

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Ciencias de la Tierra

"CONTROL DE INUNDACIONES Y DISEÑO DE SOLUCIONES VIALES ESPECIALES EN LA POBLACIÓN DE AYANGUE, CANTÓN SANTA ELENA"

PROYECTO DE GRADO

Previa a la obtención del Título de:

INGENIERO CIVIL

Presentado por:

MISHELL ANABELL RODRÍGUEZ MURILLO
REINALDO ANDREI SALAZAR CONSTANTE

GUAYAQUIL-ECUADOR 2017

DEDICATORIA

A Dios, por permitirme culminar esta etapa de mi vida;

A mis Padres Omar y Mónica, porque mis logros son suyos;

A mi abuelito Marcos, por su amor y ternura inigualable;

A Oscar Rodríguez, primer Ingeniero Civil en la familia, construyendo en el cielo.

Mishell Anabell Rodríguez Murillo

DEDICATORIA

A Lorena, Margarita e Irma.

Reinaldo Andrei Salazar Constante

AGRADECIMIENTO

Al PhD. Miguel Ángel Chávez, por su valiosa dirección a lo largo de este proyecto;

Al Ing. Daniel Falquéz por su apertura y colaboración para realizar los ensayos necesarios del proyecto;

A la Escuela Superior Politécnica del Litoral y sus profesores por todos los conocimientos y experiencias adquiridas durante la carrera.

Mishell Anabell Rodríguez Murillo

Reinaldo Andrei Salazar Constante

TRIBUNAL DE GRADUACIÓN

PhD. Miguel Ángel Chávez Moncayo DIRECTOR DEL PROYECTO

MSc. Luis Enrique de Grau Vidal COORDINADOR DE INGENIERÍA CIVIL

DECLARACIÓN EXPRESA

"La responsabilidad del contenido de esta Tesis de Grado, nos corresponde exclusivamente; y el patrimonio intelectual de la misma, a la Escuela Superior Politécnica del Litoral"
(Reglamento de Exámenes y Títulos Profesionales de la ESPOL)
Mishell Anabell Rodríguez Murillo
Reinaldo Andrei Salazar Constante

RESUMEN

El balneario de Ayangue es un importante atractivo turístico de la provincia debido a la belleza de su playa, la misma está siendo afectada por el embalsamiento de las aguas lluvias que se generan en una amplia cuenca de drenaje. Esta situación causa una afectación al bienestar de los habitantes y daños a un tramo de vía aledaño a este embalse. En los siguientes capítulos se realizan estudios y diseños de las soluciones más convenientes; se describen las alternativas del proyecto las cuales consisten en diseñar presas colinares para el control de las crecientes y adicionalmente se presenta diseños para corregir los reiterados daños en las calles que permiten el acceso a las ciudadelas de las partes altas de dicha población. Igualmente, se realizó un estudio de impacto ambiental durante la etapa de construcción del proyecto con su respectivo plan de manejo ambiental para mitigar dichos impactos. Finalmente se muestra los presupuestos referenciales.

Palabras clave:

Cuenca de drenaje, presa colinar, estabilización de taludes, tierra armada.

ABSTRACT

The city of Ayangue is a major tourist attraction due to its beautiful beach. The city, along with its inhabitants, are being effected by the massive amounts of rain water flowing from the hills. Since the city does not have a storm drainage system, the rain water soaks into the ground causing issues with the road nearby.

The following solutions will detail three alternatives designs of hilltop dams to prevent rain flow into the city and allow inhabitants to utilize the storage water. It also includes designs to repair the major roads that are damaged by the excess rain water.

All designs were based off environmental studies of the land and the surroundings resources. To conclude budgets project are calculated.

Keywords:

Basin, hilltop dam, slope stability, reinforced earth.

ÍNDICE GENERAL

DEDICATORIA	II
AGRADECIMIENTO	IV
TRIBUNAL DE GRADUACIÓN	V
DECLARACIÓN EXPRESA	VI
RESUMEN	VII
ABSTRACT	VIII
NDICE GENERAL	IX
ABREVIATURAS	XIV
SIMBOLOGÍA	XVI
NDICE DE FIGURAS	XVIII
NDICE DE TABLAS	XX
NDICE DE PLANOS	XXII
CAPÍTULO 1	23
NTRODUCCIÓN	23
1.1 Descripción del problema	24
1.2 Objetivos	26
1.2.1 Objetivo General	26
1.2.2 Objetivos Específicos	26

1.3 Justificación	. 27
CAPÍTULO 2	. 28
INFORMACIÓN BÁSICA GENERAL	. 28
2.1 Localización geográfica y división política	. 29
2.2 Organización comunitaria	. 31
2.3 Aspectos naturales	. 32
2.3.1 Geología	. 32
2.3.2 Relieve	. 33
2.3.3 Topografía	. 34
2.3.4 Hidrografía	. 35
2.3.5 Hidrología	. 35
2.3.6 Clima	. 37
2.4 Población	. 38
2.5 Actividad productiva	. 38
2.6 Abastecimiento de agua de la zona	. 40
2.7 Situación sanitaria	. 40
2.8 Servicio de energía eléctrica	. 41
2.9 Recolección de basura	. 41
2.10 Educación	. 42
2.11 Salud	. 42
CAPÍTULO 3	. 44
PLANTEAMIENTO DE ALTERNATIVAS PARA EL CONTROL INUNDACIONES	
3.1 Presas colinares	45

3.2 Alternativa 1	
3.2.1 Ubicación	
3.2.2 Costo de inversión	
3.2.3 Volumen de embalse	
3.2.4 Área de afectación	
3.3 Alternativa 2	
3.3.1 Ubicación	
3.3.2 Costo de inversión	
3.3.3 Volumen de embalse	
3.3.4 Área de afectación	
3.4 Alternativa 3	
3.4.1 Ubicación	
3.4.2 Costo de inversión	
3.4.3 Volumen de embalse	
3.4.4 Área de afectación 51	
3.5 Criterios para la selección de alternativa	
3.5.1 Restricciones	
3.5.2 Selección de la alternativa	
3.5.3 Conclusión de análisis de alternativas 53	
CAPÍTULO 4 54	
METODOLOGÍA DE DISEÑO 54	
4.1 Visita técnica55	
4.2 Ensayos realizados 59	
4.2.1 Granulometría	

4.2.2 Límites de Atterberg	
4.2.3 Proctor	
4.2.4 Corte Directo	
4.3 Tipo de presa propuesta	
4.3.1 Hidrología e hidráulica 82	
4.3.2 Estabilidad de taludes	
4.3.3 Software GALENA	
4.3.4 Modelación en software GALENA	
4.3.5 Asentamientos	
4.3.6 Estanqueidad del embalse	
4.4 Diseño geométrico de vías	
4.4.1 Levantamiento topográfico	
4.4.2 El proceso de diseño	
4.4.3 Tipo de vía 100	
4.4.4 Velocidad de diseño102	
4.4.5 Sección típica adoptada103	
4.4.6 Alineamiento horizontal	
4.4.7 Alineamiento vertical	
4.4.8 Soluciones viales especiales	
CAPÍTULO 5 113	
ESTUDIO DE IMPACTO AMBIENTAL113	
5.1 Antecedentes	
5.2 Objetivos	
5.2.1 Objetivo general	

5.2.2 Objetivos específicos	114
5.3 Marco legal	115
5.4 Descripción general del área de estudio	118
5.5 Descripción de la línea base	119
5.6 Descripción de actividades a evaluar	121
5.7 Evaluación ambiental	122
5.8 Plan de manejo ambiental	135
CAPÍTULO 6	138
PRESUPUESTO	138
6.1 Presupuesto - Presa colinar	141
6.2 Presupuesto - Vías	142
CAPÍTULO 7	143
CONCLUSIONES Y RECOMENDACIONES	1/13

ANEXOS BIBLIOGRAFÍA

ABREVIATURAS

AASHTO American Association of State Highway and Transportation

Officials

APESPOL Asociación de profesores de la Escuela Superior

Politécnica del Litoral

EIA Estudio de Impacto Ambiental

ESPOL Escuela Superior Politécnica del Litoral

FICT Facultad de Ingenierías en Ciencias de la Tierra

FISE Fondo de Inversión Social Emergente

GAD Gobierno Autónomo Descentralizado

GPS Global Positioning System

INAMHI Instituto Nacional de Meteorología e Hidrología

MTOP Ministerio de Transporte y Obras Públicas

NASA National Aeronautics and Space Administration

NEC Norma Ecuatoriana de la Construcción

NEVI Norma Ecuatoriana Vial

NRCS Natural Resources Conservation Service

PGA Peak Ground Acceleration

SUCS Sistema Unificado de Clasificación de Suelos

TPDA Tráfico Promedio Diario Anual

TULAS Texto Unificado de Legislación Ambiental Secundaria

VIA Valoración de Impacto Ambiental

SIMBOLOGÍA

C Cohesión de suelos y rocas

Cc Coeficiente de curvatura

cm Centímetro

cm3 Centímetros cúbicos

Cu Coeficiente de uniformidad

FS Factor de seguridad

g Gramo

IP Índice plástico de los suelos

kg Kilogramo

kg/cm2 Kilogramo por centímetro cuadrado

kg/m3 Kilogramo por metro cúbico

Kh Coeficiente sísmico horizontal

km/h Kilometro por ahora

KPa Kilo Pascal

LL Límite líquido de los suelos

LP Límite plástico de los suelos

m Metro

mg Miligramo

mm Milímetro

mm/h Milímetro por hora

Msnm Metro sobre el nivel del mar

MTb Formación Dos Bocas

QT Formación Tablazo

SC Tipo de suelo arena arcillosa

W Humedad de los suelos

Z Aceleración máxima en roca esperada para el sismo de diseño,

expresada como la fracción de la aceleración de la gravedad

Φ Ángulo de fricción interna en los suelos y rocas

% Porcentaje

" Pulgadas

ÍNDICE DE FIGURAS

Figura 1.1 Embalsamiento en el lado derecho generado por las lluvias	25
Figura 2.1 División política de la parroquia	29
Figura 2.2 Vista satelital de la comuna de Ayangue.	31
Figura 2.3 Formaciones geológicas presentes en la zona	33
Figura 2.4 Relieve de la comuna de Ayangue.	34
Figura 2.5 Topografía de la comuna de Ayangue.	35
Figura 2.6 Tipos de clima en la región de estudio	37
Figura 3.1 Ubicación de alternativa de presa 1	46
Figura 3.2 Ubicación de alternativa de presa 2	48
Figura 3.3 Ubicación de alternativa de presas 3	50
Figura 4.1 Vuelo con dron en la zona de estudio.	55
Figura 4.2 Extensión de la cuenca de drenaje.	56
Figura 4.3 Pista de aterrizaje de avionetas en la comuna Ayangue	56
Figura 4.4 Zona 1 para la toma de muestra de suelo para ensayos	57
Figura 4.5 Zona 2 para la toma de muestra de suelo para ensayos	58
Figura 4.6 Curva granulométrica del material	62
Figura 4.7 Ensayo límite líquido, humedad vs Log (No. De golpes)	66
Figura 4.8 Proceso de cuartear el material.	. 69
Figura 4.9 Compactación en capas	70
Figura 4.10 Peso volumétrico vs % de humedad	73
Figura 4.11 Proceso de tamizado.	. 75
Figura 4.12 Material en la caia de corte.	75

Figura 4.13 Espécimen 1, esfuerzo cortante vs deformación	76
Figura 4.14 Espécimen 2, esfuerzo cortante vs deformación	77
Figura 4.15 Espécimen 3, esfuerzo cortante vs deformación	77
Figura 4.16 Esfuerzo cortante máximo vs Carga nominal	78
Figura 4.17 Cuenca y red de drenaje	82
Figura 4.18 Curvas IDF de la cuenca	85
Figura 4.19 Hidrograma de escorrentía directa	86
Figura 4.20 Curvas Área-Volumen-Elevación	87
Figura 4.21 Curva de almacenamiento del reservorio	88
Figura 4.22 Masa deslizante dividida en dovelas verticales	89
Figura 4.23 Acciones en la i-ésima rebanada, método de Sarma	90
Figura 4.24 Modelación en el software GALENA del talud de la presa a	iguas
abajo en condiciones estáticas	92
Figura 4.25 Ecuador, zonas sísmicas para propósitos de diseño y valo	or del
factor de zona Z	93
Figura 4.26 Modelación en el software GALENA del talud de la presa a	ıguas
abajo en condiciones pseudo-estáticas	94
Figura 4.27 Modelación en el software GALENA del talud de la presa a	ıguas
arriba en condiciones pseudo-estáticas	95
Figura 4.28 Levantamiento topográfico	98
Figura 4.29 Huecos e irregularidades en el camino hacia el resort	99
Figura 4.30 Sección típica de la vía	. 103
Figura 4.31 Elementos de una curva circular simple	. 105
Figura 4.32 Solución especial mediante el uso de tierra armada	. 110
Figura 4.33 Solución especial bloqueo de flujo	. 112
Figura 4.34 Esquema de funcionamiento del bloqueo de flujo	. 112

ÍNDICE DE TABLAS

Tabla I. Precipitación histórica acumulada mensual (mm) de la es	stación
meteorológica Colonche.	36
Tabla II. Granulometría de la muestra de estudio	60
Tabla III. Datos del ensayo de límite líquido	65
Tabla IV. Datos del ensayo de límite plástico	67
Tabla V. Datos para el ensayo de Proctor	71
Tabla VI. Ensayo Proctor (parte 1)	71
Tabla VII. Ensayo Proctor (parte 2)	72
Tabla VIII. Ensayo Proctor (parte 3)	72
Tabla IX. Máximos esfuerzos cortantes	78
Tabla X. Valores típicos de ángulo de fricción para suelos acorde a el	SUCS
	80
Tabla XI. Valores típicos de cohesión para suelos acorde a el SUCS	80
Tabla XII. Características de la cuenca de aporte	83
Tabla XIII. Intensidad de lluvia para varios períodos de retorno	84
Tabla XIV. Valores del factor Z en función de la zona sísmica adoptada	ı 93
Tabla XV. Clasificación de carreteras de 2	100
Tabla XVI. Clasificación de carreteras según	101
Tabla XVII. Radio mínimo de curva circular	106
Tabla XVIII. Actividades para evaluar en el estudio de impacto ambienta	al en la
fase de construcción	122

Tabla XIX. Escala de valoración de jerarquía	de los impactos
ambientales	126
Tabla XX. Matriz de Intensidad	127
Tabla XXI. Matriz de Extensión	128
Tabla XXII. Matriz de Duración	129
Tabla XXIII. Matriz de Magnitud	130
Tabla XXIV. Matriz de Riesgo	131
Tabla XXV. Matriz de Reversibilidad	132
Tabla XXVI. Matriz de Valoración de Impacto Ambiental (VIA	.) 133
Tabla XXVII. Rango de significancia de la matriz VIA	134

ÍNDICE DE PLANOS

- PLANO 1 Topografía de Ayangue
- PLANO 2 Cuenca de drenaje
- PLANO 3 Implantación de la población de Ayangue
- PLANO 4 Implantación vías
- PLANO 5 Soluciones viales especiales
- PLANO 6 Implantación presas colinares

CAPÍTULO 1 INTRODUCCIÓN

1.1 Descripción del problema

Ayangue es una de las comunas de la parroquia Colonche, perteneciente a la provincia de Santa Elena. Esta comuna es un importante atractivo turístico de la provincia debido a la belleza de su playa, variedad de flora y fauna y exquisita gastronomía. La mayor parte de sus habitantes se dedican a alguna actividad relacionada con el turismo y la pesca, dependiendo de la época del año, mientras que una pequeña parte de la población es agrícola.

Actualmente, la población no cuenta con un sistema de agua potable, ni de alcantarillado sanitario o pluvial. El agua para consumo humano es transportada por tanqueros desde Valdivia, una comunidad aledaña al sector, luego esta se almacena en cisternas o tanques para su posterior consumo. Las deposiciones domésticas se realizan en letrinas, en la mayoría de casos. La población cuenta con dos lagunas de oxidación ubicadas en las afueras de la comunidad, donde se realiza cierto tratamiento a estas aguas residuales.

Ayangue es propensa a inundaciones durante los meses de invierno (diciembre a mayo). El mayor problema es la formación de una poza de importante superficie muy cerca de la población.

Esta acumulación de agua genera muchos inconvenientes, entre estos tenemos el daño a la vía de acceso al resort Cumbres de Ayangue debido a la infiltración de agua en el terraplén de la vía. Como resultado, la vía presenta muchos baches que afectan el confort de las personas que día a día la transitan, pudiendo llegar a casar daños a los vehículos a largo plazo.

Además, producto de las condiciones de estancamiento del agua se generan problemas de insalubridad como la proliferación de mosquitos y generación de malos olores.

Figura 1.1 Embalsamiento en el lado derecho generado por las lluvias.

Fuente: Rodríguez, M., Salazar, R., 2017

1.2 Objetivos

1.2.1 Objetivo General

Diseñar una presa colinar que mitigue la acumulación de aguas
 Iluvias en la comuna de Ayangue, provincia Santa Elena, Ecuador.

1.2.2 Objetivos Específicos

- Obtener parámetros geotécnicos del suelo del área de estudio.
- Determinar las cualidades de estabilidad de talud para el diseño de la presa mediante el software GALENA.
- Proponer 3 alternativas como soluciones al problema planteado.
- Desarrollar una solución de ingeniería que mitigue la acumulación de aguas lluvias en la zona aledaña a la vía.
- Diseñar la vía de acceso al resort Cumbres de Ayangue según las especificaciones de Ministerio de Transporte y Obras Públicas (MTOP).
- Presentar opciones de impermeabilización del terraplén de la vía.
- Determinar el presupuesto de la construcción del proyecto.

1.3 Justificación

Es común observar en comunas como Ayangue, y en general en poblaciones de bajos recursos económicos, inconvenientes relacionados con los servicios básicos que son indispensables para la calidad de vida de sus habitantes. El desarrollo en infraestructura está condicionado por la falta de planificación gubernamental, factores sociales y económicos que impiden el progreso de la sociedad.

Una de las principales limitantes de la comuna de Ayangue es que no cuenta con un sistema de alcantarillado pluvial, lo que desemboca en un gran embalsamiento de agua cerca de la playa, ocasionando afectaciones a la población por la proliferación de mosquitos y contaminación al mar. Además, de generar daños a calles por infiltraciones.

En este trabajo se pretende dar soluciones técnicas para el embalsamiento de aguas lluvias, reduciendo los riesgos de enfermedades e insalubridad que afectan a la población, además, de mejorar la vialidad dentro de la comuna. Ambos aspectos afectarían de forma positiva contribuyendo al aumento del turismo y mejorando las condiciones de vida de los habitantes.

CAPÍTULO 2 INFORMACIÓN BÁSICA GENERAL

2.1 Localización geográfica y división política

La parroquia Colonche, está ubicada al centro y norte de la provincia de Santa Elena, cuenta con una extensión de 1.137,2 km². Según el Censo Poblacional del 2010 tiene una población de 31.322 habitantes. Es la parroquia más grande de la provincia y representa 30,45% de la misma. Está delimitada al norte por la Parroquia Manglaralto y el cantón Pedro Pablo Gómez de la Provincia de Manabí, al sur por las parroquias de Simón Bolívar y Santa Elena, al este por los cantones Pedro Carbo de la provincia del Guayas y Cascol de Manabí y al oeste por el Océano Pacifico y las parroquias de Manglaralto y Santa Elena.

Figura 2.1 División política de la parroquia Colonche, Santa Elena.

Fuente: GAD Parroquial de Colonche, 2017

El territorio de la parroquia contiene dos sectores marcados geográficamente: el del filo costero y el del interior de dominancia rural. La zona que da al perfil costanero, eminentemente turística, mientras que en la zona interior se han alineado siguiendo el eje vial una serie de pequeños centros poblados formando un conglomerado.

La parroquia Colonche cuenta con 18 comunas, siendo la cabecera parroquial, los centros poblados de Colonche. La parroquia comprende de las comunas de Jambelí, Monteverde, Palmar, Ayangue, Manantial de Colonche, Bambil Collao, Bambil Deshecho, Rio Seco, Febres Cordero, Loma Alta, Bajadita de Colonche, San Marcos, Manantial de Guangala, Cerezal Bellavista, Salanguillo, Las Balsas, Aguadita y Calicanto.

La comuna Ayangue se encuentra ubicada en la parroquia Colonche, cantón Santa Elena, provincia de Santa Elena, en la región Litoral, y geográficamente se ubica al suroeste del Ecuador. Está localizada a 150 kilómetros de Guayaquil y posee salida al mar. Se encuentra delimitada al norte con la Comuna San Pedro, al sur por la Comuna Palmar, al este por la parroquia Colonche y la cordillera del mismo nombre y al oeste por el Océano Pacífico.

Figura 2.2 Vista satelital de la comuna de Ayangue. **Fuente:** Google Earth, 2017

2.2 Organización comunitaria

Tras la obtención de la condición comunal, la administración de la misma se efectúa a través de la asamblea general de asociados, presidida por un cabildo conformado por las siguientes dignidades: 1 presidente, 1 vicepresidente, 1 secretario, 1 tesorero, y 1 síndico, los cuales duran un año en sus funciones pudiendo ser reelegidos. El mandato concluye los primeros 15 días del mes de diciembre, en que por lo general se convoca y se realiza las elecciones de las nuevas dignidades, que regularmente son posesionadas el siguiente año entre los primeros 15 días del mes de enero.

Entre las Instituciones que existen actualmente están:

- La Asociación de Damas Organizadas con aproximadamente 80 socias con cabañas comedores.
- La cooperativa de Taxis ejecutivos Transayangue con 30 socios aproximadamente dando el servicio a distintos lugares.
- Cooperativa de Producciones Pesquera

2.3 Aspectos naturales

2.3.1 Geología

La parroquia Colonche se encuentra atravesada por diversas formaciones geológicas (Piñón, Cayo, Zapotal, Santa Elena, Angostura) y zonas con sedimentos marinos y arcillas de antiguos estuarios. La comuna Ayangue se encuentra en la intersección de las formaciones Dos Bocas (MTb) y Tablazo (QT). La formación Dos Bocas consiste en lutitas y limolita de la edad geológica mioceno; mientras que la formación Tablazo consiste en terrazas bioclásticas marinas de la edad geológica pleistoceno. (Riviera, 2014)

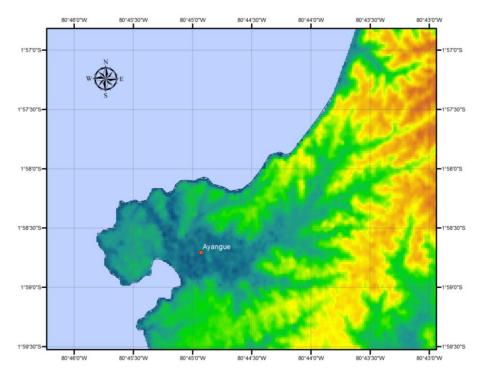


Figura 2.3 Formaciones geológicas presentes en la zona. **Fuente:** Ministerio de Recursos Naturales y Energéticos, 1982

2.3.2 Relieve

El sistema montañoso del sector posee características de planicie, lugar donde se encuentra asentada la población, cercana a la playa. Ayangue es considerada como la piscina del Pacífico, puesto que tiene dos acantilados que interrumpen en el mar y hace del lugar un balneario de aguas tranquilas. Pero también a su vez está conformada por altas elevaciones hacia el lado este, que llegan a 335 m.

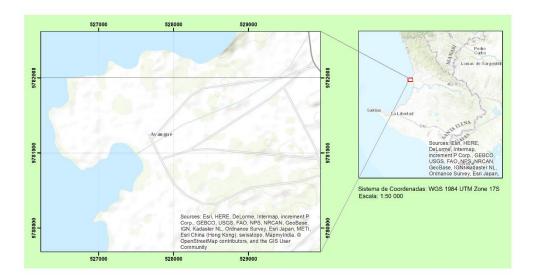

El terreno en general presenta pendientes que oscilan entre 2% - 18%, las pendientes más fuertes se presentan en las zonas no habitadas.

Figura 2.4 Relieve de la comuna de Ayangue. **Fuente:** Rodríguez, M., Salazar, R., 2017

2.3.3 Topografía

La comuna Ayangue corresponde a una zona rural, con cotas de terreno que fluctúan entre 0 m a 110 m sobre el nivel del mar. Por encontrarse con estas variaciones, la comuna es propensa a inundaciones en época lluviosa (meses de enero, febrero, marzo y abril).

Figura 2.5 Topografía de la comuna de Ayangue. **Fuente:** Rodríguez, M., Salazar, R., 2017

2.3.4 Hidrografía

La comuna de Ayangue se encuentra ubicada en las Costas del Océano Pacífico. No cuenta con ríos aledaños sin embargo en época de invierno, se forma pozas de importante superficie que ocasionan malestar a la población.

2.3.5 Hidrología

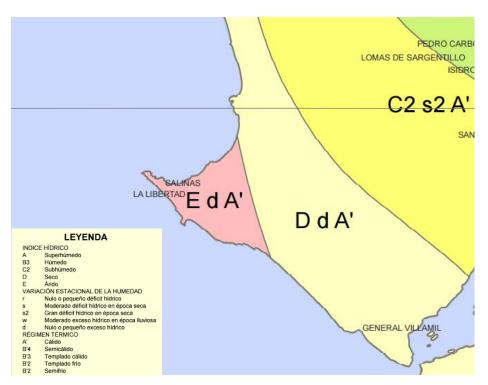
Se obtuvieron datos históricos de precipitación mensual acumulada desde el año 1989 hasta el 2015, los cuales se obtuvieron de la estación Colonche (código M0780) cuyas coordenadas geográficas son 2°01'34" S y 80°40'19"W.

Estos datos proporcionados por el INAMHI corresponden a la estación meteorológica más cercana a la comuna de Ayangue, a tan solo 9.71 km.

A continuación, se muestra una tabla con la información pertinente.

Tabla I. Precipitación histórica acumulada mensual (mm) de la

estación meteorológica Colonche.


ediación meteorológica ediencio:												
AÑOS	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC
1989	104.4	159.8	182.9	16	8.5	11.6						
1990	902	0	0	0	2.4	1	2	0	0			
1991	16.4	159.6	7.4	1.1	0.3	0.4	1	3	0	4.1	0	1.1
1992	2.5	30.5	233.5	271.1	12.1	4.1	0.5	1	0	1.5	3.1	0
1993	14.2	199.8	90.2	6.8	3.2							
1995	14.7	56.2	9.9	0	13.5	0	0	2.2	3.1	11.6	5.3	2
1996	14.5	43.2	27.5	4.7	12.7	7.2	9.2	2	0	3.5	6.4	5.2
1999	14.3	168.2	36	36.8	15	11.4	7.5	17.5	0	7.7	10.1	7.2
2002	0	0										
2003	38.1	95.8	34.3	44.6	27.4	0	4.8	0	0	0	0	0
2004	21.1	59.5	4.6	5.9	16	0	0	2.9	0.9	0	0	0.1
2005	0	33	9.5	19.1	0	0	0	0	0.8	0.8	0	0
2006	28.3	86.6	17.1	0	0	0	0	0	0	0	0	0
2007	35.4	0	60.4	0	0	0	0	0	0	0	9.2	0
2008	156.5	185.9	37.8	6.7	0	0						
2009	0	0	0	5.5	0	0.8						
2010	42	63	9.1	95.6	106.1	0	7.5	1.5	0	19.3	9.3	20.8
2011	21.9	30.4	0	63.4	0	2.7	2.5	8.9	1.9	3.5	0	0.8
2012	217.5	124.5	101.3	48.5	7	0	0.5	0.9	5.1	2.3	5.9	4.2
2013	68	134.6	221.2	0	0	16.6	0	0	0	11.7	4.2	0
2014	71.5	34.8	4	3.6	5.7	0.2	4.1	3.4	10	7.9	0.5	2.5
2015	14	7.8	41.7	100.6								

Fuente: INAMHI, 2015

Los años 2016 y en especial el año 2017 fueron más lluviosos que en el 2015, sin embargo, no se tienen registros.

2.3.6 Clima

El clima que rige en la comuna Ayangue es cálido, con pequeño exceso hídrico, sus periodos climatológicos están muy marcados por las temporadas debido a que entre diciembre y abril es la época invernal caracterizado por sus lluvias, con presencia de sol y calor muy intenso con temperaturas hasta 39° C, mientras que durante los meses de mayo a noviembre es la época seca con temperaturas hasta 20° C.

Figura 2.6 Tipos de clima en la región de estudio. **Fuente:** INAMHI, 2006

2.4 Población

En la actualidad no se poseen datos actualizados sobre el número de habitantes que posee la comuna de Ayangue, la información más reciente data del 2005, y es proporcionada por la Fundación Salud Pública Internacional que mediante encuesta señala una población de 1015 habitantes (255 familias de entre 2 a 8 integrantes), de los cuales el 37% son hombres, el 34% mujeres y el 29% niños, distribuida en cuatro barrios: María Auxiliadora, Virgen de Fátima, San Francisco y 1 de Mayo.

Se tiene registrado para Ayangue la existencia de aproximadamente 224 casas, entre las de construcción mixta y las de cemento, donde habitan familias que fluctúan entre los rangos de 2 a 12 personas como integrantes.

2.5 Actividad productiva

La actividad productiva de Ayangue varía según los meses del año, de enero hasta abril y de agosto hasta septiembre, predomina el turismo, puesto que son los meses de vacaciones en la Costa y Sierra, respectivamente. Cabe recalcar que Ayangue cuenta con una gran selección restaurantes locales que durante este tiempo se ve beneficiada por la llegada de los turistas además de las diferentes clases de hoteles y resorts.

En los meses restantes, la población se dedica a la pesca, en el transcurso de mayo a agosto predomina la pesca de lenguado, mientras que en los meses de octubre a diciembre el camarón.

Otra actividad productiva que realiza la población de Ayangue es la agricultura. La mayor parte de la población se dedica a esta actividad y consiste principalmente en cultivos de limón. A respecto cabe anotar que los huertos de limón y frutas como la papaya, el melón y sandía son regadas en gran parte del año con aguas servidas que se colectan en lagunas de oxidación. Se trata de una situación crítica que debe ser analizada dentro de punto de vista de la salubridad.

Por último, la población de Ayangue se dedica a la elaboración y venta de artesanías a base de coral conchas, balsas y escamas de pescado. Muchas familias de pescadores realizan adornos, joyas y recuerdos, de las piedras, conchas y huesos que extraen directamente de las aguas del océano Pacífico. Estas artesanías, son una gran pieza cultural, ya que su elaboración pasa de generación en generación de los nativos de Ayangue. (Gobierno Autónomo Descentralizado de Colonche, 2007)

2.6 Abastecimiento de agua de la zona

Ayangue cuenta con la dotación de agua potable que es transportada desde las plantas de tratamiento de Santa Elena. Se tienen redes de distribución cuando existe una gran demanda de agua, su aprovisionamiento se logra desde Valdivia, agua cruda que es transportada tanqueros.

2.7 Situación sanitaria

No existe sistema de alcantarillado sanitario ni de aguas Iluvias, recientemente en el sector regenerado por la construcción del malecón se instalaron pequeños canales de drenaje de aguas Iluvias. Las deposiciones domésticas se realizan a nivel de letrinas. En el 2005 la Fundación Plan Internacional junto con el FISE (Fondo de Inversión Social Emergente) implementaron un plan de letrinización, dentro de los antecedentes del proyecto se indica la existencia de 71 casas con letrinas en buenas condiciones, 37 casas con letrinas en malas condiciones, 84 casas sin letrinas, 39 casas con letrinas Ilenas; se entiende que este proyecto cubrió al menos el 80% de dicho problema. (Gobierno Comunal Ayangue, 2017)

2.8 Servicio de energía eléctrica

El servicio eléctrico si bien cubre a gran parte de la comunidad requiere de nuevas instalaciones. A nivel de telecomunicaciones, muchos de los moradores cuentan con telefonía convencional domiciliaria. Existía una central de Pacifictel, pero esta dejó de dar servicio debido a la aparición de cabinas y locutorios de la telefonía celular privada, Movistar y Claro, que abarataron los costos de las llamadas, eso sin mencionar la adquisición de teléfonos celulares por parte de ciertos moradores de la localidad.

2.9 Recolección de basura

El Concejo Cantonal de Santa Elena se encarga de la recolección de los desechos sólidos de la comunidad a través de un camión recolector de basura que visita la localidad dos veces por semana, los lunes y los jueves. No obstante, la comunidad realiza mingas de limpieza los fines de semana, sobre todo en la playa y vía de ingreso al malecón, lo recogido se traslada en camionetas al botadero municipal situado a cinco minutos al otro lado de la vía Santa Elena-Puerto López.

2.10 Educación

Ayangue no cuenta con establecimientos de educación a nivel secundario, técnico o superior, para acceder a ella, los jóvenes deben partir a los establecimientos del área urbana de la Punta de Santa Elena, o a colegios de poblaciones cercanas como Olón, Manglaralto, Valdivia, Palmar, entre otros.

A nivel primario se tiene una única escuela, la "Escuela Fiscal Mixta Provincia del Carchi", que para el 2005 contaba con una población estudiantil de 147 alumnos, repartidos en 7 aulas, bajo la supervisión de 8 profesores más el director.

2.11 Salud

A nivel de salud, la población cuenta con un Sub Centro que funciona en la planta baja de la casa comunal, en horarios de 8:00 a 16:00 de lunes a viernes, donde labora un médico del Ministerio de Salud y una auxiliar de enfermería. La atención que se brinda es de tipo diagnóstico y ambulatorio, en casos que se requiera una atención y cuidados más complejos o especializados, estos son derivados a centros de Salud mejor equipados como el de Manglaralto, La Libertad, Santa Elena, Salinas, Ancón o Guayaquil.

El Seguro Social Campesino, a través de su sede en Palmar, da cobertura a 80 familias que aportan mensualmente \$ 0,40 centavos de Dólar por grupo familiar, sin importar el número de cargas por familia. De ahí la obligatoriedad de estar al día en los pagos para poder ser atendidos.

CAPÍTULO 3

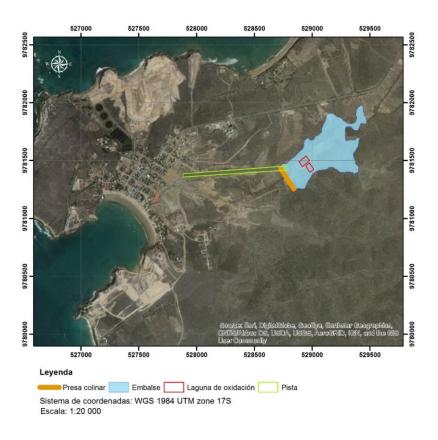
PLANTEAMIENTO DE ALTERNATIVAS PARA EL CONTROL DE INUNDACIONES

3.1 Presas colinares

Con el fin de resolver el problema de estancamiento de agua definido previamente, se ha optado por plantear soluciones basadas en la implementación de presas colinares.

Las presas colinares son pequeñas presas, las cuales no son alimentadas por ríos o esteros sino por el agua que acumula una determinada cuenca de drenaje. Este tipo de solución hidráulica es de fácil implementación y permite captar las aguas lluvias para su posterior uso, en especial en zonas donde el recurso de agua dulce es escaso.

La tecnología para la ejecución de este tipo de presa tiene un origen ancestral. En el Ecuador, se ha comprobado que las culturas Valdivia y Guangala (2000 – 1800 a.C.) ya hacían uso de esta técnica para aprovechar el agua producto de la lluvia y abastecer del recurso a pequeñas poblaciones de entre 50 y 100 habitantes.


