

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Ciencias de la Tierra

"DISEÑO SISMORRESISTENTE DE UN EDIFICIO DE CUATRO PISOS DE USOS MÚLTIPLES EN LA PROVINCIA DE SANTO DOMINGO DE LOS TSÁCHILAS"

PROYECTO DE GRADO

Previo a la obtención del Título de:

INGENIERO CIVIL

Presentado por

ITZEL MARENA ALMACHE VERA
RAFAEL RONALD SÁNCHEZ PILOCO

GUAYAQUIL – ECUADOR 2018

DEDICATORIA

Dedicado a Dios por siempre guiar mi camino. A mis padres por ser el pilar fundamental en mi preparación, que mediante sus esfuerzos y ejemplos pude cumplir esta meta con éxito. A mis hermanos, primos, tíos y mis abuelitos, por estar presente en todo momento y ser partícipes de este logro. A mis amigos, y alguien muy especial, por ser parte de la convivencia durante estos años.

Itzel Marena Almache Vera

DEDICATORIA

Dedico este proyecto de graduación a Dios, a mis padres, mis hermanos y mi tío por su apoyo incondicional en todo momento, ya que han sido un ejemplo para mí y gracias a ellos puedo cumplir una meta más en mi vida, a mi hija y mi novia que son una motivación más para seguir adelante y siempre están a mi lado en todo momento, a mi familia que también han sido parte fundamental en este proceso de formación como profesional, y a mis amigos que siempre me estuvieron apoyando en todo momento.

Rafael Ronald Sánchez Piloco

AGRADECIMIENTO

Agradecemos a Dios, a nuestros padres por su apoyo incondicional durante este proceso y cumplir este gran reto. Al Ing. Daniel Toro, Ph.D. Pedro Rojas, Ing. Byron Almache, Ing. Rodrigo Almache, Ing. Cesar Loor y al Arq. Carlos Gilbert, por guiarnos en el desarrollo y ayudarnos a llevar a cabo este proyecto con éxito.

Itzel Marena Almache Vera
Rafael Ronald Sánchez Piloco

TRIBUNAL DEL PROYECTO

Ph.D. Hugo Egüez Álava PRESIDENTE DEL TRIBUNAL

Ph.D. Miguel Ángel Chávez Moncayo DIRECTOR DE MATERIA INTEGRADORA

Ph.D. Pedro Rojas Cruz
TUTOR DE MATERIA INTEGRADORA

DECLARACIÓN EXPRESA

"La responsabilidad del contenido de este Proyecto de Grado, nos corresponde exclusivamente; y el patrimonio intelectual de la misma, a la Escuela Superior Politécnica del Litoral"

(Reglament	o de Exámenes y Títulos Profesionales de la ESPOL)
	Itzel Marena Almache Vera
	Rafael Ronald Sánchez Piloco

RESUMEN

El presente proyecto se enfoca en el diseño sismorresistente de una estructura de uso múltiple de 4 pisos ubicado en la provincia de Santo Domingo de los Tsáchilas cantón Santo Domingo con el fin de mejorar la actividad comercial en la zona.

Para el estudio de suelo se utiliza la prueba de penetración estándar SPT, con la cual mediante dos sondeos a una profundidad de doce y diez metros respectivamente, donde se detalla la estratigrafía existente en la zona del proyecto; y se estima la capacidad de soporte en el estrato más resistente utilizando un factor de seguridad de 3.5 debido a que bajo la cota de cimentación existen suelos muy blandos.

Se presentan tres alternativas de diseño las cuales constan de una estructura de hormigón armado, una estructura mixta y una estructura de acero, donde se encuentra el desarrollo del diseño de la alternativa óptima basada en criterios sismorresistentes de acuerdo con las normas AISC 341-10 y NEC 2015, teniendo en cuenta que la zona en la que se encuentra ubicado el proyecto se considera de alta sismicidad.

Además, se detalla el presupuesto referencial basado costos de mano de obra, materiales, etc. Basados en la zona del proyecto, para el cálculo de cantidades

de material se determina usando el sistema BIM. Por consiguiente, mediante las matrices de Leopold se determina la evaluación del impacto ambiental generado en la zona por la construcción de la edificación.

ÍNDICE GENERAL

DEDICATORIA	
AGRADECIMIENTO	IV
TRIBUNAL DEL PROYECTO	V
DECLARACIÓN EXPRESA	V
RESUMEN	VI
ÍNDICE GENERAL	IX
ABREVIATURAS	XVIII
SIMBOLOGÍA	XIX
ÍNDICE DE FIGURAS	XXV
ÍNDICE DE TABLAS	XXX
CAPÍTULO 1	42
INTRODUCCIÓN	42
1.1 Introducción	43
1.2 Planteamiento del problema	44
1.3 Objetivos	45
1.3.1 Objetivo general	45
1.3.2 Objetivos específicos	45
1.4 Justificación	46
1.5 Metodología	47
1.6 Alcance	50

C	CAPÍTULO 251		
	MARCO REFERENCIAL	51	
	2.1 Aspectos físicos	52	
	2.1.1 Ubicación	52	
	2.2 Información básica	54	
	2.2.1 Clima	54	
	2.2.2 Topografía	54	
	2.3 Geología	55	
	2.4 Aspecto poblacional	56	
	2.5 Medición del área de construcción	57	
C	CAPÍTULO 3	62	
C	ESTUDIO GEOTÉCNICO EN ZONA DE CONSTRUCCIÓN		
C		62	
C	ESTUDIO GEOTÉCNICO EN ZONA DE CONSTRUCCIÓN	62 63	
C	ESTUDIO GEOTÉCNICO EN ZONA DE CONSTRUCCIÓN	62 63	
C	ESTUDIO GEOTÉCNICO EN ZONA DE CONSTRUCCIÓN	63 63 67	
C	ESTUDIO GEOTÉCNICO EN ZONA DE CONSTRUCCIÓN	63 63 67	
C	2.1.1 Procedimiento 3.1.2 Sondeo # 1 3.1.3 Sondeo # 2	63 63 67 75	
C	ESTUDIO GEOTÉCNICO EN ZONA DE CONSTRUCCIÓN	63 63 67 75 83	
C	ESTUDIO GEOTÉCNICO EN ZONA DE CONSTRUCCIÓN	63 63 67 75 83	

3.2.4 Límite plástico (Norma ASTM D	4318)90
3.2.5 Clasificación de suelo SUCS (No	rma ASTM D 2487)91
3.3 Descripción estratigráfica	92
3.3.1 Perforación # 1	92
3.3.2 Perforación #2	93
3.4 Parámetros del suelo de cimentación	94
3.4.1 Capacidad de soporte del suelo .	96
3.4.2 Análisis de capacidad de carga	97
3.4.3 Cálculo de capacidad de carga	97
3.4.4 Características geomecánicas	99
3.4.5 Excavaciones	101
CAPÍTULO 4	102
CAPÍTULO 4ALTERNATIVAS PROPUESTAS Y SU I	
	RESPECTIVO
ALTERNATIVAS PROPUESTAS Y SU I	RESPECTIVO 102
ALTERNATIVAS PROPUESTAS Y SU I	RESPECTIVO102 103
ALTERNATIVAS PROPUESTAS Y SU I PREDIMENSIONAMIENTO	
ALTERNATIVAS PROPUESTAS Y SU I PREDIMENSIONAMIENTO	RESPECTIVO
ALTERNATIVAS PROPUESTAS Y SU I PREDIMENSIONAMIENTO	RESPECTIVO
ALTERNATIVAS PROPUESTAS Y SU I PREDIMENSIONAMIENTO	RESPECTIVO
ALTERNATIVAS PROPUESTAS Y SU II PREDIMENSIONAMIENTO	RESPECTIVO

	4.2.7 Peso sísmico	.122
	4.2.8 Coeficiente de respuesta sísmica	.123
	4.2.9 Cortante basal	.124
	4.2.10 Distribución de fuerzas verticales	.125
	4.2.11 Momento por sismo eje x y eje y	.127
	4.2.12 Momento por carga muerta y carga viva	.129
	4.2.13 Determinación de momento último Mu	.130
	4.2.14 Predimensionamiento de vigas eje x	.131
	4.2.15 Predimensionamiento de vigas eje Y	.132
4	.3 Pórticos de acero resistente a momentos (PARM)	.133
	4.3.1 Estimación de carga muerta	.134
	4.3.2 Resumen de carga muerta	.138
	4.3.3 Carga viva	.139
	4.3.4 Resumen de cargas muertas y vivas	.140
	4.3.4 Predimensionamiento de vigas secundarias	.140
	4.3.5 Momentos últimos actuando vigas secundarias	.141
	4.3.6 Selección de perfiles a partir del módulo plástico	.143
	4.3.7 Estados límites de servicio	.144
	4.3.8 Verificación de secciones de vigas secundarias	.145
	4.3.9 Momento nominal de vigas secundarias	.147
	4.3.10 Resistencia al cortante de vigas secundarias	.148
	4.3.11 Espectro de diseño y espectro inelástico PARM	.149

4.3.12 Periodo fundamental de la estructura	151
4.3.13 Peso sísmico	153
4.3.14 Coeficiente de respuesta sísmica	154
4.3.15 Cortante basal	155
4.3.16 Distribución vertical de fuerzas sísmicas	155
4.3.17 Predimensionamiento de vigas principales eje y	158
4.3.18 Selección de perfiles a partir del módulo plástico	160
4.3.19 Estados límites de servicio	161
4.3.20 Verificación de secciones de vigas principales eje y	162
4.3.21 Momento nominal de vigas principales eje y	165
4.3.22 Resistencia al cortante de vigas principales eje y	165
4.3.23 Predimensionamiento de vigas principales eje x	167
4.3.24 Selección de perfiles a partir del módulo plástico	170
4.3.25 Estados límites de servicio	171
4.3.26 Verificación de secciones de vigas principales eje x	172
4.3.27 Momento nominal de vigas principales eje x	174
4.3.28 Resistencia al cortante de vigas principales eje x	175
4.3.29 Predimensionamiento de columnas	177
4.3.30 Verificación del módulo plástico de columnas	179
4.3.31 Descargas de carga axial en las columnas	180
4.3.31 Criterio de columna fuerte - viga débil	181
4.3.32 Factor de relación de rigideces relativa	183

	4.3.33 Revisión de perfil de columnas	189
	4.4 Estructura mixta. PCRM usando metal deck	192
	4.5 Selección de alternativa de diseño	193
(CAPÍTULO 5	195
	DISEÑO DE ALTERNATIVA SELECCIONADA PÓRTICO DE ACE	RO
	RESISTENTE A MOMENTO	195
	5.1 Análisis estructural	196
	5.1.1 Periodos de la estructura y cortante basal	196
	5.1.2 Derivas de piso, índice de estabilidad y efectos P-Δ	200
	5.2 Diseño por flexión de vigas	203
	5.2.1 Fluencia	204
	5.2.2 Pandeo torsional lateral	204
	5.2.3 Pandeo inelástico	204
	5.2.3 Pandeo elástico	206
	5.3 Diseño por cortante de vigas	206
	5.3.1 Miembros con alma rigidizadas o no rigidizadas	206
	5.4 Diseño de vigas secundarias	209
	5.4.1 Diseño a flexión	209
	5.4.2 Diseño a cortante	210
	5.5 Diseño de vigas principales eje y	211
	5.5.1 Diseño a flexión	211
	5.5.2 Diseño a cortante	212

	5.6 Diseño de vigas principales eje x	213
	5.6.1 Diseño a flexión	213
	5.6.2 Diseño a cortante	215
	5.7 Diseño de columnas	215
	5.7.1 Diseño de miembros sujetos a carga axial de compresión	
	combinada con flexión	216
	5.8 Diseño de losa de pisos	221
С	APÍTULO 6	224
	DISEÑO DE LA CIMENTACIÓN	224
	6.1 Selección de la cimentación	225
	6.1.1 Vigas de cimentación	225
	6.2 Diseño de vigas de cimentación	225
	6.2.1 Diseño viga de cimentación eje x	226
	6.2.2 Demanda de cargas axiales en los diferentes	227
	6.2.3 Cálculo de acero longitudinal superior en viga de cimentación e	je x
		232
	6.2.4 Cálculo de acero longitudinal inferior en viga de cimentación eje	∋ x
		236
	6.2.5 Cálculo de acero longitudinal zapata en viga cimentación eje x	238
	6.2.5 Diseño viga de cimentación eje y	241
	6.2.6 Cálculo de acero longitudinal superior en viga de cimentación e	eje y
		244

	6.2.7 Cálculo de acero longitudinal inferior en viga de cimentación eje	Э у
		246
	6.2.8 Cálculo de acero longitudinal zapata en viga cimentación eje y	248
	6.3 Losa para cimentación	252
	6.4 Diseño de pantalla de hormigón	253
	6.4.1 Armado de la pantalla de hormigón	257
C	CAPÍTULO 7	259
	PRECURIECTO	250
	PRESUPUESTO	259
	7.1 Requerimientos para análisis de los APU	260
	7.2 Presupuesto edificio de acero estructural	262
C	CAPÍTULO 8	265
		203
	EVALUACIÓN DE IMPACTO AMBIENTAL	
	EVALUACIÓN DE IMPACTO AMBIENTAL	
	EVALUACIÓN DE IMPACTO AMBIENTAL	265
		265 266
	8.1 Antecedentes	265 266 267
	8.1 Antecedentes	265 266 267
	8.1 Antecedentes 8.2 Objetivos 8.2.1 Objetivo general	265 266 267 267
	8.1 Antecedentes	265 266 267 267
	8.1 Antecedentes 8.2 Objetivos 8.2.1 Objetivo general 8.2.2 Objetivos específicos 8.3 Descripción de la zona	265 266 267 267 267
	8.1 Antecedentes 8.2 Objetivos 8.2.1 Objetivo general 8.2.2 Objetivos específicos 8.3 Descripción de la zona 8.4 Leyes vigentes	265 266 267 267 267 267
	8.1 Antecedentes 8.2 Objetivos 8.2.1 Objetivo general 8.2.2 Objetivos específicos 8.3 Descripción de la zona 8.4 Leyes vigentes 8.5 Área de trabajo	265 266 267 267 267 268 268

	8.8 Matrices	269
	8.8.1 Matriz de intensidad	270
	8.8.2 Matriz de extensión	271
	8.8.3 Matriz de duración	272
	8.8.4 Matriz signo	273
	8.8.5 Matriz de magnitud	274
	8.8.6 Matriz reversa	275
	8.8.7 Matriz de riesgo	276
	8.8.8 Matriz VIA	277
	8.8.9 Matriz VIA promedio	278
	8.9 Análisis de impactos generados	279
	8.10 Mitigación	279
	8.10.1 Residente de obra	279
	8.10.2 Personal de obra	280
	8.10.3 Zona de trabajo	280
	8.10.4 Actividades de construcción	280
С	CAPÍTULO 9	283
	CONCLUSIONES Y RECOMENDACIONES	283
	CONCLUSIONES	284
	RECOMENDACIONES	286
	ANEXOS	
	BIBLIOGRAFÍA	

ABREVIATURAS

ACI American Concrete Institute

AISC American Institute of Steel Construction

ASCE American Society of Civil Engineers

ASTM American Society for Testing and Materials

ASTM American Society of Testing Materials

NEC Norma Ecuatoriana de las Construcción

PARM Pórtico de Acero Resistente a Momento

PCRM Pórtico de Concreto Resistente a Momento

SPT Standard Penetration Test

SUCS Sistema Unificado de Clasificación de Suelos

SIMBOLOGÍA

%Ret Porcentaje retenido

μ Coeficiente de fricción

A_b Área de la barra de acero

A_s Área de acero

As_{min} Área mínima de acero de refuerzo a flexión

A_{Sreq} Área requerida

At Área tributaria

A_v Área de acero en estribos

A_{vmin} Área mínima de acero en estribos

B Ancho

C Cohesión

Cs Coeficiente de respuesta sísmica

Ct Coeficiente que depende del tipo de edificio

C_v Coeficiente de corte del alma

Altura efectiva medida desde la fibra más

d

lejana a compresión

d₁ Espesor de la pantalla

d_b Diámetro de la varilla

D_f Profundidad de desplante

E_a Fuerza empuje activo

E_x Carga sismo en X

E_y Carga sismo en Y

F.S Factor de seguridad

F'c Resistencia a la compresión del concreto

Coeficiente de amplificación de suelo en la

zona de periodo corto. Amplifica las

Fa ordenadas del espectro elástico de

respuesta de aceleraciones para diseño en

roca, considerando los efectos de sitio

Coeficiente de amplificación de suelo.

Amplifica las ordenadas del espectro elástico

Fd de respuesta de desplazamientos para el

diseño en roca, considerando los efectos de

sitio.

Fy Esfuerzo de fluencia del acero

F_{MG} Factor matriz magnitud

F_{RK} Factor de matriz riesgo

F_{RV} Factor de matriz reversa

Fs

Coeficiente de amplificación de suelo.

Considera el comportamiento no lineal de los

suelos, la degradación del periodo de sitio depende de la intensidad y contenido de frecuencia de la excitación sísmica y los desplazamientos relativos del suelo, para los espectros de aceleraciones y desplazamientos.

γ Peso específico del suelo

G_m Peso volumétrico del suelo

H Altura

h Altura

IP Índice de Plasticidad

Ix Inercia en sentido X

ly Inercia en sentido Y

Ka Factor de empuje activo del suelo

Factor de sobrecarga según el elemento de

kLL

Ldh

soporte

L Longitud

Longitud de desarrollo a tracción

Ldc Longitud de traslape a compresión

Longitud de desarrollo en tracción de barras

corrugadas con gancho estándar.

LL Límite Líquido

In Luz libre medida entre la cara de los apoyos

LP Límite Plástico

m Metro

m2 Metro cuadrado

Momento provocado por fuerza empuje

Ma activo

Mc Peso del recipiente

M_{cs} Peso del recipiente y el espécimen secado g

M_{cws} Peso del recipiente y espécimen húmedo g

MG Matriz magnitud

M_{max (-)} Momento máximo negativo

M_{max (+)} Momento máximo positivo

Mp Momento Plástico

Mpa Mega pascales

Ms Peso de las partículas sólidas

Mu Momento último

M_w Peso del agua

N Numero de golpes

n Número de barras longitudinales

N_c Factor de Terzaghi para cohesión

NE	Número de estabilidad
N_{γ}	Factor de Terzaghi para peso específico
N_{q}	Factor de Terzaghi para carga
N _{SPT}	Numero de golpes ensayo SPT
Ø	Ángulo de fricción interna/ Diámetro de la
	varilla
Ø'	Factor de reducción
Р	Carga
Pi	Carga axial a nivel de piso i
Ρ-Δ	Efectos de segundo orden
Qadm	Capacidad admisible del suelo /capacidad
Yaum	de soporte
q _i	Carga de servicio y peso propio
q_{u}	Capacidad de soporte última
Qu	Carga última
Rk	Matriz riesgo
RV	Matriz reversa
S	Módulo de sección
S	Ancho de influencia
Sa	Espectro de respuesta elástico de
Sa	aceleraciones

Smax Separación máxima entre los estribos

T/m2 Tonelada por metro cuadrado

V Mayoración de fuerza de empuje

V.I.A Matriz de valoración al impacto ambiental

Vc Fuerza cortante del concreto

Vu Cortante último

w Contenido de humedad %

Peso de la muestra que fue secada en el

W₁ horno

W_D Carga muerta

W_L Carga Viga

W_{pp} Carga muerta por peso propio

W_{ret} Peso retenido en el tamiz

X Distancia parcial

Aceleración máxima en roca esperada para

Z el sismo de diseño, expresada como la

fracción de la aceleración de la gravedad.

Z_x Módulo Plástico

 Δ_{adm} Deriva admisible

ρ Cuantía de acero

σ' Esfuerzo del suelo

ÍNDICE DE FIGURAS

Figura 1.1 Edificio colapsado terremoto Ecuador 16/04/2016	45
Figura 1.2 Distancia Santo Domingo a provincias de Esmeraldas	47
Figura 1.3 Diagrama de flujo – Metodología	49
Figura 2.1 Ubicación geográfica Santo Domingo	52
Figura 2.2 Ubicación del área de estudio.	53
Figura 2.3 Fachada frontal actual del terreno	54
Figura 2.4 Topografía de la zona de estudio	55
Figura 2.5 Geología de la zona de estudio	56
Figura 2.6 Vista derecha e izquierda del área de construcción	57
Figura 2.7 Medición de la parte frontal del terreno de construcción	58
Figura 2.8 Medición de bordillos del terreno de construcción	58
Figura 2.9 Vista frontal del área de construcción.	59
Figura 2.10 Medición de la parte interior del área de construcción	59
Figura 2.11 Vista Superior del área de construcción	60
Figura 2.12 Vista frontal de la zona de construcción.	60
Figura 2.13 Vista lateral de la zona de construcción.	61
Figura 3.1 Ubicación del 1er sondeo	63
Figura 3.2 Ensamble del equipo SPT	64
Figura 3.3 Ensamble total de equipo SPT	65
Figura 3.4 Limpieza de la perforación.	66

Figura 3.5 Equipos para ensayo SPT	67
Figura 3.6 Muestra a 1 metro de profundidad	68
Figura 3.7. Muestra a 2 metros de profundidad	69
Figura 3.8 Muestra a 3 metros de profundidad	69
Figura 3.9 Muestra a 4 metros de profundidad	70
Figura 3.10 Muestra a 5 metros de profundidad	70
Figura 3.11 Muestra a 6 metros de profundidad	71
Figura 3.12 Muestra a 7 metros de profundidad	71
Figura 3.13 Muestra a 9 metros de profundidad	72
Figura 3.14 Muestra a 8 metros de profundidad	72
Figura 3.15 Muestra a 10 metros de profundidad	73
Figura 3.16 Muestra a 11 metros de profundidad	73
Figura 3.17 Muestra a 12 metros de profundidad	74
Figura 3.18 Recuperación de muestras.	74
Figura 3.19 Orificio del primer sondeo.	75
Figura 3.20 Recuperación de muestras.	75
Figura 3.21 SPT sondeo # 2.	76
Figura 3.22 Equipos utilizados.	76
Figura 3.23 Realización del 2do sondeo.	76
Figura 3.24 Muestra a 1 metros de profundidad	77
Figura 3.25 Muestra a 2 metros de profundidad	77
Figura 3.26 Muestra a 3 metros de profundidad	78

Figura 3.27 Muestra a 4 metros de profundidad	78
Figura 3.28 Muestra a 5 metros de profundidad	79
Figura 3.29 Muestra a 6 metros de profundidad	79
Figura 3.30 Muestra a 7 metros de profundidad	80
Figura 3.31 Muestra a 8 metros de profundidad	80
Figura 3.32 Muestra a 9 metros de profundidad	81
Figura 3.33 Muestra a 10 metros de profundidad	81
Figura 3.34 Equipo de trabajo.	82
Figura 3.35 Ensayo SPT	82
Figura 3.36 Esquema de ensayos realizados	85
Figura 3.37 Horno del laboratorio Shosue Cia.Ltda	86
Figura 3.38 Recipientes del laboratorio Shosue Cia.Ltda	86
Figura 3.39 Balanza del laboratorio Shosue Cia.Ltda	87
Figura 3.40 Juego de tamices del laboratorio	88
Figura 3.41 Cuchara Casa Grande del laboratorio	89
Figura 3.42 Ensayo límite plástico	90
Figura 3.43 Carta de plasticidad.	91
Figura 3.44 SUCS para suelos limosos y arcillosos	91
Figura 3.45 Líneas de fallas de zapata.	96
Figura 3.46 Esfuerzo admisible	101
Figura 4.1 Planta sótano	103
Figura 4.2 Primer piso locales	103

Figura 4.3 Segundo piso oficinas	104
Figura 4.4 Tercer piso departamentos	104
Figura 4.5 Ejes estructurales del edificio	105
Figura 4.6 Vista en planta del edificio	105
Figura 4.7 Estructura de pared simple de hormi2	107
Figura 4.8 Característica de panel estándar	107
Figura 4.9 Sección transversal losa nervada en 2 direcciones	110
Figura 4.10 Áreas de influencias	115
Figura 4.11 Espectro de diseño y espectro inelástico	119
Figura 4.12 Fuerzas verticales en dirección x pórtico eje 2	128
Figura 4.13 Diagrama de momento por sismo <i>Ex</i> Pórtico eje 2	128
Figura 4.14 Fuerzas verticales en dirección y pórtico eje B	129
Figura 4.15 Secciones del pórtico eje 2 dirección x	132
Figura 4.16 Secciones del pórtico eje B dirección y	133
Figura 4.17 Estructura de paredes simple normal de Hormi2	134
Figura 4.18 Característica del panel estándar	135
Figura 4.19 Steel panel novalosa	136
Figura 4.20 Propiedades de la sección simple	137
Figura 4.21 Propiedades de la sección compuesta	137
Figura 4.22 Vigas secundarias entre las vigas principales	141
Figura 4.23 Viga secundaria 2 vanos	142
Figura 4.24 Viga secundaria 3 Vanos	142

Figura 4.25 Espectro elástico y espectro inelástico	150
Figura 4.26 Distribución de fuerzas verticales dirección Y	158
Figura 4.27 Viga principal eje y	159
Figura 4.28 Viga principal eje x	167
Figura 4.29 Cargas actuando en Viga eje x	168
Figura 4.30 Dimensiones de perfiles tubulares cuadrados	178
Figura 5.1 Modelo en 3D de la edificación en Etabs	196
Figura 5.2 Estados de carga	197
Figura 5.3 Combinaciones de carga	197
Figura 5.4 Espectro inelástico definido en el programa	198
Figura 5.5 Derivas eje x Etabs	201
Figura 5.6 Derivas eje y Etabs	202
Figura 6.1 Vigas de cimentación eje x	227
Figura 6.2 Resultante de cargas en viga de cimentación	229
Figura 6.3 Cargas asignadas en Sap2000	231
Figura 6.4 Diagrama de momento en viga de cimentación	231
Figura 6.5 Diagrama de cortante en viga de cimentación	232
Figura 6.6 Momento último zapata	238
Figura 6.7 Momento último viga equivalente	243
Figura 6.8 Cortante última viga	243
Figura 6.9 Momento último zapata	249
Figura 6.10 Losa sobre vigas de cimentación	252

Figura 6.11 Esquema de la cimentación del edificio	.253
Figura 6.12 Esquema de pantalla de hormigón	.254
Figura 6.13 Modelo de pantalla de hormigón Sap2000	.256
Figura 6.14 Momento en pantalla de hormigón	.257
Figura 7.1 Modelo en Revit	.260
Figura 7.2 Cimentación	.260
Figura 7.3 Losa de cimentación	.261

ÍNDICE DE TABLAS

Tabla I. Límites de la provincia de Santo Domingo	52
Tabla II. Coordenadas referenciales del terreno	53
Tabla III. Muestras de sondeo # 1	83
Tabla IV. Muestras de sondeo # 2	84
Tabla V. Parámetros del suelo.	95
Tabla VI. Capacidad admisible de carga.	97
Tabla VII. Capacidad admisible del suelo a cada metro lineal	97
Tabla VIII. Factores de capacidad del suelo	98
Tabla IX. Factores de capacidad de carga modificados	98
Tabla X. Consistencia, tenacidad, elasticidad en función del NSPT	99
Tabla XI. Cálculo del ángulo de fricción interna	100
Tabla XII. Rangos de permeabilidad en suelo del proyecto	100
Tabla XIII. Módulo de reacción del suelo.	100
Tabla XIV. Factor se seguridad de estabilidad	101
Tabla XV. Peso de paredes simpe de hormi2	108
Tabla XVI. Espesores mínimos de losa nervada en dos direcciones	109
Tabla XVII. Espesor mínimo de losa	109
Tabla XVIII. Peso de losa nervada en dos direcciones	110
Tabla XIX. Carga muerta para todos los pisos excepto la terraza	111
Tabla XX. Carga muerta terraza.	111

Tabla XXI. Peso propio de los elementos estructurales	112
Tabla XXII. Resumen de carga muerta de los todos pisos	112
Tabla XXIII. Carga viva de todos los pisos.	112
Tabla XXIV. Resumen de cargas actuantes en la edificación	113
Tabla XXV. Factor de sobrecarga en columnas	114
Tabla XXVI. Valores de α	115
Tabla XXVII. Áreas de influencia.	116
Tabla XXVIII. Dimensiones de la estructura.	116
Tabla XXIX. Columnas de borde.	116
Tabla XXX. Columnas esquineras	117
Tabla XXXI. Columnas interiores	117
Tabla XXXII. Dimensiones de columnas de cada piso	117
Tabla XXXIII. Parámetros de zona sísmica.	118
Tabla XXXIV. Valores de Sa y Cs.	120
Tabla XXXV. Valores de Ct y α	121
Tabla XXXVI. Periodo y aceleración espectral	122
Tabla XXXVII. Peso de la estructura.	123
Tabla XXXVIII. Coeficiente de respuesta sísmica PCRM	124
Tabla XXXIX. Cortante basal	124
Tabla XL. Valores de k	126
Tabla XLI. Distribución de fuerzas verticales dirección X	126
Tabla XLII. Distribución de fuerzas verticales dirección Y	127

Tabla XLIII. Momento por carga muerta, viva y sismo	129
Tabla XLIV. Combinaciones de carga.	130
Tabla XLV. Momentos últimos	130
Tabla XLVI. Altura de vigas eje x.	131
Tabla XLVII. Altura de vigas eje y.	133
Tabla XLVIII. Peso de paredes simple de hormi2	136
Tabla XLIX. Carga muerta para los pisos a excepción de la terraza	138
Tabla L. Carga muerta para la terraza	138
Tabla LI. Peso propio de elementos estructurales	139
Tabla LII. Resumen de carga muerta.	139
Tabla LIII. Carga viva	140
Tabla LIV. Resumen de cargas totales	140
Tabla LV. Carga mayorada sin peso propio	142
Tabla LVI. Momentos y cortantes de viga de 2 y 3 vanos	143
Tabla LVII. Momento último obtenido del Sap2000.	143
Tabla LVIII. Módulo plástico requerido.	144
Tabla LIX. Selección de perfiles de Dipac.	144
Tabla LX. Deflexiones máximas permisibles.	145
Tabla LXI. Verificación deflexiones máximas permisibles	145
Tabla LXII. Propiedades de los perfiles	147
Tabla LXIII. Verificación de sección alas.	147
Tabla LXIV. Verificación de sección alma	147

Tabla LXV. Momento nominal de vigas secundarias.	148
Tabla LXVI. Verificación de cortante de vigas secundarias	149
Tabla LXVII. Parámetros de zona sísmica	149
Tabla LXVIII. Valores de Sa y Cs.	151
Tabla LXIX. Valores de Ct y α	152
Tabla LXX. Periodo y aceleración espectral.	152
Tabla LXXI. Peso de la estructura	153
Tabla LXXII. Coeficiente de respuesta sísmica PARM	154
Tabla LXXIII. Cortante basal	155
Tabla LXXIV. Valores de k	157
Tabla LXXV. Distribución de fuerzas verticales dirección x	157
Tabla LXXVI. Distribución de fuerzas verticales dirección Y	157
Tabla LXXVII. Cargas mayoradas sin peso propio	159
Tabla LXXVIII. Momentos por carga muerta	159
Tabla LXXIX. Momento por sismo	159
Tabla LXXX. Combinaciones de cargas.	160
Tabla LXXXI. Momentos últimos.	160
Tabla LXXXII. Módulo plástico requerido	161
Tabla LXXXIII. Selección de perfiles de Dipac.	161
Tabla LXXXIV. Deflexiones máximas permisibles	162
Tabla LXXXV. Verificación de deflexiones máximas permisibles	162
Tabla LXXXVI. Propiedades de los perfiles	164

Tabla LXXXVII. Verificación de sección alas	164
Tabla LXXXVIII. Verificación de sección alma	164
Tabla LXXXIX. Momento nominal de vigas principales eje y	165
Tabla XC. Cortantes obtenidos del Sap2000	166
Tabla XCI. Verificación de cortante de vigas principales eje y	166
Tabla XCII. Perfiles seleccionados vigas principales eje y	167
Tabla XCIII. Reacciones máximas	168
Tabla XCIV. Peso propio de los elementos estructurales	168
Tabla XCV. Momento por carga muerta	169
Tabla XCVI. Momento por sismo Ex	169
Tabla XCVII. Combinaciones de carga	169
Tabla XCVIII. Momentos últimos eje x	170
Tabla XCIX. Módulo plástico requerido.	171
Tabla C. Selección de perfiles de Dipac.	171
Tabla CI. Deflexiones máximas permisibles.	172
Tabla CII. Verificación deflexiones máximas permisibles	172
Tabla CIII. Propiedades de los perfiles	174
Tabla CIV. Verificación de sección alas	174
Tabla CV. Verificación de sección alma	174
Tabla CVI. Momento nominal de vigas principales eje x	175
Tabla CVII. Cortantes obtenidas del Sap2000	176
Tabla CVIII. Verificación de cortantes de vigas principales eje x	176

Tabla CIX. Perfiles seleccionados vigas principales eje x	177
Tabla CX. Dimensiones de los perfiles tubulares cuadrados	178
Tabla CXI. Propiedades de las secciones.	179
Tabla CXII. Verificación de módulo plástico	179
Tabla CXIII. Carga por unidad de área en las columnas	180
Tabla CXIV. Carga axial en las columnas.	180
Tabla CXV Factores de fluencia y tensión	182
Tabla CXVI. Criterio de columna fuerte – viga débil columnas central	es182
Tabla CXVII. Criterio de columna fuerte – viga débil columnas de bor	de182
Tabla CXVIII. Criterio de columna fuerte-viga débil columnas esquine	eras. 183
Tabla CXIX. Valores de α	183
Tabla CXX. Rigideces relativas I/L columnas interiores eje x	184
Tabla CXXI. Factor de rigideces relativas G eje x	185
Tabla CXXII. Valores de K usando nomograma	185
Tabla CXXIII. Rigideces relativas I/L eje y	186
Tabla CXXIV. Factores de rigideces relativas G eje y	187
Tabla CXXV. Valores de K usando nomograma	188
Tabla CXXVI. Columnas sísmicamente compactas	189
Tabla CXXVII. Verificación de esbeltez.	190
Tabla CXXVIII. Verificación del eje de pandeo	190
Tabla CXXIX. Verificación de columna corta o larga	191
Tabla CXXX. Capacidad de columna	192

Tabla CXXXI. Cargas de PCRM	192
Tabla CXXXII. Cargas de PARM.	193
Tabla CXXXIII. Cargas de estructura mixta.	193
Tabla CXXXIV. Periodos de la estructura	198
Tabla CXXXV. Cortante basal E _x y E _y obtenido del modelo	199
Tabla CXXXVI. Cortante basal obtenido por método estático	200
Tabla CXXXVII. Derivas eje x producidas por sismo x	201
Tabla CXXXVIII. Derivas eje y producidas por sismo y	201
Tabla CXXXIX. Índice de estabilidad y efectos P-Δ dirección x	203
Tabla CXL. Índice de estabilidad y efectos P-Δ dirección y	203
Tabla CXLI. Propiedades de vigas secundarias.	209
Tabla CXLII. Valores de Lb, Lp y Lr de vigas secundarias	209
Tabla CXLIII. Verificación de momentos de vigas secundarias	210
Tabla CXLIV. Cortante de vigas secundarias	210
Tabla CXLV. Verificación de cortante de vigas secundarias	210
Tabla CXLVI. Propiedades de perfiles vigas principales eje y	211
Tabla CXLVII. Valores de Lb, Lp y Lr de vigas principales eje y	212
Tabla CXLVIII Verificación de momentos de vigas principales eje y	212
Tabla CXLIX. Cortante de vigas principales eje y	213
Tabla CL. Verificación de cortante de vigas principales eje y	213
Tabla CLI. Propiedades de perfiles de vigas principales eje x	214
Tabla CLII. Valores de L _b , L _p y L _r de vigas principales eje x	214

Tabla CLIII. Verificación de momentos de vigas principales eje x	214
Tabla CLIV. Cortante de vigas principales eje x	215
Tabla CLV. Verificación de cortantes de vigas principales eje x	215
Tabla CLVI. Carga de Euler en las columnas	219
Tabla CLVII. Valores de carga axial y momentos del Etabs	219
Tabla CLVIII. Valores de B1 y B2 de los ejes x y y	220
Tabla CLIX. Valores de Lb y Lp	220
Tabla CLX. Relación demanda capacidad de las columnas	220
Tabla CLXI. Propiedades de losa	221
Tabla CLXII. Valor de altura promedio de hormigón	221
Tabla CLXIII. Momentos y cortantes máximos.	222
Tabla CLXIV. Cuantías requeridas	222
Tabla CLXV. Comprobación por flexión.	223
Tabla CLXVI. Cargas de servicio eje 1	227
Tabla CLXVII. Cargas de servicio eje 2	228
Tabla CLXVIII. Cargas de servicio eje 3	228
Tabla CLXIX. Cargas de servicio eje 4	228
Tabla CLXX. Ancho y cargas de columnas eje 2	229
Tabla CLXXI. Carga repartida en cada columna	230
Tabla CLXXII. Carga de servicio.	230
Tabla CLXXIII. Carga última	230
Tabla CLXXIV. Momentos máximos	231

Tabla CLXXV. Cortante máximo.	232
Tabla CLXXVI. Valores de Ru.	232
Tabla CLXXVII. Diseño a flexión.	233
Tabla CLXXVIII. Acero longitudinal	233
Tabla CLXXIX. Longitud de anclaje	234
Tabla CLXXX. Diseño por cortante.	234
Tabla CLXXXI. Longitud de traslape.	235
Tabla CLXXXII. Traslape de compresión.	235
Tabla CLXXXIII. Diseño a flexión.	236
Tabla CLXXXIV. Acero longitudinal.	236
Tabla CLXXXV. Longitud de anclaje.	237
Tabla CLXXXVI. Longitud de traslape.	237
Tabla CLXXXVII. Traslape de compresión.	237
Tabla CLXXXVIII. Ancho de zapata.	238
Tabla CLXXXIX. Diseño de zapata.	238
Tabla CXC. Acero Longitudinal zapata	239
Tabla CXCI. Longitud de anclaje.	239
Tabla CXCII. Longitud de traslape	240
Tabla CXCIII. Traslape de compresión	240
Tabla CXCIV. Diseño por cortante.	240
Tabla CXCV. Separación requerida.	241
Tabla CXCVI. Ancho y cargas de columnas	241

Tabla CXCVII. Carga repartida en cada columna	241
Tabla CXCVIII. Carga de servicio.	242
Tabla CXCIX. Carga última.	242
Tabla CC. Momentos máximos.	242
Tabla CCI. Cortante máximo.	243
Tabla CCII. Valores de Ru	244
Tabla CCIII. Diseño a flexión.	244
Tabla CCIV. Acero Longitudinal.	244
Tabla CCV. Longitud de anclaje.	245
Tabla CCVI. Diseño por cortante	245
Tabla CCVII. Longitud de traslape	246
Tabla CCVIII. Traslape de compresión	246
Tabla CCIX. Diseño a flexión.	246
Tabla CCX. Acero longitudinal	247
Tabla CCXI. Longitud de anclaje.	247
Tabla CCXII. Longitud de traslape	248
Tabla CCXIII Traslape de compresión	248
Tabla CCXIV. Ancho zapata	248
Tabla CCXV. Diseño a flexión.	249
Tabla CCXVI. Acero longitudinal.	249
Tabla CCXVII. Longitud de anclaje.	250
Tabla CCXVIII. Longitud de traslape.	250

Tabla CCXIX. Traslape de compresión.	251
Tabla CCXX. Diseño por cortante	251
Tabla CCXXI. Separación requerida	251
Tabla CCXXII. Ángulo de fricción	254
Tabla CCXXIII. Características del suelo de la zona de empuje	254
Tabla CCXXIV. Dimensiones de la pantalla de hormigón	256
Tabla CCXXV. Características de la pantalla de hormigón	257
Tabla CCXXVI. Presupuesto de la edificación	262
Tabla CCXXVII. Matriz de intensidad	270
Tabla CCXXVIII. Matriz de extensión.	271
Tabla CCXXIX. Matriz de duración	272
Tabla CCXXX. Matriz signo	273
Tabla CCXXXI. Matriz de magnitud	274
Tabla CCXXXII. Matriz reversa	275
Tabla CCXXXIII. Matriz de riesgo	276
Tabla CCXXXIV. Matriz VIA	277
Tabla CCXXXV. Matriz VIA promedio	278
Tabla CCXXXVI. Mayores impactos generados	279

CAPÍTULO 1 INTRODUCCIÓN

1.1 Introducción

Hoy en día los proyectos de construcción se presentan para cubrir necesidades de la sociedad en consecuencia de falencias y desarrollo, Ecuador por su ubicación geográfica es un país que está expuestos a sismos constantes, por el movimiento de las placas tectónicas como es la placa nazca y la placa sudamericana, como fue el terremoto que se experimentó el país el 16 de abril del 2016 uno de los más fuertes presentado en estos últimos años, donde se afectó a miles de viviendas en varias provincias del país, por ello el estudio y diseños son basadas en estructuras sísmicamente resistentes.

La norma ecuatoriana de construcción NEC-15 que rige en el país, nos indica cuales son los factores de aceleraciones sísmicas para realización de los espectros de diseño para estructuras sísmicamente resistente además de los criterios de diseño. Con ello se garantiza que la estructura tendrá buen desempeño cuando ocurra el sismo de diseño y garantizar la seguridad de los ocupantes del edificio.

La zona de estudio de este proyecto se encuentra localizada en la provincia de Santo Domingo de Los Tsáchilas, cantón Santo Domingo una zona con alta sismicidad, donde se plantea el diseño de un edificio de cuatro pisos, teniendo en cuenta cada uno de los factores de diseño sismorresistentes donde se plantearán tres alternativas y tomará la óptima

para el desarrollo del proyecto, y así presentar los respectivos planos de la edificación.

1.2 Planteamiento del problema

Santo Domingo de los Tsáchilas es situada en la región subtropical, donde se observa un suelo muy fértil para la agricultura, pero a la vez una zona llena de rellenos en donde han sido cimentadas la mayoría de edificaciones. Hay que tomar en cuenta que la mayoría de estas, no han sido diseñadas estructuralmente ni construidas por profesionales en la rama.

Por esta razón con el evento acontecido el 16 de abril del 2016 en el país, la ciudad de Santo Domingo tuvo afectaciones en las estructuras ya sean volados, mampostería, daños estructurales y hasta edificios demolidos como es el caso de un edificio a pocas cuadras de la zona de estudio como se muestra en la Figura 1.1. Santo domingo se encuentra muy cerca de las provincias con más afectaciones sísmicas, donde ocurren la mayoría de los epicentros de los sismos como es Manabí y Esmeraldas.

Por ello para el desarrollo de este proyecto es importante analizar a detalle cada una de las características que se involucran al diseñar una estructura, tomando en cuenta cada una de las recomendaciones de las normas vigentes en el país para así desarrollar una edificación segura para los ocupantes.

Figura 1.1 Edificio colapsado terremoto Ecuador 16/04/2016. Fuente: Google Earth ,2015 (Antes), Almache, I., Sánchez, R.,2017 (Después).

1.3 Objetivos

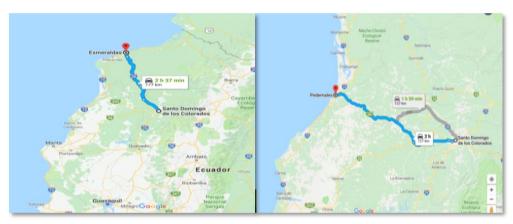
1.3.1 Objetivo general

Diseñar estructuralmente una edificación de cuatro pisos de uso comercial, oficinas, departamentos y terraza, en la ciudad de Santo Domingo, provincia de Santo Domingo de los Tsáchilas.

1.3.2 Objetivos específicos

- 1. Realizar el estudio geotécnico para cimentación.
- 2. Desarrollar el diseño arquitectónico de la edificación.
- 3. Determinar 3 alternativas de diseño para edificación.
- 4. Pre dimensionar los elementos estructurales en cada una de las alternativas planteadas.
- 5. Seleccionar la alternativa óptima para el desarrollo del proyecto, tomando en cuenta criterios económicos, sociales y ambientales.
- 6. Diseñar la super-estructura de la alternativa seleccionada.

- 7. Realizar el diseño de la sub-estructura para cubrir necesidades de las cargas.
- 8. Realizar planos estructurales de la edificación para uso en la construcción.
- 9. Determinar el presupuesto del diseño final.
- 10. Realizar el estudio de impacto ambiental.


1.4 Justificación

Este proyecto ha nacido con la necesidad de los interesados en construir un edificio en la parte delantera en el terreno ya que esto generaría mayor ingreso económico, dado a que el sitio es una zona comercial del cantón Santo Domingo. Actualmente en la zona de estudio se encuentran tres locales de construcción mixta de bloque con madera como se observa en la Figura 2.3. Con este proyecto se intenta cubrir las necesidades de los interesados de carácter privado.

Como se ha mencionado Santo Domingo es una provincia que se encuentra muy cerca de las zonas más sísmica del país. Esmeraldas con una distancia a su capital Esmeraldas de 176.7 Km. Esta provincia fue afectada por los terremotos más devastadores registrados, en 1906 de 8.8 en la escala de Richter y el terremoto del 16 de abril del 2016 ocurrido en Pedernales -Manabí de 7.8 en la escala de Richter a una distancia de 127

km aproximadamente, ver figura 1.2, es por ello que los propietarios temen que ocurran daños en la edificación.

El análisis del proyecto se basa en el estudio exhaustivo de cada uno de los procesos que conllevan al diseño de una estructura sismorresistente, teniendo en cuenta cada una de las necesidades y factores para lograr un diseño óptimo y que se pueda aplicar en un futuro.

Figura 1.2 Distancia Santo Domingo a provincias de Esmeraldas y Manabí.

Fuente: Google Maps, 2015.

1.5 Metodología

Para el desarrollo del proyecto es importante tomar en cuenta el procedimiento que se requiere para cumplir con lo requerido por ello se planteó un diagrama de flujo como se muestra en la figura 1.3, para llevar el proyecto acabo de una manera secuencial.

• Recopilación de información

Mediante una visita técnica, para así reconocer la zona de estudio, medidas del terreno y área de trabajo, pedir los requerimientos del edificio como es el uso y requerimientos a los propietarios y con ello definir los espacios.

Proyecto arquitectónico y estudio de suelo

Elaboración del proyecto arquitectónico con las demandas dichas por los propietarios.

Buscar asesoría técnica para realizar los trabajos de campo dado a que el proyecto se construirá en un futuro.

Se ha optado realizar SPT, con profundidad de acuerdo con la norma NEC-15.

• Pre dimensionamiento

Para ello una vez que se ha realizado el proyecto arquitectónico y se ha determinado que tipo de suelo existe en la zona de estudio se procede a realizar el pre dimensionamiento tomando en cuenta los requerimientos que se encuentran en la NEC-15, AISCE 341-10, ASCE 7-10, para diseños sísmicamente resistentes y así seleccionar la alternativa óptima.

