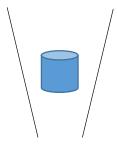
ESCUELA SUPERIOR POLITECNICA DEL LITORAL FACULTAD DE INGENIERIA MECANICA Y CIENCIAS DE LA PRODUCCION TERCERA EVALUACION DE INSTRUMENTACION BASICA P-2


PROF.: MSc. Eduardo Mendieta R. Fecha: lunes 10 de septiembre del 2018 Nombre: ID.:

PRIMER TEMA: (15 puntos)

La relación empírica de un PTC puede expresarse por medio de la relación: $R=R_o e^{\frac{\beta}{T}}$; donde R_o es la medida de la resistencia del PTC a 20°C, β es la constante exponencial característica del sensor y T es la temperatura medida. Determine el valor de la resistencia eléctrica del sensor y la incertidumbre absoluta asociada μ_R con el valor de la resistencia si las incertidumbres de los valores obtenidos son: R_o =(123.5±0.5) Ω , T=(67.2±0.2) °C. El valor de la constante β es 4500 °K-1.

SEGUNDO TEMA: (15 puntos)

Un rotámetro tiene un tubo de 0,5 m de longitud, con un diámetro interior de 30 mm en la cima y 15 mm en el fondo. El diámetro del flotador es 15 mm, su densidad relativa es ρ_f y su volumen 6,6 cm³. Si el coeficiente de descarga es de 0,8 ¿Cuál es la densidad del flotador si el caudal es de 150 cm³/s y el área de la corona circular es $A_W = 120 \text{ mm}^2$?

TERCER TEMA:(20 puntos)

Un sistema de medición de fuerza utiliza un strain gauge de las siguientes características: $R_0 = 120 \Omega$, FG=1.4.

El sensor es colocado en el circuito acondicionador de señal mostrado en la figura. El potenciómetro de 580 Ω se usa para ajustar el cero en el voltaje de salida del puente. Determine:

- a) el valor de la resistencia del potenciómetro para ajustar el cero para una fuerza de 200 N aplicada a una viga soportada verticalmente. (Área= 25 cm², L=2 m, Y= 100GPa).
- b) El rango de los valores de corriente que circulan por el sensor para la fuerza anterior aplicada y para valores de ajustes permitidos por el sensor (considere de $0~\Omega$ a $580~\Omega$)

CUARTO TEMA: (20 puntos)

El voltaje de salida de un circuito acondicionador de señal para un NTC se conecta a un convertidor A/D con resolución de 0.05V/paso. Determine:

- a) El código binario de salida del convertidor A/D para una Temperatura medida de 85°C.
- b) Si el código binario de salida es 000010101, ¿Cuál sería la temperatura medida?

Datos para el NTC: $R_0=120\Omega$, $T_0=20^{\circ}$ C, $\beta=5000^{\circ}$ K⁻¹)