En la actualidad, la implementación de este tipo de soluciones podría beneficiar a muchas comunas de la Costa ecuatoriana con problemas de abastecimiento de agua o inundaciones.

A continuación, se describen las alternativas planteadas para la solución del problema.

3.2 Alternativa 1

3.2.1 Ubicación

La primera alternativa consiste en la construcción de una presa colinar con un eje de presa de 258 m de longitud. El dique de la presa ocupa una parte de una pista de aterrizaje de avionetas. Además, debido al embalse de agua sería necesario reubicar dos lagunas de oxidación aledañas a la pista.

Figura 3.1 Ubicación de alternativa de presa 1 **Fuente:** Rodríguez, M., Salazar, R., 2017

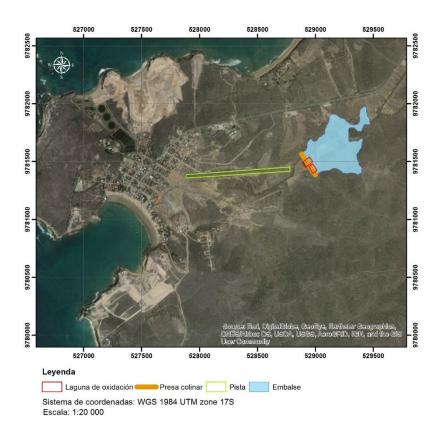
3.2.2 Costo de inversión

Luego de realizar un análisis de costos se consideró un precio de \$933.06 por metro construido de presa. Entonces, esta alternativa requeriría de una inversión de \$240,729.70 para la construcción de la presa, sin incluir los costos adicionales por expropiación de terrenos y reubicación de lagunas de oxidación.

3.2.3 Volumen de embalse

Se calculó la capacidad de embalse para esta alternativa utilizando las herramientas de análisis 3D del programa ArcMap 10.2.2. Luego del análisis, se obtuvo una capacidad de embalse de 705 mil m³.

3.2.4 Área de afectación


Debido al embalsamiento de agua, la ejecución de esta alternativa afectará al uso de suelo. Mediante un análisis en el software ArcMap 10.2.2 se determinó un área de afectación de 23.74 ha.

3.3 Alternativa 2

3.3.1 Ubicación

La siguiente alternativa consiste en la construcción de una presa colinar con un eje de presa de 237 m de longitud.

Para la construcción del dique de la presa es necesaria la reubicación de dos lagunas de oxidación. Con esta solución se consigue abarcar la mayor parte de cuenca de drenaje; sin embargo, flujos laterales de pequeñas cuencas no serían captados.

Figura 3.2 Ubicación de alternativa de presa 2 **Fuente:** Rodríguez, M., Salazar, R., 2017

3.3.2 Costo de inversión

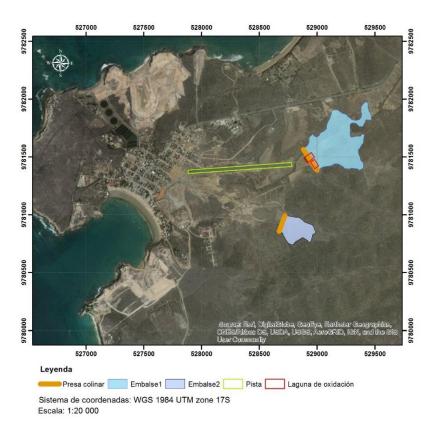
Luego de realizar un análisis de costos se consideró un precio de \$933.06 por metro construido de presa.

Entonces, esta alternativa requeriría de una inversión de \$ 221,135.40 para la construcción de la presa, sin incluir los costos adicionales por expropiación de terrenos y reubicación de lagunas de oxidación.

3.3.3 Volumen de embalse

Se calculó la capacidad de embalse para esta alternativa utilizando las herramientas de análisis 3D del programa ArcMap 10.2.2. Luego del análisis, se obtuvo una capacidad de embalse de 536 mil m³.

3.3.4 Área de afectación


Debido al embalsamiento de agua, la ejecución de esta alternativa afectará al uso de suelo. Mediante un análisis en el software ArcMap 10.2.2 se determinó un área de afectación de 18.32 ha.

3.4 Alternativa 3

3.4.1 Ubicación

La última alternativa consiste en la construcción de la alternativa anterior con una pequeña presa colinar adicional que permita la captación de agua del flujo lateral de una cuenca de drenaje. Esta presa adicional tiene un eje de 184 m.

Para la construcción del dique de la presa de mayor embalse es necesaria la reubicación de dos lagunas de oxidación. Con esta solución se consigue abarcar la mayor parte de cuenca de drenaje incluidos los flujos laterales de pequeñas cuencas.

Figura 3.3 Ubicación de alternativa de presas 3 **Fuente:** Rodríguez, M., Salazar, R., 2017

3.4.2 Costo de inversión

Luego de realizar un análisis de costos se consideró un precio de \$933.06 por metro construido de presa. Entonces, esta alternativa requeriría de una inversión de \$387,052.27 para la construcción de las presas, sin incluir los costos adicionales por expropiación de terrenos y reubicación de lagunas de oxidación.

3.4.3 Volumen de embalse

Se calculó la capacidad de embalse para esta alternativa utilizando las herramientas de análisis 3D del programa ArcMap 10.2.2. Luego del análisis, se obtuvo una capacidad de embalse de 696 mil m³.

3.4.4 Área de afectación

Debido al embalsamiento de agua, la ejecución de esta alternativa afectará al uso de suelo. Mediante un análisis en el software ArcMap 10.2.2 se determinó un área de afectación de 22.73 ha.

3.5 Criterios para la selección de alternativa

3.5.1 Restricciones

Para una adecuada selección de alternativas es importante definir las restricciones a las que está sujeto el proyecto.

De acuerdo a estas condiciones se establecerán criterios que permitan escoger a la mejor solución, de las tres presentadas previamente.

Para este proyecto se han identificado las siguientes restricciones:

- Bajo costo de inversión.
- Baja expropiación de terrenos.
- Bajo impacto ambiental.
- Altura de presa no mayor a 10 m.
- Alta capacidad de embalse.

3.5.2 Selección de la alternativa

Para la selección de alternativas se tomaron en cuenta los siguientes criterios:

- Costo de inversión [\$].
- Área de afectación del proyecto [ha].
- Capacidad de embalse de presas [m³].
- Impacto ambiental [1-10].

3.5.3 Conclusión de análisis de alternativas

De acuerdo a los criterios previamente definidos, se escoge a la Alternativa 3 como la solución a implementar en el proyecto. A pesar de que es la alternativa con mayor costo de inversión para su construcción, esta solución permite controlar la mayor parte de la cuenca y es la segunda en lo que volumen de captación se refiere permitiendo así un control eficaz de las inundaciones en la comuna de Ayangue.

Respecto a otros criterios, todas las soluciones tienen un impacto ambiental más o menos parecido. Además, la solución escogida es la segunda en lo que concierne a área de afectación por lo que deberán expropiarse ciertos terrenos y reubicar las lagunas de oxidación, sin embargo, como punto a favor la pista de aterrizaje de avionetas no se verá afectada.

CAPÍTULO 4 METODOLOGÍA DE DISEÑO

4.1 Visita técnica

Se realizaron dos visitas a la zona de estudio, la primera fue el 2 de junio del presente año, con la participación del Ing. Miguel Ángel Chávez, PhD. en la cual se observó las características del terreno y las posibles ubicaciones para las presas colinares. Durante esta visita se pudo dialogar con el presidente de la comuna el Sr. Fabian Cochea, acerca de los inconvenientes que ocasiona el estancamiento de agua y además se le indicó acerca del estudio que se iba a realizar. Posteriormente se realizaron varios vuelos con dron para obtener imágenes del área y reconocer la extensión de la cuenca. Luego se procedió a la toma de puntos mediante un GPS para estudiar la topografía del lugar.

Figura 4.1 Vuelo con dron en la zona de estudio. **Fuente:** Rodríguez, M., Salazar, R., 2017

Figura 4.2 Extensión de la cuenca de drenaje. **Fuente:** Rodríguez, M., Salazar, R., 2017

Luego de un análisis de las imágenes del dron se pudo observar la existencia de una pista de aterrizaje para avionetas, cercana a la zona de ubicación de una posible presa de embalse. Además de 2 lagunas de oxidación contiguas a varias áreas de cultivos.

Figura 4.3 Pista de aterrizaje de avionetas en la comuna Ayangue **Fuente:** Rodríguez, M., Salazar, R., 2017

57

La segunda visita a la comuna de Ayangue fue el 16 de Julio del presente año

para efectuar tomas de muestra del suelo. Las 2 muestras fueron realizadas a

una profundidad de 50cm en el talud de la zona de cierre de la presa, la cual

sigue el eje de la misma y tiene las siguientes coordenadas:

E: 528952 m

N: 9781464 m

Con estas muestras se procedió a realizar los siguientes ensayos:

- Granulometría
- Límites de Atterberg
- Proctor
- Corte Directo

Estos ensayos se realizaron para la obtención de parámetros para la estabilidad de los espaldones de la presa que se propone construir

Figura 4.4 Zona 1 para la toma de muestra de suelo para ensayos. **Fuente:** Rodríguez, M., Salazar, R., 2017

Figura 4.5 Zona 2 para la toma de muestra de suelo para ensayos. **Fuente:** Rodríguez, M., Salazar, R., 2017

En la figura 4.4 se puede observar capas de tablazo meteorizado para los espaldones, mientras que en la figura 4.5 se puede percatar muestras de suelo limos arcillosos para conformar el terraplén.

Durante un recorrido a pie por la zona de cierre de la presa se observó que las 2 lagunas de oxidación que no poseen geomembrana, dichas lagunas se aplazan en una cota más elevada que el de la pista de avionetas. Se efectuaron observaciones en la pista y se comprobó que no hay ningún afloramiento de agua pese a la altura de carga de agua de las piscinas, este hecho demuestra que existe un importante grado de estanqueidad y que los suelos en donde están excavados las piscinas son arcillosos, de allí se deduce que son impermeables como parte del reservorio.

También se reconoció que ese tipo de suelos sirve para conformar terraplenes, de allí su importancia para la obra hidráulica que se plantea.

4.2 Ensayos realizados

Los ensayos a continuación se realizaron en el laboratorio de Mecánica de Suelos, Rocas y Materiales de la Facultad de Ingenierías en Ciencias de la Tierra (FICT) de la Escuela Superior Politécnica del Litoral (ESPOL), bajo supervisión del Ing. Daniel Falquéz.

4.2.1 Granulometría

4.2.1.1 Introducción

El ensayo de granulometría de un material granular se realiza para clasificar las partículas que lo constituyen como gruesos o finos y de esta manera determinar si cumplen las especificaciones dictadas por las normas. La muestra debe haber pasado por un previo secado y ser de masa conocida para luego ser vertida en los tamices, los cuales estarán ubicados en orden descendente de arriba hacia abajo según el tamaño de sus aberturas.

Los propósitos de este ensayo son los siguientes:

- Determinar la distribución granulométrica del suelo.
- Establecer el tamaño máximo de agregado.

- Obtener el porcentaje de finos.
- Determinar el tipo de suelo del área de estudio

4.2.1.2 Resultados

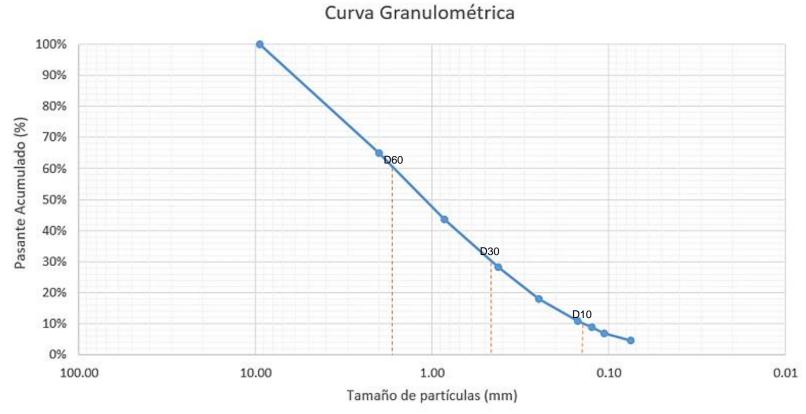
Masa inicial de la muestra: 468.81 gr.

Tabla II. Granulometría de la muestra de estudio

Tamiz	Peso Parcial (gr)	% Retenido Parcial	% Retenido Acumulado	% Pasante Acumulado
3/8 " (9.5mm)	0.00	0.00	0.00	100.00
No. 10 (2mm)	164.68	35.14	35.14	64.86
No. 20 (0.85mm)	99.73	21.28	56.43	43.57
No. 40 (0.43mm)	71.20	15.19	71.62	28.38
No. 60 (0.25mm)	48.79	10.41	82.03	17.97
No. 100 (0.15mm)	33.55	7.16	89.19	10.81
No. 120 (0.13mm)	9.33	1.99	91.18	8.82
No. 140 (0.11mm)	8.66	1.85	93.03	6.97
No. 200 (0.08mm)	11.48	2.45	95.48	4.52
Fondo	21.17	4.52	100.00	0.00
Total	468.59			

Fuente: Rodríguez, M., Salazar, R., 2017

• Porcentaje de error


% de error =
$$\frac{masa\ inicial - masa\ total}{masa\ inicial} * 100$$
$$= \frac{468.81 - 468.59}{468.81} * 100 = 0,05\%$$

• Porcentaje de finos

% de finos =
$$100 - \%$$
 retenido acumulado en tamiz 200 % de finos = $100 - 95.48 = 4.52\%$

• Tamaño máximo del agregado

De acuerdo con los datos obtenidos en el análisis granulométrico, el tamaño máximo de agregado es de 2mm.

Figura 4.6 Curva granulométrica del material **Fuente:** Rodríguez, M., Salazar, R., 2017

$$D_{10} = 0.15$$

$$D_{30} = 0.48$$

$$D_{60} = 1.75$$

$$Cu = \frac{D_{60}}{D_{10}} = \frac{1.75}{0.15} = 11.67$$

$$Cc = \frac{D_{30}^{2}}{D_{60} * D_{10}} = \frac{0.48^{2}}{1.75 * 0.15} = 0.88$$

4.2.1.3 Análisis de resultado

El porcentaje de error obtenido indica que la práctica se realizó correctamente ya que se encuentra por debajo del 1% permisible. Estos errores se deben a las pérdidas de masa ocurridas durante el ensayo ya sea porque el material quedó atrapado en los tamices o por caída accidental al momento de ser removido del tamiz. El porcentaje de finos fue del 4.52% y el tamaño máximo de agregado obtenido del material fue de 2mm.

El coeficiente de uniformidad es 11.67 y el coeficiente de curvatura es 0.88, lo cual indica que el suelo es mal graduado puesto que para que sea lo contrario Cu debe ser mayor a 6 y Cc debe estar entre 1 y 3.

4.2.2 Límites de Atterberg

4.2.2.1 Introducción

El ensayo de límite líquido consiste en una mezcla de suelo y agua, capaz de ser moldeada. Esta es depositada en la Cuchara de Casagrande o Copa de Casagrande, y se la golpea haciendo girar la manivela consecutivamente contra la base, hasta que el surco que previamente se ha recortado, se cierre en una longitud de 12 mm (1/2"). Si el número de golpes para que se cierre el surco es 25, la humedad del suelo (razón peso de agua/peso de suelo seco) corresponde al límite líquido. Este ensayo debe hacerse únicamente con la fracción que pasa el tamiz No. 40.

Por otro lado, el ensayo de límite plástico consiste en medir el contenido de humedad para el cual no es posible moldear un cilindro de suelo, con un diámetro de 3 mm. Para esto, se realiza una mezcla de agua y suelo, la cual se amasa entre los dedos o entre el dedo índice y una superficie inerte (vidrio), hasta conseguir un cilindro de 3 mm de diámetro. (Terreros, 2004)

Los propósitos de estos ensayos son los siguientes:

- Determinar el límite líquido de la muestra
- Determinar el límite plástico de la muestra
- Determinar el índice de plasticidad.

4.2.2.2 Resultados

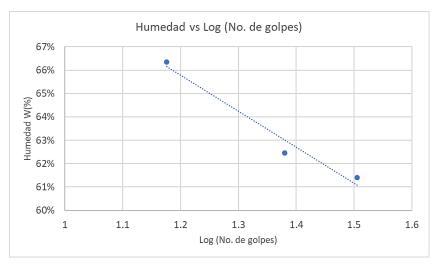

En la siguiente tabla se muestra los datos del ensayo del límite líquido para 3 muestras con diferentes contenidos de humedad.

Tabla III. Datos del ensayo de límite líquido

No.	2	3	5
No. Rcp	82	44	10
Wh+rcp (gr)	14.85	16.81	18.85
Ws+rcp (gr)	11.34	12.7	13.95
Rcp (gr)	6.05	6.12	5.97
Ww	3.51	4.11	4.9
Ws	5.29	6.58	7.98
%w	66%	62%	61%
No. golpes	15	24	32
Log (No. Golpes)	1.18	1.38	1.51

Fuente: Rodríguez, M., Salazar, R., 2017

A continuación, se presenta la gráfica humedad vs Log (No. Golpes).

Figura 4.7 Ensayo límite líquido, humedad vs Log (No. De golpes)

Fuente: Rodríguez, M., Salazar, R., 2017

Para un No. de golpes 25 (1.40 en logarítmico) el porcentaje de humedad es de 62.8%, el cual es el valor del límite liquido de la muestra.

Para el ensayo de limite plástico los datos obtenidos se presentan en la siguiente tabla.

Tabla IV. Datos del ensayo de límite plástico

Muestra	1	2
No. Rcp	7	2
Wh+rcp	6.89	7.34
Ws+rcp	6.65	7.06
rcp	6.16	6.45
Ww	0.24	0.28
Ws	0.49	0.61
%W	49%	46%

El limite plástico es 47.5, el cual se lo obtiene promediando el porcentaje de humedad de las muestras. El índice plástico es la resta del límite líquido y límite plástico.

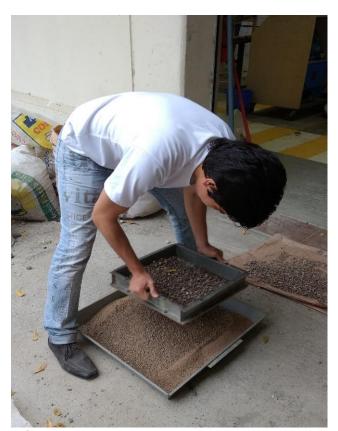
$$IP = LL - LP = 62.8 - 47.5 = 15.3$$

4.2.2.3 Análisis de resultados

Con los datos obtenidos del ensayo de granulometría y límites de Atterberg se puede clasificar el suelo según el Sistema Unificado de Clasificación de Suelos (SUCS) como una arena mal graduada, debido a que su porcentaje de finos

es 4.52%, menor a 5% y los coeficientes Cc y Cu no cumplen con las especificaciones.

Por otro lado, según la AASHTO (American Association of State Highway and Transportation Officials), el suelo pertenece al grupo A–2–7, en el cual predomina las gravas y arenas con arcilla, el porcentaje de finos es menor a 35% y el índice de plasticidad es mayor a 11.


4.2.3 Proctor

4.2.3.1 Introducción

El ensayo de compactación Proctor modificado tiene como objetivo determinar la relación entre el porcentaje de humedad y el peso volumétrico seco de una muestra previamente tamizada, humedecida y compactada en un molde de 0.001 cm3 de volumen con martillo de 10 libras que se deja caer desde una altura de 18".

El ensayo de Proctor nos permite determinar la humedad óptima a la cual los suelos alcanzarán su grado de compactación máximo. La finalidad de este ensayo son las siguientes:

- Determinar la relación que existe entre el contenido de humedad y el peso volumétrico seco del material.
- Calcular la humedad óptima de la muestra de material del área de estudio.
- Obtener la densidad máxima de la muestra de material del área de estudio.

Figura 4.8 Proceso de cuartear el material. **Fuente:** Rodríguez, M., Salazar, R., 2017

Figura 4.9 Compactación en capas Fuente: Rodríguez, M., Salazar, R., 2017

4.2.3.2 Resultados

Descripción de las ecuaciones utilizadas para el cálculo del contenido de humedad, densidad húmeda y la densidad seca del suelo compactado.

• Peso agua = Peso tierra húmeda — Peso tierra seca

• Humedad (%) =
$$\frac{Peso\ tierra\ h\'umeda-Peso\ tierra\ seca}{Peso\ tierra\ seca}*100$$

Peso tierra húmeda = (Peso tierra húmeda + cilindro) (Peso cilindro)

• Peso tierra seca =
$$\frac{Peso \ tierra \ h\'umeda}{1 + \frac{w}{100}}$$

Tabla V. Datos para el ensayo de Proctor

Diámetro de	10.16
cilindro	cm
Altura de	11.66
cilindro	cm
Volumen de	0.001
cilindro	cm ³
Peso del cilindro	1.99 Kg
Muestra	3.5 Kg

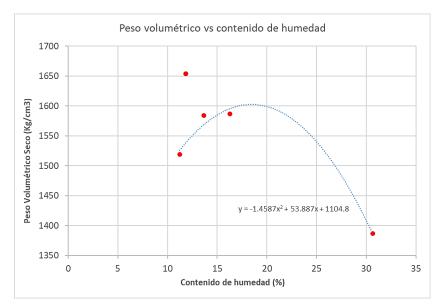
Fuente: Rodríguez, M., Salazar, R., 2017

Tabla VI. Ensayo Proctor (parte 1)

Cantidad de Agua	Recipiente No.	Peso Tierra Húmeda + rcp	Peso Tierra Seca + rcp	Peso de recipiente
cm³	NO.	gr	gr	gr
100	2	1617.40	1469.50	151.90
200	3	1635.00	1456.00	144.60
300	1	1736.50	1514.00	146.60
500	4	1249.50	993.10	156.50
400	5	1595.10	1446.40	188.40

Fuente: Rodríguez, M., Salazar, R., 2017

Tabla VII. Ensayo Proctor (parte 2)


Recipiente	Peso Seco	w	Peso Tierra Húmeda + cilindro	Peso Tierra Húmeda
No.	gr	%	gr	Kg
2	147.90	11.23	3.59	1.60
3	179.00	13.65	3.69	1.70
1	222.50	16.27	3.73	1.74
4	256.40	30.65	3.70	1.71
5	148.70	11.82	3.74	1.75

Fuente: Rodríguez, M., Salazar, R., 2017

Tabla VIII. Ensayo Proctor (parte 3)

Recipiente No.	1+W/100	Peso Tierra Seca %	Peso Volumétrico Seco gr
2	1.11	1.44	1518.99
3	1.14	1.50	1583.76
1	1.16	1.50	1586.80
4	1.31	1.31	1386.52
5	1.12	1.56	1654.13

Fuente: Rodríguez, M., Salazar, R., 2017

Figura 4.10 Peso volumétrico vs % de humedad. **Fuente:** Rodríguez, M., Salazar, R., 2017

<u>Densidad máxima = 1602.5 Kg/m³</u> <u>Humedad Óptima = 18.47 %</u>

4.2.3.3 Análisis de resultado

Con los resultados del ensayo Proctor Modificado, se construyó la curva Peso Volumétrico Seco vs Contenido de Humedad, para este propósito se modificó la cantidad de agua añadida a la muestra en cada punto con un mínimo de 100 cm3 y un máximo de 500 cm3, considerando únicamente 4 puntos de los 5 ensayados, esto debido a la disparidad entre ellos. Con estos valores, se determinó una densidad máxima de 1602.5 kg/m3 y una humedad óptima

de 18.47%. Este último valor se usará para el ensayo de corte directo.

4.2.4 Corte Directo

4.2.4.1 Introducción

El ensayo de Corte Directo tiene como objetivo determinar la resistencia de una muestra de suelo, sometidas a deformaciones y fatigas que simulen las cargas que se presentarán en el terreno.

Generalmente se ensayan 3 o más especímenes, deformándolas a velocidad controlada con diferentes cargas normales, en este caso las cargas fueron 54.5 KPa, 190.8 KPa y 299.8 KPa. De esta manera se puede determinar la resistencia al corte y al desplazamiento además de las propiedades de resistencia del material a partir de las envolventes de resistencia de Mohr.

La finalidad de este ensayo son los siguientes:

- Determinar la cohesión (c) del suelo de la zona de estudio.
- Determinar el ángulo de fricción (φ) de la muestra de material del área de estudio.

Figura 4.11 Proceso de tamizado. Fuente: Rodríguez, M., Salazar, R., 2017

Figura 4.12 Material en la caja de corte. **Fuente:** Rodríguez, M., Salazar, R., 2017

4.2.4.2 Resultados

Se utilizó el programa Data System 7 para el desarrollo del ensayo de corte directo. A continuación, se presentan las gráficas de esfuerzo cortante vs deformación para cada espécimen ensayado.

Figura 4.13 Espécimen 1, esfuerzo cortante vs deformación Fuente: Data System 7

Esfuerzo Cortante vs Deformación

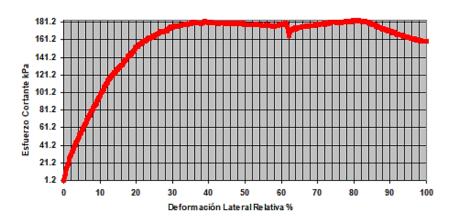


Figura 4.14 Espécimen 2, esfuerzo cortante vs deformación Fuente: Data System 7

Esfuerzo Cortante vs Deformación

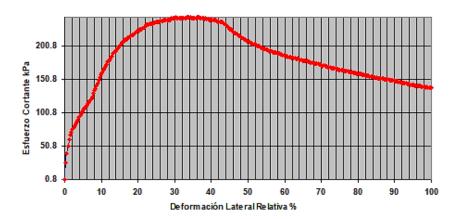
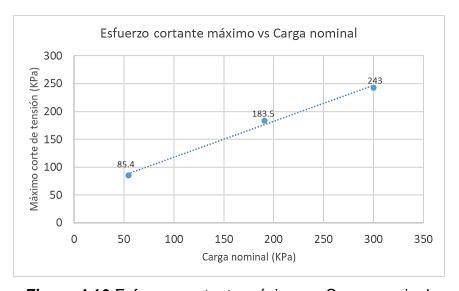


Figura 4.15 Espécimen 3, esfuerzo cortante vs deformación Fuente: Data System 7


De dichos gráficos se tomó el valor del esfuerzo cortante máximo de cada muestra, con estos datos se procede a

graficar el esfuerzo cortante máximo vs carga nominal para obtener los valores de cohesión y ángulo de fricción interna.

Tabla IX. Máximos esfuerzos cortantes

MUESTRA	CARGA NOMINAL (KPa)	MÁXIMO CORTE DE TENSIÓN (KPa)
1	54.5	85.4
2	190.8	183.5
3	299.8	243.0

Fuente: Rodríguez, M., Salazar, R., 2017

Figura 4.16 Esfuerzo cortante máximo vs Carga nominal **Fuente:** Rodríguez, M., Salazar, R., 2017

El ángulo que forma esta recta con el eje horizontal es el ángulo de fricción (ϕ) y el intercepto con el eje y (τ) es el valor de la cohesión (c).

Ángulo de fricción = 34.12° Cohesión = 46.65 KPa

4.2.4.3 Análisis de resultados

Las muestras se ensayaron con el contenido de humedad resultante del ensayo Proctor. Los ensayos de corte directo se realizaron con cargas normales de 54.5 KPa, 190.8 KPa y 299.8 KPa. Para cada espécimen, el esfuerzo cortante se graficó vs la deformación, donde se pudo obtener el valor de esfuerzo cortante máximo y de esta manera conseguir el valor de la cohesión y ángulo de fricción. Los datos adquiridos fueron 46.65KPa y 34.12° respectivamente.

El valor obtenido de ángulo de fricción se encuentra dentro del rango de estudios realizados previamente. A continuación, se presenta una tabla con los resultados de dichos ensayos.

Tabla X. Valores típicos de ángulo de fricción para suelos acorde a el SUCS

	acolue a el 5000					
Ángulo de fricción						
Mínimo Máximo Valor específico						
Arena mal graduada, con poco o sin finos	30	39				
Arena mal graduada - compactada			37			
Arena limosa, arena arcillosa - compactada	30	40				

Fuente: Association of Swiss Road and Traffic Engineers, 2006

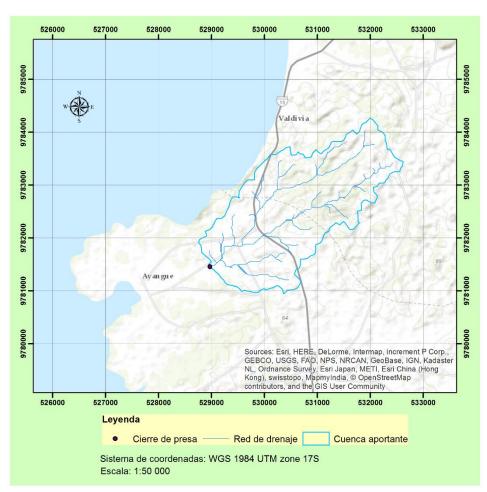
Tabla XI. Valores típicos de cohesión para suelos acorde a el SUCS

3003					
Cohesión					
	Mínimo Máximo Valor (KPa) (KPa) específico (KPa)				
Arena mal graduada, con poco o sin finos			0		
Arena limosa, arena arcillosa - compactada	50	75			

Fuente: Minnesota Department of Transportation, 2007

La cohesión obtenida difiere con los valores de estudios previos, se infiere que el error se debe a la falta de finos en la muestra, dado que la toma de material se realizó en un solo lugar. Al aumentar el porcentaje de finos el material sería una arena arcillosa (SC), y el valor de cohesión resultado del ensayo estaría más acorde.

Por otro lado, la clasificación AASHTO determina que el suelo de la zona de estudio es una mezcla de grava y arena con arcilla, por lo que el resultado estaría dentro de lo permisible comparándolo con una arena arcillosa compactada.


4.3 Tipo de presa propuesta

Se consideró la solución de presa tipo colinar constituyen una opción hidráulica particular que se aplica cuando las cuencas de drenaje no generan causes, es decir, que no existen ríos ni esteros permanentes. En este caso, cuando ocurren las lluvias el agua se acumula en la cuenca de drenaje y se desplaza a las partes más bajas sin formar canales de drenaje; sin embargo, este flujo generado puede ser acumulado y almacenado por una presa colinar.

Este tipo de presa posee taludes muy estables con la eventual capacidad de permitir pequeños desbordes, ya que las presas son de poca altura (máx. 10m).

4.3.1 Hidrología e hidráulica

Se analizaron las características de la cuenca aportante al reservorio con la ayuda del software ArcMap 10.2.2.

Figura 4.17 Cuenca y red de drenaje. **Fuente:** Rodríguez, M., Salazar, R., 2017

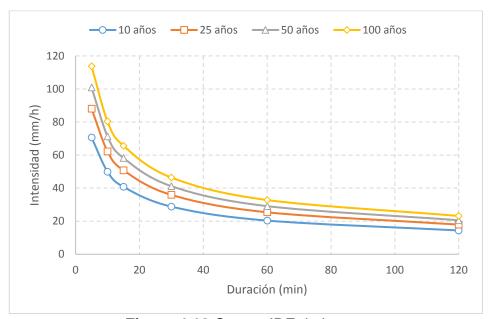
Luego de delimitada la cuenca aportante se procedió a determinar las características más importantes de la misma con la extensión Arc Hydro Tools para ArcMap.

Entre los parámetros más importantes obtenidos tenemos: área, mayor longitud de drenaje y pendiente promedio de la cuenca. En la tabla siguiente se muestran los resultados obtenidos.

Tabla XII. Características de la cuenca de aporte.

Área	6.23 km ²
Mayor longitud de drenaje	5.18 km
Ancho promedio	1.20 km
Factor de forma	0.23
Pendiente media	13.50%

Fuente: Rodríguez, M., Salazar, R., 2017


Luego de determinados estos parámetros, se determinó la inundación de diseño para el proyecto. El mínimo intervalo de recurrencia recomendado para esta inundación debe estar entre 100 y 10 000 años (French Committee on Large Dams, 2002).

Para este análisis, se graficaron las curvas Intensidad-Duración-Frecuencia (IDF) para la cuenca de estudio. Los datos de precipitación se obtuvieron de la estación pluviométrica Colonche, la más cercana a la cuenca, y de mediciones satelitales realizadas por la misión GPM de la NASA. Se contó con un total de 16 mediciones de precipitación máxima anual con duración de 24 horas para el período 1990-2017. Se empleó la distribución Gumbel Tipo I para determinar las precipitaciones máximas para distintos intervalos de recurrencia y varias duraciones de lluvia.

Tabla XIII. Intensidad de lluvia para varios períodos de retorno.

Intensidad (mm/h)					
	Período de retorno (años)				
Duración (min)	10	25	50	100	
5	70.7	88.0	100.9	113.7	
10	49.9	62.2	71.3	80.4	
15	40.8	50.8	58.2	65.6	
30	28.8	35.9	41.2	46.4	
60	20.4	25.4	29.1	32.8	
120	14.4	18.0	20.6	23.2	
180	11.8	14.7	16.8	19.0	
360	8.3	10.4	11.9	13.4	
720	5.9	7.3	8.4	9.5	
1440	4.2	5.2	5.9	6.7	

Fuente: Rodríguez, M., Salazar, R., 2017

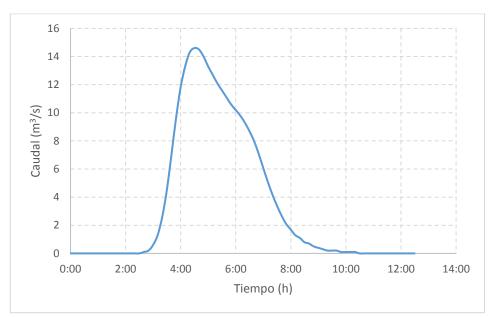


Figura 4.18 Curvas IDF de la cuenca. **Fuente:** Rodríguez, M., Salazar, R., 2017

A continuación, se determinó el caudal de diseño mediante un modelo en el software HEC-HMS 4.2.1. Para la modelación de la cuenca aportante se tomaron las siguientes consideraciones:

- Se utilizó el Método NRCS para abstracciones. Se estima CN=74
 para pastizales en condiciones óptimas, grupo C.
- Se optó por el hidrograma adimensional NRCS como método de transformación. Se calculó un tiempo de retraso de 66 min.
- Se consideró una tormenta de diseño con un período de retorno de 100 años y una duración de 6 horas.

Luego de correr la simulación se obtuvo un caudal pico de diseño de 14.60 m³/s.

Figura 4.19 Hidrograma de escorrentía directa. **Fuente:** Rodríguez, M., Salazar, R., 2017

Para determinar la posible capacidad del embalse, se elaboraron las curvas de Área-Volumen-Elevación, considerando para ello el modelo de elevación digital disponible de la zona.