Diseño

Una vez definida la alternativa óptima, se procede a realizar al análisis definitivo de los elementos estructurales, modelando cada una de las características mediante los Software SAP, ETABS para los elementos estructurales correspondientes a la edificación y la sub-estructura.

• Planos Estructurales

Definido los elementos estructurales se realizan los planos estructurales detallando dimensiones, tipo de materiales, niveles y ubicación.

• Análisis del presupuesto

Detallado los planos estructura se realizará un plano mediante el software Revit, se realiza un modelado de estructuras donde permita calcular de manera eficiente el metrado de los elementos.

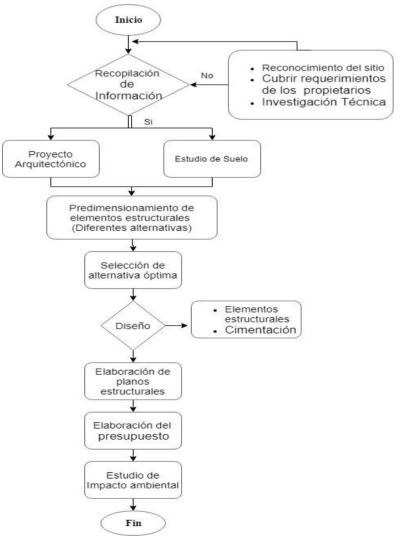


Figura 1.3 Diagrama de flujo – Metodología. Fuente: Almache, I., Sánchez, R.,2017

1.6 Alcance

El alcance de este proyecto se limita al diseño estructural de una edificación en la Provincia Santo Domingo con la entrega del estudio de suelo, planos arquitectónicos y estructurales de la edificación estudiada, cabe recalcar que el proyecto necesita una revisión ya que el tiempo estimado para la elaboración de este ha sido corto, pero se ha tratado de presentar cálculos reales y con ello los interesados puedan hacer uso de este proyecto en el futuro.

CAPÍTULO 2 MARCO REFERENCIAL

2.1 Aspectos físicos

2.1.1 Ubicación

La zona de estudio se encuentra localizada en la región Sierra en la provincia de Santo Domingo de los Tsáchilas, Cantón Santo Domingo Parroquia Santo Domingo, cuyos límites se observan en la tabla I y la ubicación geográfica en la figura 2.1.

Tabla I. Límites de la provincia de Santo Domingo.

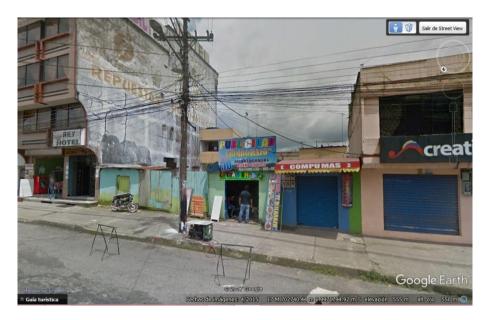
Ubicación	Provincia
Norte	Pichincha
Este	Pichincha
Sur	Los Ríos
Oeste	Manabí
Noroeste	Esmeraldas

Fuente: ECURED,2008

Figura 2.1 Ubicación geográfica Santo Domingo de Los Tsáchilas.

Fuente: Google Maps,2015

La localización específica de la zona de la construcción se encuentra en la dirección vía Chone entre Pedro Vicente Maldonado y Antonio Ante cuya fachada frontal se encuentra en la Figura 2.3 y ubicación en detallada en la figura 2.2. Con un área de construcción de 186.516m2, donde las coordenadas de referencia se encuentran en la tabla II.


Tabla II. Coordenadas referenciales del terreno.

Zona	17 sur
Sistema	WGS84
Este	702745.00 m
Norte	9971796.00 m
Elevación	547

Fuente: Datos obtenidos de Google Earth, 2015

Figura 2.2 Ubicación del área de estudio. Fuente: Google Earth,2015

Figura 2.3 Fachada frontal actual del terreno. **Fuente:** Google Earth,2015

2.2 Información básica

2.2.1 Clima

Santo Domingo de los Tsáchilas tiene un clima lluvioso tropical con una temperatura variable en verano de 18 a 33 °C y en invierno con una temperatura de 23 a 34 °C, donde hace más calor llegando hasta 38 °C, Con una temperatura Promedio de 25.5°C.

2.2.2 Topografía

La topografía del sitio se encuentra en una zona con cotas de elevación de 545 a 550 msnm, ver figura 2.4, un área con poca

pendiente, es decir, un terreno plano cuya la cota de la zona de estudio se encuentra entre 548-549 msnm.

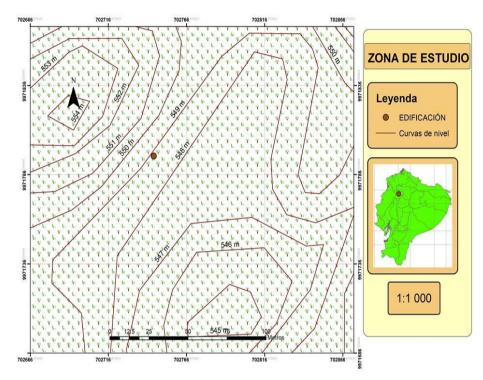


Figura 2.4 Topografía de la zona de estudio. Fuente: Almache, I., Sánchez, R.,2017

2.3 Geología

Santo Domingo se encuentra ubicada al oeste de la cordillera occidental de los Andes el área comprende una zona montañosa alta de las estribaciones de la cordillera hacia el oeste una área de relieve más baja que se encuentra caracterizada por presentar paisajes de lomas longitudinales redondeados con un patrón de drenaje paralelos o subparalelo, una zona plana baja, considerada más o menos hasta los 450m

de altura ,representada en ocasiones por pequeñas meseta o terrazas de drenaje con tipo céntrico espaciado. Presentando así materiales como Ceniza, toba, aglomerado volcánico, ver figura 2.5.

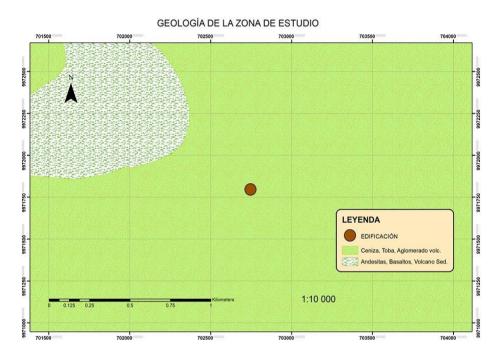


Figura 2.5 Geología de la zona de estudio. Fuente: Almache, I., Sánchez, R., 2017

2.4 Aspecto poblacional

Santo Domingo es una provincia netamente comercial por su ubicación territorial, cuenta con 368.013 habitantes censo 2010, es por ello por lo que la edificación de estudio se encuentra en una céntrica de la provincia y por ello tiene un fin comercial.

2.5 Medición del área de construcción

Mediante una visita técnica se realizó un levantamiento planimétrico con cinta donde se midió el área de construcción y las estructuras existentes en el sitio de estudio.

En la figura.2.6 se presenta la parte interior del área de construcción, en el cual se puede apreciar que en el límite de la parte izquierda del terreno hay un edificio de 4 pisos, y en la parte derecha hay una construcción de una casa de 2 pisos

Vista Derecha

Vista Izquierda

Figura 2.6 Vista derecha e izquierda del área de construcción. **Fuente:** Almache, I., Sánchez, R.,2017

En las figuras 2.7 a 2.10 se muestra la medición exterior e interior de la zona de construcción para así poder realizar el proyecto arquitectónico que nos servirá para el diseño del edificio.

Figura 2.7 Medición de la parte frontal del terreno de construcción. **Fuente:** Almache, I., Sánchez, R.,2017

Figura 2.8 Medición de bordillos del terreno de construcción. **Fuente:** Almache, I., Sánchez, R.,2017

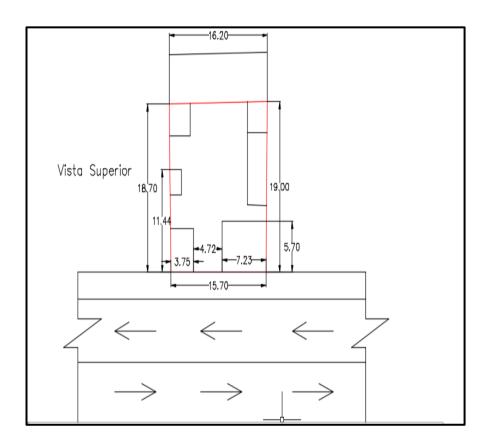


Figura 2.9 Vista frontal del área de construcción. **Fuente:** Almache, I., Sánchez, R., 2017

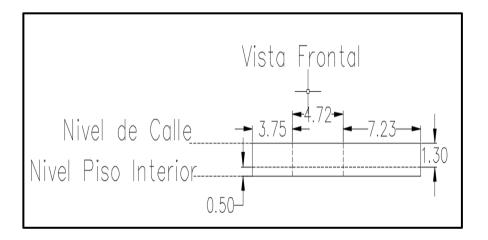


Figura 2.10 Medición de la parte interior del área de construcción. **Fuente:** Almache, I., Sánchez, R.,2017

Una vez finalizada la medición con cinta métrica del perímetro de la zona de construcción se procedió a dibujar el plano en AutoCAD, ver figura 2.11 y 2.12, para tener una vista superior del área en donde se va a diseñar el edificio.

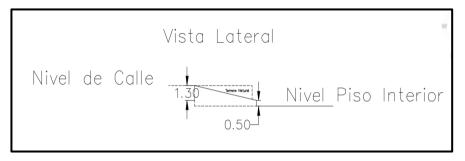


Figura 2.11 Vista Superior del área de construcción. **Fuente:** Almache, I., Sánchez, R.,2017

Figura 2.12 Vista frontal de la zona de construcción. **Fuente:** Almache, I., Sánchez, R.,2017

Se puedo observar que en la zona de construcción hay un desnivel de 1.8 metros, ver Figura 2.13, hacia abajo tomando en cuenta como nivel de referencia la calzada frente al terreno, por lo que se debe tomar en consideración este desnivel al momento de realizar el diseño.

Figura 2.13 Vista lateral de la zona de construcción. **Fuente:** Almache, I., Sánchez, R.,2017

CAPÍTULO 3 ESTUDIO GEOTÉCNICO EN ZONA DE CONSTRUCCIÓN

3.1 Prueba de penetración estándar (SPT) en campo

3.1.1 Procedimiento

Para poder diseñar la super-estructura y la sub-estructura se debe conocer el tipo de suelo que existe en el lugar, además de la capacidad de soportar del suelo, para poder elegir el tipo de cimentación superficial adecuada que sea capaz de soportar el peso de la super-estructura y evitar grandes asentamientos.

Para ello se escogió realizar la prueba de penetración estándar SPT, por lo que el procedimiento en que se basó es el siguiente:

 Seleccionar el punto a ensayar (Donde se va a realizar la perforación). Preparar el sitio quitando las impurezas y desperdicios dado a que por ese sitio pasara el tubo de muestreo, ver figura 3.1.

Figura 3.1 Ubicación del 1er sondeo. **Fuente:** Almache, I., Sánchez, R., 2017

 Ensamble de los materiales (Trípode) por sobre la zona de perforación, ver figura 3.2.

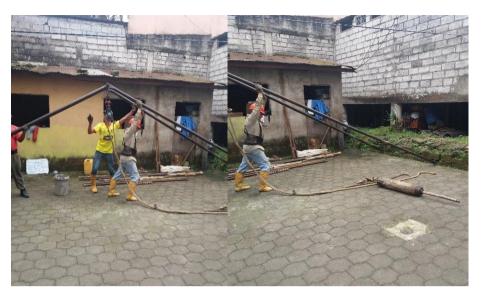


Figura 3.2 Ensamble del equipo SPT Fuente: Almache, I., Sánchez, R.,2017

 Colocar el martillo de forma vertical sobre el tubo de perforación que será sostenido por una cuerda que pasa por una polea que se encuentra ubicada en la parte superior del trípode, ver figura 3.3.

Figura 3.3 Ensamble total de equipo SPT. **Fuente:** Almache, I., Sánchez, R.,2017

- Se debe señalar cada 15 centímetros con marcas en la parte superior de la tubería para la verificación del avance de la perforación conforme se vayan dando los golpes.
- Dejar caer el martillo desde una altura de 75cm sobre el tubo
 y contabilizar los golpes que le dan en cada tramo de 15 cm

especificados en el tubo. Al inicio de la penetración solo se debe sumar los golpes del 2 y 3 tramo.

 Sacar la muestra y analizar la consistencia, aspecto del material extraído mediante un análisis preliminar, y después llevar al laboratorio para un análisis profundo. Durante la extracción de las muestras es importante la limpieza del orificio para evitar muestras aberrantes como se observa en la figura 3.4 la forma de la cuchara es diferente.

Figura 3.4 Limpieza de la perforación. **Fuente:** Almache, I., Sánchez, R., 2017

Para poder determinar las propiedades del suelo se utilizó la Prueba de Penetración Estándar (SPT), por lo que se hicieron 2 sondeos de 12 y 10 metros de profundidad respectivamente.

En la figura 3.5, se muestra los materiales que se usaron para ensamblar el equipo con el cual se realizó en ensayo SPT.

Figura 3.5 Equipos para ensayo SPT. **Fuente:** Almache, I., Sánchez, R., 2017

Se realizaron dos sondeos que serían suficientes para determinar características del suelo en la zona de estudio.

3.1.2 Sondeo # 1

Una vez que el equipo estaba armado, se empezó a realizar el primer sondeo cuyas coordenadas son las siguientes (175702756E, 9971795N), lugar donde estaría construido el edificio en proyecto, luego se precedió a realizar el muestreo y se extrajo las muestras de suelo que está debajo del nivel actual del terreno, hasta la profundidad de 12 metros establecidas.

Para la hoja de campo, se detalló número de golpes que se daban en cada división por metro de sondeo perforado, además de las respectivas muestras del suelo existente por cada metro lineal en el avance del sondeo, recuperación, color, etc. A Continuación, se presenta las figuras de 3.6 a 3.19. Donde se muestra el material obtenido en los 12 metros del 1er sondeo:

Figura 3.6 Muestra a 1 metro de profundidad. **Fuente:** Almache, I., Sánchez, R.,2017

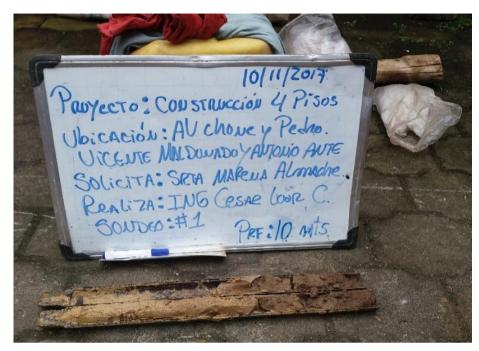
Figura 3.7. Muestra a 2 metros de profundidad. **Fuente:** Almache, I., Sanchez, R.,2017

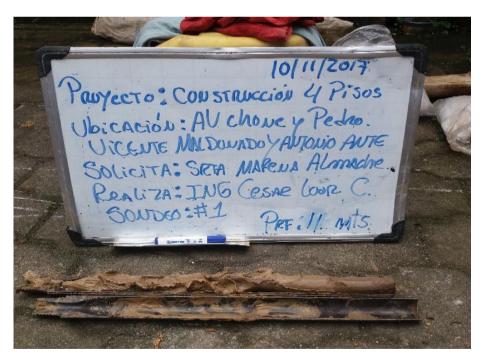
Figura 3.8 Muestra a 3 metros de profundidad. **Fuente:** Almache, I., Sánchez, R.,2017

Figura 3.9 Muestra a 4 metros de profundidad. **Fuente:** Almache, I., Sánchez, R.,2017

Figura 3.10 Muestra a 5 metros de profundidad. **Fuente:** Almache, I., Sánchez, R.,2017

Figura 3.11 Muestra a 6 metros de profundidad. **Fuente:** Almache, I., Sánchez, R.,2017


Figura 3.12 Muestra a 7 metros de profundidad. **Fuente:** Almache, I., Sánchez, R.,2017


Figura 3.14 Muestra a 8 metros de profundidad. **Fuente:** Almache, I., Sánchez, R.,2017

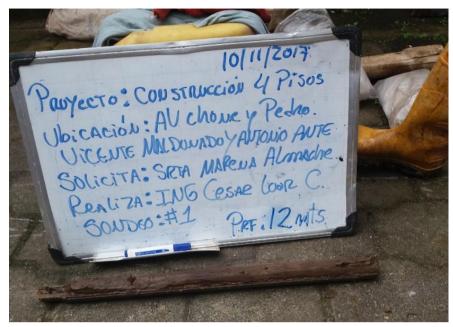

Figura 3.13 Muestra a 9 metros de profundidad. **Fuente:** Almache, I., Sánchez, R.,2017

Figura 3.15 Muestra a 10 metros de profundidad. **Fuente:** Almache, I., Sánchez, R.,2017

Figura 3.16 Muestra a 11 metros de profundidad. **Fuente:** Almache, I., Sánchez, R.,2017

Figura 3.17 Muestra a 12 metros de profundidad. **Fuente:** Almache, I., Sánchez, R.,2017

Figura 3.18 Recuperación de muestras. **Fuente:** Almache, I., Sánchez, R.,2017

Figura 3.19 Orificio del primer sondeo. **Fuente:** Almache, I., Sánchez, R.,2017

3.1.3 Sondeo # 2

Una vez finalizado el primer sondeo se procedió a escoger el lugar para el segundo sondeo con coordenadas (175702750E, 9971799N) y se continuó con la perforación, ver figuras 3.20 a 3.23.

Figura 3.20 Recuperación de muestras. **Fuente:** Almache, I., Sánchez, R.,2017

Figura 3.21 SPT sondeo # 2. Fuente: Almache, I., Sánchez, R.,2017

Figura 3.22 Equipos utilizados. **Fuente:** Almache, I., Sánchez, R.,2017

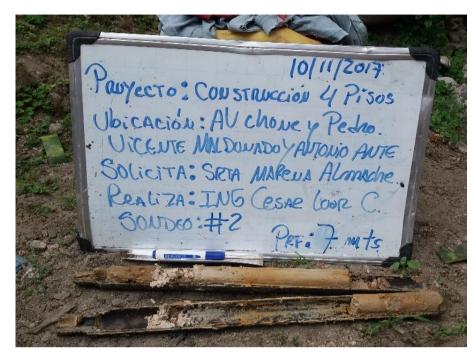
Figura 3.23 Realización del 2do sondeo. **Fuente:** Almache, I., Sánchez, R.,2017

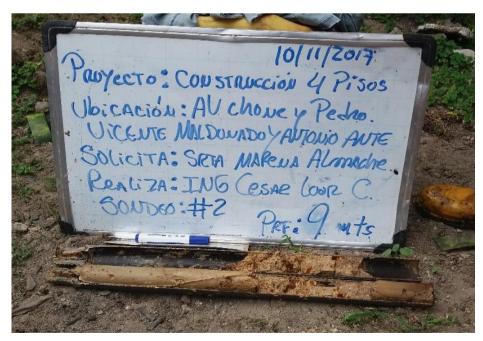
En el sondeo número dos se realizó la perforación solo hasta los 10 m dado a que los estratos eran muy similares, esto se pudo notar por el número de golpes. Mediante las figuras 3.24 a 3.33 se observa material extraído.

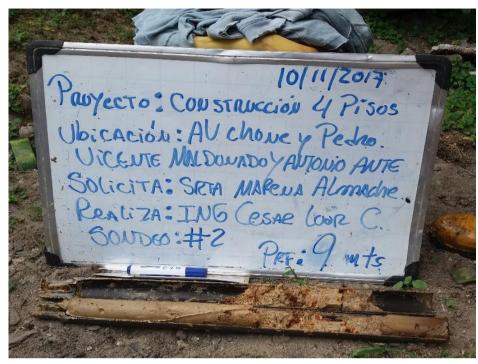
Figura 3.24 Muestra a 1 metros de profundidad. Fuente: Almache, I., Sánchez, R., 2017

Figura 3.25 Muestra a 2 metros de profundidad. **Fuente:** Almache, I., Sánchez, R.,2017

Figura 3.26 Muestra a 3 metros de profundidad. **Fuente:** Almache, I., Sánchez, R.,2017


Figura 3.27 Muestra a 4 metros de profundidad. **Fuente:** Almache, I., Sánchez, R.,2017


Figura 3.28 Muestra a 5 metros de profundidad. **Fuente:** Almache, I., Sánchez, R.,2017


Figura 3.29 Muestra a 6 metros de profundidad. **Fuente:** Almache, I., Sánchez, R.,2017

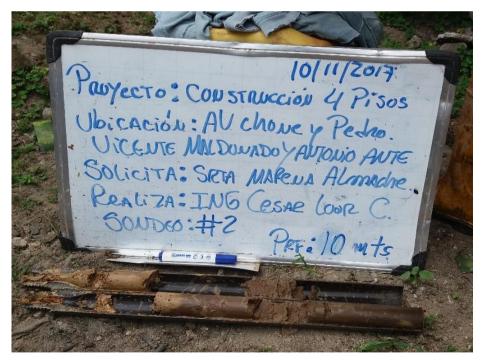

Figura 3.30 Muestra a 7 metros de profundidad. **Fuente:** Almache, I., Sánchez, R.,2017

Figura 3.31 Muestra a 8 metros de profundidad. **Fuente:** Almache, I., Sánchez, R.,2017

Figura 3.32 Muestra a 9 metros de profundidad. **Fuente:** Almache, I., Sánchez, R.,2017

Figura 3.33 Muestra a 10 metros de profundidad. **Fuente:** Almache, I., Sánchez, R.,2017

Figura 3.34 Equipo de trabajo. Fuente: Almache, I., Sánchez, R.,2017

Figura 3.35 Ensayo SPT. Fuente: Almache, I., Sánchez, R.,2017

3.1.4 Tablas de campo

Una vez finalizada las dos perforaciones se procesó la información obtenida en campo mediante un análisis visual de lo que se obtuvo en las muestras, y se obtuvo lo siguiente, observar tablas III y IV:

SONDEO #1

COORDENADAS E: 175702756E N: 9971795

Tabla III. Muestras de sondeo # 1

Prof (m)	# Golpes	Recuperación (%)	Color	Clasificación	Nivel Freático
1	4	100	Café Oscuro	Limo Arcilloso consistencia Baja	No
2	3	100	Café Oscuro	Limo Arcilloso	No
3	8	100	Amarillento	Arcilla consistencia Baja	No
4	10	100	Amarillento	Arcilla consistencia Baja	No
5	5	100	Amarillento	Arcilla consistencia Baja	No
6	4	100	Amarillento	Arcilla consistencia Baja	No
7	5	100	Amarillento	Arcilla consistencia Baja	No
8	5	100	Amarillento	Arcilla consistencia Baja	No
9	2	100	Color Abono con Pintas Amarillas	Arcilla consistencia Baja	No
10	3	100	Obscuro	Arcilla consistencia Muy Baja	No

11	3	100	Café Claro	Arcilla	No
				consistencia	
				Muy Baja	
12	3	100	Café Claro	Arcilla	SI
				consistencia	NF=11.8m
				Muy Baja	

Fuente: Almache, I., Sánchez, R.,2017

SONDEO #2

COORDENADAS E: 175702750E N: 9971799

Tabla IV. Muestras de sondeo # 2

Prof	#	Recuperación	Color	Clasificación	Nivel
(m)	Golpes	(%)			Freático
1	4	100	Café Oscuro	Limo Arcilloso	No
2	3	100	Amarillento	Arcilla consistencia Baja	No
3	5	100	Amarillento	Arcilla consistencia Baja	No
4	10	100	Amarillento	Arcilla consistencia Baja	No
5	4	100	Color abono	Arcilla consistencia muy Baja	No
6	5	100	Color abono	Arcilla consistencia Baja	No
7	6	100	Color abono	Arcilla consistencia Baja	No
8	5	100	Color abono	Arcilla consistencia Baja	No
9	3	100	Café Oscuro	Arcilla consistencia Baja	No
10	3	100	Café Oscuro	Arcilla consistencia Baja	No

Fuente: Almache, I., Sánchez, R.,2017

3.2 Ensayos de laboratorio

En la figura 3.35, se muestra los ensayos que se aplicaron a cada muestra extraída, los cuales se realizaron por cada metro de perforación, En el anexo 1 se podrá observar de manera individual cada uno de los ensayos.

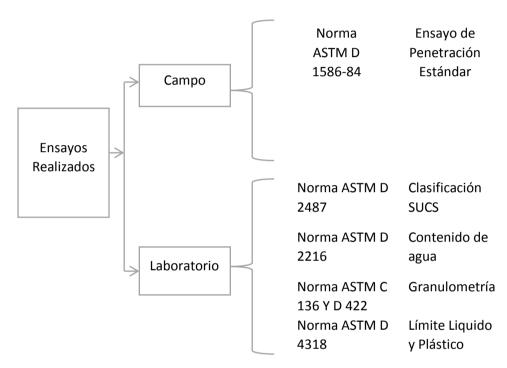


Figura 3.36 Esquema de ensayos realizados Fuente: Almache, I., Sánchez, R.,2017

3.2.1 Contenido de agua (Norma ASTM D 2216)

Materiales

En las figuras 3.36 y 3.37, se observa los materiales que se requieren para realizar el ensayo de contenido de agua

Figura 3.38 Recipientes del laboratorio Shosue Cia.Ltda Fuente: Almache, I., Sánchez, R.,2017

Figura 3.37 Horno del laboratorio Shosue Cia.Ltda **Fuente:** Almache, I., Sánchez, R.,2017

Figura 3.39 Balanza del laboratorio Shosue Cia.Ltda Fuente: Almache, I., Sánchez, R.,2017

Procedimiento

- ✓ Colocar 100 g de muestra representativa en los recipientes por lo menos dos recipientes por cada muestra.
- ✓ Ponerlo en el horno con una temperatura de110°C
- ✓ Dejarlo secar y luego tomar su peso.

Cálculo

$$w = \frac{M_{cws} - M_{cs}}{M_{cs} - M_c} * 100 = \frac{M_W}{M_s} * 100$$
 Ec. 1

Donde w: Contenido de Humedad %

3.2.2 Granulometría (Norma ASTM C 136 Y D 422)

Materiales

Se observa en la figura 3.39 los tamices que se usaron en el ensayo de granulometría.

Figura 3.40 Juego de tamices del laboratorio Shosue Cia.Ltda Fuente: Almache, I., Sánchez, R.,2017

Procedimiento

- Tomar una muestra representativa de 500g y colocarla en el horno por unas 24 horas.
- Una vez secado y enfriado tomar el peso de 200 g dejar en agua por unas 24 horas.

Procede a colocar en los tamices y se empieza a lavar finos en cada tamiz.

Y se toma el peso del material granular retenido en cada tamiz.

Cálculo

$$%$$
Ret = $\frac{W_{\text{ret}}}{W_{\text{i}}} * 100$ **Ec. 2**

Donde, %Ret: Porcentaje Retenido

3.2.3 Límite líquido (Norma ASTM D 4318)

Materiales

Se observa en la figura 3.40 Cuchara Casa Grande que permitió determinar el Límite Líquido.

Figura 3.41 Cuchara Casa Grande del laboratorio Shosue Cia.Ltda Fuente: Almache, I., Sánchez, R.,2017

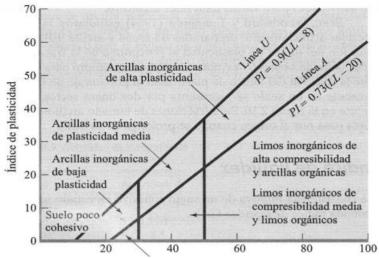
Procedimiento

- ✓ Se coloca la muestra en la cuchara (La muestra debe estar manejable en forma de pasta).
- ✓ Se realiza una ranura con la paleta de tamaño estándar en la mitad de la muestra colocada en la cuchara.
- ✓ Con la manivela se levanta la copa y se deja caer de una altura de aproximadamente 10mm.

✓ El contenido de agua en porcentaje necesario para cerrar la ranura, a los 25 golpes.

3.2.4 Límite plástico (Norma ASTM D 4318)

Se obtiene el Contenido de agua en porcentaje


Procedimiento

- ✓ La muestra de suelo debe ser enrollada en rollitos de aproximadamente 3.2 mm de diámetro donde se desmorona sobre una placa de vidrio de manera elipsoidal ver figura 3.40.
- ✓ Y con ello se obtiene el índice de Plasticidad

$$IP = LL - LP$$
 Ec. 3

Figura 3.42 Ensayo límite plástico Fuente: Braja M, Das,2001

Figura 3.43 Carta de plasticidad. **Fuente:** Braja M, Das,2001

3.2.5 Clasificación de suelo SUCS (Norma ASTM D 2487)

Una vez obtenido los resultados se procede a clasificar el tipo de material de acuerdo con la figura 3.43 existente por cada metro de perforación.

grupo	Criterios
CL	Inorgánico; $LL < 50; PI > 7;$ se grafica sobre o arriba de la línea A (véase zona CL en la figura 2.12)
ML	Inorgánico; $LL < 50$; $PI < 4$; o se grafica debajo de la línea A (véase la zona ML en la figura 2.12)
OL	Orgánico; LL — seco en homo) / (LL — sin secar) ; < 0.75; LL < 50 (véase zona OL en la figura 2.12)
СН	Inorgánico; $LL \ge 50; PI$ se grafica sobre o arriba de la línea A (véase la zona CH en la figura 2.12
МН	Inorgánico; $LL \ge 50$; PI se grafica debajo de la línea A (véase la zona MH en la figura 2.12)
ОН	Orgánico; $LL-$ seco en horno) / ($LL-$ sin secar) ; < 0.75; $LL \ge 50$ (véase zona OH en la figura 2.12)
CL-ML	Inorgánico; se grafica en la zona sombreada en la figura 2.12
Pt	Turba, lodos y otros suelos altamente orgánicos

Figura 3.44 SUCS para suelos limosos y arcillosos **Fuente:** Braja M, Das,2001

3.3 Descripción estratigráfica

3.3.1 Perforación # 1

Estrato 1

De 0 a 2 m: Espesor 2 metros, constituidos por:

Limo inorgánico, color café oscuro, plasticidad alta, no expansivo alta compresibilidad, poco permeables, consistencia muy blanda, suelta, capacidad de soporte muy baja. Tipo MH, según clasificación SUCS.

Estrato 2

De 2 a 4 m: Espesor 2 metros, constituidos por:

Limo inorgánico color café claro, matiz amarillento, plasticidad alta, no expansivo, alta compresibilidad, poco permeables, consistencia blanda (Suelta), capacidad de soporte muy bajo. Tipo MH, Según clasificación SUCS

Estrato 3

De 4 a 10 m: Espesor 6 metros, constituidos por:

Arcilla inorgánica, color gris claro, matiz abanó, plasticidad alta, no permeables, consistencia muy blanda (Muy Suelta), capacidad de soporte muy bajo. Tipo CH, Según clasificación SUCS

Estrato 4

De 10 a 12 m: Espesor 2 metros, constituidos por:

Limo inorgánico, color gris oscuro, plasticidad alta, no expansivo, consistencia muy blanda (Muy Suelta), capacidad de soporte muy bajo. Tipo MH, Según clasificación SUCS

3.3.2 Perforación #2

Estrato 1

De 0 a 1 m: Espesor 1 metros, constituidos por:

Limo inorgánico, color café oscuro, plasticidad alta, no expansivo alta compresibilidad, poco permeables, consistencia muy blanda, suelta, capacidad de soporte muy baja. Tipo MH, según clasificación SUCS.

Estrato 2

De 1 a 2 m: Espesor 1 metros, constituidos por:

Limo inorgánico color café claro, matiz amarillento, plasticidad alta, no expansivo, alta compresibilidad, poco permeables, consistencia muy blanda (Suelta), capacidad de soporte muy bajo. Tipo MH, Según clasificación SUCS

Estrato 3

De 2 a 4 m: Espesor 2 metros, constituidos por:

Limo inorgánico color café claro, matiz amarillento, plasticidad alta, no expansivo, alta compresibilidad, poco permeables, consistencia blanda (Suelta), capacidad de soporte muy bajo. Tipo MH, Según clasificación SUCS

Estrato 4

De 4 a 8 m: Espesor 4 metros, constituidos por:

Arcilla inorgánica, color gris claro, matiz abanó, plasticidad alta, no expansivas, no permeables, consistencia muy blanda (Muy Suelta), capacidad de soporte muy bajo. Tipo CH, Según clasificación SUCS

Estrato 5

De 8 a 9 m: Espesor 1 metros, constituidos por:

Arcilla inorgánica, color gris claro, matiz rojizo, plasticidad alta, no permeables, consistencia muy blanda (Muy Suelta), capacidad de soporte muy bajo. Tipo CH, Según clasificación SUCS

Estrato 6

De 9 a 10 m: Espesor 1 metros, constituidos por:

Limo inorgánico, color gris oscuro, plasticidad alta, no expansivo, consistencia muy blanda (Muy Suelta), capacidad de soporte muy bajo. Tipo MH, Según clasificación SUCS

Nota: Durante las perforaciones se observó que el nivel de agua se encuentra a 11.50 metros de profundidad y luego de unas horas a 6.50 metros

3.4 Parámetros del suelo de cimentación

Para la evaluación de capacidad de carga se necesitan dos factores con es la cohesión y el ángulo de fricción del estrato donde se va a cimentar dado al desnivel existente en el terreno de aproximadamente 1.80 metros además que los primeros estratos existentes son rellenos aproximadamente de dos metros los cuales se los excavara para dar lugar a un sótano, quedando así la cota de cimentación aproximada a los tres metros, donde las características del estrato es el siguiente:

Lecho constituido por un suelo fino cohesivo: Limo inorgánico color café claro, matiz amarillento, plasticidad alta, no expansivo, alta compresibilidad, poco permeables, consistencia blanda (Suelta), capacidad de soporte muy bajo. Tipo MH, Según clasificación SUCS en la tabla V se observa las características del estrato.

$$C = 0.6N$$
 Ec. 4

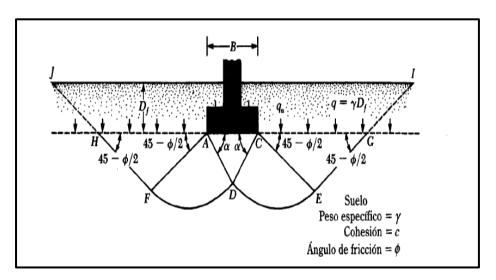
$$\emptyset = \sqrt{20Nc} + 15$$
 Ec. 5

Tabla V. Parámetros del suelo.

Ø	16°
Y	1.30 Ton/m ³
С	2.50 Ton/m ²

Fuente: Almache, I., Sánchez, R., 2017

Es importa determinar los asentamientos diferenciales y totales para verificar que se encuentran en los permisibles y así evitar daños en la estructura, con lo que se obtuvo un Smax=1.00 cm y la distorsión β entre los apoyos no excederá los 0.003, además se considera un factor de seguridad F.S=3.5


Los factores son asumidos en función de los suelos existentes bajo la cota de cimentación como limos y arcillas de consistencia muy blanda.

La cimentación está localizada en un estrato natural blanda, suelta. La localización del nivel freático estará por debajo la cota de cimentación, al no ser detectada por los sondeos realizados.

Para la cimentación se recomienda el dimensionamiento de unas vigas de cimentación en ambas direcciones y una losa poco armada con fin de distribuir bien las cargas que llegan al suelo.

3.4.1 Capacidad de soporte del suelo

Se aplicará la teoría propuesta por Terzaghi para determinar la capacidad última de carga, para cimientos de sección rectangular.

Figura 3.45 Líneas de fallas de zapata. **Fuente:** Braja M, Das,2001

$$qu = (1 + 0.2 \frac{B}{L})CN_C + \sigma'N_q + (1 + 0.3 \frac{B}{L})0.5\gamma BN_{\gamma}$$
 Ec. 6

3.4.2 Análisis de capacidad de carga

Tabla VI. Capacidad admisible de carga.

В	L	Df	Y	Ø	Df/B	Nc	Nq	Ny	qu	qadm
1	1	2.5	1.3	16	2.50	13.68	4.92	1.82	16.82	4.81
1.1	1	2.5	1.3	16	2.27		4.67	1.82	16.05	4.59
1.2	1	2.5	1.3	16	2.08		4.42	1.82	15.27	4.36
1.3	1	2.5	1.3	16	1.92		4.17	1.82	14.49	4.14
1.4	1	2.5	1.3	16	1.79		3.92	1.82	13.7	3.91
1.5	1	2.5	1.3	16	1.67		3.67	1.82	12.9	3.69

Fuente: Almache, I., Sánchez, R., 2017

Tabla VII. Capacidad admisible del suelo a cada metro lineal.

Pozo N		Valores de capacidad de soporte del suelo kg/cm2										
Prof.(m)	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12
1	0.5	0.3	0.82	0.82	0.3	0.3	0.5	0.5	0.2	0.3	0.3	0.3
2	0.5	0.3	0.76	0.82	0.5	0.5	0.5	0.3	0.3			

Fuente: Almache, I., Sánchez, R., 2017

3.4.3 Cálculo de capacidad de carga

Para el cálculo de la capacidad de carga se ha tomado la teoría de Terzaghi para una cimentación corrida, tomando en cuenta los parámetros del suelo calculados mediante los ensayos de laboratorio y campo en la tabla VIII se detalla el cálculo de la capacidad de soporte del suelo donde se va cimentar.

Tabla VIII. Factores de capacidad del suelo.

CAPACIDAD DE CARGA							
	DATOS						
	Profun	didad de desplante [Of	2.5	m		
	Peso vo	lumétrico del suelo (3m	1.3	Ton/m3		
	Co	hesión del suelo c		2.5	Ton/m2		
	Ángulo de f	ricción interna del su	uelo Ø	16	Fi(Grados)		
	Ancho	1	m				
Tipo de suelo 1 Arcilloso ,2 Arcilloso Blando, 3.							
		2	_				
	Facto	or de seguridad F.S.		3.5	-		
		Cálculo y Res	ultados				
F	Factores						
dep	ende de Ø	$a = \frac{2}{r}c'I$	N'c + qN'q +	1 - ນN'ນ	,		
N'c	10.06	4u-3	• • • • • • • •	2 / 11 /			
N'q	2.92	Capacidad		U	Inidades		
Ν'γ	0.67	qu	26.692		Ton/m2		
c'	1.67	qadm	7.626		Ton/m2		

Fuente: Almache, I., Sánchez, R.,2017

Tabla IX. Factores de capacidad de carga modificados de Terzaghi Nc, Nq, NY.

φ	N _c '	N_q	N,'	φ	Nc'	N _q '	N,
0	5.70	1.00	0.00	26	15.53	6.05	2.59
1	5.90	1.07	0.005	27	16.30	6.54	2.88
2	6.10	1.14	0.02	28	17.13	7.07	3,29
3	6.30	1.22	0.04	29	18.03	7.66	3.76
4	6.51	1.30	0.055	30	18.99	8.31	4.39
5	6.74	1.39	0.074	31	20.03	9.03	4.83
6	6.97	1.49	0.10	32	21.16	9.82	5.51
7	7.22	1.59	0.128	33	22.39	10.69	6.32
8	7.47	1.70	0.16	34	23.72	11.67	7.22
9	7.74	1.82	0.20	35	25.18	12.75	8.35
10	8.02	1.94	0.24	36	26.77	13.97	9.41
11	8.32	2.08	0.30	37	28.51	15.32	10.90
12	8.63	2.22	0.35	38	30.43	16.85	12.75
13	8.96	2.38	0.42	39	32.53	18.56	14.71
14	9.31	2.55	0.48	40	34.87	20.50	17.22
15	9.67	2.73	0.57	41	37.45	22.70	19.75
16	10.06	2.92	0.67	42	40.33	25.21	22.50
17	10.47	3.13	0.76	43	43.54	28.06	26.25
18	10.90	3.36	0.88	44	47.13	31.34	30.40
19	11.36	3.61	1.03	45	51.17	35.11	36.00
20	11.85	3.88	1.12	46	55.73	39.48	41.70
21	12.37	4.17	1.35	47	60.91	44.45	49.30
22	12.92	4.48	1.55	48	66.80	50.46	59.25
23	13.51	4.82	1.74	49	73.55	57.41	71.45
24	14.14	5.20	1.97	50	81.31	65.60	85.75
25	14.80	5.60	2.25				

Fuente: Braja M, Das,2001

3.4.4 Características geomecánicas

Mediante el ensayo SPT se pueden hallar correlaciones de las características geomecánicas

Tabla X. Consistencia, tenacidad, elasticidad en función del NSPT.

	Consistencia de los suelos cohesivos							
Índice Nspt	Consistencia	Identificación en campo	Cohesión Kg/cm2	Módulo de elasticidad Mpa				
< 3	Muy Blando	Fácilmente penetrable varios cms. Con el puño	< 0.125	< 2.5				
4 a6	Blando	Fácilmente penetrable varios cms. Con el pulgar	0.125- 0.25	2.5 a 5				
7 a 10	Media	Se requiere esfuerzo moderado para penetrar varios cms con el pulgar	0.25-0.5	5 a 10				
11 a 20	Firme	Indentable fácilmente con el pulgar	0.5-1	10 a 20				
21 a 30	Muy Firme	Indentable fácilmente con la uña del pulgar	1-2	20 a 40				
> 30	Dura	Difícil de indentar con la uña del pulgar	2	> 40				

Fuente: Almache, I., Sánchez, R.,2017

Tabla XI. Cálculo del ángulo de fricción interna.

Cálculo del ángulo de fricción interna, por medio de la prueba de penetración estándar SPT						
Número de golpes (SPT) 5	Ø					
Criterio N17	16					
Criterio de correlación Peck, Hanson, Thorburn	16					

Fuente: Almache, I., Sánchez, R.,2017

Tabla XII. Rangos de permeabilidad en suelo del proyecto.

Permeabilidad de unidades con permeabilidad intergranular	Rangos de Permeabilidad (cm/s)
Baja: suelos residuales, limos arcillosos (MH), Coluviales	5x10 ⁻⁶ -5x10 ⁻⁷
Media a Alta: aluviales	10 ⁻¹ -10 ⁻³

Fuente: Almache, I., Sánchez, R., 2017

Tabla XIII. Módulo de reacción del suelo.

Esf. Adm (kg/cm2)	Módulo de Reacción del suelo
0.5	1.3
0.76	1.77
0.9	2.02
1.16	2.49
1.4	2.92
1.5	3.1
1.6	3.28

Fuente: Almache, I., Sánchez, R., 2017



Figura 3.46 Esfuerzo admisible Fuente: Almache, I., Sánchez, R.,2017

3.4.5 Excavaciones

Las alturas de las excavaciones corresponden a las de cimentación

Tabla XIV. Factor se seguridad de estabilidad de taludes de corte.

TABLA 8 FACTOR DE SEGURIDAD DE ESTABILIDAD DE TALUDES DE CORTE										
ITEM		Talud d	le Zanja	Corte de Talud en la Vía Road			Talud de Terrapien de Vía			
Factor de Seguridad (F		FS >	> 1.1	FS > 1.2			FS > 1.2			
			-		CV	Р	1			
				FS=	C N					
	F	S	FACTOR DE SEGURIDAD				1.2			
	(c	COHESION	I ESTRATATO DE CORTE			(2,50	Ton/m^2).		
	٨	IE	NUMERO	DE ESTABILIDAD		1.50				
	1	Y	PESO UNIT	ARIO SUELO EXCAVADO		(1,30	Ton/m³).			
	I	Н	ALTURA N	MAXIMA DE E	XCAVACION	1	(2,50	m)		

Fuente: Shosue Cia.Ltda

La aplicación permite tener un factor de seguridad de FS= 1.15<1.2 razón por la cual las excavaciones no serán verticales, tendrán una inclinación cuya relación será: 4V:1H

CAPÍTULO 4 ALTERNATIVAS PROPUESTAS Y SU RESPECTIVO PREDIMENSIONAMIENTO

4.1 Planos arquitectónicos propuestos

El edificio por diseñar consta de un sótano, planta baja que será utilizada para locales comerciales, 1er piso que será utilizado para oficinas y 2do piso que será utilizado para departamentos y una terraza como se observa en las figuras 4.1 a 4.6.

Figura 4.1 Planta sótano Fuente: Almache, I., Sánchez, R.,2017

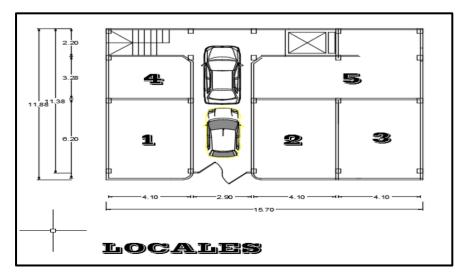


Figura 4.2 Primer piso locales Fuente: Almache, I., Sánchez, R.,2017

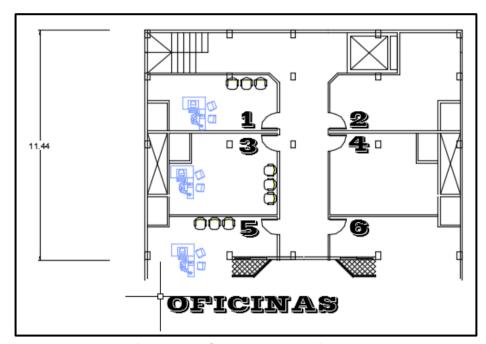
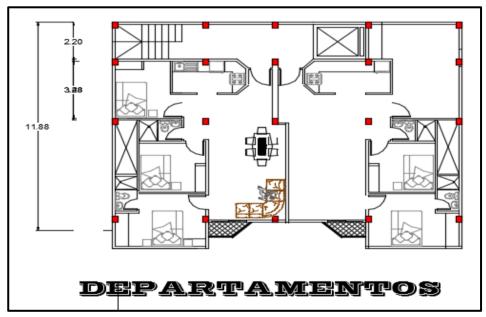
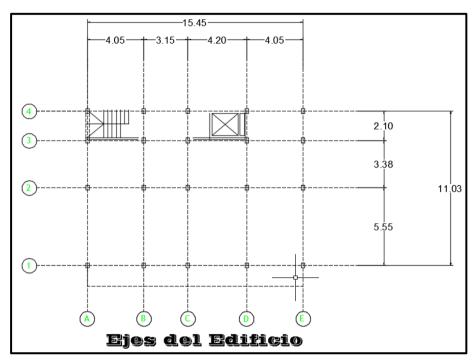




Figura 4.3 Segundo piso oficinas Fuente: Almache, I., Sánchez, R.,2017

Figura 4.4 Tercer piso departamentos **Fuente:** Almache, I., Sánchez, R.,2017

Figura 4.5 Ejes estructurales del edificio **Fuente:** Almache, I., Sánchez, R.,2017

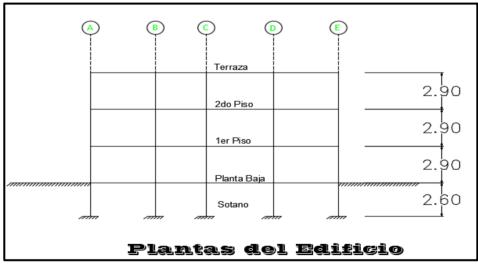
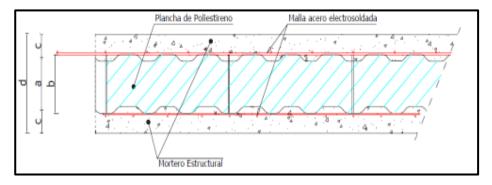


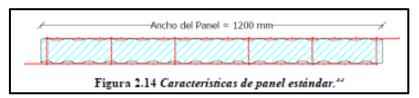
Figura 4.6 Vista en planta del edificio Fuente: Almache, I., Sánchez, R.,2017

4.2 Pórtico de concreto resistente a momento (PCRM)

Los pórticos de concreto resistente a momento son los más comunes al momento de elegir un sistema estructural por lo que analizaremos si este sistema es conveniente al momento de realizar el diseño estructural.


