	9	1,89	460	2,67	37,5	1,95	8,13	59,4	2,46	156	1,26	5,84
70/706	8,13	6,38	70	6	9	1.93	495	2,73	36,9	2,13	7,27	58,5	2,68	15,3	1,37	560
70/70/7	9,40	7,38	70	7	9	1,97	495	2,79	42,3	2,12	8,41	67,1	2,67	17,5	1,36	628
75/756	8,73	6,85	75	6	9	2,05	5,30	2,90	458	229	8,41	72,7	2,89	18,9	1,47	6,53
75/75/8	11,4	8,99	75	8	9	2,14	5,30	3,02	59,1	227	11,0	93,8	2,86	24,5	1,46	8,09
80806	9,35	7,34	80	6	10	2,17	5,66	3,07	55,8	2,44	9,57	88,5	3,08	23,1	1,57	7,55
80808	12,3	9,63	80	8	10	2,26	5,66	3,19	722	2,43	126	115	3,06	29,9	1,56	9,37
80:80:10	15,1	11,9	80	10	10	2,34	5,66	3,30	87,5	2,41	15,4	139	3,03	26,4	1,55	11 D
90:90:7	12,2	9,61	90	7	11	2,45	6,36	3,47	92,5	2,75	14,1	147	3,46	38,3	1,77	11 D
90908	13,9	10,9	90	8	11	2,50	6,36	3,53	104	2,74	16,1	166	3,45	43,1	1,76	122
90909	15,5	122	90	9	11	2,24	6,36	3,59	116	2,73	17,9	184	3,44	47,9	1,76	13,3
90/90/10	17,1	15,0	90	10	11	2,58	6,36	3,65	127	2,72	19,8	201	3,42	526	1,75	14,4
100<100.6	15,5	122	100	8	12	2,74	7,07	3,87	145	3,06	19,9	230	3,85	59,9	1,96	15,5
100<100<10	19,2	15,0	100	10	12	2,82	7,07	3,99	177	3,04	246	290	3,83	73,0	1,95	18,3
100/100/12	22,7	17,8	100	12	12	2,90	7,07	4,11	207	3,02	29,1	328	3,80	85,7	1,94	209
120/120/8	18,7	14,7	120	8	13	3,23	8,49	4,56	255	3,69	29,1	405	4,65	105	2,37	23,1
120/120/10	23,2	182	120	10	13	3,31	8,49	4,69	313	3,67	360	497	4,63	129	2,36	275
120/120/12	27,5	21,6	120	12	13	3,40	849	4,80	368	3,65	42,7	584	4,60	152	2,35	316
125<125/8	19,5	15,3	125	8	13	3,35	8,84	4,74	290	3,85	31,7	461	4,85	120	2,47	253
125x125x10	242	19,0	125	10	13	3,44	8,84	4,86	356	3,84	393	565	4,83	146	2,46	30,1
125x125x12	28,7	226	125	12	13	352	8,84	4,98	418	3,81	466	664	4,81	172	2,45	346
150x150x10	29,3	23,0	150	10	16	4,03	10,6	5,71	624	462	56,9	990	5,82	258	2,97	45,1
150:150:12	34,8	27,3	150	12	16	4,12	10,6	5,83	737	460	67,7	1170	5,80	303	295	520
150:150:15	43,0	33,8	150	15	16	4,25	10,6	6,01	898	4,57	83,5	1430	5,76	370	293	616
180/180/15	52,1	40,9	180	15	18	4,98	12,7	7,05	1590	5,52	122	2520	6,96	663	3,54	927
180x180x18	61,9	48,6	180	18	18	5,10	12,7	7,22	1870	5,49	145	2960	6,92	768	3,52	106

Los valores de r₁ y r₂ están dados solamente como información y para el cálculo de las propiedades de las secciones.

I = momento de inercia, Z = módulo elástico, r_x , r_y = radios de giro.

Poleas sincrónicas

																	Bore	
Sprocket			Number				Design		<u></u> B	_ C	<u></u> D.	<u></u> E.	<u></u> F.			Bushing		
Number	(mm)	Belt (mm)	of Teeth	(mm)	(mm)	Ref. (mm)	Type	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Size	Min.	
P27-8MGT-20	20	8	27	68.7578	67.3862	81.534	AF-1	52.578	-	21.59	22.352	0	28.702	6.604	14.478	1108	(mm) 12.7	

Pulleys for Metric Polyurethane T10 Belts

Pulley TypesThe Pulley types referred to in tables are as drawings below. Suffix 'F' indicates pulley has

flanges. Std. Pulleys can be reworked to customers bore and keywaying requirements.

Type 1F

Catalogue No.	No. Teeth Z	Pulley Type	Pitch Circle Dia. dp	Min. Bore d	Max. Bore d	Ouside Diameter do	Flange Dia. A	Pulley Width F	Bore Length L	Hub Dia. M	Approx Weight kg
10mm Pitch P	ulleys for 1	6mm Wide	Belt Ref. 16	T10							
16 T10-12 16 T10-14 16 T10-15 16 T10-16 16 T10-18 16 T10-19 16 T10-20 16 T10-22 16 T10-24 16 T10-25 16 T10-27 16 T10-27 16 T10-30 16 T10-30 16 T10-30 16 T10-36	12 14 15 16 18 19 20 22 24 25 26 27 28 30 32 40	1F 1F 1F 1F 1F 1F 1F 1F 1F 1F 1F	38.20 44.56 47.75 50.93 57.30 60.48 63.66 70.03 76.39 79.58 82.76 85.94 89.13 95.49 101.86 114.59 127.32	6 8 8 8 8 8 8 8 8 8 8 10	18 21 23 26 28 30 34 39 39 39 39 42 52	36.3 42.7 45.9 49.1 55.4 58.6 61.8 68.2 74.5 77.7 80.9 84.1 87.2 93.6 100.0 112.7 125.4	42 48 51 54 60 66 66 75 83 87 91 97 106 120	21 21 21 21 21 21 21 21 21 21 21 21 21 2	31 31 31 31 31 31 31 31 31 31 31	28 32 32 35 40 44 46 52 58 60 60 60 60 60 65 70 80	0.08 0.11 0.12 0.14 0.17 0.19 0.21 0.26 0.29 0.31 0.36 0.37 0.40 0.44 0.49 0.63
16 T10-48	48	1	152.79	16	62	150.9	-	21	31	95	1.09
10 110-00	OU		190.99	10	12	189.1		21	δI	110	1.70
10mm Pitch P	ulleys for 2	5mm Wide	Belt Ref. 25	T10							
25 T10-12 25 T10-14 25 T10-15 25 T10-16 25 T10-18 25 T10-19 25 T10-20 25 T10-22 25 T10-24 25 T10-25 25 T10-25 25 T10-26 25 T10-27 25 T10-28 25 T10-30 25 T10-30 25 T10-30 25 T10-44 25 T10-48 25 T10-48	12 14 15 16 18 19 20 22 24 25 26 27 28 30 32 36 40 44 48 60	1F 1F 1F 1F 1F 1F 1F 1F 1F 1F 1F 1F	38.20 44.56 47.75 50.93 57.30 60.48 63.66 70.03 79.58 82.76 85.94 89.13 95.49 101.86 114.59 114.59 1190.99	6 8 8 8 8 8 8 8 8 8 8 10 10 10 16 16	18 21 21 23 26 28 30 34 38 39 39 39 39 42 45 52 57 62 72	36.3 42.7 45.9 49.1 558.6 61.8 68.2 77.7 80.9 84.1 87.2 93.6 100.0 112.7 125.4 138.2 150.9 189.1	42 48 51 54 60 66 67 75 83 87 97 106 120 131	30 30 30 30 30 30 30 30 30 30 30 30 30 3	40 40 40 40 40 40 40 40 40 40 40 40 40 4	28 32 32 35 40 44 46 52 58 60 60 60 60 65 70 88 95 110	0.10 0.14 0.16 0.18 0.23 0.25 0.39 0.42 0.48 0.55 0.64 0.69 1.07 1.07 1.35 2.34

Material: Poliuretano

Type 1F

Paso: 10 mm

Número de dientes: 48

Ancho de banda: 16 mm

Diámetro primitivo: 152.79 mm

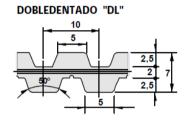
Diámetro interno: 20 mm

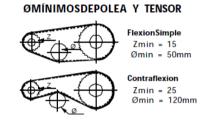
Agujero: Cilíndrico

Ajuste: H7 – s6 (ajuste forzado)

Bandas sincrónicas

Correa dentada de Poliuretano


NORMAS:ISO DIN7721



NCHOmm	16	25	32	50	75	100	150
Fuerzadetracciónadmisible(N)GENIII	3000	5000	6750	10750	16500	22000	33500
Peso(Ka/m)GENIII	0 117	0,183	0,234	0,365	0,548	0,73	1,095
Fuerzadetracciónadmisible(N)	2000	3500	4750	7750	12000	16000	24500
Peso(Kg/m.)	0,101	0,158	0,202	0,315	0,473	0,63	0,945
uerzauetraccionaumisible (N) bkcco-v		2125	2750	4250	6375	8500	11000
Peso(Kg/m.)BRECO		0,158	0,186	0,29	0,436	0,581	0.839

DIMENSIONES DENTADOSIMPLE"S" 10 2,5° 2,5°

Material: Poliuretano

(*)2enBRECO

Ancho: 16 mm

Carga Aplicada: 520 N Carga admisible: 2000 N Factor de seguridad: 3.8

Dentado simple

Paso: 10 mm

Longitud: 8.5 metros (Por cada banda)

Rueda con pestaña (Guías de desplazamiento horizontal y cama de soporte)

Heavy Duty Polyamide Flange Wheels SERIES "KGSPK"

Wheel:

Made of high-compressed semi rigid cast polyamide, very heavy model. Made of solid material turned, running surface 3° gradient, with groove ball bearing. The wheels have an extreme high load capacity, are abrasion resistant and have a very low rolling resistance.