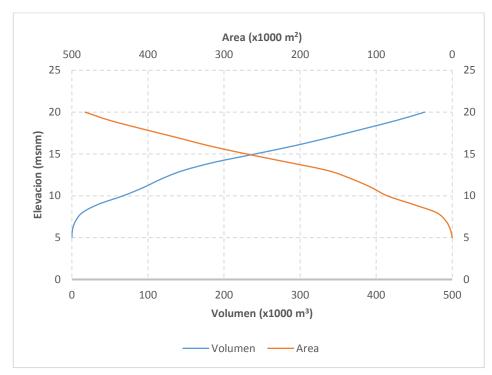
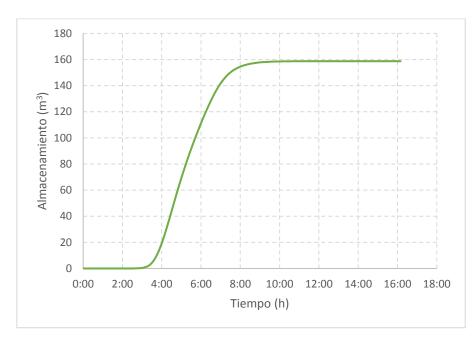
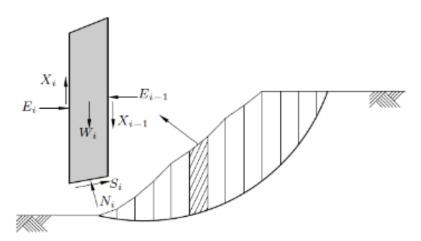



Figura 4.20 Curvas Área-Volumen-Elevación Fuente: Rodríguez, M., Salazar, R., 2017

Finalmente, se definió el reservorio en el modelo considerando la curva de Almacenamiento-Descarga con y sin aliviadero de la presa. Como resultado se obtuvo un almacenamiento máximo de 158.7 m³ cuando acurre la avenida de diseño en el caso sin aliviadero.


Figura 4.21 Curva de almacenamiento del reservorio. **Fuente:** Rodríguez, M., Salazar, R., 2017

Usando la curva de Elevación-Volumen para este almacenamiento, se obtiene una cota de máximo embalse de 13.5msnm.

4.3.2 Estabilidad de taludes

Se realizó un análisis considerando el talud como finito. En este caso, el análisis de estabilidad de talud de la presa fue realizado mediante métodos de equilibrio límite. Los métodos del equilibrio límite consideran la masa potencial de falla como un cuerpo libre y aplican las ecuaciones de equilibrio global. Actualmente, la mayoria de métodos de equilibrio límite dividen a la masa potencial de falla en un número finito de dovelas.

Luego, las ecuaciones de equilibrio de fuerzas y/o momentos son aplicadas a cada dovela. Generalmente, dovelas verticales son empleadas para dividir la masa de suelo, sin embargo, dovelas horizontales o inclinadas han sido usadas en algunas aplicaciones. (Iñeguez, 2011)

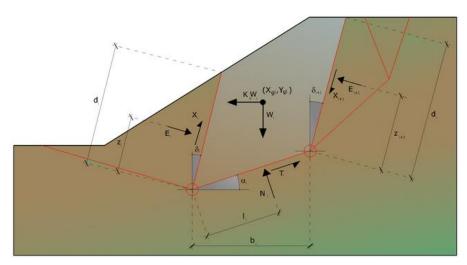


Figura 4.22 Masa deslizante dividida en dovelas verticales y fuerzas internas entre dovelas.

Fuente: Iñiguez, 2011

Se llevó a cabo un análisis mediante la aplicación método de Sarma, el cual permite determinar la aceleración sísmica horizontal necesaria para que la masa de terreno, delimitada por la superficie de deslizamiento y por el perfil topográfico, alcance el estado de equilibrio límite y, al mismo tiempo, permite obtener el factor de seguridad.

Se trata de un método basado en el principio del equilibrio límite y de las franjas. Por lo tanto, se considera el equilibrio de una masa potencial de terreno en deslizamiento subdividida en *n* franjas verticales de espesor suficientemente pequeño como para asumir que el esfuerzo normal *Ni* obra en el punto medio de la base de la franja. (GeoStru software, 2015)

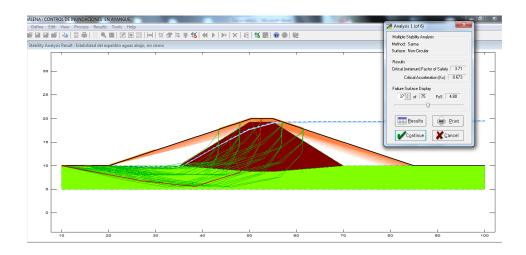
Figura 4.23 Acciones en la i-ésima rebanada, método de Sarma **Fuente:** GeoStru software, 2015

El ángulo de fricción y la cohesión son los parámetros para determinar la resistencia al corte según el criterio de falla lineal de Mohr-Coulomb.

4.3.3 Software GALENA

Para el análisis del talud de la presa colinar se utilizó el software GALENA versión 6.11, el cual es un sistema de análisis de estabilidad de pendientes, lo que permite analizar la estabilidad del terreno y la pendiente de forma rápida y precisa, utilizando modelos que simulan las condiciones reales.

GALENA incorpora tres métodos de análisis de estabilidad para poder evaluar problemas de estabilidad de suelo y pendiente tanto en suelos como en rocas:


- El método BISHOP Simplificado para superficies de fallas circulares.
- El método SPENCER-WRIGHT para superficies de fallas circulares y no circulares
- El método SARMA para problemas en los que se requieren rodajas no verticales o para problemas de estabilidad más complejos. (Clover Associates, 2017)

4.3.4 Modelación en software GALENA

La modelación se efectuó para un análisis en condiciones estáticas, es decir sin considerar sismo.

Para esta condición, la Norma Ecuatoriana de la Construcción (NEC-SE-GC, 2015), indica que el factor de seguridad (FS) debe ser mayor o igual a 1.5. Por otro lado, para condiciones pseudo-estáticas, considerando fuerzas sísmicas, la NEC recomienda que el FS sea mayor o igual a 1.05.

A continuación, se presenta el gráfico aguas abajo en condiciones estáticas, en la cual se puede observar un FS de 3.71, indicando que el talud es estáticamente estable.

Figura 4.24 Modelación en el software GALENA del talud de la presa aguas abajo en condiciones estáticas

Fuente: Rodríguez, M., Salazar, R., 2017

La comuna de Ayangue se encuentra en la zona sísmica VI, en la cual la aceleración máxima del suelo (PGA) es de 0.5g según la NEC 2015. El peligro sísmico en esta zona es muy alta.

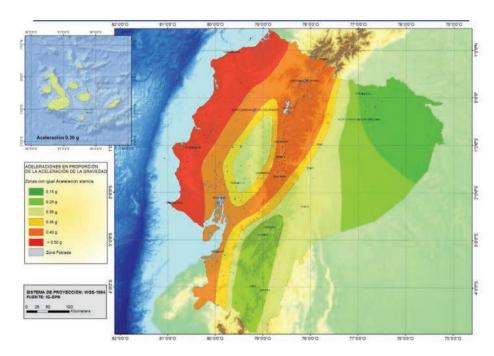


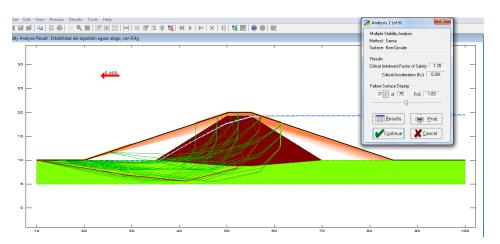
Figura 4.25 Ecuador, zonas sísmicas para propósitos de diseño y valor del factor de zona Z

Fuente: NEC 2015

Tabla XIV. Valores del factor Z en función de la zona sísmica adoptada

Zona sísmica	I	Ш	III	IV	V	VI
Valor factor Z	0.15	0.25	0.30	0.35	0.40	>0.5
Caracterización						
						Muy
del peligro	Intermedia	Alta	Alta	Alta	Alta	
						alta
sísmico						

Fuente: NEC 2015


Para el análisis pseudo-estático el coeficiente lateral sísmico (*Kh*) según la NEC 2015 comprende del 60% del valor de la aceleración máxima del suelo (PGA).

$$Kh = 0.6 * PGA$$

$$Kh = 0.6 * 0.5$$

$$Kh = 0.3$$

Por ser conservadores, se utilizó el valor de 0.4. A continuación se presentan los siguientes gráficos en donde se puede observar que para aguas abajo el FS es de 1.39 mientras que aguas arriba el FS tiene un valor de 1.05, lo cual garantiza la estabilidad del talud siendo cantidades mayores o iguales a 1.05 según lo recomendado por la NEC.

Figura 4.26 Modelación en el software GALENA del talud de la presa aguas abajo en condiciones pseudo-estáticas **Fuente:** Rodríguez, M., Salazar, R., 2017

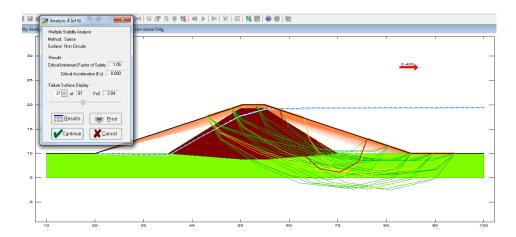
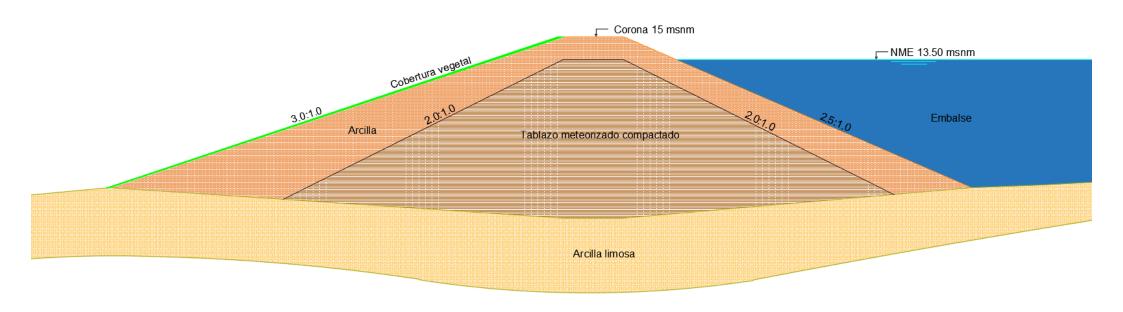


Figura 4.27 Modelación en el software GALENA del talud de la presa aguas arriba en condiciones pseudo-estáticas Fuente: Rodríguez, M., Salazar, R., 2017

4.3.5 Asentamientos


Para el diseño del embalse no se realizó un análisis de asentamientos debido a que no se realizaron ensayos de consolidación. Sin embargo, se puede estimar asentamientos en la presa no tendrán una magnitud importante como resultado de la poca altura del terraplén y extensa área de apoyo de la cimentación. De acuerdo con las observaciones en proyectos anteriores puede asumirse un asentamiento máximo de 25 cm, por lo que se debe prever que durante la construcción de la presa se compacte una capa adicional de 25 cm en la corona de la misma para de esta forma mantener la cota de corona con la que inicialmente fue diseñado el embalse.

Además, como medida de mitigación de los asentamientos, la excavación de la cimentación de la presa fue diseñada en forma de una "V" muy amplia. Con esta solución no solo se logra el empotramiento del cuerpo del terraplén, sino también minimizar los asentamientos con la eliminación del volumen de arcilla orgánica superficial, el cual es un material que tiende a asentarse.

4.3.6 Estanqueidad del embalse

Durante las observaciones de campo realizadas se determinó que existe una capa de suelos arcillosos impermeables con una profundidad no menor a 50 cm. Tal como fue mencionado anteriormente, se constató, además que a pesar de que en el sitio de presa existe una laguna de oxidación con una carga aproximada de 2 m sobre el nivel de la pista de aterrizaje de avionetas contigua al terraplén, no existe un flujo de agua de las lagunas hacia la pista, la cual es una plataforma excavada. Estas condiciones permiten asegurar las buenas condiciones de estanqueidad del embalse.

El cuerpo de la presa en sí mismo será impermeable debido a las características propias del material con el que será construido (arcillas impermeables) impidiendo así las posibles filtraciones que pudieran causar que la presa falle.

Figure 4.28 Sección típica de las presas colinares **Fuente:** Rodríguez, M., Salazar, R., 2017

4.4 Diseño geométrico de vías

4.4.1 Levantamiento topográfico

Para este trabajo se utilizó un GPS GARMIN modelo 76CSx, iniciando desde el acceso a la comuna de Ayangue hasta el resort Cumbres de Ayangue. Las coordenadas se registraron cada 20 m en tangentes y cada 10 m en curvas, además, se realizaron mediciones de ancho de calles. También se tomaron puntos en las calles dentro de la ciudadela de APESPOL.

Figura 4.28 Levantamiento topográfico Fuente: Rodríguez, M., Salazar, R., 2017

La vía de acceso al resort Cumbres de Ayangue tiene un ancho de 6 m. La calle no está pavimentada y presenta huecos e irregularidades en la mayor parte de su longitud. Se pudo apreciar que esta vía presenta problemas de infiltración en el tramo donde se acumula el agua producto de la lluvia durante la etapa invernal.

Figura 4.29 Huecos e irregularidades en el camino hacia el resort **Fuente:** Rodríguez, M., Salazar, R., 2017

En el caso de las ciudadelas de APESPOL, la mayoría de calles se encuentran adoquinadas; sin embargo, se observan algunas zonas de hundimiento. Se cree que la causa de este problema es el lavado de finos en el terraplén. Las calles tienen un ancho de 6 m y la pendiente de la calle de acceso a la ciudadela es un tanto fuerte.

4.4.2 El proceso de diseño

El proceso de diseño geométrico es la etapa en donde se definen todas las características de la estructura vial en sus tres dimensiones, planta, alzado, sección transversal, facilidades de circulación y los elementos necesarios para la seguridad vial.

Estas características están ligadas a la función jerárquica de la vía dentro de la red, a las condiciones de los usuarios, a la mecánica de los vehículos y a los requerimientos geométricos de las vías. Estos requerimientos se determinan en función de un volumen de tráfico y de un nivel de servicio correspondiente a un año horizonte.

4.4.3 Tipo de vía

Según la NEVI-12 las carreteras del Ecuador se pueden clasificar de la siguiente manera:

Por su capacidad (en función del TPDA)

Tabla XV. Clasificación de carreteras de 2

carriles según su capacidad

Descripció		TPDA al año de horizonte		
Descripcio	Clasificació	Límite		
11	n funcional	inferior	Límite superior	
Carrotoro	C1	1000	8000	
Carretera de 2 carriles	C2	500	1000	
	C3	0	500	

Fuente: Ministerio de Transporte y Obras Públicas, 2013

- Por su jerarquía en la red vial
 - ✓ Corredores arteriales
 - √ Vías colectoras
 - ✓ Caminos vecinales
- Por sus condiciones orográficas

Tabla XVI. Clasificación de carreteras según

sus condiciones orográficas

Tipo de relieve	Máxima inclinación media
Llano	i ≤ 5
Ondulado	5 < i ≤ 15
Accidentado	15 < i ≤ 25
Muy accidentado	25 < i

Fuente: Ministerio de Transporte y Obras Públicas, 2013

- Por el número de calzadas
 - ✓ Carreteras de calzadas separadas✓ Carreteras de calzada única
- Por el tipo de superficie de rodamiento
 - ✓ Pavimentos flexibles
 - ✓ Pavimentos rígidos
 - ✓ Afirmados
 - ✓ Superficie natural

De acuerdo con estas directrices, las vías a diseñar se han clasificado de la siguiente forma:

Por su capacidad, las vías se han clasificado como carreteras de 2 carriles del tipo C3, ya que para el proyecto se ha estimado un TPDA de diseño menor a 500 vehículos.

Por sus condiciones orográficas, el tipo de terreno en el que se asentarán las vías se define como ondulado.

Por el número de calzadas, las vías son del tipo con calzada única.

Finalmente, de acuerdo con la superficie de rodamiento, serán vías de pavimento flexible.

4.4.4 Velocidad de diseño

Este es sin duda uno de los parámetros más importantes para el diseño geométrico de una vía. Se define como la velocidad a la que un vehículo puede circular en una carretera en condiciones de seguridad. Esta velocidad depende del volumen de tráfico y del tipo de terreno.

Se decidió utilizar una velocidad de 40 km/h como adecuada para el diseño debido a las condiciones del terreno, ubicación y capacidad de tráfico de las calles objeto del estudio.

4.4.5 Sección típica adoptada

La sección transversal típica a adoptarse para una carretera depende de los parámetros indicados en las normas de diseño. Para esta selección deben tomarse en cuenta el beneficio y seguridad de los usuarios, así como los costos de mantenimiento.

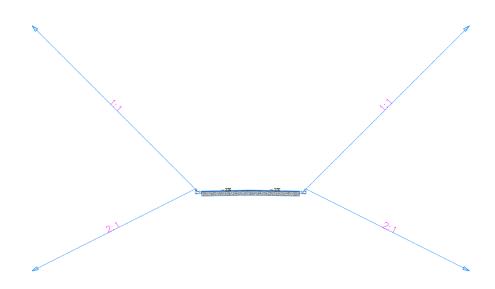


Figura 4.30 Sección típica de la vía Fuente: Rodríguez, M., Salazar, R., 2017

4.4.6 Alineamiento horizontal

El alineamiento horizontal es la proyección de la vía en el plano. Los elementos que integran esta proyección son las tangentes (rectas) y las curvas, ya sean estas circulares o de transición.

La proyección del eje en un tramo recto define la tangente y el enlace de dos tangentes consecutivas de rumbos diferentes se efectúa por medio de una curva.

El establecimiento del alineamiento horizontal depende de: la topografía, características hidrológicas del terreno, las condiciones del drenaje, las características técnicas de la subrasante y el potencial de los materiales locales (Ministerio de Obras Públicas, 2003).

4.4.6.1 Curvas horizontales

Son arcos de circunferencia que enlazan las tangentes. Estas pueden ser simples (circulares) o compuestas (de transición). El uso de uno u otro tipo de curva horizontal depende de las condiciones del terreno y el cumplimiento de normas de seguridad.

Curva circular simple: Es un arco de circunferencia definido únicamente por un radio. Este tipo de curva presenta los siguientes elementos:

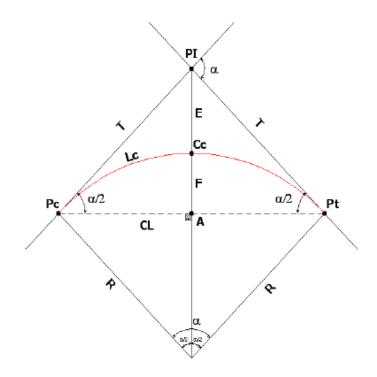


Figura 4.31 Elementos de una curva circular simple Fuente: Rosales & Soledispa, 2008

Donde,

PI: Punto de intersección de la prolongación de tangentes

α: Ángulo de deflexión de tangentes

R: Radio de curva circular

Pc: Punto donde empieza la curva

Pt: Punto donde termina la curva

E: External de la curva

F: Flecha de la curva

T: Tangente de curva circular

Lc: Longitud de curva

CL: Cuerda larga

Cc: Punto medio del arco circular

Para una velocidad de diseño de 40 km/h y dependiendo del peralte máximo, el MTOP presenta los siguientes valores de radio mínimo para una curva circular.

Tabla XVII. Radio mínimo de curva circular para una velocidad de diseño de 40 km/h

Peralte	Radio mínimo		
máximo	Calculado	Recomendado	
e=0.08	50.4	50	
e=0.06	54.8	55	
e=0.04	60	60	

Fuente: Ministerio de Transporte y Obras Públicas, 2013

Para el diseño se consideró un peralte máximo del 4% por lo que el radio mínimo para las curvas circulares simples se determinó en 60 m. Sin embargo, se recomienda usar valores mucho mayores a este teniendo en cuenta las condiciones de seguridad del conductor.

4.4.6.2 Peralte

Cuando un vehículo ingresa a una curva sin peralte, la fricción entre los neumáticos y la superficie de rodamiento es la única fuerza que permite al auto describir una trayectoria

circular. Si la velocidad del vehículo es mayor a la permitida esta única fuerza no es suficiente y se producen accidentes, por lo que se requiere de una fuerza adicional.

El peralte consiste en dar una inclinación adicional a la calzada, de manera que la componente horizontal de la fuerza de contacto entre el automóvil y el pavimento contribuya a la de fricción, de manera que el vehículo pueda seguir una trayectoria circular, aunque su velocidad sea mayor. Con esto se consigue aumentar la seguridad de la vía disminuyendo la probabilidad de accidentes en curvas.

Para el proyecto se consideró un peralte máximo del 4% en las curvas más propensas a accidentes. En las curvas de menor importancia no se consideró peralte.

4.4.7 Alineamiento vertical

El perfil vertical de una carretera es tan importante como el alineamiento horizontal. Debe estar en relación directa con la velocidad de diseño, las curvas horizontales y el movimiento de tierras.

En ningún caso se debe sacrificar el perfil vertical para obtener buenos alineamientos horizontales (Ministerio de Obras Públicas, 2003).

4.4.7.1 Pendientes

Las gradientes o pendientes longitudinales que adoptarse dependerán mucho de la topografía del terreno. Siempre se debe dar preferencia al uso de gradientes bajos para facilitar la conducción de los vehículos a una velocidad razonable.

La NEVI-12 recomienda diseñar con pendientes no menores al 0.5% y no mayores al 9% para una velocidad de diseño de 40 km/h.

4.4.7.2 Curvas verticales

Los tramos inmediatos de rasante serán vinculados mediante curvas verticales parabólicas siempre que la diferencia de pendientes entre ambos tramos sea mayor al 1%. Se deberá tener en cuenta las condiciones de visibilidad del conductor para asegurar su seguridad y confort durante el trayecto. Las curvas verticales pueden ser cóncavas o

convexas dependiendo del cambio de pendiente longitudinal del trazado.

Para la determinación de la longitud de curvas verticales se eligió un índice de curvatura (K) adecuado. La longitud de curva será igual al producto del índice K por el valor absoluto de la diferencia algebraica de las pendientes (A).

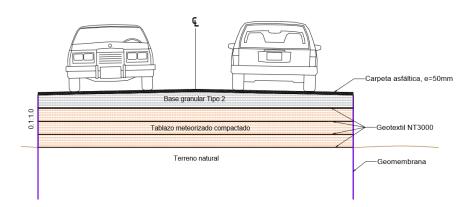
Para una velocidad de diseño de 40 km/h, la NEVI-12 recomienda usar un índice de curvatura de 3.8 cuando la longitud de curva vertical es controlada por la distancia de visibilidad de frenado (50 m), o de 84 cuando la longitud es controlada por la distancia de visibilidad de adelantamiento (270 m), para calcular curvas verticales convexas. Para el caso de curvas verticales cóncavas, la norma recomienda usar un índice K de 9 con una longitud de curva controlada por la distancia de visibilidad de frenado (50 m).

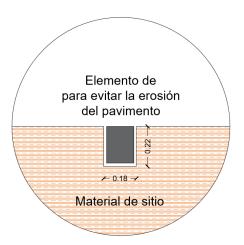
4.4.8 Soluciones viales especiales

4.4.8.1 Tierra armada

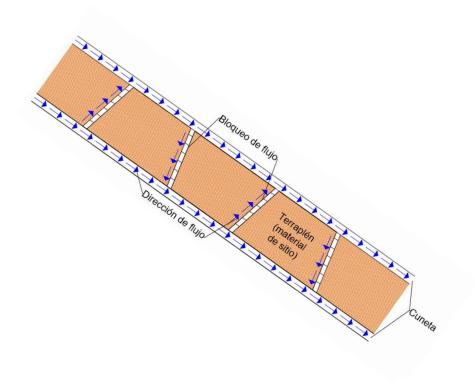
Consiste en un terraplén relleno 3 capas de 25 cm de altura del material tablazo meteorizado armado con geotextil no tejido. En los costados se coloca geomembrana NT3000 de 3mm de espesor para impermeabilizar el terraplén.

Esta solución permite fortalecer al terraplén mediante la acción de las aguas lluvias, puesto que estas aguas se infiltran deteriorando la vía por la formación de baches ocasionando daños a los vehículos que transitan usualmente por dicho lugar.




Figura 4.32 Solución especial mediante el uso de tierra armada

4.4.8.2 Bloqueo de flujo


En el tramo de subida a la ciudadela APESPOL se tiene un terreno de fuerte pendiente que está conformado básicamente por areniscas con micro brechas porosas permeables. Si bien los materiales mencionados poseen resistencia portante, se tiene el problema de que permiten el flujo dada su permeabilidad.

Como se ha observado en otros casos el flujo superficial genera erosión en la subrasante, formando espacios vacíos que a la vez provocan asentamientos de la calzada.

Por las razones antes expuestas se propone construir bloqueos de flujo, que son prismas de 40x20x15cm de largo, alto y ancho respectivamente. Para lograr este objetivo se debe utilizar bloques de hormigón tipo roca fuerte los cuales deben ser colocados con además se debe de disponer de pequeñas zanjas de 18 cm de ancho y 22 cm de profundidad cada 10 m.

Figura 4.33 Solución especial bloqueo de flujo **Fuente:** Rodríguez, M., Salazar, R., 2017

Figura 4.34 Esquema de funcionamiento del bloqueo de flujo.

CAPÍTULO 5 ESTUDIO DE IMPACTO AMBIENTAL

5.1 Antecedentes

El presente capítulo corresponde al estudio de impacto ambiental de la solución planteada al control de inundaciones en la comuna de Ayangue. Se debe tener en cuenta que toda obra, de una u otra manera, afecta al medio ambiente y es fundamental identificar cuáles de estas actividades pueden ocasionar daños, con la finalidad de disminuir y prevenir riesgos al momento de la ejecución del proyecto.

Se debe tener presente que la correcta aplicación de las políticas existentes de manejo ambiental da como resultado beneficios permanentes para el bienestar de la población, ya que de esta manera se garantiza el cuidado y la sostenibilidad del medio donde se desarrollan todas sus actividades.

5.2 Objetivos

5.2.1 Objetivo general

Estudiar los impactos ambientales que se pueda generar al momento de la construcción de la presa colinar y vía de acceso.

5.2.2 Objetivos específicos

 Reconocer las actividades que ocasionan un impacto negativo al medio ambiente.

- Determinar el recurso natural más afectado por el desarrollo del proyecto.
- Desarrollar un plan de manejo ambiental que mitigue las afectaciones en el ambiente a causa de las actividades a ejecutarse.

5.3 Marco legal

Texto Unificado de Legislación Ambiental Secundaria (TULAS)

LIBRO IV, "DE CALIDAD AMBIENTAL", TÍTULO IV, DEL CONTROL AMBIENTAL:

Art. 58.- Estudio de Impacto Ambiental. - Toda obra, actividad o proyecto nuevo o ampliaciones o modificaciones de los existentes, emprendidos por cualquier persona natural o jurídica, públicas o privadas, y que pueden potencialmente causar contaminación, deberá presentar un Estudio de Impacto Ambiental, que incluirá un plan de manejo ambiental, de acuerdo con lo establecido en el Sistema Único de Manejo Ambiental (SUMA). El EIA deberá demostrar que la actividad estará en cumplimiento con el presente Libro VI De la Calidad Ambiental y sus normas técnicas, previa a la construcción y a la puesta en funcionamiento del proyecto o inicio de la actividad.

Art. 59.- Plan de Manejo Ambiental. - El plan de manejo ambiental incluirá entre otros un programa de monitoreo y seguimiento que ejecutará el regulado, el programa establecerá los aspectos ambientales, impactos y parámetros de la organización, a ser monitoreados, la periodicidad de estos monitoreos, la frecuencia con que debe reportarse los resultados a la entidad ambiental de control. El plan de manejo ambiental y sus actualizaciones aprobadas tendrán el mismo efecto legal para la actividad que las normas técnicas dictadas bajo el amparo, del presente Libro VI De la Calidad Ambiental.

Art. 84.- Responsabilidad por Descargas, Emisiones y Vertidos. - Las organizaciones que recolecten o transporten desechos peligrosos o especiales, brinden tratamiento a las emisiones, descargas, vertidos o realicen la disposición final de desechos provenientes de terceros, deberán cumplir con el presente Libro VI De la Calidad Ambiental y sus normas técnicas. Así mismo, deberán obtener las autorizaciones administrativas ambientales correspondientes de parte de la entidad ambiental de control. El productor o generador de descargas, emisiones o vertidos, no queda exento de la presente disposición, y deberá responder conjunta y solidariamente con las organizaciones que efectúen para él las acciones referidas en este artículo. La responsabilidad es solidaria e irrenunciable.

LIBRO VI: "DE LA CALIDAD AMBIENTAL", TÍTULO VII, DEL CAMBIO CLIMÁTICO:

Anexo 1: Norma de la calidad ambiental y de descarga de efluentes: Recurso Agua.

Anexo 2: Norma de calidad ambiental del recurso suelo y criterios de remediación para suelos contaminados.

Anexo 3: Norma de emisiones al aire desde fuentes fijas de combustión.

Anexo 4: Norma de la calidad del aire.

Anexo 5: Límites permisibles de niveles de ruido para fuentes fijas y fuentes móviles, y para vibraciones.

Anexo 6: Norma de calidad ambiental para el manejo y disposición final de desechos sólidos no peligrosos.

Anexo 7: Listados nacionales de productos químicos prohibidos peligrosos y de uso severamente restringidos que se utilicen en el Ecuador.

LEY ORGÁNICA DE LA SALUD

La prohibición general de eliminar hacia el aire, el suelo o las aguas, los residuos sólidos, líquidos o gaseosos, sin previo tratamiento que los conviertan en ofensivos para la salud, determinando que los reglamentos y disposiciones correspondientes a las molestias públicas ocasionada po el manejo ambiental inadecuado, tales como: olores desagradables, humos, gases tóxicos, polvo atmosférico, emanaciones y otras, establecidos y sancionados por la autoridad de salud. A la calidad sanitaria del agua, se prohíbe la descarga, directa o indirectamente sustancias nocivas o indeseables en forma tal, que puedan contaminar o afectar y obstruir, sea total o parcialmente los cuerpos de agua y las vías de suministros de las misma, estableciendo que la interrupción, obstrucción, daño o destrucción intencional de los sistemas de eliminación de excretas, residuos industriales, aguas servidas o pluviales, siendo sancionados de conformidad a las disposiciones de la Ley.

5.4 Descripción general del área de estudio

La comuna de Ayangue se encuentra localizada en la provincia de Santa Elena, pertenece a la parroquia Colonche. Sus habitantes se dedican principalmente al turismo, su encantadora playa y sus especialidades culinarias hace de este lugar un atractivo para los turistas. El clima de comuna es cálido.

El sistema de abastecimiento de agua potable se lo realiza por medio de tanqueros y las aguas servidas se las evacua por medio de letrinas. El servicio de energía eléctrica cubre a toda la población, pero todavía existen ligeras deficiencias. La información detallada sobre la zona de estudio se encuentra en el Capítulo 2.

5.5 Descripción de la línea base

La línea base permite establecer la situación inicial del área en donde se va a ejecutar el proyecto. Es de gran utilidad efectuar un análisis de los impactos para reconocer los recursos que podrán ser afectados por las actividades a realizarse al desarrollar la obra.

La situación económica de la comuna de Ayangue no es la más favorable, puesto que la mayoría de la población se dedica al turismo, no toda la época del año es temporada alta de turistas y tienen que abastecerse de la agricultura y pesca. Además, las condiciones en las que se desenvuelven los habitantes no son las más adecuadas, se puede observar deficiencias muy marcadas en el aspecto de salud, educación, vías de acceso, recolección de desechos sólidos, abastecimiento de agua potable, etc.

De igual manera, debido a la carencia de un buen sistema de alcantarillado pluvial, la comuna es propensa a inundaciones, ocasionando la proliferación de mosquitos y daños a vías por infiltraciones.

La solución planteada es una presa colinar, que cubre mayoritariamente la cuenca que genera esta acumulación de agua. Las técnicas constructivas producen daños al medio ambiente, puesto que el desbroce y las excavaciones perjudican a la flora y fauna del lugar. Además, durante la reparación de la vía, material particulado y ruido ocasionan malestar a los habitantes.

Los principales elementos que se van a analizar son:

- Recurso agua: Alteración de la calidad de agua ante el posible riesgo de tener contacto con algún tipo de contaminante.
- Recurso suelo: Alteración de las características físicas y químicas del suelo por contaminación o por la generación de residuos durante el desarrollo del proyecto.

- Recurso aire: Alteración de la calidad del aire por la presencia de gases contaminantes y material particulado, además de la afectación por ruido de maquinarias a utilizar durante la construcción.
- Factor socioeconómico: Afectaciones al patrimonio cultural y social; riesgo en la seguridad de la población y animales en zonas aledañas a las instalaciones del proyecto. Además, de la generación o reducción de empleos por el desarrollo de la obra.
- Flora y fauna: Pérdida de biomasa al realizar el desbroce y desplazamiento de especies por la construcción y operación del proyecto.

5.6 Descripción de actividades a evaluar

Dentro del proceso de ejecución del proyecto se encuentran actividades que generan impacto ambiental a la comuna debido a las técnicas de construcción que se implementarán. A continuación, se nombran dichas labores para la construcción de la presa colinar y la vía de acceso a la urbanización de la ESPOL y resort Las Cumbres.

Tabla XVIII. Actividades para evaluar en el estudio de impacto ambiental en la fase de construcción

ambientai en la lase de construcció						
	~	Desbroce				
	PRESA COLINAR	Excavación con máquina				
Z	E E	Movimiento de tierra				
DE JCCIÓN	- S	Operación de maquinaria				
	CONSTRUC	Trazado y Replanteo				
SE SE		Excavación con máquina				
FASI		Movimiento de tierra				
6		Operación de maquinaria				
Ö		pesada				
		Colocación de carpeta				
		asfáltica				

5.7 Evaluación ambiental

La identificación y evaluación de impactos ambientales es un instrumento que permite predecir los impactos (positivos y negativos), sobre los factores ambientales que conforman el área de influencia en la que se desarrollará el proyecto. De esta manera con los resultados crear planes para prevenir y mitigar problemas que se presenten durante la ejecución del proyecto.

La metodología por seguir es usando las matrices de Leopold, de doble entrada en donde en las columnas se ubican los recursos ambientales que pueden ser afectados y en las filas se colocan las actividades capaces de alterar el ambiente. A continuación, la explicación de las matrices a utilizar.

• Matriz de intensidad (I)

Esta matriz cuantifica el grado con la que la actividad altera al ambiente. El valor numérico de la intensidad varía según la fuerza de la intensidad, si es alta los valores son de 10-7, si es media de 4-6 y si la intensidad es baja de 1-3. Si no genera impacto el valor es 0.

Matriz de extensión (E)

Considera el área de influencia afectada por dicha actividad a evaluar, pudiendo ser esta puntual (1), local (5) o regional (10).

Matriz de duración (D)

Es el tiempo en el cual el efecto del impacto se manifiesta, la escala de valoración de la duración es en años y se le otorga un valor de 10 si dura más de 10 años, un valor de 5 si dura entre 5 a 10 años y finalmente un valor de 1 si dura entre 0 a 5 años.

Matriz de magnitud (M)

Una vez calculados estas variables se procede a asignarles factores los cuales deben de sumar uno. En este caso los factores son:

$$\checkmark WI = 0.3$$

$$\checkmark WE = 0.3$$

$$\checkmark WD = 0.4$$

La matriz magnitud es calculada mediante la siguiente iteración, que como resultado de la sumatoria acumulada de los valores obtenidos de las variables de intensidad (I), extensión (E) y duración (D), donde cada variable se multiplica por el valor de peso asignado.

$$Mi = \sum [(Ii *WI) + (Ei *WE) + (Di *WD)]$$

Luego se añade un signo positivo si es un impacto beneficioso o un signo negativo si el impacto es perjudicial.