4.2.1 Estimación de carga muerta

Para la estimación de la carga muerta en el PCRM que soportará la edificación se tomará en cuenta la baja capacidad admisible que tiene el suelo por lo que se buscará que la edificación sea lo más liviana posible, por esa razón el peso muerto constará de paredes de Hormi-2, losa nervada en dos direcciones, baldosas, instalaciones, cubiertas o techo, escalera y ascensor.


Paredes de hormi2

Se optó por este sistema debido a que se busca una estructura liviana, este material es útil dado a que reduce considerablemente la carga muerta comparada con paredes de bloques, es material es nuevo y la carga aún no está en la NEC-15.

Se puede observar en las figuras 4.7 y 4.8, que las paredes de hormi2 consta de una malla electrosoldada en ambos lados, el poliestireno en donde su ancho es variable dependiendo del proyecto o especificaciones técnicas, y el respectivo recubrimiento de hormigón.

Figura 4.7 Estructura de pared simple de hormi2 **Fuente**: (Tapia, 2010)

Figura 4.8 Característica de panel estándar **Fuente:** (Tapia, 2010)

Donde:

a= Espesor nominal de poliestireno expandido (40-80mm).

b= Distancia entre las armaduras longitudinales (a+20mm).

c= Espesor de mortero estructural ≥ 25mm.

d= Espesor total ((c x 2) + a).

Panel

Ancho=1200mm

Altura= Variable según proyecto

• Malla de acero electrosoldada

Acero longitudinal: φ2.4mm (20 hilos en 1240mm).

Acero transversal: φ2.4mm espaciados a 150mm.

Acero conector: φ3.0 mm (68 por m2).

Fy = 5000kg/cm2

Fr = 5600 kg/cm2

Densidad poliestireno= 13kg/cm2

En la tabla XV se observa las características de los panelas de hormi2

Tabla XV. Peso de paredes simpe de hormi2.

PANEL TIPO	a (mm)	b (mm)	d (mm)	Peso panel (kg/m2)	Peso Pared (kg/m2)
PSD 040	40	25	90	2.5	122.5
PSD 050	50	25	100	2.69	122.69
PSD 060	60	25	110	2.87	122.87
PSD 070	70	25	120	3.06	123.06
PSD 080	80	25	130	3.25	123.25

Fuente: (Tapia, 2010)

Para este proyecto se escogió el PSD 060 que según la tabla XV, cuenta con un peso de pared de 122.87kg/m2.

Losa nervada en dos direcciones

Debemos estimar el espesor mínimo que va a tener la losa para ello usamos la tabla XVI del ACI 318-08:

Tabla XVI. Espesores mínimos de losa nervada en dos direcciones.

	Sin Ábacos			Con Ábacos		
		eles riores	Paneles interiores		neles eriores	Paneles interiores
fy (Mpa)	Sin Vigas de borde	Con vigas de borde		Sin Vigas de borde	Con vigas de borde	
280	In/33	In/36	In/36	In/36	In/40	In/40
420	In/30	In/33	In/33	In/33	In/36	In/36
520	In/28	In/31	In/31	ln/31	In/34	In/34

Fuente: ACI,2008

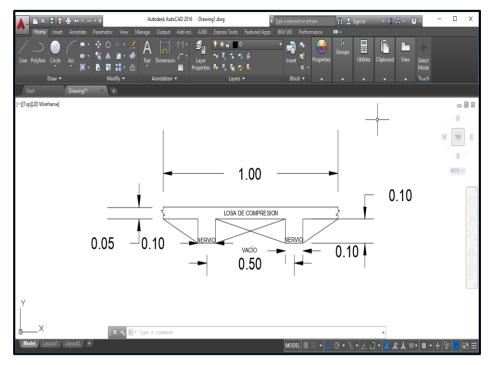

Para nuestro proyecto de usará acero de refuerzo con un fy=420 Mpa. Se tiene una luz de 4.2 metros y una luz neta de 3.85 m asumiendo un ancho de viga de 35. Observar tabla XVII.

Tabla XVII. Espesor mínimo de losa.

Tabla XVIII: Espesor minimo de 103a.				
	Espesor Mínimo h			
	Sin Ábacos			
Fy (Mpa)	Paneles exteriores Con vigas de borde	Paneles interiores		
420	0.12m	0.12m		

Fuente: Almache, I., Sánchez, R., 2017

Para el edificio se usará losa nervada en dos direcciones como se muestra en la figura 4.9.

Figura 4.9 Sección transversal losa nervada en 2 direcciones **Fuente:** Almache, I., Sánchez, R.,2017

Con estas dimensiones podemos estimar el peso de la losa nervada por unidad de área, ver tabla XVIII.

Tabla XVIII. Peso de losa nervada en dos direcciones.

	ρ Hormigón (T/m2)	Espesor (m)	Peso (T/m2)
Losa de compresión	2.4	0.05	0.12
Nervios	2.4	$0.10m \left(\frac{(10+10)cm}{100cm}\right) * 2$	0.096

Fuente: Almache, I., Sánchez, R., 2017

Resumen de carga muerta

Para la estimación de las cargas muertas que actúan en el edificio, se lo realizó de manera independiente ya que la terraza y los demás pisos no va a soportar la misma carga ya que no cumplen con las mismas funciones. A continuación, se detallan las cargas para los entrepisos y la terraza. Ver tabla XIX.

Tabla XIX. Carga muerta para todos los pisos excepto la terraza.

Elementos	WD (T/m2)
Paredes Hormi2	0.123
Losa de Compresión	0.12
Nervios sin cajonetas	0.096
Enlucidos y Ductos	0.04
Baldosas	0.08
Cielorrasos	0.02
Total	0.48

Fuente: NEC,2015

Para la terraza se consideró que solo habrá un parapeto perimetralmente, donde solo habrá acceso para personal de mantenimiento, ductos del entrepiso anterior y si hay baldosas.

Tabla XX. Carga muerta terraza.

Elementos	W _D (T/m2)
Parapeto	0.01
Losa de Compresión	0.12
Nervios sin cajonetas	0.096
Enlucidos y Ductos	0.03
Baldosas	0.08
Total	0.34

Fuente: NEC,2015

Para las cargas del peso propio de columnas y vigas se usará un valor que esta entre 0.2 y 0.5 T/m2, en el caso de la terraza se asume

un valor del 70% del peso propio de las columnas y vigas de los entrepisos ya que la terraza no tiene columnas.

Tabla XXI. Peso propio de los elementos estructurales.

	Wpp (T/m2)
Entrepisos	0.3
Terrazas	0.21

Fuente: Almache, I., Sánchez, R., 2017

Entonces las cargas muertas que actuarán en el edificio se resumen según la tabla XXII:

Tabla XXII. Resumen de carga muerta de los todos pisos.

	Wp (T/m2)	Wpp (T/m2)	WD+Wpp (T/m2)
Terraza	0.34	0.21	0.55
Piso 2	0.48	0.3	0.78
Piso 1	0.48	0.3	0.78
Planta Baja	0.48	0.3	0.78

Fuente: Almache, I., Sánchez, R., 2017

4.2.2 Carga viva

Según NEC 2015 sección NEC-SE-CG, la carga viva, también llamada sobrecarga de uso, depende de la ocupación a la que está destinada la edificación y está conformada por los pesos de personas, muebles, equipos y accesorios móviles o temporales, mercadería en transición, y otras.

Tabla XXIII. Carga viva de todos los pisos.

_	W _L (T/m2)
Terraza	0.07
Piso 2	0.2
Piso 1	0.25
Planta Baja	0.5

Fuente: NEC,2015

4.2.3 Resumen de cargas muertas y vivas

A continuación, se hace un resumen de las cargas que actuarían en el edificio:

Tabla XXIV. Resumen de cargas actuantes en la edificación.

	W _D (T/m2)	W _{pp} (T/m2)	WD+Wpp (T/m2)	W∟ (T/m2)
Terraza	0.34	0.21	0.55	0.07
Piso 2	0.48	0.3	0.78	0.2
Piso 1	0.48	0.3	0.78	0.25
Planta Baja	0.48	0.3	0.78	0.5

Fuente: Almache, I., Sánchez, R., 2017

4.2.4 Predimensionamiento de columnas

Para realizar el predimensionamiento de las columnas del edificio se procedió a tomar la carga axial que actúa en cada piso que se calculó utilizando la Ec. 7.

$$Pi = \sum_{i=1}^{n} Wi * Ai$$
 Ec. 7

Donde:

Wi= Carga distribuida que incluye carga muerta y la carga viva reducida.

Ai= Área tributaria de columnas intermedias, de borde y esquineras.

Pi= Carga de columna en servicio en el Nivel i.

Reducción de carga viva

Para edificios de oficinas u Hoteles se debe realizar una reducción de carga viva según la NEC 2015 NE-SE-CG sección 3.2.2 de acuerdo con la Ec. 8.

Si
$$K_{LL}A_T \ge 35m^2$$
: $L = L_O(0.25 + \frac{4.57}{\sqrt{K_{LL}A_T}})$ Ec. 8

Donde:

L= Sobrecarga distribuida en KN/m2, aplicada sobre el área tributaria del elemento de soporte.

Lo= Sobrecarga distribuida sin reducir, aplicada sobre el área tributaria del elemento de soporte.

KLL= Factor de sobrecarga según el elemento de soporte.

AT= Área tributaria en metros cuadrados.

Pero L no será menor que

- 0.5Lo Para elementos que soportan un solo piso.
- 0.4Lo Para elementos que soportan 2 o más pisos.

Tabla XXV. Factor de sobrecarga en columnas.

Elemento	KLL
Columnas	
Columnas Interiores	4
Columnas Exteriores sin losas en volado	4
Columnas de Borde con losas en volado	3
Columnas esquineras con losas en	2
volado	

Fuente: NEC,2015

Una vez reducida la carga viva se procede a predimensionar las columnas de acuerdo con la Ec. 9 según NEC 2015, Valores de α ver tabla XXVI.

$$Ac = \frac{Pi}{\alpha * f'c}$$
 Ec. 9

Tabla XXVI. Valores de α .

Columnas esquineras	0.17
Columnas exteriores	0.2
Columna Interiores	0.25
Para diseño	0.21
sismorresistente	

Fuente: NEC, 2015

Área de influencia en columnas

El área de influencia de las columnas se distribuye según la figura 4.10.

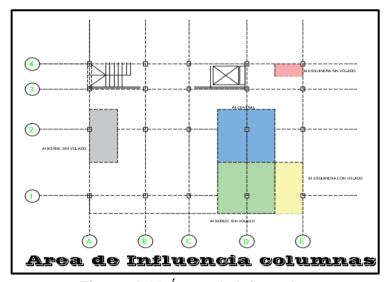


Figura 4.10 Áreas de influencias Fuente: Almache, I., Sánchez, R.,2017

Donde se obtuvo el valor de las áreas de influencia observar tabla XXVII, más crítica para poder predimensionar las columnas.

Tabla XXVII. Áreas de influencia.

Lugar	Área Influencia (m2)				
Borde con Volado	17.64				
Borde sin Volado	9.04				
Central	18.42				
Esquinera con volado	8.66				
Esquinera sin volado	2.13				

Fuente: Almache, I., Sánchez, R.,2017

La reducción de carga viva no fue necesario ya que el porcentaje de reducción es bajo. Ver tablas XXIX-XXXI.

Tabla XXVIII. Dimensiones de la estructura.

Table 7071 IIII Dillionologico de la confectaca				
Ancho	15.45	m		
Largo	12.53	m		
α	0.21	Sismorresistente		
Área Total	193.59	m2		

Fuente: Almache, I., Sánchez, R.,2017

Tabla XXIX. Columnas de borde.

área Tri			ndo do bordo.	
Borde Con volado	17.64	m2	Aplicar Reducción de Carga Viva	
Borde sin volado	9.04	m2		
KLL	3			
L	44%	T/m2	No es necesario reducir la carga	

Fuente: Almache, I., Sánchez, R., 2017

Tabla XXX. Columnas esquineras.

Esquineras con volado	8.66	m2	No aplicar reducción de carga viva
Esquineras sin volado	2.13	m2	
KLL	2		

Fuente: Almache, I., Sánchez, R., 2017

Tabla XXXI. Columnas interiores.

	Columnas Interiores	18.42	m2	Aplicar Reducción d Carga Viva	
	KLL	4			
	L	39%	T/m2		
	% reducción	27.81%		No es necesario reducir la carga	
				reducir	ia carga
No	0.5Lo	0.25	T/m2	reducir	ia carga

Fuente: Almache, I., Sánchez, R., 2017

Comprobando que no fue necesario la reducción de carga vivan entonces se procedió al predimensionamiento de las columnas de cada entrepiso de la edificación usando un hormigón con un f´c=280kg/cm2. Ver tabla XXXII.

Tabla XXXII. Dimensiones de columnas de cada piso.

		Pi (Ton)	α	Ac	Ancho	Sección
	Esquinera con volado	5.33456	0.21	90.72	9.52	30x30
	Esquinera sin volado	1.31208	0.21	22.31	4.72	30x30
Terraza	Interior	11.34672	0.21	192.97	13.89	30x30
	Borde con volado	10.86624	0.21	184.80	13.59	30x30
	Borde sin volado	5.56864	0.21	94.70	9.73	30x30
	Esquinera con volado	13.8127	0.21	234.91	15.33	30x30
Piso 2	Esquinera sin volado	3.39735	0.21	57.78	7.60	30x30
	Interior	29.3799	0.21	499.66	22.35	30x30

	Borde con volado	28.1358	0.21	478.50	21.87	30x30
	Borde sin volado	14.4188	0.21	245.22	15.66	30x30
	Esquinera con volado	22.72384	0.21	386.46	19.66	30x30
	Esquinera sin volado	5.58912	0.21	95.05	9.75	30x30
Piso 1	Interior	48.33408	0.21	822.01	28.67	35x35
	Borde con volado	46.28736	0.21	787.20	28.06	35x35
	Borde sin volado	23.72096	0.21	403.42	20.09	30x30
	Esquinera con volado	33.79998	0.21	574.83	23.98	30x30
Planta	Esquinera sin volado	8.31339	0.21	141.38	11.89	30x30
Baja	Interior	71.89326	0.21	1222.67	34.97	35x35
	Borde con volado	68.84892	0.21	1170.90	34.22	35x35
	Borde sin volado	35.28312	0.21	600.05	24.50	30x30

Fuente: Almache, I., Sánchez, R., 2017

Se puede observar que hay secciones muy pequeñas pero el ACI 318-14 sección 18.7 establece que las columnas de pórticos resistentes a momentos deben tener una sección mínima de 30x30cm.

4.2.5 Espectro de diseño y espectro inelástico PCRM

Para estimar el valor de la fuerza sísmica horizontal que se pueden producir durante un evento sísmico en la provincia de Santo Domingo de los Tsáchilas, donde estará ubicada la edificación se tienen los siguientes datos. Ver tabla XXXIII.

Tabla XXXIII. Parámetros de zona sísmica.

Zona Sísmica	V
Z	0.4
Tipo de Suelo	E
Fa	1
Fd	1.6
Fs	1.9

n	1.8
r	1.5
R	8
le	1
фр	1
фр фе	0,9

Fuente: NEC, 2015

Con estos datos presentados en la tabla XXXIII procedemos a realizar el espectro de diseño elástico e inelástico. Ver figura 4.11.

Figura 4.11 Espectro de diseño y espectro inelástico **Fuente:** Almache, I., Sánchez, R.,2017

Tabla XXXIV. Valores de Sa y Cs.

T (seg)	Sa (g)	Cs (g)
0.00	0.40	0.05
0.10	0.51	0.06
0.20	0.61	0.08
0.30	0.72	0.09
0.40	0.72	0.09
0.50	0.72	0.09
0.60	0.72	0.09
0.70	0.72	0.09
0.80	0.72	0.09
0.90	0.72	0.09
1.00	0.72	0.09
1.10	0.72	0.09
1.20	0.72	0.09
1.30	0.72	0.09
1.40	0.72	0.09
1.50	0.72	0.09
2.00	0.55	0.07
2.50	0.39	0.05
3.00	0.30	0.04
3.50	0.24	0.03

Fuente: Almache, I., Sánchez, R.,2017

4.2.6 Periodo fundamental de la estructura

Según NEC 2015 Peligro Sísmico sección 6.3.3, el periodo de vibración aproximado de la estructura T, para cada dirección principal, será estimado a partir de 2 métodos.

Para este diseño se va a utilizar el Método 1 que dice que, para estructuras de edificación, el valor de T puede determinarse de manera aproximada mediante la Ec. 10

$$T = C_t h_n^{\alpha}$$
 Ec. 10

Donde:

 C_t = Coeficiente que depende del tipo de edificio.

hn= Altura máxima de la edificación de n pisos, medida desde la base de la estructura en metros.

T= Periodo de vibración de la estructura.

Tabla XXXV. Valores de Ct y α.

Tipo de Estructura	Ct	α
Estructura de Acero.		
Sin arriostramiento.	0.072	0.8
Con Arriostramiento.	0.073	0.75
Pórticos especiales de Hormigón Armado.		
Sin muros estructurales ni diagonales rigidizadores.	0.055	0.9
Con muros estructurales o diagonales rigidizadores y para otras estructuras basadas en muros estructurales y mampostería estructural.	0.055	0.75

Fuente: NEC, 2015

Entonces para el diseño de PCRM se tiene. Ver tabla XXXVI.

Tabla XXXVI. Periodo y aceleración espectral.

Ct	0.055	
α	0.9	
hn	11.3	metros
Т	0.488	seg
Sax	0.72	g
Say	0.72	g

Fuente: Almache, I., Sánchez, R.,2017

El valor de la aceleración debido al sismo es igual en la dirección x y en la dirección y, ya que en los dos sentidos se utilizan pórticos de concreto resistente a momento.

4.2.7 Peso sísmico

Según NEC 2015 Peligro Sísmico sección 6.1.7 la carga sísmica W representa la carga reactiva por sismo, donde W=D. Donde D es la carga muerta total de la estructura.

$$W = (W_D + W_{PP}) * A * N$$
 Ec. 12

Donde

 W_D = Carga muerta sobreimpuesta.

 W_{PP} = Peso propio de los elementos estructurales.

A= Área del piso de la estructura.

N= Número de pisos de la estructura.

El área de piso de la estructura es 193.59m2

Tabla XXXVII. Peso de la estructura.

	W _D (T/m2)	W _{pp} (T/m2)	WD+Wpp (T/m2)
Terraza	0.34	0.21	0.55
Piso 2	0.48	0.3	0.78
Piso 1	0.48	0.3	0.78
Planta Baja	0.48	0.3	0.78
Wtotal			2.89

Fuente: Almache, I., Sánchez, R., 2017

Entonces se obtiene un valor de peso sísmico de:

4.2.8 Coeficiente de respuesta sísmica

Según NEC 2015 Peligro Sísmico sección 6.3.2 se puede determinar el coeficiente sísmico con la Ec. 13.

$$C_{Sx,y} = \frac{I*S_{ax,y}}{R*\phi_E*\phi_P}$$
 Ec. 13

Donde:

I= Factor de importancia de la estructura.

Sax,y= Aceleración espectral en X y Y.

R= Coeficiente de reducción de resistencia.

 $\phi_{\it E}$ = Coeficiente de regularidad en elevación.

 ϕ_P = Coeficiente de regularidad en planta.

Para nuestro diseño $\phi_E = \phi_P = 1$

Donde se obtiene observar tabla XXXVIII

Tabla XXXVIII. Coeficiente de respuesta sísmica PCRM en la dirección x v dirección v.

on la direction x y all coolers y.			
Csx	0.09	seg	
Csy	0.09	Seg	

Fuente: Almache, I., Sánchez, R., 2017

4.2.9 Cortante basal

Según NEC 2015 Peligro Sísmico sección 6.3.2, se puede estimar el valor del cortante basal usando las Ec. 14 y Ec. 15. Ver tabla XXXIX

$$V_{X,Y} = \frac{I*S_{ax,y}}{R*\phi_E*\phi_P}*W$$
 Ec. 14

$$V_{x,y} = C_{Sx,y} * W$$
 Ec. 15

Tabla XXXIX. Cortante basal dirección x y dirección y.

V _x	50.35	Ton
V_y	50.35	Ton

Fuente: Almache, I., Sánchez, R., 2017

4.2.10 Distribución de fuerzas verticales

Según NEC 2015 Peligro Sísmico sección 6.3.5, la distribución de fuerzas verticales se asemeja a una distribución lineal (triangular), similar al modo fundamental de vibración, pero dependiente al periodo fundamental de vibración Ta.

En la ausencia de un procedimiento más riguroso, basado en los principios de la dinámica, las fuerzas laterales totales de cálculo deben ser distribuida en la altura de la estructura, usando las Ec.16, 17 y 18.

$$V = \sum_{i=1}^{n} F_i$$
 Ec. 16

$$V_x = \sum_{i=x}^n F_i$$
 Ec. 17

$$F_x = \frac{w_x h_x^k}{\sum_{i=1}^n w_i h_i^k} V$$
 Ec. 18

Donde:

V= Cortante total en la base de la estructura.

 V_x = Cortante total en el piso x de la estructura.

 F_i = Fuerza lateral aplicada en el piso i de la estructura.

 F_x = Fuerza lateral aplicada en el piso x de la estructura.

n= Número de pisos de la estructura.

 w_x = Peso asignado al piso o nivel x de la estructura, siendo una fracción de la carga reactiva W (incluye la fracción de la carga viva correspondiente).

 w_i = Peso asignado al piso o nivel i de la estructura, siendo una fracción de la carga reactiva W (incluye la fracción de la carga viva correspondiente).

 h_x = Altura del piso x de la estructura.

 h_i = Altura del piso i de la estructura.

k= Coeficiente relacionado con el periodo de vibración de la estructura T. Ver tabla XL

Tabla XL. Valores de k.

Valores de T (seg)	k
≤0.5	1
0.5 <t≤2.5< td=""><td>0.75+0.50T</td></t≤2.5<>	0.75+0.50T
>2.5	2

Fuente: NEC, 2015

Distribución de fuerzas verticales dirección X:

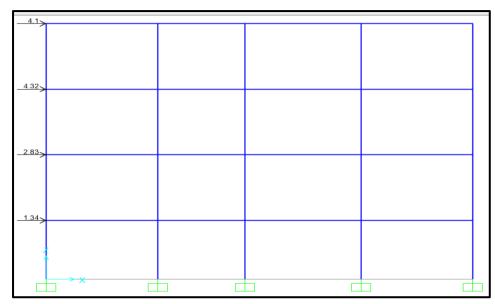
Tabla XLI. Distribución de fuerzas verticales dirección X.

Dirección X			\	/x = 50.35 T	on	
NIVEL	ALTURA(m)	Wx (Ton)	$w_x * h_x^{kx}$	Cvx	Fx (ton)	Vx (ton)
Terraza	11.3	106.47	1203.15	0.33	16.40	16.40
Piso 2	8.4	151.00	1268.40	0.34	17.29	33.68
Piso 1	5.5	151.00	830.50	0.22	11.32	45.00
Planta Baja	2.6	151.00	392.61	0.11	5.35	50.35
			3694.66			

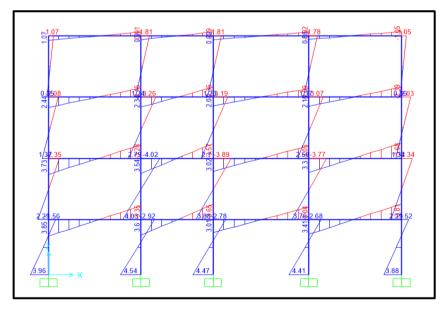
Fuente: Almache, I., Sánchez, R., 2017

Distribución de fuerzas verticales dirección Y:

Tabla XLII. Distribución de fuerzas verticales dirección Y.


Dirección y			V	i = 50.35 1	on	
NIVEL	ALTURA(m)	Wy (Ton)	$w_y * h_y^{ky}$	Cvy	Fy (Ton)	Vy (Ton)
Terraza	11.3	106.47	1203.15	0.33	16.40	16.40
Piso 2	8.4	151.00	1268.40	0.34	17.29	33.68
Piso 1	5.5	151.00	830.50	0.22	11.32	45.00
Planta Baja	2.6	151.00	392.61	0.11	5.35	50.35
			3694.66			

Fuente: Almache, I., Sánchez, R., 2017


4.2.11 Momento por sismo eje x y eje y

Para poder predimensionar las vigas se necesita calcular el momento que se produce por el sismo, para esto utilizamos el programa SAP2000 modelando el pórtico en la dirección x y dirección y aplicando las cargas por piso que se calculó anteriormente. Como hay 4 pórticos en el eje x y 5 pórticos en el eje y, entonces se asume que cada pórtico resiste la misma carga:

$$\frac{Fx}{4}$$
 y $\frac{Fy}{5}$

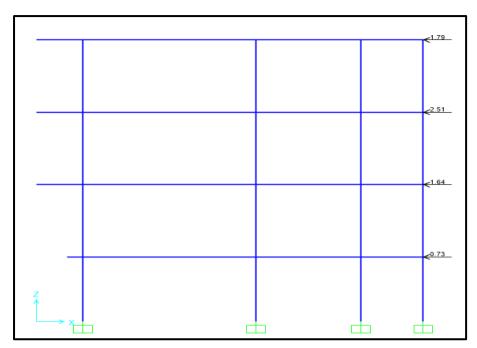


Figura 4.12 Fuerzas verticales en dirección x pórtico eje 2 **Fuente:** Almache, I., Sánchez, R.,2017

Figura 4.13 Diagrama de momento por sismo E_x Pórtico eje 2 **Fuente:** Almache, I., Sánchez, R.,2017

El momento por sismo de la viga en la cara de la columna señalada es: $M_{\text{Ex}}=2.27$ Ton.m.

Figura 4.14 Fuerzas verticales en dirección y pórtico eje B **Fuente:** Almache, I., Sánchez, R.,2017

El momento por sismo de la viga en la cara de la columna señalada

es: M_{Ey}=2.48 Ton.m

4.2.12 Momento por carga muerta y carga viva

Para predimensionar la viga en el eje x se procederá a utilizar una viga de pórtico eje 2.

Tabla XLIII. Momento por carga muerta, viva y sismo.

WD+Wpp	0.78	Ton/m2
WD	0.48	Ton/m2
S	4.466	m
qD	2.14	Ton/m
Ln1	4.05-0.13=3.75	m
Ln2	3.15-0.3=2.85	m
Ln	3.3	m

M _D	2.33	Ton.m	
W_{L}	0.2	Ton/m2	
Q _L	0.89	Ton/m	
ML	-0.97	Ton.m	
M _{Ex}	2.27	Ton.m	
M _{Ey}	2.48	Ton.m	

Fuente: Almache, I., Sánchez, R., 2017

4.2.13 Determinación de momento último Mu

Para determinar el Mu se usará las combinaciones de carga de NEC 2015 Cargas no Sísmicas sección 3.4.3

Tabla XLIV. Combinaciones de carga.

Combinación 1	1.4D
Combinación 2	1.2D+1.6L+0.5max(Lr;S;R)
Combinación 3	1.2D+1.6max(Lr;S;R)+max(L;0.5W)
Combinación 4	1.2D+1.0W+L+0.5max(Lr;S;R)
Combinación 5	1.2D+1.0E+L+0.2S
Combinación 6	0.9D+1.0W
Combinación 7	0.9D+1.0E

Fuente: (NEC, 2015)

Tabla XLV. Momentos últimos.

Combinación 1	3.62	Ton.m
Combinación 2	4.35	Ton.m
Combinación 5	6.04	Ton.m
Combinación 7	4.37	Ton.m

Fuente: Almache, I., Sánchez, R., 2017

Se puede observar en la tabla XLV que la combinación 5 rige en el predimensionamiento de la viga por lo tanto se va a predimensionar con un Mu= 6.04 Ton.m

4.2.14 Predimensionamiento de vigas eje x

Para predimensionar la viga se puede usar la Ec. 19.

$$d = \sqrt{\frac{M_u}{0.145 f'c*b}}$$
 Ec. 19

Conociendo que para un diseño sismorresistente el ancho mínimo de viga es b=25 cm y el recubrimiento mínimo es de 4cm, donde la altura de la viga se puede estimar usando la Ec. 20.

$$h = d + \frac{\phi_{var}}{2} + \phi_{est} + recubrimiento$$
 Ec. 20

Tabla XLVI. Altura de vigas eje x.

f´c	280	Kg/cm2	
b	25	Cm	
Mu	6.04x10^5	Kg.cm	
d	24.39	cm	
ϕ_{var}	20	mm	
ϕ_{est}	10	mm	
recubrimiento	4	cm	
h _{req}	30.39	cm	
h _{seleccionado}	35	cm	

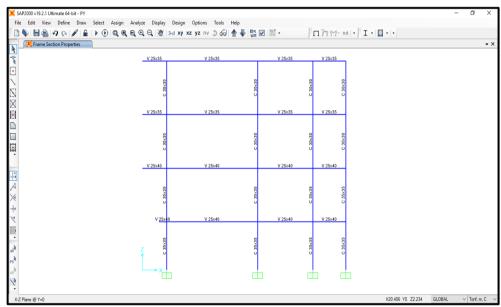
Fuente: Almache, I., Sánchez, R., 2017

Figura 4.15 Secciones del pórtico eje 2 dirección x **Fuente:** Almache, I., Sánchez, R., 2017

4.2.15 Predimensionamiento de vigas eje Y

Para predimensionar la viga se puede usar la Ec. 21.

$$d = \sqrt{\frac{M_u}{0.145 f'c*b}}$$
 Ec. 21


Conociendo que para un diseño sismorresistente el ancho mínimo de viga es b=25 cm y el recubrimiento mínimo es de 4cm, donde la altura de la viga se puede estimar con la Ec. 22

$$h = d + \frac{\phi_{var}}{2} + \phi_{est} + recubrimiento$$
 Ec. 22

Ia	rabia ALVII. Altura de vigas eje y.				
f´c	280	Kg/cm2			
b	25	Cm			
Mu	6.25x10^5	Kg.cm			
d	24.81	cm			
ϕ_{var}	20	mm			
ϕ_{est}	10	mm			
recubrimiento	4	cm			
h _{req}	30.81	cm			
hadasianada	35	Cm			

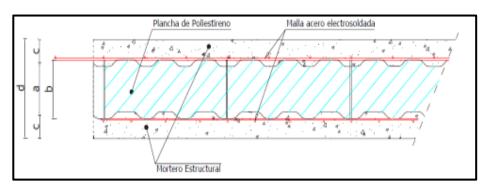
Tabla XLVII. Altura de vigas eje y.

Fuente: Almache, I., Sánchez, R., 2017

Figura 4.16 Secciones del pórtico eje B dirección y **Fuente:** Almache, I., Sánchez, R.,2017

4.3 Pórticos de acero resistente a momentos (PARM)

Las estructuras de acero son muchos más livianas que las estructuras de hormigón armado, esto es una ventaja ya que esto ayudará a reducir la dimensiones de la sub estructura, para ello se analizará de igual manera, al momento de realizar el diseño.


Las consideraciones para los materiales que se toman para el PARM es de acero A36 con un acero estructural de un f_y=2531.05 kg/cm2

4.3.1 Estimación de carga muerta

Para la estimación de la carga muerta en el PARM que soportará la edificación se tomará en cuenta la baja capacidad admisible que tiene el suelo, por ello se buscará que la edificación sea lo más liviana posible, donde el peso muerto constará de paredes de Hormi-2, losa compuesta por Steel panel, baldosas, instalaciones, cubiertas o techo, escalera y ascensor.

Paredes de hormi2

Se optó por este sistema debido a que se busca una estructura liviana, este material es útil debido a que reduce considerablemente la carga muerta comparada con paredes de bloques, es material es nuevo y la carga aún no está en la NEC-15.

Figura 4.17 Estructura de paredes simple normal de Hormi2 **Fuente:** (Tapia, 2010)

Donde:

a= Espesor nominal de poliestireno expandido (40-80mm).

b= Distancia entre las armaduras longitudinales (a+20mm).

c= Espesor de mortero estructural ≥ 25mm.

d = Espesor total ((c x 2) + a).

Se puede observar en la figura 4.17 y 4.18 que las paredes de hormi2 consta de una malla electrosoldada en ambos lados, el poliestireno, en donde su ancho es variable dependiendo del proyecto o especificaciones técnicas, y el respectivo recubrimiento de hormigón.

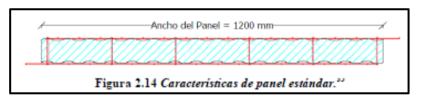


Figura 4.18 Característica del panel estándar Fuente: (Tapia, 2010)

Panel

Ancho=1200mm

Altura= Variable según proyecto

Malla de acero electrosoldada

Acero longitudinal: φ2.4mm (20 hilos en 1240mm).

Acero transversal: φ2.4mm espaciados a 150mm.

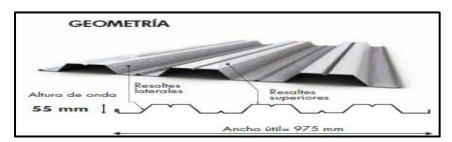
Acero conector: φ3.0 mm (68 por m2).

 $F_y = 5000 kg/cm2$

 $F_r = 5600 \text{ kg/cm}2$

Densidad poliestireno= 13kg/cm2

Tabla XLVIII. Peso de paredes simple de hormi2.


PANEL TIPO	a (mm)	b (mm)	d (mm)	Peso panel (kg/m2)	Peso Pared (kg/m2)
PSD 040	40	25	90	2.5	122.5
PSD 050	50	25	100	2.69	122.69
PSD 060	60	25	110	2.87	122.87
PSD 070	70	25	120	3.06	123.06
PSD 080	80	25	130	3.25	123.25

Fuente: (Tapia, 2010)

Para este proyecto se escogió el PSD 060 que cuenta con un peso de pared de 122.87kg/m2.

Losa metal deck (steel panel)

En este proyecto se va a usar Novalosa, ya que se requiere un sistema de losa alivianada y estará apoyada en vigas metálicas.

Figura 4.19 Steel panel novalosa **Fuente:** (Novacero, 2017)

Las características del material se toman como referencia del catálogo de productos de Novacero observar figuras 4.20 y 4.21

PROPIEDADES DE LA SECCIÓN SIMPLE - NOVALOSA 55 mm					
Espesor placa colaborante (mm)	Peso (kg/m²)	l+ (cm ⁴ /m)	S+ (cm³/m)	S- (cm³/m)	As (cm²/m)
0.76	7.81	39.37	12.43	13.29	9.03
1.00	10.17	55.99	18.43	19.34	12.04

Figura 4.20 Propiedades de la sección simple **Fuente:** (Novacero, 2017)

PROPIEDADES DE LA SECCIÓN COMPUESTA - NOVALOSA 55 mm					
Espesor placa colaborante (mm)	Espesor losa¹ (cm)	Volúmen homigón (m³/m²)	Peso losa (kg/m²)	Id ² (cm ⁴ /m)	ΦsMno ³ (Ton x m)
	5.0	0.075	187.92	685.10	1.00
	6.0	0.085	211.92	889.45	1.16
0.76	8.0	0.105	259.92	1417.35	1.48
	10.0	0.125	307.92	2127.75	1.83
	12.0	0.145	355.92	3048.64	2.18
	5.0	0.075	190.28	750.59	1.00
	6.0	0.085	214.28	972.48	1.16
1.00	8.0	0.105	262.28	1544.10	1.48
	10.0	0.125	310.28	2309.96	1.83
	12.0	0.145	358.28	3298.29	2.18

Figura 4.21 Propiedades de la sección compuesta Fuente: (Novacero, 2017)

Con estos datos se procedió a escoger la Novalosa con un espesor de placa colaborante de 0.76mm y con un espesor de hormigón de 5

cm, por lo que el peso total compuesto de la placa colaborante y el hormigón es de 187,92kg/m2.

4.3.2 Resumen de carga muerta

Para la estimación de las cargas muertas que actúan en el edificio, se lo realizó de manera independiente ya que la terraza y los demás pisos no va a soportar la misma carga ya que no cumplen con las mismas funciones. En la tabla XLIX, se detallan las cargas para los entrepisos y la terraza.

Tabla XLIX. Carga muerta para los pisos a excepción de la terraza.

Elementos	W _D (T/m2)
Paredes Hormi2	0.12
Novalosa	0.19
Enlucidos y Ductos	0.04
Baldosas	0.08
Cielorrasos	0.02
Total	0.45

Fuente: NEC,2015

Para la terraza se consideró que solo habrá un parapeto perimetralmente, que solo hay acceso para personal de mantenimiento, ductos del entrepiso anterior y no hay baldosas ver tabla L.

Tabla L. Carga muerta para la terraza.

Elementos	W _D (T/m2)
Parapeto	0.01
Novalosa	0.19
Enlucidos y Ductos	0.03
Total	0.23

Fuente: NEC,2015

Para las cargas del peso propio de columnas y vigas se usará un valor que esta entre 0.04 y 0.07 T/m2, en el caso de la terraza se asume un valor del 70% del peso propio de las columnas y vigas de los entrepisos ya que la terraza no tiene columnas.

Tabla LI. Peso propio de elementos estructurales.

	Wpp (T/m2)
Entrepisos	0.06
Terrazas	0.042

Fuente: NEC, 2015

Entonces las cargas muertas que actuarán en el edificio se resumen en la tabla LII:

Tabla LII. Resumen de carga muerta.

	W _□ (T/m2)	Wpp (T/m2)	W _D +Wpp (T/m2)	
Terraza	0.23	0.042	0.27	
Piso 2	0.45	0.06	0.51	
Piso 1	0.45	0.06	0.51	
Planta Baja	0.45	0.06	0.51	

Fuente: NEC, 2015

4.3.3 Carga viva

Según NEC 2015 sección NEC-SE-CG, la carga viva, también llamada sobrecarga de uso, depende de la ocupación a la que está destinada la edificación y está conformada por los pesos de personas, muebles, equipos y accesorios móviles o temporales, mercadería en transición, y otras. Ver tabla LIII

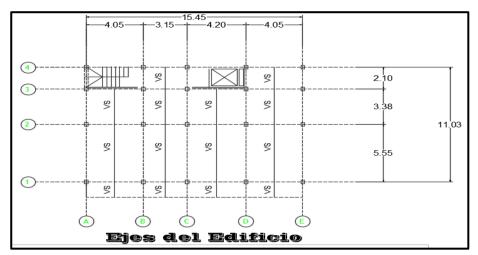
Tabla LIII. Carga viva.

	W _L (T/m2)
Terraza	0.07
Piso 2	0.2
Piso 1	0.25
Planta Baja	0.5

Fuente: NEC, 2015

4.3.4 Resumen de cargas muertas y vivas

A continuación, se hace un resumen de las cargas que actuarían en el edificio:


Tabla LIV. Resumen de cargas totales.

	W_D	W_{pp}	W_D+W_{pp}	WL
	(T/m2)	(T/m2)	(T/m2)	(T/m2)
Terraza	0.23	0.042	0.27	0.07
Piso 2	0.45	0.06	0.51	0.2
Piso 1	0.45	0.06	0.51	0.25
Planta Baja	0.45	0.06	0.51	0.5

Fuente: NEC, 2015

4.3.4 Predimensionamiento de vigas secundarias

Usando la Novalosa con un espesor de placa colaborante de 0.76mm y con un espesor de hormigón de 5 cm, se puede usar una viga secundaria entre las luces de las vigas principales observar figura 4.22, ya que con este material se permite 2 vanos con una luz máxima sin apuntalar de 2.35 metros por lo que estamos dentro del rango permitido. (Novacero, 2017)

Figura 4.22 Vigas secundarias entre las vigas principales **Fuente:** Almache, I., Sánchez, R.,2017

Para determinar la carga lineal que actúa en las vigas se puede estimar usando la Ec. 23.

$$q_{u} = w_{u} * s * f$$
 Ec. 23

Donde:

 w_u = Carga última o factorada.

s= Ancho de influencia de la viga secundaria.

f= Factor que toma en cuenta el peso propio de la viga, se recomienda un factor de 1.05.

4.3.5 Momentos últimos actuando vigas secundarias

En este caso tenemos dos tipos de vigas secundaria una con 2 vanos observar figura 4.23, y la otra con 3 vanos observar figura 4.24, debido a la presencia de la escalera y del ascensor. Con la ayuda del

Software SAP2000, procedemos a obtener los valores de cortante y momento máximo que actúan en las vigas, con esto se verifico que se producen mayores momentos y cortantes en la viga de 2 vanos por lo que se decidió predimensionar usando esta viga ver tablas LV a LVII.

Figura 4.23 Viga secundaria 2 vanos Fuente: Almache, I., Sánchez, R., 2017

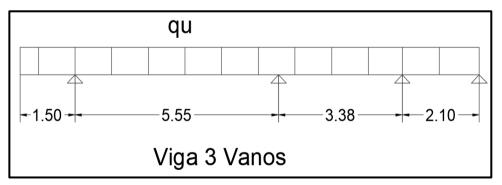


Figura 4.24 Viga secundaria 3 Vanos Fuente: Almache, I., Sánchez, R., 2017

Tabla LV. Carga mayorada sin peso propio.

	Wu (T/m2)	S (m)	F	q _u (T/m)
Terraza	0.388	2.1	1.05	0.856
Piso 2	0.86	2.1	1.05	1.896
Piso 1	0.94	2.1	1.05	2.073
Planta Baja	1.34	2.1	1.05	2.955

Fuente: Almache, I., Sánchez, R., 2017

Tabla LVI. Momentos y cortantes de viga de 2 y 3 vanos.

	Mu (Ton.cm) 2 vanos	Mu (Ton.cm) 3 vanos	Vu (Ton) 2 vanos	Vu (Ton) 3 vanos
Terraza	216,71	211,49	2,57	2,56
Piso 2	484,29	472,60	5,75	5,73
Piso 1	529,34	516,57	6,29	6,26
Planta Baja	843.55	830.09	9.65	9.63

Fuente: Almache, I., Sánchez, R., 2017

Tabla LVII. Momento último obtenido del Sap2000.

	qu (T/m)	Mu SAP2000 (T.cm)
Terraza	0.86	216,71
Piso 3	1.9	484,29
Piso 2	2.07	529,34
Piso 1	2.95	843.55

Fuente: Almache, I., Sánchez, R., 2017

4.3.6 Selección de perfiles a partir del módulo plástico

Para predimensionar las vigas secundarias usamos el momento producido por cargas gravitacionales ya que estas vigas no tienen que ser sísmicamente resistente y tampoco sísmicamente compacta, además la viga tendrá arriostramiento lateral continuos ya que la Novalosa ayudará arriostrar la viga, por lo que con esto el perfil se encuentra en la zona de fluencia.

De acuerdo con el AISC 360-10 sección F2 ecuación F2-1 se tiene ver tabla LVIII.

$$M_n = M_p = F_y Z_x$$

$$\phi_h M n = \phi_h M p = \phi_h F_v Z_x$$
 Ec. 24

$$Z_{xreq}=rac{\phi_b M n}{\phi_b F_y}$$
 $Z_{xreq}=rac{M u}{\phi_b F_y}$ Ec. 25

Tabla LVIII. Módulo plástico requerido.

	M _u SAP2000 (T.cm)	Z _x req (cm3)
Terraza	216,71	94,9
Piso 2	484,29	212,2
Piso 1	529,34	231,9
Planta Baja	843.55	369.5

Fuente: Almache, I., Sánchez, R., 2017

Entonces se debe cumplir que:

$$Z_{xdisp} \ge Z_{xreg}$$
 Ec. 26

Tabla LIX. Selección de perfiles de Dipac.

	Z _x req (cm3)	Perfil	Z _x disponible (cm3)	
Terraza	94,9	IPE 160	109	OK
Piso 2	212,2	IPE 220	252	OK
Piso 1	231,9	IPE 220	252	OK
Planta Baja	369.5	IPE 270	429	OK

Fuente: DIPAC, 2016

4.3.7 Estados límites de servicio

Según el AISC 360-10 sección L se debe verificar las deformaciones producidas por las cargas de servicio, donde se debe cumplir que:

$$\Delta_{max} \leq \Delta_{adm}$$
 Ec. 27

Para las cargas de servicio:

Tabla LX. Deflexiones máximas permisibles.

	Carga Muerta + Carga Viva	Carga Viva
Δ_{adm}	L	L
	240	360

Fuente: AISC, 360-10

Para la estimación de las deflexiones máximas que se producen en las vigas se utilizó la herramienta del SAP2000, analizando las deflexiones que se producen en la luz mayor que tiene 5,55 metros de largo.

Tabla LXI. Verificación deflexiones máximas permisibles.

		Carga de servicio (D+L)			C	arga V	iva (L)
	Perfil	Δmax (cm)	Δadm (cm)	Verificación	Δmax (cm)	Δadm (cm)	Verificación
Terraza	IPE 160	0,36	2,31	ok	0,08	1,54	ok
Piso 2	IPE 220	0,79	2,31	ok	0,24	1,54	ok
Piso 1	IPE 240	0,83	2,31	ok	0,3	1,54	ok
Planta Baja	IPE 270	1,16	2,31	ok	0,61	1,54	ok

Fuente: Almache, I., Sánchez, R., 2017

4.3.8 Verificación de secciones de vigas secundarias

Según NEC 2015 Estructuras de Acero sección 6.2, clasifica a las secciones según su relación ancho-espesor en secciones compactas y secciones sísmicamente compactas.

Las vigas secundarias al ser elementos que soportan solo cargas gravitacionales deben ser secciones compactas, donde los miembros deben tener alas continuamente conectadas al alma o almas y las relaciones ancho-espesor de sus elementos a compresión no deben exceder las relaciones máximas ancho-espesor, λp, de las tablas B4.1a y B4.1b de la especificación AISC 360-10.