Article-no. Wheels	(S)	Wheel width with flange in mm	Wheel width without flange in mm	(d)		→	& kg	• •
KGSPK075	75/100	40	30	20	full	40	700	
KGSI K IOO	100/123	40	50	20	full	40	1000	
KGSPK125	125/145	46	36	20	full	46	1500	• •
KGSPK150	150/175	52	38	30	full	52	2000	• •
KGSPK200	200/230	60	48	40	full	60	2500	• •
KGSPK200S	200/230	80	65	40	full	80	3500	-1-
KGSPK250	250/290	75	60	50	full	75	4500	
KGSPK300	300/340	90	72	60	full	90	5000	• •

Material: Poliamida

Diámetro con pestaña: 40 mm Diámetro sin pestaña: 30 mm

Diámetro interno: 20 mm

Carga aplicada Máxima: 345 Kg

Carga admisible: 700 Kg Factor de seguridad: 2.02

Nota: Requiere de 2 Rodamientos de bolas.

Ruedas (Cama de soporte)

Apparatus Plastic Wheels LINE "AKG"

Wheel: Made of high quality plastic, black, plain bearing

Article no. Wheels	(S)	T T	(a)	→ O +	kg kg	
AKG015	15	12	5	13	20	
ANGUZJ	25	14	-	15	50	
AKG030	30	14	5	15	35	
AKG032	32	18	6	20	40	
AKG038	38	18	6	20	40	
AKG045	45	17	6	18	45	
AKG050/6	50	19	6	22	50	
AKG050/8	50	19	8	22	50	
AKG075	75	23	8	28	60	
AKG100	100	32	12	36	100	
AKG125	125	32	12	36	125	
	1.77			77-7		

Material: Poliuretano de alta densidad

Diámetro exterior: 15 mm Diámetro interno: 5 mm

Carga aplicada Máxima: 11.4 Kg

Carga admisible: 20 Kg Factor de seguridad: 1.75

Nota: No requiere rodamientos.

Ruedas (Guías de desplazamiento vertical)

Plastic Super Heavy Cuty Wheels LINE "KGK"

Wheel:

Made of compressed semi-rigid cast polyamide PA6 G very heavy model, turned solid material, with double sealed 2 RS groove ball bearing for durability. The wheels are temperature resistant from -40°C up to +80°C, have an extreme high load capacity, are abrasion resistant and blow resistant and have a very low rolling resistance. The load capacity, however, is greatly reduced when the temperature exceeds +35°C.

Article no. Wheels	(Q)	- I		→	& kg	
KGK080/40/20	80	40	20	45	1000	••
KGK080/70/25	80	70	25	70	1200	• •
KGK100/40/20	100	40	20	45	1200	• •
KGK100/55/25	100	55	25	60	1800	• •
KGK125/40/20	125	40	20	50	1500	••
KGK125/55/25	125	55	25	60	2000	••
KGK150/40/25	150	40	25	50	2000	••
KGK150/55/30	150	55	30	60	2500	••
KGK150/80/35	150	80	35	90	3000	••
KGK200/55/35	200	55	35	60	3000	• •
KGK200/80/45	200	80	45	90	4500	••
KGK250/65/45	250	65	45	70	5000	••
KGK250/80/50	250	80	50	90	6000	• •
KGK300/80/55	300	80	55	90	7000	•••
KGK300/110/70	300	110	70	120	10000	•••
KGK400/110/80	400	110	80	120	12000	• •

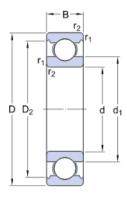
Material: Poliamida

Ancho: 45 mm

Diámetro exterior: 80 mm Diámetro interno: 20 mm

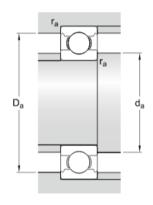
Diamotro intorno: 20 mi

Carga aplicada Máxima: 294 Kg


Carga admisible: 1000 Kg Factor de seguridad: 3.4

Nota: Requiere de 2 Rodamientos de bolas.

Cojinetes de rodadura (SKF)


619/9

Dimensions

d		9	mm
D		20	mm
В		6	mm
d ₁	≈	11.61	mm
D ₂	×	17.44	mm
r _{1,2}	min.	0.3	mm

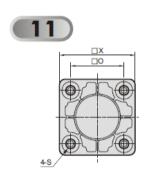
Abutment dimensions

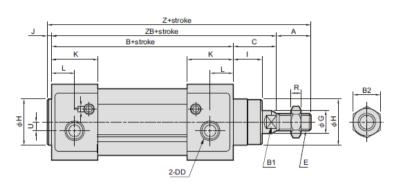
d _a	min.	11	mm
D _a	max.	18	mm
r _a	max.	0.3	mm

Calculation data

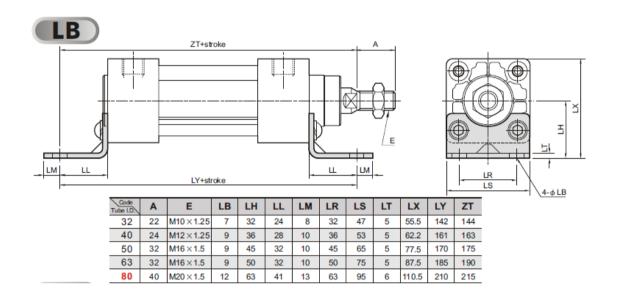
Basic dynamic load rating	С	2.3	kN
Basic static load rating	C ₀	0.98	kN
Fatigue load limit	P _u	0.043	kN
Reference speed		80000	r/min
Limiting speed		50000	r/min

Carga aplicada: 1440.6 N Carga permisible: 2300 N Factor de Seguridad: 2.6


Nota: Para las ruedas guías de desplazamiento vertical y horizontal


Cilindros Neumáticos (Sujeción superior de botellas)

ISO-VDMA STANDARD PROFILE CYLINDERS



Code Tube I.D.	Α	AA	AB	AC	AD	AE	AR	AS	В	B1	B2	С	DD	E	G	Н	1	J	K	L	0
32	22	19	23	12	7	M10夸1.25	6	17	94	10	17	26	G 1/8	M10×1.25	12	30	16	4	26	13	32.5
40	24	20	27	12	7	M12夸1.25	7	19	105	13	19	30	G 1/4	M12×1.25	16	35	20	4	30	15	38
50	32	20	32	15	10	M16夸1.5	8	24	106	16	24	37	G 1/4	M16×1.5	20	40	25	4	30	15	46.5
63	32	20	32	15	10	M16夸1.5	8	24	121	16	24	37	G 3/8	M16×1.5	20	45	25	4	32	16	56.5
80	40	32	41	20	14	M22夸1.5	13	32	128	21	30	46	G 3/8	M20×1.5	25	45	32	4	38	19	72
100	40	32	44	20	14	M22夸1.5	13	32	138	21	30	51	G 1/2	M20×1.5	25	55	35	4	40	21	89

Code Tube I.D.	R	S	U	X	ZB	Z	ZM	ZN	ZP	ZQ
32	5	M6×1.0	5	47	120	146	146	190	143	184
40	6	M6×1.0	4	53	135	163	165	213	162	206
50	8	$M8 \times 1.25$	4	65	143	179	180	244	175	227
63	8	M8×1.25	7	75	158	194	195	259	190	242
80	10	M10×1.5	7	95	174	218	220	300	215	287
100	10	M10×1.5	7	115	189	233	240	320	233	305

ISO-VDMA STANDARD PROFILE CYLINDERS

Specification:

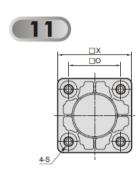
Model	MCQI
Tube I.D.(mm)	32,40,50,63,80,100
Medium	Air
Operating pressure range	0.5~9.9 kgf/cm²
Proof pressure	15 kgf/cm ²
Ambient temperature	-5°C~+60°C (No freezing)
Sensor switch	RCI

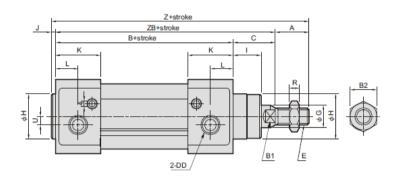
Modelo: MCQI - 11 - 32 - 80 - LB

Carrera: 80 mm

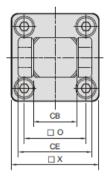
Presión aplicada: 5 kg/cm²

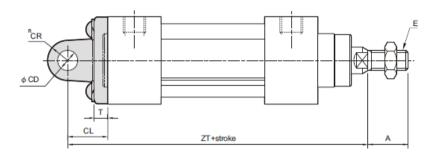
Área de pistón en carrera negativa: 691.2 mm²


Fuerza producida: 338 N


Cilindros Neumáticos (Sujeción inferior de botellas)