Matriz de riesgo (Rg)

Cuantifica la posibilidad real de que una actividad produzca un impacto sobre cualquier elemento del ambiente. Se considera como alto, valor de 10, si existe la certeza de que el impacto ocurra; medio, valor de 5, si existe cierta duda de que el impacto ocurra y baja, valor de 1, si no existe certeza de que el impacto ocurra.

Matriz de reversibilidad (Rv)

Mide la posibilidad del entorno de regresar a su estado inicial una vez ocurrido el impacto.

La valoración es alta (1) si existe la posibilidad de que el impacto sea reversible de forma inmediata o a corto plazo; media (5) si el impacto es parcialmente reversible, es decir a largo y mediano plazo y finalmente baja (10) si el impacto es reversible a muy largo plazo.

Matriz de VIA

Luego de obtener los valores descritos previamente, se procede a calcular la valoración del impacto ambiental (VIA) mediante la siguiente ecuación.

$$VIA = \sum \left(Rv^{WRv} * Rg^{WRg} * M^{WM} \right)$$

En donde WRv, WRg y WM son los factores que se le asigna a cada matriz según su peso en el impacto. Se debe tener en cuenta que la suma de estos factores debe ser 1.

$$\checkmark WM = 0.3$$

$$\checkmark$$
 WR. $q = 0.3$

$$\checkmark WRv = 0.4$$

Una vez obtenida la matriz de valoración, se han definido valores para jerarquizar los impactos, los cuales se muestran en la siguiente tabla.

Tabla XIX. Escala de valoración de jerarquía de los impactos ambientales

Jerarquía	Rango
Alto	10-7
Medio	6.99-4
Bajo	3.99-1

A continuación, se presentan las matrices descrita anteriormente con las actividades a evaluar durante la etapa de construcción del proyecto.

Tabla XX. Matriz de Intensidad

	Iai	<u>ріа хх.</u>	IVIALITZ	ue inte	ilisiuau				
	Sθ		Recurso Agua		Re	ecurso a	Factores socioeconómicos		
Actividades		Superficial	Subterránea	Recurso suelo	Generación de gases	Material particulado	Ruido	Generación de empleo	Seguridad
7	Desbroce	1	2	10	0	6	8	3	2
Presa colinar	Excavación con maquina	3	5	10	6	7	7	3	3
sa	Movimiento de tierra	3	5	10	6	5	5	3	4
Pre	Operación de maquinaria	3	2	2	7	4	6	3	5
	Trazado y Replanteo	0	0	2	0	2	3	2	1
	Excavación con maquina	3	5	10	6	7	7	3	3
Vía	Movimiento de tierra	3	5	10	6	5	5	3	4
>	Operación de maquinaria pesada	3	2	2	7	4	6	3	5
	Colocación de carpeta asfáltica	4	4	6	6	4	6	3	4

Tabla XXI. Matriz de Extensión

	Tabla AAI. Wattiz de Laterision									
	8	Recurs	o Agua	elo	Re	ecurso a	ire	Factores socioeconómicos		
Actividades		Superficial	Subterránea	Recurso suelo	Generación de gases	Material particulado	Ruido	Generación de empleo	Seguridad	
<u>_</u>	Desbroce	1	1	1	1	1	1	5	5	
Presa colinar	Excavación con maquina	1	1	5	1	1	1	5	5	
sa	Movimiento de tierra	1	1	5	1	1	1	5	5	
Pre	Operación de maquinaria	1	1	1	1	1	1	5	5	
	Trazado y Replanteo	1	1	1	1	1	1	5	5	
	Excavación con maquina	1	1	5	1	1	1	5	5	
<ía <	Movimiento de tierra	1	1	5	1	1	1	5	5	
>	Operación de maquinaria pesada	1	1	1	1	1	1	5	5	
	Colocación de carpeta asfáltica	1	1	1	1	1	1	5	5	

Tabla XXII. Matriz de Duración

	Tabla AAII. Watti2 de Duración									
	es		Recurso Agua		Re	ecurso a	ire	Factores socioeconómicos		
Actividades		Superficial	Subterránea	Recurso suelo	Generación de gases	Material particulado	Ruido	Generación de empleo	Seguridad	
<u></u>	Desbroce	10	10	10	10	10	10	10	10	
Presa colinar	Excavación con maquina	10	10	10	10	10	10	10	10	
Sa	Movimiento de tierra	5	5	5	5	5	5	5	5	
Pre	Operación de maquinaria	1	1	1	1	1	1	1	1	
	Trazado y Replanteo	1	1	1	1	1	1	1	1	
	Excavación con maquina	10	10	10	10	10	10	10	10	
\ía \ia	Movimiento de tierra	5	5	5	5	5	5	5	5	
>	Operación de maquinaria pesada	1	1	1	1	1	1	1	1	
	Colocación de carpeta asfáltica	5	5	5	5	5	5	5	5	

Tabla XXIII. Matriz de Magnitud

	ıaı	<u>la XXII</u>	ı. ıvıatı	z de ivi	agriituu			,	
	9		Recurso Agua		Re	ecurso a	Factores socioeconómicos		
Actividades		Superficial	Subterránea	Recurso suelo	Generación de gases	Material particulado	Ruido	Generación de empleo	Seguridad
<u>_</u>	Desbroce	-4.60	-4.90	-7.30	-4.30	-6.10	-6.70	6.40	-6.10
Presa colinar	Excavación con maquina	-5.20	-5.80	-8.50	-6.10	-6.40	-6.40	6.40	-6.40
sa	Movimiento de tierra	-3.20	-3.80	-6.50	-4.10	-3.80	-3.80	4.40	-4.70
Pre	Operación de maquinaria	-1.60	-1.30	-1.30	-2.80	-1.90	-2.50	2.80	-3.40
	Trazado y Replanteo	-0.70	-0.70	-1.30	-0.70	-1.30	-1.60	2.50	-2.20
	Excavación con maquina	-5.20	-5.80	-8.50	-6.10	-6.40	-6.40	6.40	-6.40
\ \ \ 	Movimiento de tierra	-3.20	-3.80	-6.50	-4.10	-3.80	-3.80	4.40	-4.70
Š	Operación de maquinaria pesada	-1.60	-1.30	-1.30	-2.80	-1.90	-2.50	2.80	-3.40
	Colocación de carpeta asfáltica	-3.50	-3.50	-4.10	-4.10	-3.50	-4.10	4.40	-4.70

Tabla XXIV. Matriz de Riesgo

	ıa	pia XX	IV. IVIAL	iiz de r	riesgo				
	ග		Recurso Agua		Re	ecurso a	Factores socioeconómicos		
Actividades		Superficial	Subterránea	Recurso suelo	Generación de gases	Material particulado	Ruido	Generación de empleo	Seguridad
<u>_</u>	Desbroce	5	5	10	5	5	5	1	1
Presa colinar	Excavación con maquina	10	10	10	10	10	10	5	5
sa	Movimiento de tierra	10	5	10	10	10	10	5	5
Pre	Operación de maquinaria	5	5	5	10	10	10	5	5
	Trazado y Replanteo	10	10	10	10	10	10	5	5
	Excavación con maquina	10	10	10	10	10	10	5	5
<ía <	Movimiento de tierra	10	5	10	10	10	10	5	5
>	Operación de maquinaria pesada	5	5	5	10	10	10	5	5
	Colocación de carpeta asfáltica	10	5	10	10	10	10	5	5

Tabla XXV. Matriz de Reversibilidad

	Table AXV. Wattiz de Neversibilidad									
	es S		Recurso Agua		Re	ecurso a	ire		tores onómicos	
Actividades		Superficial	Subterránea	Recurso suelo	Generación de gases	Material particulado	Ruido	Generación de empleo	Seguridad	
<u></u>	Desbroce	5	5	10	5	5	5	5	5	
Presa colinar	Excavación con maquina	5	5	10	5	5	5	5	5	
sa	Movimiento de tierra	5	5	10	5	5	5	5	5	
Pre	Operación de maquinaria	5	5	10	5	5	5	5	5	
	Trazado y Replanteo	1	1	1	1	1	1	1	1	
	Excavación con maquina	5	5	10	5	5	5	5	5	
Vía	Movimiento de tierra	5	5	10	5	5	5	5	5	
>	Operación de maquinaria pesada	5	5	10	5	5	5	5	5	
	Colocación de carpeta asfáltica	5	5	5	5	5	5	5	5	

Tabla XXVI. Matriz de Valoración de Impacto Ambiental (VIA)

	Tabla AAVI. Wattiz de Valoración de Impacto A						Dioritai	(v i 🗥)	1	
	S	Recurso Agua		oleio	Re	ecurso a	ire	Fac socioeco		
	Actividades	Superficial	Subterránea	Recurso suelo	eración de gases	Material particulado	Ruido	eración de empleo	Seguridad	
	∢	ednS	Subte	Re	Generación gases	Mat partic	Ru	Generación empleo	Segu	Total
=	Desbroce	4.88	4.97	9.10	4.78	5.31	5.46	3.32	3.27	41.09
Presa colinar	Excavación con maquina	6.23	6.44	9.52	6.53	6.63	6.63	5.38	5.38	52.75
sa	Movimiento de tierra	5.38	4.60	8.79	5.80	5.67	5.67	4.81	4.91	45.64
Pre	Operación de maquinaria	3.55	3.34	4.40	5.17	4.60	5.00	4.20	4.45	34.73
	Trazado y Replanteo	1.79	1.79	2.16	1.79	2.16	2.30	2.13	2.05	16.18
	Excavación con maquina	6.23	6.44	9.52	6.53	6.63	6.63	5.38	5.38	52.75
\ \ \ 	Movimiento de tierra	5.38	4.60	8.79	5.80	5.67	5.67	4.81	4.91	45.64
>	Operación de maquinaria pesada	3.55	3.34	4.40	5.17	4.60	5.00	4.20	4.45	34.73
	Colocación de carpeta asfáltica	5.53	4.49	5.80	5.80	5.53	5.80	4.81	4.91	42.67
	Total	42.53	40.01	62.49	47.39	46.80	48.15	39.06	39.73	366.17

Tabla XXVII. Rango de significancia de la matriz VIA

rabia AAVII. Rango de significancia de la matriz VIA									
	es		Recurso Agua		Re	ecurso a	ire	Factores socioeconómicos	
Actividades		Superficial	Subterránea	Recurso suelo	Generación de gases	Material particulado	Ruido	Generación de empleo	Seguridad
<u> </u>	Desbroce	Medio	Medio	Alto	Medio	Medio	Medio	Bajo	Bajo
Presa colinar	Excavación con maquina	Medio	Medio	Alto	Medio	Medio	Medio	Medio	Medio
Sa	Movimiento de tierra	Medio	Medio	Alto	Medio	Medio	Medio	Medio	Medio
Pre	Operación de maquinaria	Bajo	Bajo	Medio	Medio	Medio	Medio	Medio	Medio
	Trazado y Replanteo	Bajo	Bajo	Bajo	Bajo	Bajo	Bajo	Bajo	Bajo
	Excavación con maquina	Medio	Medio	Alto	Medio	Medio	Medio	Medio	Medio
\ \ \ ia	Movimiento de tierra	Medio	Medio	Alto	Medio	Medio	Medio	Medio	Medio
>	Operación de maquinaria pesada	Bajo	Bajo	Medio	Medio	Medio	Medio	Medio	Medio
	Colocación de carpeta asfáltica	Medio	Medio	Medio	Medio	Medio	Medio	Medio	Medio

5.8 Plan de manejo ambiental

El plan de manejo ambiental es el documento que describe y detalla las acciones para prevenir, mitigar y controlar los impactos ambientales que se podrían generar al momento de ejecutar el proyecto. Tiene como propósito, velar por la seguridad del ambiente, evitando la afectación biológica, física y socioeconómica.

Como resultado del estudio de impacto ambiental, se puede observar que el recurso más afectado durante la construcción del proyecto es el suelo, debido a las excavaciones y movimiento de tierra para realizar la presa colinar y la reparación de la vía.

A continuación, se plantean las medidas de mitigación a adoptar por los impactos a generarse debido a dichas actividades.

Desbroce

- ✓ Uso de mascarilla para polvo para todos los trabajadores.
- ✓ Verificar que los desechos sean dispuestos en lugares autorizados por el Municipio de Santa Elena.

Excavación con máquina

- ✓ Humedecer el terreno cada cierta profundidad, mientras se avanza en la excavación para evitar la generación de polvo.
- ✓ Chequeo y mantenimiento periódico de los equipos y carburación de los vehículos.
- ✓ Uso de mascarilla para polvo para todos los trabajadores.

Movimiento de tierra

- ✓ Cubrir los baldes de volquetas con lonas mientras se transporta material granular, escombros o cualquier material o desecho que pueda emitir material particulado (polvo) hacia el ambiente.
- ✓ Humedecer el material en la parte superior de las volquetas para evitar el riego de material particulado.
- ✓ Uso de mascarilla para polvo para todos los trabajadores.

• Operación de maquinaria

- ✓ Colocar las señales necesarias para prevenir cualquier accidente durante el proceso.
- ✓ Correcta movilización de los equipos por los espacios señalados previamente para su uso.

✓ Brindar mantenimiento preventivo a toda maquinaria, equipo o vehículo utilizado en la construcción. Para esto, la maquinaria deberá haber recibido mantenimiento previo a su ingreso a la obra.

Colocación de carpeta asfáltica

- ✓ Colocar las señales necesarias para prevenir cualquier accidente durante el proceso.
- ✓ Verificar que la maquina se encuentra en buenas condiciones para evitar el riego de material en áreas no deseadas.

Además de estas medidas específicas para cada actividad, es importante conformar brigadas internas de control y prevención de desastres tanto operacionales como naturales y disponer de un botiquín de primeros auxilios con los implementos para asistir al personal en caso de accidente.

Es necesario que durante la fase de construcción el equipo de protección personal en los sitios de operación sea obligatoria en todo momento, especialmente el uso de casco, chaleco reflectivo y botas adecuadas.

CAPÍTULO 6 PRESUPUESTO

El presupuesto es la valoración económica de costos generados para la construcción total de una obra durante un determinado periodo de tiempo. Para el desarrollo del presupuesto de una obra, se analizan los siguientes aspectos:

- Rubro: El "Concepto de trabajo" (o trabajo específico), el servicio, la actividad o el bien, para el cual se han definido unidades de medida, calculado cantidades y previsto una compensación o pago.
- Unidad: Es el término mediante el cual se puede cuantificar la actividad realizada.
- Cantidad de Obra: Es la magnitud de la actividad realiza en la ejecución del proyecto, estos valores son determinados al término del diseño, en base a sus planos y características.
- Costo Unitario: Es el valor monetario que demanda la realización de la actividad por unidad de obra.
- Costo Total: Es el valor monetario que se necesita para la ejecución de una actividad en la totalidad de la obra. (Farinango, 2014)

Para el presente proyecto se ha realizado dos presupuestos, uno para las presas colinares y otro para la reparación de las vías hacia APESPOL y el resort Cumbres de Ayangue.

Se estimó 4 meses para la reparación de la vía y 6 meses para la ejecución de las presas colinares, se va a considerar un factor de sobrecosto que lleve relación con la economía actual del Ecuador.

El valor de sobrecosto representa el total de indirectos en una obra determinada, según indica Aguirre Sosapanta y Figueroa Bernal, el valor minino debe de ser 20%. En el presente proyecto se asumió un factor de sobrecosto del 22%.

El análisis detallado de precios unitarios se adjunta en el anexo F y anexo G para las presas colinares y reparación de la vía respectivamente.

6.1 Presupuesto - Presa colinar

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

INSTITUCIÓN: GAD CANTÓN SANTA ELENA

PROYECTO: CONTROL DE INUNDACIONES EN LA COMUNA DE AYANGUE

UBICACIÓN: PROVINCIA DE SANTA ELENA

CÓDIGO	DESCRIPCIÓN	UNIDAD	CANTIDAD	P.UNITARIO	TOTAL
1	PRELIMINARES				115,552.91
1.1	DESBROCE Y LIMPIEZA DE TERRENO	m2	10,854.00	1.54	16,715.16
1.2	CASETA DE GUARDIANÍA	m2	1.50	27.10	40.65
1.3	LETRERO DE OBRA	u	1.00	24.40	24.40
1.4	BATERÍA SANITARIA	mes	6.00	439.20	2,635.20
1.5	TRAZADO Y REPLANTEO	m2	3,749.00	1.43	5,361.07
1.6	EXCAVACIÓN SIN CLASIFICAR	m3	25,862.23	3.51	90,776.43
2	PRESA COLINAR				244,511.42
2.1	ENSAYOS DE CAMPO	u	1.00	8,540.00	8,540.00
2.2	RELLENO COMPACTADO CON SUELO ARCILLOSO LIMOSOSO (INC. TRANSPOR	m3	4,348.26	5.01	21,784.78
2.3	RELLENO COMPACTADO CON MATERIAL DE SITIO	m3	17,393.02	4.76	82,790.78
2.4	RELLENO COMPACTADO CON ARCILLA (INC. TRANSPORTE)	m3	20,757.64	6.33	131,395.86
3	MANTENIMIENTO Y SEGURIDAD DE OBRA				26,987.94
3.1	GUARDIANÍA	mes	6.00	427.00	2,562.00
3.2	LIMPIEZA GENERAL DE OBRA	mes	6.00	122.31	733.86
3.3	RESTITUCIÓN DE LA CAPA VEGETAL	m2	3,586.00	6.56	23,524.16
3.4	DESALOJO DE MATERIALES	viaje	4.00	41.98	167.92
				TOTAL	387,052.27

6.2 Presupuesto - Vías

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

INSTITUCIÓN: GAD CANTÓN SANTA ELENA

PROYECTO: DISEÑO DE SOLUCIONES VIALES ESPECIALES EN LA POBLACIÓN DE AYANGUE

UBICACIÓN: CANTÓN SANTA ELENA

CÓDIGO	DESCRIPCIÓN	UNIDAD	CANTIDAD	P.UNITARIO	TOTAL
1	PRELIMINARES				155,764.89
1.1	LIMPIEZA DE TERRENO	m2	6,000.00	1.09	6,540.00
1.2	CASETA DE GUARDIANÍA	m2	1.50	25.05	37.58
1.3	LETRERO DE OBRA	u	1.00	24.40	24.40
1.4	BATERÍA SANITARIA	mes	4.00	439.20	1,756.80
1.5	TRAZADO Y REPLANTEO	m2	6,000.00	1.04	6,240.00
1.6	EXCAVACIÓN SIN CLASIFICAR (INC. DESALOJO)	m3	16,365.60	2.93	47,951.21
1.7	RELLENO CON MATERIAL DE PRÉSTAMO LOCAL (INC. TRANSPORTE)	m3	18,946.12	4.92	93,214.91
2	PAVIMENTO				103,170.30
2.1	TIERRA ARMADA (INC. TRANSPORTE, TENDIDO Y COMPACTACIÓN)	m3	1,080.00	6.03	6,512.40
2.2	BASE CLASE 2 (INC. TRANSPORTE, TENDIDO Y COMPACTACIÓN)	m3	1,950.00	13.01	25,369.50
2.3	IMPRIMACIÓN ASFÁLTICA	m2	7,800.00	1.54	12,012.00
2.4	CARPETA ASFÁLTICA e=2"	m2	7,800.00	6.61	51,558.00
2.5	PANTALLA IMPERMEABLE CON GEOMEMBRANA e=2mm	m2	1,440.00	4.78	6,883.20
2.6	BLOQUEO DE FLUJO	ml	160.00	5.22	835.20
3	DRENAJE				8,080.49
3.1	EXCAVACIÓN Y RELLENO (CUNETA)	m3	195.00	5.40	1,053.00
3.2	HORMIGÓN SIMPLE F'C= 180 Kg/cm2 (CUNETA)	m3	46.80	150.16	7,027.49
4	MANTENIMIENTO Y SEGURIDAD DE OBRA				8,417.44
4.1	GUARDIANÍA	mes	4.00	427.00	1,708.00
4.2	LIMPIEZA GENERAL DE OBRA	mes	4.00	87.36	349.44
4.3	PINTURA REFLECTIVA SOBRE EL PAVIMENTO	m	3,900.00	1.62	6,318.00
4.4	DESALOJO DE MATERIALES	viaje	2.00	21.00	42.00
				TOTAL	275,433.12

El costo total del proyecto asciende a un valor de \$662.485,39.

CAPÍTULO 7 CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

Se logró plantear alternativas factibles en el aspecto económico, técnico y ambiental para dar una solución a la acumulación de aguas lluvias que se genera en la población de Ayangue. Las alternativas consisten diferentes ubicaciones y dimensiones para presas colinares, con la finalidad de mejorar las condiciones de vida de los habitantes puesto que la formación de esta poza de agua ocasiona muchos inconvenientes.

Mediante el análisis de los criterios detallados para la construcción de la presa colinar, se determinó que la opción más adecuada para la comuna de Ayangue es la alternativa 3. Esto se debe al mayor volumen de embalse, lo cual incide en una disminución a la acumulación de agua cercana a la población y reduce enormemente los malestares que esta manifiesta.

En las salidas de campo, se constató que el principal problema que ocasiona la acumulación de agua es el daño a la vía que se encuentra aledaña a la poza, debido a las infiltraciones en el terraplén. Se desarrolló una solución para reparar la vía fortaleciéndola mediante tierra armada y el uso de geomembrana. Además, se realizó el diseño de pavimento flexible en la vía que conecta la ciudadela APESPOL y el resort Cumbres de Ayangue.

Los resultados obtenidos demuestran que los suelos producto de la formación tablazo meteorizado permite obtener importantes valores de resistencia al corte, lo cual favorece a la estabilidad de los terraplenes compactados.

Durante el desarrollo de la presa colinar se tomó en consideración lo detallado en la Norma Ecuatoriana de la Construcción respecto a los valores mínimos de factores de seguridad para la estabilización de taludes. Al modelar el talud sin considerar las fuerzas sísmicas en el software GALENA, el talud presenta estabilidad puesto que para aguas arriba como aguas abajo, el factor de seguridad es mayor a 1.5, recomendado por la NEC. Así mismo, tomando en cuenta las fuerzas sísmicas con un coeficiente lateral sísmico (Kh) de 0.4, el factor de seguridad para aguas arriba y aguas abajo es mayor o igual a 1.05, siendo lo permitido por la NEC.

Se formuló un plan de manejo ambiental (PMA) para minimizar y controlar las posibles afectaciones debido a la ejecución de las presas colinares y la reparación de la vía, para lo cual se evaluó las actividades que podrían generar problemas a los recursos agua, aire, suelo de la comuna de Ayangue, además de las afectaciones a la economía y seguridad de la población durante la etapa de construcción.

Cabe recalcar que el recurso más afectado es el suelo, debido a las excavaciones y al movimiento de tierra, pero siguiendo el plan de manejo ambiental se podrá minimizar los factores que influyan al deterioro del mismo.

Se contribuyó con un requerimiento de la comunidad de Ayangue en disponer de un plano urbanístico de la población.

El análisis de costos comprende de dos fases, la primera para el control de inundaciones y la segunda para el diseño de soluciones viales especiales de la vía que llega al resort Cumbres de Ayangue. El costo de las presas colinares asciende a \$387.052,27 mientras que el costo de la reparación de la vía asciende a \$275.433,12 lo cual un total de \$662.485,39.

RECOMENDACIONES

Para este tipo de proyecto se recomienda no solo realizar ensayos previos a su ejecución, los cuales fueron mencionados anteriormente en los ensayos realizados, sino también realizar ensayos de campo durante la construcción de las presas colinares, para corroborar que el nivel de compactación del talud sea lo esperado de los ensayos de laboratorio.

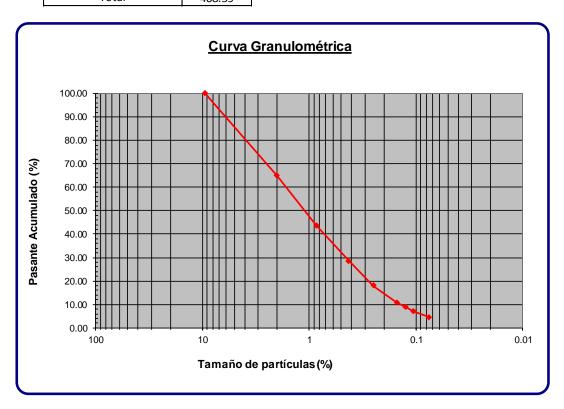
Transcurrido un periodo de tiempo se sugiere dar mantenimiento a la carpeta asfáltica de la vía.

Es conveniente que se construya presas tipo colinar para lograr el embalsamiento de aguas lluvias y así disponer de un recurso importante para las comunidades del sector, considerando de que la zona es escasa de agua dulce.

Se recomienda desarrollar más proyectos en la comuna de Ayangue, debido a que, siendo un balneario visitado por turistas este tiene deficiencias en algunos servicios básicos, como un buen sistema de abastecimiento de agua potable y sistema de evacuación de aguas residuales.

ANEXO A ENSAYOS REALIZADOS

LABORATORIO DE MECÁNICA DE SUELOS Y RESISTENCIA DE MATERIALES


"Ing. Raúl Maruri Díaz"

ENSAYO DE GRANULOMETRÍA

Proyecto: Control de inundaciones y diseños viales especiales en la población de Ayangue, cantón Santa Elena

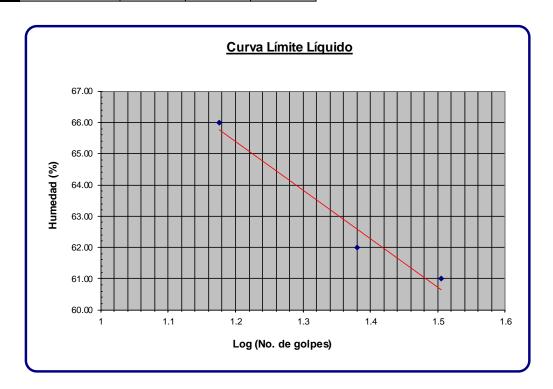
Peso Inicial: 468.81 gr.

Tamiz	Abertura	Peso Parcial	% Retenido	% Retenido	% Pasante
Taitiiz	(mm)	(gr)	Parcial	Acumulado	Acumulado
3/8"	9.5	0	0	0	100
No. 10	2	164.68	35.14	35.14	64.86
No. 20	0.85	99.73	21.28	56.43	43.57
No. 40	0.425	71.2	15.19	71.62	28.38
No. 60	0.25	48.79	10.41	82.03	17.97
No. 100	0.15	33.55	7.16	89.19	10.81
No. 120	0.125	9.33	1.99	91.18	8.82
No. 140	0.106	8.66	1.85	93.03	6.97
No. 200	0.075	11.48	2.45	95.48	4.52
For	ndo	21.17	4.52	100.00	0.00
To	tal	468.59			

LABORATORIO DE MECÁNICA DE SUELOS Y RESISTENCIA DE MATERIALES

"Ing. Raúl Maruri Díaz"

ENSAYO DE LÍMITES DE ATTERBERG


Proyecto: Control de inundaciones y diseños viales especiales en la población de Ayangue, cantón Santa Elena

Límite Líquido

No.	2	3	5	
No. Recip	82	44	10	
wh+r	14.85	16.81	18.85	
ws+r	11.34	12.7	13.95	
r	6.05	6.12	5.97	
Ww	3.51	4.11	4.9	
Ws	5.29	6.58	7.98	
%w	66	62	61	
No. golpes	15	24	32	25
log (No. de g	1.176091259	1.38021124	1.50514998	1.39794001

Límite Plástico

No.	1	2
No. Recip	7	2
wh+r	6.89	7.34
ws+r	6.65	7.06
r	6.16	6.45
Ww	0.24	0.28
Ws	0.49	0.61
%w	49%	46%

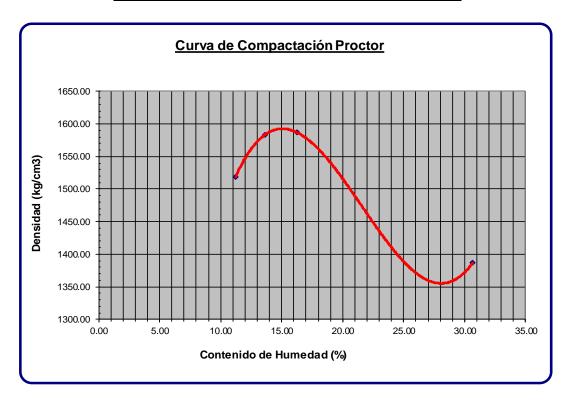
Límite Líquido 62.8
Límite Plástico 47.50
Índice Plástico 15.3

Elaborado por Mishell Rodríguez y Reinaldo Salazar

LABORATORIO DE MECÁNICA DE SUELOS Y RESISTENCIA DE MATERIALES

"Ing. Raúl Maruri Díaz"

ENSAYO DE COMPACTACIÓN PROCTOR ESTANDAR


Control de inundaciones y diseños viales

Proyecto: especiales en la población de Ayangue, Muestra: 3.5 Kg

cantón Santa Elena

Volúmen Molde (cm3) 0.001 cm3 No. Golpes 25 Peso del Pisón (N) 1.99 Kg No. Capas 5

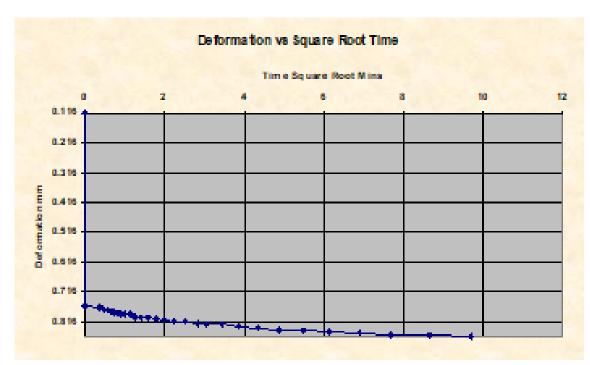
Cantidad de	Contenido	Material	Peso Seco	Densidad
	de	Húmedo +		
Agua	Humedad	Molde	de material	Seca
(cm3)	(%)	(kg)	(gr)	(kg/cm3)
100	11.23	3.59	1.44	1518.99
200	13.65	3.69	1.50	1583.76
300	16.27	3.73	1.50	1586.80
500	30.65	3.70	1.31	1386.52
400	11.82	3.74	1.56	1654.13

Humedad Óptima Densidad máxima

18.47 % 1602.50 kg/m3

Elaborado por

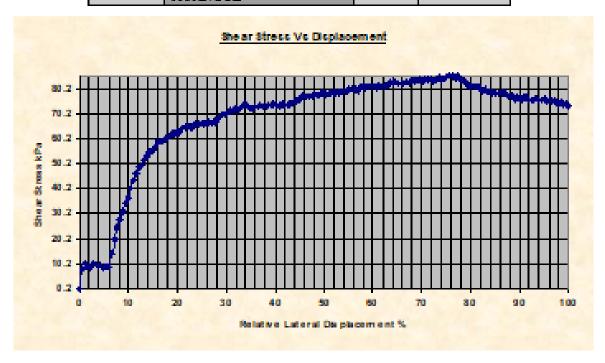
Mishell Rodríguez y Reinaldo Salazar

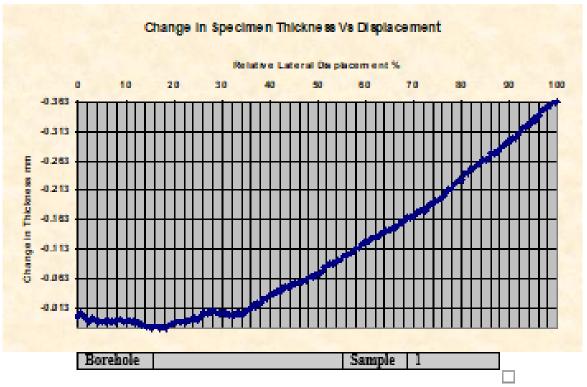


Client	ESPOL	Lab Ref	
Project	MATERIA INTEGRADORA CONTROL INUNDACION AYANGUE	Job	4
Borehole		Sample	1

	Test Details				
Standard	ASTM D3080-03 / AASHTO T236-92	Particle Specific Gravity	2.80		
Sample Type	CBR mould sample	Single or Multi Stage	Single Stage		
Lab. Temperature	0.0 deg.C.	Location			
Sample Description		-			
Variations from procedure	None				

Specimen Details			
Specimen Reference	A	Description	ARCILLA REMOLDEADA. (MATERIAL DIQUE)
Depth within Sample	0.00mm	Orientation within Sample	
Initial Height	20.000 mm	Area	3600.00 mm2
Structure / Preparation		Initial Water Content*	0.00 % (trimmings: 16.00 %)
Initial Wet Unit Weight	16.46 kt//m3	Degree of Saturation	0.00 %
Initial Dry Unit Weight	16.46 kM/m3	Initial Voids Ratio	0.669
Final Wet Unit Weight	16.79 kWm3	Final Water Content	0.00%
Final Dry Unit Weight	16.79 kWm3	Dry Mass	120.82 g
Tested Dry or Submerged	Dry	•	
Comments			


^{*} Calculated from initial and dry weights of whole specimen



BLE International Page 1 of 10

Client ESPOL Lab Ref
Project MATERIA INTEGRADORA Job 4
CONTROL INUNDACION
AYANGUE

Rate of Horizontal Displacement Stage 1: 0.0105mm/min

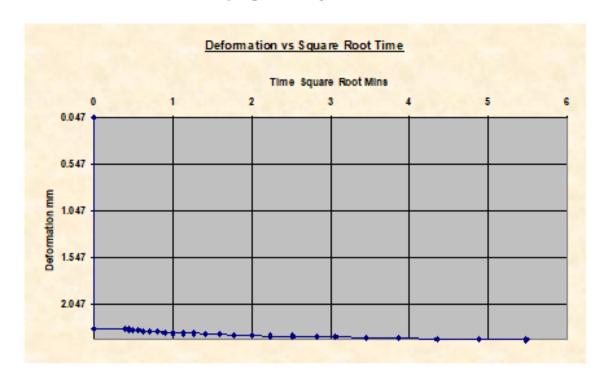
ELE International Page 2 of 10

Client	ESPOL	Lab Ref	
Project	MATERIA INTEGRADORA. CONTROL INUNDACION AYANGUE	Job	4
Borehole		Sample	1

Conditions at Failure		
Normal Stress	54.5 kPa	
Peak Strength	85.4 kPa	
Horizontal Deformation	6.718 mm	
Residual Stress	0.0 kPa	
Vertical Deformation	0.848 mm	

Tested By	Mishell Rodríguez y Reinaldo Salazar
and Date:	25 julio 2017
Checked By	Ing. Daniel Falquéz
and Date:	26 julio 2017
Approved By	PhD. Miguel Ángel Chávez
and Date:	31 Julio 2017