Para que el ala sea compacta se debe cumplir que:

$$\lambda_f \leq \lambda_p$$
 Ec. 28

Donde:

$$\lambda_f = rac{rac{b_f}{2}}{rac{t_f}{}}$$
 Ec. 29

$$\lambda_p = 0.38 \sqrt{\frac{E}{F_y}}$$
 Ec. 30

Para que el ala sea compacta se debe cumplir que:

$$\lambda_w \le \lambda_p$$
 Ec. 31

Donde:

$$\lambda_{\scriptscriptstyle W} = rac{h}{\mathsf{t}_{\scriptscriptstyle W}}$$
 Ec. 32

$$\lambda_p = 3.76 \sqrt{\frac{E}{F_y}}$$
 Ec. 33

Usando acero A36 con un Fy=36 KSI y módulo de elasticidad de E=29000 KSI Ver tablas LXII a LXIV.

Tabla LXII. Propiedades de los perfiles.

Tubia Exili i repledados de los permes.						
	Perfil	b _f (mm)	t _f (mm)	d (mm)	t _w (mm)	h (mm)
Terraza	IPE 160	82	7,4	160	5	145,2
Piso 2	IPE 220	110	9,2	220	5,9	201,6
Piso 1	IPE 220	120	9,2	220	5,9	201,6
Planta Baja	IPE 270	135	10,2	270	6,6	249,6

Fuente: (DIPAC, 2016)

Tabla LXIII. Verificación de sección alas.

λ_{f}	λ _p (alas)	Verificación			
5,54	10,79	Ala compacta			
5,98	10,79	Ala compacta			
5,98	10,79	Ala compacta			
6,62	10,79	Ala compacta			
	5,54 5,98 5,98	5,54 10,79 5,98 10,79 5,98 10,79			

Fuente: Almache, I., Sánchez, R., 2017

Tabla LXIV. Verificación de sección alma.

	λ _w	λ _p (alma)	Verificación
Terraza	29,04	106,72	Alma
			compacta
2do Piso	34,17	106,72	Alma
			compacta
1er Piso	34,17	106,72	Alma
			compacta
Planta Baja	37,82	106,72	Alma
			compacta

Fuente: Almache, I., Sánchez, R.,2017

4.3.9 Momento nominal de vigas secundarias

Para el cálculo del momento nominal se va a utilizar la Ec. 34.

$$\phi_h M n = \phi_h F_v Z_x \qquad \qquad \textbf{Ec. 34}$$

Entonces se debe cumplir que:

$$\phi_b Mn \ge Mu$$
 Ec. 35

Tabla LXV. Momento nominal de vigas secundarias.

	Perfil	Mu (T.cm)	Zx (cm3)	φbMn (T.cm)	Verificación
Terraza	IPE 160	216,71	109	248,82	Ok
Piso 2	IPE 220	484,29	252	575,25	Ok
Piso 1	IPE 220	529,34	252	575,25	Ok
Planta Baja	IPE 270	843.55	429	979,29	Ok

Fuente: Almache, I., Sánchez, R., 2017

4.3.10 Resistencia al cortante de vigas secundarias

Según AISC 360-10 Sección G2 Miembros con almas no atiesadas o atiesadas, Resistencia de corte, aplica para las almas de miembros de simetría doble o simple y canales solicitados a corte en el plano del alma.

La Resistencia nominal de corte Vn, de almas no atiesadas o atiesadas de acuerdo con el estado límite de fluencia en corte y pandeo en corte de acuerdo a las Ec. 36 es:

$$V_n = 0.6F_v A_w C_v$$
 Ec. 36

Donde Aw es el área del alma de la sección.

Para almas de miembros laminados de sección H con

$$\frac{h}{t_w} \le 2,24\sqrt{\frac{E}{F_y}}$$
 Ec. 37

$$ø_b = 1,00$$
 y $C_v = 1,00$

El cortante Vu producido por las cargas gravitacionales de lo obtuvo con la ayuda del programa SAP2000.

Entonces se debe cumplir que:

$$\phi_h V n \ge V u$$
 Ec. 38

Tabla LXVI. Verificación de cortante de vigas secundarias.

	Perfil	h/t _w	2.24*raíz(E/F _y)	V _u (Ton)	A _w (cm2)	φ _v V _n (Ton)	Verificación
Terraza	IPE 160	29,04	63,58	2,57	8	12,17	ok
Piso 2	IPE 220	34,17	63,58	5,75	12,98	19,75	ok
Piso 1	IPE 240	34,17	63,58	6,29	12,98	19,75	ok
Planta Baja	IPE 270	37,82	63,58	9.65	17,82	27,12	ok

Fuente: Almache, I., Sánchez, R., 2017

4.3.11 Espectro de diseño y espectro inelástico PARM

Para estimar el valor de la fuerza sísmica horizontal que se pueden producir durante un evento sísmico en la provincia de Santo Domingo de los Tsachilas, donde estará ubicada la edificación se tienen los siguientes datos ver tablas LXVII.


Tabla LXVII. Parámetros de zona sísmica.

Zona Sísmica	V	
Z	0.4	

Tipo de Suelo	Е
Fa	1
Fd	1.6
Fs	1.9
n	1.8
r	1.5
R	8
le	1
фр	1
фе	0.9

Fuente: NEC, 2015

Con estos datos procedemos a realizar es espectro de diseño.

Figura 4.25 Espectro elástico y espectro inelástico **Fuente:** Almache, I., Sánchez, R.,2017

Tabla LXVIII. Valores de Sa y Cs.

T (Seg)	Sa (g)	Cs (g)
0	0.720	0.100
0.01	0.720	0.100
0.02	0.720	0.100
0.03	0.720	0.100
0.04	0.720	0.100
0.05	0.720	0.100
0.06	0.720	0.100
0.07	0.720	0.100
0.08	0.720	0.100
0.09	0.720	0.100
0.1	0.720	0.100
0.2	0.720	0.100
0.304	0.720	0.100
0.4	0.720	0.100
0.5	0.720	0.100
0.6	0.720	0.100
0.7	0.720	0.100
0.8	0.720	0.100
0.9	0.720	0.100
1	0.720	0.100
1.5	0.720	0.100
1.67	0.720	0.100
2	0.550	0.076
2.5	0.394	0.055
3	0.300	0.042
3.5	0.238	0.033

4.3.12 Periodo fundamental de la estructura

Según NEC 2015 Peligro Sísmico sección 6.3.3, el periodo de vibración aproximado de la estructura T, para cada dirección principal, será estimado a partir de 2 métodos.

Para este diseño se va a utilizar el Método 1 que dice que, para estructuras de edificación, el valor de T puede determinarse de manera aproximada mediante la expresión 38.

$$T = C_t h_n^{\alpha}$$
 Ec. 39

 C_t = Coeficiente que depende del tipo de edificio.

hn= Altura máxima de la edificación de n pisos, medida desde la base de la estructura en metros.

T= Periodo de vibración de la estructura.

Tabla LXIX. Valores de Ct y α.

Tipo de Estructura	Ct	α
Estructura de Acero.		
Sin arriostramiento.	0.072	0.8
Con Arriostramiento.	0.073	0.75
Pórticos especiales de Hormigón Armado.		
Sin muros estructurales ni diagonales rigidizadores.	0.055	0.9
Con muros estructurales o diagonales rigidizadores y para otras estructuras basadas en muros estructurales y mampostería estructural.	0.055	0.75

Fuente: (NEC, 2015)

Entonces para nuestro de PARM diseño tenemos:

Tabla LXX. Periodo y aceleración espectral.

Ct	0.072	
α	0.8	
hn	11.3	metros
Т	0.501	seg
Sax	0.72	g
Say	0.72	g

El valor de la aceleración debido al sismo es igual en X y en Y ya que en los dos sentidos se utilizan pórticos de concreto resistente a momento PCRM.

4.3.13 Peso sísmico

Según NEC 2015 Peligro Sísmico sección 6.1.7 la carga sísmica W representa la carga reactiva por sismo, donde W=D. Donde D es la carga muerta total de la estructura.

$$W = (W_D + W_{PP}) * A * N$$
 Ec. 41

Donde

 W_D = Carga muerta sobreimpuesta.

 W_{PP} = Peso propio de los elementos estructurales.

A= Área del piso de la estructura.

N= Número de pisos de la estructura.

El área de piso de la estructura es 193.59m2

Tabla LXXI. Peso de la estructura.

	W _D (T/m2)	W _{PP} (T/m2)	W_D+W_{PP} (T/m2)	Área (m2)
Terraza	0.23	0.042	0.27	188,894
Piso 2	0.45	0.06	0.51	188,894
Piso 1	0.45	0.06	0.51	188,894
Planta Baja	0.45	0.06	0.51	176,594
Wtotal			1.8	

Entonces se obtiene un valor de peso sísmico de:

W=333.74 Ton

4.3.14 Coeficiente de respuesta sísmica

Según NEC 2015 Peligro Sísmico sección 6.3.2 se puede determinar el coeficiente sísmico con la expresión 41:

$$C_{Sx,y} = \frac{I*S_{ax,y}}{R*\phi_E*\phi_P}$$
 Ec. 42

Donde:

I= Factor de importancia de la estructura.

Sax,y= Aceleración espectral en X y Y.

R= Coeficiente de reducción de resistencia.

 ϕ_F = Coeficiente de regularidad en elevación.

 ϕ_P = Coeficiente de regularidad en planta.

Para nuestro diseño $\phi_E = \phi_P = 1$

Donde se obtiene:

Tabla LXXII. Coeficiente de respuesta sísmica PARM dirección x y dirección y.

	an ecolori X y an ecolori y.		
Csx	0.1	seg	
Csy	0.1	Seg	

4.3.15 Cortante basal

Según NEC 2015 Peligro Sísmico sección 6.3.2, se puede estimar el valor del cortante basal usando la siguiente expresión:

$$Vx, y = \frac{I*S_{ax,y}}{R*\phi_{E}*\phi_{P}}*W$$
 Ec. 43

$$V_{x,y} = C_{Sx,y} * W$$
 Ec. 44

Tabla LXXIII. Cortante basal dirección x v dirección v.

direction	II X y direccioi	ıy.
V_x	33.37	Ton
V _y	33.37	Ton

Fuente: Almache, I., Sánchez, R., 2017

4.3.16 Distribución vertical de fuerzas sísmicas

Según NEC 2015 Peligro Sísmico sección 6.3.5, la distribución vertical de fuerzas sísmicas se asemeja a una distribución lineal (triangular), similar al modo fundamental de vibración, pero dependiente al periodo fundamental de vibración T_a.

En la ausencia de un procedimiento más riguroso, basado en los principios de la dinámica, las fuerzas laterales totales de cálculo deben ser distribuida en la altura de la estructura, utilizando la expresión 44.

$$V = \sum_{i=1}^{n} F_i$$

$$V_x = \sum_{i=x}^n F_i$$

$$F_{x} = \frac{w_{x}h_{x}^{k}}{\sum_{i=1}^{n}w_{i}h_{i}^{k}}V$$
 Ec. 45

Donde:

V= Cortante total en la base de la estructura.

 V_x = Cortante total en el piso x de la estructura.

 F_i = Fuerza lateral aplicada en el piso i de la estructura.

 F_x = Fuerza lateral aplicada en el piso x de la estructura.

n= Número de pisos de la estructura.

 w_x = Peso asignado al piso o nivel x de la estructura, siendo una fracción de la carga reactiva W (incluye la fracción de la carga viva correspondiente).

 w_i = Peso asignado al piso o nivel i de la estructura, siendo una fracción de la carga reactiva W (incluye la fracción de la carga viva correspondiente).

 h_x = Altura del piso x de la estructura.

 h_i = Altura del piso i de la estructura.

k= Coeficiente relacionado con el periodo de vibración de la estructura T.

Determinación de k:

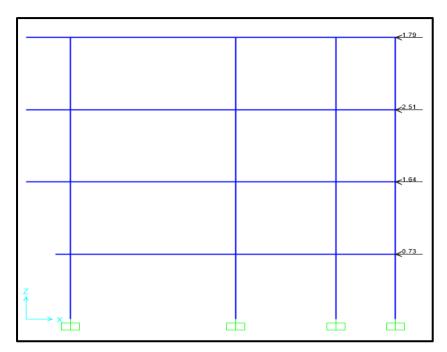
Tabla LXXIV. Valores de k.

Valores de T (seg)	k
≤0.5	1
0.5 <t≤2.5< td=""><td>0.75+0.50T</td></t≤2.5<>	0.75+0.50T
>2.5	2

Fuente: NEC, 2015

Distribución de fuerzas verticales dirección X:

Tabla LXXV. Distribución de fuerzas verticales dirección x.


	Dirección X			\ \	$I_{\rm x} = 30.04$	Ton
Nivel	Altura (m)	W _x (Ton)	$w_x * h_x^{kx}$	C _{vx}	F _x (ton)	V _x (ton)
Terraza	11,3	51,00	576,98	0,27	8,95	8,95
2do Piso	8,4	96,34	810,04	0,38	12,56	21,51
1er Piso	5,5	96,34	530,28	0,25	8,22	29,74
Planta Baja	2,6	90,06	234,27	0,11	3,63	33,37
			2151,57			

Fuente: Almache, I., Sánchez, R.,2017

Distribución de fuerzas verticales dirección Y:

Tabla LXXVI. Distribución de fuerzas verticales dirección Y.

Dirección y			'	/ _y = 30.04	Ton	
NIVEL	Altura (m)	W _y (Ton)	$w_y * h_y^{ky}$	Cvy	F _y (ton)	V _y (ton)
Terraza	11.3	51,00	576,98	0,27	8,95	8,95
2do Piso	8.4	96,34	810,04	0,38	12,56	21,51
1er Piso	5.5	96,34	530,28	0,25	8,22	29,74
Planta Baja	2.6	90,06	234,27	0,11	3,63	33,37
			2151,57			

Figura 4.26 Distribución de fuerzas verticales dirección Y **Fuente:** Almache, I., Sánchez, R.,2017

4.3.17 Predimensionamiento de vigas principales eje y

Para determinar la carga lineal que actúa en las vigas se puede estimar usando la Ec. 45.

$$q_u = w_u * s * f$$
 Ec. 46

Donde:

 w_u = Carga última o factorada.

S= Ancho de influencia de la viga secundaria.

f= Factor que toma en cuenta el peso propio de la viga, se recomienda un factor de 1.05

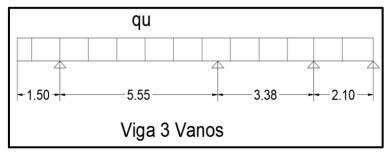


Figura 4.27 Viga principal eje y Fuente: Almache, I., Sánchez, R.,2017

Tabla LXXVII. Cargas mayoradas sin peso propio.

	W _D (T/m2)	W _L (T/m2)	S (m)	F	q _□ (T/m)	q∟ (T/m)
Terraza	0.23	0.07	2.0625	1.05	0.498	0.152
Piso 2	0.45	0.2	2.0625	1.05	0.975	0.433
Piso 1	0.45	0.25	2.0625	1.05	0.975	0.541
Planta	0.45	0.5	2.0625	1.05	0.975	1.083
Baja						

Tabla LXXVIII. Momentos por carga muerta v carga viva obtenidos del Sap2000.

y danga rira datamada adi dapeda.				
	M _D (Ton.cm)	M∟ (Ton.cm)		
Terraza	124.11	37.88		
Piso 2	242.99	107.91		
Piso 1	242.99	134.83		
Planta Baja	273.92	304.26		

Fuente: Almache, I., Sánchez, R.,2017

Tabla LXXIX. Momento por sismo obtenidos del Sap2000.

obternaes ac	1 Oup2000.
	M _E SAP2000 (T.cm)
Terraza	77,70
Piso 2	172,13
Piso 1	307,87
Planta Baja	335,36

Tabla LXXX. Combinaciones de cargas.

Combinación 2	1.2D+1.6L+0.5max(Lr;S;R)
Combinación 5	1.2D+1.0E+L+0.2S

Fuente: NEC, 2015

Tabla LXXXI. Momentos últimos.

	Combinación 2 M _u (T.cm)	Combinación 5 M _u (T.cm)
Terraza	209.54	264,21
Piso 2	464.24	571,63
Piso 1	507.32	734,29
Planta Baja	815.52	968,32

Fuente: Almache, I., Sánchez, R., 2017

Por lo que verificamos que para el predimensionamiento rige la combinación que incluye la carga sísmica de acuerdo con la tabla LXXXI.

4.3.18 Selección de perfiles a partir del módulo plástico

Para predimensionar las vigas principales en el eje y usamos el momento producido por cargas gravitacionales y sísmica, además estas vigas tienen que ser sísmicamente compactas resistente y sísmicamente compacta, además la viga tendrá arriostramiento lateral continuos ya que la Novalosa ayudará arriostrar la viga, por lo que con esto el perfil se encuentra en la zona de fluencia.

De acuerdo con el AISC 360-10 sección F2 ecuación F2-1 se tiene ver tabla LXXXIII.

$$M_n=M_p=F_yZ_x$$

$$\phi_bM_n=\phi_bM_p=\phi_bF_vZ_x$$
 Ec. 47

$$Z_{xreq}=rac{\phi_b Mn}{\phi_b F_y}$$

$$Z_{xreq}=rac{Mu}{\phi_b F_y} ext{Ec. 48}$$

Tabla LXXXII. Módulo plástico requerido.

	M _u (T.cm)	Z _x req (cm3)
Terraza	264,21	115,74
Piso 2	571,63	250,41
Piso 1	734,29	321,67
Planta Baja	968,32	424,20

Entonces se debe cumplir que:

$$Z_{xdisp} \ge Z_{xreg}$$
 Ec. 49

Tabla LXXXIII. Selección de perfiles de Dipac.

	Z _x req (cm3)	Perfil	Z _x disponible (cm3)	
Terraza	115,74	IPE 180	140	Ok
Piso 2	251,41	IPE 220	252	Ok
Piso 1	321,67	IPE 240	324	Ok
PlantaBaja	424,20	IPE 270	429	Ok

Fuente: (DIPAC, 2016)

4.3.19 Estados límites de servicio

Según el AISC 360-10 sección L se debe verificar las deformaciones producidas por las cargas de servicio, donde se debe cumplir que:

$$\Delta_{max} \leq \Delta_{adm}$$
 Ec. 50

Para las cargas de servicio:

Tabla LXXXIV. Deflexiones máximas permisibles.

	Carga Muerta + Carga Viva	Carga Viva
Δ_{adm}	$\frac{L}{240}$	$\frac{L}{360}$

Fuente: AISC, 360-10

Para la estimación de las deflexiones máximas que se producen en las vigas se utilizó la herramienta del SAP2000, analizando las deflexiones que se producen en la luz mayor que tiene 5,55 metros de largo.

Tabla LXXXV. Verificación de deflexiones máximas permisibles.

		Car	Carga de servicio (D+L)			Carga Vi	va (L)
	Perfil	Δmax (cm)	Δadm (cm)	Verificación	Δmax (cm)	Δadm (cm)	Verificación
Terraza	IPE 200	0,38	2,31	ok	0,09	1,54	ok
Piso 2	IPE 220	0,82	2,31	ok	0,25	1,54	ok
Piso 1	IPE 240	0,86	2,31	ok	0,31	1,54	ok
Planta Baja	IPE 270	1,2	2,31	ok	0,63	1,54	ok

Fuente: Almache, I., Sánchez, R.,2017

4.3.20 Verificación de secciones de vigas principales eje y

Según NEC 2015 Estructuras de Acero sección 6.2, clasifica a las secciones según su relación ancho-espesor en secciones compactas y secciones sísmicamente compactas.

Las vigas principales al ser elementos que soportan cargas gravitacionales y cargas sísmicas deben ser secciones sísmicamente compactas, donde los miembros deben tener alas continuamente conectadas al alma o almas y las relaciones ancho-espesor de sus elementos a compresión no deben exceder las relaciones máximas ancho-espesor, λps, de las tablas D1.1a de la especificación AISC 341-10.

Para que el ala sea sísmicamente compacta se debe cumplir que:

$$\lambda_f \leq \lambda_{ps}$$
 Ec. 51

Donde:

$$\lambda_f = rac{rac{b_f}{2}}{t_f}$$
 Ec. 52

$$\lambda_{ps} = 0.3 \sqrt{\frac{E}{F_y}}$$
 Ec. 53

Para que el ala sea compacta se debe cumplir que:

$$\lambda_w \leq \lambda_{ps}$$
 Ec. 54

Donde:

$$\lambda_w = \frac{h}{t_w}$$
 Ec. 55

$$\lambda_{ps} = 2.45 \sqrt{\frac{E}{F_y}}$$
 Ec. 56

Usando acero A36 con un Fy=36 KSI y módulo de elasticidad de E=29000 KSI

Tabla LXXXVI. Propiedades de los perfiles.

Table 27007 This repleadage de les permissis						
	Perfil	b _f (mm)	t _f (mm)	d (mm)	t _w (mm)	h (mm)
Terraza	IPE 180	91	8	180	5,3	164
Piso 2	IPE 220	110	9,2	220	5,9	201,6
Piso 1	IPE 240	120	9,8	240	6,2	220,4
Planta Baja	IPE 270	135	10,2	270	6,6	249,6

Fuente: DIPAC,2016

Tabla LXXXVII. Verificación de sección alas.

	λ _f	λ _{ps} (alas)	Verificación
Terraza	5,69	8,51	Ala sísmicamente compacta
Piso 2	5,98	8,51	Ala sísmicamente compacta
Piso 1	6,12	8,51	Ala sísmicamente compacta
Planta Baja	6,62	8,51	Ala sísmicamente compacta

Fuente: Almache, I., Sánchez, R.,2017

Tabla LXXXVIII. Verificación de sección alma

	λw	λ _p (alma)	Verificación
T			
Terraza	30,94	69,54	Alma sísmicamente
			compacta
Piso 2	34,17	69,54	Alma sísmicamente
			compacta
Piso 1	35,55	69,54	Alma sísmicamente
			compacta
Planta Baja	37,82	69,54	Alma sísmicamente
			compacta

4.3.21 Momento nominal de vigas principales eje y

Para el cálculo del momento nominal se va a utilizar la ecuación descrita anteriormente.

$$\phi_h M_n = \phi_h F_v Z_x \qquad \qquad \text{Ec. 57}$$

Entonces se debe cumplir que:

$$\phi_h M_n \ge M_u$$
 Ec. 58

Tabla LXXXIX. Momento nominal de vigas principales eje y.

	Perfil	M _u (T.cm)	Z _x (cm3)	φbM _n (T.cm)	Verificación
Terraza	IPE 180	264,21	140	319,58	Ok
Piso 2	IPE 220	571,63	252	575,25	Ok
Piso 1	IPE 240	734,29	324	739,61	Ok
Planta Baja	IPE 270	968,32	429	979,29	Ok

Fuente: Almache, I., Sánchez, R., 2017

4.3.22 Resistencia al cortante de vigas principales eje y

Según AISC 360-10 Sección G2 Miembros con almas no atiesadas o atiesadas, Resistencia de corte, aplica para las almas de miembros de simetría doble o simple y canales solicitados a corte en el plano del alma.

La Resistencia nominal de corte Vn, de almas no atiesadas o atiesadas de acuerdo con el estado límite de fluencia en corte y pandeo en corte Ec. 57.

$$V_n = 0.6F_v A_w C_v$$
 Ec. 59

Para almas de miembros laminados de sección I con

El cortante Vu producido por las cargas gravitacionales de lo obtuvo con la ayuda del programa SAP2000.

Entonces se debe cumplir que:

$$\phi_h V n \ge V u$$
 Ec. 61

Verificamos que rige la combinación que incluye la carga sísmica observar tabla XC.

Tabla XC. Cortantes obtenidos del Sap2000.

	V _D (Ton)	V _∟ (Ton)	V _E (Ton)	Combinación 2 V _u (Ton)	Combinación 5 V _u (Ton)
Terraza	1,5	0,46	0,44	2,54	2,70
Piso 2	2,95	1,31	1,56	5,64	6,41
Piso 1	2,95	1,63	2,85	6,15	7,99
Planta Baja	3,18	3,04	3,09	8,68	9,95

Fuente: Almache, I., Sánchez, R., 2017

Tabla XCI. Verificación de cortante de vigas principales eje y.

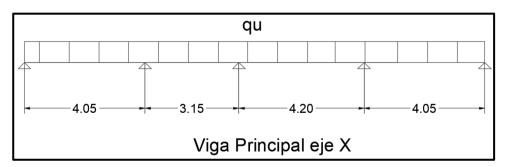

	Perfil	h/t _w	2.24*raíz(E/F _y)	V _u (Ton)	A _w (cm2)	φ _v V _n (Ton)	Verificación
Terraza	IPE 180	30,94	63,58	2,70	9,54	14,52	ok
Piso 2	IPE 240	34,17	63,58	6,41	12,98	19,75	ok
Piso 1	IPE 240	35,55	63,58	7,99	14,88	22,64	ok
Planta Baja	IPE 270	37,82	63,58	9,95	17,82	27,12	ok

Tabla XCII. Perfiles seleccionados vigas principales eje y.

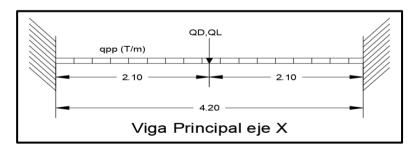
	Vigas Interiores eje Y	Vigas exteriores eje Y
Terraza	IPE 180	IPE 180
Piso 2	IPE 220	IPE 220
Piso 1	IPE 240	IPE 240
Planta Baja	IPE 270	IPE 270

4.3.23 Predimensionamiento de vigas principales eje x

Para determinar los momentos que actúan sobre las vigas que están en la dirección x se debe estimar la carga puntual que ejercen las vigas secundarias que están apoyada sobre estas vigas, además se debe estimar el valor de peso propio que van a tener las vigas ubicadas en el sentido x. Estas vigas deben ser capaces de soportar cargas gravitatorias y cargas de sismos por lo que deben ser sísmicamente compactas, además de analizará como viga empotrada con carga puntual, distribuida debido al peso propio y utilizaremos la viga de mayor claro.

Figura 4.28 Viga principal eje x **Fuente:** Almache, I., Sánchez, R.,2017

Tabla XCIII. Reacciones máximas ejercidas por las vigas secundarias.


	Q _D (Ton)	Q _L (Ton)
Terraza	2.78	0.82
Piso 2	5.44	2.42
Piso 1	5.44	3.02
Planta Baja	5.76	6.4

Estas reacciones son producidas en la viga que se encuentra en el eje 2, por lo que va a predimensionar las vigas interiores en el eje x.

Tabla XCIV. Peso propio de los elementos estructurales.

	Peso propio de vigas eje x (T/m2)
Terraza	0.04
Piso 2	0.05
Piso 1	0.05
Planta Baja	0.05

Fuente: Almache, I., Sánchez, R., 2017

Figura 4.29 Cargas actuando en Viga eje x **Fuente:** Almache, I., Sánchez, R.,2017

Procedemos a obtener los momentos por peso propio, carga muerta y carga viva con la ayuda de la tabla 3.22a del AISC.

 Momento de una viga doblemente empotrada con carga distribuida debido al peso propio

$$M_{pp} = 0.083 q_{epp}$$
 Ec. 62

Momento de una viga doblemente empotrada con carga
 Puntual en el centro debido la reacción por carga muerta y
 carga viva que ejerce la viga secundaria

$$M_{D,L} = 0.125 Q_{D,L} L$$
 Ec. 63

Tabla XCV. Momento por carga muerta y carga viva obtenida del Sap2000.

	M _{PP} (Ton.cm)	M _D (Ton.cm)	M _L (Ton.cm)
Terraza	26,15	145,95	43,05
Piso 2	32,69	285,60	127,05
Piso 1	32,69	285,60	128,55
Planta Baja	32,69	302,40	336,00

Fuente: Almache, I., Sánchez, R., 2017

Tabla XCVI. Momento por sismo Ex obtenido del Sap2000

	M _E SAP2000 (Ton.cm)
Terraza	59,63
Piso 3	148,77
Piso 2	242,62
Piso 1	254,30

Fuente: Almache, I., Sánchez, R., 2017

Tabla XCVII. Combinaciones de carga.

Combinación 2	1.2D 1.6 0.5mov/l.r:S:D)
Combinación 2	1.2D+1.6L+0.5max(Lr;S;R)
Combinación 5	1.2D+1.0E+L+0.2S

Fuente: (NEC, 2015)

Tabla XCVIII. Momentos últimos eje x.

	Combinación 2 M _u (Ton.cm)	Combinación 5 M _u (Ton.cm)
Terraza	275,40	309,20
Piso 2	585,22	657,76
Piso 1	635,62	783,12
Planta Baja	939,70	992,40

Por lo que verificamos que para el predimensionamiento rige la combinación que incluye la carga sísmica

4.3.24 Selección de perfiles a partir del módulo plástico

Para predimensionar las vigas principales en el eje X usamos el momento producido por cargas gravitacionales y sísmica, además estas vigas tienen que ser sísmicamente compactas resistente y sísmicamente compacta, además la viga tendrá arriostramiento lateral continuos ya que la Novalosa ayudará arriostrar la viga, por lo que con esto el perfil se encuentra en la zona de fluencia.

De acuerdo con el AISC 360-10 sección F2 ecuación F2-1 se tiene observar tablas XCIX y C.

$$M_n=M_p=F_yZ_x$$

$$\phi_bM_n=\phi_bM_p=\phi_bF_yZ_x$$
 Ec. 64
$$Z_{xreq}=\frac{\phi_bMn}{\phi_bF_y}$$

$$Z_{xreq}=\frac{Mu}{\phi_bF_y}$$
 Ec. 65

Tabla XCIX. Módulo plástico requerido.

	M _u (Ton.cm)	Z _x req (cm3)
Terraza	309,20	135,45
Piso 2	657,76	288,15
Piso 1	783,12	343,06
Planta Baja	992,40	434,74

Entonces se debe cumplir que:

$$Z_{xdisp} \ge Z_{xrea}$$
 Ec. 66

Tabla C. Selección de perfiles de Dipac.

	Z _x req (cm3)	Perfil	Z _x disponible (cm3)	
Terraza	135,45	IPE 180	140	OK
Piso 2	288,15	IPE 240	324	OK
Piso 1	343,06	IPE 270	429	OK
Planta Baja	434,74	IPE 300	557	OK

Fuente: (DIPAC, 2016)

4.3.25 Estados límites de servicio

Según el AISC 360-10 sección L se debe verificar las deformaciones producidas por las cargas de servicio, donde se debe cumplir que:

$$\Delta_{max} \leq \Delta_{adm}$$
 Ec. 67

Para las cargas de servicio:

Tabla CI. Deflexiones máximas permisibles.

	Carga Muerta + Carga Viva	Carga Viva
Δ_{adm}	<u>L</u>	<u>L</u>
	240	360

Fuente: (AISC, 360-10)

Para la estimación de las deflexiones máximas que se producen en las vigas se utilizó la herramienta del SAP2000, analizando las deflexiones que se producen en la luz mayor que tiene 4.2 metros de largo.

Tabla CII. Verificación deflexiones máximas permisibles.

		Carga de servicio (D+L)				Carga V	iva (L)
	Perfil	Δmax (cm)	Δadm (cm)	Verificación	Δmax (cm)	Δadm (cm)	Verificación
Terraza	IPE 200	0,14	1.75	ok	0,03	1,17	ok
Piso 2	IPE 240	0,3	1.75	ok	0,09	1,17	ok
Piso 1	IPE 240	0,32	1.75	ok	0,11	1,17	ok
Planta Baja	IPE 270	0.45	1.75	ok	0,23	1,17	ok

Fuente: Almache, I., Sánchez, R., 2017

4.3.26 Verificación de secciones de vigas principales eje x

Según NEC 2015 Estructuras de Acero sección 6.2, clasifica a las secciones según su relación ancho-espesor en secciones compactas y secciones sísmicamente compactas.

Las vigas principales al ser elementos que soportan cargas gravitacionales y cargas sísmicas deben ser secciones sísmicamente compactas, donde los miembros deben tener alas continuamente

conectadas al alma o almas y las relaciones ancho-espesor de sus elementos a compresión no deben exceder las relaciones máximas ancho-espesor, λps, de las tablas D1.1 de la especificación AISC 341-10.

Para que el ala sea sísmicamente compacta se debe cumplir que:

$$\lambda_f \leq \lambda_{ps}$$
 Ec. 68

Donde:

$$\lambda_f = rac{rac{b_f}{2}}{rac{t_f}{}}$$
 Ec. 69

$$\lambda_{ps} = 0.3 \sqrt{\frac{E}{F_y}}$$
 Ec. 70

Para que el ala sea compacta se debe cumplir que:

$$\lambda_w \le \lambda_{ps}$$
 Ec. 71

Donde:

$$\lambda_w = \frac{h}{t_w}$$
 Ec. 72

$$\lambda_{ps} = 2.45 \sqrt{\frac{E}{F_y}}$$
 Ec. 73

Usando acero A36 con un F_y =36 KSI y módulo de elasticidad de E=29000 KSI

Tabla CIII. Propiedades de los perfiles.

	Perfil	b _f (mm)	t _f (mm)	d (mm)	t _w (mm)	h (mm)
Terraza	IPE 180	91	8	180	5,3	164
Piso 2	IPE 240	120	9,8	240	6.2	220,4
Piso 1	IPE 270	135	10,2	270	6,6	249,6
Planta Baja	IPE 300	150	10,7	300	7,1	278,6

Fuente: (DIPAC, 2016)

Tabla CIV. Verificación de sección alas.

	λ_{f}	λ _{ps} (alas)	Verificación
Terraza	5,69	8,51	Ala sísmicamente compacta
Piso 2	6,12	8,51	Ala sísmicamente compacta
Piso 1	6,62	8,51	Ala sísmicamente compacta
Planta Baja	7,01	8,51	Ala sísmicamente compacta

Fuente: Almache, I., Sánchez, R., 2017

Tabla CV. Verificación de sección alma.

	λ _w	λ _p (alma)	Verificación
Terraza	30,94	69,54	Alma sísmicamente
			compacta
Piso 2	35,55	69,54	Alma sísmicamente
			compacta
Piso 1	37,82	69,54	Alma sísmicamente
			compacta
Planta Baja	39,24	69,54	Alma sísmicamente
			compacta
_	4 41		D 00.1=

Fuente: Almache, I., Sánchez, R.,2017

4.3.27 Momento nominal de vigas principales eje x

Para el cálculo del momento nominal se va a utilizar la ecuación

$$\phi_b M_n = \phi_b F_v Z_x \qquad \qquad \text{Ec. 74}$$

Entonces se debe cumplir que:

$$\phi_b M_n \ge M_u$$
 Ec. 75

Tabla CVI. Momento nominal de vigas principales eje x.

	Perfil	Mu	Z _x	ФbМ _n	Verificación
		(Ton.cm)	(cm3)	(Ton.cm)	
Terraza	IPE	309,20	140	319,58	Ok
	180				
Piso 2	IPE	657,76	324	739,61	Ok
	240				
Piso 1	IPE	783,12	429	979,29	Ok
	270				
Planta	IPE	992,40	557	1271,48	Ok
Baja	270				

Fuente: Almache, I., Sánchez, R., 2017

4.3.28 Resistencia al cortante de vigas principales eje x

Según AISC 360-10 Sección G2 Miembros con almas no atiesadas o atiesadas, Resistencia de corte, aplica para las almas de miembros de simetría doble o simple y canales solicitados a corte en el plano del alma.

La Resistencia nominal de corte Vn, de almas no atiesadas o atiesadas de acuerdo con el estado límite de fluencia en corte y pandeo en corte es:

$$V_n = 0.6 F_v A_w C_v$$
 Ec. 76

Donde Aw es el área del alma de la sección.

Para almas de miembros laminados de sección H con

$$\frac{h}{t_w} \leq 2,24 \sqrt{\frac{E}{F_y}} \qquad \qquad \text{Ec. 77}$$
 $\emptyset_b = 1,00 \qquad \qquad \text{y} \qquad \qquad C_v = 1,00$

El cortante Vu producido por las cargas gravitacionales de lo obtuvo con la ayuda del programa SAP2000.

Entonces se debe cumplir que

$$\phi_h V n \ge V u$$
 Ec. 78

Verificamos que rige la combinación que incluye la carga sísmica según la tabla CVII.

Tabla CVII. Cortantes obtenidas del Sap2000.

	V _D (Ton)	V _L (Ton)	V _E (Ton)	Combinación 2 V _u (Ton)	Combinación 5 V _u (Ton)
Terraza	1,77	0,41	0,32	2,780	2,85
Piso 2	3,19	1,21	0,91	5,76	5,95
Piso 1	3,19	1,51	1,47	6,24	6,81
Planta Baja	3,38	3,2	1,52	9,18	8,78

Fuente: Almache, I., Sánchez, R., 2017

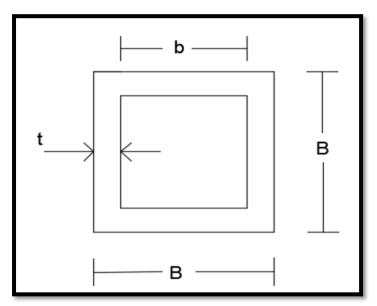
Tabla CVIII. Verificación de cortantes de vigas principales eje x

	Perfil	h/t _w	2.24*raíz(E/F _y)	V _u (Ton)	A _w (cm2)	φ _ν V _n (Ton)	Verificación
Terraza	IPE 180	30.94	63,58	2,85	9.54	14,52	ok
Piso 2	IPE 240	35,55	63,58	5,95	14,88	22,64	ok
Piso 1	IPE 240	37.82	63,58	6,81	17,82	27,12	ok
Planta Baja	IPE 270	37,82	63,58	9,18	21,30	32,41	ok

Tabla CIX. Perfiles seleccionados vigas principales eje x.

	Vigas Interiores eje	Vigas exteriores eje
	X	X
Terraza	IPE 180	IPE 180
2do Piso	IPE 240	IPE 240
1er Piso	IPE 270	IPE 270
Planta Baja	IPE 300	IPE 300

4.3.29 Predimensionamiento de columnas


En un diseño sismorresistente, los perfiles de las columnas deben ser sísmicamente compactas de acuerdo con la NEC 2015, Estructuras de Acero sección 6.2, donde establece una ecuación con la cual podemos estimar la sección requerida para la demanda de carga que esta sobre la edificación, además con el fin de obtener estructuras más económicas, se permite multiplicar las relaciones ancho-espesor para vigas y columnas por 1.15.

$$\lambda_{ps} = 1.15 * \left(0.64 \sqrt{\frac{E}{F_y}}\right)$$
 Ec. 79

$$\lambda_{ps} = \frac{B - 2t}{t}$$
 Ec. 80

Por lo tanto, con la Ec. 78 se procede a escoger dimensiones para las columnas tubulares siempre y cuando se cumpla que:

$$\frac{B - 2t}{t} \le 1.15 * 0.64 \sqrt{\frac{29000}{36}} = 20.89$$

Figura 4.30 Dimensiones de perfiles tubulares cuadrados

Tabla CX. Dimensiones de los perfiles tubulares cuadrados.

			Selec	ción d	e perfile	es cuadrados
	Columnas	B (cm) t (cm)		b	b/t	Verificación
				(cm)		
	Esquinera	15	1.2	12.6	10.5	sísmicamente compacta
Terraza	Central	20	1.2	17.6	14.67	sísmicamente compacta
	Borde	20	1.2	17.6	14.67	sísmicamente compacta
	Esquinera	20	1.2	17.6	14.67	sísmicamente compacta
Piso 2	Central	20	1.2	17.6	14.67	sísmicamente compacta
	Borde	20	1.2	17.6	14.67	sísmicamente compacta
	Esquinera	20	1.5	17	11.33	sísmicamente compacta
Piso 1	Central	25	1.5	22	14.67	sísmicamente compacta
	Borde	25	1.5	22	14.67	sísmicamente compacta
	Esquinera	20	1.5	17	11.33	sísmicamente compacta
Planta	Central	25	1.5	22	14.67	sísmicamente compacta
Baja						
	Borde	25	1.5	22	14.67	sísmicamente compacta

4.3.30 Verificación del módulo plástico de columnas

Procedemos a calcular las propiedades de los perfiles tubulares rectangulares.

Tabla CXI. Propiedades de las secciones.

Columnas	B (cm)	t (cm)	At (cm2)	lx (cm4)	c (cm)	S (cm3)	Z (cm3)
Esquinera	15	1.2	66.24	2118.36	7.5	282.45	343.66
Central	20	1.2	90.24	5337.40	10	533.74	637.06
Borde	20	1.2	90.24	5337.40	10	533.74	637.06
Esquinera	20	1.2	90.24	5337.40	10	533.74	637.06
Central	20	1.2	90.24	5337.40	10	533.74	637.06
Borde	20	1.2	90.24	5337.40	10	533.74	637.06
Esquinera	20	1.5	111	6373.25	10	637.33	771.75
Central	25	1.5	141	13030.75	12.5	1042.46	1244.25
Borde	25	1.5	141	13030.75	12.5	1042.46	1244.25
Esquinera	20	1.5	111	6373.25	10	637.33	771.75
Central	25	1.5	141	13030.75	12.5	1042.46	1244.25
Borde	25	1.5	141	13030.75	12.5	1042.46	1244.25

Fuente: Almache, I., Sánchez, R.,2017

Se procede a la verificación de:

$$Z_c \ge 1.5 RyZv$$
 Ec. 81

Tabla CXII. Verificación de módulo plástico.

Z _c (cm3)	Z _{req} (cm3)	Verificación
343.66	212.55	ok
637.06	273.00	ok
637.06	273.00	ok
637.06	491.40	ok
637.06	631.80	ok
637.06	631.80	ok
771.75	631.80	ok
1244.25	836.55	ok
1244.25	836.55	ok

771.75	631.80	ok
1244.25	1083.15	ok
1244.25	1086.15	ok

4.3.31 Descargas de carga axial en las columnas

Tabla CXIII. Carga por unidad de área en las columnas.

	W _D (T/m2)	W _{epp} (T/m2)	W _L (T/m2)	W _u (T/m2)
Terraza	0.23	0.042	0.07	0.4384
Piso 2	0.45	0.06	0.2	0.932
Piso 1	0.45	0.06	0.25	1.012
Planta Baja	0.45	0.06	0.5	1.412

Fuente: Almache, I., Sánchez, R.,2017

Tabla CXIV. Carga axial en las columnas.

	Columnas	A _i (m2)	P _u (Ton)	P _u acum (Ton)
	Esquinera	8.66	3.80	3.80
Terraza	Central	18.42	8.08	8.08
	Borde	17.64	7.73	7.73
	Esquinera	8.66	8.07	11.87
Piso 2	Central	18.42	17.17	25.24
	Borde	17.64	16.44	24.17
	Esquinera	8.66	8.76	20.63
Piso 1	Central	18.42	18.64	43.88
	Borde	17.64	17.85	42.03
	Esquinera	8.66	12.23	32.86
Planta Baja	Central	18.42	26.01	69.89
_	Borde	17.64	24.91	66.93

4.3.31 Criterio de columna fuerte - viga débil

Este criterio se utiliza con el fin de evitar que ocurra un piso suave, por lo que se busca que la columna sea mucho más fuerte que la viga con la finalidad de que se produzcan las rótulas plásticas en las vigas. Este criterio controla el diseño de las columnas, por lo que se procede a la verificación de este criterio con la Ec. 80.

$$\frac{\sum M_{pc}}{\sum M_{pv}} \ge 1$$
 Ec. 82

$$\sum M_{pc} = \sum Z_c (F_{yc} - \frac{P_{uc}}{A_g})$$
 Ec. 83

$$\sum M_{pv} = \sum 1.20 * R_y * F_{yv} * Z_v$$
 Ec. 84

Donde:

 $\sum M_{pc}$ = Momentos plásticos en las columnas.

 $\sum M_{pv}$ = Momentos Plásticos en las vigas.

 A_q = Área gruesa de las columnas.

 $F_{yv}\,y\,F_{yc}$ = Esfuerzo de fluencia de la columna y viga respectivamente.

 P_{uc} = Carga Axial en las columnas.

 $Z_c y Z_v$ = Módulo plástico de las columnas y vigas respectivamente.

 R_{ν} = Factor de sobre resistencia de las vigas.

Tabla CXV Factores de fluencia y tensión

Especificación ASTM	Factor de fluencia probable (R _y)	Factor de tensión probable (R _t)		
ASTM A36	1.3	1.15		
ASTM A572 Gr 50	1.1	1.25		
ASTM A588 Gr 50	1.15	1.15		

Fuente: NEC, 2015

Tabla CXVI. Criterio de columna fuerte – viga débil columnas centrales.

	P _u acum (Ton)	At (cm2)	Z _c (cm3)	M _{pc} (Ton.cm)	ΣM _{pc} (Ton.cm)	Z _y (cm3)	ΣM _{pv} (Ton.cm)	$\frac{\sum M_{pc}}{\sum M_{pv}}$	Ver
Terraz a	8.08	90.24	637.1	1558.80	1558.80	140	1107.89	1.41	ok
Piso 2	25.24	90.24	637.1	1437.61	2996.41	324	2563.96	1.17	ok
Piso 1	43.88	141	1244.3	2768.63	4206.23	429	3394.88	1.24	ok
Planta Baja	69.89	141	1244.3	2539.11	5307.74	557	4407.80	1.20	ok

Fuente: Almache, I., Sánchez, R.,2017

Tabla CXVII. Criterio de columna fuerte – viga débil columnas de borde.

	P _u acum (Ton)	A _t (cm2)	Z _c (cm3)	M _{pc} (Ton.cm)	ΣM _{pc} (Ton.cm)	Z _y (cm3)	ΣM _{pv} (Ton.cm)	$\frac{\sum M_{pc}}{\sum M_{pv}}$	Ver
Terraz a	7.73	90.2 4	637.1	1561.21	1561.21	140	1107.89	1.41	ok
Piso 2	24.17	90.2 4	637.1	1445.15	3006.37	324	2563.96	1.17	ok
Piso 1	42.03	141	1244. 3	2785.02	4230.18	429	3394.88	1.25	ok
Planta Baja	66.93	141	1244. 3	2565.23	5350.25	557	4407.80	1.21	ok

Tabla CXVIII. Criterio de columna fuerte—viga débil columnas esquineras.

	P _u acum (Ton)	At (cm2)	Z _c (cm3)	M _{pc} (Ton.cm)	ΣM _{pc} (Ton.cm)	Z _y (cm3)	ΣM _{pv} (Ton.cm)	$\frac{\sum \mathbf{M_{pc}}}{\sum \mathbf{M_{pv}}}$	Ver
Terraza	3.80	66.24	343.7	851.94	851.94	109	431,28	1.98	ok
Piso 2	11.87	90.24	637.1	1532.03	2383.97	252	997,10	2.39	ok
Piso 1	20.63	111	771.8	1814.00	3346.03	324	1281,98	2.61	ok
Planta Baja	32.86	111	771.8	1728.98	3542.98	324	1281,98	2.76	ok

4.3.32 Factor de relación de rigideces relativa

Esta relación viene dada por la Ec. 83.

$$G = \sum rac{(rac{I_C}{L_C})}{lpha(rac{I_V}{L_V})}$$
 Ec. 85

Esta ecuación 83 nos indica la sumatoria de las rigideces relativas elativas de todos los miembros rígidamente conectados al nudo y que se encuentra en el plano de la columna en cuestión.