ISO-VDMA STANDARD PROFILE CYLINDERS





Code Tube I.D.	Α	AA	AB	AC	AD	AE	AR	AS	В	B1	B2	С	DD	E	G	Н	1	J	K	L	0
32	22	19	23	12	7	M10夸1.25	6	17	94	10	17	26	G 1/8	M10×1.25	12	30	16	4	26	13	32.5
40	24	20	27	12	7	M12夸1.25	7	19	105	13	19	30	G 1/4	M12×1.25	16	35	20	4	30	15	38
50	32	20	32	15	10	M16夸1.5	8	24	106	16	24	37	G 1/4	M16×1.5	20	40	25	4	30	15	46.5
63	32	20	32	15	10	M16夸1.5	8	24	121	16	24	37	G 3/8	M16×1.5	20	45	25	4	32	16	56.5
80	40	32	41	20	14	M22夸1.5	13	32	128	21	30	46	G 3/8	M20×1.5	25	45	32	4	38	19	72
100	40	32	44	20	14	M22夸1.5	13	32	138	21	30	51	G 1/2	M20×1.5	25	55	35	4	40	21	89

Tube I.D.	R	S	U	X	ZB	Z	ZM	ZN	ZP	ZQ
32	5	M6×1.0	5	47	120	146	146	190	143	184
40	6	M6×1.0	4	53	135	163	165	213	162	206
50	8	M8×1.25	4	65	143	179	180	244	175	227
63	8	M8×1.25	7	75	158	194	195	259	190	242
80	10	M10×1.5	7	95	174	218	220	300	215	287
100	10	M10×1.5	7	115	189	233	240	320	233	305

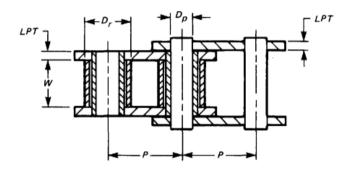
Code Tube I.D.	Α	СВ	CD	CE	CL	CR	E	0	Т	Х	ZT
32	22	26+0.3	10 ^{H9}	45	22	10.5	M10×1.25	32.5	10	47	142
40	24	28+0.3	12 ^{H9}	52	25	13	M12×1.25	38	10	53	160
50	32	32+0.3	12 ^{H9}	60	27	13	M16×1.5	46.5	12	65	170
63	32	$40^{+0.3}_{+0.1}$	16 ^{H9}	70	32	17	M16×1.5	56.5	12	75	190
80	40	50+0.3	16 ^{H9}	90	36	17	M20×1.5	72	16	95	210
100	40	$60^{+0.3}_{+0.1}$	20 ^{H9}	110	41	21	M20×1.5	89	16	115	230

Modelo: MCQI - 11 - 63 - 80 - CB

Carrera: 80 mm

Presión aplicada: 5 kg/cm²

Área de pistón en carrera negativa: 1276.3 mm²


Fuerza producida: 625 N

Nota: Todo el sistema Neumático trabaja a la misma presión

Cadenas (Elevación)

PRECISION POWER TRANSMISSION ROLLER CHAINS, ATTACHMENTS, AND SPROCKETS

ASME B29.1M-1993

P = chain pitch

D_r = roller diameter
LPT = link plate thickness

W = chain width between roller link plates

 D_p = pin diameter

TABLE 1B GENERAL CHAIN DIMENSIONS, mm

		Max. Roller	Nominal	Nominal	Link Plate T		Measuring	Length	Min. Ultimate Tensile Strength, Standard and
Standard Chain No.	Pitch Diam. Width Pin Diam. Standard Hear	Heavy Series	Load, N (2)	Tolerance, mm/m	Heavy Series N (3)				
25	6.35	3.30 (4)	3.18	2.30	0.76		80.1	2.58	3 470
35	9.52	5.08 (4)	4.78	3.58	1.27		80.1	1.83	7 825
41	12.70	7.77	6.35	3.58	1.27		80.1	1.58	6 672
40	12.70	7.92	7.92	3.96	1.52		137.9	1.58	13 900
50	15.88	10.16	9.52	5.08	2.03		218.0	1.50	21 710
60	19.05	11.91	12.70	5.94	2.39	3.18	311.4	1.42	31 270

Cadena Standard No. 25 (ASME B29.1M-1993)

Paso: 6.35 mm

Carga aplicada: 1380 N

Carga admisible: 3470 N

Factor de seguridad: 2.5

Catalina (Eje de elevación) Estándar No. 25

Material: Acero Inoxidable AISI 304

Stock Bore Diameter	0.625 in
Hub Diameter	2.250 in
LTB	1.000 in
Style	В
No. Teeth	45
Outside Diameter	5.590 in
Pitch Diameter	5.376 in
Caliper Diameter	5.173 in
Max. Bore	1.500 in
Weight	2.180 lb
Plate Nom. Width	0.168 in
Hardened Teeth	No

Chumacera (Eje de elevación)

ESTRUCTURA Y COMPOSICIÓN

Soporte con rodamiento autoalineable

Material de la caja: Hierro fundido Material de la rótula: Hierro fundido

Opcional: modelos anti-corrosión y resistentes a la corrosión.

Valores límite d radial	e carga para fuerza	Tipo PB Cojinete de pedestal con 2 orificios	Tipo FL/DF Cojinete de brida de 2 ó 4 orificios
TAMAÑO	Diámetro interior, mm	Carga radial máx. [N]	Carga radial máx. [N]
1	10-15	4250	3750
2	20-25	7700	5900
3	30	9500	8000
4	35-40	17000	11000
5	45	23000	12000
6	50	25000	14500
7	55-60	30000	16000
8	70-75	38000	17000
9	80-85	45500	27000
10	90-100	74500	30500

Chumacera (Eje de desplazamiento horizontal)

ESTRUCTURA Y COMPOSICIÓN

Soporte con rodamiento autoalineable

Material de la caja: Hierro fundido Material de la rótula: Hierro fundido

Opcional: modelos anti-corrosión y resistentes a la corrosión.

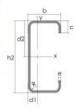
Valores límite d radial	e carga para fuerza	Tipo PB Cojinete de pedestal con 2 orificios	Tipo FL/DF Cojinete de brida de 2 ó 4 orificios		
ОЙАМАТ	Diámetro interior, mm	Carga radial máx. [N]	Carga radial máx. [N]		
1	10-15	4250	3750		
2	20-25	7700	5900		
3	30	9500	8000		
4	35-40	17000	11000		
5	45	23000	12000		
6	50	25000	14500		
7	55-60	30000	16000		
8	70-75	38000	17000		
9	80-85	45500	27000		
10	90-100	74500	30500		

Selección de motor trifásico para sistema de barrido.

Se escogió el motor de ½ HP y 1800 rpm.

MOTORES TRIFASICOS DE EFICIENCIA ESTANDAR

CARACTERISTICAS TIPICAS


Pon	encia	Carcaza	RPM	Corriente	Corriente con rotor	Momento	Momento con rotor	Momento máximo	Re	ndimier η %	nto	Facto	Cos φ	encia	Factor	Momento de inercio	Tiempo máximo con rotor	Peso aprox.
HP	kw	IEC	Krm	en 220V		Cn Nm	bloqueado	Cmáx.		% d	le la pate	ncia nor	ninal		servicio	J	bloqueado	.,
nr	KW			^	Ip/In	Nm	Cp/Cn	Cn	50	75	100	50	75	100	E.S.	kgm²	en caliente/ frio (S)	(kg)

1800 RPM - 60 Hz

1000 KI	• • •																
0,16 0,12	63	1720	0,89	4,50	0,67	3,2	3,4	45,0	52,0	57,0	0,46	0,55	0,62	1,15	0,00045	31/68	7
0,25 0,18	63	1710	1,14	4,50	1,01	2,8	3,0	53,0	60,0	64,0	0,47	0,57	0,65	1,15	0,00056	18/40	8
0,33 0,25	63	1710	1,44	4,50	1,40	2,9	2,9	59,0	64,0	67,0	0,48	0,59	0,68	1,15	0,00067	20/44	8
0,5 0,37	71	1720	2,07	5,00	2,06	2,7	3,0	56,0	64,0	68,0	0,48	0,59	0,69	1,15	0,00079	10/22	10