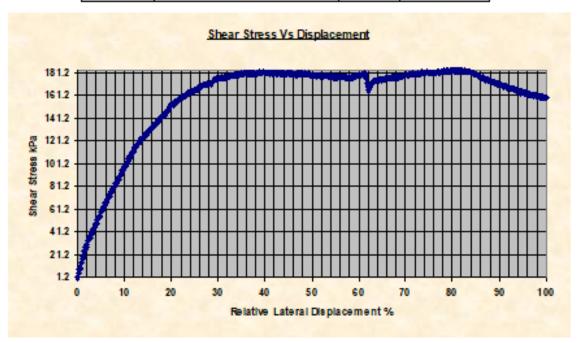
ELE International Page 3 of 10

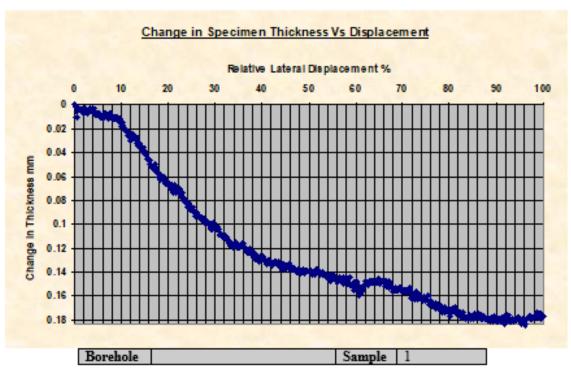


Client	ESPOL	Lab Ref	
Project	MATERIA INTEGRADORA. CONTROL INUNDACION AYANGUE	Job	4
Borehole		Sample	1

	Test Details				
Standard	ASTM D3080-03 / AASHTO T236-92	Particle Specific Gravity	2.80		
Sample Type	CBR mould sample	Single or Multi Stage	Single Stage		
Lab. Temperature	0.0 deg.C	Location			
Sample Description					
Variations from procedure	None				

Specimen Details				
Specimen Reference	В	Description		
Depth within Sample	0.00mm	Orientation within Sample		
Initial Height	20.000 mm	Area	3800.00 mm2	
Structure / Preparation		Initial Water Content*	0.00 %	
Initial Wet Unit Weight	14.79 kN/m3	Degree of Saturation	0.00 %	
Initial Dry Unit Weight	14.79 kN/m3	Initial Voids Ratio	0.857	
Final Wet Unit Weight	16.96 kN/m3	Final Water Content	0.00%	
Final Dry Unit Weight	16.96 kN/m3 Dry Mass 108.57 g			
Tested Dry or Submerged	Dry			
Comments				


^{*} Calculated from initial and dry weights of whole specimen



ELE International Page 4 of 10

Client	ESPOL	Lab Ref	
Project	MATERIA INTEGRADORA. CONTROL INUNDACION A Y ANGUE	Job	4

Rate of Horizontal Displacement	Stage 1: 0.0242mm/min
---------------------------------	-----------------------

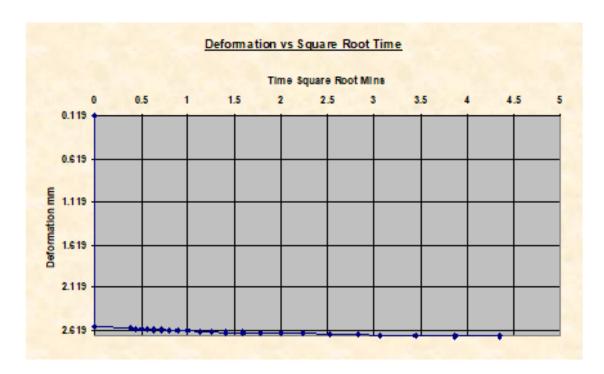
ELE International Page 5 of 10

Client	ESPOL	Lab Ref	
Project	MATERIA INTEGRADORA. CONTROL INUNDACION AYANGUE	Job	4
Borehole		Sample	1

Conditions at Failure		
Normal Stress	190.8 kPa	
Peak Strength	183.5 kPa	
Horizontal Deformation	4.538 mm	
Residual Stress	0.0 kPs	
Vertical Deformation	2.695 mm	

Tested By and Date:	Mishell Rodríguez y Reinaldo Salazar	
and Date:	26 julio 2017	
Checked By	Ing. Daniel Falquéz	
and Date:	27 julio 2017	
Approved By	PhD. Miguel Ángel Chávez	
and Date:	31 Julio 2017	

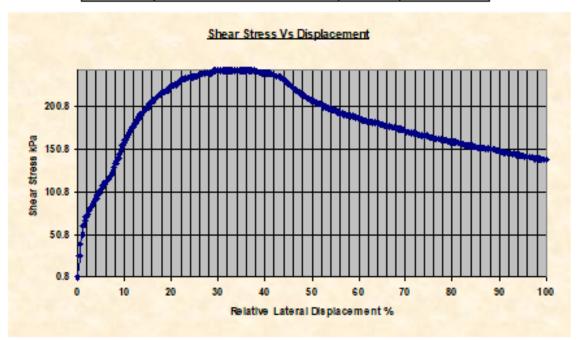
ELE International Page 6 of 10

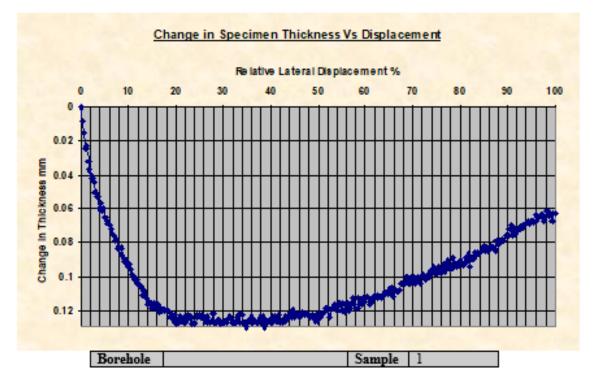


Client	ESPOL	Lab Ref	
Project	MATERIA INTEGRADORA. CONTROL INUNDACION AYANGUE	Job	4
Borehole		Sample	1

	Test Details				
Standard	ASTM D3080-03 / AASHTO T236-92	Particle Specific Gravity	2.80		
Sample Type	CBR mould sample	Single or Multi Stage	Single Stage		
Lab. Temperature	0.0 deg.C	Location			
Sample Description					
Variations from procedure	None				

Specimen Details			
Specimen Reference	С	C Description	
Depth within Sample	0.00mm	Orientation within Sample	
Initial Height	20.000 mm	Area	3600.00 mm2
Structure / Preparation		Initial Water Content*	0.00 %
Initial Wet Unit Weight	16.15 kN/m3	Degree of Saturation	0.00 %
Initial Dry Unit Weight	16.15 kN/m3	Initial Voids Ratio	0.700
Final Wet Unit Weight	18.60 kN/m3	Final Water Content	0.00%
Final Dry Unit Weight	18.60 kN/m3 Dry Mass 118.56 g		
Tested Dry or Submerged	Dry		
Comments	5		


^{*} Calculated from initial and dry weights of whole specimen



ELE International Page 7 of 10

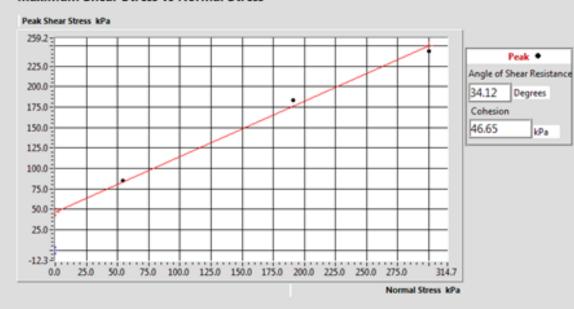
Client	ESPOL	Lab Ref	
Project	MATERIA INTEGRADORA. CONTROL INUNDACION AYANGUE	Job	4

Rate of Horizontal Displacement	Stage 1: 0.0425mm/min
---------------------------------	-----------------------

ELE International Page 8 of 10

Client	ESPOL	Lab Ref	
Project	MATERIA INTEGRADORA. CONTROL INUNDACION AYANGUE	Job	4
Borehole		Sample	1

Conditions at Failure					
Normal Stress	299.8 kPa				
Peak Strength	243.0 kPa				
Horizontal Deformation	2.535 mm				
Residual Stress	0.0 kPa				
Vertical Deformation	2.828 mm				


Tested By	Mishell Rodríguez y Reinaldo Salazar			
and Date:	27 julio 2017			
Checked By	Ing. Daniel Falquéz			
and Date:	28 julio 2017			
Approved By	PhD. Miguel Ángel Chávez			
and Date:	31 Julio 2017			

ELE International Page 9 of 10

Test Summary										
Reference	A	В	С							
Normal Stress	54.5 kPa	190.8 kPa	299.8 kPa							
Peak Strength	85.4 kPa	183.5 kPa	243.0 kPa							
Corresponding Horizontal Displacement	6.718 mm	4.538 mm	2.535 mm							
Residual Stress	N/A	N/A	N/A							
Rate of Shear	Stage 1:	Stage 1:	Stage 1:							
Displacement	0.0105mm/min	0.0242mm/min	0.0425mm/min							
Final Height	19.61 mm	17.44 mm	17.37 mm							
Sample Area	3800.00 mm2	3800.00 mm2	3800.00 mm2							
Initial Wet Unit Weight	16.46 kN/m3	14.79 kN/m3	16.15 kN/m3							
Initial Dry Unit Weight	16.46 kN/m3	14.79 kN/m3	16.15 kN/m3							
Final Wet Unit Weight	16.79 kN/m3	16.96 kN/m3	18.60 kN/m3							
Final Dry Unit Weight	16.79 kN/m3	16.96 kN/m3	18.60 kN/m3							
Final Moisture Content	0.00 %	0.00 %	0.00 %							
Particle Specific Gravity	2.80	2.80	2.80							
Final Void Ratio	0.6362	0.6195	0.4769							
Final Saturation	0.00%	0.00%	0.00%							

Maximum Shear Stress vs Normal Stress

ELE International Page 10 of 10

ANEXO B ANÁLISIS HIDROLÓGICO

						Durac	ión de lluv	ia en minu	tos			
Años	Pmax 24h (mm)	i24 (mm/h)	5	10	15	30	60	120	180	360	720	1440
1990	65.4	2.73	46.33	32.76	26.75	18.91	13.37	9.46	7.72	5.46	3.86	2.73
1991	72.3	3.01	51.08	36.12	29.49	20.85	14.75	10.43	8.51	6.02	4.26	3.01
1992	107.5	4.48	76.03	53.76	43.89	31.04	21.95	15.52	12.67	8.96	6.34	4.48
1993	45.8	1.91	32.41	22.92	18.71	13.23	9.36	6.62	5.4	3.82	2.7	1.91
1995	23	0.96	16.29	11.52	9.41	6.65	4.7	3.33	2.72	1.92	1.36	0.96
1996	14.3	0.6	10.18	7.2	5.88	4.16	2.94	2.08	1.7	1.2	0.85	0.6
1998	113.8	4.74	80.44	56.88	46.44	32.84	23.22	16.42	13.41	9.48	6.7	4.74
1999	90.6	3.78	64.15	45.36	37.04	26.19	18.52	13.09	10.69	7.56	5.35	3.78
2000	10.2	0.43	7.3	5.16	4.21	2.98	2.11	1.49	1.22	0.86	0.61	0.43
2007	9.5	0.4	6.79	4.8	3.92	2.77	1.96	1.39	1.13	0.8	0.57	0.4
2011	31.6	1.32	22.4	15.84	12.93	9.15	6.47	4.57	3.73	2.64	1.87	1.32
2012	80.7	3.36	57.02	40.32	32.92	23.28	16.46	11.64	9.5	6.72	4.75	3.36
2014	34.5	1.44	24.44	17.28	14.11	9.98	7.05	4.99	4.07	2.88	2.04	1.44
2015	45.4	1.89	32.07	22.68	18.52	13.09	9.26	6.55	5.35	3.78	2.67	1.89
2016	73.8	3.08	52.27	36.96	30.18	21.34	15.09	10.67	8.71	6.16	4.36	3.08
2017*	85.4	3.56	60.42	42.72	34.88	24.66	17.44	12.33	10.07	7.12	5.03	3.56
		Prom.	39.98	28.27	23.08	16.32	11.54	8.16	6.66	4.71	3.33	2.36
		Desv. Est.	23.5	16.61	13.56	9.59	6.78	4.79	3.92	2.77	1.96	1.38
		С	18.33	12.956	10.577	7.48	5.288	3.736	3.058	2.161	1.529	1.076
		а	-29.404	-20.794	-16.977	-12.004	-8.489	-6.004	-4.896	-3.463	-2.448	-1.739

^{*}Datos hasta abril del 2017

Fuentes de información: Estación pluviométrica Colonche

Estimación a partir de estaciones cercanas

Datos de la misión GPM de la NASA

Intensidad (mm/h)										
T(años)	Duración de lluvia en minutos									
I (dilos)	5	10	15	30	60	120	180	360	720	1440
10	70.65	49.95	40.78	28.84	20.39	14.41	11.78	8.33	5.89	4.16
25	88.03	62.23	50.81	35.93	25.40	17.95	14.68	10.38	7.34	5.18
50	100.93	71.35	58.25	41.19	29.12	20.58	16.83	11.90	8.41	5.94
100	113.72	80.39	65.63	46.41	32.81	23.19	18.96	13.40	9.48	6.69

	Altura de lluvia (mm)										
T(años)	Duración de lluvia en minutos										
I (allos)	5	10	15	30	60	120	180	360	720	1440	
10	5.89	8.32	10.19	14.42	20.39	28.82	35.33	49.96	70.67	99.85	
25	7.34	10.37	12.70	17.96	25.40	35.91	44.03	62.25	88.06	124.33	
50	8.41	11.89	14.56	20.60	29.12	41.16	50.48	71.37	100.97	142.50	
100	9.48	13.40	16.41	23.21	32.81	46.38	56.89	80.42	113.78	160.53	

ANEXO C ANÁLISIS DE ESTABILIDAD DE TALUDES (GALENA 6.10)

GALENA 6.10 Analysis Results Lice	ensee: Escuela Superior Politécnica del Litoral
Project: CONTROL DE INUNDACIONES EN AYANGUE	
File: C:\Users\Miguel Angel\Desktop\Presa 1 Ayangue.gmf	Processed: 01 Aug 2017 09:40:27
DATA: Analysis 1 - Estabilidad del espaldón aguas abajo	o, sin sismo
Material Properties (3 materials)	
Material: 1 (Mohr-Coulomb Isotropic) - Arcilla Compactada	
Cohesion Phi UnitWeight Ru	
40.00 20.0 15.80 Auto	
Material: 2 (Mohr-Coulomb Isotropic) - Tablazo meteorizado	Compactado
Cohesion Phi UnitWeight Ru	

46.65 34.1 17.50 Auto

Material: 3 (Mohr-Coulomb Isotropic) - Suelo arcillo limoso cimentación

Cohesion Phi UnitWeight Ru

28.00 18.0 15.50 Auto

Water Properties

Unit weight of water: 9.810 Unit weight of water/medium above ground: 9.810

Material Profiles (3 profiles)

Profile: 1 (2 points) Material beneath: 1 - Arcilla Compactada

10.00 25.00 100.00 25.00

Profile: 2 (11 points) Material within: 3 - Suelo arcillo limoso cimentación

10.00 10.00 20.25 10.00 35.25 10.00 50.25 8.75 55.50 8.75 70.00 84.75 100.00 5.00 10.00 10.00 10.00 100.00 10.00 5.00

10.00 10.00

Profile: 3 (7 points) Material within: 2 - Tablazo meteorizado Compactado

35.00 10.00 50.00 19.25 55.00 19.25 70.00 10.00 55.25 8.75

50.25 8.75 35.00 10.00

Slope Surfa	ace (6 points	s)							
10.00	10.00	20.00	10.00	50.25	20.00	55.00	20.00	85.00	10.00
100.00	10.00								
Phreatic S	urface (6 poi	nts)							
20.25	10.00	35.25	9.75	42.25	13.75	49.75	17.75	55.25	19.25
100.00	19.50								
Failure Sur	rface								
Initial non-	circular surfa	ce for crit	ical search	(6 points))				
20.00	10.00	33.00	9.25	41.75	10.75	49.00	15.00	52.25	19.00
52.50	20.00								

Variable Restraints

Horizontal range around X-Left: 20.00 Trial positions within range: 5
Horizontal range around X-Right: 18.00 Trial positions within range: 5
Vertical range around Mid-Point: 12.75 Trial positions within range: 5

RESULTS: Analysis 1 - Estabilidad del espaldón aguas abajo, sin sismo

Sarma Non-Vertical Slice Method of Analysis - Non-Circular Failure Surface

Critical Failure Surface Search using Multiple Surface Generation Techniques

Factor of Safety for initial failure surface approximation: 4.10

There were: 75 successful analyses from a total of 125 trial surfaces

50 analyses terminated due to unacceptable geometry

Critical (minimum) Factor of Safety: 3.71

Critical Acceleration (Kc): 0.673

Negative normal stresses exist on the base and/or side of one or more slices - examine slice data and consult

the GALENA Help utility

Surface and Results Summary (Lowest 81 Factor of Safety surfaces)

Surface	X-Left	Y-Left	X-Right	Y-Right	Y-Deflec	tion F	oS K	C
1	10.00	10.00	52.50	20.00	-6.38	3.708	0.673	
2	15.00	10.00	52.50	20.00	-6.38	3.754	0.748	
3	15.00	10.00	52.50	20.00	-3.19	3.770	0.746	

4	20.00	10.00	52.50	20.00	-3.19	3.809	0.797
5	10.00	10.00	57.00	19.33	-6.38	3.893	0.661
6	10.00	10.00	52.50	20.00	-3.19	3.909	0.749
7	20.00	10.00	52.50	20.00	-6.38	3.942	0.923
8	15.00	10.00	57.00	19.33	-6.38	3.948	0.729
9	20.00	10.00	57.00	19.33	-3.19	3.953	0.747
10	15.00	10.00	57.00	19.33	-3.19	3.961	0.706
11	20.00	10.00	57.00	19.33	0.00	3.989	0.753
12	10.00	10.00	48.00	19.26	-6.38	3.992	0.713
13	10.00	10.00	57.00	19.33	-3.19	4.000	0.679
14	15.00	10.00	48.00	19.26	-6.38	4.047	0.784
15	20.00	10.00	52.50	20.00	0.00	4.105	0.845
16	20.00	10.00	57.00	19.33	-6.38	4.141	0.914
17	20.00	10.00	48.00	19.26	-3.19	4.181	0.853
18	15.00	10.00	48.00	19.26	-3.19	4.207	0.822
19	15.00	10.00	57.00	19.33	0.00	4.220	0.796
20	20.00	10.00	48.00	19.26	-6.38	4.289	0.951
21	10.00	10.00	48.00	19.26	-3.19	4.370	0.830

22	15.00	10.00	52.50	20.00	0.00	4.384	0.914
23	20.00	10.00	61.50	17.83	0.00	4.467	0.702
24	10.00	10.00	61.50	17.83	-6.38	4.470	0.660
25	10.00	10.00	57.00	19.33	0.00	4.491	0.844
26	15.00	10.00	43.50	17.77	-6.38	4.575	0.857
27	15.00	10.00	61.50	17.83	-6.38	4.578	0.735
28	10.00	10.00	61.50	17.83	-3.19	4.604	0.673
29	10.00	10.00	43.50	17.77	-6.38	4.611	0.819
30	20.00	10.00	48.00	19.26	0.00	4.614	0.969
31	15.00	10.00	61.50	17.83	-3.19	4.614	0.700
32	20.00	10.00	43.50	17.77	0.00	4.633	1.068
33	15.00	10.00	61.50	17.83	0.00	4.686	0.741
34	20.00	10.00	61.50	17.83	-3.19	4.708	0.697
35	20.00	10.00	43.50	17.77	-3.19	4.731	0.938
36	15.00	10.00	43.50	17.77	-3.19	4.749	0.931
37	20.00	10.00	43.50	17.77	-6.38	4.795	0.952
38	20.00	10.00	61.50	17.83	-6.38	4.811	0.817
39	10.00	10.00	52.50	20.00	0.00	4.824	1.019

40	25.00	11.65	52.50	20.00	-3.19	4.846	1.185
41	10.00	10.00	61.50	17.83	0.00	4.904	0.765
42	25.00	11.65	57.00	19.33	-3.19	4.994	1.037
43	10.00	10.00	43.50	17.77	-3.19	4.996	0.965
44	25.00	11.65	57.00	19.33	0.00	5.038	0.988
45	25.00	11.65	52.50	20.00	-6.38	5.054	1.718
46	15.00	10.00	48.00	19.26	0.00	5.055	1.096
47	25.00	11.65	52.50	20.00	0.00	5.143	1.158
48	15.00	10.00	43.50	17.77	0.00	5.277	1.269
49	25.00	11.65	57.00	19.33	-6.38	5.387	1.319
50	10.00	10.00	48.00	19.26	0.00	5.532	1.248
51	25.00	11.65	48.00	19.26	-3.19	5.582	1.361
52	25.00	11.65	48.00	19.26	-6.38	5.771	1.977
53	25.00	11.65	61.50	17.83	0.00	5.778	0.880
54	30.00	13.31	52.50	20.00	-3.19	5.808	1.490
55	25.00	11.65	48.00	19.26	0.00	5.912	1.371
56	30.00	13.31	52.50	20.00	0.00	6.021	1.378
57	30.00	13.31	57.00	19.33	0.00	6.078	1.148

58	30.00	13.31	57.00	19.33	-3.19	6.178	1.208
59	10.00	10.00	43.50	17.77	0.00	6.203	1.525
60	25.00	11.65	61.50	17.83	-3.19	6.264	0.904
61	25.00	11.65	43.50	17.77	0.00	6.299	1.622
62	30.00	13.31	52.50	20.00	-6.38	6.333	3.821
63	25.00	11.65	43.50	17.77	-3.19	6.650	1.546
64	25.00	11.65	61.50	17.83	-6.38	6.784	1.073
65	30.00	13.31	57.00	19.33	-6.38	6.799	1.914
66	30.00	13.31	48.00	19.26	-3.19	6.907	1.843
67	30.00	13.31	48.00	19.26	0.00	7.027	1.689
68	25.00	11.65	43.50	17.77	-6.38	7.080	2.005
69	30.00	13.31	61.50	17.83	0.00	7.586	0.997
70	30.00	13.31	48.00	19.26	-6.38	7.815	-3.621
71	30.00	13.31	43.50	17.77	0.00	8.134	2.181
72	30.00	13.31	61.50	17.83	-3.19	8.782	1.037
73	30.00	13.31	43.50	17.77	-3.19	8.980	2.259
74	30.00	13.31	61.50	17.83	-6.38	10.052	1.355
75	30.00	13.31	43.50	17.77	-6.38	11.182	0.513

Note: Y-Deflection values are failure surface mid-point vertical distances from the initial failure surface mid-point

Critical Failure Surface (6 points)

10.00	10.00	27.00	6.79	38.44	5.60	47.92	8.63	52.17	14.49
52.50	20.00								

Non-Vertical Slice Geometry (6 slices)

Slice	Left Hand Side							Base		
	X-Top	Y-Top	X-Base	Y-Base	Angle	e Length	Area	Angle	Width	Length
1	10.00	10.00	10.00	10.00	0.0	0.00	9.71	-10.7	10.27	10.46
2	20.00	10.00	20.27	8.06	-8.1	1.96	22.97	-10.7	6.73	6.84
3	26.01	11.99	27.00	6.79	-10.7	5.29	80.67	-5.9	11.44	11.50
4	35.83	15.23	38.44	5.60	-15.2	9.98	96.19	17.7	9.48	9.95
5	44.61	18.14	47.92	8.63	-19.2	10.07	47.25	54.0	4.25	7.24
6	50.25	20.00	52.17	14.49	-19.2	5.84	6.20	86.6	0.33	5.52
RHS	52.50	20.00	52.50	20.00	0.0	0.00				
				VC	۱r00:	262.00	Doth	Longth	E1 E2	

X-S Area: 262.99 Path Length: 51.52

Non-Vertical Slice Properties (6 slices)

Slice Left-Hand-Side Base				Total-Extrnl-Force		- Water-Force -		Effect-Normal-Stress			
C	Cohesio	n Phi	Cohes	ion Phi	Weight	Vert	Horiz	Side	Base	Side	Base
1	0.00	0.0	28.00	18.0	150.48	0.00	0.00	0.00	0.00	0.00	20.82
2	28.00	18.0	28.00	18.0	357.95	0.00	0.00	18.67	169.24	62.81	43.13
3	32.59	18.8	31.59	21.1	1282.33	0.00	0.00	49.72	435.68	50.75	99.53
4	43.82	28.1	46.65	34.1	1634.55	0.00	0.00	159.39	693.70	60.16	87.34
5	45.37	31.4	46.65	34.1	814.44	0.00	0.00	323.71	438.19	23.48	37.54
6	45.75	32.2	45.91	32.5	105.82	0.00	0.00	97.01	76.39	-16.19	-16.17
RHS	0.00	0.0					0.00		0.00		

X-S Weight: 4345.56

DATA: Analysis 2 - Estabilidad del espaldón aguas abajo, con 0.4g

Material Properties (3 materials)

Material: 1 (Mohr-Coulomb Isotropic) - Arcilla Compactada

Cohesion Phi UnitWeight Ru

40.00 20.0 15.80 Auto

Material: 2 (Mohr-Coulomb Isotropic) - Tablazo meteorizado Compactado

Cohesion Phi UnitWeight Ru

46.65 34.1 17.50 Auto

Material: 3 (Mohr-Coulomb Isotropic) - Suelo arcillo limoso cimentación

Cohesion Phi UnitWeight Ru

28.00 18.0 15.50 Auto

Water Properties

Unit weight of water: 9.810 Unit weight of water/medium above ground: 9.810

Material Profiles (3 profiles)

Profile: 1 (2 points) Material beneath: 1 - Arcilla Compactada

10.00 25.00 100.00 25.00

Profile: 2 (11 points) Material within: 3 - Suelo arcillo limoso cimentación

10.00 10.00 20.25 10.00 35.25 10.00 50.25 8.75 55.50 8.75 100.00 70.00 10.00 84.75 10.00 100.00 10.00 5.00 10.00 5.00

10.00 10.00

Profile: 3	Profile: 3 (7 points) Material within: 2 - Tablazo meteorizado Compactado										
35.00	10.00	50.00	19.25	55.00	19.25	70.00	10.00	55.25	8.75		
50.25	8.75	35.00	10.00								
Slope Surface (6 points)											
10.00	10.00	20.00	10.00	50.25	20.00	55.00	20.00	85.00	10.00		
100.00	10.00										
Phreatic S	urface (6 p	points)									
20.25	10.00	35.25	9.75	42.25	13.75	49.75	17.75	55.25	19.25		
100.00	19.50										
Failure Su	rface										
Initial non-	circular su	ırface for cr	itical sear	rch (6 points)						
20.00	10.00	33.00	9.25	41.75	10.75	49.00	15.00	52.25	19.00		
52.50	20.00										

Earthquake Force

Pseudo-static earthquake (seismic) coefficient: 0.400

Variable Restraints

Horizontal range around X-Left: 20.00 Trial positions within range: 5
Horizontal range around X-Right: 18.00 Trial positions within range: 5
Vertical range around Mid-Point: 12.75 Trial positions within range: 5

RESULTS: Analysis 2 - Estabilidad del espaldón aguas abajo, con 0.4g

Sarma Non-Vertical Slice Method of Analysis - Non-Circular Failure Surface Critical Failure Surface Search using Multiple Surface Generation Techniques Factor of Safety for initial failure surface approximation: 1.71

There were: 75 successful analyses from a total of 125 trial surfaces 50 analyses terminated due to unacceptable geometry

Critical (minimum) Factor of Safety: 1.39

Critical Acceleration (Kc): 0.261

Negative normal stresses exist on the base and/or side of one or more slices - examine slice data and consult the GALENA Help utility

Surface and Results Summary (Lowest 75 Factor of Safety surfaces)

Surface	X-Left	Y-Left	X-Right	Y-Right	Y-Deflec	ction F	oS Kc
1	10.00	10.00	57.00	19.33	-6.38	1.391	0.261
2	10.00	10.00	61.50	17.83	-6.38	1.394	0.260
3	10.00	10.00	52.50	20.00	-6.38	1.424	0.273
4	15.00	10.00	57.00	19.33	-6.38	1.440	0.329
5	15.00	10.00	61.50	17.83	-6.38	1.444	0.335
6	10.00	10.00	61.50	17.83	-3.19	1.462	0.273
7	10.00	10.00	57.00	19.33	-3.19	1.462	0.279
8	20.00	10.00	61.50	17.83	-3.19	1.462	0.297
9	15.00	10.00	57.00	19.33	-3.19	1.469	0.306
10	15.00	10.00	61.50	17.83	-3.19	1.472	0.300
11	20.00	10.00	57.00	19.33	-3.19	1.483	0.347
12	15.00	10.00	52.50	20.00	-6.38	1.483	0.348
13	20.00	10.00	61.50	17.83	-6.38	1.501	0.417

14	20.00	10.00	61.50	17.83	0.00	1.503	0.302
15	10.00	10.00	48.00	19.26	-6.38	1.523	0.313
16	15.00	10.00	52.50	20.00	-3.19	1.528	0.346
17	20.00	10.00	57.00	19.33	-6.38	1.547	0.514
18	20.00	10.00	57.00	19.33	0.00	1.550	0.353
19	20.00	10.00	52.50	20.00	-3.19	1.561	0.397
20	10.00	10.00	52.50	20.00	-3.19	1.563	0.349
21	15.00	10.00	61.50	17.83	0.00	1.578	0.341
22	15.00	10.00	48.00	19.26	-6.38	1.593	0.384
23	20.00	10.00	52.50	20.00	-6.38	1.601	0.523
24	15.00	10.00	57.00	19.33	0.00	1.639	0.396
25	10.00	10.00	61.50	17.83	0.00	1.644	0.365
26	15.00	10.00	48.00	19.26	-3.19	1.693	0.422
27	20.00	10.00	48.00	19.26	-3.19	1.703	0.453
28	20.00	10.00	52.50	20.00	0.00	1.707	0.445
29	10.00	10.00	43.50	17.77	-6.38	1.720	0.419
30	20.00	10.00	48.00	19.26	-6.38	1.733	0.551
31	10.00	10.00	48.00	19.26	-3.19	1.734	0.430

32	10.00	10.00	57.00	19.33	0.00	1.739	0.444	
33	15.00	10.00	43.50	17.77	-6.38	1.762	0.457	
34	25.00	11.65	61.50	17.83	-3.19	1.800	0.504	
35	25.00	11.65	61.50	17.83	0.00	1.823	0.480	
36	25.00	11.65	61.50	17.83	-6.38	1.827	0.673	
37	15.00	10.00	52.50	20.00	0.00	1.832	0.514	
38	25.00	11.65	57.00	19.33	-3.19	1.860	0.637	
39	20.00	10.00	43.50	17.77	-6.38	1.889	0.552	
40	15.00	10.00	43.50	17.77	-3.19	1.903	0.531	
41	20.00	10.00	43.50	17.77	-3.19	1.904	0.538	
42	25.00	11.65	57.00	19.33	-6.38	1.907	0.919	
43	25.00	11.65	57.00	19.33	0.00	1.925	0.588	
44	20.00	10.00	48.00	19.26	0.00	1.938	0.569	
45	10.00	10.00	43.50	17.77	-3.19	1.969	0.565	
46	20.00	10.00	43.50	17.77	0.00	2.000	0.668	
47	10.00	10.00	52.50	20.00	0.00	2.010	0.619	
48	25.00	11.65	52.50	20.00	-3.19	2.017	0.785	
49	25.00	11.65	52.50	20.00	-6.38	2.076	1.318	

50	30.00	13.31	61.50	17.83	-3.19	2.099	0.637
51	30.00	13.31	61.50	17.83	0.00	2.114	0.597
52	30.00	13.31	57.00	19.33	-3.19	2.131	0.808
53	15.00	10.00	48.00	19.26	0.00	2.141	0.696
54	25.00	11.65	52.50	20.00	0.00	2.173	0.758
55	30.00	13.31	57.00	19.33	0.00	2.218	0.748
56	30.00	13.31	61.50	17.83	-6.38	2.225	0.955
57	30.00	13.31	57.00	19.33	-6.38	2.288	1.514
58	15.00	10.00	43.50	17.77	0.00	2.295	0.869
59	25.00	11.65	48.00	19.26	-3.19	2.337	0.961
60	10.00	10.00	48.00	19.26	0.00	2.350	0.848
61	30.00	13.31	52.50	20.00	-3.19	2.376	1.090
62	25.00	11.65	48.00	19.26	-6.38	2.398	1.577
63	30.00	13.31	52.50	20.00	0.00	2.540	0.978
64	25.00	11.65	48.00	19.26	0.00	2.542	0.971
65	30.00	13.31	52.50	20.00	-6.38	2.580	3.421
66	10.00	10.00	43.50	17.77	0.00	2.676	1.125
67	25.00	11.65	43.50	17.77	-3.19	2.767	1.146

68	25.00	11.65	43.50	17.77	0.00	2.768	1.222
69	25.00	11.65	43.50	17.77	-6.38	2.894	1.605
70	30.00	13.31	48.00	19.26	-3.19	2.906	1.443
71	30.00	13.31	48.00	19.26	0.00	3.044	1.289
72	30.00	13.31	48.00	19.26	-6.38	3.296	-4.021
73	30.00	13.31	43.50	17.77	0.00	3.595	1.781
74	30.00	13.31	43.50	17.77	-3.19	3.776	1.859
75	30.00	13.31	43.50	17.77	-6.38	4.727	0.113

Note: Y-Deflection values are failure surface mid-point vertical distances from the initial failure surface mid-point

Critical Failure Surface (6 points)

10.00	10.00	28.80	6.84	41.45	5.55	51.94	8.30	56.64	13.89
57 00	19 33								

Non-Vertical Slice Geometry (7 slices)

Slice			Left Hand	Side			X-S Base				
	X-Top	Y-Top	X-Base	Y-Base	Angl	e Len	gth	Area	Angle	Width	Length
1	10.00	10.00	10.00	10.00	0.0	0.00	8.55	-9.5	10.17	10.31	
2	20.00	10.00	20.17	8.29	-5.7	1.72	31.23	-9.5	8.63	8.75	

					_					
RHS	57.00	19.33	57.00	19.33	3 0.0	0.00				
7	55.00	20.00	56.64	13.89	-15.0	6.33	5.56	86.2	0.36	5.46
6	50.25	20.00	53.50	10.15	-18.3	10.37	36.05	50.0	3.14	4.88
5	48.44	19.40	51.94	8.30	-17.5	11.64	21.80	50.0	1.56	2.42
4	38.89	16.25	41.45	5.55	-13.5	11.00	118.13	14.7	10.48	10.84
3	27.90	12.61	28.80	6.84	-8.9	5.84	99.41	-5.8	12.65	12.72

X-S Area: 320.73 Path Length: 55.38

Non-Vertical Slice Properties (7 slices)

Slic	e Left-Ha	and-Sic	le I	Base		Total-Extrnl-Force		- Water-Force -		Effect-Normal-Stress	
	Cohesio	n Phi	Cohes	sion Phi	Weight	Vert	Horiz	Side	Base	Side	Base
1	0.00	0.0	28.00	18.0	132.59	0.00	-53.04	0.00	0.00	0.00 3	0.38
2	28.00	18.0	28.00	18.0	487.31	0.00	-194.92	0.00	203.12	167.18	64.79
3	33.43	18.9	36.61	25.4	1616.64	0.00	-646.66	47.42	555.62	87.96	147.48
4	44.54	29.7	46.65	34.1	2029.22	0.00	-811.69	274.76	971.71	93.26	48.09
5	46.09	32.9	46.65	34.1	379.00	0.00	-151.60	523.56	222.09	11.54	-13.80
6	46.14	33.0	46.65	34.1	624.77	0.00	-249.91	405.09	339.89	-4.59	-15.58
7	45.67	32.0	44.99	30.6	94.12	0.00	-37.65	146.65	141.72	-40.81	-56.48