Tabla CXIX. Valores de α .

Ароуо	Caso 1 Desplazamiento lateral	Caso 2 Sin desplazamiento lateral
Articulado	0.5	1.5
Empotrado	0.67	2

Fuente: AISC, 360-10

Tabla CXX. Rigideces relativas I/L columnas interiores eje x.

<u> Tabia C</u>	Tabla CXX. Rigideces relativas I/L columnas interiores eje x.						
	Elemento	Nud	Perfil	I (cm4)	L(cm)	I/L	
		0				(cm3)	
	Columna		20x1.2	5337,40	290	18,40	
Terraz a	Viga dirección x	ED	IPE 180	1320,00	420	3,14	
	Viga dirección x		IPE 180	1320,00	405	3,26	
	Columna		20x1.2	5337,40	290	18,40	
Piso 2	Columna	DC	20x1.2	5337,40	290	18,40	
	Viga dirección x		IPE 240	3890,00	420	9,26	
	Viga dirección x		IPE 240	3890,00	405	9,60	
	Columna		20x1.2	5337,40	290	18,40	
Piso 1	Columna	СВ	25x1.5	13030,7 5	290	44,93	
	Viga dirección x		IPE 270	5790,00	420	13,79	
	Viga dirección x		IPE 270	5790,00	405	14,30	
	Columna		25x1.5	13030,7 5	290	44,93	
	Columna	BA	25x15	13030,7 5	260	50,12	
Planta Baja	Viga dirección x		IPE 300	8360,00	420	19,90	
	Viga dirección x		IPE 300	8360,00	405	20,64	

Tabla CXXI. Factor de rigideces relativas G eje x.

	bia CAAI. Factor	_				0.0
	Elemento	α	G=Σ(Ic/Lc)/	Columna	GA	GB
			α Σ(Iv/Lv)			
	Columna					
Terraza	Viga dirección x	2	1,44	ED	1,44	0,98
	Viga dirección x					
	Columna					
Piso 2	Columna	2	0,98	DC	0,98	1,13
	Viga dirección x					
	Viga dirección x					
	Columna					
Piso 1	Columna	2	1,13	СВ	1,13	1,17
	Viga dirección x					
	Viga dirección x					
	Columna					
	Columna					
Planta Baja	Viga dirección x	2	1,17	ВА	1,17	1,00
	Viga dirección x					

Tabla CXXII. Valores de K usando nomograma con desplazamiento lateral permitido eje x.

		GA	GB	Kx
	Columna			
Terraza	Viga dirección x=y	1,44	0,98	1,36
	Viga dirección x=y			
	Columna			

Piso 2	Columna	0,98	1,13	1,31
	Viga dirección x=y			
	Viga dirección x=y			
	Columna			
Piso 1	Columna	1,13	1,17	1,35
	Viga dirección x			
	Viga dirección x			
	Columna			
	Columna			
Planta Baja	Viga dirección x=y	1,17	1,00	1,34
	Viga dirección x=y			

Tabla CXXIII. Rigideces relativas I/L eje y

	Elemento	Nudo	Perfil	I (cm4)	L(cm)	I/L (cm3)
	Columna		20x1.2	5337,40	290	18,40
Terraza	Viga dirección y	ED	IPE 180	1320,00	555	2,38
	Viga dirección y		IPE 180	1320,00	338	3,91
	Columna		20x1.2	5337,40	290	18,40
Piso 2	Columna	DC	20x1.2	5337,40	290	18,40
	Viga dirección y		IPE 220	2770,00	555	4,99
	Viga dirección y		IPE 220	2770,00	338	8,20

	Columna		20x1.2	5337,40	290	18,40
Piso 1	Columna	СВ	25x1.5	13030,75	290	44,93
	Viga dirección y		IPE 240	3890,00	555	7,01
	direction y		240			7,01
	Viga		IPE	3890,00	338	
	dirección y		240			11,51
	Columna		25x2	13030,75	290	44,93
	Columna	BA	25x2	13030,75	260	50,12
Planta	Viga		IPE	5790,00	555	
Baja	dirección y		270			10,43
	Viga		IPE	5790,00	338	
	dirección y		270			17,13

Tabla CXXIV. Factores de rigideces relativas G eje y.

	Elemento	α	G=Σ(Ic/Lc)/	Columna	GA	GB
			α Σ(Iv/Lv)			
	Columna					
Terraza	Viga dirección x=y	2	1,46	ED	1,46	1,40
	Viga dirección x=y					
	Columna					
Piso 2	Columna	2	1,40	DC	1,40	1,71
	Viga dirección x=y					
	Viga dirección x=y					
	Columna					
Piso 1	Columna	2	1,71	СВ	1,71	1,72
	Viga dirección x					

	Viga dirección x					
	Columna					
Planta Baja	Viga dirección x=y	2	1,72	ВА	1,72	1,00
	Viga dirección x=y					

Tabla CXXV. Valores de K usando nomograma con desplazamiento lateral permitido eje y.

		GA	GB	Kx
	Columna			
Terraza	Viga dirección x=y	1,46	1,40	1,45
	Viga dirección x=y			
	Columna			
Piso 2	Columna	1,40	1,71	1,5
	Viga dirección x=y			
	Viga dirección x=y			
	Columna			
Piso 1	Columna	1,71	1,72	1,52
	Viga dirección x			
	Viga dirección x			
	Columna			
	Columna			

Planta Baja	Viga dirección x=y	1,72	1,00	1,42
	Viga dirección x=y			

4.3.33 Revisión de perfil de columnas

De acuerdo con la NEC 2015 Estructuras de Acero sección 6.2 para que el perfil sea sísmicamente compacta:

$$\lambda_{ps} = 1.15*0.64\sqrt{\frac{E}{F_y}}$$
 Ec. 86
$$\lambda_c = \frac{b}{t}$$
 Ec. 87

$$\lambda_c = \frac{b}{t}$$
 Ec. 87

Tabla CXXVI. Columnas sísmicamente compactas.

	Columnas	b(cm)	t(cm)	λc	λcol	conclusión
Terraza	20x1,2	17,6	1,2	14,67	20,89	sísmicamente compacta
Piso 2	20x1,2	17,6	1,2	14,67	20,89	sísmicamente compacta
Piso 1	25x1,5	22	1,5	14,67	20,89	sísmicamente compacta
Planta Baja	25x1,5	22	1,5	14,67	20,89	sísmicamente compacta

Fuente: Almache, I., Sánchez, R., 2017

Según el AISC 360-10 tabla B4.1a para perfiles estructurales de sección hueca HSS y de secciones de cajón con espesor uniforme entonces se utiliza la expresión para verificar si la sección es esbelta.

$$\lambda \leq \lambda_r$$
 Sección No Esbelta **Ec. 88**

$$\lambda_r = 1.4 \sqrt{\frac{E}{F_y}}$$
 Ec. 89

Tabla CXXVII. Verificación de esbeltez.

	λ	λr	conclusión
Terraza	14,67	39,74	Sección no esbelta
Piso 2	14,67	39,74	Sección no esbelta
Piso 1	14,67	39,74	Sección no esbelta
Planta			
Baja	14,67	39,74	Sección no esbelta

Se procede a calcular la relación de esbeltez con los valores obtenidos anteriormente con la ecuación 88.

$$\frac{KL}{r} \le 200$$
 Ec. 90

Tabla CXXVIII. Verificación del eje de pandeo.

	Kx	K _x	I _{x=y} (cm4)	A _c (cm2)	r _{x=y} (cm)	L _{x=y} (cm)	(KL/r)x	(KL/r)y	conclusión
Terraza	1,36	1,45	5337,40	90,24	7,69	290,00	51,28	54,68	pandeo alrededor del eje y
Piso 2	1,31	1,5	5337,40	90,24	7,69	290,00	49,40	56,56	pandeo alrededor del eje y
Piso 1	1,35	1,52	13030,75	141	9,61	290,00	40,72	45,85	pandeo alrededor del eje y
Planta Baja	1,34	1,42	13030,75	141	9,61	260,00	36,24	38,40	pandeo alrededor del eje y

Tabla CXXIX. Verificación de columna corta o larga.

	(KL/r)y	4.71*raíz(E/F _y)	conclusión
Токкожо	E4.69	122.60	Columna corta e intermedia Intervalo
Terraza Piso 2	54,68 56,56	133,68 133,68	Inelástico Columna corta e intermedia Intervalo Inelástico
Piso 1	45,85	133,68	Columna corta e intermedia Intervalo Inelástico
Planta Baja	38,40	133,68	Columna corta e intermedia Intervalo Inelástico

Se procede a verificar la capacidad de la columna, ya que se debe cumplir que

$$\phi_c Pn \ge Pu$$
 Ec. 91

Donde

$$\phi_c Pn = \phi_c FcrAg$$
 Ec. 92

$$F_{cr} = \left(0.658 \frac{Fy}{Fe}\right) * Fy$$
 Ec. 93

$$F_{cr} = \left(0,658 \frac{Fy}{Fe}\right) * Fy$$
 Ec. 93 Ec. 94

Tabla CXXX. Capacidad de columna

	F _e (KSI)	F _{cr} (Ton/cm2)	Фс	φ _c P _n (Ton)	P _u (Ton)	conclusión
Terraza	95,14	2,17	0,90	176,00	8,08	ok
Piso 2	89,46	2,14	0,90	174,06	25,24	ok
Piso 1	136,13	2,27	0,90	288,14	43,88	ok
Planta Baja	194,06	2,35	0,90	297,82	69,89	ok

4.4 Estructura mixta. PCRM usando metal deck

Se propone esta alternativa con la finalidad de tener una estructura de Pórtico de concreto resistente a momento con Novalosa más ligera que usando losa nervada en 2 direcciones:

- Peso Novalosa: 0,19 Ton/m2

- Peso Losa en 2 direcciones: 0,22 Ton/m2

Los pesos de las losas son parecidos por lo que no tiene un gran beneficio usar una estructura mixta. En la tabla CXXXII a CXXXIII, se detallas los pesos de las 3 alternativas.

Tabla CXXXI. Cargas de PCRM.

	W _D (Ton/m2)	W _{pp} (Ton/m2)	W _D +W _{pp} (Ton/m2)	W _L (Ton/m2)
Terraza	0.34	0.21	0.55	0.07
Piso 3	0.48	0.3	0.78	0.2
Piso 2	0.48	0.3	0.78	0.25
Piso 1	0.48	0.3	0.78	0.5

Tabla CXXXII. Cargas de PARM.

	W _D (Ton/m2)	W _{pp} (Ton/m2)	W _D +W _{pp} (Ton/m2)	W _L (Ton/m2)
Terraza	0.23	0.042	0.27	0.07
Piso 2	0.45	0.06	0.51	0.2
Piso 1	0.45	0.06	0.51	0.25
Planta Baja	0.45	0.06	0.51	0.5

Tabla CXXXIII. Cargas de estructura mixta.

	W _D (Ton/m2)	W _{pp} (Ton/m2)	W _D +W _{pp} (Ton/m2)	W _L (Ton/m2)
Terraza	0.31	0.21	0.52	0.07
Piso 3	0.45	0.3	0.75	0.2
Piso 2	0.45	0.3	0.75	0.25
Piso 1	0.45	0.3	0.75	0.5

Fuente: Almache, I., Sánchez, R., 2017

4.5 Selección de alternativa de diseño

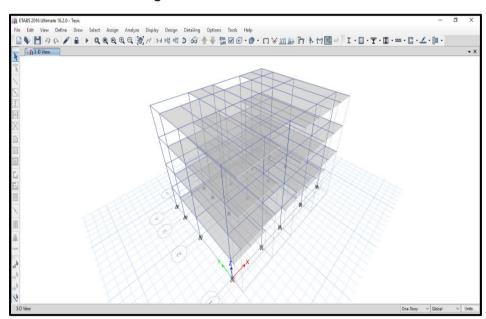
Una vez planteadas a las alternativas de diseño se tienen tres sistemas.

- PCRM (Pórticos de Concreto Resistente a Momentos)
- PARM (Pórticos de Concreto Resistente a Momentos)
- Estructura Mixta. (PCRM y Metal Deck)

La selección de la alternativa de diseño se basa en los siguientes criterios:

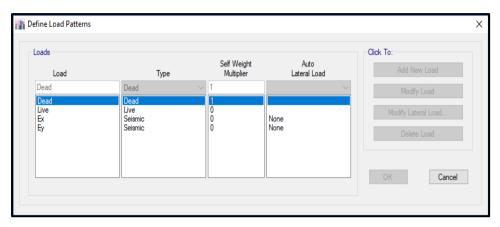
- √ Tiempo de construcción de la estructura
- ✓ Disponibilidad de materiales
- ✓ Peso de la estructura
- ✓ Costo de la mano de obra

Siendo así la alternativa optima es pórtico de acero resistente a momento, ya que el tiempo de construcción es mucho menor comparado a una estructura de hormigón armado, además el peso de la estructura es menor por ende se tendrá una cimentación menos robusta y por último los dueños de la edificación trabajan con acero por lo que su disponibilidad es inmediata de mano de obra y materiales.


CAPÍTULO 5 DISEÑO DE ALTERNATIVA SELECCIONADA. PÓRTICO DE ACERO RESISTENTE A MOMENTO

5.1 Análisis estructural

5.1.1 Periodos de la estructura y cortante basal


A partir del predimensionamiento que realizamos se procede a realizar el modelo en el programa de la siguiente manera:

- Definir material acero A36.
- Definir los espaciamientos de los pórticos de la estructura (GRID).
- Definir los perfiles ya predimensionados.
- Definir los diafragmas.
- Definir la losa Deck como elemento membrana.
- Modelo en 3D ver figura 5.1.

Figura 5.1 Modelo en 3D de la edificación en Etabs **Fuente:** Almache, I., Sánchez, R.,2017

Se procede a definir los estados de cargas con sus respectivas combinaciones como se muestra en la figura 5.2 y 5.3.

Figura 5.2 Estados de carga **Fuente:** Almache, I., Sánchez, R.,2017

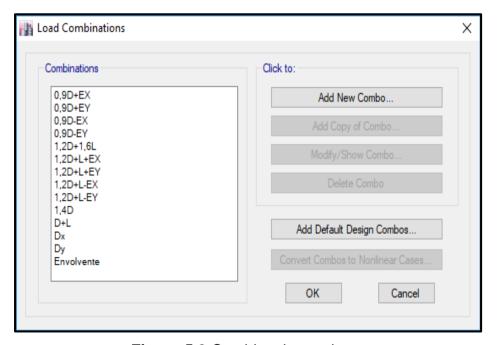
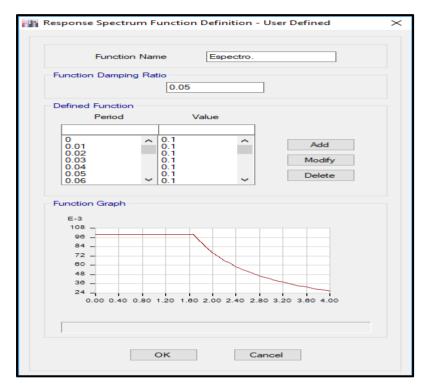



Figura 5.3 Combinaciones de carga Fuente: Almache, I., Sánchez, R., 2017

Se procede a definir el espectro inelástico en el modelo como se muestra en la figura 5.4.

Figura 5.4 Espectro inelástico definido en el programa **Fuente:** Almache, I., Sánchez, R.,2017

Luego se procede a correr el programa para el análisis y se obtienen los periodos como se muestra en la tabla CXXXIV.

Tabla CXXXIV. Periodos de la estructura.

Cable C78 Ball I College de la Collactale					
	Periodo (seg)				
1	0.738				
2	0.714				
3	0.533				
4	0.266				
5	0.255				
6	0.195				
7	0.156				
8	0.147				
	2 3 4 5 6 7				

Modal	9	0.115
Modal	10	0.094
Modal	11	0.087
Modal	12	0.071

Se procede a verificar el cortante basal para su respectivo ajuste si es necesario según NEC 2015 Peligro Sísmico sección 6.2.2 Literal b "Ajuste del corte basal de los resultados obtenidos por análisis dinámico", en la cual nos manifiesta que el valor del cortante dinámico total en el base obtenido por cualquier método de análisis dinámico debe ser:

- < 80% del cortante basal V obtenido por el método estático (Estructuras Regulares)
- <85% del cortante basal V obtenido por el método estático (Estructuras Irregulares)

Se procedió ajustar el cortante basal y se obtuvo lo siguiente observar tabla CXXXV.

Tabla CXXXV. Cortante basal E_x y E_y obtenido del modelo.

	Fx	F _y (Ton)	F _z (Ton)
	(Ton)		
Dead	0	0	303.19
Live	0	0	168.82
E _x Max	23.55	10.43	0
E _y Max	7.21	24.23	0

Con el modelo se obtuvo el peso sísmico por lo que tenemos un cortante basal estimado de:

Tabla CXXXVI. Cortante basal obtenido por método estático.

W _x	303.19	Ton
V _x	30.3	Ton
V _y	30.3	Ton

Fuente: Almache, I., Sánchez, R., 2017

Por lo que se verifica que el cortante basal obtenido del análisis estructural en el programa Etabs es menor al 85 % de que se obtuvo en un análisis estático.

5.1.2 Derivas de piso, índice de estabilidad y efectos P-Δ

Se debe controlas la deriva de piso según NEC 2015 Peligro Sísmico sección 6.3.9 que nos indica que el cálculo de la deriva de piso incluirá:

- Las deformaciones debidas a efectos traslacionales y torsionales.
- Los efectos de segundo orden P-Δ.

La deriva máxima inelástica esa definida por la ecuación 93.

$$\Delta_M = 0.75 R \Delta_E$$
 Ec. 95

Por lo que se debe cumplir la ecuación 94.

$$\theta = \frac{\Delta_M - \Delta_{M-1}}{hx} \le 0.02$$
 Ec. 96

Tabla CXXXVII. Derivas eje x producidas por sismo x.

Ex	desplazamiento x				
Piso	ɗ _{хе} (Etabs)	ďxi	Өх	O adm	Ver
Terraza	0.025112	0.150672	1.29%	2%	ok
Piso 2	0.018886	0.113316	1.76%	2%	ok
Piso 1	0.010384	0.062304	1.44%	2%	ok
Planta Baja	0.003430	0.020580	0.79%	2%	ok

Tabla CXXXVIII. Derivas eje y producidas por sismo y

Еу	desplazamiento y				
Piso	ɗ _{xe} (Etabs)	ɗ _{xi}	Өх	O adm	Ver
Terraza	0.019110	0.11466	0.99%	2%	ok
Piso 2	0.014314	0.085884	1.32%	2%	ok
Piso 1	0.007947	0.047682	1.14%	2%	ok
Planta Baja	0.002450	0.01470	0.57%	2%	ok

Fuente: Almache, I., Sánchez, R., 2017

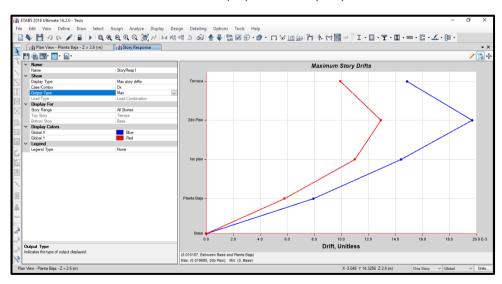


Figura 5.5 Derivas eje x Etabs Fuente: Almache, I., Sánchez, R.,2017

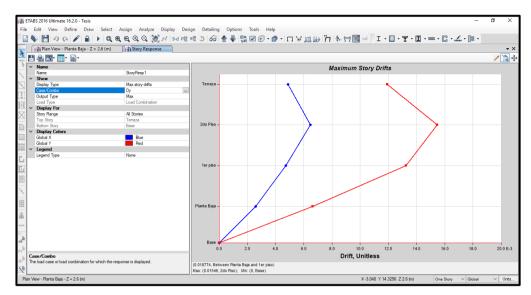


Figura 5.6 Derivas eje y Etabs Fuente: Almache, I., Sánchez, R.,2017

El índice de estabilidad Qi está definido por la siguiente expresión según NEC 2015 Peligro Sísmico sección 6.3.8

$$Q_i = rac{P_i \Delta_i}{V_i h_i}$$
 Ec. 97

Donde:

 Q_i : Índice de estabilidad del piso i, es la relación entre el momento de segundo orden y el momento de primer orden.

 P_i : Suma de la carga vertical total sin mayorar, incluyendo el peso muerto y la sobrecarga viva, del piso i y de todos los pisos localizados sobre el piso i.

 Δ_i : Deriva del piso i calculada en el centro de masa.

V_i: Cortante sísmico del piso i.

 h_i : Altura del piso i considerado.

Los efectos P-Δ no necesitan ser considerados cuando el índice de estabilidad es <0.1 según NEC 2015 Peligro Sísmico sección 6.3.8

Tabla CXXXIX. Índice de estabilidad y efectos P-Δ dirección x.

			Pi					
Piso	Altura h _i	P _i (Ton)	acum (ton)	Θx	V _i (ton)	Qi	ver	Ρ-Δ
Terraza	2,9	3,97	3,97	0,013	7,4	0,002	ok	-
2do Piso	2,9	11,43	15,4	0,018	16	0,004	ok	-
1er Piso	2,9	18,57	33,97	0,014	21,5	0,004	ok	-
Planta Baja	2,6	29,69	63,66	0,008	24,2	0,004	ok	-

Fuente: Almache, I., Sánchez, R.,2017

Tabla CXL. Índice de estabilidad y efectos P-Δ dirección y.

			Pi					
	Altura	Pi	acum		V_{i}			
Piso	hi	(Ton)	(ton)	θх	(ton)	Q_i	ver	P-∆
Terraza	2,9	3,97	3,97	0,010	7,5	0,002	ok	-
2do Piso	2,9	11,43	15,4	0,013	17	0,003	ok	-
1er Piso	2,9	18,57	33,97	0,011	22	0,003	ok	-
Planta Baja	2,6	29,69	63,66	0,006	24,2	0,003	ok	-

Fuente: Almache, I., Sánchez, R., 2017

5.2 Diseño por flexión de vigas

Una vez obtenido el modelo final con el programa Etabs se procede al respectivo diseño de las vigas secundarias en donde según el AISC capítulo F sección F2 para Miembros Con Perfiles I Compactos

Doblemente Simétricos Y Canales: Flexión Alrededor De Su Eje Mayor, debemos comprobar los 4 estados límites que gobiernan el diseño de los elementos estructurales:

5.2.1 Fluencia

Cuando $L_b \le L_p$ se da el pandeo plástico:

$$\phi_b M_n = \phi_b M_p = \phi_b F_v Z_x$$
 Ec. 98

Donde:

$$\phi_{b} = 0.9$$

 L_b : Longitud entre soportes laterales.

 L_p : Longitud máxima sin soporte lateral para el estado límite de fluencia.

 F_y : Esfuerzo de fluencia del material utilizado (Mpa o Ksi)

 Z_x : Módulo plástico de la sección (cm^3 o $pulg^3$)

5.2.2 Pandeo torsional lateral

Cuando $L_b \le L_p$ el estado límite de pandeo torsional no es aplicable (AISC, 360-10)

5.2.3 Pandeo inelástico

Cuando $L_p < L_b \le L_r$ se da el pandeo inelástico (AISC, 360-10)

$$\phi_b M_n = \phi_c C_b \left[M_p - \left(M_p - 0.7 F_y S_x \left(\frac{L_b - L_p}{L_r - L_p} \right) \right) \right] \le \phi_b M_p$$
 Ec. 99

Donde:

C_b: Factor de modificación para pandeo torsional lateral que dependede la no uniformidad del diagrama de momentos.

 L_r : Longitud máxima sin soporte lateral para el estado límite de pandeo torsional lateral inelástico.

 S_x : Módulo de sección

Para determinar los valores de Lp y Lr según el AISC se utilizan las ecuaciones 98 y 99.

$$L_p = 1.76 r_y \sqrt{\frac{E}{F_y}}$$
 Ec. 100

$$L_r = 1.95 r_{ts} \frac{E}{0.7 F_y} \sqrt{\frac{Jc}{S_x h_o} + \sqrt{\left(\frac{Jc}{S_x h_o}\right)^2 + 6.76 \left(\frac{0.7 F_y}{E}\right)^2}}$$
 Ec. 101

Donde:

$$r_{ts}^2 = \frac{\sqrt{I_y C_w}}{S_x}$$
 Ec. 102

c=1 para perfiles I doblemente simétricos

$$c = \frac{h_o}{2} \sqrt{\frac{I_y}{C_w}}$$
 Para Canales

 h_o : Distancia entre centroides del Ala

E: Módulo de elasticidad del Acero

J= Constante torsional, pulg² (mm^2)

 C_w : Constante de alabeo, pulg⁶ (mm^6)

5.2.3 Pandeo elástico

Cuando $L_b > L_r$ se dan el pandeo elástico. (AISC, 360-10)

$$F_{cr} = \frac{C_b \pi^2 E}{\left(\frac{L_b}{r_{ts}}\right)^2} \sqrt{1 + 0.078 \frac{Jc}{S_x h_o} \left(\frac{L_b}{r_{ts}}\right)^2}$$
 Ec. 103

Donde:

 F_{cr} : Esfuerzo de pandeo.

5.3 Diseño por cortante de vigas

Para el diseño por cortante nos basamos en el AISC capítulo G sección G2, Miembros Con Alma Rigidizadas o No Rigidizadas.

5.3.1 Miembros con alma rigidizadas o no rigidizadas

En esta sección se aplica para almas de miembros simples y doblemente simétricos y canales sujetos a corte en el plano del alma. La resistencia de diseño al cortante de acuerdo con los estados límite de fluencia por cortante o pandeo por cortante se define por:

$$V_n = 0.6F_v A_w C_v$$

$$\phi_v V_n = \phi_v (0.6 F_v A_w C_v)$$
 Ec. 104

 A_w : Área del alma: dt_w

 C_v : Coeficiente de corte del alma

a) Para almas de miembros con perfiles I rolados con

- b) Para almas de todos los demás simples, doblemente simétricos y canales, a excepción de los perfiles tubulares HSS, Cv se determina de la siguiente manera:
 - (i) Para $h/t_w \le 1.10\sqrt{k_v E/F_y}$

$$C_v = 1.00$$

(ii) Para $1.10\sqrt{k_vE/F_y} < h/t_w \le 1.37\sqrt{k_vE/F_y}$

$$C_{v} = rac{1.10 \sqrt{k_{v}E/F_{y}}}{h/t_{w}}$$
 Ec. 105

(iii) Para $h/t_w > 1.37\sqrt{k_v E/F_v}$

$$C_v = \frac{1.51Ek_v}{(h/t_w)^2 F_y}$$
 Ec. 106

El coeficiente de pandeo de la placa del alma k_v se define como: (AISC, 360-10)

(i) Para almas no rigidizadas con $h/t_w < 260$

$$k_{v} = 5$$

A excepción de los perfiles Tee donde $k_{v}=1.2$

(ii) Para almas rigidizadas:

$$k_v = 5 + \frac{5}{(a/h)^2}$$
 Ec. 107

$$k_v = 5 \text{ cuando } a/h > 3.0 \text{ o } a/h > \left[\frac{260}{(h/t_w)}\right]^2$$
 Ec. 108

Donde:

a: Distancia libre entre rigidizadores transversales

h: Para perfiles laminados, distancia libre entre alas menos el filete o el radio de la esquina

: Para secciones armadas soldadas, la distancia libre entre alas.

: Para secciones armadas empernadas, la distancia libre entre líneas de pernos.

: Para perfiles Tee, el peralte total.

Los rigidizadores transversales no son necesarios cuando $h/t_w \le 2.46\sqrt{E/F_y}$ o cuando la fuerza requerida de corte es menor o igual a la resistencia disponible al corte. Fuerza cortante para Kv=5

5.4 Diseño de vigas secundarias

5.4.1 Diseño a flexión

Se procede a mostrar los resultados obtenidos para el diseño a flexión de las vigas secundarias de acuerdo con las tablas CXLI-CXLII.

Tabla CXLI. Propiedades de vigas secundarias.

Diseño a Flexión						
	Perfil	h _o (cm)	J (cm4)	C _w (cm6)	r _{ts} ²	r _{ts}
Terraza	IPE 160	15.26	2.82	3958.87	5.02	2.24
Piso 2	IPE 220	21.08	7.09	22672.31	9.02	3.00
Piso 1	IPE 220	21.08	7.09	22672.31	9.02	3.00
Planta Baja	IPE 270	25.98	11.94	70577.87	13.33	3.65

Fuente: Almache, I., Sánchez, R.,2017

Tabla CXLII. Valores de Lb, Lp y Lr de vigas secundarias.

	Perfil	L _b (cm)	L _p (cm)	L _r (cm)	Verificación
Terraza	IPE 160	185.00	93.64	343.30	Pandeo Torsional Inelástico
Piso 2	IPE 220	185.00	125.99	430.12	Pandeo Torsional Inelástico
Piso 1	IPE 220	185.00	125.99	430.12	Pandeo Torsional Inelástico
Planta Baja	IPE 270	185.00	154.10	495.22	Pandeo Torsional Inelástico

Tabla CXLIII. Verificación de momentos de vigas secundarias.

	Perfil	M _p (Ton.cm)	φ _b M _n (Ton.cm)	M _u (Ton.cm)	
Terraza	IPE 160	301.70	232.71	201.00	Ok
Piso 2	IPE 220	693.13	576.77	386.00	Ok
Piso 1	IPE 220	693.13	576.77	478.00	Ok
Planta Baja	IPE 270	1168.10	1015.08	751.00	Ok

5.4.2 Diseño a cortante

Se procede a mostrar los resultados obtenidos para el diseño a cortante de las vigas secundarias de acuerdo con las tablas CXLIVI y CXLV.

Tabla CXLIV. Cortante de vigas secundarias.

Diseño a Cortante							
	Perfil	h/t _w	h/t _w	a (cm)	a/h	Kv	Cv
		(1.1)	(1.37)				
Terraza	IPE 160	31.22	38.88	185.00	12.74	5.01	1.00
Piso 2	IPE 220	31.22	38.88	185.00	9.18	5.00	2.04
Piso 1	IPE 220	31.22	38.88	185.00	9.18	5.00	2.04
Planta Baja	IPE 270	31.22	38.88	185.00	7.41	5.00	1.85

Tabla CXLV. Verificación de cortante de vigas secundarias.

	Perfil	φVn (Ton)	Vu (Ton)	Verificación
Terraza	IPE 160	10.96	2.50	Ok
Piso 2	IPE 220	36.34	5.51	Ok
Piso 1	IPE 220	36.34	6.03	Ok

Planta	IPE	45.07	9.21	Ok
Baja	270			

5.5 Diseño de vigas principales eje y

5.5.1 Diseño a flexión

Se muestran los resultados obtenidos para el diseño a flexión de las vigas principales eje Y de acuerdo con las tablas CXLVI-CLVIII.

Tabla CXLVI. Propiedades de perfiles vigas principales eje y

Diseñ	Diseño a Flexión					
	Perfil	h _o (cm)	J (cm4)	C _w (cm6)	r _{ts} ²	r _{ts}
Terraza	IPE 180	17.20	3.92	7431.21	6.12	2.47
Piso 2	IPE 220	21.08	7.09	22672.31	8.93	2.99
Piso 1	IPE 240	23.02	9.28	37391.18	10.63	3.26
Planta Baja	IPE 270	25.98	11.94	70577.87	13.33	3.65

Tabla CXLVII. Valores de Lb, Lp y Lr de vigas principales eje y.

	Perfil	L _b (cm)	L _p (cm)	L _r (cm)	Verificación
Terraza	IPE 180	185.00	103.94	367.65	Pandeo Torsional Inelástico
Piso 2	IPE 220	185.00	125.99	426.69	Pandeo Torsional Inelástico
Piso 1	IPE 240	185.00	137.73	458.81	Pandeo Torsional Inelástico
Planta Baja	IPE 270	185.00	154.10	495.22	Pandeo Torsional Inelástico

Tabla CXLVIII Verificación de momentos de vigas principales eje y

				<u> </u>	1 , , ,
	Perfil	M _p (Ton.cm)	φ _b M _n (Ton.cm)	M _u (Ton.cm)	Verificación
Terraza	IPE 180	407.98	323.76	190.00	Ok
Piso 2	IPE 220	693.13	577.02	464.00	Ok
Piso 1	IPE 240	877.60	745.53	469.00	Ok
Planta Baja	IPE 270	1168.10	1015.08	613.00	Ok

Fuente: Almache, I., Sánchez, R., 2017

5.5.2 Diseño a cortante

Se procede a mostrar los resultados obtenidos para el diseño a cortante de las vigas principales eje y de acuerdo con las tablas CLI y CLII

Tabla CXLIX. Cortante de vigas principales eje y.

Diseño a Cortante							
	Perfil	h/t _w	h/t _w	a (cm)	a/h	Kv	Cv
		(1.1)	(1.37)				
Terraza	IPE 180	31.22	38.88	185.00	11.28	5.01	0.00
Piso 2	IPE 220	31.22	38.88	185.00	9.18	5.00	0.00
Piso 1	IPE 240	31.22	38.88	185.00	8.39	5.00	0.00
Planta Baja	IPE 270	31.22	38.88	185.00	7.41	5.00	1.85

Tabla CL. Verificación de cortante de vigas principales eje y.

	Perfil	φVn (Ton)	Vu (Ton)	Verificación
Terraza	IPE 180	13.07	2.20	Ok
Piso 2	IPE 220	36.34	4.90	Ok
Piso 1	IPE 240	40.04	5.27	Ok
Planta Baja	IPE 270	45.07	6.16	Ok

Fuente: Almache, I., Sánchez, R., 2017

5.6 Diseño de vigas principales eje x

5.6.1 Diseño a flexión

Se procede a mostrar los resultados obtenidos para el diseño a flexión de las vigas principales eje X de acuerdo con las tablas CLI-CLIII.

Tabla CLI. Propiedades de perfiles de vigas principales eje x.

	Diseño a Flexión								
	Perfil	h _o (cm)	J (cm4)	C _w (cm6)	r _{ts} ²	r _{ts}			
Terraza	IPE 180	17.20	3.92	7431.21	6.12	2.47			
Piso 2	IPE 240	23.02	9.28	37391.18	10.63	3.26			
Piso 1	IPE 270	25.98	11.94	70577.87	13.33	3.65			
Planta Baja	IPE 300	28.93	15.57	125934.05	16.34	4.04			

Tabla CLII. Valores de L_b , L_p y L_r de vigas principales eje x.

	Perfil	L _b (cm)	L _p (cm)	L _r (cm)	Verificación
Terraza	IPE 180	140.00	103.94	367.65	Pandeo Torsional Inelástico
Piso 2	IPE 240	140.00	137.73	458.81	Pandeo Torsional Inelástico
Piso 1	IPE 270	140.00	154.10	495.22	Pandeo Plástico
Planta Baja	IPE 300	140.00	170.26	535.39	Pandeo Plástico

Fuente: Almache, I., Sánchez, R.,2017

Tabla CLIII. Verificación de momentos de vigas principales eje x.

	Perfil	M _p (Ton.cm)	φbM _n (Ton.cm)	M _u (Ton.cm)	Verificación
Terraza	IPE 180	407.98	347.87	241.00	Ok
Piso 2	IPE 240	877.60	787.71	511.00	Ok
Piso 1	IPE 270	1168.10	1051.29	579.00	Ok
Planta Baja	IPE 300	1527.14	1374.43	871.00	Ok

5.6.2 Diseño a cortante

Se muestran los resultados obtenidos para el diseño a cortante de las vigas principales eje x de acuerdo con las tablas CLIV y CLV.

Tabla CLIV. Cortante de vigas principales eje x.

Diseño	a Corta	nte					
	Perfil	h/t _w	h/t _w	a (cm)	a/h	Κ _ν	Cv
		(1.1)	(1.37)				
Terraza	IPE 180	31.22	38.88	140.00	8.54	5.01	1.00
Piso 2	IPE 240	31.22	38.88	140.00	6.35	5.00	1.96
Piso 1	IPE 270	31.22	38.88	140.00	5.61	5.00	1.85
Planta Baja	IPE 300	31.22	38.88	140.00	5.03	5.00	3.95

Fuente: Almache, I., Sánchez, R., 2017

Tabla CLV. Verificación de cortantes de vigas principales eje x.

	Perfil	φV _n (Ton)	V _u (Ton)	Verificación
Terraza	IPE 180	13.07	2.31	Ok
Piso 2	IPE 240	40.04	5.08	Ok
Piso 1	IPE 270	45.07	5.54	Ok
Planta Baja	IPE 300	115.31	8.71	Ok

Fuente: Almache, I., Sánchez, R., 2017

5.7 Diseño de columnas

Según el AISC capítulo H sección H1, Miembros Doblemente Y Simplemente Simétricos Sujetos A Carga Axial Y De Flexión, se utilizan fórmulas de interacción semi-empíricas. Para miembros simétricos:

a) Si $\frac{P_r}{P_c} \ge 0.2$ (Carga axial grande)

$$\frac{P_r}{P_c} + \frac{8}{9} \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) \le 1.0$$
 Ec. 109

b) Si $\frac{P_r}{P_c}$ < 0.2 (Carga axial pequeñas)

$$\frac{P_{\rm r}}{2P_{\rm c}} + \left(\frac{M_{\rm rx}}{M_{\rm cx}} + \frac{M_{\rm ry}}{M_{\rm cy}}\right) \le 1.0$$
 Ec. 110

Donde:

P_r: Carga axial factorada.

P_c: Resistencia de diseño a carga axial.

M_r: Resistencia requerida por flexión.

M_c: Resistencia de diseño a flexión.

X: subíndice relacionado a flexión alrededor del eje fuerte.

Y: subíndice relacionado a flexión alrededor del eje débil.

5.7.1 Diseño de miembros sujetos a carga axial de compresión combinada con flexión

Según el AISC Apéndice 8 se Mr y Pr deben determinarse mediante un análisis elástico de segundo orden mediante un análisis aproximado de segundo orden descrito a continuación:

$$M_r = B_1 M_{nt} + B_2 M_{lt}$$
 Ec. 111

$$P_r = P_{nt} + B_2 P_{lt}$$
 Ec. 112

Donde:

 M_{nt} : Resistencia requerida a flexión asumiendo que no hay desplazamiento lateral en el pórtico.

 M_{lt} : Resistencia requerida a flexión asumiendo que hay desplazamiento lateral en el pórtico.

 B_1 : Factor de amplificación para tomar en cuenta los efectos P-d.

 B_2 : Factor de amplificación para tomar en cuenta los efectos P- Δ .

• Para determinar el valor de B_1 se utilizan las siguientes ecuaciones 5.19, 5.20, y 5.21.

$$B_1 = \frac{C_m}{1 - \alpha \frac{P_r}{P_{el}}} \ge 1.0$$
 Ec. 113

Donde P_{el} es la carga de Euler para columnas en pórticos sin desplazamiento lateral.

$$P_{el} = \frac{\pi^2 EI}{(K_1 L)^2}$$
 Ec. 114

 C_m : Coeficiente basado en el análisis elástico de primer orden asumiendo que no hay desplazamiento lateral.

 a) Para miembros a compresión sin carga transversal entre sus soportes y momentos M1 y M2 en sus extremos.

$$C_m = 0.6 - 0.4 \frac{M_1}{M_2}$$
 Ec. 115

a) Para miembros a compresión carga transversal entre sus soportes: El valor debe determinarse por análisis o debe tomarse como 1.0 conservadoramente.

$$C_m = 1.0$$

 Para determinar el valor de B₂ se utilizan las siguientes ecuaciones 5.22, 5.23 y 5.24

$$B_2 = \frac{1}{1 - \frac{\alpha \sum P_{\text{nt}}}{\sum P_{e2}}} \ge 1.0$$
 Ec. 116

Donde:

 $\sum P_{\rm nt}$: Carga axial factorada de todas las columnas de un entrepiso.

 $\sum P_{e2}$: Carga de Euler para columnas en pórticos con desplazamientos lateral.

Para todos los sistemas resistentes a fuerzas laterales, se permite usar:

$$\sum P_{e2} = R_M \frac{HL}{\Delta_H}$$
 Ec. 117

$$R_M = 1.0 - 0.15(P_{mf}/P_{story})$$
 Ec. 118

Donde:

 P_{mf} : Carga vertical total en las columnas del entrepiso que son partes de los pórticos a momento.

H: Cortante de entrepiso en la dirección considerada producido por las fuerzas laterales usadas para calcular Δ_H .

 Δ_H : Deflexión lateral de entrepiso debido a fuerzas laterales.

 R_M : Puede tomarse como:

=1.0 para sistemas con pórticos arriostrados.

=0.85 para pórticos resistentes a momentos y sistemas combinados, a menos que un valor mayor se justifique mediante análisis.

Tabla CLVI. Carga de Euler en las columnas.

	Perfil	L (cm)	I _{x=y} (cm4)	Kx	Кy	P _{elx} (Ton)	P _{ely} (Ton)	C _{mx=y}
Terraza	20x1.2	290	5337.40	1.36	1.45	1689.29	1486.06	0.2
Piso 2	20x1.2	290	5337.40	1.31	1.5	1820.70	1388.67	0.2
Piso 1	25x1.5	290	13030.75	1.35	1.52	1714.41	1352.36	0.2
Planta Baja	25x1.5	260	13030.75	1.34	1.42	2164.81	1927.76	0.2

Fuente: Almache, I., Sánchez, R., 2017

Tabla CLVII. Valores de carga axial y momentos del Etabs.

			Valores obtenidos del modelo en Etabs					
	Perfil	P _{nt} (Ton)	P _{lt} (Ton)	M _{ntx} (Ton.cm)	M _{ltx} (Ton.cm)	M _{nty} (Ton.cm)	M _{lty} (Ton.cm)	
Terraza	20x1.2	0	8.4145	0	87.1	0	185.81	
Piso 2	20x1.2	0	26.8998	0	146.88	0	184.62	
Piso 1	25x1.5	0	46.9926	0	246.26	0	399.35	
Planta Baja	25x1.5	0	76.7294	0	266.58	0	354.62	

Tabla CLVIII. Valores de B1 y B2 de los ejes x y y.

	Perfil	B _{1x}	B _{1y}	B _{2x}	B _{2y}
Terraza	20x1.2	1	1	1.00	1.00
Piso 2	20x1.2	1	1	1.01	1.01
Piso 1	25x1.5	1	1	1.01	1.01
Planta Baja	25x1.5	1	1	1.01	1.01

Tabla CLIX. Valores de Lb y Lp.

	Perfil	L _p (cm)	L _b (cm)	Verificación
Terraza	20x1.2	480.21	290.00	Pandeo Plástico
Piso 2	20x1.2	480.21	290.00	Pandeo Plástico
Piso 1	25x1.5	480.21	290.00	Pandeo Plástico
Planta Baja	25x1.5	480.21	260.00	Pandeo Plástico

Fuente: Almache, I., Sánchez, R.,2017

Tabla CLX. Relación demanda capacidad de las columnas.

	Perfil	P _c (Ton)	P _r (Ton)		M _{rx} (Ton.cm)	M _{ry} (Ton.cm)	M _{cx=y}	E.I
				Carga Axial		,	•	
Terraza	20x1.2	176.00	8.46	Pequeña	87.53	186.52	1454.23	0.21
				Carga Axial				
Piso 2	20x1.2	174.06	27.15	Pequeña	148.25	185.91	1454.23	0.31
Piso 1	25x1.5	288.14	47.46	Carga Axial Pequeña	248.73	402.52	2840.29	0.31
FISU I	2381.3	200.14	47.40		240.73	402.52	2040.29	0.51
Planta	05-4.5	007.00	77.44	Carga Axial	000.00	050.07	0040.00	0.47
Baja	25x1.5	297.82	77.41	grande	268.96	356.87	2840.29	0.47

5.8 Diseño de losa de pisos

Para el diseño de la losa de cada piso se usaron los valores de las propiedades del Steel panel que fue obtenido del catálogo de Novacero

Tabla CLXI. Propiedades de losa.

Espesor placa colaborante	0.76	mm
As steel panel	9.03	cm2/m
Espesor losa Hormigón	60	mm
Max. Long. Sin apuntalar	2.35	m
Altura cresta	55	mm

Fuente: (Novacero, 2017)

Con estos valores procedemos a obtener las luces libres y el valor de la altura promedio de hormigón para el diseño de la misma.

Tabla CLXII. Valor de altura promedio de hormigón.

Table 9=7(III Valor a	rabia ezitii valor de akara premedie de nemigen.				
e prom	87.5	mm			
e prom	90	mm			
Recubrimiento	22	mm			
d	68	mm			
ancho vigas	135	mm			
L _{n1}	5.415	m			
L _{n2}	3.245	m			
L _{n3}	1.965	m			
L _{n1} prom	4.33	m			
L _{n2} prom	2.605	m			

Fuente: Almache, I., Sánchez, R., 2017

Se procede a estimar el valor de momento máximo positivo, momento máximo negativo y cortante máximo con la ayuda de los coeficientes del ACI y luego procedemos a verificar si se necesita refuerzo por cortante en la losa.

Tabla CLXIII. Momentos y cortantes máximos.

	Tuble Cartini momento y contanto martino				
Qu	1.90	T/m			
Mu max (-)	3.55	Ton.m			
Mu max (+)	2.54	Ton.m			
V _{u ext} (+)	5.13	Ton			
Vu ext (-)	4.72	Ton			
Vu	4.68	Ton			
φV _c	5.06	Ton			
No se requiere refuerzo por cortante					

Usando malla electrosoldada de novacero se procede a verificar las cuantías mínimas según la norma y calcular la cuantía de acero que se requiere en la losa.

Tabla CLXIV. Cuantías requeridas.

Malla	Malla Electrosoldada especificaciones				
φ	5	mm			
Fy min	5000	Kg/cm2			
Long	6.25	m			
ρ cal	0.000171084				
ρmin	0.0028				
ρ min	0.00295804				
ρ	0.00295804				
U	sar φ5/150mm				
As	2.95	cm2/m			
ρ	0.00433125	ok			

Fuente: Almache, I., Sánchez, R.,2017

Por último, se procede a la verificación de flexión del Steel panel.

Tabla CLXV. Comprobación por flexión.

Comprob	Comprobación por flexión del steel panel				
W	0.34				
φMn	3.99	Ton.m			
M _u 3.55 Ton.m					
Es adecuado					

Por lo tanto, se procede a usar malla electrosoldada con un diámetro de 5 mm y con una separación de 150 mm.

CAPÍTULO 6 DISEÑO DE LA CIMENTACIÓN

6.1 Selección de la cimentación

Debido a la economia y por la estatigrafia del suelo ,se observa que uno de los suelos suelo mas resistente esta en el tramo 2 a 4 metros del nivel actual de terreno,por lo tanto la cimentación seleccionada es una superficial, se excavará 2.5 m aproximadamente para dar espacio al sotano y a la cimentación respectivamente.