Columna del Sistema de Elevación

	ı	Dimen:	siones		Masa	A	d	Mome de ine			dulo tente	0.000	adio giro
Designación	h	d	С	е				İx	ly	Wx	Wy	ix	iy
	mm	mm	mm	mm	Kg/m	cm2	cm	cm4	cm4	cm3	cm3	cm	cm
G 60x30x10x2	60	30	10	2	1,96	2,54	1,44	14,88	5,28	4,9	2,74	2,42	1,44
G 80x40x15x2	80	40	15	2	2.75	3.54	1,46	35,25	8.07	8,81	3.18	3,16	1,51
G 80x40x15x3	80	40	15	3	3,95	5,11	1,46	49,04	10.85	12,26	4,27	3,1	1,46
G 80x50x15x2	80	50	15	2	3,06	3,88	1,46	41,11	13,55	10,28	4,34	3,23	1,88
G100x50x15x2	100	50	15	2	3,38	4.34	1,73	69,24	14.98	13,85	4,57	4.00	1,86
G100x50x15x3	100	50	15	3	4,89	6,31	1.72	97,78	20.51	19,56	6,25	3.94	1.8
G100x50x15x4	100	50	15	4	6.29	8.15	1.71	122.5	24.85	24,49	7,55	3,88	1,75
G100x50x20x4	100	50	20	4	6,60	8,55	1,85	126,7	28,5	25,34	9,05	3,85	1,83
G100x50x25x5	100	50	25	5	8.35	10,86	1.98	152,51	36,52	30,5	12,09	3,75	1,83
G125x50x15x2	125	50	15	2	3.77	4.84	1,56	116,4	16,16	18,63	4,69	4,91	1,83
G125x50x15x3	125	50	15	3	5.48	7.06	1,55	165.5	22.16	26,48	6,43	4.84	1,77
G125x50x15x4	125	50	15	4	7.07	9,15	1,54	208.7	26,88	33,39	7,78	4,78	1,71
G125x50x15x5	125	50	15	5	8.55	11,11	1.54	246.2	30,41	39,39	8.78	4.71	1.65
G125x50x50x4	125	50	20	4	7.39	9.55	1.68	217	30.9	34.7	9.32	4.77	1.8
G125x50x25x5	125	50	25	5	9.33	12,11	1,8	264.3	39.88	42,29	12,46	4,67	1,82
G125x50x30x6	125	50	30	6	11,32	14,73	1,92	307.1	48,69	49,14	15,81	4.56	1,81
G150x50x15x2	150	50	15	2	4.16	5.34	1,42	178,7	17.13	23,83	4,78	5,79	1,79
G150x50x15x2	150	50	15	3	6.07	7.81	1,42	255.2	23,49	34,03	6,56	5,79	1,73
G150x50x15x3	150	50	15	4	7.86	10,15	1,42	323,5	28,51	43,13	7,95	5.65	1,68
G150x50x15x4	150	50	15	5	9.53	12,36	1,41	383,6	32,27	51,15	8,98	5.57	1,62
A CONTRACTOR OF THE CONTRACTOR	150	50	20	4	10.00	100000	1,54	337	32,27		9,52		1,77
G150x50x20x4		1000000	25	5	8,17	10,5				44,9		5,65	
G150x75x25x5	150	75 75	30	6	12,28	15,86	2,65	545,4	117,2	72,71	24,17	5,86	2,72
G150x75x30x6	150	1000	15	100	14,86	19,23	2,78	641,4	144,5	85,52	30,57	5,77	2,74
G175x50x15x2	175	50	1000	2	4,56	5,84	1,31	257,7	17,92	29,45	4,85	6,64	1,75
G175x50x15x3	175	50	15	3	6,66	8,56	1,31	369,4	24,59	42,22	6,66	6,57	1,7
G175x50x15x4	175	50	15	4	8,64	11,15	1,3	470,0	29,85	53,71	8,07	6,49	1,64
G175x50x15x5	175	50	15	5	10,51	13,61	1,3	559,7	33,79	63,97	9,14	6,41	1,58
G175x75x25x4	175	75	25	4	10,84	13,9	2,48	653,0	105	74,6	20,9	6,84	2,75
G175x75x25x5	175	75	25	5	13,26	17,11	2,47	786,0	123,9	89,82	24,63	6,78	2,69
G175x75x30x6	175	75	30	6	16,03	20,73	2,6	929,4	152,8	106,2	31,19	6,7	2,72
G200x50x15x2	200	50	15	2	4,95	6,34	1,21	354,9	18,59	35,49	4,91	7,48	1,71
G200x50x15x3	200	50	15	3	7,25	9,31	1,21	510,3	25,51	51,03	6,73	7,4	1,66
G200x50x15x4	200	50	15	4	9,43	12,15	1,21	651,4	30,96	65,14	8,18	7,32	1,6
G200x50x15x5	200	50	15	5	11,49	14,86	1,21	778,3	35,06	77,83	9,26	7,24	1,54
G200x75x25x4	200	75	25	4	11,63	14,9	2,32	895,0	110,0	89,50	21,3	7,64	2,71
G200x75x25x5	200	75	25	5	14,24	18,37	2,32	1080,0	129,6	108,0	25,02	7,67	2,66
G200x75x30x6	200	75	30	6	17,21	22,23	2,45	1282,0	160,2	128,2	31,73	7,59	2,68
G250x75x25x4	250	75	25	4	13,20	6,90	2,07	1520,0	118,0	122,0	21,7	9,48	2,64
G250x100x25x5	250	100	25	5	18,17	23,36	2,73	2219,0	285,3	177,5	39,24	9,75	3,49
G250x100x30x6	250	100	30	6	21,92	8,23	3,1	2647,0	383,5	219,8	55,58	9,68	3,69
G300xz100x30x4	300	100	30	4	16,65	21,3	2,84	2860,0	274,0	191,0	38,3	11,6	3,58
G300x100x35x5	300	100	35	5	20,91	26,9	2,97	3560,0	351,0	237,0	49,9	11,5	3,62
G300x100x35x6	300	100	35	6	24,75	31,8	2,96	4170,0	404,0	278,0	57,4	11,4	3,56

Electrodo para soldadura de columna con placa base

Descripción:

El electrodo 308L posee un revestimiento rutilico, lo que lo hace apto para soldar con CA o CC, electrodo positivo. Este electrodo se caracteriza por un arco estable de transferencia spray, cuyo depósito es de excelente forma y apariencia. La escoria se desprende fácilmente, además de tener muy buena reanudación de arco por lo que se aconseja usarlo en soldadura intermitente. El depósito es de acero inoxidable austenítico.

Características:

- · Electrodo para aceros inoxidables austeníticos
- · Revestimiento rutílico. Color blanco
- Toda posición
- Corriente continua, electrodo positivo o corriente alterna (CCEP,CA)
- · Resistente a la corrosión intergranular

Usos:

El electrodo 308L ha sido diseñado principalmente para soldar aceros inoxidables austeníticos con un contenido extra bajo de carbono.

Aplicaciones Típicas:

- Aceros inox. 304, 304L, 308, 308L, 321, 347, 348
- Equipos químicos y petroquímicos
- Estanques que contengan productos químicos corrosivos

COMPOSICION QUIMICA DEL METAL DEPOSITADO								
C 0,02%								
Mn	0,63%							
Si	0,76 %							
P	0,025%							
S	0,008%							
Cr	18,7%							
Ni	10,0%							
Мо	0,18%							

CARACTERISTICAS TIPICAS DEL METAL DEPOSITADO							
Resistencia a la Tracción	560 Mpa						
Agrietamiento en 50 mm	41%						

	AMPERAJES RECOMENDADOS										
			Diam. El	lectrodo	Long. Electrodo	Amp	eraje	Electrodo x kg aproximad	Kg/Caja		
Cod. SAP	Ref. AWS	Ref. Prov.	pulg	mm	mm	min	max	0			
2000325	E 308 L	E 308 L	3/32	2,4	300	60	90	59	25		
2000326	E 308 L	E 308 L	1/8	3,2	350	80	120	31	25		
2000327	E 308 L	E 308 L	5/32	4	350	120	150	21	25		
2000153	E 308 L	E 308 L	3/16	4,8	350	150	190	10	25		
2002060	E 308 L	E 308 L (1Kg)	1/8	3,2	350	80	120		25		
2001741	E 308 L	E 308 L (1Kg)	3/32	2,4	300	60	90		25		

APÉNDICE B

Diseño del Sistema de Barrido de Botellas.

Determinación de la aceleración del sistema de barrido.

$$a = \frac{V_f - V_o}{t}$$

$$a = \frac{0.160 - 0}{0.4}$$

$$a = 0.4 \text{ m/s}^2$$
(2.1)

Sumatoria de Fuerzas en x y en y para la cama de botellas

$$\sum Fy = 0$$

$$N = W$$

$$N = m.g$$

$$N = 111*9.81$$

$$N = 1088.91$$
(2.2)

$$\sum Fx = m.a$$

$$F - f_k = m.a$$

$$F = f_k + m.a$$

$$F = \mu_k \cdot N + m.a$$

$$F = [0.2*1088.91N] + [111Kg*0.4 \frac{m}{seg^2}]$$

$$F = 217.78N + 44.4N$$

$$F = 262N$$
(2.3)

Sumatoria de Fuerzas para el perfil de barrido de la cama de botellas

$$\sum Fy = 0$$

$$R1 + R2 = wl$$

$$R1 = R2 = \frac{wl}{2}$$

$$R1 = \frac{1088.91 \frac{N}{m} * 1m}{2} = 544.45N$$
(2.4)

Cálculos del Diagrama de Fuerza Cortante para los perfiles de barrido

$$0 \le x \le 0.1$$
:

$$\Sigma F = 544.5$$

$$\therefore V1(x) = 544.5$$

$$0.1 \le x \le 1.1$$
:

$$\Sigma F = 544.5 + 108.9 - 1089x$$

$$\Sigma F = 653.4 - 1089x$$

$$\therefore$$
 V2(x) = 653.4 -1089x

$$1.1 \le x \le 1.2$$
:

$$\Sigma F = 544.5 - 1089$$

$$\Sigma F = -544.5$$

$$... V3(x) = -544.5$$

Cálculos del Diagrama de Momento Flector para los perfiles de barrido

$$0 \le x \le 0.1$$
:

$$\Sigma M = (544.5)(x - 0)$$

$$\Sigma M = 544.5x$$

$$\therefore$$
 M1(x) = 544.5x

$$0.1 \le x \le 1.1$$
:

$$\Sigma M = (544.5)(x - 0) + 108.9x - 544.5x2 - 5.445$$

$$\Sigma M = -5.445 + 653.4x - 544.5x^2$$

$$\therefore$$
 M2(x) = -5.445 + 653.4x -544.5x²

$$1.1 \le x \le 1.2$$
:

$$\Sigma M = (544.5)(x - 0) - 1089x + 653.4$$

$$\Sigma M = 653.4 - 544.5x$$

$$\therefore$$
 M3(x) = 653.4 -544.5x

Cálculo de esfuerzos en el perfil L de barrido de las botellas

$$\sigma_{\text{max}} = \frac{M_{\text{max}} * c}{I} = \frac{191Nm * 0.025m}{9.8 * 10^{-9}}$$
 (2.5)

$$\sigma_{\text{max}} = 4.87 x 10^8 Pa$$

$$\tau_{\text{max}} = \frac{3V}{A} = \frac{3*545}{3.88*10^{-4} m^2}$$
 (2.6)

$$\tau_{\text{max}} = 4.21x10^6 Pa$$

$$\sigma' = \sqrt{\sigma^2 + 3\tau_{xy}^2}$$

$$\sigma' = \sqrt{(4.87 * 10^8 Pa)^2 + (3 * (4.21 * 10^6 Pa)^2)}$$

$$\sigma' = 4.87 * 10^8 Pa$$
(2.7)

$$\eta = \frac{S_y}{\sigma'} = \frac{276 * 10^6 Pa}{4.87 * 10^8 Pa} = 1.09 \tag{2.8}$$