RHS 0.00 0.0 ----- 0.00 0.00

X-S Weight: 5363.65

DATA: Analysis 4 - Estabilidad del espaldón aguas arriba, con sismo 0.4g

Material Properties (3 materials)

Material: 1 (Mohr-Coulomb Isotropic) - Arcilla Compactada

Cohesion Phi UnitWeight Ru

40.00 20.0 15.80 Auto

Material: 2 (Mohr-Coulomb Isotropic) - Tablazo meteorizado Compactado

Cohesion Phi UnitWeight Ru

46.65 34.1 17.50 Auto

Material: 3 (Mohr-Coulomb Isotropic) - Suelo arcillo limoso cimentación

Cohesion Phi UnitWeight Ru

28.00 18.0 15.50 Auto

Water Properties

Unit weight of water: 9.810 Unit weight of water/medium above ground: 9.810

Material Profiles (3 profiles)

ivialenai Fi	waterial Fromes (3 promes)									
Profile: 1	(2 points)	Material be	eneath: 1 - A	Arcilla Co	mpactada					
10.00	25.00	100.00	25.00							
Profile: 2	(11 points)	Material v	within: 3 - S	Suelo arcil	llo limoso cir	nentaciór	1			
10.00	10.00	20.25	10.00	35.25	10.00	50.25	8.75	55.50	8.75	
70.00	10.00	84.75	10.00	100.00	10.00	100.00	5.00	10.00	5.00	
10.00	10.00									
Profile: 3 ((7 points)	Material w	ithin: 2 - Ta	ablazo me	teorizado Co	ompactac	lo			
35.00	10.00	50.00	19.25	55.00	19.25	70.00	10.00	55.25	8.75	
50.25	8.75	35.00	10.00							
Slope Surf	ace (6 poir	nts)								
10.00	10.00	20.00	10.00	50.25	20.00	55.00	20.00	85.00	10.00	
100.00	10.00									

Phreatic Surface (6 points)

20.25	10.00	35.25	9.75	42.25	13.75	49.75	17.75	55.25	19.25
100.00	19.50								

Failure Surface

Initial non-circular surface for critical search (7 points)

53.00	20.00	55.00	17.25	60.75	13.50	67.50	10.25	74.75	8.50
-------	-------	-------	-------	-------	-------	-------	-------	-------	------

82.00 8.50 85.00 10.00

Earthquake Force

Pseudo-static earthquake (seismic) coefficient: 0.400

Variable Restraints

Horizontal range around X-Left: 20.00 Trial positions within range: 5

Horizontal range around X-Right: 18.00 Trial positions within range: 5

Vertical range around Mid-Point: 12.75 Trial positions within range: 5

RESULTS: Analysis 4 - Estabilidad del espaldón aguas arriba, con sismo 0.4g

Sarma Non-Vertical Slice Method of Analysis - Non-Circular Failure Surface Critical Failure Surface Search using Multiple Surface Generation Techniques Factor of Safety for initial failure surface approximation: 1.83

There were: 81 successful analyses from a total of 125 trial surfaces
44 analyses terminated due to unacceptable geometry

Critical (minimum) Factor of Safety: 1.05

Critical Acceleration (Kc): 0.080

Negative normal stresses exist on the base and/or side of one or more slices - examine slice data and consult the GALENA Help utility

Surface and Results Summary (Lowest 75 Factor of Safety surfaces)

Surface	X-Left	Y-Left	X-Right	Y-Right	Y-Deflection	on Fo	S Kc
1	58.00	19.00	76.00	13.00	-6.38	1.052	0.080
2	63.00	17.33	85.00	10.00	-6.38	1.059	0.084

3	63.00	17.33	76.00	13.00	-3.19	1.068	0.127
4	63.00	17.33	80.50	11.50	-6.38	1.105	0.166
5	43.00	17.60	89.50	10.00	-3.19	1.272	0.136
6	43.00	17.60	94.00	10.00	-3.19	1.295	0.146
7	43.00	17.60	85.00	10.00	-3.19	1.317	0.196
8	48.00	19.26	89.50	10.00	-3.19	1.326	0.178
9	63.00	17.33	76.00	13.00	-6.38	1.333	0.851
10	43.00	17.60	94.00	10.00	-6.38	1.396	0.338
11	48.00	19.26	94.00	10.00	-3.19	1.411	0.257
12	43.00	17.60	89.50	10.00	-6.38	1.424	0.385
13	48.00	19.26	85.00	10.00	-3.19	1.513	0.721
14	48.00	19.26	89.50	10.00	-6.38	1.516	0.543
15	43.00	17.60	80.50	11.50	-3.19	1.546	0.356
16	43.00	17.60	85.00	10.00	0.00	1.556	0.237
17	48.00	19.26	85.00	10.00	0.00	1.578	0.274
18	48.00	19.26	94.00	10.00	-6.38	1.603	3.779
19	43.00	17.60	85.00	10.00	-6.38	1.613	8.089
20	43.00	17.60	89.50	10.00	0.00	1.658	0.276

21	53.00	20.00	94.00	10.00	-3.19	1.661	0.582
22	48.00	19.26	89.50	10.00	0.00	1.694	0.310
23	53.00	20.00	89.50	10.00	-3.19	1.710	1.516
24	48.00	19.26	80.50	11.50	-3.19	1.763	2.294
25	43.00	17.60	80.50	11.50	-6.38	1.770	-2.382
26	43.00	17.60	94.00	10.00	0.00	1.790	0.334
27	53.00	20.00	85.00	10.00	0.00	1.829	0.429
28	48.00	19.26	94.00	10.00	0.00	1.859	0.390
29	53.00	20.00	85.00	10.00	-3.19	1.899	-1.134
30	58.00	19.00	94.00	10.00	-3.19	1.946	1.098
31	43.00	17.60	76.00	13.00	-3.19	1.957	0.632
32	53.00	20.00	94.00	10.00	-6.38	1.976	-0.672
33	53.00	20.00	89.50	10.00	0.00	1.987	0.468
34	48.00	19.26	85.00	10.00	-6.38	1.992	-0.442
35	43.00	17.60	80.50	11.50	0.00	2.000	0.442
36	58.00	19.00	89.50	10.00	-3.19	2.034	-4.616
37	48.00	19.26	80.50	11.50	0.00	2.040	0.517
38	43.00	17.60	76.00	13.00	-6.38	2.047	-1.261

39	58.00	19.00	85.00	10.00	0.00	2.142	0.641
40	48.00	19.26	76.00	13.00	-3.19	2.172	-4.345
41	63.00	17.33	94.00	10.00	-3.19	2.176	1.844
42	53.00	20.00	94.00	10.00	0.00	2.190	0.561
43	53.00	20.00	89.50	10.00	-6.38	2.223	-0.333
44	48.00	19.26	80.50	11.50	-6.38	2.264	-0.408
45	53.00	20.00	80.50	11.50	-3.19	2.305	-0.633
46	43.00	17.60	76.00	13.00	0.00	2.308	0.557
47	58.00	19.00	94.00	10.00	-6.38	2.316	-0.436
48	48.00	19.26	76.00	13.00	0.00	2.319	0.638
49	58.00	19.00	89.50	10.00	0.00	2.323	0.680
50	58.00	19.00	85.00	10.00	-3.19	2.351	-0.520
51	63.00	17.33	89.50	10.00	-3.19	2.352	-1.655
52	53.00	20.00	80.50	11.50	0.00	2.398	0.789
53	63.00	17.33	85.00	10.00	0.00	2.507	0.870
54	43.00	17.60	85.00	10.00	3.19	2.559	0.639
55	63.00	17.33	94.00	10.00	-6.38	2.665	-0.339
56	58.00	19.00	94.00	10.00	0.00	2.682	0.822

57	48.00	19.26	76.00	13.00	-6.38	2.697	-0.347
58	58.00	19.00	89.50	10.00	-6.38	2.725	-0.202
59	53.00	20.00	85.00	10.00	-6.38	2.748	-0.202
60	48.00	19.26	85.00	10.00	3.19	2.752	0.771
61	53.00	20.00	76.00	13.00	0.00	2.781	0.983
62	58.00	19.00	80.50	11.50	0.00	2.867	1.233
63	63.00	17.33	85.00	10.00	-3.19	2.886	-0.352
64	63.00	17.33	89.50	10.00	0.00	2.889	0.953
65	53.00	20.00	76.00	13.00	-3.19	2.970	-0.370
66	58.00	19.00	80.50	11.50	-3.19	3.056	-0.332
67	43.00	17.60	80.50	11.50	3.19	3.235	0.889
68	63.00	17.33	89.50	10.00	-6.38	3.296	-0.114
69	53.00	20.00	80.50	11.50	-6.38	3.319	-0.200
70	48.00	19.26	80.50	11.50	3.19	3.504	1.099
71	58.00	19.00	76.00	13.00	0.00	3.505	1.628
72	63.00	17.33	94.00	10.00	0.00	3.545	1.304
73	63.00	17.33	80.50	11.50	0.00	3.596	1.684
74	58.00	19.00	85.00	10.00	-6.38	3.623	-0.069

75	63.00	17.33	80.50	11.50	-3.19	4.107	-0.188
76	58.00	19.00	76.00	13.00	-3.19	4.282	-0.139
77	53.00	20.00	76.00	13.00	-6.38	4.384	-0.064
78	63.00	17.33	76.00	13.00	0.00	4.737	2.388
79	58.00	19.00	80.50	11.50	-6.38	4.869	-0.037
80	53.00	20.00	80.50	11.50	3.19	5.106	1.966
81	58.00	19.00	85.00	10.00	3.19	5.828	2.266

Note: Y-Deflection values are failure surface mid-point vertical distances from the initial failure surface mid-point

Critical Failure Surface (7 points)

58.00	19.00	59.12	14.69	62.36	10.18	66.16	6.90	70.23	6.10
74.31	8.33	76.00	13.00						

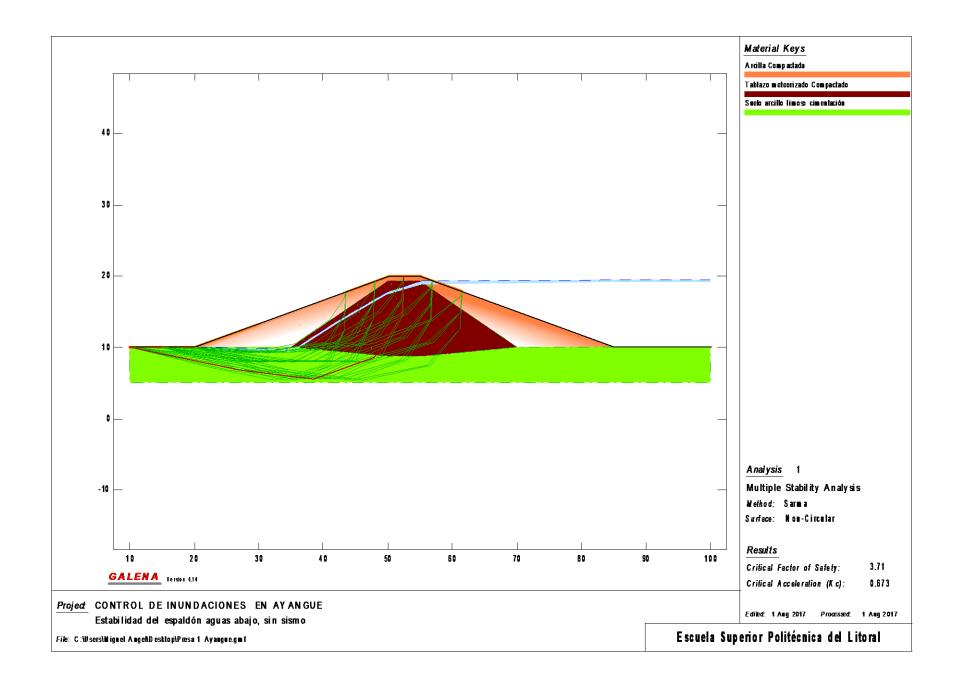
Non-Vertical Slice Geometry (6 slices)

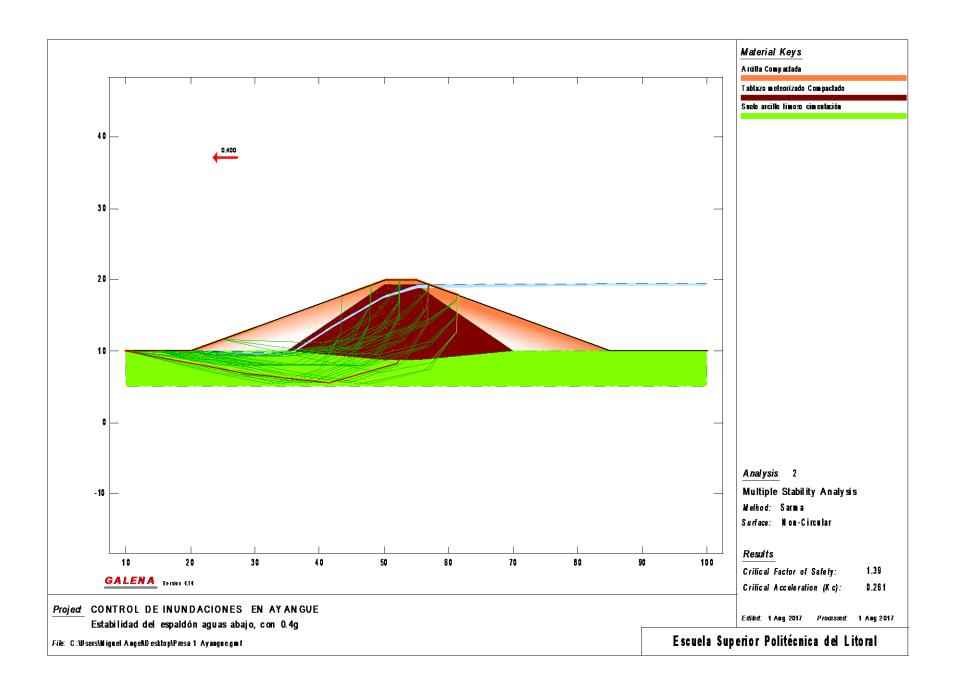
Slice			Left Hand	Side			X-S		- Base		
	X-Top	Y-Top	X-Base	Y-Base	Angle	Length	n Ai	rea A	Angle	Width	Length
1	58.00	19.00	58.00	19.00	0.0	0.00	5.35	75.4	1.12	4.46	
2	60.72	18.09	59.12	14.69	-25.1	3.76	24.27	54.4	3.23	5.55))

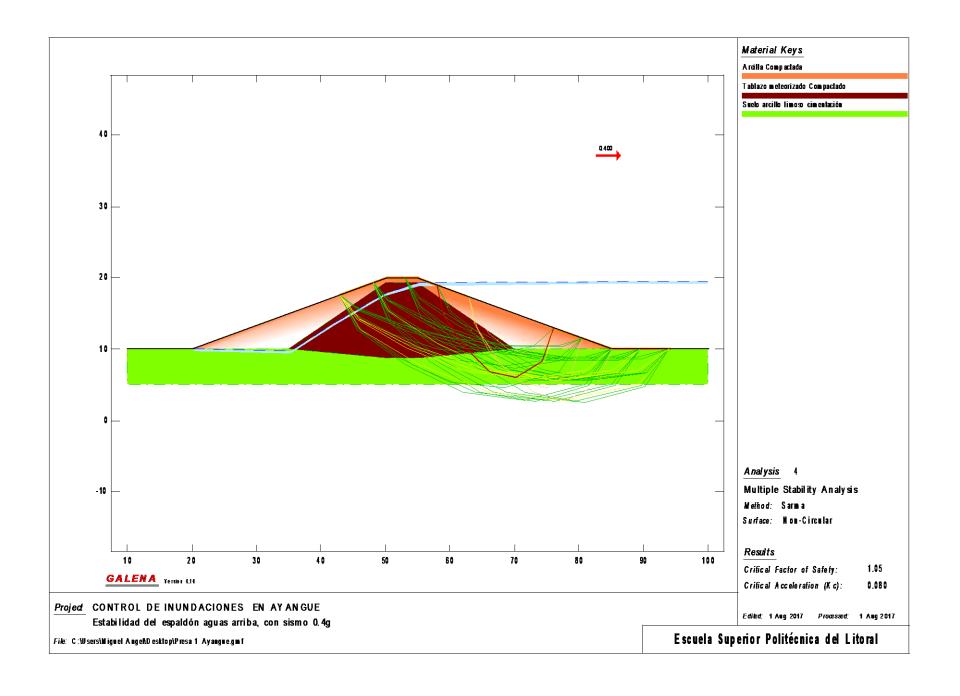
				V 0	\ root	122.50	Doth	a Longth:	29.70	
RHS	76.00	13.00	76.00	13.00	0.0	0.00				
6	75.17	13.28	74.31	8.33	-9.8	5.02	2.17	-70.1	1.69	4.97
5	72.13	14.29	70.23	6.10	-13.0	8.41	22.56	-28.7	4.08	4.65
4	68.70	15.43	66.16	6.90	-16.6	8.91	33.52	11.1	4.08	4.16
3	64.84	16.72	62.36	10.18	-20.7	7.00	34.63	40.8	3.80	5.02

X-S Area: 122.50 Path Length: 28.79

Non-Vertical Slice Properties (6 slices)


Slice	Left-Ha	and-Sid	le E	Base		Total-Ext	rnl-Force	- Wate	er-Force -	Effect-No	ormal-Stress
C	Cohesio	n Phi	Cohes	ion Phi	Weight	Vert	Horiz	Side	Base	Side	Base
1	0.00	0.0	43.66	27.8	86.83	19.35	28.28	0.00	105.93	0.00 -4	14.52
2	43.06	26.5	46.65	34.1	405.55	76.12	136.85	106.36	372.78	-43.00	-27.18
3	43.74	27.9	32.39	21.4	570.06	122.88	187.06	401.22	529.70	-23.60	-2.47
4	37.38	22.3	30.66	20.3	534.09	150.22	163.56	712.25	522.87	-4.38	43.68
5	34.28	19.0	28.00	18.0	353.48	166.22	85.99	754.44	553.24	0.41	191.91
6	35.94	19.3	35.50	19.2	34.24	50.68	-3.20	421.62	423.85	-143.18	-141.49
RHS	0.00	0.0					0.00		0.00		


X-S Weight: 1984.26


.27 103.32 -9.80 609.66 614.88 -140.76 -136.56

RHS 0.00 0.0 ----- 0.00 0.00

X-S Weight: 2605.21

ANEXO D CURVAS VERTICALES Y HORIZONTALES DE VÍAS

Vía hacia resort Cumbres de Ayangue

PIV 1	0+051.85
Cota(m)	6.64
m1(%)	3.8
m2(%)	-2.1
А	5.9
Lcv(m)	100
PCv	0+001.85
PTv	0+101.85

	CURVA VERTICAL #1						
PIV: 0+051.85	Calculado por:	Calculado por: Mishell Rodríguez					
Cota: 6.64m		Reinaldo Sa	alazar				
	Fecha: 17/08/1	17					
ABSCISA	G(%)	Cota sobre tangente	У	Cota sobre curva			
PCV 0+001.85	3.8	4.74	0	4.74			
0+020.00	3.8	5.43	0.1	5.33			
0+040.00	3.8	6.19	0.43	5.76			
PIV 0+051.85	3.8	6.64	0.74	5.9			
0+060.00	-2.1	6.47	0.52	5.95			
0+080.00	-2.1	6.05	0.14	5.91			
0+100.00	-2.1	5.63	0	5.63			
PTV 0+101.85	-2.1	5.59	0	5.59			

PIV 2	0+178.92
Cota(m)	3.94
m1(%)	-2.1
m2(%)	3.4
А	5.5
Lcv(m)	40
PCv	0+158.92
PTv	0+198.92

	CURVA VERTICAL #2						
PIV: 0+178.92	Calculado por:	Calculado por: Mishell Rodríguez					
Cota: 3.94m		Reinaldo Salazar					
	Fecha: 17/08/17	Fecha: 17/08/17					
ABSCISA	G(%)	Cota sobre tangente	У	Cota sobre curva			
PCV 0+158.92	-2.1	4.36	0	4.36			
0+160.00	-2.1	4.34	0	4.34			
PIV 0+178.92	-2.1	3.94	0.28	4.22			
0+180.00	3.4	3.98	0.25	4.23			
PTV 0+198.92	3.4	4.62	0	4.62			

PIV 3	0+464.43
Cota(m)	13.69
m1(%)	3.4
m2(%)	7.7
Α	4.3
Lcv(m)	150
PCv	0+389.43
PTv	0+539.43

CURVA VERTICAL #3							
PIV: 0+464.43	Calculado por:	Calculado por: Mishell Rodríguez					
Cota: 13.69m		Reinaldo Salazar					
	Fecha: 17/08/1	7					
ABSCISA	G(%)	Cota sobre tangente	У	Cota sobre curva			
PCV 0+389.43	3.4	11.14	0	11.14			
0+400.00	3.4	11.5	0.02	11.52			
0+420.00	3.4	12.18	0.13	12.31			
0+440.00	3.4	12.86	0.37	13.23			
0+460.00	3.4	13.54	0.71	14.25			
PIV 0+464.43	3.4	13.69	0.81	14.5			
0+480.00	7.7	14.89	0.51	15.4			
0+500.00	7.7	16.43	0.22	16.65			
0+520.00	7.7	17.97	0.05	18.02			
PTV 0+539.43	7.7	19.47	0	19.47			

PIV 4	0+653.84
Cota(m)	28.22
m1(%)	7.7
m2(%)	0.6
А	7.1
Lcv(m)	100
PCv	0+603.84
PTv	0+703.84

CURVA VERTICAL #4				
PIV: 0+653.84	Calculado por:	Mishell Roo	dríguez	
Cota: 28.22m		Reinaldo Sa	alazar	
	Fecha: 17/08/1	.7		
ABSCISA	G(%)	Cota sobre tangente	У	Cota sobre curva
PCV 0+603.84	7.7	24.37	0	24.37
0+620.00	7.7	25.61	0.09	25.52
0+640.00	7.7	27.15	0.46	26.69
PIV 0+653.84	7.7	28.22	0.89	27.33
0+660.00	0.6	28.26	0.68	27.58
0+680.00	0.6	28.38	0.2	28.18
0+700.00	0.6	28.5	0.01	28.49
PTV 0+703.84	0.6	28.52	0	28.52

Vía hacia APESPOL

PIV 1	0+107.51
Cota(m)	15.77
m1(%)	3.2
m2(%)	7.5
А	4.3
Lcv(m)	50
PCv	0+082.51
PTv	0+132.51

CURVA VERTICAL #1				
PIV: 0+107.51	Calculado por:	Mishell Roo	dríguez	
Cota: 15.77m		Reinaldo Sa	alazar	
	Fecha: 17/08/1	L7		
ABSCISA	G(%)	Cota sobre tangente	У	Cota sobre curva
PCV 0+082.51	3.2	14.97	0	14.97
0+100.00	3.2	15.53	0.13	15.66
PIV 0+107.51	3.2	15.77	0.27	16.04
0+120.00	7.5	16.71	0.07	16.78
PTV 0+132.51	7.5	17.65	0	17.65

PIV 1	0+101.36
Cota(m)	29.68
m1(%)	-6.6
m2(%)	-1.9
А	4.7
Lcv(m)	50
PCv	0+076.36
PTv	0+126.36

CURVA VERTICAL #1				
PIV: 0+101.36	Calculado por:	or: Mishell Rodríguez		
Cota: 29.68m		Reinaldo Sa	alazar	
	Fecha: 17/08/1	7		
ABSCISA	G(%)	Cota sobre tangente	у	Cota sobre curva
PCV 0+076.36	-6.6	31.33	0	31.33
0+100.00	-6.6	29.77	0.26	30.03
PIV 0+101.36	-6.6	29.68	0.29	29.97
0+120.00	-1.9	29.33	0.02	29.35
PTV 0+126.36	-1.9	29.21	0	29.21

PIV 1	0+058.40
Cota(m)	27.94
m1(%)	7.5
m2(%)	-5.8
А	13.3
Lcv(m)	80
PCv	0+018.40
PTv	0+098.40

CURVA VERTICAL #1				
PIV: 0+58.40	Calculado por: Mishell Rodríguez			
Cota: 27.94m		Reinaldo Sa	alazar	
	Fecha: 17/08/1	7		
ABSCISA	G(%)	Cota sobre tangente	У	Cota sobre curva
PCV 0+018.40	7.5	24.94	0	24.94
0+020.00	7.5	25.06	0	25.06
0+040.00	7.5	26.56	0.39	26.17
PIV 0+058.40	7.5	27.94	1.33	26.61
0+060.00	-5.8	27.85	1.23	26.62
0+080.00	-5.8	26.69	0.28	26.41
PTV 0+098.40	-5.8	25.62	0	25.62

Vía hacia resort Cumbres de Ayangue

	C1	C2	С3
α	19°11'33''	22°40'32''	41°31'08''
α/2	9°35'46''	11°20'16''	20°45'34''
Δα	0°17'11''	0°17'11"	0°11'28''
R (m)	100	100	150
E (m)	1.42	1.99	10.41
F (m)	1.40	1.95	9.74
LT (m)	16.91	20.05	56.86
CL (m)	33.34	39.32	106.33
LC (m)	33.50	39.58	108.70
PC	0+039.37	0+237.87	0+695.41
PI	0+056.28	0+257.92	0+752.27
PT	0+072.87	0+277.45	0+804.11

CURVA HORIZONTAL IZQUIERDA #1					
PI: 0+56.28	Calculado por	Calculado por: Mishell Rodríguez			
R= 100m		Reinaldo Sa	alazar		
α= 19°11'33''	Fecha: 17/08/	′ 17			
ABSCISA	Dista	ncia	Ángulo de	e replanteo	
ABSCISA	Parcial	Acumulada	Parcial	Acumulado	
PC 0+039.37		0		0°00'00''	
	0.63		0°10'50''		
0+040.00		0.63		0°10'50''	
	20.00		5°43'46''		
0+060.00		20.63		5°54'36''	
	12.87 3°41'10''				
PT 0+072.87		33.50		9°35'46''	

CURVA HORIZONTAL IZQUIERDA #2					
PI: 0+257.92	Calculado por:	Calculado por: Mishell Rodríguez			
R= 100m		Reinaldo Sa	alazar		
α= 22°40'32''	Fecha: 17/08/	17			
ABSCISA	Dista	ncia	Ángulo de	replanteo	
ABSCISA	Parcial	Acumulada	Parcial	Acumulado	
PC 0+237.87		0		0°00'00''	
	2.13		0°36'37''		
0+240.00		2.13		0°36'37''	
	20.00		5°43'46''		
0+260.00		22.13		6°20'23''	
	17.45 4°59'53''				
PT 0+277.45		39.58		11°20'16''	

CURVA HORIZONTAL DERECHA #3					
PI: 0+752.27		r: Mishell Roc			
R= 150m		Reinaldo Sa			
α= 41°31'08''	Fecha: 17/08	/17			
ABSCISA	Dist	ancia	Ángulo de	e replanteo	
ABSCISA	Parcial	Acumulada	Parcial	Acumulado	
PC 0+695.41		0		0°00'00''	
	4.59		0°52'36''		
0+700.00		4.59		0°52'36''	
	20.00		3°49'11''		
0+720.00		24.59		4°41'47''	
	20.00		3°49'11''		
0+740.00		44.59		8°30'58''	
	20.00		3°49'11''		
0+760.00		64.59		12°20'09''	
	20.00		3°49'11''		
0+780.00		84.59		16°09'20''	
	20.00		3°49'11''		
0+800.00		104.59		19°58'31''	
	4.11		0°47'03''		
PT 0+804.11		108.70		20°45'34''	

Vía hacia APESPOL

	C1	C1
α	21°41'42''	19°44'43''
α/2	10°50'51''	9°52'22''
Δα	0°17'11''	0°28'39''
R (m)	100	60
E (m)	1.82	0.90
F (m)	1.79	0.89
LT (m)	19.16	10.44
CL (m)	37.64	20.58
LC (m)	37.86	20.68
PC	0+160.61	0+045.28
PI	0+179.77	0+055.72
PT	0+198.47	0+065.96

CUR	VA HORIZOI	NTAL IZQUI	ERDA #1	
PI: 0+179.77	Calculado por	:Mishell Ro	dríguez	
R= 100m		Reinaldo Sa	alazar	
α= 21°41'42''	Fecha: 17/08/	'17		
ABSCISA	Dista	ncia	Ángulo de	e replanteo
ABSCISA	Parcial	Acumulada	Parcial	Acumulado
PC 0+160.61		0		0°00'00''
	19.39		5°33'17''	
0+180.00		19.39		5°33'17''
	18.47		5°17'34''	
PT 0+198.47		37.86		10°50'51''

CUI	RVA HORIZO	NTAL DERE	CHA #1	
PI: 0+55.72	Calculado por:	Mishell Roo	dríguez	
R= 60m		Reinaldo Sa	alazar	
α= 19°44'43''	Fecha: 17/08/	17		
ABSCISA	Dista	ncia	Ángulo de	replanteo
ABSCISA	Parcial	Acumulada	Parcial	Acumulado
PC 0+045.28		0		0°00'00''
	14.72		7°01'42''	
0+060.00		14.72		7°01'42''
	5.96		2°50'40''	
PT 0+065.96		20.68		9°52'22''

ANEXO E ANÁLISIS DE PRECIOS UNITARIOS (PRESAS COLINARES)

OBRA: CONTROL DE INUNDACIONES EN LA POBLACIÓN DE AYANGUE

UBICACIÓN: CANTÓN SANTA ELENA

ANÁLISIS DE PRECIOS UNITARIOS

RUBRO: 1.1 DETALLE: DE	0 SBROCE Y LIMPIEZA	DE TERRENO			UNIDAD: 1	
M EQUIPOS		CANTIDAD	TADICA	COSTO HODA	DENDIMIENTO	00000
DESCRIPCION		CANTIDAD A	TARIFA B	COSTO HORA C= A*B	RENDIMIENTO R	COSTO D=C*R
Herramienta menor 5	% M/O			0- A B	, ,	0.0209
Motosierra	70 W/O	1.00	3.0000	3.0000	0.0200	0.0600
Tractor de orugas		1.00	38.0000	38.0000	0.0200	0.7600
			•••••			
SUBTOTAL (M)				•		0.8409
N MANO DE OBRA		CANTIDAD	IODNIAL /UD	COCTO HODA	DENDIMIENTO	0.000
DESCRIPCION	CATEGORÍA	CANTIDAD	JORNAL/HR B	COSTO HORA C= A*B	RENDIMIENTO	COSTO D=C*R
Peón E2		A 4.00	3.4100	13.6400	0.0200	0.2728
OP. Motosierra		1.00	3.6400	3.6400	0.0200	0.0728
OP. Tractor de oruga		1.00	3.6400	3.6400	0.0200	0.0728
CLIDTOTAL (AI)						0.4404
SUBTOTAL (N) O MATERIALES						0.4184
				CANTIDAD	UNITARIO	COSTO
DESCRIPCION			UNIDAD	A	В	C=A*B
SUBTOTAL O P TRANSPORTE						
DESCRIPCION			UNIDAD	CANTIDAD A	TARIFA B	COSTO C=A*B
SUBTOTAL (P)						
		TOTAL C	OSTOS DIE	RECTOS (M+N	+O+P):	1.26
Nota: estos precios r	oo incluyon IVA		TOS Y UTIL			
•	•				22.00%	0.28
Guayaquil, septiemb	re del 2017		NDIRECTO			0.00
			OTAL DEL			1.54
		VALOR C	FERTADO	(\$)		1.54
FIRMA DE	EL OFERENTE					

UBICACIÓN: CANTÓN SANTA ELENA

ANÁLISIS DE PRECIOS UNITARIOS

FIRMA DEL OFERENTE

RUBRO:1.20UNIDAD: m2DETALLE:CASETA DE GUARDIANÍARENDIMIENTO: 0.55

DESCRIPCION		CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
Herramienta menor 5% M/C	<u> </u>	Α	В	C= A*B	R	D=C*R 0.2937
Herrarmenta menor 5% W/C						0.2931
SUBTOTAL (M)						0.2937
N MANO DE OBRA						
DESCRIPCION C	ATEGORÍA	CANTIDAD	JORNAL/HR	COSTO HORA	RENDIMIENTO	COSTO
Maestro de obra C1		1.00	3.8200	C= A*B 3.8200	R 0.5500	D=C*R 2.1010
Carpintero D2		1.00	3.4500	3.4500	0.5500	1.8975
Peón E2		1.00	3.4100	3.4100	0.5500	1.8755
SUBTOTAL (N)						5.8740
O MATERIALES						
DESCRIPCION			UNIDAD	CANTIDAD A	UNITARIO B	COSTO C=A*B
Tabla	***************************************		u	0.4000	4.5000	1.8000
Cuartón			u	1.0000	2.6000	2.6000
Clavo 2"x 8			Lb	0.0050	0.8200	0.0041
Plancha galvalumen			<u>u</u>	0.8000	13.5800	10.8640
Bisagra cromada			<u>u</u> u	0.1000	0.8500	0.0850
Argollas			u 	0.0800	0.7700	0.0616
Candado			u	0.0100	6.5000	0.0650
SUBTOTAL O						15.4797
P TRANSPORTE				CANTIDAD	TADIEA	COSTO
DESCRIPCION			UNIDAD	CANTIDAD A	TARIFA B	COSTO C=A*B
Transporte de madera			U/Km	1.40	0.400	0.5600
Lininininininini				·		
SUBTOTAL (P)						0.5600
		TOTAL C	OSTOS DIF	RECTOS (M+N	+O+P):	22.21
Nota: estos precios no inclu	uyen IVA	INDIREC [®]	TOS Y UTIL	IDADES	22.00%	4.89
Guayaquil, septiembre del 2	2017	OTROS II	NDIRECTO	S		0.00
•			OTAL DEL			27.10

UBICACIÓN: CANTÓN SANTA ELENA

ANÁLISIS DE PRECIOS UNITARIOS

RUBRO: 1.30 UNIDAD: u
DETALLE: LETRERO DE OBRA RENDIMIENTO:

DESCRIPCION		CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COST
		A	В	C= A*B	R	D=C*R