Existe dos probabilidades de cimentaciones losa de cimentación o vigas de cimentación, las cuales permiten distribuir de las cargas de manera uniforme.

En este caso seleccionaremos vigas de cimentación en dos direcciones.

6.1.1 Vigas de cimentación

- Capacidad del soporte del suelo media o baja.
- Momentos y cargas grandes.
- Pueden ser rectangulares o con la T invertida esto depende de la economía ya que en la T se gasta mas en enconfrado y mano de obra en cambio en las rectangulares mas material.

Como se observa en este caso con las condiciones establecidas se puede notar que se cumplen los requerimientos en donde se puede aplicar este tipo de cimentación.

6.2 Diseño de vigas de cimentación

Para el diseño se tomaran los porticos mas criticos tanto en el eje y como en el eje x .

Se Tomaran las mayores cargas axiales, tanto para el eje x como el eje y , es decir se van a usar vigas en dos direcciones.

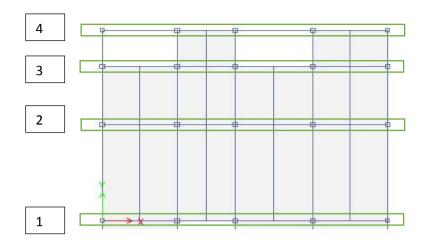
Se realizará un mejoramiento del suelo – Relleno de un material granular Tipo Sub.base C-3.Compactado al 100% del proctor modificado, que permite aumentar la capacidad de carga de 7.62 ton/m2 a 11.97ton/m2 el cual es el valor que se usara en el diseño.

6.2.1 Diseño viga de cimentación eje x

Para poder tomar el eje mas crítico se revisaran mediante los estados de carga

Estado de servicio

$$P = D + L$$
 Ec. 119


Estado de Carga

$$P = 1.2D + 1.6L$$
 Ec. 120

$$P = 1.2D + L + Ex$$
 Ec. 121

$$P = 1.2D + L + Ey$$
 Ec. 122

Vista en planta del diseño estructural Figura 6.1.

Figura 6.1 Vigas de cimentación eje x **Fuente:** Almache, I., Sánchez, R.,2017

6.2.2 Demanda de cargas axiales en los diferentes

Como se observa en las tablas CLXVI a CLXIX la carga axial más crítica para el diseño son las demandas del eje número 2.

Tabla CLXVI. Cargas de servicio eje 1.

Columna	P _(D+L) Ton
	(D+L) 1 011
1	21
2	32.77
3	32.9
4	43.46
5	20.8
TOTAL	150.93

Tabla CLXVII. Cargas de servicio eje 2.

Columna	P _(D+L) Ton
1	28.3
2	50.14
3	50.69
4	56.81
5	27.77
TOTAL	213.71

Tabla CLXVIII. Cargas de servicio eje 3.

Columna	P _(D+L) Ton	
1	8.54	
2	18.96	
3	19.08	
4	22.62	
5	14.98	
TOTAL	84.18	

Fuente: Almache, I., Sánchez, R., 2017

Tabla CLXIX. Cargas de servicio eje 4

Columna	P _(D+L) Ton
1	0.74
2	5.22
3	5.14
4	6.41
5	5.67
TOTAL	23.18

 Se observa las distancias parciales del extremo de la viga cada fuerza.

Tabla CLXX. Ancho y cargas de columnas eje 2.

	P _(D+L) Ton	X parcial	Ancho Columna (m)
1	28.3	0.125	0.25
2	50.14	4.175	0.25
3	50.69	7.325	0.25
4	56.81	11.525	0.25
5	27.77	15.575	0.25
TOTAL	213.71	Longitud	15.7

Fuente: Almache, I., Sánchez, R., 2017

2. Se calcula la Resultante R

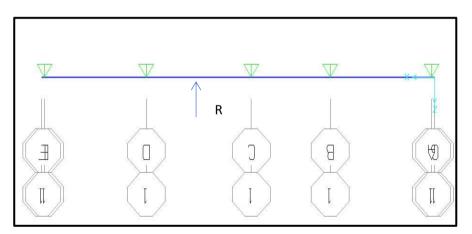


Figura 6.2 Resultante de cargas en viga de cimentación Fuente: Almache, I., Sánchez, R.,2017

 Carga Repartida depende de la ubicación de la columna en el eje de análisis.

Tabla CLXXI. Carga repartida en cada columna.

Distribución de cargas axiales en el eje 2 de cimentación			
Columna - Eje 2 P _(D+L) Ton			
Borde	15.74		
Intermedia 30.06			
Intermedia 29.88			
Intermedia 34.63			
Intermedia 15.42			
TOTAL 125.72			

4. Cálculo de carga de servicio

$$q_i = \frac{\sum P_i * 1.15}{L}$$
 Ec. 123

Tabla CLXXII. Carga de servicio.

Carga de servicio		
qi	7.142	Ton/m

Fuente: Almache, I., Sánchez, R., 2017

5. Mayoración de cargas

$$q_u = 1.5 q_i$$
 Ec. 124

Tabla CLXXIII. Carga última.

Carga Última			
q _u 10.714 Ton/m			

6. Obtención de la viga equivalente para el análisis

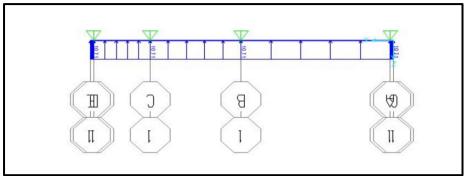
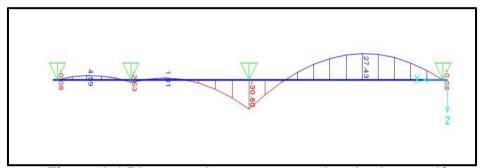
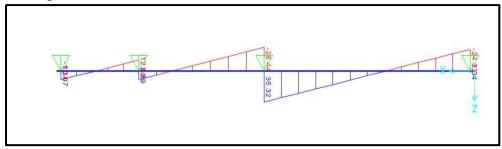



Figura 6.3 Cargas asignadas en Sap2000 Fuente: Almache, I., Sánchez, R.,2017


Figura 6.4 Diagrama de momento en viga de cimentación **Fuente:** Almache, I., Sánchez, R.,2017

Se observa en las tablas CLXXIV Y CLXXV el momento máximo positivo y negativo y el cortante máximo.

Tabla CLXXIV. Momentos máximos actuando en la viga.

Momentos Máximos					
M _{max} (+)	18.96	Ton.m			
M _{max} (-)	25.79	Ton.m			

. Diagrama de cortante

Figura 6.5 Diagrama de cortante en viga de cimentación **Fuente:** Almache, I., Sánchez, R.,2017

Tabla CLXXV. Cortante máximo.

Corte Máximo		
Vu	34.39	Ton

Fuente: Almache, I., Sánchez, R., 2017

6.2.3 Cálculo de acero longitudinal superior en viga de cimentación eje x

Tabla CLXXVI. Valores de Ru.

Valores de Ru		
F´c (kg/cm2) Ru (kg/cm2)		
210	39.72	
240	45.39	
280	52.96	
300	56.74	
350	66.19	

Fuente: Guerra, 2013

Se asume la el ancho de la viga de cimentación, mediante la ecuación 124

$$d = \sqrt{\frac{M_u}{\emptyset R_u b}}$$
 Ec. 125

Tabla CLXXVII. Diseño a flexión.

Diseño a flexión		
f'c (kg/cm2)	210	
Ø'	0.9	
Ru	39.72	
b asumido (cm)	35	
d (cm)	49.454	
H(cm)	56.954	
H tomado (cm)	70	
d efectiva (cm)	62.5	

Se calcula el área de acero longitudinal requerida, mediante la ecuación 125.

$$A_{req} = \frac{M_u}{\emptyset j d_{efectiva} f_y}$$
 Ec. 126

Tabla CLXXVIII. Acero longitudinal

Acero Longitudinal		
Mu	30.6	Ton.m
Ø	0.9	cm
b	35	cm
d	62.5	Kg/cm2
fy	4200	Kg/cm2
F'c	210	cm2
As req	14.392	cm2
W	0.132	
Prequerida	0.0066	
ρ _{min}	0.0028	
ρ min	0.0033	Rige
ρ _{max}	0.025	

Comprobación ρ _{Min}	Ok	
Comprobación ρ _{Max}	Ok	mm
Ø	22	cm2
A _b	3.801	cm2
n	3.786	
N	4	

Tabla CLXXIX. Longitud de anclaje.

Longitud de Anclaje			
diámetro 22 cm			
L _{dh}	37.07	cm	
15 cm			
L _{dh} Adoptado	37.07	cm	
L _{dh} req	40	cm	

Fuente: Almache, I., Sánchez, R., 2017

cálculo de Vc, mediante la ecuación 126 y Vs ecuación 127

$$Vc = \frac{Vu}{\phi bd}$$
 Ec. 127

$$V_{\rm s} = V_{\rm c} - V_{\rm cmin}$$
 Ec. 128

Tabla CLXXX. Diseño por cortante.

	Diseño a Corte		
V _{c max}	30.432	kg/cm2	
VuSAP	35.32	Ton	
Ø	0.85		
b	35	cm	
d	62.5	cm	
Vc	18.99563025	Ton	
Se re	Se requiere refuerzo transversal		
V _{cmin}	11.315		
Vs	24752.001	kg/cm2	
Vs	29120.001	kg	
V _{s último}	0.111	kg	

A _v /S	10	cm2/u de longitud
Ø	0.7854	mm
Av/rama	11.315	
S	30.3721	cm
Smax	15.625	cm
	17.6	cm
Sadoptado	15.6250	cm
S	15	cm
	Ø10c/15cm	

Tabla CLXXXI. Longitud de traslape.

Longitud M	Longitud Min de traslape			
d _b	d _b 22 mm			
ramas estribo	2			
K _{tr}	1.51			
N	5			
Cb	61			
	45.67	Rige		
L _d	728.71	mm		
	947.32			
L _{d adoptado}	1000	mm		

Fuente: Almache, I., Sánchez, R.,2017

Tabla CLXXXII. Traslape de compresión.

Traslape de compresión				
L _{dc} 674.52 > 300 ok				
L _{dc} 700 mm				

6.2.4 Cálculo de acero longitudinal inferior en viga de cimentación

eje x

Se calcula el área de acero longitudinal requerida, mediante la ecuación 128.

$$A_{req} = \frac{M_u}{\phi_{jd_{efectiva}f_y}}$$
 Ec. 129

Tabla CLXXXIII. Diseño a flexión.

Diseño a flexión		
f'c (kg/cm2)	210	
Ø	0.9	
Ru	39.72	
b asumido (cm)	35	
d (cm)	46.822	
H(cm)	54.322	
H tomado (cm)	70	
d efectiva (cm)	62.5	

Tabla CLXXXIV. Acero longitudinal.

Acero Longitudinal		
Mu	27.43	T.m
Ø	0.9	cm
b	35	cm
d	62.5	Kg/cm2
fy	4200	Kg/cm2
F'c	210	cm2
As req	12.901	cm2
W	0.118	
Prequerida	0.0059	
ρ min	0.0028	
ρ _{min}	0.0033	Rige
ρ _{max}	0.025	
Comprobación ρ _{Min}	ok	

Comprobación ρ _{Max}	Ok	mm
Ø	22	cm2
A _b	3.801327111	cm2
n	3.393721798	
N	4	

Tabla CLXXXV. Longitud de anclaje.

Longitud de Anclaje			
diámetro 22 cm			
L _{dh}	37.07	cm	
15 cm			
L _{dh} Adoptado	37.07	cm	
L _{dh} req	40	cm	

Fuente: Almache, I., Sánchez, R., 2017

Tabla CLXXXVI. Longitud de traslape.

Longitud Mir	Longitud Min de traslape			
d _b	d _b 22 mm			
ramas estribo	2			
K _{tr}	1.88			
N	4			
C _b	61			
	45.66	Rige		
L _d	728.70	mm		
	947.31			
L _d adoptado	1000	mm		

Fuente: Almache, I., Sánchez, R.,2017

Tabla CLXXXVII. Traslape de compresión.

	Traslape de compresión				
L _{dc}	674.52	>	300	ok	
L _{dc}	L _{dc} 700 mm				

6.2.5 Cálculo de acero longitudinal zapata en viga cimentación eje x

Se calcula el ancho de la zapata mediante la ecuación 129

$$B_{min} = rac{q_i}{\sigma_{admisible}}$$
 Ec. 130

Se calcula la carga última mediante la ecuación 130.

$$W_u = \frac{q_u}{B}$$
 Ec. 131

Tabla CLXXXVIII. Ancho de zapata.

Ancho de Zapata		
B 0.895044139		
B adoptado 1		
Wu 10.71367834		

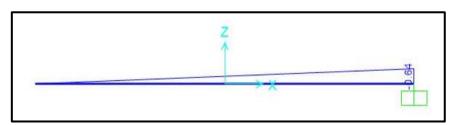


Figura 6.6 Momento último zapata Fuente: Almache, I., Sánchez, R.,2017

Tabla CLXXXIX. Diseño de zapata.

Diseño a flexión		
f'c (kg/cm2)	210	
Ø	0.9	
Ru	39.72	
b asumido (cm)	100	
d (cm)	4.231	

H(cm)	11.731
H tomado (cm)	25
d efectiva (cm)	17.5

Tabla CXC. Acero Longitudinal zapata.

Acero Longitudinal			
Mu	0.64	Ton.m	
Ø	0.9	cm	
b	100	cm	
d	17.5	Kg/cm2	
fy	4200	Kg/cm2	
F'c	210	cm2	
As req	1.075		
W	0.012		
Prequerida	0.0006		
ρ min	0.0028	Rige	
ρ min	0.0033		
ρ _{max}	0.025		
Comprobación p _{Min}	se usa min		
Comprobación ρ _{Max}	Ok	mm	
Ø	10	cm2	
Ab	0.785398163		
n	1.368729837		
N	2		

Fuente: Almache, I., Sánchez, R.,2017

Tabla CXCI. Longitud de anclaje.

Longitud de Anclaje			
diametro	12	cm	
Ldh	20.22052569	cm	
	9.6	cm	
	15		
		cm	
Ldh Adoptado	20.2205	cm	
Ldh req	25	cm	

Tabla CXCII. Longitud de traslape.

Longitud Min de traslape		
db	12	mm
ramas estribo	2	
Ktr	-0.01120936	
N	3	
Cb	56	
	47.33333333	Rige
Ld	397.4777622	mm
	516.7210908	
Ld adoptado	600	mm

Tabla CXCIII. Traslape de compresión.

Traslape de compresión				
Ldc	367.92	>	300	ok
Ldc	400	mm		

Fuente: Almache, I., Sánchez, R., 2017

Tabla CXCIV. Diseño por cortante.

	Diseño a Corte		
Vc max	30.43189117	kg/cm2	
Vu	3.66	Ton	
Ø	0.85		
b	39.72	cm	
d	15	cm	
vu max	7.227060008	Ton	
No se requiere estribos			

Fuente: Almache, I., Sánchez, R.,2017

Por lo tanto, se armará con la máxima separación requerida

Tabla CXCV. Separación requerida.

S	15	cm
	Ø10c/15cm	

6.2.5 Diseño viga de cimentación eje y

Tabla CXCVI. Ancho y cargas de columnas.

	P _(D+L) Ton	X parcial	Ancho de Columna (m)
1	43.46	0.125	0.25
2	56.81	5.675	0.25
3	22.62	9.055	0.25
4	6.41	11.155	0.25
TOTAL	129.3	LONGITUD	11.28

Fuente: Almache, I., Sánchez, R., 2017

Tabla CXCVII. Carga repartida en cada columna.

Distribución de cargas axiales en el eje D de cimentación		
Columna - Eje D	P(D+L) Ton	
Borde	14.49	
Intermedia	28.41	
Intermedia	11.31	
Borde	2.14	
TOTAL	56.34	

Fuente: Almache, I., Sánchez, R., 2017

Cálculo de carga de servicio

$$q_i = \frac{\sum P_i * 1.15}{L}$$
 Ec. 132

Tabla CXCVIII. Carga de servicio.

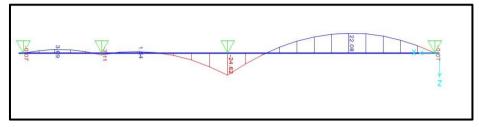
Tabla CACTIII Carga ac corvicio.		
Carga de servicio		
qi	5.744	Ton/m

Mayoración de cargas

$$q_u = 1.5 q_i$$
 Ec. 133

Tabla CXCIX. Carga última.

Carga Última		
Qu	8.616	Ton/m


Fuente: Almache, I., Sánchez, R., 2017

Se observa el momento máximo momento positivo y negativo en las tablas CXCII.

Tabla CC. Momentos máximos.

Momentos Máximos			
M _{max} (+)	22.08	Ton.m	
M _{max} (-)	24.62	Ton.m	

Momento último viga equivalente

Figura 6.7 Momento último viga equivalente **Fuente:** Almache, I., Sánchez, R.,2017

Cortante última viga equivalente

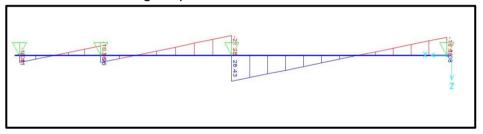


Figura 6.8 Cortante última viga Fuente: Almache, I., Sánchez, R.,2017

En la tabla CXCIII se observa el cortante último.

Tabla CCI. Cortante máximo.

Corte Máximo		
Vu	28.43	Ton

6.2.6 Cálculo de acero longitudinal superior en viga de cimentación

eje y

Tabla CCII. Valores de Ru.

Valores de Ru		
F´c (kg/cm2) Ru (kg/cm2)		
210	39.72	
240	45.39	
280	52.96	
300	56.74	
350	66.19	

Fuente: (Guerra, 2013)

Tabla CCIII. Diseño a flexión.

Diseño a flexión		
f'c (kg/cm2)	210	
Ø	0.9	
Ru	39.72	
b asumido (cm)	35	
d (cm)	44.359	
H(cm)	51.859	
H tomado (cm)	70	
d efectiva (cm)	62.5	

Tabla CCIV. Acero Longitudinal.

Acero Longitudinal			
Mu	24.62	T.m	
Ø	0.9	cm	
b	35	cm	
d	62.5	Kg/cm2	
fy	4200	Kg/cm2	
F'c	210	cm2	
As req	11.579	cm2	
W	0.106		
P _{requerida}	0.0053		
ρ _{min}	0.0028		
ρ min	0.0033	Rige	

ρ _{max}	0.025	
Comprobación p _{Min}	ok	
Comprobación ρ _{Max}	Ok	mm
Ø	22	cm2
Ab	3.801327111	cm2
n	3.046060178	
N	4	

Tabla CCV. Longitud de anclaje.

Longitud de Anclaje		
diámetro	22	cm
Ldh	37.07	cm
	15	cm
Ldh Adoptado	37.07	cm
Ldh req	40	cm

Fuente: Almache, I., Sánchez, R.,2017

Tabla CCVI. Diseño por cortante.

rabia CCVI. Diserio poi cortante.			
Diseño a Corte			
Vc max	30.432	kg/cm2	
Vu	28.43	Ton	
Ø	0.85		
b	35	cm	
d	62.5	cm	
vu max	15.290	Ton	
Se re	Se requiere refuerzo transversal		
Vcu	7.680		
Vs	7.610	kg/cm2	
Vs	16646.119	kg	
Vu	19583.669	kg	
Av/S	0.075	cm2/u de longitud	
diametro	10	mm	
Av/rama	0.785		
S	49.5412	cm	
Smax	15.625	cm	

Sadoptado	17.6 15.625	cm
S	15	cm
	Ø10c/15cm	

Tabla CCVII. Longitud de traslape.

Longitud Min de traslape			
d _b	22	mm	
ramas estribo	2		
K _{tr}	1.89		
N	4		
Сь	61		
	45.67	Rige	
L _d	728.71	mm	
	947.32		
L _d adoptado	1000	mm	

Fuente: Almache, I., Sánchez, R.,2017

Tabla CCVIII. Traslape de compresión.

Traslape de compresión				
L _{dc}	674.52	>	300	ok
L _{dc}	700	mm		

Fuente: Almache, I., Sánchez, R., 2017

6.2.7 Cálculo de acero longitudinal inferior en viga de cimentación eje y

Tabla CCIX. Diseño a flexión.

Diseño a flexión		
f'c (kg/cm2)	210	
Ø	0.9	
Ru	39.72	
b asumido (cm)	35	
d (cm)	42.009	

H(cm)	49.509
H tomado (cm)	70
d efectiva (cm)	62.5

Tabla CCX. Acero longitudinal.

Acero Longitudinal			
Mu	22.08	T.m	
Ø	0.9	cm	
b	35	cm	
d	62.5	Kg/cm2	
fy	4200	Kg/cm2	
F'c	210	cm2	
As req	10.384	cm2	
W	0.095		
Prequerida	0.0047		
ρ _{min}	0.0028		
ρ min	0.0033	Rige	
ρ _{max}	0.025		
Comprobación ρ _{Min}	ok		
Comprobación ρ _{Max}	Ok	mm	
Ø	22	cm2	
A _b	3.801	cm2	
n	2.732		
N	3		

Fuente: Almache, I., Sánchez, R.,2017

Tabla CCXI. Longitud de anclaje.

Longitud de Anclaje				
diámetro 22 cm				
L _{dh}	37.07	cm		
	15	cm		
L _{dh} Adoptado	37.07	cm		
L _{dh} req	40	cm		

Tabla CCXII. Longitud de traslape.

Longitud Min de traslape						
d _b	d _b 22 mm					
ramas estribo	2					
K _{tr}	2.51					
N	3					
Сь	61					
	45.66	Rige				
L _d	728.71	mm				
	947.32					
L _{d adoptado}	1000	mm				

Tabla CCXIII Traslape de compresión

Traslape de compresión					
L _{dc} 674.52 > 300 ok					
L _{dc}	700	mm			

Fuente: Almache, I., Sánchez, R., 2017

6.2.8 Cálculo de acero longitudinal zapata en viga cimentación eje y

Se calcula el ancho de la zapata mediante la ecuación 128 y la carga última mediante la ecuación 129

Tabla CCXIV. Ancho zapata.

Ancho de Zapata			
B 0.479842361			
B adoptado	1		
Wu	8.615569592		

Fuente: Almache, I., Sánchez, R., 2017

Momento último en la zapata

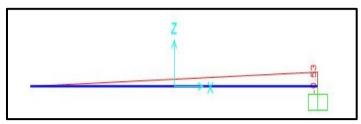


Figura 6.9 Momento último zapata Fuente: Almache, I., Sánchez, R.,2017

Tabla CCXV. Diseño a flexión.

Diseño a flexión		
f'c (kg/cm2)	210	
Ø	0.9	
Ru	39.72	
b asumido (cm)	100	
d (cm)	3.850	
H(cm)	11.350	
H tomado (cm)	25	
d efectiva (cm)	17.5	

Tabla CCXVI. Acero longitudinal.

Acero Longitudinal			
Mu	0.53	Ton.m	
Ø	0.9	cm	
b	100	cm	
d	17.5	Kg/cm2	
fy	4200	Kg/cm2	
F'c	210	cm2	
As req	0.890		
W	0.010		
Prequerida	0.0005		
ρ min	0.0028	Rige	
ρ min	0.0033		
Pmax	0.025		
Comprobación p _{Min}	se usa min		
Comprobación ρ _{Max}	Ok	mm	

Ø	10	cm2
Ab	0.785398163	
n	1.133479397	
N	2	

Tabla CCXVII. Longitud de anclaje.

Longitud de Anclaje			
diametro	12	cm	
Ldh	20.22052569	cm	
	9.6	cm	
	15		
		cm	
Ldh Adoptado	20.2205	cm	
Ldh req	25		

Fuente: Almache, I., Sánchez, R., 2017

Tabla CCXVIII. Longitud de traslape.

Longitud Min de traslape			
db	12	mm	
ramas estribo	2		
Ktr	-0.01120936		
N	3		
Cb	56		
	47.33333333	Rige	
Ld	397.4777622	mm	
	516.7210908		
Ld adoptado	600	mm	

Tabla CCXIX. Traslape de compresión.

Traslape de compresión				
Ldc 367.92 > 300 ok				
Ldc	400	mm		

Tabla CCXX. Diseño por cortante.

Diseño a Corte			
Vc max	30.43189117	kg/cm2	
Vu	3.03	Ton	
Ø	0.85		
b	39.72	cm	
d	15	cm	
vu max	5.983057876	Ton	
No se requiere estribos			

Fuente: Almache, I., Sánchez, R.,2017

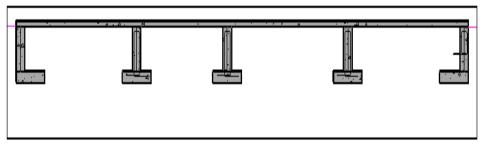

Por lo tanto, se armará con la máxima separación requerida

Tabla CCXXI. Separación requerida.

S	15	cm
	Ø10c/15cm	

6.3 Losa para cimentación

Con el fin de distribuir las cargas de manera equitativa y evitar asentamientos diferenciales, se plantea la construcción de una losa entre las vigas de cimentación conectando por medio de anclajes como se observa en la figura 6.6. Para el espesor de la losa se tomará el mínimo espesor con el acero mínimo debido a que estas placas no son estructuras que absorberán demandas, ya que las únicas que recibirán estas demandas son las v vigas de cimentación ya que fueron diseñadas con las cargas axiales máximas.

Figura 6.10 Losa sobre vigas de cimentación **Fuente:** Almache, I., Sánchez, R.,2017

Se adopta h=12cm una cuantía mínima de 0.0018

$$As = 0.0018(100)\left(\frac{12}{2}\right) = 1.08\frac{cm^2}{m}$$

Armadura para Losa

 $\emptyset 8 \, mm \, c / \, 250$

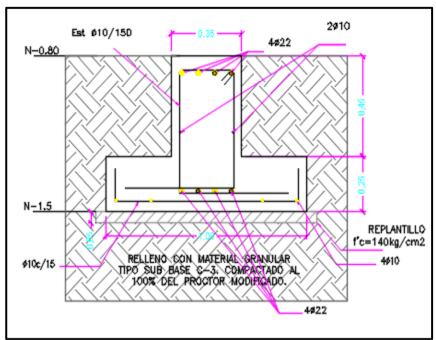
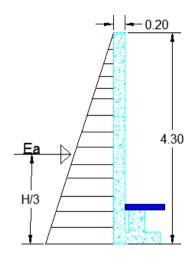



Figura 6.11 Esquema de la cimentación del edificio Fuente: Almache, I., Sánchez, R.,2017

6.4 Diseño de pantalla de hormigón

Debido al sótano se debe colocar una pantalla, teniendo en cuenta que, por la posición del edificio, los muros no estarán en si expuestos a empuje de tierra en su totalidad sin embargo es necesario la colocación de estas pantallas, se tomara como guía el libro de Braja Das capítulo 7 (4ta Edición de Cimentaciones).

Figura 6.12 Esquema de pantalla de hormigón **Fuente:** Almache, I., Sánchez, R.,2017

El material granular es fino y mediante la siguiente tabla se puede obtener el ángulo de fricción y coeficiente de fricción.

$$\mu = \frac{\emptyset}{3}$$
 Ec. 134

Tabla CCXXII. Ángulo de fricción de materiales granulares

0.0	g. a. railai e e									
Material Granular	Ø Ángulo de Fricción									
Grava	27-30									
Arena Gruesa	20-28									
Arena Fina	15-25									
Arcilla Firme	15-20									
Arcilla Limosa	12-16									

Fuente: Fuente: Braja M, Das,2001

Tabla CCXXIII. Características del suelo de la zona de empuje.

Datos	
Resistencia admisible del suelo (T/m2)	11.97
Peso volumétrico del terreno (T/m3)	1.68
Coeficiente de Fricción μ	9
Ángulo de fricción interna Ø	27

Se calcula Ka empuje activo tomando en cuenta que es un suelo netamente friccionante donde

$$K_a = \frac{1-\sin\phi}{1+\sin\phi}$$
 Ec. 135

$$K_a = 0.375$$

Cálculo de la fuerza Ea

$$E_a = \frac{1}{2} \gamma h^2 Ka$$
 Ec. 136

$$E_a = 5.16 \, T(\frac{c}{m})$$

Cálculo de Momento

$$Ma = \frac{1}{2}Ea\frac{h}{3}$$
 Ec. 137

$$Ma = 3.48 \, T. \, m(\frac{c}{m})$$

Debido a que el muro no estará en volado o en cantiléver se puede decir que el muro no tendrá volteo ni deslizamiento porque estará empotrado tanto en la parte de inferior como en la superior.

Chequeo del espesor de la pantalla de hormigón

$$V = 1.6 Ea = 1.6 * (5.16) = 8.25 Ton$$

$$d = \frac{V}{0.530\sqrt{f/c}L}$$
 Ec. 138

Se diseña para L=1m,Ø=0.75

$$d = \frac{8.25 * 1000}{0.53 * 0.75\sqrt{280} * 100}$$

$$d = 14.33cm$$

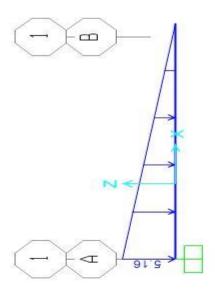

Como se observa con todos los datos asumidos se cumple los requerimientos para la estabilidad del muro y espesor.

Tabla CCXXIV. Dimensiones de la pantalla de hormigón.

Predimensionamiento	m
Espesor	0.20
Altura	4.05

Fuente: Almache, I., Sánchez, R., 2017

Cálculo del momento último

Figura 6.13 Modelo de pantalla de hormigón Sap2000 **Fuente:** Almache, I., Sánchez, R.,2017

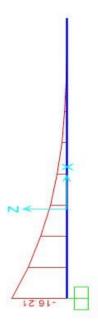


Figura 6.14 Momento en pantalla de hormigón Fuente: Almache, I., Sánchez, R.,2017

Tabla CCXXV. Características de la pantalla de hormigón.

Tabla COAXV. Caracteristicas de la p	antana ac nomingon.
F _{'c}	280 kg/cm2
F _y	4200 kg/cm2
Mu	18.24 t-m
Recubrimiento	7.5 cm
Longitud	1 m

Fuente: Almache, I., Sánchez, R.,2017

6.4.1 Armado de la pantalla de hormigón

Se calcula la cuantía de acero longitudinal que requiere la pantalla de hormigón

$$M_u = \emptyset h l f' c \rho (1 + 0.59 \rho \frac{f' c}{f y})$$
 Ec. 139

$$w = \frac{M_u}{\emptyset L d^2 f' c} = \frac{16.21 * 1000}{0.9 * 100 * 14.33^2 * 210}$$

$$w = 0.004$$

$$\rho = w \frac{f' c}{f y}$$

$$\rho = 0.002$$
Ec. 140

Se procede a verificar con la cuantía Mínima

$$\rho = 0.8 \frac{\sqrt{f'c}}{fy} \ge \frac{14}{fy}$$
 Ec. 141

$$\rho_{min} = 0.00333$$

Se procede con el cálculo de acero

$$A_s =
ho b d$$
 Ec. 142
$$A_s = 8.81 \, rac{c m^2}{m}$$

Donde se obtiene Ø14 mm c/15cm

Se calcula la cuantía de acero transversal que requiere la pantalla de hormigón

$$A_s = 0.0018Ld$$
 Ec. 143

$$A_s = 4.80 \frac{cm^2}{m}$$

Donde de obtiene Ø14 mm c/25cm

CAPÍTULO 7 PRESUPUESTO

7.1 Requerimientos para análisis de los APU

Para desarrollar esta sección es importante tener en cuenta la manera constructiva en la que se desarrolla el proyecto, mediante el Software Revit, se pudo plasmar el edificio en 3D para tener valores mucho más reales de cada uno de los materiales.

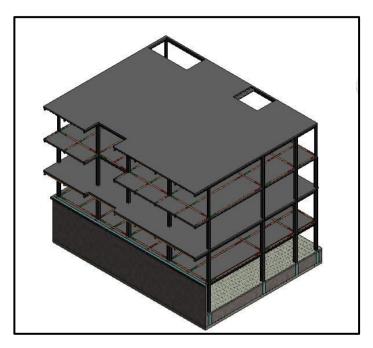


Figura 7.1 Modelo en Revit Fuente: Almache, I., Sánchez, R.,2017

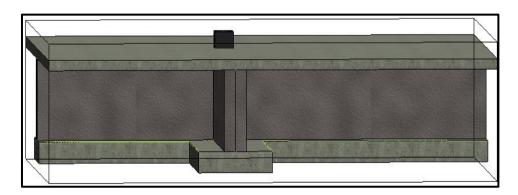


Figura 7.2 Cimentación Fuente: Almache, I., Sánchez, R.,2017

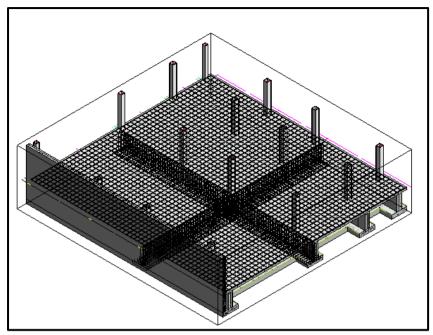


Figura 7.3 Losa de cimentación Fuente: Almache, I., Sánchez, R.,2017

Para el análisis del presupuesto es necesario tomar en cuenta que en esta sección solo tomaremos en cuenta las actividades para colocar el sistema estructural que ha sido diseñado en las secciones anteriores.

Lo vamos a dividir en secciones

- Preliminares
- Movimiento de tierra
- Cimentación y losa
- Pantalla
- Estructura Metálica
- Losa de hormigón incluido Steel deck

El factor de sobrecosto de indirectos y utilidades se lo ha tomado el 22%

7.2 Presupuesto edificio de acero estructural

El análisis de Precios unitarios se encuentra en los anexos, en la siguiente tabla se observa el presupuesto referencial de la obra estructural.

Tabla CCXXVI. Presupuesto de la edificación.

Presupuesto									
Proyecto	Construcción de un edificio de cuatro pisos de usos múltiples en la Provincia de Santo Domingo de los Tsachilas Cantón Santo Domingo								
Ubicación	Vía Chone km 1 entre Pedro Vicente Maldonado y Antonio Ante								

ITEM	DESCRIPCIO N	UNI D	CANT	PRECI O UNIT	PRECIO TOTAL						
1	Pre	1762.576									
1	Demolición	M2	186.516	4.05	755.390						
2	Replanteo y nivelacion para estructuras	M2	746.0640	0.7600	567.009						
3	Limpieza y desalojo	M2	186.5160	2.3600	440.178						
2	Movimie	ento de	e Tierra		4602.5175						
4	Excavación manual suelo natural H=0-2m	МЗ	152.2500	8.7600	1333.71						
5	Relleno con material de mejoramiento (compactador)	М3	152.2500	21.4700	3268.8075						
3	Cimenta	Cimentación Y Losa									

6	Hormigón S. f'c=140 kg/cm2 en replantillos	M3	12.2200	153.2	1872.104
7	Hormigón S. Premezclado f'c=210 kg/cm2 sin encofrado	M3	64.3600	231.67	14910.281
8	Acero de refuerzo f'y= 4200 kg/cm2 cimentación	KG	4,780.220	2.08	9942.8576
9	Acero de refuerzo f'y= 4200 kg/cm2 Losa	KG	1,188.540	1.9	2258.226
4	Р	antalla	ı		3953.8274
10	Hormigón S. f'c=210 kg/cm2 premezclado sin encofrado	M3	11.6100	236.98	2751.3378
11	Acero de refuerzo f'y= 4200 kg/cm2 Muro	KG	578.1200	2.08	1202.4896
5	Estruct	ura me	etálica		184598.68
12	Acero Estructural Vigas	KG	18694	3.41	63746.54
13	Acero Estructural Columnas	KG	24208.8	3.41	82552.008
14	Malla electrosoldada	M2	746.064	4.48	3342.3667
15	Hormigón S. Premezclado f'c=210 kg/cm2 losetas	M3	111.9	212.66	23796.654
16	Placa colaborante	M2	746.064	14.96	11161.117
				Total	223901.07

La edificación tendrá un costo de 223901.07 (Doscientos veinte y tres mil novecientos uno con 07/100). Estos precios no incluyen IVA.

CAPÍTULO 8 EVALUACIÓN DE IMPACTO AMBIENTAL

8.1 Antecedentes

En esta sección se describirá el Plan de manejo ambiental, el cual es requerido en todos los proyectos de ingeniería, que tengan afectaciones negativas y positivas para así tomar medidas de mitigación o preventivas a dicha actividad.

El análisis se lo realizara de acuerdo con la norma vigente en el país que se lo denomina TUSLA Texto Unificado de la Ley Secundaria Y Medio Ambiente con ello se garantiza el cumplimiento de procesos.

El Ambiente es el entorno que nos alimenta como seres humanos y a medida que se realizan procesos para cubrir necesidades, realizamos una alteración al ecosistema, por esa razón es importante tomar que impactos tendrá el proyecto al momento de su construcción.

Se analizará la afectación al ambiente sea animal, vegetal y a los humanos.

En este proyecto se analizará cada una de las actividades que se realizan en la construcción de manera general.

8.2 Objetivos

8.2.1 Objetivo general

Evaluar los impactos ambientales más perjudiciales al entorno que se pueden desarrollar en el proyecto en el proceso constructivo, causas, consecuencias y mitigación.

8.2.2 Objetivos específicos

- Clasificar las actividades a realizar de acuerdo con el impacto que genera al entorno para conocer cuál es el impacto más negativo.
- 2. Aplicar los criterios de las normas vigentes en el país.
- 3. Analizar los impactos por medio de la matriz Vía.

8.3 Descripción de la zona

La zona donde se encuentra el proyecto es netamente comercial quedando así en el centro de la ciudad de Santo Domingo, donde se limita al lado derecho con un hotel y al lado izquierdo con una edificación, para más detalles leer capítulos 1 y 2.

8.4 Leyes vigentes

El análisis se los realiza en base a las normas vigentes en el país

Libro VI: De la Calidad del agua, donde se analiza por anexos para los
recursos agua, suelo, aire ruido, calidad de ambiente para el manejo,
disposición final de desechos no peligrosos, lista de productos químicos
prohibidos de uso severamente restringidos en Ecuador

8.5 Área de trabajo

El sitio de construcción es en la parroquia de Santo Domingo cantón Santo Domingo Provincia Santo Domingo de los Tsáchilas, la zona es conocida como "zona comercial de Santo Domingo" por ende no existe agua de escorrentía ya que hay cunetas que lo llevan al alcantarillado, el nivel freático fue encontrado a los 11.80 metros, donde luego de unas horas subió a 6.40m, estos datos fueron obtenidos gracias a los ensayos in situ SPT. Por ello se realizará una cimentación con una altura de desplanté de 2.5 m donde no llegaremos al nivel de agua, no existe fauna ni flora por ser zona céntrica, el suelo son depósitos de arcillas y rellenos inorgánicos, además ya existen construcciones en el sitio por lo tanto no será alterado, en cuanto al ruido, este será uno de los factores más críticos ya que afectará a las vecindades en el proceso de construcción.

8.6 Actividades del proceso constructivo

- Demolición de construcción existente
- Movimiento de tierras
- Hormigonado
- Encofrado y Acero de refuerzo
- Soldadura (Elementos Metálicos)
- Acabados (Mampostería)
- Generación de desechos sólidos
- Generación de aguas residuales

8.7 Actividades del proceso constructivo

- Demolición de construcción existente
- Movimiento de tierras
- Hormigonado
- Encofrado y Acero de refuerzo
- Soldadura (Elementos Metálicos)
- Acabados (Mampostería)
- Generación de desechos sólidos
- Generación de aguas residuales

8.8 Matrices

Se califica la de acuerdo al factor estos son:

- Intensidad
- Extensión
- Duración
- Tipo de impacto
- Magnitud
- Reversa
- Riesgo

8.8.1 Matriz de intensidad

Los valores de evaluación para esta matriz son Alto (10), Bajo (1), Sin impacto (0).

Tabla CCXXVII. Matriz de intensidad.

Intensidad												
Actividad	Biolo	ogía	Ai	re		Agua		suelo	Aspecto			
	Fauna	Flora	Ruido	Polvo	Subterránea	superficial	características		Social Económico			
Demolición	1	1	10	10	1	1	1	1	10			
Movimiento de Tierras	1	1	10	10	1	1	1	10	1			
Encofrado Y Acero de Refuerzo	1	1	1	1	1	1	1	1	1			
Soldadura	1	1	1	1	1	1	1	1	1			
Acabados	1	1	1	1	1	1	1	1	1			
Generación De Desechos Sólidos	1	1	1	1	1	1	1	1	1			
Generación De Aguas Residuales	1	1	1	1	1	1	1	1	1			

8.8.2 Matriz de extensión

Los valores de evaluación para esta matriz son Regional (10), Local (1), Puntual (1).

Tabla CCXXVIII. Matriz de extensión.

	Extensión											
Actividad	Biolo	ogía	Ai	re		Agua		suelo	Aspecto			
	Fauna	Flora	Ruido	Polvo	Subterránea	superficial	características		Social Económico			
Demolición	1	1	5	5	1	1	1	1	10			
Movimiento de Tierras	1	1	5	5	1	1	1	10	1			
Encofrado Y Acero de Refuerzo	1	1	1	1	1	1	1	1	1			
Soldadura	1	1	1	1	1	1	1	1	1			
Acabados	1	1	1	1	1	1	1	1	1			
Generación De Desechos Sólidos	1	1	1	1	1	1	1	1	1			
Generación De Aguas Residuales	1	1	1	1	1	1	1	1	1			

8.8.3 Matriz de duración

Los valores de evaluación para esta matriz son Mas de 10 años (10), entre 5 y 9 años (5), entre 5 y 1 año (3), Menos de un año (1).

Tabla CCXXIX. Matriz de duración.

	Duración												
Actividad	Biolo	ogía	Aire		Agua				Aspecto				
	Fauna	Flora	Ruido	Polvo	Subterránea	superficial	características		Social Económico				
Demolición	1	1	1	1	1	1	1	1	1				
Movimiento de Tierras	1	1	1	1	1	1	1	1	1				
Encofrado Y Acero de Refuerzo	1	1	1	1	1	1	1	1	1				
Soldadura	1	1	1	1	1	1	1	1	1				
Acabados	1	1	1	1	1	1	1	1	1				
Generación De Desechos Sólidos	1	1	1	1	1	1	1	1	1				
Generación De Aguas Residuales	1	1	1	1	1	1	1	1	1				

8.8.4 Matriz signo

Los valores de evaluación para esta matriz son Positivo (1), Negativo (-1), Sin impacto (0).

Tabla CCXXX. Matriz signo.

Matriz signo											
Actividad	Biolo	ogía	Aire			Agua		suelo	Aspecto		
	Fauna	Flora	Ruido	Polvo	Subterránea	superficial	características		Social Económico		
Demolición	1	1	-1	-1	1	1	1	1	1		
Movimiento de Tierras	1	1	-1	-1	1	1	1	1	1		
Encofrado Y Acero de Refuerzo	1	1	-1	-1	1	1	1	1	1		
Soldadura	1	1	-1	-1	1	1	1	1	1		
Acabados	1	1	-1	-1	1	1	1	1	1		
Generación De Desechos Sólidos	1	1	-1	-1	1	1	1	1	1		
Generación De Aguas Residuales	1	1	-1	-1	1	1	1	1	1		

8.8.5 Matriz de magnitud

Se escogió unos factores para intensidad de 0.4, extensión 0.3 y duración de 0.3, donde la matriz de magnitud se define como Mg= (Intensidad*Factor intensidad) + (Extensión* Factor Extensión) + (Duración* Factor Duración)

Tabla CCXXXI. Matriz de magnitud.

	Magnitud											
Actividad	Biolo	ogía	Ai	re	Agua				Aspecto			
	Fauna	Flora	Ruido	Polvo	Subterránea	superficial	características		Social Económico			
Demolición	1	1	-5.8	-5.8	1	1	1	1	7.3			
Movimiento de Tierras	1	1	-5.8	-5.8	1	1	1	7.3	1			
Encofrado Y Acero de Refuerzo	1	1	-1	-1	1	1	1	1	1			
Soldadura	1	1	-1	-1	1	1	1	1	1			
Acabados	1	1	-1	-1	1	1	1	1	1			
Generación De Desechos Sólidos	1	1	-1	-1	1	1	1	1	1			
Generación De Aguas Residuales	1	1	-1	-1	1	1	1	1	1			

8.8.6 Matriz reversa

Los valores de evaluación para esta matriz son No reversibles (10), Largo tiempo (8), corto tiempo (5), Reversible (1).

Tabla CCXXXII. Matriz reversa.

					Reversa				
Actividad	Biolo	ogía	Ai	re		suelo	Aspecto		
	Fauna	Flora	Flora Ruido Polvo Subterránea superficial caracte		características		Social Económico		
Demolición	1	1	5	5	1	1	1	5	1
Movimiento de Tierras	1	1	5	5	1	1	1	5	1
Encofrado Y Acero de Refuerzo	1	1	5	5	1	1	1	1	1
Soldadura	1	1	5	5	1	1	1	1	1
Acabados	1	1	5	5	1	1	1	1	1
Generación De Desechos Sólidos	1	1	5	5	1	1	1	5	1
Generación De Aguas Residuales	1	1	1	1	1	1	1	5	1

8.8.7 Matriz de riesgo

Los valores de evaluación para esta matriz son Alto (10), Medio (5), Bajo (1).

Tabla CCXXXIII. Matriz de riesgo.

					Matriz de rie	sgo			
Actividad	Biolo	ogía	Ai	re		Agua		suelo	Aspecto
	Fauna	Flora	Ruido	Polvo	Subterránea	superficial	características		Social Económico
Demolición	1	1	10	10	1	1	5	5	1
Movimiento de Tierras	1	1	10	10	1	1	5	5	1
Encofrado Y Acero de Refuerzo	1	1	5	5	1	1	5	5	1
Soldadura	1	1	5	5	1	1	5	5	1
Acabados	1	1	5	5	1	1	5	5	1
Generación De Desechos Sólidos	1	1	10	10	1	1	5	5	1
Generación De Aguas Residuales	1	1	10	10	1	1	5	5	1

8.8.8 Matriz VIA

Los factores para cada matriz son: Magnitud 0.4, Riesgo 0.4, Reversa 0.2

$$V.I.A = |MG^{Fmg}| * |RK^{Frk}| * |RV^{Frv}|$$

Ec. 144

Tabla CCXXXIV. Matriz VIA.

					abia CCAAAI					
				V.I.A	 (Valor al Imp 	acto Ambier	ntal)			
Actividad	Biolo	ogía	Ai	re		Agua	•	suelo	Σ	
	Fauna	Flora	Ruido	Polvo	Subterránea	superficial	características		Social Económico	
Demolición	1.00	1.00	6.53	6.53	1.00	1.00	1.62	2.63	2.21	23.53
Movimiento	1.00	1.00	6.53	6.53	1.00	1.00	1.62	5.82	1.00	25.50
de Tierras Encofrado Y	1.00	1.00	2.63	2.63	1.00	1.00	1.62	1.62	1.00	13.49
Acero de Refuerzo										
Soldadura	1.00	1.00	2.63	2.63	1.00	1.00	1.62	1.62	1.00	13.49
Acabados	1.00	1.00	2.63	2.63	1.00	1.00	1.62	1.62	1.00	13.49
Generación De	1.00	1.00	3.23	3.23	1.00	1.00	1.62	2.63	1.00	15.71
Desechos Sólidos										
Generación De Aguas Residuales	1.00	1.00	2.00	2.00	1.00	1.00	1.62	2.63	1.00	13.24
Σ	7.00	7.00	26.17	26.17	7.00	7.00	11.34	18.56	8.21	

8.8.9 Matriz VIA promedio

Para ello se califica de la siguiente manera siendo (0) Neutro, (1-4) Bajo, (4-7) Medio y de (7-10) Alto.