Diseño del Carro Porta Botellas

A continuación, se muestran las velocidades angulares w1 y w2 calculadas con la ecuación 2.9:

$$w_{1} = \frac{V_{1}}{r} = \frac{0.158 \, m/seg}{0.0403m}$$

$$w_{1} = 3.92 \, \frac{rad}{seg} = 38rpm$$

$$w_{2} = \frac{V_{2}}{r} = \frac{0.316 \, m/seg}{0.0403m}$$

$$w_{2} = 7.84 \, \frac{rad}{seg} = 75rpm$$
(2.9)

$$T = F * r$$

$$T = (W_{piso} + W_{carro}) * r$$

$$T = 1438.91N * 0.0403m$$

$$T = 57.98N.m = 513.17lb.in$$
(2.11)

$$Pot = T * \omega$$

$$Pot_1 = 57.98Nm * 3.92 \frac{rad}{seg}$$

$$Pot_1 = 227.28Watts$$
(2.12)

$$Pot_{2} = 57.98Nm*7.84 \frac{rad}{seg}$$

$$Pot_{2} = 454.56Watts$$

$$\begin{split} P_{El\acute{e}ctrica} &= \frac{P_{Mec\acute{a}nica}}{e} \\ P_{El\acute{e}ctrica1} &= \frac{227.28Watts}{0.6} = 378.8Watts = 0.51HP \\ P_{El\acute{e}ctrica2} &= \frac{454.56Watts}{0.6} = 757.6Watts = 1.02HP \end{split}$$
 (2.13)

Diseño de pernos para el Carro Porta Botellas

Aplastamiento de los pernos, perno cargado:

Nd: Factor de diseño. (Nd=4)

$$S_{p} = \frac{F*nd}{t*d}$$

$$S_{p} = \frac{350N*4}{2mm*6mm}$$

$$S_{p} = 116.67 MPa$$
(2.16)

La Resistencia de prueba más cercana, tal como se muestra en la tabla 8-11 del Shigley, es de 225 MPa, por lo tanto, la Clase de propiedad del perno es 4.6

Tabla 8-11

Clases métricas de propiedad mecánica de pernos, tornillos y birlos de acero*

	de tamaños,	Resistencia de prueba mínima, [†] MPa	mínima a la tensión,†	mínima a la fluencia,†	Material	Marca en la cabeza
4.6	M5-M36	225	400	240	Acero de bajo o medio carbono	4.6

Aplastamiento del elemento, perno activo:

$$nd = \frac{225 \,MPa*2 \,mm*mm}{350 \,N} = 7.71 \tag{2.18}$$

No falla por aplastamiento del elemento. El factor de diseño es mayor al deseado.

Cortante del perno, perno activo:

$$Sp = \frac{4F * n * d}{0.577 \pi d^2}$$

$$Sp = \frac{4(350 N) * 4}{0.577 \pi (6mm)^2}$$
(2.20)

Sp = 85.8 MPa

El esfuerzo de prueba es bajo, las cargas son bajas, por este motivo se selecciona la clase más baja de los pernos, Clase 4.6. Perno M6, longitud de los pernos: 10 mm.

Diseño por fatiga del perno.

Tipo de carga: Repetida

F_{max}= 350 N

$$Se= ka*kb*kc*ke*kf* Se'$$
 (2.21)

$$Se' = 0.5*Sut$$
 (2.22)

Se'= 0.5*400 MPa

Se'= 200 MPa

Ka: Factor de superficie. Acabado Superficial: Como sale de la forja

$$Ka = aSut^b$$
 (2.23)

 $Ka = 272*(400^{-0.995})$

Ka = 0.70

Acabado	Fac	Exponente	
	S _{or} kpsi	S _{er} MPa	ь
Esmertlado	1.34	1.58	-0.085
Maquinado o laminado en frío	2.70	4.51	-0.265
Laminado en caliente	14.4	57.7	-0.718
Como sale de la forja	39.9	272.	-0.995

$$de = 0.370d$$
 (2.24)

de = 0.370(6mm)

de = 2.22 mm

Kb= Factor de tamaño

$$Kb = 1.24 de^{-0.107}$$
 (2.25)

 $Kb = 1.24(2.22)^{-0.107}$

Kb = 1

Perfil estructural no rotativo.

Kc: Factor de carga (Torsión)

Kctorsión= 0.577

Kd: Temperatura (Ambiente)

Kd= 1

Ke: Factor de confiabilidad (99.99%)

Ke = 0.702

Kf: Factores varios

Kf= 0.5 Corrosión por frotamiento (Ajuste a presión)

Se= ka*kb*kc*kd*ke*kf* Se'

Se= 0.7*1*0.577*1*0.702*0.5* 200 MPa

Se= 28.35 MPa

Teoría de Goodman

$$\frac{1}{n} = \frac{\tau_a}{Sse} + \frac{\tau_m}{Ssut}$$

$$\tau m = \tau a$$

$$\tau m = \frac{F}{\frac{\pi}{4}d^2}$$

$$\tau m = \frac{350 \text{ N}}{\frac{\pi}{4}(6\text{mm})^2}$$

$$\tau m = 12.38 \text{ MPa}$$
(2.24)

$$n = \frac{1}{\frac{\sigma_a}{Sse} + \frac{\sigma_m}{Ssut}}$$

$$n = \frac{1}{\frac{12.38}{28.35} + \frac{12.38}{200}}$$

$$n = 2$$
(2.25)

Diseño por deformación para la viga carrilera "W"

$$y_{\text{max}} = -\frac{Fl^3}{3EI}$$

$$F = \frac{W}{2} = \frac{(137Kg)(9.81N/Kg)}{2} = 672N$$
(2.26)

Deformación máxima elegida: 3 mm

$$I = \frac{Fl^3}{3Ey_{\text{max}}}$$

$$I = \frac{(672N)(2.25m)^3}{3(190x10^9 Pa)(3x10^{-3}m)}$$

$$I = 4.4763 \times 10^{-6} \text{ m}^3 = 447.63 \text{ cm}^3$$

Con esta inercia se calculará el esfuerzo de flexión

Diseño por fatiga en la viga carrilera "W"

Se determina Se:

Se= ka*kb*kc*ke*kf* Se'

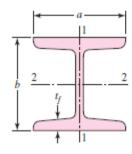
Se'= 0.5*Sut

Se'= 0.5* 515 MPa

Se'= 257.5 MPa

Del libro de Diseño en Ingeniería Mecánica de Shigley 8va Ed. Tabla 6-2, se toma los factores para un acabo superficial Maquinado o laminado en frío

Ka: Factor de superficie


Ka= aSutb

Ka= 4.51*515^{-0.265}

Ka = 0.862

Kb= Factor de tamaño

Tabla 6.3 del libro de Shigley versión 8. Como no es el mismo perfil, pero el área 95 % del esfuerzo se concentra en los extremos (alas). Se aplica para el eje 2-2 el caso actual.

$$A_{0.95\sigma} = \begin{cases} 0.10at_f & \text{eje } 1-1\\ 0.05ba & t_f > 0.025a & \text{eje } 2-2 \end{cases}$$

 $A_{0.95\sigma} = 0.05 \text{ a*b}$

 $A_{0.95\sigma} = 0.05 *50*250$

 $A_{0.95\sigma} = 625 \text{ mm}^2$

 $A_{0.95\sigma} = 0.0766 \text{ de}^2$

 $625 = 0.0766 de^2$

de= 90 mm

 $Kb = 1.51 de^{-0.157}$

 $Kb = 1.51* 90^{-0.157}$

```
Kb = 0.75
Kc: Factor de carga (Flexión)
Kc=1
Kd: Temperatura (Ambiente)
Kd=1
Ke: Factor de confiabilidad (99.99%)
Ke = 0.702
Kf: Factores varios
Kf= 0.7 (Corrosión)
Se= ka*kb*kc*ke*kf* Se'
Se= 0.862*0.75*1*1*0.702*0.7*(257.5 MPa)
Se= 81.81 MPa
Fmax= 672 N
Fmin = 400 N
\sigma \max = M \max * c / I
\sigma max = [(Fmax)*(I/2)] (0.125 m) /4.4763*10-6 m<sup>3</sup>
\sigma max = (672 N) *(2.25m) (0.125 m)/ 4.4763*10-6 m<sup>3</sup>
\sigma max = 42.22 MPa
\sigma \min = M \max * c / I
\sigma \min = [(F\min)^*(I/2)] (0.125 \text{ m}) /4.4763^*10^{-6} \text{ m}^3
\sigma min = (400 N)*(2.25m) (0.125 m)/ 4.4763*10-6 m<sup>3</sup>
\sigma min = 25.13 MPa
\sigma m = (\sigma \max + \sigma \min) / 2
```

 $\sigma m = (42.22 + 25.13)/2$

σm= 33.68 MPa

$$\sigma a = (\sigma \text{ max - } \sigma \text{ min}) / 2$$
 $\sigma a = (42.22 - 25.13) / 2$
 $\sigma a = 8.55 \text{ MPa}$

$$\frac{\sigma a}{Se} + \frac{\sigma m}{Sut} = \frac{1}{n}$$

$$\frac{8.55}{81.81} + \frac{33.68}{515} = \frac{1}{n}$$

$$n = 5.89$$

El factor de seguridad es elevado debido a que el diseño se realizó tomando en cuenta pequeñas deformaciones en los extremos, es de esperar que el material esté sometido a cargas por debajo de los valores críticos.