SUBTOTAL (M)						
N MANO DE OBRA		lo a vizi p a p	IODNIAI (IID	00070 11004		00070
DESCRIPCION	CATEGORÍA	CANTIDAD A	JORNAL/HR B	COSTO HORA C= A*B	RENDIMIENTO R	COSTC D=C*R
				O-AB	- K	D=0 10
			~~~~			
CHRIOTAL (AN						
SUBTOTAL (N) D MATERIALES						
			LINIDAD	CANTIDAD	UNITARIO	COST
DESCRIPCION			UNIDAD	Α	В	C=A*B
Rotulo informativo de la o	bra		u	1.0000	20.0000	20.0000
				***************************************		
SUBTOTAL O						20.0000
P TRANSPORTE				CANTIDAD	TARIFA	COSTO
DESCRIPCION			UNIDAD	A	В	C=A*B
SUBTOTAL (P)						0.00
				RECTOS (M+N	+O+P):	20.00
Nota: estos precios no in	cluyen IVA		TOS Y UTIL		22.00%	4.40
Guayaquil, septiembre de	el 2017	OTROS II	NDIRECTO	S		0.00
		COSTO T	OTAL DEL	RUBRO		24.40
		VALOR C	FERTADO	(\$)		24.40

**UBICACIÓN:** CANTÓN SANTA ELENA

#### ANÁLISIS DE PRECIOS UNITARIOS

RUBRO: 1.40 UNIDAD: mes DETALLE: BATERÍA SANITARIA RENDIMIENTO:

M EQUIPOS		1				
DESCRIPCION		CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
		A	В	C= A*B	R	D=C*R
				***************************************		
UBTOTAL (M)						
I MANO DE OBRA					L	
DESCRIPCION	CATEGORÍA	CANTIDAD	JORNAL/HR	COSTO HORA	RENDIMIENTO	COSTO
DESCRIFCION	CATEGORIA	A	В	C= A*B	R	D=C*R
			***************************************			
·····						
SUBTOTAL (N)		•				
D MATERIALES						
DESCRIPCION			UNIDAD	CANTIDAD A	UNITARIO B	COSTO C=A*B
contrato mensual de	batería sanitaria		u	2.0000	180.0000	360.00
				~~~~		

SUBTOTAL O						360.00
P TRANSPORTE					l.	
DESCRIPCION			UNIDAD	CANTIDAD	TARIFA	COSTO
DESCRIT GION			ONIDAD	Α	В	C=A*B
CURTOTAL (D)						0.00
SUBTOTAL (P)		TOTAL O	OSTOS DIE	ECTOS (M.N.	.O.B).	0.00 360.00
latar aatas =====ic===	o incluyon N/A			ECTOS (M+N		
lota: estos precios n			TOS Y UTIL		22.00%	79.20
Buayaquil, septiembr	e del 2017		NDIRECTO:			0.00
			OTAL DEL			439.20
		VALOR C	FERTADO	(\$)		439.20
FIRMA DE	L OFERENTE					

UBICACIÓN: CANTÓN SANTA ELENA

ANÁLISIS DE PRECIOS UNITARIOS

RUBRO:1.50UNIDAD: m2DETALLE:TRAZADO Y REPLANTEORENDIMIENTO: 0.044

M EQUIPOS					
DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
Herramienta menor	A	В	C= A*B	R	D=C*R 0.05
Equipo topográfico	1.00	2.5000	2.5000	0.0440	0.1100
- 1-1					

SUBTOTAL (M)					0.1561
N MANO DE OBRA				l	0001
DESCRIPCION CATEGORÍA	CANTIDAD	JORNAL/HR	COSTO HORA	RENDIMIENTO	COSTO
	A	В	C= A*B	R	D=C*R
Cadenero	2.00	3.4500	6.9000	0.0440	0.3036
Topógrafo Peón E2	1.00	3.8200	3.8200	0.0440 0.0440	0.1681
Pe011 E2	3.00	3.4100	10.2300	0.0440	0.4501
	***************************************		***************************************		***************************************
SUBTOTAL (N)	·			•	0.9218
O MATERIALES					
DESCRIPCION		UNIDAD	CANTIDAD A	UNITARIO B	COSTO C=A*B
Tabla		u	0.0060	4.5000	0.0270
Cuartón		u	0.0190	2.6000	0.0494
Clavo 2" x 8		Lb	0.0020	0.8200	0.0016
Pintura de caucho		gln	0.0002	15.6200	0.0031
Cementina (25Kg)		sc	0.0010	1.6000	0.0016
SUBTOTAL O					0.0828
P TRANSPORTE					0.0020
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
DESCRIPCION		UNIDAD	Α	В	C=A*B
Transporte de madera		u/Km	0.0250	0.4000	0.0100
					0.0400
SUBTOTAL (P)	T0=** -	00700 5:-		0 P)	0.0100
			RECTOS (M+N	,	1.17
Nota: estos precios no incluyen IVA		TOS Y UTIL		22.00%	0.26
Guayaquil, septiembre del 2017		NDIRECTO			0.00
		OTAL DEL			1.43
	VALOR C	PERTADO	(\$)		1.43
FIRMA DEL OFERENTE					

UBICACIÓN: CANTÓN SANTA ELENA

ANÁLISIS DE PRECIOS UNITARIOS

FIRMA DEL OFERENTE

RUBRO: 1.60 UNIDAD: m3
DETALLE: EXCAVACIÓN SIN CLASIFICAR RENDIMIENTO: 0.020

DESCRIPCION		CANTIDAD A	TARIFA B	COSTO HORA C= A*B	RENDIMIENTO R	COSTC D=C*R
lerramienta menor						0.0286
xcavadora		3.00	38.0000	114.0000	0.0200	2.2800
SUBTOTAL (M)						2.3086
N MANO DE OBRA						
DESCRIPCION	CATEGORÍA	CANTIDAD A	JORNAL/HR B	COSTO HORA C= A*B	RENDIMIENTO R	COSTC D=C*R
Peon E2		3.00	3.4100	10.2300	0.0200	0.2046
Ayudante Mec.		2.00	3.4500	6.9000	0.0200	0.1380
DP. Excavadora		3.00	3.8200	11.4600	0.0200	0.2292
SUBTOTAL (N)						0.5718
D MATERIALES				04NITID 4 D	10074516	00074
DESCRIPCION			UNIDAD	CANTIDAD A	UNITARIO B	COSTC C=A*B
SUBTOTAL O						
SUBTOTAL O P TRANSPORTE DESCRIPCION			UNIDAD	CANTIDAD	TARIFA B	COSTC C=A*B
P TRANSPORTE			UNIDAD	-		
P TRANSPORTE DESCRIPCION			UNIDAD	-		C=A*B
P TRANSPORTE				A	В	0.00
DESCRIPCION SUBTOTAL (P)			OSTOS DIF	A RECTOS (M+N	+O+P):	0.00 2.88
DESCRIPCION BUBTOTAL (P) lota: estos precios no i	-	INDIREC	OSTOS DIF	RECTOS (M+N	В	0.00 2.88 0.63
P TRANSPORTE DESCRIPCION	-	INDIREC OTROS II	OSTOS DIF TOS Y UTIL NDIRECTO	A RECTOS (M+N IDADES S	+O+P):	0.00 2.88
DESCRIPCION SUBTOTAL (P) Nota: estos precios no i	-	INDIREC OTROS II COSTO T	OSTOS DIF	A RECTOS (M+N IDADES S RUBRO	+O+P):	0.00 2.88 0.63

UBICACIÓN: CANTÓN SANTA ELENA

ANALISIS DE PRECIOS UNITARIOS

FIRMA DEL OFERENTE

RUBRO: 2.10 UNIDAD: u
DETALLE: ENSAYOS DE CAMPO RENDIMIENTO: 120.00

M EQUIPOS	041775	TARITA	00070 !!05:	DENDINGENER	00070
DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
	Α	В	C= A*B	R	D=C*R
SUBTOTAL (M)					
I MANO DE OBRA	T- 1		r		
DESCRIPCION CATEGORÍA		JORNAL/HR	COSTO HORA	RENDIMIENTO	COSTO
	Α	В	C= A*B	R	D=C*R
				ļ	
SUBTOTAL (N)					
D MATERIALES			•	1	
DESCRIPCION		UNIDAD	CANTIDAD	UNITARIO	COSTO
			A	В	C=A*B
nsayo de campo		u	1.00	7,000.00	7,000.0
UBTOTAL O				•	7,000.00
TRANSPORTE				•	
		LINIDAD	CANTIDAD	TARIFA	COSTO
DESCRIPCION		UNIDAD	Α	В	C=A*B
				·······	
	L				
UBTOTAL (P)	TOTAL C	OSTOS DIE	RECTOS (M+N	+O+b).	7,000.00
SUBTOTAL (P)	I . O . AL C			•	
	INDIBEC:		IDADES	22.00%	1,540.00
lota: estos precios no incluyen IVA	INDIRECT		^	ı	
lota: estos precios no incluyen IVA	OTROS II	NDIRECTO			0.00
Nota: estos precios no incluyen IVA	OTROS IN	NDIRECTO OTAL DEL	RUBRO		
SUBTOTAL (P) Nota: estos precios no incluyen IVA Guayaquil, septiembre del 2017	OTROS IN	NDIRECTO	RUBRO		0.00 8,540.00 8,540.0 0

UBICACIÓN: CANTÓN SANTA ELENA

ANÁLISIS DE PRECIOS UNITARIOS

FIRMA DEL OFERENTE

RUBRO: 2.20 UNIDAD: m3

DETALLE: RELLENO COMPACTADO CON SUELO ARCILLOSO LIMOSOSO (INC. RENDIMIENTO: 0.02

TRANSPORTE)

COSTO HORA C= A*B 22.0000 38.0000 48.0000 35.0000 25.0000 HR COSTO HORA C= A*B 3.82	1.00 1.00 1.00 1.00 1.00 1.00	0.0200 0.0200 0.0200 0.0200 0.0200 0.0200	COSTO D=C*R 0.03 0.4400 0.7600 0.9600 0.7000 0.5000 3.3855
38.0000 48.0000 35.0000 25.0000 HR COSTO HORA C= A*B	1.00 1.00 1.00 1.00	0.0200 0.0200 0.0200	0.4400 0.7600 0.9600 0.7000 0.5000
38.0000 48.0000 35.0000 25.0000 HR COSTO HORA C= A*B	1.00 1.00 1.00 1.00	0.0200 0.0200 0.0200	0.7600 0.9600 0.7000 0.5000
38.0000 48.0000 35.0000 25.0000 HR COSTO HORA C= A*B	1.00 1.00 1.00	0.0200 0.0200	0.9600 0.7000 0.5000
35.0000 25.0000 HR COSTO HORA C= A*B	1.00 1.00	0.0200	0.7000 0.5000
25.0000 HR COSTO HORA C= A*B	1.00	1	0.7000 0.5000
25.0000 HR COSTO HORA C= A*B	1.00	1	0.5000
HR COSTO HORA C= A*B	CANTIDAD		
C= A*B			
C= A*B			
		RENDIMIENTO	COSTO
3.82	A	R	D=C*R
	1.00	0.020	0.08
3.82	1.00	0.020	0.08
3.41	1.00	0.020	0.07
3.82	1.00	0.020	0.08
3.82	1.00	0.020	0.08
6.82	2.00	0.020	0.14
			0.51
D CANTIDAD A		UNITARIO B	COSTO C=A*B
1.00			-
		†	
			
		 	
		i J	
			0.00
			0.00
CANTIDAD		TARIFA	0.00 COSTO
A A		В	COSTO C=A*B
D A			COSTO
A A		В	COSTO C=A*B
A A		В	COSTO C=A*B
1.00		B 0.21	COSTO C=A*B
1.00	TOTAL C	B 0.21	COSTO C=A*B 0.21
1.00 DIRECTOS (M+N		B 0.21 +O+P):	COSTO C=A*B 0.21 0.21 4.11
DIRECTOS (M+N	INDIREC'	B 0.21	COSTO C=A*B 0.21 0.21 4.11 0.90
DIRECTOS (M+N TILIDADES	INDIRECTOR II	B 0.21 +O+P):	COSTO C=A*B 0.21 0.21 4.11 0.90 0.00
DIRECTOS (M+N TILIDADES TOS EL RUBRO	INDIRECTOR II	B 0.21 +O+P):	COSTO C=A*B 0.21 0.21 4.11 0.90
<u>m</u>	TOTAL C	A	A B M M M M M M M M M M M M M M M M M M

UBICACIÓN: CANTÓN SANTA ELENA

ANALISIS DE PRECIOS UNITARIOS

RUBRO:2.30UNIDAD: m3DETALLE:RELLENO COMPACTADO CON MATERIAL DE SITIORENDIMIENTO: 0.02

	CANTIDAD	TABLEA	COSTO HODA	DENDIMIENTO	COSTO
DESCRIPCION	CANTIDAD A	TARIFA B	COSTO HORA C= A*B	RENDIMIENTO R	COSTC D=C*R
Herramienta menor 5% M/O					0.0255
olqueta 8 m3	1.00	22.0000	22.0000	0.0200	0.4400
xcavadora	1.00	38.0000	38.0000	0.0200	0.7600
1otoniveladora	1.00	48.0000	48.0000	0.0200	0.9600
odillo liso	1.00	35.0000	35.0000	0.0200	0.7000
anquero	1.00	25.0000	25.0000	0.0200	0.5000
UBTOTAL (M)		~			3.3855
MANO DE OBRA					
ESCRIPCION CATE	GORÍA CANTIDAD	JORNAL/HR B	COSTO HORA C= A*B	RENDIMIENTO R	COSTC D=C*R
P. Volqueta	1.00	3.8200	3.8200	0.020	0.08
P. Excavadora	1.00	3.8200	3.8200	0.020	0.08
P. Motoniveladora	1.00	3.4100	3.4100	0.020	0.07
P. Rodillo liso	1.00	3.8200	3.8200	0.020	0.08
P. Tanquero	1.00	3.8200	3.8200	0.020	0.08
eon E2	2.00	3.4100	6.8200	0.020	0.06
UBTOTAL (N)	2.00	3.4100	0.0200	0.020	0.14
- MATERIALES					0.0102
			CANTIDAD	UNITARIO	COSTO
ESCRIPCION		UNIDAD	A	B	C=A*B
			,,		0-/(5
		· 		} -	
***************************************	•••••				
LIPTOTAL O					0.00
UBTOTAL O					0.00
TRANSPORTE			CANTIDAD	TARIFA	
- TRANSPORTE		UNIDAD	CANTIDAD A	TARIFA R	COSTO
- TRANSPORTE		UNIDAD	CANTIDAD A	TARIFA B	
- TRANSPORTE		UNIDAD			COSTO
- TRANSPORTE		UNIDAD			COSTO
TRANSPORTE DESCRIPCION		UNIDAD			COST
TRANSPORTE DESCRIPCION	Ιτοται (A	В	COST(C=A*B
DESCRIPCION UBTOTAL (P)		COSTOS DIF	A RECTOS (M+N	+O+P):	COSTC C=A*B
DESCRIPCION UBTOTAL (P) ota: estos precios no incluyer	IVA INDIREC	COSTOS DIR	A RECTOS (M+N	В	3.90 0.86
DESCRIPCION UBTOTAL (P) ota: estos precios no incluyer	IVA INDIRECTION OTROS	COSTOS DIR CTOS Y UTIL	A RECTOS (M+N IDADES S	+O+P):	3.90 0.86
	IVA INDIRECTION OTROS COSTO	COSTOS DIR	A RECTOS (M+N IDADES S RUBRO	+O+P):	3.90 0.86

UBICACIÓN: CANTÓN SANTA ELENA

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 2.40 UNIDAD: m3

DETALLE: RELLENO COMPACTADO CON ARCILLA (INC. TRANSPORTE) RENDIMIENTO: 0.03

DESCRIPCION		CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION		Α	В	C= A*B	R	D=C*R
Herramienta menor 5%	6 M/O			***************************************		0.0217
Excavadora		1.00	38.0000	38.0000	0.0200	0.7600
Motoniveladora		1.00	48.0000	48.0000	0.0200	0.9600
Rodillo liso		1.00	35.0000	35.0000	0.0200	0.7000
Tanquero		1.00	25.0000	25.0000	0.0200	0.5000
011070741 (44)						0.0447
SUBTOTAL (M) N MANO DE OBRA						2.9417
N MANO DE OBRA		CANTIDAD	JORNAL/HR	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	CATEGORÍA	A	B	C= A*B	R	D=C*R
OP. Excavadora		1.00	3.8200	3.8200	0.0200	0.0764
OP. Motoniveladora		1.00	3.4100	3.4100	0.0200	0.0682
OP. Rodillo liso		1.00	3.8200	3.8200	0.0200	0.0764
OP. Tanquero		1.00	3.8200	3.8200	0.0200	0.0764
Peon E2		2.00	3.4100	6.8200	0.0200	0.1364
SUBTOTAL (N)						0.4338
O MATERIALES					•	
DECCRIPCION			LINIDAD	CANTIDAD	UNITARIO	COSTO
DESCRIPCION			UNIDAD	Α	В	C=A*B
Arcilla			m3	1.00	1.6000	1.6000
•••••				***************************************		
			~~~~~~~~~~			
SUBTOTAL O						1.6000
P TRANSPORTE						
DESCRIPCION			UNIDAD	CANTIDAD	TARIFA	COSTO
DESCRIPCION			UNIDAD	Α	В	C=A*B
Transporte de material			m3	1.0000	0.2100	0.2100
SUBTOTAL (P)	·					0.2100
•		TOTAL C	OSTOS DIF	RECTOS (M+N	+O+P):	5.19
Nota: estos precios no	incluven IVA		TOS Y UTIL		22.00%	1.14
	•				22.0070	
•	: uei 2017	JOIKOS II	NDIRECTO			0.00
•						
Guayaquil, septiembre			OTAL DEL			6.33 <b>6.33</b>

FIRMA DEL OFERENTE

**UBICACIÓN:** CANTÓN SANTA ELENA

## ANALISIS DE PRECIOS UNITARIOS

RUBRO: 3.10 UNIDAD: mes
DETALLE: GUARDIANÍA RENDIMIENTO: 100.00

M EQUIPOS		0.11	·	00070	BENBUS	000==
DESCRIPCION		CANTIDAD A	TARIFA B	COSTO HORA C= A*B	RENDIMIENTO R	COSTO D=C*R
SUBTOTAL (M)						
N MANO DE OBRA	1					
DESCRIPCION	CATEGORÍA	CANTIDAD A	В	COSTO HORA C= A*B	RENDIMIENTO R	COSTO D=C*R
Guardia		1.00	3.5000	3.5000	100.0000	350.0000
SUBTOTAL (N)		•				350.0000
O MATERIALES					· · · · · · · · · · · · · · · · · · ·	
DESCRIPCION	_		UNIDAD	CANTIDAD A	UNITARIO B	COSTO C=A*B
CHETOTAL O						
SUBTOTAL O				CANTIDAD	TARIFA	соѕто
P TRANSPORTE			UNIDAD	A	В	C=A*B
P TRANSPORTE DESCRIPCION			UNIDAD		В	C=A*B
P TRANSPORTE DESCRIPCION			UNIDAD		В	C=A*B
DESCRIPCION		Ітотаь с		Α		
DESCRIPCION  SUBTOTAL (P)	io incluyen IVA		OSTOS DIR	A RECTOS (M+N	+O+P):	350.00
DESCRIPCION  BUBTOTAL (P)  Nota: estos precios r		INDIRECTOR II	OSTOS DIR TOS Y UTIL	A RECTOS (M+N IDADES S		<b>350.00</b> 77.00 0.00
DESCRIPCION  SUBTOTAL (P)  Nota: estos precios r		OTROS II	OSTOS DIR TOS Y UTIL NDIRECTO: OTAL DEL	A RECTOS (M+N IDADES S RUBRO	+O+P):	<b>350.00</b> 77.00 0.00 427.00
DESCRIPCION  SUBTOTAL (P)  Nota: estos precios r		OTROS II	OSTOS DIR TOS Y UTIL	A RECTOS (M+N IDADES S RUBRO	+O+P):	<b>350.00</b> 77.00 0.00
P TRANSPORTE		OTROS II	OSTOS DIR TOS Y UTIL NDIRECTO: OTAL DEL	A RECTOS (M+N IDADES S RUBRO	+O+P):	<b>350.00</b> 77.00 0.00 427.00

**UBICACIÓN:** CANTÓN SANTA ELENA

## ANALISIS DE PRECIOS UNITARIOS

RUBRO: 3.20 UNIDAD: mes
DETALLE: LIMPIEZA GENERAL DE OBRA RENDIMIENTO: 4.00

		CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION		A	I ARIFA B	COSTO HORA C= A*B	RENDIMIENTO	D=C*R
Herramienta menor				<u> </u>		4.7740
			••••			
	•••••			***************************************		
SUBTOTAL (M)		,				4.7740
N MANO DE OBRA						
DESCRIPCION	CATEGORÍA	CANTIDAD A	JORNAL/HR B	COSTO HORA C= A*B	RENDIMIENTO R	COSTO D=C*R
Peón E2		7.00	3.4100	23.8700	4.0000	95.4800
				20.07.00	1.0000	
SUPTOTAL (N)						OE 4900
SUBTOTAL (N) D MATERIALES						95.4800
DESCRIPCION			UNIDAD	CANTIDAD	UNITARIO	COSTO
DESCRIPCION			UNIDAD	Α	В	C=A*B
				***************************************		•••••
SUBTOTAL O						
P TRANSPORTE						
DESCRIPCION			UNIDAD	CANTIDAD	TARIFA	COSTO
				Α	В	C=A*B
•••••	•••••	••••••	•••••	***************************************		•••••
SUBTOTAL (P)						
		TOTAL C	OSTOS DIR	ECTOS (M+N-	+O+P):	100.25
Nota: estos precios n	o incluyen IVA		TOS Y UTIL		22.00%	22.06
Guayaquil, septiembr			NDIRECTO			0.00
- · ·			OTAL DEL			122.31
			FERTADO			122.31
				(+/		01
		VALOR C	<u> FERTADO</u>	(\$)		

**UBICACIÓN:** CANTÓN SANTA ELENA

## ANALISIS DE PRECIOS UNITARIOS

RUBRO:3.30UNIDAD: m2DETALLE:RESTITUCIÓN DE LA CAPA VEGETALRENDIMIENTO: 0.20

DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
Herramienta menor	1.00	<b>B</b> 0.17	<b>C= A*B</b> 0.17	R	D=C*R 0.17
ierramienta menor		0.17	0.17		0.17
SUBTOTAL (M)					0.17
N MANO DE OBRA					0.17
DESCRIPCION CATEGORÍA	CANTIDAD	JORNAL/HR	COSTO HORA	RENDIMIENTO	COSTO
	A	В	C= A*B	R	D=C*R
Peón E2	5.00	3.4100	17.05	0.200	3.41
CURTOTAL (AI)					0.44
SUBTOTAL (N) O MATERIALES					3.41
DESCRIPCION		UNIDAD	CANTIDAD	UNITARIO	COSTO
DESCRIPCION		UNIDAD	Α	В	C=A*B
Capa vegetal		m2	1.00	1.80	1.80
		~~~~~			
SUBTOTAL O					1.80
P TRANSPORTE				l	
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			Α	В	C=A*B
SUBTOTAL (P)					0.00
			RECTOS (M+N	+O+P):	5.38
Nota: estos precios no incluyen IVA	INDIREC	TOS Y UTIL	IDADES	22.00%	1.18
Guayaquil, septiembre del 2017		NDIRECTO			0.00
		OTAL DEL			6.56
					6.56

UBICACIÓN: CANTÓN SANTA ELENA

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 3.40 UNIDAD: viaje DETALLE: DESALOJO DE MATERIALES RENDIMIENTO: 0.50

DESCRIPCION	CANTIDAD A	TARIFA B	COSTO HORA C= A*B	RENDIMIENTO R	COSTC D=C*R
lerramienta menor					0.59
olqueta 8 m3	2.00	22.00	44.00	0.50	22.00
SUBTOTAL (M)					22.5910
N MANO DE OBRA					
DESCRIPCION CATEGOR	ÍA CANTIDAD A	JORNAL/HR B	COSTO HORA C= A*B	RENDIMIENTO R	COSTO D=C*R
Peón E2 Chofer licencia E	4.00	3.41 5.00	13.64	0.500 0.500	6.820 5.000
FIGURE IICERCIA E	2.00	5.00	10.00	0.500	5.000
SUBTOTAL (N)	<u> </u>			l	11.8200
D MATERIALES					
DESCRIPCION		UNIDAD	CANTIDAD A	UNITARIO B	COSTC C=A*B
					0-71 2
P TRANSPORTE		UNIDAD	CANTIDAD	TARIFA	
P TRANSPORTE		UNIDAD	CANTIDAD A	TARIFA B	
P TRANSPORTE		UNIDAD			
P TRANSPORTE		UNIDAD			COSTC C=A*B
SUBTOTAL O P TRANSPORTE DESCRIPCION SUBTOTAL (P)			A	В	C=A*B
DESCRIPCION SUBTOTAL (P)		OSTOS DIR	A RECTOS (M+N	+O+P):	C=A*B
DESCRIPCION SUBTOTAL (P) Jota: estos precios no incluyen IVA	INDIREC	OSTOS DIR	A RECTOS (M+N	В	34.41 7.57
DESCRIPCION SUBTOTAL (P) Jota: estos precios no incluyen IVA	INDIREC OTROS I	OSTOS DIR TOS Y UTIL NDIRECTO	A RECTOS (M+N IDADES S	+O+P):	34.41 7.57 0.00
P TRANSPORTE DESCRIPCION	INDIREC OTROS II COSTO T	OSTOS DIR	A RECTOS (M+N IDADES S RUBRO	+O+P):	C=A*B 34.41 7.57

ANEXO F ANÁLISIS DE PRECIOS UNITARIOS (VÍAS DE ACCESO)

OBRA: DISEÑO DE SOLUCIONES VIALES ESPECIALES EN LA POBLACIÓN DE AYANGUE **UBICACIÓN**: CANTÓN SANTA ELENA

ANÁLISIS DE PRECIOS UNITARIOS

RUBRO: 1.10 DETALLE: LIMPIEZA DE TERREN	0			UNIDAD: 1	
M EQUIPOS					
DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
Herramienta menor 5% M/O	Α	В	C= A*B	R	D=C*R 0.0425
					0.0423
CLIPTOTAL (M)					0.04
SUBTOTAL (M) N MANO DE OBRA					0.04
DESCRIPCION CATEGORÍA	CANTIDAD	JORNAL/HR	COSTO HORA	RENDIMIENTO	COSTO
	A	B	C= A*B	R	D=C*R
Peón E2	5.00	3.4100	17.0500	0.0500	0.8525
SUBTOTAL (N)					0.85
D MATERIALES					
DESCRIPCION		UNIDAD	CANTIDAD	UNITARIO	COSTO
			A	В	C=A*B
SUBTOTAL O P TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
DEGGINI GION		ONIDAD	Α	В	C=A*B

SUBTOTAL (P)					
			RECTOS (M+N	+O+P):	0.89
		TOS Y UTIL		22.00%	0.20
	OTROS II	NDIRECTO			0.00
Nota: estos precios no incluyen IVA Guayaquil, septiembre del 2017	OTROS II		RUBRO		1.09 1.09

ANÁLISIS DE PRECIOS UNITARIOS

FIRMA DEL OFERENTE

RUBRO: 1.20 UNIDAD: m2
DETALLE: CASETA DE GUARDIANÍA RENDIMIENTO: 0.40

M EQUIPOS				,	
DESCRIPCION	CANTIDAD		COSTO HORA	RENDIMIENTO	COSTO
Harmonianta manan 50/ M/O	A	В	C= A*B	R	D=C*R
Herramienta menor 5% M/O				 	0.2136
SUBTOTAL (M)					0.2426
N MANO DE OBRA					0.2136
	CANTIDAD	JORNAL/HR	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION CATEGORÍA	A	В	C= A*B	R	D=C*R
Maestro de obra C1	1.00	3.8200	3.8200	0.4000	1.5280
Carpintero D2	1.00	3.4500	3.4500	0.4000	1.3800
Peón E2	1.00	3.4100	3.4100	0.4000	1.3640
SUBTOTAL (N)					4.2720
O MATERIALES					
DESCRIPCION		UNIDAD	CANTIDAD A	UNITARIO B	COSTO C=A*B
Tabla		u	0.4000	4.5000	1.8000
Cuartón		u	1.0000	2.6000	2.6000
Clavo 2"x 8		Lb	0.0050	0.8200	0.0041
Plancha galvalumen		u	0.8000	13.5800	10.8640
Bisagra cromada		u	0.1000	0.8500	0.0850
Argollas		u	0.0800	0.7700	0.0616
Candado		u	0.0100	6.5000	0.0650
SUBTOTAL O					15.4797
P TRANSPORTE		Γ			
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO C=A*B
		U/Km	A 1.40	B 0.400	
Transporta da madara		U/KIII	1.40	0.400	0.560
Transporte de madera					
Transporte de madera					
					0.5000
Transporte de madera SUBTOTAL (P)	TOTAL C	OSTOS DIE	PECTOS (M.N.	· O · PN·	0.5600
SUBTOTAL (P)			RECTOS (M+N		20.53
SUBTOTAL (P) Nota: estos precios no incluyen IVA	INDIREC	TOS Y UTIL	IDADES	+O+P): 22.00%	20.53 4.52
SUBTOTAL (P)	INDIREC OTROS I	TOS Y UTIL NDIRECTO	IDADES S		20.53 4.52 0.00
SUBTOTAL (P) Nota: estos precios no incluyen IVA	INDIREC OTROS II COSTO T	TOS Y UTIL	IDADES S RUBRO		20.53 4.52

ANÁLISIS DE PRECIOS UNITARIOS

FIRMA DEL OFERENTE

RUBRO: 1.30 UNIDAD: u
DETALLE: LETRERO DE OBRA RENDIMIENTO:

DESCRIPCION		CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION		A	В	C= A*B	R	D=C*R
					·····	
SUBTOTAL (M)		'		•		
N MANO DE OBRA						
DESCRIPCION	CATEGORÍA	CANTIDAD		COSTO HORA	RENDIMIENTO	COSTO
		A	В	C= A*B	R	D=C*R

SUBTOTAL (N)		•		•		
O MATERIALES						
DESCRIPCION			UNIDAD	CANTIDAD A	UNITARIO B	COSTO C=A*B
Rotulo informativo de la	a obra		u	1.0000	20.0000	20.0000
					 	
			•••••	•	*	
SUBTOTAL O						20.0000
P TRANSPORTE						
DESCRIPCION			UNIDAD	CANTIDAD A	TARIFA B	COSTO C=A*B

SUBTOTAL (P)						
CODICIAL (I)		TOTALC	OSTOS DIE	RECTOS (M+N	+O+b).	20.00
Nota: estos precios no	incluyen IVA		TOS Y UTIL		22.00%	4.40
•	•		NDIRECTO		22.0076	0.00
Guayaquil, septiembre del 2017			OTAL DEL			24.40
,,,		I COSTO I				24.4 U
,,			FERTADO	(\$)		24.40

ANÁLISIS DE PRECIOS UNITARIOS

RUBRO: 1.40 UNIDAD: mes DETALLE: BATERÍA SANITARIA RENDIMIENTO:

		CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION		A	В	C= A*B	R	D=C*R
SUBTOTAL (M)						
N MANO DE OBRA						
		CANTIDAD	JORNAL/HR	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	CATEGORÍA	Α	В	C= A*B	R	D=C*R
SUBTOTAL (N)						
O MATERIALES				CANITIDAD	LINUTADIO	00070
DESCRIPCION			UNIDAD	CANTIDAD A	UNITARIO B	COSTO C=A*B
Contrata manaual da	hataría canitaria		u	2.0000	180.0000	360.0000
Jonitato mensual de	ontrato mensual de batería sanitaria		u	2.0000	160.0000	300.0000
SUBTOTAL O						360.0000
P TRANSPORTE			UNIDAD	CANTIDAD	TARIFA	соѕто
P TRANSPORTE			UNIDAD	CANTIDAD A	TARIFA B	
P TRANSPORTE			UNIDAD			соѕто
			UNIDAD			соѕто
P TRANSPORTE DESCRIPCION			UNIDAD			соѕто
P TRANSPORTE DESCRIPCION				A	В	COSTO C=A*B
P TRANSPORTE DESCRIPCION SUBTOTAL (P)			OSTOS DIR	A RECTOS (M+N	В	соѕто
P TRANSPORTE DESCRIPCION SUBTOTAL (P)	o incluyen IVA	INDIREC	OSTOS DIR	RECTOS (M+N	В	COSTO C=A*B
DESCRIPCION SUBTOTAL (P) Nota: estos precios r		INDIREC	OSTOS DIR	RECTOS (M+N	+O+P):	COSTO C=A*B
P TRANSPORTE DESCRIPCION SUBTOTAL (P) Nota: estos precios r		INDIREC OTROS II	OSTOS DIR TOS Y UTIL NDIRECTO	RECTOS (M+N	+O+P):	360.00 79.20
SUBTOTAL O P TRANSPORTE DESCRIPCION SUBTOTAL (P) Nota: estos precios r Guayaquil, septiembr		OTROS II	OSTOS DIR TOS Y UTIL NDIRECTO:	RECTOS (M+N IDADES S RUBRO	+O+P):	360.00 79.20 0.00 439.20
P TRANSPORTE DESCRIPCION SUBTOTAL (P) Nota: estos precios r		OTROS II	OSTOS DIR TOS Y UTIL NDIRECTO	RECTOS (M+N IDADES S RUBRO	+O+P):	360.00 79.20
P TRANSPORTE DESCRIPCION SUBTOTAL (P) Nota: estos precios r		OTROS II	OSTOS DIR TOS Y UTIL NDIRECTO:	RECTOS (M+N IDADES S RUBRO	+O+P):	360.00 79.20 0.00 439.20
DESCRIPCION BUBTOTAL (P) Nota: estos precios r		OTROS II	OSTOS DIR TOS Y UTIL NDIRECTO:	RECTOS (M+N IDADES S RUBRO	+O+P):	360.00 79.20 0.00 439.20
DESCRIPCION SUBTOTAL (P) Nota: estos precios r		OTROS II	OSTOS DIR TOS Y UTIL NDIRECTO:	RECTOS (M+N IDADES S RUBRO	+O+P):	360.00 79.20 0.00 439.20

ANÁLISIS DE PRECIOS UNITARIOS

 RUBRO:
 1.50
 UNIDAD: m2

 DETALLE:
 TRAZADO Y REPLANTEO
 RENDIMIENTO: 0.044

DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COST
	A	В	C= A*B	R	D=C*R
Herramienta menor 5% M/O	1.00	2.5000	2.5000	0.0440	0.0310 0.1100
Equipo topográfico	1.00	2.3000	2.3000	0.0440	0.1100
SUBTOTAL (M)					0.1410
N MANO DE OBRA	_				
DESCRIPCION CATEGORÍA	CANTIDAD A	JORNAL/HR B	COSTO HORA C= A*B	RENDIMIENTO R	COSTO D=C*R
Cadenero	1.00	3.4500	3.4500	0.0440	0.1518
Topógrafo	1.00	3.8200	3.8200	0.0440	0.1681
Peón E2	2.00	3.4100	6.8200	0.0440	0.3001
SUBTOTAL (N)					0.6200
O MATERIALES					0.0200
DESCRIPCION		UNIDAD	CANTIDAD A	UNITARIO B	COSTO C=A*E
Tabla		u	0.0060	4.50	0.0270
Cuartón		u	0.0190	2.60	0.0494
Clavo 2" x 8		Lb	0.0020	0.82	0.0016
Pintura de caucho		gln	0.0002	15.62	0.0031
Cementina (25Kg)		sc	0.0010	1.60	0.0016
		~~~~			
SUBTOTAL O P TRANSPORTE					0.0828
DESCRIPCION		UNIDAD	CANTIDAD A	TARIFA B	COSTO
Transporte de madera		u/Km	0.0250	0.4000	0.0100
SUBTOTAL (P)					0.0100
			RECTOS (M+N	,	0.85
Nota: estos precios no incluyen IVA		TOS Y UTIL		22.00%	0.19
Guayaquil, septiembre del 2017		NDIRECTO			0.00
		OTAL DEL			1.04
	IVALOR C	FERTADO	(\$)		1.04