Tabla CCXXXV. Matriz VIA promedio.

					alor al Impacto						
Actividad	Biolo	ogía	Α	ire	•	Agua	Agua suel A				
	Faun	Flor	Ruid	Polvo	Subterráne	superficia	característica	0	Social		
	а	а	0		а	I	S		Económic		
									0		
Demolición	1.00	1.00	6.53	6.53	1.00	1.00	1.62	2.63	2.21	2.61	
Movimiento	1.00	1.00	6.53	6.53	1.00	1.00	1.62	5.82	1.00	2.83	
de Tierras											
Encofrado Y	1.00	1.00	2.63	2.63	1.00	1.00	1.62	1.62	1.00	1.50	
Acero de											
Refuerzo											
Soldadura	1.00	1.00	2.63	2.63	1.00	1.00	1.62	1.62	1.00	1.50	
Acabados	1.00	1.00	2.63	2.63	1.00	1.00	1.62	1.62	1.00	1.50	
Generación	1.00	1.00	3.23	3.23	1.00	1.00	1.62	2.63	1.00	1.75	
De											
Desechos											
Sólidos											
Generación	1.00	1.00	2.00	2.00	1.00	1.00	1.62	2.63	1.00	1.47	
De Aguas											
Residuales											
	1.00	1.00	3.74	3.74	1.00	1.00	1.62	2.65	1.17		

8.9 Análisis de impactos generados

Tabla CCXXXVI. Mayores impactos generados.

Tailord Corner II III May 5. 55 milp do 155 gon or a do 5									
Recurso	Polvo	26.17							
Recurso	Ruido	26.17							
Actividad	Movimiento De Tierras	25.50							

Fuente: Almache, I., Sánchez, R., 2017

Con ello se observa que el impacto más grande que se genera es por movimiento de tierras, la generación de polvo y ruido a las vecindades por el desarrollo de la construcción con la matriz VÍA sumatoria.

Y de manera general con el promedio se puede determinar que todas las actividades son de nivel bajo.

8.10 Mitigación

En el proceso constructivo se debe aplicar cada una de las normas de seguridad y señalización dentro de la obra, para cuartelar la vida de las personas dentro de la obra y fuera debido a que es una zona donde hay abundantes personas.

8.10.1 Residente de obra

Verificar que se cumplan las reglas de seguridad además que usen el EPP (Equipos de protección personal).

8.10.2 Personal de obra

- Usar los EPP equipo de protección personal
- Colocación de guantes, mascarillas
- Uso de línea de vía en las alturas

8.10.3 Zona de trabajo

Colocar las señales de seguridad dentro de la obra y fuera de los mismos conos, señaléticas verticales, pintura, etc. Tener cuidado con las edificaciones que se encuentran a los lados además es una zona donde pasan muchas personas externas a la obra.

8.10.4 Actividades de construcción

Demolición

Despejar la zona colocar señales verticales de maquinaria pesada y ruidos para precauciones de personas vecinales.

Movimiento de tierra

Realizar la excavación con la maquinaria teniendo en cuenta que se debe cerrar el paso a personas extrañas además que se usen los equipos de seguridad.

Mojar un poco la superficie antes de hacerlo la actividad para evitar la generación excesiva de polvo, el material que se ha retirarlo colocarlo en zonas de lejanas.

Chequeo de la maquinaria que no sea muy antigua debido a la generación de gases.

Armado y encofrado

Esta actividad se la realiza con obreros recordar que el encofrado se puede usar hasta 2 veces para evitar mayor generación de los desechos y el acero de refuerzo sobrante se lo puede mandar a la chatarra para que pueda ser reusable.

Hormigonado

Tener mucho cuidado con el agua cuando se lava los contenedores de concreto se puede realizar u pequeño filtro antes de enviarla al alcantarillado, no enviar aguas contaminadas a causes públicos.

La maquinaria pesada y en caso de hacer hormigón con concretara esta debe estar en buenas condiciones para evitar la generación de gases.

Mampostería

Realizar una clasificación de materiales ya que pueden existir muchos y así volver a reusarlos.

Generación de residuos

No contaminar el suelo

No quemarla ya que se generaría una emisión de gases al aire y como está ubicada en una zona céntrica podría perjudicar la salud de las personas vecinas al sitio.

Realizar un reciclaje dentro de la obra con fin que se usen los materiales que podrían se reusables

Generación de Aguas residuales

No verterlas aguas directamente a sistema de alcantarillado o caudales públicos ya que estas aguas pueden contener productos químicos como aditivos.

Se puede realizar un filtro casero que con el agua del afluente se pueda usar en alguna otra actividad.

Colocación de Baños químicos

CAPÍTULO 9 CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

Se realizó el ensayo in situ SPT con lo cual de determinó que el estrato más resistente se encuentra a una profundidad de 2 a 4 metros medidos desde el nivel actual del terreno, por lo que se determinó que el estrato resistente tiene una capacidad admisible de 7.62 T/m2. Dado que la capacidad admisible del suelo es baja se procedió a realizar el mejoramiento de suelo usando Relleno de material granular, que permite aumentar la capacidad de carga a 11.97 T/m2 con un F.S=3.5.

Se diseñó la sub-estructura que se encuentra compuesta por vigas de cimentación en dos direcciones y losas con la finalidad de evitar asentamientos diferenciales, ya que las descargas de en cada columna son diferentes debido a las distancias entre pórticos, además los estratos por debajo de los 5 metros de profundidad son muy blandos, además para garantizar que es esfuerzo de contacto sea menor a la capacidad admisible del suelo de opto por agregar la zapata ya que se requiere que la distribución de esfuerzos sea uniforme.

Se plantearon 3 alternativas de diseño que consiste en Pórticos de Concreto Resistente a Momento, estructura mixta compuesta de PCRM - Steel deck y Pórticos de Acero Resistentes a Momentos. Debido a que el suelo tiene una capacidad portante baja se procedió a escoger la estructura de PARM ya que

esta es muchas más liviana y su tiempo de construcción es mucho menor comparado con los PCRM.

Se diseño la super-estructura de PARM que está compuesta por perfiles IPE y columnas tubulares cuadradas tomando en cuenta los criterios sismorresistentes de la norma AISC 360-10 y la NEC 2015 capitulo Estructuras de acero, con lo que se garantizó en cumplimento de derivas, efectos de segundo orden, relación capacidad/demanda tanto de las vigas secundarias, vigas principales y columnas, además de que la estructura sea económica y segura.

Se estimó un presupuesto referencial de la estructura diseñada, por lo que se realizó el análisis de precios unitarios de rubros estructurales y mediante el sistema BIM se obtuvieron las cantidades de materiales requeridas para la construcción de la obra, dando un costo aproximado de \$223901.07

Se determinó que la mayor afectación en el ámbito ambiental son las actividades que incluyen demolición y movimiento de tierra generando ruido y polvo, que afectará a la población cercana al área de construcción, por lo que estas actividades deben de tener un plan de mitigación para minimizar el impacto generado a corto y largo plazo.


RECOMENDACIONES

Utilizar un material de mejoramiento de mayor calidad al existente en el terreno con el fin aumentar la capacidad de soporte del suelo para evitar sub-estructuras de mayores secciones y evitar grandes asentamientos.

Al momento de realizar los ensayos de campo (SPT) y laboratorio es necesario verificar el número de sondeos y profundidad de acuerdo con el tipo de estructura, además de tener en cuenta cada una de las normas aplicadas para evitar datos aberrantes para la caracterización del suelo.

Se debe verificar el criterio de columna fuerte - viga débil en las conexiones columnas - vigas dado a que este criterio rige en el predimensionamiento de las columnas ya que se requiere que las articulaciones plásticas se formen en las vigas, por lo que se puede obtener una relación demanda/capacidad baja, y esto incrementaría el costo y peso de la estructura.

Al momento de elaborar el análisis de precio unitario de cada rubro se recomienda consultar los costos de mano de obra, materiales y equipos en la zona donde se va a realizar la obra.

ANEXO A RESULTADOS GENERALES DE PRUEBA SPT

Tabla A-1. Datos de perforación 1

PERFORACIÓN #1													
СОТА	COTA 17S		702	2756 I	Ē	997	7179	5 N	Nivel del terreno 1.80 m de bajo de nivel de acera				
Profundidad	Clasificación	Qu	Hum.	LL	LP	Granulometría % Penetra							
(m)	sucs	Adm Kg/cm2	NAT.	%	%	4	10	40	200	5	de acera Penetració Estándar 10 1 1 3 3 1	15	
-1.00	MH	0.5	51	57	23	100	100	99	75	1	1	2	
-2.00	MH	0.3	55	59	24	100	100	99	71	1	1	1	
3.00	MH	0.82	97	107	53	100	100	100	94	2	3	3	
-4.00	MH	0.82	94	110	52	100	100	100	94	4	3	3	
-5.00	CH	0.3	79	104	64	100	100	100	94	3	1	1	
-6.00	CH	0.3	114	108	69	100	100	100	97	2	1	1	
-7.00	СН	0.5	68	111	44	96	94	92	85	1	1	2	
-8.00	СН	0.5	63	111	68	100	100	99	84	2	2	1	
-9.00	CH	0.2	81	102	62	100	100	99	92	1	0	1	
-10.00	СН	0.3	92	100	65	100	100	99	90	1	1	1	
-11.00	MH	0.3	99	103	38	100	100	100	91	1	1	1	
-12.00	MH	0.3	128	99	46	90	86	83	77	1	1	1	

Tabla A-2. Datos de perforación 2

PERFORACIÓN #2													
СОТА	178	COORD.	702756 E			9971795 N				Nivel del terreno 1.80 m de bajo de nivel de acera			
Drofundidad	Clasificación	Qu	Hum.	LL	LP	Granulometría pasa			a % que	que Penetración Estándar		_	
Profundidad SUC	sucs	Adm Kg/cm2	NAT.	NAT. %		4	10	40	200	5	10	15	
-1.00	MH	0.5	44	54	22	100	100	100	85	1	1	2	
-2.00	MH	0.3	94	53	20	100	100	99	83	1	1	1	
-3.00	MH	0.76	96	83	36	100	100	100	95	22	3	2	
-4.00	MH	0.82	73	85	39	100	100	100	97	4	3	3	
-5.00	CH	0.5	95	70	39	100	100	100	96	1	1	2	
-6.00	CH	0.5	95	74	43	100	100	100	96	2	2	1	
-7.00	CH	0.5	64	77	43	100	100	100	94	2	2	1	
-8.00	CH	0.5	81	73	42	100	99	99	87	2	2	1	
-9.00	MH	0.3	93	89	36	100	100	100	93	1	1	1	
-10.00	OH	0.3	114	90	37	100	100	99	92	1	1	1	

La estratigrafía se muestra en la sección 3 apartado 3.3 descripción estratigráfica.

ENSAYOS 1ER SONDEO POR CADA METRO DE PERFORACIÓN

Tabla A-3. 1 metro de profundidad

Profundidad	-1.00	Cota	558	Coordenadas	702756 E	9971795 N		
Nombre del Ensayo	Golpes	W.Hum	W.seco	W.caps	W%	Resultado		
Contenido de Agua		105.49	80.39	31.39	51.22	50.86		
Contenido de Agua		105.7	80.86	31.67	50.5	30.80		
	36	36.03	27.55	11.72	53.57			
Límite	26	37.43	29.55	15.88	57.64	59.6825		
Líquido	15	37.7	29.23	15.51	61.73	33.0023		
	9	37.26	28.53	15.26	65.79			
Límite		11.77	10.39	6.42	34.76			
Plástico		12.1	10.53	5.96	34.35	34.24		
1 lastico		12.51	10.88	6.03	33.61			
		Gran	ulometría	1				
Suelos Finos Norma AASHTO 11-78-VÍA HÚMEDA								
Tamiz	Peso Ret.	Ret.Acum		%Ret	%	Pasa		
11/2"								
1"								
3/4"								
1/2"								
3/8"								
No.4	0	0		0	100			
Pasa No.4								
Total								
No.10	0	0		0	1	100		
No.40	1	1		1		99		
No.200	41	42		25		75		
Pasa No.200	123.7	123.7		75				
Total	165.7							
Peso Hum.	2.	50	Pe	so Seco	10	65.7		
		Clasif	icación (%	5)				
Grava	0	LL	57	Tipo) 	Material		
Arena	25	LP	34	SUCS	МН	Importado		
Finos	75	IP	23	AASHTO	A-7-5	de Relleno		
		HN	51	IG(76)	19	mal confinado		

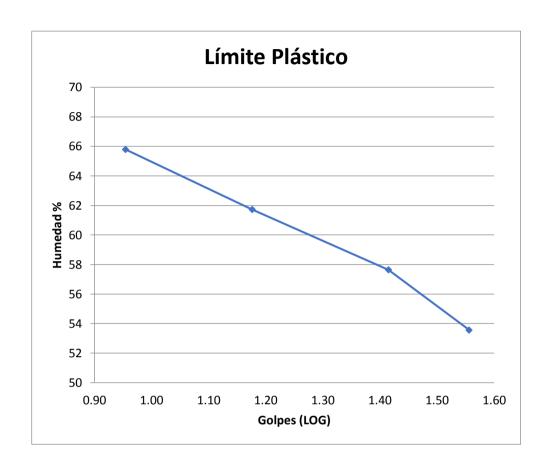


Figura A-1 Limite plástico 1 metro de profundidad

Tabla A-4. 2 metros de profundidad

Profundidad	-2.00	Cota	557	Coordenadas	702756 E	9971795 N		
Nombre del Ensayo	Golpes	W.Hum	W.seco	W.caps	W%	Resultado		
Contenido de Agua		105.34	79.2	31.6	54.92	54.69		
Contenido de Agua		105.77	79.56	31.43	54.46	34.09		
	37	31.26	25.19	14.26	55.54			
Límite	25	31.38	25.02	14.32	59.44	61.533		
Líquido	15	31.42	24.77	14.28	63.39	01.333		
	9	31.27	24.46	14.41	67.76			
Límito		12.66	10.99	6.36	36.07			
Límite Plástico		12.48	10.88	6.28	34.78	35.387		
Flastico		12.51	10.9	6.34	35.31			
		Gran	ulometría	1				
Suelos Finos Norma AASHTO 11-78-VÍA HÚMEDA								
Tamiz	Peso Ret.	Ret.Acum		%Ret	%	Pasa		
11/2"								
1"								
3/4"								
1/2"								
3/8''								
No.4	0	0		0	1	100		
Pasa No.4								
Total								
No.10	0	0		0	1	100		
No.40	1.7	1.7		1		99		
No.200	44.9	46.6		29		71		
Pasa No.200	115	115		71				
Total	161.6							
Peso Hum.	2.	50	Pe	so Seco	10	61.6		
		Clasif	icación (%	5)				
Grava	0	LL	59	Tipo		Material		
Arena	29	LP	35	SUCS	МН	Importado		
Finos	71	IP	24	AASHTO	A-7-5	de		
		HN	55	IG(76)	19	Relleno mal confinado		

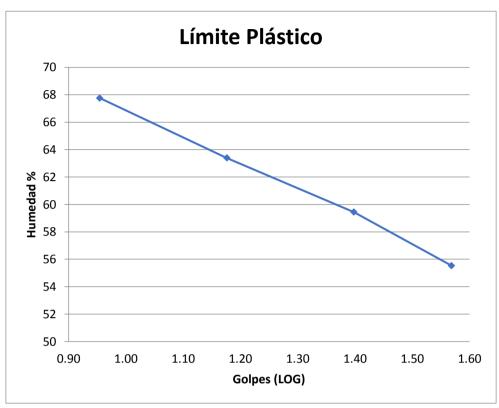


Figura A-2 Limite plástico 2 metros de profundidad

Tabla A-5. 3 metros de profundidad

Profundidad	-3.00	Cota	556	Coordenadas	702756 E	9971795 N		
Nombre del Ensayo	Golpes	W.Hum	W.seco	W.caps	W%	Resultado		
Contenido de Agua		105.48	69.1	31.6	97.01	97.17		
Contenido de Agua		105.77	68.99	31.2	97.33	97.17		
	36	34.26	24.28	14.62	103.32			
Límite	26	34.23	24.06	14.58	107.28	109.323		
Líquido	16	34.55	23.98	14.48	111.26	109.323		
	9	34.57	23.72	14.32	115.43			
Límita		12.62	10.72	7.23	54.44			
Límite Plástico		12.35	10.6	7.32	53.35	53.870		
Flastico		12.44	10.68	7.41	53.82			
		Granu	lometría					
Suelos Finos Norma AASHTO 11-78-VÍA HÚMEDA								
Tamiz	Peso Ret.	Ret.Acum		%Ret	% l	Pasa		
11/2"								
1"								
3/4''								
1/2"								
3/8''								
No.4	0	0		0	100			
Pasa No.4								
Total								
No.10	0	0		0	1	.00		
No.40	0.5	0.5		0	1	.00		
No.200	7.5	8		6	(94		
Pasa No.200	118.8	118.8		94				
Total	126.8							
Peso Hum.	2.	50	Pe	eso Seco	12	26.8		
		Clasific	ación (%)					
Grava	0	LL	107		Tipo			
Arena	6	LP	54	SUCS	N	ЛΗ		
Finos	94	IP	53	AASHTO	A-	-7-5		
		HN	97	IG(76)		65		

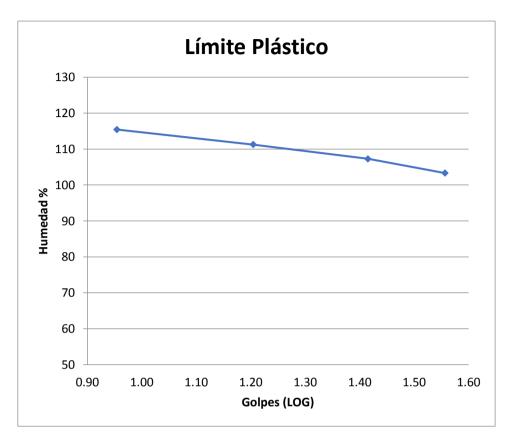


Figura A-3 Limite plástico 3 metros de profundidad

Tabla A-6. 4 metros de profundidad

	i abia i	T O. TINCE	100 ac p	roiundidad					
Profundidad	-4.00	Cota	555	Coordenadas	702756 E	9971795 N			
Nombre del Ensayo	Golpes	W.Hum	W.seco	W.caps	W%	Resultado			
Contenido de Agua		105.22	68.99	31.38	96.33	94.425			
Contenido de Agua		105.5	69.73	31.07	92.52	34.423			
	37	36.03	25.37	15.32	106.07				
Límite	26	35.48	25.07	15.63	110.28	112.258			
Líquido	15	31.42	20.81	11.54	114.46	112.236			
	9	31.26	20.62	11.62	118.22				
Límite		10.45	8.9	6.24	58.27				
Plástico		10.78	9.13	6.25	57.29	57.680			
ridstico		10.69	9	6.06	57.48				
Granulometría									
Suelos Finos Norma AASHTO 11-78-VÍA HÚMEDA									
Tamiz	Peso Ret.	Ret.Acum		%Ret	%	Pasa			
11/2"									
1"									
3/4''									
1/2"									
3/8"									
No.4	0	0		0	100				
Pasa No.4									
Total									
No.10	0	0		0	1	.00			
No.40	0.3	0.3		0	1	.00			
No.200	7.3	7.6		6		94			
Pasa No.200	121	121		94					
Total	128.6								
Peso Hum.	2.	50	Pe	eso Seco	12	28.6			
	1	Clasific	ación (%))					
Grava	0	LL	110		Tipo				
Arena	6	LP	58	SUCS	N	ЛΗ			
Finos	94	IP	52	AASHTO	A-	-7-5			
		HN	94	IG(76)		66			

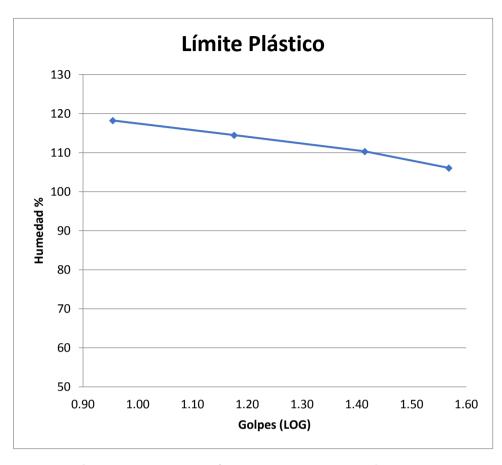


Figura A-4 Limite plástico 4 metros de profundidad

Tabla A-7. 5 metros de profundidad

	F 00				702	0074-0-::				
Profundidad	-5.00	Cota	554	Coordenadas	702756 E	9971795 N				
Nombre del Ensayo	Golpes	W.Hum	W.seco	W.caps	W%	Resultado				
Contonido do Agua		105.57	72.51	31.68	80.97	70.225				
Contenido de Agua		105.27	73.04	31.55	77.68	79.325				
	37	29.63	21.9	14.21	100.52					
Límite	24	29.58	21.8	14.36	104.57	106.775				
Líquido	15	29.42	21.59	14.38	108.6	100.775				
	9	29.38	21.6	14.74	113.41					
16		11.23	9.88	6.53	40.3					
Límite Plástico		11.25	9.92	6.45	38.33	39.830				
Flastico		11.31	9.88	6.38	40.86					
	Granulometría									
Suelos Finos Norma AASHTO 11-78-VÍA HÚMEDA										
Tamiz	Peso Ret.	Ret.Acum		%Ret	% I	Pasa				
11/2"										
1"										
3/4''										
1/2"										
3/8"										
No.4	0	0		0	100					
Pasa No.4										
Total										
No.10	0	0		0	1	00				
No.40	0.4	0.4		0	1	00				
No.200	7.9	8.3		6	Ç	94				
Pasa No.200	131.1	131.1		94						
Total	139.4									
Peso Hum.	2!	50	Pe	so Seco	13	39.4				
		Clasif	icación (%)						
•	0	LL	104		Tipo					
Arena	6	LP	40	SUCS	СН					
Finos	94	IP	64	AASHTO	A-	7-5				
		HN	79	IG(76)	-	73				

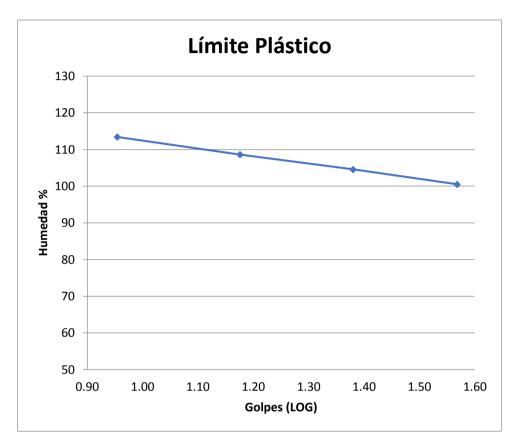


Figura A-5 Limite plástico 5 metros de profundidad

Tabla A-8. 6 metros de profundidad

-	I	1		1	1	ı
Profundidad	-6.00	Cota	553	Coordenadas	702756 E	9971795 N
Nombre del Ensayo	Golpes	W.Hum	W.seco	W.caps	W%	Resultado
Contonido do Agua		105.41	65.94	31.1	113.29	112 575
Contenido de Agua		105.3	66.12	31.71	113.86	113.575
	38	27.2	19.03	11.2	104.34	
Límite	26	27.32	19	11.35	108.76	110.593
Líquido	15	27.15	18.93	11.62	112.45	110.595
	9	27.65	18.9	11.41	116.82	
17		11.83	10.2	6.21	40.85	
Límite Plástico		11.6	10.12	6.33	39.05	39.157
Plastico		11.54	10.12	6.34	37.57	
		Gran	ulometría			
	Suelos Find	os Norma A	ASHTO 11	-78-VÍA HÚMEI	DA .	
Tamiz	Peso Ret.	Ret.Acum		%Ret	% I	Pasa
11/2"						
1"						
3/4"						
1/2"						
3/8''						
No.4	0	0		0	100	
Pasa No.4						
Total						
No.10	0	0		0	1	00
No.40	0.2	0.2		0	1	00
No.200	3.6	3.8		3	g	97
Pasa No.200	113.3	113.3		97		
Total	117.1					
Peso Hum.	2.	50	Pe	so Seco	11	L 7.1
		Clasif	icación (%)		
Grava	0	LL	108		Tipo	
Arena	3	LP	39	SUCS	(CH
Finos	97	IP	69	AASHTO	A-	·7-5
		HN	114	IG(76)		32

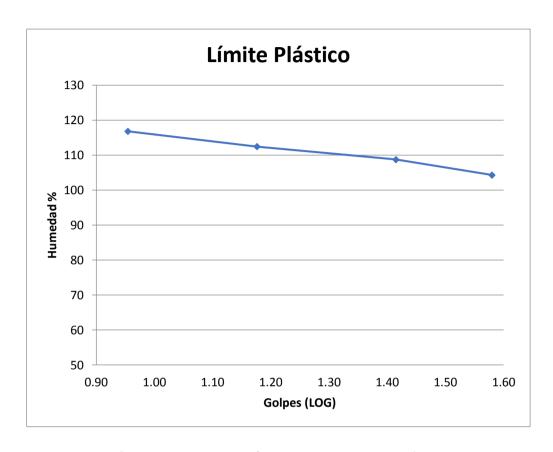


Figura A-6 Limite plástico 6 metros de profundidad

Tabla A-9. 7 metros de profundidad

Profundidad	-7.00	Cota	552	Coordenadas	702756 E	9971795 N			
Nombre del Ensayo	Golpes	W.Hum	W.seco	W.caps	W%	Resultado			
Contenido de Agua		105.55	75.5	30.81	67.24	67.84			
Contenido de Agua		105.46	75.19	30.96	68.44	07.64			
	37	37.1	26.02	15.64	106.74				
Límite	26	37.12	25.85	15.77	111.81	113.453			
Líquido	15	33.53	23.88	15.54	115.71	115.455			
	10	33.26	23.66	15.63	119.55				
17		11.48	9.82	5.98	43.23				
Límite Plástico		10.08	8.85	6.03	43.62	43.237			
Flastico		10.29	8.97	5.89	42.86				
Granulometría									
	Suelos Find	os Norma A	ASHTO 11	-78-VÍA HÚMEI)A				
Tamiz	Peso Ret.	Ret.Acum	1	%Ret	% I	Pasa			
11/2"									
1"									
3/4''									
1/2"									
3/8''									
No.4	5.9	5.9		4	96				
Pasa No.4									
Total									
No.10	3.5	9.3		6	Ç	94			
No.40	2.8	12.1	8		92				
	2.8	12.1		ŏ	•	,_			
No.200	10.7	22.8		15		35			
No.200 Pasa No.200									
	10.7	22.8		15					
Pasa No.200	10.7 126.2 143.2	22.8	Pe	15					
Pasa No.200 Total	10.7 126.2 143.2	22.8 126.2 50	Pe icación (%	15 85 so Seco		35			
Pasa No.200 Total	10.7 126.2 143.2	22.8 126.2 50		15 85 so Seco		35			
Pasa No.200 Total Peso Hum.	10.7 126.2 143.2	22.8 126.2 50 Clasifi	icación (%	15 85 so Seco	1 Tipo	35			
Pasa No.200 Total Peso Hum. Grava	10.7 126.2 143.2 2	22.8 126.2 50 Clasif	icación (% 111	15 85 so Seco	Tipo (49			

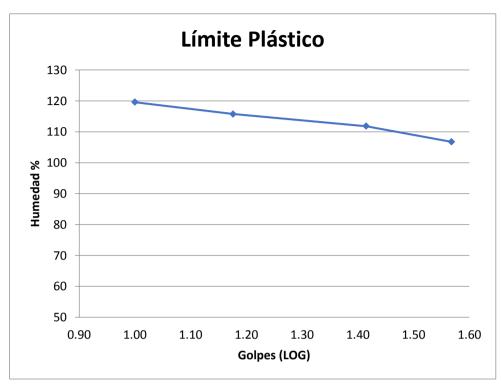


Figura A-7 Limite plástico 7 metros de profundidad

Tabla A-10. 8 metros de profundidad

				profundidad		,		
Profundidad	-8.00	Cota	551	Coordenadas	702756 E	9971795 N		
Nombre del Ensayo	Golpes	W.Hum	W.seco	W.caps	W%	Resultado		
Contonido do Agua		105.2	76.65	31.73	63.56	63.05		
Contenido de Agua		105.48	77.05	31.59	62.54	05.05		
	38	27.52	19.65	12.2	105.64			
Límite	26	27.35	19.52	12.47	111.06	113.443		
Líquido	17	27.64	19.45	12.35	115.35	115.445		
	9	27.11	19.04	12.41	121.72			
17		11.32	9.78	6.21	43.14			
Límite Plástico		11.44	9.91	6.32	42.62	42.990		
Flastico		11.52	9.93	6.25	43.21			
		Gran	ulometría					
Suelos Finos Norma AASHTO 11-78-VÍA HÚMEDA								
Tamiz	Peso Ret.	Ret.Acum		%Ret	%	Pasa		
11/2"								
1"								
3/4"								
1/2"								
3/8"								
No.4	0	0		0	100			
Pasa No.4								
Total								
No.10	0	0		0	1	.00		
No.40	1.3	1.3		1	Ç	99		
No.200	23.6	24.9		16		84		
Pasa No.200	128.5	128.5		84				
Total	153.4							
Peso Hum.	2.	50	Pe	so Seco	15	53.3		
		Clasif	icación (%)				
Grava	0	LL	111		Tipo			
Arena	16	LP	43	SUCS	(CH		
Finos	84	IP	68	AASHTO	A-	-7-5		
		HN	63	IG(76)	(67		

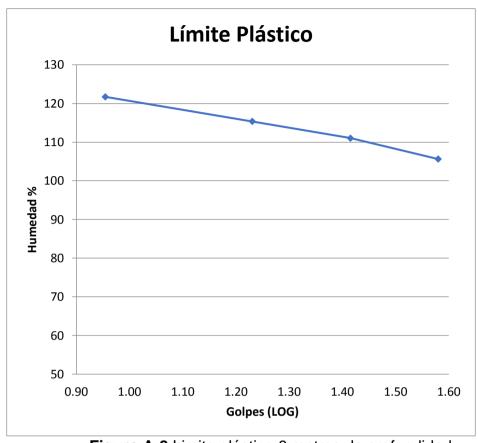


Figura A-8 Limite plástico 8 metros de profundidad

Tabla A-11. 9 metros de profundidad

	Tabla A-TL 9 metros de profundidad									
Profundidad	-9.00	Cota	550	Coordenadas	702756 E	9971795 N				
Nombre del Ensayo	Golpes	W.Hum	W.seco	W.caps	W%	Resultado				
Contenido de Agua		105.6	72.29	31.44	81.54	90 66E				
Contenido de Agua		105.76	72.75	31.38	79.79	80.665				
	38	30.5	23.09	15.58	98.67					
Límite	26	31.35	23.5	15.82	102.21	104 250				
Líquido	16	31.64	23.3	15.46	106.38	104.350				
	9	31.52	23.05	15.36	110.14					
16		11.32	9.97	6.65	40.66					
Límite Plástico		10.06	9.12	6.89	42.15	40.210				
Flastico		9.55	8.82	6.89	37.82					
		Gran	ulometría							
Suelos Finos Norma AASHTO 11-78-VÍA HÚMEDA										
Tamiz	Peso Ret.	Ret.Acum		%Ret	% I	Pasa				
11/2"										
1"										
3/4''										
1/2"										
3/8"										
No.4	0	0		0	1	.00				
Pasa No.4										
Total										
No.10	0.2	0.2		0	1	.00				
No.40	1.5	1.7		1	Ç	99				
No.200	9.9	11.6		8	Ç	92				
Pasa No.200	126.8	126.8		92						
Total	138.4									
Peso Hum.	2.	50	Pe	so Seco	13	38.4				
		Clasif	icación (%)						
Grava	0	LL	102		Tipo					
Arena	8	LP	40	SUCS	(CH				
Finos	92	IP	62	AASHTO	A-	-7-5				
		HN	81	IG(76)	-	69				

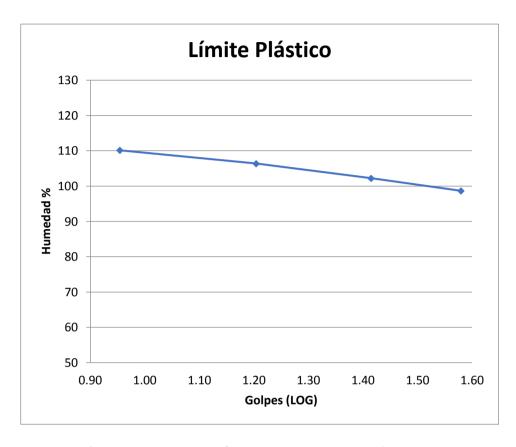


Figura A-9 Limite plástico 9 metros de profundidad

Tabla A-12. 10 metros de profundidad

	1	1		I		ı		
Profundidad	-10.00	Cota	549	Coordenadas	702756 E	9971795 N		
Nombre del Ensayo	Golpes	W.Hum	W.seco	W.caps	W%	Resultado		
Contenido de Agua		105.18	64.49	30.83	92.32	92.235		
		105.38	69.59	30.75	92.15			
	39	27.3	21.57	15.55	95.18			
Límite	25	29.74	22.73	15.74	100.29	102.403		
Líquido	16	34.9	25.2	15.92	104.53	2021100		
	9	34.85	24.81	15.65	109.61			
Límite		11.29	10.1	6.52	33.24			
Plástico		9.85	9.02	6.71	35.93	34.533		
1 lastico		9.84	9	6.56	34.43			
			ulometría					
Suelos Finos Norma AASHTO 11-78-VÍA HÚMEDA								
Tamiz	Peso Ret.	Ret.Acum		%Ret	% I	Pasa		
11/2"								
1"								
3/4"								
1/2"								
3/8''								
No.4	0	0		0	100			
Pasa No.4								
Total								
No.10	0.5	0.5		0	1	00		
No.40	0.6	1		1	Ç	99		
No.200	12.1	13.1		10	Ç	90		
Pasa No.200	117	117		90				
Total	130.2							
Peso Hum.	2.	50	Pe	so Seco	13	30.1		
	T	Clasif	icación (%)				
Grava	0	LL	100		Tipo			
Arena	10	LP	35	35 SUCS		CH		
Finos	90	IP	65	AASHTO	A-	7-5		
		HN	92	IG(76)	(59		

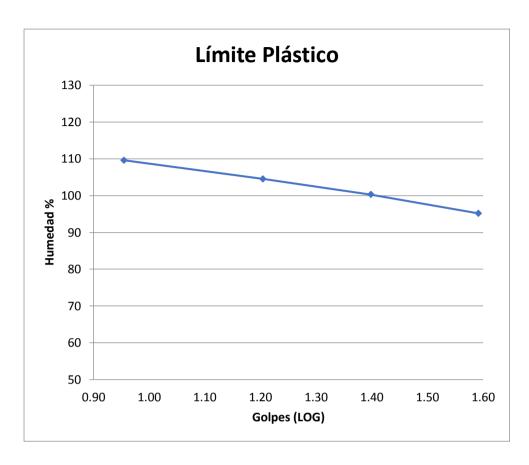


Figura A-10 Limite plástico 10 metros de profundidad

Tabla A-13. 11 metros de profundidad

_				•				
Profundidad	-11.00	Cota	548	Coordenadas	702756 E	9971795 N		
Nombre del Ensayo	Golpes	W.Hum	W.seco	W.caps	W %	Resultado		
Contonido do Agua		105.01	68.31	31.32	99.22	99.1		
Contenido de Agua		105.31	68.56	31.43	98.98	99.1		
	35	33.01	24.52	16	99.65			
Límite	24	31.9	23.58	15.54	103.48	105.468		
Líquido	15	31.02	23.12	15.74	107.05	103.408		
	10	31	22.88	15.61	111.69			
Límite		11.72	9.72	6.6	64.1			
Plástico		10.48	9	6.76	66.07	65.170		
riastico		10.82	9.18	6.67	65.34			
		Gran	ulometría					
Suelos Finos Norma AASHTO 11-78-VÍA HÚMEDA								
Tamiz	Peso Ret.	Ret.Acum	ı	%Ret % Pasa		Pasa		
11/2"								
1"								
3/4"								
1/2"								
3/8"								
No.4	0	0		0	100			
Pasa No.4								
Total								
No.10	0	0		0	1	00		
No.40	0.4	0.4		0	1	00		
No.200	10.3	10.7		9	Ç	91		
Pasa No.200	114.8	114.8		91				
Total	125.5							
Peso Hum.	2.	50	Pe	so Seco	12	25.6		
	T	Clasif	icación (%)				
Grava	0	LL	103		Tipo			
Arena	9	LP	65	SUCS	N	ЛΗ		
Finos	91	IP	38	AASHTO	A-	7-5		
		HN	99	IG(76)	į	50		

Figura A-11 Limite plástico 11 metros de profundidad

Tabla A-14. 12 metros de profundidad

	l abia A-14. 12 metros de profundidad								
Profundidad	-12.00	Cota	547	Coordenadas	702756 E	9971795 N			
Nombre del Ensayo	Golpes	W.Hum	W.seco	W.caps	W%	Resultado			
		105.76	64.06	31.05	126.33	128.255			
Contenido de Agua		105.48	63.73	31.66	130.18				
	37	36.1	26.18	15.66	94.3				
Límite	26	35.67	25.79	15.74	98.31	100 212			
Líquido	18	29.8	20.61	11.62	102.22	100.313			
	12	29.66	20.33	11.56	106.42				
17		12.28	10.22	6.33	52.96				
Límite Plástico		13	10.71	6.43	53.5	52.583			
Plastico		13	10.81	6.54	51.29				
		Gran	ulometría						
Suelos Finos Norma AASHTO 11-78-VÍA HÚMEDA									
Tamiz	Peso Ret.	Ret.Acum	%Ret		% Pasa				
11/2"									
1"									
3/4''									
1/2"									
3/8''									
No.4	11.5	11.5	10		90				
Pasa No.4									
Total									
No.10	3.5	14.9		14	8	86			
No.40	3.4	18.3	17		83				
No.200	7.3	25.6		23	77				
Pasa No.200	84	84		77					
Total	98.2								
Peso Hum.	2.	50	Pe	Peso Seco 109.5		9.5			
	Clasificación (%)								
Grava	14	LL	99	9 Tipo					
Arena	10	LP	53 SUCS MH		ЛΗ				
Finos	77	IP	46 AASHTO		A-7-5				
		HN	128	IG(76)	4	43			

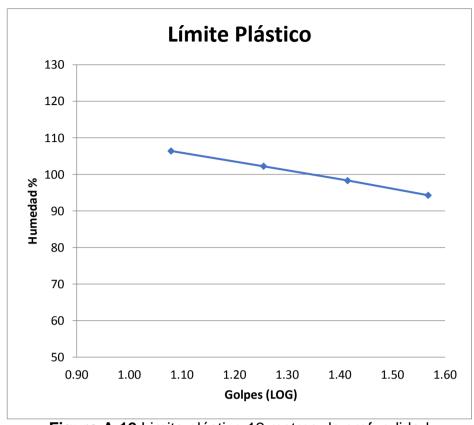


Figura A-12 Limite plástico 12 metros de profundidad

ENSAYOS 2DO SONDEO POR CADA METRO DE PERFORACIÓN

Tabla A-15. 1 metro de profundidad

		<u> </u>				00=1=00	
Profundidad	-1.00	Cota	558	Coordenada	17 S 702760	9971799	
At l			107	S	E	N	
Nombre del Ensayo	Golpes	W.Hum	W.sec o	W.caps	W%	Resultado	
Contenido de		105.89	82.99	31.09	44.12	43.775	
Agua		105.75	83.12	31.01	43.43	43.773	
	37	37.26	29.58	14.33	50.36		
Límite	26	37.44	29.3	14.26	54.12	F6 212	
Líquido	16	32.66	25.97	14.47	58.17	56.213	
	10	32.48	25.52	14.33	62.2		
.,		12.35	10.95	6.41	30.84		
Límite		12.47	110.92	6.13	32.36	32.353	
Plástico		12.28	10.77	6.31	33.86		
	1	Gra	nulomet	ría	1	•	
Suelos Finos Norma AASHTO 11-78-VÍA HÚMEDA							
Tamiz	Peso	Ret.Acu			9/ Da	/ Dana	
Talliiz	Ret.	m			% Pasa		
11/2"							
1"							
3/4"							
1/2"							
3/8''							
No.4	0	0	0 100)		
Pasa No.4							
Total							
No.10	0	0	0 100)		
No.40	0.5	0.5	0 100)		
No.200	26	26.4		15 85			
Pasa No.200	147.5	147.5		85			
Total	174.00						
Peso Hum.	2	50	Peso Seco 173.9		.9		
		Clas	ificación	(%)			
Grava	0	LL	54		Tipo		
Arena	15	LP	32	SUCS	MH	1	
Finos	85	IP	22 AASHTO A-7-5		·5		
		HN	44	IG(76)	22		

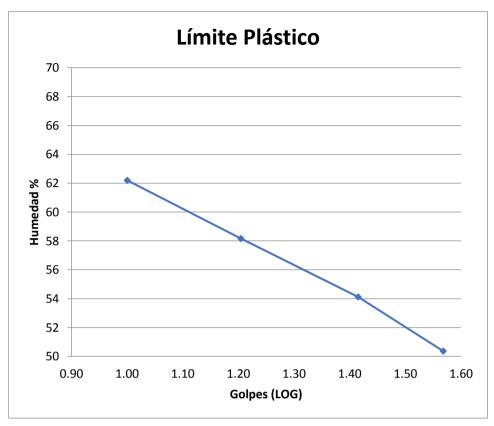


Figura A-13 Limite plástico 1 metro de profundidad

Tabla A-16. 2 metros de profundidad

Profundidad	-2.00	Cota	557	Coordenada	17 S 702760	9971799	
				S	E	N	
Nombre del Ensayo	Golpes	W.Hum	W.sec o	W.caps	W%	Resultado	
Contenido de		105.55	70.03	31.98	93.35	93.955	
Agua		105.33	69.5	31.61	94.56	93.933	
	36	37.52	30.18	15.22	49.06		
Límite	25	37.29	29.69	15.37	53.07	55.115	
Líquido	15	31.96	24.55	11.56	57.04	33.113	
	10	31.26	23.66	11.26	61.29		
Límite		12.85	11.11	5.87	33.21		
Plástico		12.48	10.86	5.97	33.13	33.290	
1 lastico		12.8	11.1	6.03	33.53		
		Gra	nulomet	ría			
Suelos Finos Norma AASHTO 11-78-VÍA HÚMEDA							
Tamiz	Peso	Ret.Acu	%Ret		% Pasa		
	Ret.	m		701100	70.4		
11/2"							
1"							
3/4"							
1/2"							
3/8"							
No.4	0	0	0		100	100	
Pasa No.4							
Total			T		T		
No.10	0	0	0		100		
No.40	0.9	0.9	1 99				
No.200	21.1	22		17	83		
Pasa No.200	106.9	106.9		83			
Total	128.90						
Peso Hum.	2.	50		eso Seco	128.	.9	
Clasificación (%)							
Grava	0	LL	53		Tipo		
Arena	17	LP	33	SUCS	MH		
Finos	83	IP	20 AASHTO A-7-5		·5		
		HN	94	IG(76)	20		

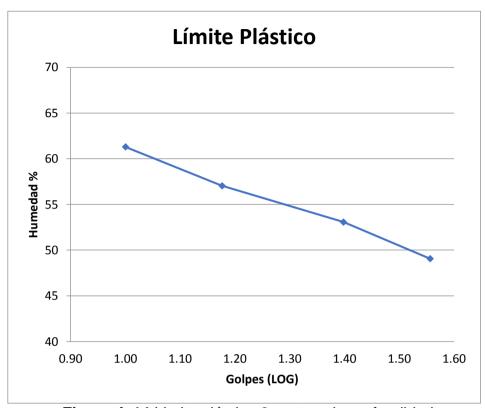


Figura A-14 Limite plástico 2 metros de profundidad

Tabla A-17. 3 metros de profundidad

Profundidad	-3.00	Cota	556	Coordenada	17 S 702760 E	9971799 N		
Nombre del Ensayo	Golpes	W.Hum	W.sec o	s W.caps	W%	Resultado		
Contenido de		105.5	68.89	31.3	97.39	06.205		
Agua		105.55	69.48	31.52	95.02	96.205		
	36	39	28.56	15.38	79.21			
Límite	26	38.1	28.05	15.98	83.26	85.295		
Líquido	16	31.1	22.03	11.65	87.38	63.233		
	10	31.26	21.89	11.63	91.33			
16		19.83	18.45	15.57	47.92			
Límite Plástico		19.65	18.24	15.27	47.47	47.180		
Plastico		20.06	18.62	15.5	46.15			
		Gra	nulomet	ría				
	Suelos Finos Norma AASHTO 11-78-VÍA HÚMEDA							
Tamiz	Peso	Ret.Acu	cu %Ret 9		% Pa	Paca		
	Ret.	m		7011.01	7014			
11/2"								
1"								
3/4''								
1/2"								
3/8''								
No.4	0	0	0		100)		
Pasa No.4								
Total		T	1		I			
No.10	0	0	0 100)			
No.40	0.2	0.2	0 100					
No.200	6.5	6.7		5	95			
Pasa No.200	120.7	120.7		95				
Total	127.40							
Peso Hum.	2.	50	Pe	Peso Seco 127.4		.4		
	Clasificación (%)							
Grava	0	LL	83	83 Tipo				
Arena	5	LP	47 SUCS MH					
Finos	95	IP	36 AASHTO A-7-5		5			
		HN	96	IG(76)	46			