Diseño del Sistema de Elevación

$$M = F \times d \tag{2.26}$$

$$M = \frac{W}{2} \times d$$

M= 672 N * 2.25 m

M= 1512 N.m

$$y_{\text{max}} = \frac{Ml^2}{2EI} \tag{2.27}$$

$$I = \frac{Ml^2}{2E * y_{\text{max}}}$$

$$I = \frac{(1512N.m)(2.5m)^2}{2(190x10^9)(3x10^{-3}m)}$$
(2.28)

$$I = 828.95cm^4$$

Selección del Tipo de columna

Determinar Se:

Se= ka*kb*kc*kd*ke*kf* Se'

Se'= 0.5 Sut = 0.5*515 MPa = 257.5 MPa

Ka= aSutb

Ka= 4.51* 515^{-0.265}

Ka = 0.862

Kb= Factor de tamaño

Tabla 6.3

 $A_{0.95\sigma} = 0.05 \text{ a*b}$

 $A_{0.95\sigma} = 0.05 *100*300 = 1500 \text{ mm}^2$

 $A_{0.95\sigma}=0.0766 de^2$

1500= 0.0766 de²

De= 139.94 mm

 $Kb = 1.51 d^{-0.157}$

Kb = 1.51* 139.94 -0.157

Kb= 0.695

Kc: Factor de carga (Flexión)

Kc=1

Kd: Temperatura (Ambiente)

Kd= 1

Ke: Factor de confiabilidad (99.99%)

Ke = 0.702

Kf: Factores varios

Kf= 0.7 (Corrosión)

Se = 0.862*0.695*1*1*0.702*0.7*257.5 MPa

Se= 75.81MPa

$$\sigma = \frac{M}{I/_C}$$

$$\sigma = \frac{M}{S}$$

$$\sigma = \frac{1512 \text{ N.m}}{1.91 \text{x} 10 - 4 \text{m}^3}$$

$$\sigma = 7.92 \text{ MPa}$$

$$n = \frac{Se}{\sigma}$$

$$n = \frac{75.81}{7.92}$$

Análisis de la Estabilidad de la Columna

F= 672 N

k_{x-x}: 11.60 cm

k_{y-y}: 3.58 cm

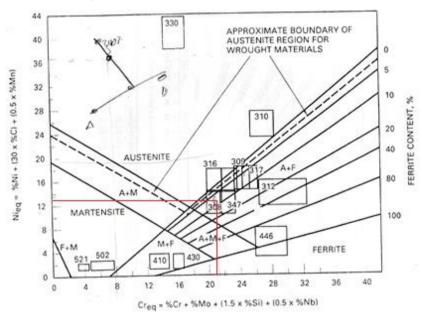
A=21.33 cm²

$$\frac{Pcr}{A} = \frac{C\pi^2 E}{\left(\frac{l}{k}\right)^2}$$

$$Pcr = \frac{C\pi^2 E_*}{(\frac{l}{\nu})^2} A$$

Pcr _{x-x}=
$$\frac{0.25\pi^2(190x10^9)}{(\frac{2.25 \text{ m}}{0.116 \text{ m}})^2}$$
 (2.13x10⁻³ m²)

Pcr _{y-y}=
$$\frac{0.25\pi^2(190x10^9)}{(\frac{2.25 m}{0.0358 m})^2}$$
 (2.13x10⁻³ m²)


Pcr x-x = 2658 KN

$$Pcr y-y = 252.79 KN$$

Pcr x-x > Pcr y-y > F

Soldadura de columnas con la Base

$$M = \frac{w}{2}x \ 2.25 = \frac{274 \ kg}{2}x9.81 \frac{N}{kg}x \ 2.25 \ m = 3023.93 \ Nm$$

$$Ni(eq) = \%Ni + (30 \times \%C) + (0.5 \times \%Mn)$$

$$Ni(eq) = 10 + 2.4 + 1 = 13.4$$

$$Cr(eq) = %Cr + %Mo + (1.5 x %Si) + (0.5 x %Nb)$$

$$Cr(eq) = 20+0+1.5+0=21.5$$

Soldadura para Flexión

```
	aua= (	au max - 	aumin) /2
		aua= (41.18 - 20.59) /2
		aua= 10.29 MPa
		au max = M max * c / I
		au max = [(Fmax)*(I/2)] (0.125 m) /3.4143*10<sup>-6</sup> m<sup>3</sup>
		au max = (512.57 N) *(2.25m) (0.125 m)/ 3.4143*10<sup>-6</sup> m<sup>3</sup>
		au max = 41.18 MPa
		au min = M max * c / I
		au min = [(Fmin)*(I/2)] (0.125 m) /3.4143*10<sup>-6</sup> m<sup>3</sup>
		au min = (256.285 N)*(2.25m) (0.125 m)/ 3.4143*10<sup>-6</sup> m<sup>3</sup>
		au min = 20.59 MPa
		aum= (	aumax + 	au min) /2
		aum= (41.18 + 20.59) /2
		aum= 30.885 MPa
```

Análisis de Fatiga del cordón de soldadura

Sse=Ka Kb Kc Kd Ke Kf Sse'

Sse'= 0.5*Sut*0.577

Sse'= 0.5* 520 MPa *0.577

Sse'= 150.02 MPa

$$Ka = a S_{ut}^{\ \ b} = 272(520)^{-0.995} = 0.54$$

Como sale de la forja Ka= 0.54

$$Kb = 1.51d^{-0.157}$$

$$A_{95} = 0.05 \ a \ b = 0.05 x 300 x 100 = 1500 \ mm^2$$

$$A_{95} = 0.0766 \, d_{eq}^{\ \ 2}$$

$$d_{eq}=139.94\;mm$$

$$Kb = 1.51 (139.94)^{-0.157} = 0.695$$

$$Kc = 1$$

$$Kd = 1$$

$$Ke = 0.702$$

$$Kf = 1$$

$$S_{se} = 0.54x0.695x1x1x0.702x1x150.02 = 39.52 MPa$$

Soldadura para flexión

$$\tau' = \frac{V}{A} = 0$$

$$\tau^{\prime\prime} = \frac{Mc}{I} x K_{fs}$$

$$I = 0.707 H I_{y}$$

Tipo de soldadura	K _{fs}
A tope reforzada	1.2
De filete transversal, en la punta	1.5
De filetes paralelos, en el extremo	2.7
A tope en T, con esquinas agudas	2.0

Fuente Tabla 9-5 Diseño en Ingeniería Mecánica de Shigley 8va Ed

$$\tau'' = \frac{K_{fs} M c}{0.707 h \frac{d^2}{12} (6b + d)}$$

$$\tau'' = \frac{2 * 1153.28 N.m * 0.15}{0.707 (3E - 3) \frac{0.3^2}{12} (6(0.1) + 0.3)}$$

$$\tau'' = \frac{2 * 1153.28 N.m * 0.15}{0.707 (3E - 3) \frac{0.3^2}{12} (6(0.1) + 0.3)} = 24 MPa$$

$$\frac{\tau a}{Sse} + \frac{\tau m}{Ssut} = 1/n$$

$$\frac{10.29}{39.52} + \frac{30.885}{300} = 1/n$$

$$n = 2.75$$

Diseño de Plancha Soporte de Botellas

Soldadura	Área de la garganta	Ubicación de G	Segundo momento unitario del ár
y G d	A = 0.707h[2b + d]	$\bar{x} = \frac{b^2}{2b+d}$ $\bar{y} = d/2$	$l_{o}=\frac{d^{2}}{12}[6b+d]$

Información del electrodo

Proceso SMAW, Electrodo: E 308L-16

I: 90 Amp

V: 30 Volts

v: 5 mm/s

Diseño de forma de la estructura de la mesa

Perfil: Tubo cuadrado

t: 2 mm

H: 50 mm

I: 14.13 cm⁴

J: 5.65 cm3

Masa de la carga viva: 66 Kg

Masa de la carga muerta: 54 kg (Asumida)

Masa total: 209 Kg

El peso se distribuye sobre los tres tubos cuadrados, es decir:

Modelo Matemático:

w=280.28 N/m

$$V = \frac{wl}{2} - wx$$

$$V = \frac{280.28*1.4}{2} - (280.28)(0.7)$$

$$M = \frac{wx}{2}(l-x)$$

$$M = \frac{\left(280.28 \frac{N}{m} * 0.7 \text{ m}\right)}{2} (1.4 - 0.7)$$

M= 68.67 N.m

$$V = 300 N$$

Ymax= -
$$\frac{5*280.28*(1.4^4)}{24*190E9*14.13E-8}$$

$$Ymax = -8.35E-3 m$$

$$T' = \frac{300 N}{1.414*h (b*d)} =$$

$$T'' = \frac{M*c}{I} = \frac{M*c}{0.707*h*I0} = \frac{215000 N*mm*25}{0.707*2*83333.3}$$

$$\tau = (\tau'^2 + \tau''^2) ^0.5$$

$$\tau = 45.62 \text{ MPa}$$

Material de aporte

N = Ssy/2 = (0.577*345)/45.62 = 4.36

A = 1.414h(b+d)

A = 1.414*2(50+50)

 $A = 282.8 \text{ mm}^2$

lu = 4/6(3b+d)

lu= 2/3 *(50³)= 83333.33

Sut: 520 MPa

Sy: 345 MPa

Determinar Se:

Se= ka*kb*kc*kd*ke*kf* Se'

Ka= aSutb

Ka= 2.72* 520^{-0.945}

Ka = 0.54

 $A_{0.95\sigma} = 0.05 \text{ a*b}$

 $A_{0.95\sigma} = 0.05 *50*50 = 125 \text{ mm}^2 = 0.0766 \text{ de}^2$

de= (125/0.0766) ^0.5

de=40.4 mm

 $Kb = 1.24 d^{-0.107}$

 $Kb = 1.24 (40.4)^{-0.107}$

Kb = 0.83

Kc: Factor de carga (Flexión)

Kc=1

Kd: Temperatura (Ambiente)

Kd=1

Ke: Factor de confiabilidad (99.99%)

Ke = 0.702

Kf: Factores varios

Ksf= 1.2 (Según código AISC)

Sse'= 0.577*0.5*520= 150 MPa

Sse= 0.54*0.83*1*1*0.702*150Mpa

Sse= 4701 MPa

Vmax= 300

Vmin= 0

$$\tau = max: 45.62$$

$$\tau$$
 min= 0

$$\tau m = 22.81 = \tau a$$

$$Ksf=1.2$$

$$\frac{Ksf*\tau m}{Ssut} + \frac{Ksf*\tau m}{Ssut} = \frac{1}{n}$$

Ssut= 260 MPa

Sse= 62.5 MPa

n = 1.6

Diseño de la viga de soporte de los actuadores neumáticos en la cama

La fricción se multiplica por dos debido a que puede existir otra fuerza de fricción entre los componentes. F es la fuerza de fricción que se va a transferir a las uniones soldadas. Se modela con una viga simplemente apoyada con dos cargas equidistantes

Fricción: 0.25*46.6*9.81=114.3

F= 114.3 N * 2= 228.6 N

Diseño de la viga

Perfil: Tubo cuadrado= 50 mm por lado y 2 mm de espesor

I=14.13 cm4

W = 5.65 cm3

Tabla de vigas A.4 caso 9. Apoyos simples. Cargas Idénticas

Mmax= F*d

Mmax = 114.3*0.28m = 32 N.m

Fmax = 141.3

Fmin= 0

 σ = Mc / I= M/S = 32/ 1.10e-6 = 27.12 MPa

Se= ka*kb*kc*kd*ke*kf* Se'

Se'= 0.5 Sut= 0.5* 515= 257.5

$$Ka = 0.862$$

Kb= Factor de tamaño

Tabla 6.3

$$A_{0.95\sigma} = 0.05 \text{ a*b}$$

$$A_{0.95\sigma} = 0.05 *25*25 = 31.25 \text{ mm}^2$$

 $A_{0.95\sigma}=0.0766 de^2$

$$31.25 = 0.0766 de^2$$

$$Kb = 1.24 d^{-0.127}$$

$$Kb = 1.24* 20.2^{-0.107}$$

$$Kb = 0.60$$

Kc: Factor de carga (Flexión)

Kc=1

Kd: Temperatura (Ambiente)

Kd=1

Ke: Factor de confiabilidad (99.99%)

Ke = 0.702

Kf: Factores varios

Kf= 1

Se =0.862*0.4*1*1*0.702*1*257.5MPa Se=140 MPa

Teorema de Goodman

$$\frac{\sigma a}{Se} + \frac{\sigma m}{Sut} = \frac{1}{n}$$

$$\frac{13.56}{1.4} + \frac{13.56}{515} = \frac{1}{n}$$

n=8.1

V=114.3 N

M = 32 N.m = 32000 N.mm

Tabla 9.2, pag 466, Shigley

A= 1.414hb

A= 1.414*2*25

 $A = 70.7 \text{mm}^2$

 $\tau' = V/A$

 $\tau' = 114.3/14.14$

 $\tau' = 1.62$

 $Iu = bd^2/2$

 $Iu = 25 \times 25^2 / 2$

lu = 7812.5

$$\tau'' = \frac{M*c}{0.707 h Iu}$$

$$\tau'' = \frac{32*12.5}{0.707 * 2*7812.5}$$

$$\tau'' = 2.2 * MP = 1.5$$

$$\tau'' = 36.2 MPa$$

$$\tau = (1.62^{2} + 36.2^{2}) ^{0.5}$$

 $\tau = 36.24 MPa$

n= Ssy/t

n= 0.597*345/36.24

n = 5.5

Diseño por fatiga

Ka: Factor de superficie

Ka= aSutb

Ka= 272*520^{-0.945}

Ka = 0.54

Kb= Factor de tamaño

 $A_{0.95\sigma} = 0.05 \text{ a*b}$

 $A_{0.95\sigma} = 0.05 *25*25$

 $A_{0.95\sigma} = 31.25 \text{ mm}^2$

 $A_{0.95\sigma} = 0.0766 \text{ de}^2$

 $31.25 = 0.0766 de^2$

de= 20.2mm

$$Kb = 1.24 de^{-0.107}$$

$$Kb = 1.24 \times 20.2^{-0.107}$$

$$Kb = 0.9$$

Kc: Factor de carga (Flexión)

Kc=1

Kd: Temperatura (Ambiente)

Kd=1

Ke: Factor de confiabilidad (99.99%)

Ke = 0.702

Kf: Factores varios

Kf=1

Ksf = 1.2

Sse'= 0.577*0.5*520= 150 MPa

Sse= 0.54*0.9*1*1*0.700*150MPa

Sse= 51.2

ттах= 36.24 MPa

ттin= 0

 $\tau m = \tau a = 0.5 \tau max = 0.5^* 36.24 = 18.12 MPa$

Teoría de Goodman

$$Ksf \frac{\tau a}{Sse} + Ksf \frac{\tau m}{Ssut} = \frac{1}{n}$$

Ssut= 0.577*520 = 300 MPa

$$1.2 \frac{18.12}{300} + 1.2 \frac{18.12}{47.1} = \frac{1}{n}$$
n= 1.4

A= 1.414*h*d

A= 1.414 *3*220 = 933.24 mm²

M= 1153.28 N.m

$$Ju = d (3b^2 + d^2) / 6$$

$$Ju = 220 (3(300)^2 + (220)^2) /6$$

Ju= 11.7E6 mm³

$$V = T/4 = (209*9.81)/4 = 512.6 N$$

T' = V/A

$$\tau' = 512.6/933.24$$

$$T' = 0.55 \text{ MPa}$$

$$r = (150^2 + 240^2) ^0.5$$

r=283 mm

$$\tau'' = \frac{M*r}{J} = \frac{1153.28*1000*283}{11.7E6} = 27.9 MPa$$

$$\mathsf{TB} = \mathsf{TD} = \sqrt{27.4 sen(58)^2 + (9.55 + 27.4 cos(58))^2}$$

тВ=тd= 28.2 MPa

TA=TC =
$$\sqrt{27.4sen(32)^2 + (27.4\cos(58) - 0.55)^2}$$

TA=TC= 27.6 MPa

$$n = 7.1$$

Diseño por Fatiga

Sse= ka*kb*kc*kd*ke*kf*Sse'

Sse'= 0.5*Ssut

Sse'= 0.5*0.577*520MPa

Sse'= 150 MPa

Ka: Factor de superficie

Ka= 272(520)^{-0.995}

Ka = 0.54

Kb= Factor de tamaño

 $Kb = 1.51 de^{-0.157}$

 $A_{0.95\sigma} = 0.05b*a$

 $A_{0.95\sigma} = 0.05*220*300$

 $A_{0.95\sigma} = 3300 \text{ mm}^2$

 $A_{0.95\sigma} = 0.0766 \text{ de}^2$

3300=0.0766 de² de= 207.6 mm

 $Kb = 1.51 (207.6)^{-0.157}$

$$Kb = 0.653$$

Kc: Factor de carga (Flexión)

Kc = 0.59

Kd: Temperatura (Ambiente)

Kd=1

Ke: Factor de confiabilidad (99.99%)

Ke = 0.702

Kf: Factores varios

Kf= 1

Sse= ka*kb*kc*kd*ke*kf* Se'

Sse= 0.54*0.653*0.54*1*0.702*1*150

Sse= 21.9 MPa

 τ max= 27.4

 τ min= 0

tm = ta = tmax/2=14

Teoría de Goodman

Ksf
$$\frac{\tau a}{Sse}$$
 + Ksf $\frac{\tau m}{Ssut}$ = $\frac{1}{n}$
1.2 $\frac{14}{300}$ + 1.2 $\frac{14}{21.9}$ = $\frac{1}{n}$
n= 1.2

Diseño de eje de las ruedas del sistema de desplazamiento vertical.