FIRMA DEL OFERENTE

## ANÁLISIS DE PRECIOS UNITARIOS

RUBRO: 1.60 UNIDAD: m3
DETALLE: EXCAVACIÓN SIN CLASIFICAR (INC. DESALOJO) RENDIMIENTO: 0.030

		041:5:5:	TABIES	00076 !!65	DENDINGENER	00077
DESCRIPCION		CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
Herramienta menor 5%	M/O	Α	В	C= A*B	R	<b>D=C*R</b> 0.0183
Excavadora	) IVI/O	1.00	38.0000	38.0000	0.0300	1.1400
Volqueta 8 m3		1.00	22.0000	22.0000	0.0300	0.6600
					0.000	
SUBTOTAL (M)						1.8183
N MANO DE OBRA		T-				
DESCRIPCION	CATEGORÍA	CANTIDAD A	JORNAL/HR B	COSTO HORA C= A*B	RENDIMIENTO R	COSTO D=C*R
Peon E2		1.00	3.4100	3.4100	0.0300	0.1023
OP. Excavadora		1.00	3.8200	3.8200	0.0300	0.1023
OP. Volqueta			5.0000		h	• • • • • • • • • • • • • • • • • • • •
JP. Volqueta		1.00	5.0000	5.0000	0.0300	0.1500
***************************************	***************************************					
SUBTOTAL (N)						0.3660
SUBTOTAL (N) D MATERIALES						0.3669
DECCRIPCION			LINIDAD	CANTIDAD	UNITARIO	COSTO
DESCRIPCION			UNIDAD	Α	В	C=A*B
SUBTOTAL O						
P TRANSPORTE				CANTIDAD	TARIFA	COSTO
DESCRIPCION			UNIDAD	A	В	C=A*B
Transporte de material			m3/Km	1.0000	0.2100	0.2100
SUBTOTAL (P)					<u>'</u>	0.21
· · · · · · · · · · · · · · · · · · ·		TOTAL C	OSTOS DIR	RECTOS (M+N	+O+P):	2.40
, ,		INDIREC	TOS Y UTIL	IDADES	22.00%	0.53
Nota: estos precios no	incluyen IVA			•		0.00
		OTROS II	NDIRECTO	3		0.00
Nota: estos precios no Guayaquil, septiembre		OTROS II	OTAL DEL			2.93

## ANÁLISIS DE PRECIOS UNITARIOS

RUBRO: 1.70 UNIDAD: m3
DETALLE: RELLENO CON MATERIAL DE PRÉSTAMO LOCAL (INC. TRANSPORTE) RENDIMIENTO: 0.020

DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
	A	В	C= A*B	R	D=C*R
Herramienta menor 5% M/O					0.0221
Volqueta 8 m3	1.00	22.0000	22.0000	0.0200	0.4400
Excavadora	1.00	38.0000	38.0000	0.0200	0.7600
Motoniveladora	1.00	48.0000	48.0000	0.0200	0.9600
Rodillo liso	1.00	35.0000	35.0000	0.0200	0.7000
Tanquero	1.00	25.0000	25.0000	0.0200	0.5000
SUBTOTAL (M)					3.3821
N MANO DE OBRA					
DESCRIPCION CATEGOR	(ANTIDAD	JORNAL/HR	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION CATEGOR	A	В	C= A*B	R	D=C*R
OP. Volqueta	1.00	3.8200	3.8200	0.0200	0.0764
OP. Excavadora	1.00	3.8200	3.8200	0.0200	0.0764
OP. Motoniveladora	1.00	3.4100	3.4100	0.0200	0.0682
OP. Rodillo liso	1.00	3.8200	3.8200	0.0200	0.0764
OP. Tanquero	1.00	3.8200	3.8200	0.0200	0.0764
Peon E2	1.00	3.4100	3.4100	0.0200	0.0682
SUBTOTAL (N)		511155			0.4420
O MATERIALES				J	020
			CANTIDAD	UNITARIO	COSTO
DESCRIPCION		UNIDAD	A	B	C=A*B
SUBTOTAL O					0.0000
P TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD A	TARIFA B	COSTO C=A*B
Transporte de material		u/Km	1.0000	0.2100	0.2100
SUBTOTAL (P)					0.2100
OUDIVIAL (F)	TOTAL	00700 5:5	EOTOC (14 11	. O . D)	
			RECTOS (M+N	+U+P):	4.03
Nota: estos precios no incluyen IVA	INDIREC	TOS Y UTIL	IDADES	22.00%	0.89
Guayaquil, septiembre del 2017	OTROS II	NDIRECTO	S		0.00
, , , ,		OTAL DEL			4.92
	VALOR C	FERTADO	(4)		4.92
FIRMA DEL OFERENTE					

## ANÁLISIS DE PRECIOS UNITARIOS

FIRMA DEL OFERENTE

RUBRO: 2.10 UNIDAD: m3

DETALLE: TIERRA ARMADA (INC. TRANSPORTE, TENDIDO Y COMPACTACIÓN) RENDIMIENTO: 0.02

M EQUIPOS			1	7		
DESCRIPCION		CANTIDAD A	TARIFA B	COSTO HORA C= A*B	RENDIMIENTO R	COSTO D=C*R
Herramienta menor 5°	% M/O					0.0180
Motoniveladora		1.00	48.0000	48.0000	0.0200	0.9600
Rodillo liso		1.00	35.0000	35.0000	0.0200	0.7000
Tanquero		1.00	25.0000	25.0000	0.0200	0.5000
SUBTOTAL (M)						2.1780
N MANO DE OBRA			T		l	
DESCRIPCION	CATEGORÍA	CANTIDAD	JORNAL/HR	COSTO HORA	RENDIMIENTO	COSTO
OP. Motoniveladora		1.00	<b>B</b> 3.4100	C= A*B 3.4100	R 0.0200	<b>D=C*R</b> 0.0682
OP. Rodillo liso		1.00	3.8200	3.8200	0.0200	0.0662
OP. Tanquero	***************************************	1.00	3.8200	3.8200	0.0200	0.0764
Peon E2		2.00	3.4100	6.8200	0.0200	0.1364
1 6011 LZ		2.00	3.4100	0.0200	0.0200	0.1304
SUBTOTAL (N)					l	0.3600
O MATERIALES					<u> </u>	0.0000
DECORIDO1011				CANTIDAD	UNITARIO	COSTO
DESCRIPCION			UNIDAD	Α	В	C=A*B
Geotextil no tejito NT	3000		ml	1.00	2.40	2.40
					***************************************	
		•••••				
	***************************************			•••••		***************************************
SUBTOTAL O					l	2.4000
P TRANSPORTE						2.4000
				CANTIDAD	TARIFA	COSTO
DESCRIPCION			UNIDAD	A	В	C=A*B
					_	
						••••••
SUBTOTAL (P)					l	0.0000
OODTOTAL (I )		TOTAL CO	DETOS DIDI	ECTOS (M+N+	O . D).	
Nista satas sassitas s	- ' D/A					4.94
Nota: estos precios n	-		OS Y UTILI		22.00%	1.09
	e del 2017		IDIRECTOS			0.00
Guayaquil, septiembr		ICOSTO TO	OTAL DEL F	RUBRO		6.03
Guayaquil, septiembr						
Guayaquil, septiembr			FERTADO (			6.03

## ANÁLISIS DE PRECIOS UNITARIOS

RUBRO: 2.20 UNIDAD: m3
DETALLE: BASE CLASE 2 (INC. TRANSPORTE, TENDIDO Y COMPACTACIÓN) RENDIMIENTO: 0.05

M EQUIPOS  DESCRIPCION		CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION		Α	В	C= A*B	R	D=C*R
Herramienta menor 5%	M/O					0.0297
xcavadora		1.00	38.0000	38.0000	0.0400	1.5200
Motoniveladora		1.00	48.0000	48.0000	0.0400	1.9200
Rodillo liso		1.00	35.0000	35.0000	0.0400	1.4000
				•••••		
SUBTOTAL (M)						4.8697
N MANO DE OBRA						4.0007
DESCRIPCION	CATEGORÍA	CANTIDAD	JORNAL/HR	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	CATEGORIA	Α	В	C= A*B	R	D=C*R
OP. Excavadora		1.00	3.8200	3.8200	0.0400	0.1528
OP. Motoniveladora		1.00	3.8200	3.8200	0.0400	0.1528
OP. Rodillo liso		1.00	3.8200	3.8200	0.0400	0.1528
Peon E2	•••••	1.00	3.4100	3.4100	0.0400	0.1364
SUBTOTAL (N)						0.5948
D MATERIALES						0.00-10
DESCRIPCION			UNIDAD	CANTIDAD	UNITARIO	COSTO
				A	В	C=A*B
Base clase 2			m3	1.0000	5.2000	5.2000
		•••••				
SUBTOTAL O P TRANSPORTE						5.20
				CANTIDAD	TARIFA	COSTO
			UNIDAD	Α	В	C=A*B
DESCRIPCION						
DESCRIPCION						
				***************************************		
DESCRIPCION				***************************************		
						0.0000
		TOTAL CO	OSTOS DIRI	ECTOS (M+N+	O+P):	0.0000
SUBTOTAL (P)	incluven IVA				,	10.66
SUBTOTAL (P)  Nota: estos precios no		INDIRECT	OS Y UTILI	DADES	O+P):	2.35
SUBTOTAL (P)  Nota: estos precios no		INDIRECT OTROS IN	OS Y UTILI	DADES	,	10.66 2.35 0.00
SUBTOTAL (P)  Nota: estos precios no Guayaquil, septiembre		INDIRECT OTROS IN COSTO TO	OS Y UTILI	DADES RUBRO	,	<b>10.66</b> 2.35

## ANÁLISIS DE PRECIOS UNITARIOS

RUBRO:	2.30	UNIDAD: m2
DETALLE:	IMPRIMACIÓN ASFÁLTICA	RENDIMIENTO: 0.01

DECCRIPCION		041:			DELIBIRATE CONTRACTOR	000=-
DESCRIPCION		CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
Herramienta menor 5%	M/O	Α	В	C= A*B	R	D=C*R 0.01
Distribuidor de asfalto	i ivi/O	1.00	40.00	40.00	0.01	0.40
Barredora autopropulsa		1.00	25.00	25.00	0.01	0.25
SUBTOTAL (M)						0.66
N MANO DE OBRA					<u> </u>	
DESCRIPCION	CATEGORÍA	CANTIDAD A	JORNAL/HR B	COSTO HORA C= A*B	RENDIMIENTO R	COSTO D=C*R
OP. Distribuidor de asf	alto	1.00	3.64	3.64	0.010	0.04
OP. Barredora autopro	pulsado	1.00	3.64	3.64	0.010	0.04
Peón		2.00	3.41	6.82	0.010	0.07
SUBTOTAL (N)						0.14
O MATERIALES				-		
DESCRIPCION			UNIDAD	CANTIDAD	UNITARIO	COSTO
A ofolto DC 250			Ka.	<b>A</b> 1.50	<b>B</b> 0.29	<b>C=A*B</b> 0.44
Asfalto RC-250 Diesel			Kg lt.	0.10	0.29	0.44
						0.46
				CANTIDAD	TARIFA	
			UNIDAD	CANTIDAD A	TARIFA B	0.46  COSTO C=A*B
P TRANSPORTE DESCRIPCION				Α	В	COSTO C=A*B
P TRANSPORTE DESCRIPCION		TOTAL CO			В	COSTO C=A*B
P TRANSPORTE DESCRIPCION SUBTOTAL (P)	incluyen IVA			A ECTOS (M+N+	В	COSTO C=A*B
P TRANSPORTE DESCRIPCION  SUBTOTAL (P)  Nota: estos precios no	•	INDIRECT	OSTOS DIRI	A ECTOS (M+N+ DADES	0+P):	COSTO C=A*B
SUBTOTAL O P TRANSPORTE DESCRIPCION  SUBTOTAL (P)  Nota: estos precios no Guayaquil, septiembre	•	INDIRECT OTROS IN	OSTOS DIRI	A ECTOS (M+N+ DADES	0+P):	0.00 1.26 0.28

## ANÁLISIS DE PRECIOS UNITARIOS

RUBRO: 2.40 UNIDAD: m2

DETALLE: CARPETA ASFÁLTICA e=2" RENDIMIENTO: 0.010

CANTIDAD A	TARIFA B	COSTO HORA C= A*B	RENDIMIENTO R	COSTO D=C*R
1.00			Γ	
1.00		<u> </u>	<u> </u>	0.0054
	40.0000	40.0000	0.0100	0.4000
1.00	35.0000	35.0000	0.0100	0.3500
1.00	35.0000	35.0000	0.0100	0.3500
				1.1054
CANTIDAD	JORNAL/HR	COSTO HORA	RENDIMIENTO	COSTO
				D=C*R
		· · · · · · · · · · · · · · · · · · ·		0.0382
				0.0364
1.00	3.4100	3.4100	0.0100	0.0341
	•			0.1087
	UNIDAD	CANTIDAD A	UNITARIO B	COSTO C=A*B
	Kg	5.0000	0.6000	3.0000
	m3	0.0150	8.7200	0.1308
	m3	0.1000	10.8000	1.0800
				4.2108
	ı	CANTIDAD	TABLEA	00070
	UNIDAD	A	B B	COSTO C=A*B
				5.42
			22.00%	1.19
				0.00
COSTO TO	OTAL DEL F	RUBRO		6.61
VALOR O	FERTADO (	\$)		6.61
	TOTAL COINDIRECT	Note	NIDAD   CANTIDAD   May   May	NIDAD   CANTIDAD   TARIFA   B   CANTIDAD   TOTAL COSTOS DIRECTOS (M+N+O+P): INDIRECTOS Y UTILIDADES   COSTO TOTAL DEL RUBRO   COSTO COST

FIRMA DEL OFERENTE

## ANÁLISIS DE PRECIOS UNITARIOS

FIRMA DEL OFERENTE

RUBRO: 2.50 UNIDAD: m2
DETALLE: PANTALLA IMPERMEABLE CON GEOMEMBRANA e=2mm RENDIMIENTO: 0.20

DESCRIPCION	CANTIDAD A	TARIFA B	COSTO HORA C= A*B	RENDIMIENTO R	COSTO D=C*R
Herramienta menor 5% M/O					0.0532
			***************************************		
CURTOTAL (M)					0.0532
SUBTOTAL (M) N MANO DE OBRA					0.0552
	CANTIDAD	JORNAL/HR	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION CATEGORÍA	Α	В	C= A*B	R	D=C*R
Peón E2	2.00	3.4100	6.8200	0.1000	0.6820
Maestro C1	1.00	3.8200	3.8200	0.1000	0.3820
·····					
SUBTOTAL (N)					1.0640
O MATERIALES				Į.	
DESCRIPCION		UNIDAD	CANTIDAD A	UNITARIO B	COSTO C=A*B
Geomembrana polietileno 2.00mm		ml	1.0000	2.8000	2.8000
			***************************************		
			***************************************		
SUBTOTAL O					2.8000
SUBTOTAL O P TRANSPORTE					
		UNIDAD	CANTIDAD	TARIFA	соѕто
P TRANSPORTE		UNIDAD	CANTIDAD A	TARIFA B	
P TRANSPORTE		UNIDAD		l l	соѕто
P TRANSPORTE		UNIDAD		l l	соѕто
P TRANSPORTE		UNIDAD		l l	соѕто
P TRANSPORTE DESCRIPCION	TOTAL CO			В	COSTO C=A*B
P TRANSPORTE  DESCRIPCION  SUBTOTAL (P)	INDIRECT	OSTOS DIRI	A ECTOS (M+N+ DADES	В	0.00 0.86
P TRANSPORTE DESCRIPCION	INDIRECT	OSTOS DIRI	A ECTOS (M+N+ DADES	0+P):	COSTO C=A*B
P TRANSPORTE  DESCRIPCION  SUBTOTAL (P)  Nota: estos precios no incluyen IVA	OTROS IN	OSTOS DIRI	ECTOS (M+N+ DADES	0+P):	0.00 0.86

## ANÁLISIS DE PRECIOS UNITARIOS

FIRMA DEL OFERENTE

 RUBRO:
 2.60
 UNIDAD: ml

 DETALLE:
 BLOQUEO DE FLUJO
 RENDIMIENTO: 0.20

DESCRIPCION	CANTIDAD A	TARIFA B	COSTO HORA C= A*B	RENDIMIENTO R	COSTO D=C*R
Herramienta menor 5% M/O			<u> </u>		0.1064
SUBTOTAL (M)					0.1064
N MANO DE OBRA	T	T .		1	
DESCRIPCION CATEGORÍA	CANTIDAD	JORNAL/HR	COSTO HORA	RENDIMIENTO	COSTO
Peón E2	2.00	<b>B</b> 3.4100	C= A*B 6.8200	0.2000	D=C*R 1.3640
Maestro C1	1.00	3.8200	3.8200	0.2000	0.7640
Mdestio Ci	1.00	3.0200	3.0200	0.2000	0.7040
					~~~~~
SUBTOTAL (N)	•	•		•	2.1280
O MATERIALES					
DESCRIPCION		UNIDAD	CANTIDAD A	UNITARIO B	COSTO C=A*B
Bloque		u	2.50	0.70	1.75
Mortero		m3	0.50	0.20	0.10

			•••••		
				·····	
SUBTOTAL O					1.85
P TRANSPORTE				ı	1.00
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
		0.412742	Α	В	C=A*B
Transporte de bloque		u	2.5000	0.0800	0.2000
CURTOTAL (D)					0.0000
SUBTOTAL (P)	TOTAL CO	OCTOC DID	TOTOC (M.N.	O . D).	0.2000
Notes estas presion no inclusion N/A			ECTOS (M+N+		4.28
Nota: estos precios no incluyen IVA		OS Y UTILI		22.00%	0.94
Guayaquil, septiembre del 2017		IDIRECTOS			0.00
		OTAL DEL F			5.22
	IVALOR O	FERTADO (5)		5.22

ANÁLISIS DE PRECIOS UNITARIOS

RUBRO:3.10UNIDAD: m3DETALLE:EXCAVACIÓN Y RELLENO (CUNETA)RENDIMIENTO: 0.30

	A	В	C= A*B	R	D=C*R	
Herramienta menor 5% M/O					0.2110	
SUBTOTAL (M) N MANO DE OBRA					0.2100	
	EGORÍA CANTIDAI	JORNAL/HR B	COSTO HORA C= A*B	RENDIMIENTO R	COSTO	
Peon E2	3.00	3.4100	10.2300	0.3000	3.0690	
Maestro C1	1.00	3.8200	3.8200	0.3000	1.1460	
SUBTOTAL (N)	·				4.2200	
D MATERIALES			CANTIDAD	UNITARIO	COST	
DESCRIPCION		UNIDAD	A	B	C=A*E	
					••••••	
***************************************			***************************************		***************************************	
SUBTOTAL O						
P TRANSPORTE		_				
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COST	
		+	Α	В	C=A*E	
SUBTOTAL (P)					0.00	
	TOTAL C	OSTOS DIR	ECTOS (M+N+	O+P):	4.43	
Nota: estos precios no incluye	n IVA INDIREC	TOS Y UTILI	DADES	22.00%	0.97	
Guayaquil, septiembre del 201	7 OTROS I	NDIRECTOS	}		0.00	
	COSTO	TOTAL DEL F	RUBRO		5.40	
	VALOR (OFERTADO (\$)		5.40	
Guayaquil, septiembre del 201	OTROS I	OTROS INDIRECTOS COSTO TOTAL DEL RUBRO VALOR OFERTADO (\$)				

OBRA: DISEÑO DE SOLUCIONES VIALES ESPECIALES EN LA POBLACIÓN DE AYANGUE

UBICACIÓN: CANTÓN SANTA ELENA

ANÁLISIS DE PRECIOS UNITARIOS

RUBRO: 3.20 UNIDAD: m3
DETALLE: HORMIGÓN SIMPLE F'C= 180 Kg/cm2 (CUNETA) RENDIMIENTO: 0.50

DESCRIPCION	CANTIDAD A	TARIFA B	COSTO HORA C= A*B	RENDIMIENTO R	COSTO D=C*R
Herramienta menor					0.7388
Concretera 1 saco	1.00	3.1300	3.1300	0.5000	1.5650

SUBTOTAL (M)					2.3038
N MANO DE OBRA					
DESCRIPCION CATEGORÍA	CANTIDAD A	JORNAL/HR B	COSTO HORA C= A*B	RENDIMIENTO R	COSTO D=C*R
Peón E2	6.00	3.4100	20.4600	0.5000	10.2300
Maestro C1	1.00	3.4500	3.4500	0.5000	1.7250
Albañil	2.00	2.8200	5.6400	0.5000	2.8200
SUBTOTAL (N)					14.7750
D MATERIALES DESCRIPCION		UNIDAD	CANTIDAD A	UNITARIO B	COSTO C=A*B
Cemento tipo I (50Kg)		kg	300.0000	0.1400	42.0000
Piedra 3/4"		m3	0.9000	13.0000	11.7000
Arena		m3	0.6500	12.7000	8.2550
Agua		m3	0.1600	1.5000	0.2400
Encofrado especial		m2	4.0000	8.1000	32.4000
SUBTOTAL O					94.60
P TRANSPORTE			CANTIDAD	TARIFA	COSTO
DESCRIPCION		UNIDAD	A	B	C=A*B
Fransporte de material petreo		m3/Km	31.00	0.21	6.51
Transporte de cemento		kg/Km	300.00	0.01	3.30
Transporte de madera		m2/Km	4.00	0.40	1.60
SUBTOTAL (P)					11.41
	TOTAL CO	OSTOS DIRI	ECTOS (M+N+	O+P):	123.08
Nota: estos precios no incluyen IVA	INDIRECT	OS Y UTILI	DADES	22.00%	27.08
Guayaquil, septiembre del 2017		DIRECTOS			0.00
		OTAL DEL F			150.16
		FERTADO (150.16

FIRMA DEL OFERENTE

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 4.10 UNIDAD: mes
DETALLE: GUARDIANÍA RENDIMIENTO: 100.000

CANTIDAD TARIFA COSTO HORA RENDIMIENTO DEC'R	M EQUIPOS						
DESCRIPCION				1			
N MANO DE OBRA DESCRIPCION CATEGORÍA CANTIDAD JORNAL/HR COSTO HORA RENDIMIENTO D=C'R R D=C'R D=C'R R D=C'R D							
N MANO DE OBRA DESCRIPCION CATEGORÍA CANTIDAD JORNAL/HR COSTO HORA RENDIMIENTO D=C'R R D=C'R D=C'R R D=C'R D	***************************************						
NMANO DE OBRA DESCRIPCION CATEGORÍA CANTIDAD JORNAL/HR COSTO HORA RENDIMIENTO De-C'R R De-C'R De-C'R R De-C'R De-C							
NMANO DE OBRA DESCRIPCION CATEGORÍA CANTIDAD JORNAL/HR COSTO HORA RENDIMIENTO De-C'R R De-C'R De-C'R R De-C'R De-C						<u> </u>	
NMANO DE OBRA DESCRIPCION CATEGORÍA CANTIDAD JORNAL/HR COSTO HORA RENDIMIENTO DE-C'R CANTIDAD N. S.							
DESCRIPCION CATEGORÍA CANTIDAD JORNAL/HR COSTO HORA RENDIMIENTO DECTR CE A*B R N N N N N N N N N							
Subtotal orange Subtotal o			CANTIDAD	JORNAL/HR	COSTO HORA	RENDIMIENTO	COSTO
SUBTOTAL (N) O MATERIALES DESCRIPCION UNIDAD A UNITARIO B CANTIDAD A B CANTIDAD B CANTIDAD B CANTIDAD A B CANTIDAD B CANTIDAD B CANTIDAD B CANTIDAD B CANTIDAD B CANTIDAD CANTIDAD B CANTIDAD CANTIDAD B CANTIDAD CANTIDAD CANTIDAD CANTIDAD CANTIDAD CANTIDAD B CANTIDAD CANTIDAD CANTIDAD CANTIDAD B CANTIDAD	DESCRIPCION	CATEGORIA		1		_	
DESCRIPCION UNIDAD CANTIDAD B COSTO C=A'B UNIDAD SUBTOTAL O P TRANSPORTE DESCRIPCION UNIDAD CANTIDAD A B COSTO C=A'B COSTO COST	Guardia		1.00	3.5000	3.5000	100.0000	350.0000
O MATERIALES						ļ	
O MATERIALES							
O MATERIALES							
O MATERIALES	CURTOTAL (AI)						252 2000
DESCRIPCION UNIDAD CANTIDAD A B COSTO C=A'B UNIDAD CANTIDAD B COSTO C=A'B UNIDAD CANTIDAD A CANTIDAD CANTIDAD CANTIDAD CANTIDAD B COSTO C=A'B UNIDAD CANTIDAD CANTIDAD CANTIDAD B COSTO C=A'B UNIDAD CANTIDAD CANTIDA							350.0000
DESCRIPCION				LINIDAD	CANTIDAD	UNITARIO	соѕто
DESCRIPCION	DESCRIPCION			UNIDAD			C=A*B
DESCRIPCION						ļ	
DESCRIPCION							
DESCRIPCION						 	
DESCRIPCION			•••••			 	***************************************
DESCRIPCION							
DESCRIPCION UNIDAD CANTIDAD A B COSTO C=A*B SUBTOTAL (P) TOTAL COSTOS DIRECTOS (M+N+O+P): 350.4 INDIRECTOS Y UTILIDADES 22.00% 77.4 OTROS INDIRECTOS COSTO TOTAL DEL RUBRO 427.4 VALOR OFERTADO (\$) VALOR OFERTADO (\$)							
DESCRIPCION						ļ .	
DESCRIPCION						 	
DESCRIPCION							
DESCRIPCION	SUBTOTAL O						
SUBTOTAL (P) Nota: estos precios no incluyen IVA Guayaquil, septiembre del 2017 TOTAL COSTOS DIRECTOS (M+N+O+P): 350.4 INDIRECTOS Y UTILIDADES 22.00% 77.4 OTROS INDIRECTOS COSTO TOTAL DEL RUBRO 427.4 VALOR OFERTADO (\$) A B C=A*B B C=A*B A C=A*B C=A*B A DECTOS BECTOS (M+N+O+P): 350.4 A DECTOS OF COSTO SINDIRECTOS (M+N+O+P): 350.4 A DECTOS OF COSTO SINDI	P TRANSPORTE						
SUBTOTAL (P) Nota: estos precios no incluyen IVA Guayaquil, septiembre del 2017 TOTAL COSTOS DIRECTOS (M+N+O+P): 350.1 INDIRECTOS Y UTILIDADES 22.00% 77.0 OTROS INDIRECTOS 0.0 COSTO TOTAL DEL RUBRO 427.0 VALOR OFERTADO (\$) 427.0	DESCRIPCION			UNIDAD			COSTO
Nota: estos precios no incluyen IVA Guayaquil, septiembre del 2017 TOTAL COSTOS DIRECTOS (M+N+O+P): 350.0 INDIRECTOS Y UTILIDADES 22.00% 77.0 OTROS INDIRECTOS 0.0 COSTO TOTAL DEL RUBRO 427.0 VALOR OFERTADO (\$) 427.0					A	В	C=A"b
Nota: estos precios no incluyen IVA Guayaquil, septiembre del 2017 TOTAL COSTOS DIRECTOS (M+N+O+P): 350.0 INDIRECTOS Y UTILIDADES 22.00% 77.0 OTROS INDIRECTOS 0.0 COSTO TOTAL DEL RUBRO 427.0 VALOR OFERTADO (\$) 427.0							
Nota: estos precios no incluyen IVA Guayaquil, septiembre del 2017 TOTAL COSTOS DIRECTOS (M+N+O+P): 350.0 INDIRECTOS Y UTILIDADES 22.00% 77.0 OTROS INDIRECTOS 0.0 COSTO TOTAL DEL RUBRO 427.0 VALOR OFERTADO (\$) 427.0							
Nota: estos precios no incluyen IVA Guayaquil, septiembre del 2017 OTROS INDIRECTOS COSTO TOTAL DEL RUBRO VALOR OFERTADO (\$) INDIRECTOS Y UTILIDADES 22.00% 77.0 0.0 427.0	SUBTOTAL (P)						
Guayaquil, septiembre del 2017 OTROS INDIRECTOS COSTO TOTAL DEL RUBRO VALOR OFERTADO (\$) 427.0						·O+P):	350.0
COSTO TOTAL DEL RUBRO 427.0 VALOR OFERTADO (\$) 427.0	· ·	<u>-</u>				22.00%	77.0
VALOR OFERTADO (\$) 427.0	Guayaquil, septiemb	re del 2017					0.0
			VALOR O	FERTADO ((\$)		427.0
	EIDMA DI						
\mathbf{I}							

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 4.20 UNIDAD: mes DETALLE: LIMPIEZA GENERAL DE OBRA RENDIMIENTO: 4.00

DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
Herramienta menor	Α	В	C= A*B	R	D=C*R 3.4100
SUBTOTAL (M) N MANO DE OBRA					3.4100
DESCRIPCION CATEGORÍA	CANTIDAD A	JORNAL/HR B	COSTO HORA C= A*B	RENDIMIENTO R	COSTO D=C*R
Peón E2	5.00	3.4100	17.0500	4.0000	68.2000
CLIPTOTAL (AI)					68.2000
SUBTOTAL (N) D MATERIALES					00.2000
DESCRIPCION		UNIDAD	CANTIDAD	UNITARIO	COSTO
		0.112712	Α	В	C=A*B
				 	
	***************************************	***************************************			~~~~~
SUBTOTAL O P TRANSPORTE					
		UNIDAD	CANTIDAD	TARIFA	COSTO
DESCRIPCION		UNIDAD	Α	В	C=A*B
		***************************************	***************************************		
				 	
SUBTOTAL (P)					
. ,	TOTAL CO	OSTOS DIR	ECTOS (M+N+	-O+P):	71.6°
Nota: estos precios no incluyen IVA		TOS Y UTILI		22.00%	15.7
Guayaquil, septiembre del 2017		IDIRECTOS			0.0
		OTAL DEL			87.36
		FERTADO ((A)		87.3

OBRA: DISEÑO DE SOLUCIONES VIALES ESPECIALES EN LA POBLACIÓN DE AYANGUE

UBICACIÓN: CANTÓN SANTA ELENA

ANALISIS DE PRECIOS UNITARIOS

FIRMA DEL OFERENTE

RUBRO: 4.30 UNIDAD: m
DETALLE: PINTURA REFLECTIVA SOBRE EL PAVIMENTO RENDIMIENTO: 0.03

DESCRIPCION Herramienta menor Franjadora Camioneta doble tracción		CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO	
		A	В	C= A*B	R	D=C*R	
			8.0000	8.0000	0.0300	0.0283	
		1.00					
		1.00	5.0000	5.0000	0.0300	0.1500	
SUBTOTAL (M) N MANO DE OBRA		·				0.4183	
		CANTIDAD	JORNAL/HR	COSTO HORA	RENDIMIENTO	COSTO	
DESCRIPCION	CATEGORÍA	A	В	C= A*B	R	D=C*R	
Peón E2		3.41	3.0000	10.2300	0.0300	0.3069	
OP. Franjadora		3.64	1.0000	3.6400	0.0300	0.1092	
Chofer licencia E		5.00	1.0000	5.0000	0.0300	0.1500	
					0.000		
SUBTOTAL (N)						0.5661	
O MATERIALES							
DESCRIPCION		UNIDAD	CANTIDAD A	UNITARIO B	COSTO C=A*B		
Pintura de tráfico			gl	0.0100	29.5000	0.2950	
Diluyente			gl	0.0080	7.3300	0.0586	
			***************************************			***************************************	
SUBTOTAL O P TRANSPORTE						0.3500	
DESCRIPCION		UNIDAD	CANTIDAD A	TARIFA B	COSTO C=A*B		
SUBTOTAL (P)		1				0.00	
TOTAL COSTOS DIRECTOS (M+N+O+P):						1.33	
Nota: estos precios no incluyen IVA INDIRI		INDIRECT	CTOS Y UTILIDADES 22.00%				
Guayaquil, septiembre	e del 2017	OTROS IN	0.00				
			1.62				
			COSTO TOTAL DEL RUBRO VALOR OFERTADO (\$)				
		VALOPO	EEBTYDO ((\$)		1.62	

ANALISIS DE PRECIOS UNITARIOS

RUBRO:4.40UNIDAD: viajeDETALLE:DESALOJO DE MATERIALESRENDIMIENTO: 0.50

DESCRIPCION	CANTIDAD		COSTO HORA C= A*B	RENDIMIENTO R	COSTO D=C*R
	A	В			
Herramienta menor Volqueta 8 m3	1.00	22.00	22.00	0.50	0.30
	1.00	22.00	22.00	0.30	
SUBTOTAL (M)					11.2955
N MANO DE OBRA			T		
DESCRIPCION CAT	EGORÍA CANTIDAI	JORNAL/HR B	COSTO HORA C= A*B	RENDIMIENTO R	COSTO D=C*R
Peón E2	2.00	3.41	6.82	0.500	3.410
Chofer licencia E	1.00	5.00	5.00	0.500	2.500
SUBTOTAL (N)					5.9100
D MATERIALES				<u> </u>	5.5100
DESCRIPCION		UNIDAD	CANTIDAD A	UNITARIO B	COSTO C=A*B
			7.		<u> </u>
	•••••				
NIDTOTAL O					2.00
SUBTOTAL O P TRANSPORTE					0.00
		1	CANTIDAD	TARIFA	COSTO
DESCRIPCION		UNIDAD	A	В	C=A*B
SUBTOTAL (P)					0.00
SUBTOTAL (P)	TOTAL (COSTOS DIR	ECTOS (M+N+	-O+P):	0.00 17.21
		COSTOS DIR		-O+P): 22.00%	
Nota: estos precios no incluye	n IVA INDIREC		DADES		17.21
Nota: estos precios no incluye	n IVA INDIRECTOR OTROS	TOS Y UTILI	DADES		17.21 3.79
SUBTOTAL (P) Nota: estos precios no incluye Guayaquil, septiembre del 201	n IVA INDIRECTOR OTROS COSTO	TOS Y UTILI	DADES S RUBRO		3.79 0.00 21.00
Nota: estos precios no incluye	n IVA INDIRECTOR OTROS COSTO	TOS Y UTILI INDIRECTOS TOTAL DEL	DADES S RUBRO		17.21 3.79 0.00

Clover Associates. (8 de mayo de 2017). *GALENA SOFTWARE*. Obtenido de GALENA, slope stability analysis system: http://www.galenasoftware.com/html/briefly.html

Farinango, D. (2014). Análisis comparativo de costos entre el pavimento rígido y pavimento flexible. (Tesis de pregrado). Quito: Universidad Central del Ecuador.

French Committee on Large Dams. (2002). *Small dams, guidelines for design, construction and monitoring.* Cemagref Editions and Engref (France).

GeoStru software. (2015). SLOPE 2015. Obtenido de GeoStru software.

Gobierno Autónomo Descentralizado de Colonche. (2007). Comuna Ayangue.

Obtenido de Gobierno Autónomo Descentralizado de Colonche:

http://www.colonche.gob.ec/

Gobierno Comunal Ayangue. (2017). *Historia de Ayangue*. Ayangue: Gobierno Comunal Ayangue.

Iñeguez, J. B. (2011). Métodos para el análisis de la estabilidad de pendientes. MASKANA, 2-7.

Ministerio de Obras Públicas. (2003). *Manual de Diseño Geométrico*. Quito: Ministerio de Obras Públicas.

NEC-SE-GC. (2015). *Norma ecuatoriana de la construcción*. Quito: Dirección de comunicación social: MIDUVI.

Riviera, I. N. (2014). Trabajo de titulación. Modelo de Gestión Administrativa para la Comuna Febres Cordero, Parroquia Colonche, Cantón Santa Elena, Provincia de Santa Elena. La Libertad, Santa Elena, Ecuador.

Terreros, C. (2004). Mecánica de Suelos Práctica. Guayaquil : ESPOL.