M= 1153.28 N.m

M = F*0.4

F = M/0.4

F= 1153.228/4

F=2883.2 N

Deje= 9 mm (AISI 304)

Aplastamiento del eje

$$\frac{F}{td} = \frac{Ssy}{nd}$$

$$nd = \frac{205*4*9}{2883.2}$$

$$nd = 2.6$$

Cortante en el eje

$$\frac{F}{A} = \frac{Ssy}{nd}$$

$$\frac{2883.2}{0.25\pi*(9)^2} = \frac{0.577*205}{nd}$$

$$nd = 2.6$$

Diseño por fatiga

Sse= ka*kb*kc*kd*ke*kf* Se'

Ka: Factor de superficie- Maquinado o laminado en frío

$$Ka = 0.862$$

$$De = 0.37 d$$

$$De = 0.37*9$$

Kb= Factor de tamaño

$$Kb = 1.20 de^{-0.107}$$

$$Kb = 1.20 (3.33)^{-0.107}$$

$$Kd=1$$

$$Ke = 0.702$$

$$Kf = 1$$

$$\tau$$
 max= Fa = $\frac{2883.2}{\frac{\pi}{4}9^2}$ = 45.3 MPa

$$\tau$$
 min= 0

$$tm = ta = tmax/2 = 45.3/2 = 22.65$$

Teoría de Goodman

$$Ksf \frac{\tau a}{Sse} + Ksf \frac{\tau m}{Ssut} = \frac{1}{n}$$
n= 2.2

Certificar perfil L

L= 1.76

F= 114.3

$$R1 = R2 = 114.3/2 = 57.15$$

$$Mmax = FI/4 = 37.15$$

Ka=0.862

Kb=0.9

Kc=1

Kd=1

Ke=0.702

Kf=1

$$A45 = 0.05 \times 25 \times 25 = 31.25$$

De=20.2

Soderberg

$$\sigma \max = \frac{37.15}{0.36E-6}$$

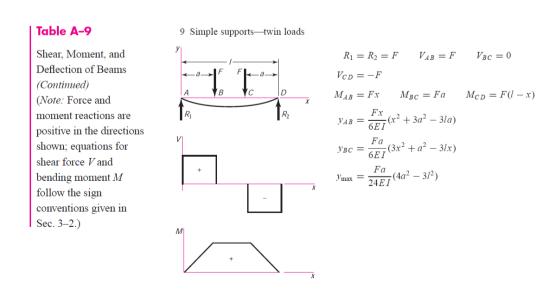
$$\sigma$$
 max = 103.2 MPa

 σ min = 0


$$\sigma m = \sigma a = 0.5 \sigma max = 51.6 MPa$$

$$\frac{\sigma \, \mathbf{m}}{Sy} + \frac{\sigma \mathbf{u}}{Se} = \frac{1}{n}$$

$$\frac{51.6}{205} + \frac{51.6}{140} = \frac{1}{n}$$


Diseño de eje de las ruedas del sistema de desplazamiento vertical.

Antes de empezar a realizar el diseño de ejes, es necesario determinar las cargas que estarán aplicadas. A continuación, se presenta un diagrama de cuerpo libre del eje.

El esquema consta de un eje con dos cojinetes en los extremos y poleas que transmiten torque. Se asume que las poleas trasmiten la misma cantidad de torque.

Para facilitar el cálculo se recurre a la tabla de vigas en el apéndice del libro de Shigley, para este caso es el número 9, simplemente apoyada con cargas idénticas. A continuación, se muestra la gráfica.

La tabla a continuación contendrá cada una de las variables para el eje ubicado en la columna de la despaletizadora:

F	Α	1
2800 N	0.05 m	1.6m

Los datos de interés para el diseño del eje son:

R1	R2	M _{bc}
2800 N	2800 N	140 Nm

El momento flector Mbc es importante, ya que es el mayor del eje, y además justo a la derecha de la polea se encuentra el torque aplicado, asique el punto B es un crítico para el análisis.

Conocido el punto crítico y el momento flector y torque aplicados en el eje, se procede a diseñar el eje.

El material con el que se trabajará es un acero SAE 1020 trabajado en frio con una resistencia a la atención de 470 Mpa y una resistencia a la fluencia de 370 Mpa

Para empezar, se realiza un análisis estático con un factor de seguridad elevado, para este caso 4.

Se debe tener en cuenta que el eje está sometido a esfuerzos combinados así que se debe utilizar el esfuerzo de Von Mises para considerarlos a ambos en el cálculo.

Análisis estático

$$n = S_v / \sigma'$$

Donde n es el factor de seguridad, Sy el esfuerzo de fluencia y Sigma prima es el esfuerzo de Von Mises.

Sy= 370 Mpa; n=4; entonces

$$\sigma' = 97.5 Mpa$$

Para este caso la ecuación de Von Mises es de la siguiente forma:

$$\sigma' = \sqrt{\left(\frac{32 * K_f * M}{\pi * d^3}\right)^2 + 3 * \left(\frac{16 * K_{fs} * T}{\pi * d^3}\right)^2}$$

Los valores de Kf y Kfs se los obtiene de la tabla 7-1 del libro de Shigley

Table 7-1

First Iteration Estimates for Stress-Concentration Factors Kt and Kts.

Warning: These factors are only estimates for use when actual dimensions are not yet determined. Do not use these once actual dimensions are available.

	Bending	Torsional	Axial
Shoulder fillet—sharp $(r/d = 0.02)$	2.7	2.2	3.0
Shoulder fillet—well rounded ($r/d = 0.1$)	1.7	1.5	1.9
End-mill keyseat $(r/d = 0.02)$	2.14	3.0	_
Sled runner keyseat	1.7	_	_
Retaining ring groove	5.0	3.0	5.0

Missing values in the table are not readily available.

Para este caso se escoge la primera opción de la tabla que es para hombros agudos. Los datos para obtener el diámetro son los siguientes

M	Т	Kf	Kfs	σ'
140 Nm	205Nm	2.7	2.2	97.5

Remplazando y despejando el valor del diámetro nos da lo siguiente:

$$d = 0.038 m = 38mm \approx 40 mm$$

Se elige el valor de 40 mm, debido a que es una medida estandarizada de ejes.

Con una primera aproximación del diámetro se procede a utilizar una teoría de fallas para cargas dinámicas en este caso, Goodman.

Para realizar el análisis se supone que el torque es constante, es decir no posee una componente alternante (Ta=0) por lo tanto el esfuerzo flector es completamente reversible (Mm=0)

Y ahora se procede a realizar los cálculos para el análisis dinámico.

GOODMAN

$$Se = Se' * k_a * k_b * k_c * k_d * k_e * k_f$$

 $Se' = 0.5 S_{ut}$
 $k_a = a * S_{ut}^b$ (Laminado en frío)
 $k_b = 1.24 * d^{-0.107}$
 $k_c = k_d = k_f = 1$
 $k_{e@99.99\%} = 0.702$

Sut	а	b	d
470 Mpa	4.51	-0.265	40

Los resultados son

Se'	Ka	Kb	Se
235 Mpa	0.8832	0.8356	122 Mpa

Ya que se asumió que el torque es constante entonces

Mm	Ма	Tm	Та
0	140 Nm	205 Nm	0

Aplicando la teoría de Goodman par esfuerzos combinados tenemos

$$\sigma_a' = (\sigma_a^2 + 3\tau_a^2)^{1/2} = \left[\left(\frac{32K_f M_a}{\pi d^3} \right)^2 + 3\left(\frac{16K_{fs}T_a}{\pi d^3} \right)^2 \right]^{1/2}$$

$$\sigma_m' = (\sigma_m^2 + 3\tau_m^2)^{1/2} = \left[\left(\frac{32K_f M_m}{\pi d^3} \right)^2 + 3\left(\frac{16K_{fs}T_m}{\pi d^3} \right)^2 \right]^{1/2}$$

$$\frac{1}{n} = \frac{\sigma_a'}{S_e} + \frac{\sigma_m'}{S_{ut}}$$

$$\frac{1}{n} = \frac{16}{\pi d^3} \left\{ \frac{1}{S_e} \left[4(K_f M_a)^2 + 3(K_{fs} T_a)^2 \right]^{1/2} + \frac{1}{S_{ut}} \left[4(K_f M_m)^2 + 3(K_{fs} T_m)^2 \right]^{1/2} \right\}$$

Reemplazando los datos en la formula anterior tenemos el siguiente factor de seguridad

$$n = 1.5$$

Este valor de 1.5 indica que el diámetro del eje es el adecuado y que está diseñado para vida infinita.

Para el eje ubicado en las vigas de la despaletizadora se sigue el mismo procedimiento, los datos para diseñar este eje son:

F	Т	Sy	Sut	а	L
320	55	390 Mpa	470 Mpa	0.05 m	1.4 m

Los resultados para este eje son:

N(est)	σ'	D	Se	n
4	97.5	20 mm	128 Mpa	1.42

APÉNDICE C

Plano 1.00	Vista Isométrica de la Despaletizadora de Botellas
Plano 1.01	Vista Superior de la Despaletizadora de Botellas
Plano 1.02	Vista Lateral de la Despaletizadora de Botellas
Plano 1.03	Viga Carrilera de la Despaletizadora de Botellas
Plano 1.04	Carro Transportador de la Despaletizadora de Botellas