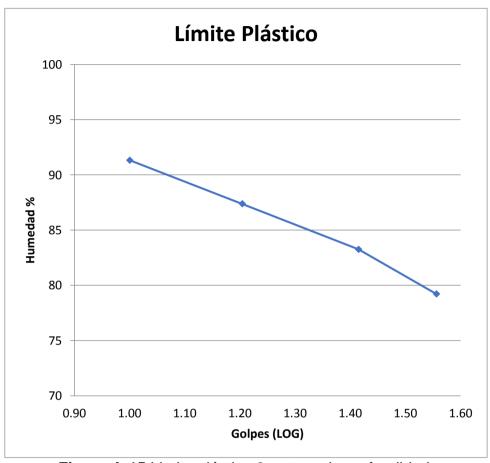


Figura A-15 Limite plástico 3 metros de profundidad

Tabla A-17. 4 metros de profundidad

Profundidad	-4.00	Cota	555	Coordenada s	17 S 702760 E	9971799 N		
Nombre del Ensayo	Golpes	W.Hum	W.sec o	W.caps	W%	Resultado		
Contenido de		105.73	73.79	30.84	74.37	72.655		
Agua		105.41	74.51	30.95	70.94	72.655		
	37	35.26	25.86	14.26	81.03			
Límite	26	35.33	25.66	14.32	85.27	07.252		
Líquido	15	35.47	25.47	14.28	89.37	87.253		
	10	35.3	25.18	14.34	93.34			
.,		16.23	15	12.33	46.07			
Límite Plástico		16.28	15.11	12.62	46.99	46.100		
Plastico		15.47	14.52	12.42	45.24			
		Gra	nulomet	ría				
	Suelos Finos Norma AASHTO 11-78-VÍA HÚMEDA							
Tamiz	Peso	Ret.Acu	%Ret		% Pasa			
	Ret.	m		701101	7014			
11/2"								
1"								
3/4"								
1/2"								
3/8''								
No.4	0	0	0		100			
Pasa No.4								
Total		T	1		I			
No.10	0	0		0	100			
No.40	0.5	0.5	0		100			
No.200	4	4.4		3	97			
Pasa No.200	140.4	140.4		97				
Total	144.90							
Peso Hum.	2.	50	Peso Seco 144.8		.8			
	1	ı	ificación	(%)				
Grava	0	LL	85		Tipo			
Arena	3	LP	46 SUCS MH		ł			
Finos	97	IP	39 AASHTO A-7-5		5			
		HN	73	IG(76)	50			

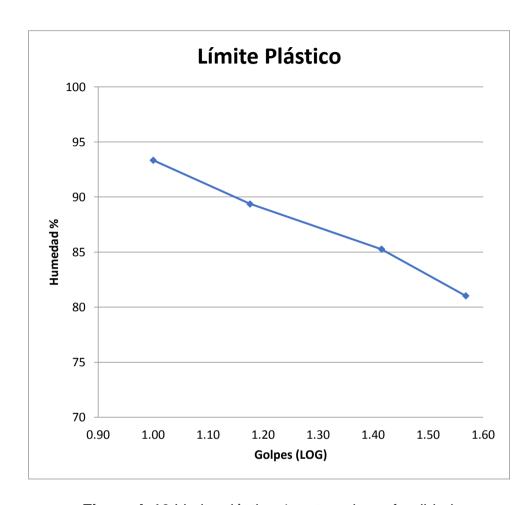


Figura A-16 Limite plástico 4 metros de profundidad

Tabla A-18. 5 metros de profundidad

Profundidad	-5.00	Cota	554	Coordenada	17 S 702760	9971799		
Nombre del	Golpes	W.Hum	W.sec	S W.caps	E W%	N Resultado		
Ensayo		405.66	0	24.40	00.4			
Contenido de		105.66	69.84	31.49	93.4	94.515		
Agua		105.53	69.18	31.17	95.63			
	38	21.25	17.45	11.62	65.18			
Límite	25	21.24	17.11	11.23	70.24	72.673		
Líquido	15	21.33	17.1	11.48	75.27			
	9	20.18	16.22	11.27	80			
Límite		10.22	9.23	6.24	33.11			
Plástico		10.28	9.36	6.23	29.39	31.387		
- Tustics		10.45	9.44	6.25	31.66			
		Gra	nulomet	ría				
	Suelos Finos Norma AASHTO 11-78-VÍA HÚMEDA							
Tamiz	Peso	Ret.Acu	%Ret		% Pasa			
	Ret.	m		/ortet	70 F G			
11/2"								
1"								
3/4"								
1/2"								
3/8"								
No.4	0	0	0		100)		
Pasa No.4								
Total								
No.10	0	0	0		100			
No.40	0.5	0.5	0		100			
No.200	4.9	5.4	4		96			
Pasa No.200	123.2	123.2		96				
Total	128.60							
Peso Hum.	2.	50	Peso Seco		128.5			
	Clasificación (%)							
Grava	0	LL	70		Tipo			
Arena	4	LP	31	SUCS	MH	ł		
Finos	96	IP	39 AASHTO A-7-5		·5			
		HN	95	IG(76)	45			

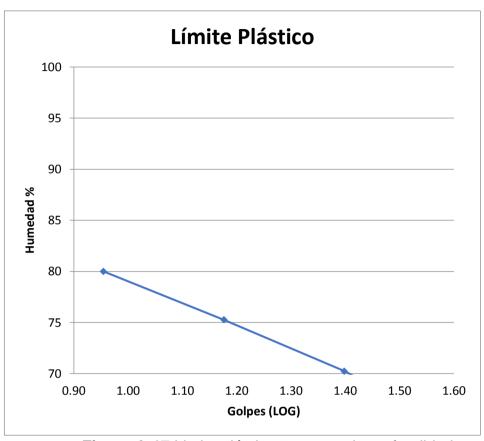


Figura A-17 Limite plástico 5 metros de profundidad

Tabla A-19. 6 metros de profundidad

Profundidad	-6.00	Cota	553	Coordenada s	17 S 702760 E	9971799 N	
Nombre del Ensayo	Golpes	W.Hum	W.sec o	W.caps		Resultado	
Contenido de		105.4	70.54	31.49	89.27	95.205	
Agua		105.69	68.29	31.31	101.14	95.205	
	38	22.85	17.65	10.2	69.8		
Límite	26	24.41	18.45	10.32	73.31	75.678	
Líquido	17	22.62	17.2	10.22	77.65	73.076	
	9	22.44	16.9	10.14	81.95		
Límite		11.66	10.4	6.22	30.14		
Plástico		11.74	10.38	6.23	32.77	31.043	
riastico		11.68	10.42	6.25	30.22		
		Gra	nulomet	ría			
	Suelos Fir	os Norma	AASHTO	11-78-VÍA HÚI	MEDA		
Tamiz	Peso	Ret.Acu		%Ret	% Pa	sa	
	Ret.	m			,,,,		
11/2"							
1"							
3/4"							
1/2"							
3/8"							
No.4	0	0		0	100)	
Pasa No.4							
Total		T	ı		-		
No.10	0	0		0	100		
No.40	0.2	0.2		0	100		
No.200	4.9	5.1		4	96		
Pasa No.200	123	123		96			
Total	128.10						
Peso Hum.	2.	50		eso Seco	128.	.1	
		1	ificación	(%)			
Grava	0	LL	76		Tipo		
Arena	4	LP	31	SUCS	СН		
Finos	96	IP	45	AASHTO	A-7-	5	
		HN	95	IG(76)	49		

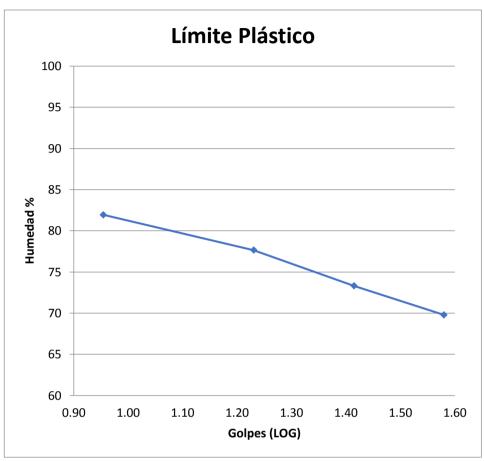


Figura A-18 Limite plástico 6 metros de profundidad

Tabla A-20. 7 metros de profundidad

Profundidad	-7.00	Cota	552	Coordenada	17 S 702760 E	9971799 N	
Nombre del Ensayo	Golpes	W.Hum	W.sec	s W.caps	W%	Resultado	
Contenido de		105.48	76.64	31.03	62.23		
Agua		105.6	76.38	31.27	64.77	63.5	
	38	38	28.54	15.66	73.45		
Límite	27	38.05	28.33	15.74	77.2	70.240	
Líquido	16	34.09	23.95	11.46	81.18	79.240	
	10	34.16	23.8	11.63	85.13		
		12.33	10.72	5.98	33.97		
Límite		12.58	10.86	5.85	34.33	33.877	
Plástico		12.72	11	5.84	33.33		
		Gra	nulomet	ría	1	•	
	Suelos Fir	nos Norma	AASHTO	11-78-VÍA HÚI	MEDA		
Tamiz	Peso	Ret.Acu		%Ret	% Pa	63	
	Ret.	m		/onet	% Pasa		
11/2''							
1"							
3/4''							
1/2"							
3/8''							
No.4	0	0		0	100)	
Pasa No.4							
Total					,		
No.10	0	0		0	100)	
No.40	0.4	0.4		0	100)	
No.200	8.1	8.4		6	94		
Pasa No.200	144	144		94			
Total	152.50						
Peso Hum.	2.	50		eso Seco	152.	.4	
	ı	Clas	ificación	(%)			
Grava	0	LL	79		Tipo		
Arena	6	LP	34	SUCS	СН		
Finos	94	IP	45	AASHTO	A-7-5		
		HN	64	64 IG(76) 49			



Figura A-19 Limite plástico 7 metros de profundidad

Tabla A-21. 8 metros de profundidad

Book of the d	0.00		F.F.4	Coordenada	17 S 702760	9971799
Profundidad	-8.00	Cota	551	S	E	N
Nombre del Ensayo	Golpes	W.Hum	W.sec o	W.caps	W%	Resultado
Contenido de		105.64	68.16	22.85	82.72	81.34
Agua		105.6	72.33	30.72	79.96	01.34
	39	27.65	21.52	12.65	69.11	
Límite	27	29.38	22.3	12.58	72.84	74.883
Líquido	16	27.46	20.96	12.47	76.56	74.003
	9	27.19	20.7	12.69	81.02	
I foreit a		11.19	10	6.02	29.9	
Límite Plástico		11.25	10.02	6.05	30.98	30.637
Plastico		11.32	10.06	6	31.03	
		Gra	nulomet	ría		
	Suelos Fir	nos Norma	AASHTO	11-78-VÍA HÚI	MEDA	
Tamiz	Peso	Ret.Acu	%Ret % Pas		ca	
	Ret.	m		/ortet	/u ra3a	
11/2"						
1"						
3/4"						
1/2"						
3/8"						
No.4	0	0		0	100)
Pasa No.4						
Total					,	
No.10	1.2	1.2		1	99	
No.40	0.5	1.7		1	99	
No.200	16.1	17.8		13	87	
Pasa No.200	120.1	120.1		87		
Total	137.90					
Peso Hum.	2.	50	Pe	eso Seco	137.	.9
		Clas	ificación	(%)		
Grava	1	LL	75		Tipo	
Arena	12	LP	31	SUCS	СН	
Finos	87	IP	44	AASHTO	A-7-	·5
		HN	81	IG(76)	49	

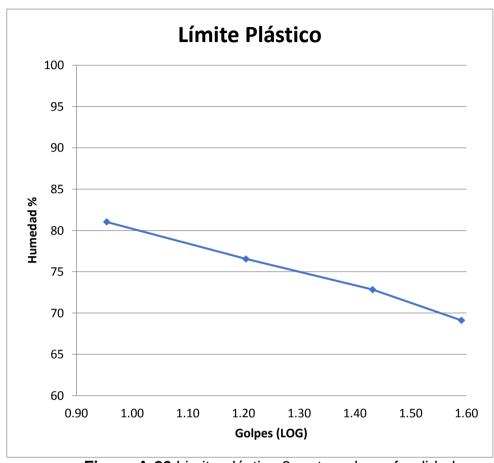


Figura A-20 Limite plástico 8 metros de profundidad

Tabla A-22. 9 metros de profundidad

Profundidad	-9.00	Cota	550	Coordenada s	17 S 702760 E	9971799 N
Nombre del Ensayo	Golpes	W.Hum	W.sec o	W.caps	W%	Resultado
Contenido de		105.67	39.29	30.82	94.57	92.53
Agua		105.81	70.24	30.93	90.49	92.53
	37	37.42	27.3	15.42	85.19	
Límite	26	38.01	27.32	15.33	86.16	90.525
Líquido	15	37.16	26.58	15.24	93.3	90.525
	9	37.26	26.58	15.62	97.45	
17		14.7	13.8	11.23	35.02	
Límite Plástico		14.75	13.88	11.35	34.39	34.450
Plastico		14.81	13.88	11.14	33.94	
		Gra	nulomet	ría		
	Suelos Fir	os Norma	AASHTO	11-78-VÍA HÚI	MEDA	
Tamiz	Peso	Ret.Acu	%Ret % Pasa		ca	
	Ret.	m		701101	/0 F a 3 a	
11/2"						
1"						
3/4"						
1/2"						
3/8"						
No.4	0	0		0	100)
Pasa No.4						
Total			1			
No.10	1.2	0		0	100	
No.40	0.6	0.6		0	100	
No.200	8.8	9.3		7	93	
Pasa No.200	120.5	120.5		93		
Total	131.10					
Peso Hum.	2.	50		so Seco	129.	.9
	1	Clas	ificación	(%)		
Grava	0	LL	91		Tipo	
Arena	7	LP	34	SUCS	СН	
Finos	93	IP	56	AASHTO	A-7-	5
		HN	93	IG(76)	61	

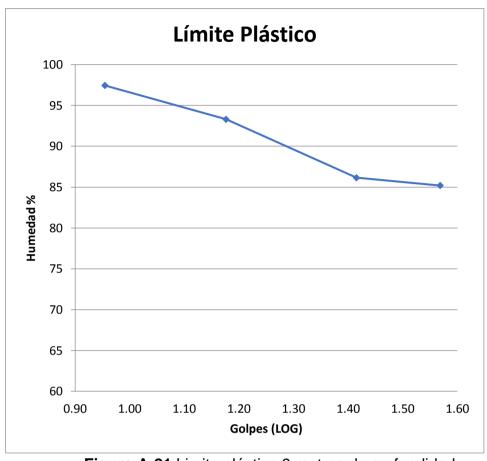


Figura A-21 Limite plástico 9 metros de profundidad

Tabla A-23. 10 metros de profundidad

Profundidad	-10.00	Cota	549	Coordenada s	17 S 702760 E	9971799 N
Nombre del Ensayo	Golpes	W.Hum	W.sec o	W.caps	W%	Resultado
Contenido de		105.43	67.24	32.34	109.43	114.27
Agua		105.48	66.09	33.02	119.11	114.27
	36	38.29	27.77	15.63	86.66	
Límite	25	38.14	27.52	15.82	90.77	92.680
Líquido	16	36.12	26.05	15.41	94.64	92.000
	9	36.28	26.02	15.62	98.65	
I foresta a		16.97	15.29	12.11	52.83	
Límite Plástico		16.86	15.15	11.96	53.61	53.327
Plastico		16.19	14.45	11.2	53.54	
		Gra	nulomet	ría		
	Suelos Fir	nos Norma	AASHTO	11-78-VÍA HÚI	MEDA	
Tamiz	Peso	Ret.Acu	%Ret % Pasa		ca	
	Ret.	m		701101	/u ra3a	
11/2"						
1"						
3/4"						
1/2"						
3/8"						
No.4	0	0		0	100)
Pasa No.4						
Total		T	1		I	
No.10	0.3	0.3		0	100	
No.40	0.4	0.7		1	99	
No.200	8.1	8.8		8	92	
Pasa No.200	107.9	107.9		92		
Total	116.70					
Peso Hum.	2.	50	Pe	eso Seco	116	.7
	1	Clas	ificación	(%)		
Grava	0	LL	93		Tipo	
Arena	7	LP	53	SUCS	OH	
Finos	92	IP	39	AASHTO	A-7-	5
		HN	114	IG(76)	47	

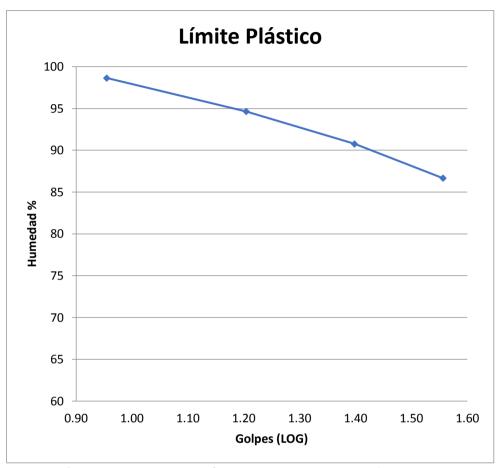


Figura A-22 Limite plástico 10 metros de profundidad

ANEXO B

ANÁLISIS DE PRECIOS UNITARIOS

Tabla B-1. Rubro Demolición

RUBRO: 1				UNIDAD:	M2
DETALLE: Demolición EQUIPOS				REND:	0.200
DESCRIPCIÓN	CANT.	TARIFA B	COSTO HORA C=A*B	REND .	COSTO D=C*R
Herramienta menor (5% M.O)	7	В	<u> </u>	IX.	0.1064
SUBTOTAL M					0.1064
MANO DE OBRA	1	JORNAL/	COSTO		
DESCRIPCIÓN (CATEG.)	CANT	HR	HORA	REND.	COSTO
	Α	В	C=A*B	R	D=CxR
Peón - Estr. Oc. E2 Maestro mayor de obras civiles - Estr. Oc.	2	3.410 3.820	6.820	0.200	1.3640 0.7640
SUBTOTAL N					2.1280
MATERIALES					211200
DESCRIPCIÓN		UNIDAD	CANT.	P. UNITARIO B	COSTO C=A*B
SUBTOTAL O					-
TRANSPORTE					
DESCRIPCIÓN		UNIDAD	CANT. A	TARIFA B	COSTO C=A*B
Desalojo		m3	0.25	4.35	1.0875
SUBTOTAL P		· I			1.088
ESTE PRECIO NO INCLUYE EL IVA		TOTAL, CO	STO DIRECTO	(M+N+O+P)	3.3224
		INDIRECTO UTILIDADE	DS Y	22.0%	
		OTROS INI	DIRECTOS %		-
		RUBRO			4.0533
		VALOR OF	ERTADO	US\$	4.050

Tabla B-2. Rubro Replanteo y nivelación

2 Replanteo y nivelación para RUBRO: UNIDAD: M2

DETALLE: estructuras				REND:	0.020
EQUIPOS					
DESCRIPCIÓN	CANT.	TARIFA	COSTO HORA	REND.	соѕто
	A	В	C=A*B	R	D=C*R
Herramienta menor (5% M.O)					0.0107
Equipo de topografía	1	8.000	8.000	0.020	0.1600
SUBTOTAL M					0.1707
MANO DE OBRA					
DESCRIPCIÓN (CATEG.)	CANT.	JORNAL/ HR	COSTO HORA	REND.	соѕто
= (() = ()	A	В	C=A*B	R	D=CxR
Topógrafo 2 - Estr. Oc. C1 Cadenero - Estr. Oc.	1	3.820	3.820	0.020	0.0764
D2	2	3.450	6.900	0.020	0.1380
SUBTOTAL N					0.2144
MATERIALES					
DESCRIPCIÓN		UNIDAD	CANT.	P. UNITARIO	соѕто
			A	В	C=A*B
Alfajías 0.05*0.05*2.40 m		U	0.100	1.500	0.1500
Clavos 2 1/2"		Kg	0.049	1.800	0.0882
SUBTOTAL O					0.2382
TRANSPORTE					
DESCRIPCIÓN		UNIDAD	CANT.	TARIFA	соѕто
			Α	В	C=A*B
SUBTOTAL P					-
ESTE PRECIO NO INCLUYE EL IVA		TOTAL COS	STO DIRECTO	(M+N+O+P)	0.6233
EGIL I NEGIO NO INCLOTE EL IVA		INDIRECTO UTILIDADES	SY	22.0%	
		OTROS IND	IRECTOS %		-
		COSTO TO			0.7604
		VALOR OF	ERTADO	US\$	0.760

Tabla B-3. Rubro Limpieza y Desalojo

3 Limpieza y desalojo RUBRO: UNIDAD: M2

DETAILE: REND.

DETALLE: de	salojo				REND:	0.025
EQUIPOS			,		1	
DESCRIPCIÓN		CANTID AD	TARIFA	COSTO HORA	RENDIMIEN TO	соѕто
		Α	В	C=A*B	R	D=C*R
Herramienta menor (5% M.O)						0.0143
Retroexcavadora		1	22.000	22.000	0.025	0.5500
SUBTOTAL M		1	L			0.5643
MANO DE OBRA			ı		l	
DESCRIPCIÓN (CATE	G.)	CANTID AD	JORNAL/ HR	COSTO HORA	RENDIMIEN TO	соѕто
		Α	В	C=A*B	R	D=CxR
Operador de excavadora (Estr.Oc C1)		1	3.820	3.820	0.025	0.0955
Peón - Estr. Oc. E2		2	3.410	6.820	0.025	0.1705
Maestro mayor de obras civiles - E	str. Oc. C1	0.2	3.820	0.764	0.025	0.0191
SUBTOTAL N						0.2851
MATERIALES						
DESCRIPCI	ÓN		UNIDAD	CANTIDAD	P. UNITARIO	соѕто
				Α	В	C=A*B
SUBTOTAL O				I	1	-
TRANSPORTE						
DESCRIPCI	ÓN		UNIDAD	CANTIDAD A	TARIFA B	COSTO C=A*B
Desalojo			m3	0.25	4.35	1.0875
SUBTOTAL P			T			1.088
ESTE PRECIO NO INCLUYE EL IVA			TOTAL CO	STO DIRECTO	(M+N+O+P)	1.9374
			UTILIDADE		22.0%	0.4262
			OTROS INI	DIRECTOS %		-
			RUBRO	TAL DEL		2.3636
			VALOR OF	ERTADO	US\$	2.360

Tabla B-4. Rubro Excavación Manual

RUBRO: UNIDAD: М3

4 Excavación manual suelo natural H=0-2m DETALLE: REND: 0.800

EQUIPOS					
DESCRIPCIÓN	CANT.	TARIFA	COSTO HORA	REND.	соѕто
	Α	В	C=A*B	R	D=C*R
Herramienta menor (5% M.O)					0.3418
SUBTOTAL M					0.3418
MANO DE OBRA					
DESCRIPCIÓN (CATEG.)	CANT.	JORNAL/ HR	COSTO HORA	REND.	соѕто
Data Fata Oa	A	В	C=A*B	R	D=CxR
Peón - Estr. Oc. E2 Albañil - Estr.	2	3.410	6.820	0.800	5.4560
Oc. D2	0.5	3.450	1.725	0.800	1.3800
SUBTOTAL N					6.8360
MATERIALES					
DESCRIPCIÓN		UNIDAD	CANT.	P. UNITARIO	соѕто
			Α	В	C=A*B
SUBTOTAL O TRANSPORTE					-
DESCRIPCIÓN		UNIDAD	CANT.	TARIFA	соѕто
			A	В	C=A*B
SUBTOTAL P					-
ESTE PRECIO NO INCLUYE EL IVA			TO DIRECTO	(M+N+O+P)	7.1778
		UTILIDADES		22.0%	1.5791
			IRECTOS %		-
		COSTO TOT RUBRO	AL DEL		8.7569
		VALOR OF	RTADO	US\$	8.760

Tabla B-5. Rubro Relleno de material de mejoramiento

RUBRO: UNIDAD: М3

5 Relleno con material de mejoramiento (compactador) DETALLE: REND.: 0.300

EQUIPOS					
DESCRIPCIÓN	CANT.	TARIFA	COSTO HORA	REND.	соѕто
	A	В	C=A*B	R	D=C*R
Herramienta menor (5% M.O)					0.1023
Compactador mecánico	1	3.500	3.500	0.300	1.0500
SUBTOTAL M					1.1523
MANO DE OBRA				1	
DESCRIPCIÓN (CATEG.)	CANT.	JORNAL/H R	COSTO HORA	REND.	соѕто
Do for Form On	A	В	C=A*B	R	D=CxR
Peón - Estr. Oc. E2	2	3.410	6.820	0.300	2.0460
SUBTOTAL N	l	1			2.0460
MATERIALES					
DESCRIPCIÓN		UNIDAD	CANT.	P. UNITARIO B	COSTO
Sub-base clase 3 inc transp		M3	A 1.100	13.000	C=A*B 14.3000
Agua		m3	0.100	1.000	0.1000
, igua		lilo lilo	0.100	1.000	0.1000
SUBTOTAL O					14.4000
TRANSPORT E					
DESCRIPCIÓN		LINIDAD	CANT.	TARIFA	соѕто
DESCRIPCION		UNIDAD	Α	В	C=A*B
SUBTOTAL P		,			-
ESTE PRECIO NO INCLUYE EL IVA		TOTAL COS	TO DIRECTO (M+N+O+P)	17.5983
		UTILIDADES		22.0%	3.8716
		OTROS INDI	RECTOS %		-
		COSTO TOT RUBRO	AL DEL		21.4699
		VALOR OFE	RTADO	US\$	21.470

Tabla B-6. Rubro Replantillo

RUBRO: UNIDAD: МЗ

6 Hormigón S. f'c=140 kg/cm2 en replantillos DETALLE: REND.: 1.200

EQUIPOS					
DESCRIPCIÓN	CANT.	TARIFA	COSTO HORA	REND.	соѕто
	Α	В	C=A*B	R	D=C*R
Herramienta menor (5% M.O)					2.4846
Concretera 1 saco	1	4.500	4.500	1.200	5.4000
SUBTOTAL M	l	1			7.8846
MANO DE OBRA	1	T		T	
DESCRIPCIÓN (CATEG.)	CANT.	JORNAL/ HR	COSTO HORA	REND.	соѕто
Doán Fote On	Α	В	C=A*B	R	D=CxR
Peón - Estr. Oc. E2 Albañil - Estr.	9	3.410	30.690	1.200	36.8280
Oc. D2	2	3.450	6.900	1.200	8.2800
Maestro mayor de obras civiles - Estr. Oc. C1	1	3.820	3.820	1.200	4.5840
SUBTOTAL N					49.6920
MATERIALES			T		
DESCRIPCIÓN		UNIDAD	CANT.	P. UNITARIO	соѕто
			A	В	C=A*B
Cemento Tipo I sacos		kg	280.000	0.145	40.6000
Arena inc transp		m3	0.650	14.000	9.1000
Ripio 1/2" inc transp		m3	0.950	19.000	18.0500
Agua		m3	0.250	1.000	0.2500
SUBTOTAL O					68.0000
TRANSPORT E					
DESCRIPCIÓN		UNIDAD	CANT.	TARIFA	соѕто
			A	В	C=A*B
SUBTOTAL P		1			-
ESTE PRECIO NO INCLUYE EL IVA			STO DIRECTO	(M+N+O+P)	125.5766
		UTILIDADE:		22.0%	27.6269
		OTROS IND	IRECTOS %		-
		COSTO TO			153.2035
		VALOR OF	ERTADO	US\$	153.200

Tabla B-7. Rubro hormigón premezclado

RUBRO: UNIDAD: М3

7 Hormigón S. Premezclado f'c=210 kg/cm2 sin encofrado DETALLE: REND.: 1.200

EQUIPOS					
DESCRIPCIÓN	CANT.	TARIFA	COSTO HORA	REND.	соѕто
	Α	В	C=A*B	R	D=C*R
Herramienta menor (5% M.O)					1.6662
SUBTOTAL M					1.6662
MANO DE OBRA					
DESCRIPCIÓN (CATEG.)	CANT.	JORNAL/ HR	COSTO HORA	REND.	соѕто
Date Call	А	В	C=A*B	R	D=CxR
Peón - Estr. Oc. E2 Albañil - Estr.	5	3.410	17.050	1.200	20.4600
Oc. D2	2	3.450	6.900	1.200	8.2800
Maestro mayor de obras civiles - Estr. Oc. C1	1	3.820	3.820	1.200	4.5840
SUBTOTAL N					33.3240
MATERIALES				_	
DESCRIPCIÓN		UNIDAD	CANT.	P. UNITARIO	соѕто
			Α	В	C=A*B
Hormigón Premezclado f'c = 210Kg/cm		m3	1.000	154.900	154.9000
SUBTOTAL O				1	154.9000
TRANSPORTE					
DESCRIPCIÓN		UNIDAD	CANT.	TARIFA	COSTO
DEGGKII GIGIN		ONIDAD	A	В	C=A*B
SUBTOTAL P					-
ESTE PRECIO NO INCLUYE EL IVA			TO DIRECTO	(M+N+O+P)	189.8902
		INDIRECTO: UTILIDADES	_	22.0%	41.7758
			IRECTOS %		-
		COSTO TOT	AL DEL		231.6660
		VALOR OF	RTADO	US\$	231.670

Tabla B-8. Rubro acero de refuerzo cimentación

RUBRO: UNIDAD: KG

8 Acero de refuerzo f'y= 4200 kg/cm2 cimentación DETALLE: REND.: 0.040

FOURDOS					
DESCRIPCIÓN DESCRIPCIÓN	CANT.	TARIFA	COSTO HORA	REND.	соѕто
	Α	В	C=A*B	R	D=C*R
Herramienta menor (5% M.O)					0.0213
SUBTOTAL M	· ·			4	0.0213
MANO DE OBRA	1	, ,		1	
DESCRIPCIÓN (CATEG.)	CANT.	JORNAL/H R	COSTO HORA	REND.	соѕто
Data Falls On	A	В	C=A*B	R	D=CxR
Peón - Estr. Oc. E2 Fierrero - Estr. Oc.	2	3.410	6.820	0.040	0.2728
D2	1	3.450	3.450	0.040	0.1380
Maestro mayor de obras civiles - Estr. Oc. C1	0.1	3.820	0.382	0.040	0.0153
SUBTOTAL N	1				0.4261
MATERIALES					
DESCRIPCIÓN		UNIDAD	CANT.	P. UNITARIO	соѕто
			Α	В	C=A*B
Acero refuerzo fý=4.200 kg/cm2		kg	1.050	1.100	1.1550
Alambre recocido # 18 (20Kg)		kg	0.050	2.000	0.1000
SUBTOTAL O					1.2550
TRANSPORTE					
DESCRIPCIÓN		UNIDAD	CANT.	TARIFA	COSTO
22001111 01011		01115715	Α	В	C=A*B
SUBTOTAL P				•	-
ESTE PRECIO NO INCLUYE EL IVA		TOTAL COS	TO DIRECTO (N	И+N+O+P)	1.7024
		UTILIDADES		22.0%	0.3745
OTROS INDIRECTOS %					-
		COSTO TOT	AL DEL		2.0769
		VALOR OFE	RTADO	US\$	2.080

Tabla B-9. Rubro acero de refuerzo loza

RUBRO: UNIDAD: KG

9 Acero de refuerzo f'y= 4200 kg/cm2 Losa DETALLE: REND.: 0.040

EQUIPOS					
DESCRIPCIÓN	CANT.	TARIFA	COSTO HORA	REND.	соѕто
	Α	В	C=A*B	R	D=C*R
Herramienta menor (5% M.O)					0.0145
SUBTOTAL M					0.0145
MANO DE OBRA					
DESCRIPCIÓN (CATEG.)	CANT.	JORNAL/ HR	COSTO HORA	REND.	соѕто
5 (5) 0 1	Α	В	C=A*B	R	D=CxR
Peón - Estr. Oc. E2 Fierrero - Estr.	1	3.410	3.410	0.040	0.1364
Oc. D2	1	3.450	3.450	0.040	0.1380
Maestro mayor de obras civiles - Estr. Oc. C1	0.1	3.820	0.382	0.040	0.0153
SUBTOTAL N					0.2897
MATERIALES					
DESCRIPCIÓN		UNIDAD	CANT.	P. UNITARIO	соѕто
			A	В	C=A*B
Acero refuerzo fý=4.200 kg/cm2		kg	1.050	1.100	1.1550
Alambre recocido # 18 (20Kg)		kg	0.050	2.000	0.1000
SUBTOTAL O					1.2550
TRANSPORTE					
DESCRIPCIÓN		UNIDAD	CANT.	TARIFA	COSTO
		01112712	Α	В	C=A*B
SUBTOTAL P					-
ESTE PRECIO NO INCLUYE EL IVA			TO DIRECTO	(M+N+O+P)	1.5592
		UTILIDADES	-	22.0%	0.3430
		OTROS IND	IRECTOS %		_
		COSTO TOT RUBRO			1.9022
		VALOR OFE	RTADO	US \$	1.900

Tabla B-10. Rubro hormigón premezclado

RUBRO: 10 UNIDAD: M3
DETALLE: Hormigón S. f'c=210 kg/cm2 premezclado sin encofrado REND.: 1.000

EQUIPOS					
DESCRIPCIÓN	CANT	TARIFA	COSTO HORA	REND.	соѕто
	A	В	C=A*B	R	D=C*R
Herramienta menor (5% M.O)					1.7335
vibrador	1	3.000	3.000	1.000	3.0000
SUBTOTAL M	.	•	I	•	4.7335
MANO DE OBRA		1	T		
DESCRIPCIÓN (CATEG.)	CANT	JORNAL/H R	COSTO HORA	REND.	COSTO
DESCRIPCION (CATEG.)	A	В	C=A*B	R	D=CxR
Peón - Estr. Oc. E2	5	3.410	17.050	1.000	17.0500
Albañil - Estr. Oc. D2	2	3.450	6.900	1.000	6.9000
Encofrador - Estr. Oc. D2	2	3.450	6.900	1.000	6.9000
Maestro mayor de obras civiles - Estr. O C1	c. 1	3.820	3.820	1.000	3.8200
SUBTOTAL N					34.6700
MATERIALES					
DESCRIPCIÓN		UNIDAD	CANT.	P. UNITARIO	соѕто
			A	В	C=A*B
Hormigón Premezclado f'c = 210Kg/cm		m3	1.000	154.900	154.8400
SUBTOTAL O					154.8400
TRANSPORTE		1	Г	1	
DESCRIPCIÓN		UNIDAD	CANT.	TARIFA	COSTO
			A	В	C=A*B
OUDTOTAL D					
SUBTOTAL P					-
ESTE PRECIO NO INCLUYE EL IVA		TOTAL COST	O DIRECTO (M-	+N+O+P)	194.2435
		INDIRECTOS %	Y UTILIDADES	22.0%	42.7336
		OTROS INDI	RECTOS %		-
		соѕто тот	236.9771		
		VALOR OFE	236.980		

Tabla B-11. Rubro acero de refuerzo muro

RUBRO: UNIDAD: KG

11 Acero de refuerzo f'y= 4200 kg/cm2 Muro DETALLE: REND.: 0.040

EQUIPOS					
DESCRIPCIÓN	CANT.	TARIFA	COSTO HORA	REND.	соѕто
	Α	В	C=A*B	R	D=C*R
Herramienta menor (5% M.O)					0.0213
SUBTOTAL M					0.0213
MANO DE OBRA		, ,		ı	
DESCRIPCIÓN (CATEG.)	CANT.	JORNAL/ HR	COSTO HORA	REND.	соѕто
Data Fata Oa	Α	В	C=A*B	R	D=CxR
Peón - Estr. Oc. E2 Fierrero - Estr.	2	3.410	6.820	0.040	0.2728
Oc. D2	1	3.450	3.450	0.040	0.1380
Maestro mayor de obras civiles - Estr. Oc. C1	0.1	3.820	0.382	0.040	0.0153
SUBTOTAL N	I				0.4261
MATERIALES		1 1			
DESCRIPCIÓN		UNIDAD	CANT.	P. UNITARIO	соѕто
			A	В	C=A*B
Acero refuerzo fý=4.200 kg/cm2		kg	1.050	1.100	1.1550
Alambre recocido # 18 (20Kg)		kg	0.050	2.000	0.1000
OUDTOTAL O					4.0550
SUBTOTAL O TRANSPORTE					1.2550
DESCRIPCIÓN		UNIDAD	CANT.	TARIFA	COSTO
DESCRIPCION		UNIDAD	Α	В	C=A*B
SUBTOTAL P					-
ESTE PRECIO NO INCLUYE EL IVA	TOTAL COSTO DIRECTO (M+N+O+P)			1.7024	
		INDIRECTO: UTILIDADES		22.0%	0.3745
		OTROS IND			-
		COSTO TOT RUBRO	AL DEL		2.0769
		VALOR OFE	RTADO	US\$	2.080

Tabla B-12. Rubro acero estructural vigas

RUBRO: UNIDAD: KG

12 Acero Estructural Vigas DETALLE: REND.: 0.071

EQUIPOS					
DESCRIPCIÓN	CAN T.	TARIFA	COSTO HORA	REND.	соѕто
	A	В	C=A*B	R	D=C*R
Herramienta menor (5% M.O)					0.0503
Roladora hidráulica	0.05	8.000	0.400	0.071	0.0284
Soldadora eléctrica 240 Amp.	1.00	2.500	2.500	0.071	0.1775
Amoladora 15 AMP	0.50	1.000	0.500	0.071	0.0355
Compresor 1 HP	0.10	2.500	0.250	0.071	0.0178
SUBTOTAL M					0.3095
MANO DE OBRA					
DESCRIPCIÓN (CATEG.)	CAN T.	JORNAL/ HR	COSTO HORA	REND.	соѕто
	A	В	C=A*B	R	D=CxR
Maestro especialista soldador - Estr. Oc. C1	1	3.820	3.820	0.071	0.2712
Ayudante soldador - Estr. Oc. D2	3	3.450	10.350	0.071	0.7349
SUBTOTAL N	l				1.0061
MATERIALES					
DESCRIPCIÓN		UNIDAD	CANT.	P. UNITARI O	соѕто
			A	В	C=A*B
Acero laminado A-36		kg	1.050	1.200	1.2600
Electrodos 60-11		kg kg	0.050	3.130	0.1565
pintura anticorrosiva		gln	0.003	16.000	0.1303
Thinner laca		gln	0.003	5.500	0.0466
Tilline laca		giii	0.003	3.300	0.0103
SUBTOTAL O					1.4810
TRANSPORTE					
DESCRIPCIÓN		UNIDAD	CANT.	TARIFA	COSTO
			Α	В	C=A*B
SUBTOTAL P					-
ESTE PRECIO NO INCLUYE EL IVA		(M+N+O+P)	2.7966
		INDIRECTO UTILIDADE OTROS INI	S %	22.0%	0.6153
		% COSTO TO			-
		RUBRO			3.4119
		VALOR OF	ERTADO	US\$	3.410

Tabla B-13. Rubro acero estructural columnas

RUBRO: UNIDAD: KG

13 Acero Estructural Columnas DETALLE: REND.: 0.071

EQUIPOS					
DESCRIPCIÓN	CAN T.	TARIFA	COSTO HORA	REND.	соѕто
	A	В	C=A*B	R	D=C*R
Herramienta menor (5% M.O)					0.0503
Roladora hidráulica	0.05	8.000	0.400	0.071	0.0284
Soldadora eléctrica 240 Amp.	1.00	2.500	2.500	0.071	0.1775
Amoladora 15 AMP	0.50	1.000	0.500	0.071	0.0355
Compresor 1 HP	0.10	2.500	0.250	0.071	0.0178
SUBTOTAL M					0.3095
MANO DE OBRA					
DESCRIPCIÓN (CATEG.)	CAN T.	JORNAL/ HR	COSTO HORA	REND.	соѕто
	A	В	C=A*B	R	D=CxR
Maestro especialista soldador - Estr. Oc. C1 Ayudante soldador - Estr. Oc.	1	3.820	3.820	0.071	0.2712
D2	3	3.450	10.350	0.071	0.7349
SUBTOTAL N					1.0061
MATERIALES		1			
DESCRIPCIÓN		UNIDAD	CANT.	P. UNITARI O	соѕто
			A	В	C=A*B
Acero laminado A-36		kg	1.050	1.200	1.2600
Electrodos 60-11		kg	0.050	3.130	0.1565
pintura anticorrosiva		gln	0.003	16.000	0.0480
Thinner laca		gln	0.003	5.500	0.0165
SUBTOTAL O		ļ			1.4810
TRANSPORTE					
DESCRIPCIÓN		UNIDAD	CANT.	TARIFA	COSTO
			A	В	C=A*B
SUBTOTAL P					-
ESTE PRECIO NO INCLUYE EL IVA		TOTAL CO (M+N+O+P	STO DIRECT	O	2.7966
ESTET NEGO NO INCLOTE EL IVA		INDIRECTO UTILIDADE	OS Y	22.0%	0.6153
		%	DIRECTOS		-
		COSTO TO RUBRO	TAL DEL		3.4119
		VALOR OF	ERTADO	US\$	3.410

Tabla B-14. Rubro malla electrosoldada

RUBRO: 14 UNIDAD: M2 Malla

DETALLE: electrosoldada REND.: 0.200

EQUIPOS								
DESCRIPCIÓN	CANT A	TARIFA B	COSTO HORA C=A*B	REND. R	COSTO D=C*R			
Herramienta menor (5% M.O)			0-1/1 2	- K	0.0000			
SUBTOTAL M								
MANO DE OBRA								
DESCRIPCIÓN (CATEG.)	CANT A	JORNAL/HR B	COSTO HORA C=A*B	REND. R	COSTO D=CxR			
SUBTOTAL N MATERIALES					0.0000			
WATERIALES								
DESCRIPCIÓN		UNIDAD	CANT.	P. UNITARIO	соѕто			
			Α	В	C=A*B			
Malla electrosoldada 15*15*4,5 mm		m2	1.050	3.500	3.6750			
SUBTOTAL O					3.6750			
TRANSPORTE		1						
DESCRIPCIÓN		UNIDAD	CANT.	TARIFA B	COSTO C=A*B			
SUBTOTAL P					-			
ESTE PRECIO NO INCLUYE EL IVA TOTAL COSTO DIRECTO (M+N+O+P)								
		INDIRECTOS %	0.8085					
	-							
		4.4835						
		VALOR OFER	TADO	US\$	4.480			

Tabla B-15. Rubro hormigón premezclado losetas

15 Hormigón S. Premezclado f'c=210 kg/cm2 losetas RUBRO: UNIDAD: М3

DETALLE: REND.: 1.000

EQUIPOS					
DESCRIPCIÓN	CANT.	TARIFA	COSTO HORA	REND.	соѕто
	Α	В	C=A*B	R	D=C*R
Herramienta menor (5% M.O)					0.7815
vibrador	1	3.000	3.000	1.000	3.0000
SUBTOTAL M				-	3.7815
MANO DE OBRA					
DESCRIPCIÓN (CATEG.)	CANT.	JORNAL/H R	COSTO HORA	REND.	соѕто
Defer Fets Oc	Α	В	C=A*B	R	D=CxR
Peón - Estr. Oc. E2 Albañil - Estr. Oc.	2	3.410	6.820	1.000	6.8200
D2	1	3.450	3.450	1.000	3.4500
Encofrador - Estr. Oc. D2	1	3.450	3.450	1.000	3.4500
Maestro mayor de obras civiles - Estr. Oc. C1	0.5	3.820	1.910	1.000	1.9100
SUBTOTAL N					15.6300
MATERIALES					
DESCRIPCIÓN		UNIDAD	CANT.	P. UNITARIO	соѕто
			A	В	C=A*B
Hormigón Premezclado f'c = 210Kg/cm		m3	1.000	154.900	154.9000
SUBTOTAL O					154.9000
TRANSPORTE		1			
DESCRIPCIÓN		UNIDAD	CANT.	TARIFA	COSTO
			A	В	C=A*B
SUBTOTAL P					_
ESTE PRECIO NO INCLUYE EL IVA			TO DIRECTO (M	1+N+O+P)	174.3115
		INDIRECTOS UTILIDADES		22.0%	38.3485
		OTROS INDI	RECTOS %		-
		COSTO TOTA			212.6600
		VALOR OFE	RTADO	US\$	212.660


Tabla B-16. Rubro placa colaborante

RUBRO: UNIDAD: M2

16 Placa colaborante DETALLE: REND.: 0.200

EQUIPOS					
DESCRIPCIÓN	CAN T.	TARIFA	COSTO HORA	REND.	costo
	Α	В	C=A*B	R	D=C*R
Herramienta menor (5% M.O)					0.0839
SUBTOTAL M					0.0839
MANO DE OBRA					
DESCRIPCIÓN (CATEG.)	CAN T.	JORNAL/ HR	COSTO HORA	REND.	соѕто
	Α	В	C=A*B	R	D=CxR
Maestro mayor de obras civiles - Estr. Oc. C1	0.2	3.820	0.764	0.200	0.1528
Peón - Estr. Oc. E2	1	3.410	3.410	0.200	0.6820
Ayudante soldador - Estr. Oc. D2	1	3.450	3.450	0.200	0.6900
Maestro especialista soldador - Estr. Oc. C1	0.2	3.820	0.764	0.200	0.1528
SUBTOTAL N					1.6776
MATERIALES		, ,		1	
DESCRIPCIÓN		UNIDAD	CANT.	P. UNITARIO	соѕто
			Α	В	C=A*B
Placa Colaborante		m2	1.000	10.500	10.5000
SUBTOTAL O		1			10.5000
TRANSPORTE					
DESCRIPCIÓN		UNIDAD	CANT.	TARIFA	соѕто
		0.000	Α	В	C=A*B
SUBTOTAL P					_
SUBTUTAL F			STO DIRECTO)	
ESTE PRECIO NO INCLUYE EL IVA		(M+N+O+P)			12.2615
		UTILIDADE		22.0%	2.6975
		OTROS INC	IRECTOS %		-
		COSTO TO			14.9590
		VALOR OF	ERTADO	US\$	14.960

ANEXO C PLANOS ARQUITECTÓNICOS Y ESTRUCTURALES

ACI.2008. Obtenido de ACI 318-08. *American Concrete Institute*, Estados Unidos.

AISC.2010. Specification For Structural Steel Building. Estados Unidos.Cod:341.

AISC,2010. Specification For Structural Steel Building. Estados Unidos. Cod: 360.

Arroyo, S. C. 2007. Los Estudios de Impacto Ambiental:Tipos,Métodos, y Tendencias . Madrid : Escuela de Organización Industrial .

ASCE.2010. American Society of civil EngineersEstados Unidos.

ASTM.1996. *Annual Book of ASTM Standars*. USA. doi:0-8031-2300-0. Vol. 04.08.

ASTM.1996. *Anual Book of ASTM Standars*. USA. doi:0-8031-2301-9. Vol. 04.09.

Das, B. M. 2001. *Principios de Ingenierías de Cimentación*. México: Thomson Learning.

DIPAC. 2016. Perfiles Laminados IP. En DIPAC, *Perfiles Laminados IP.* Ecuador.

EcuRED. (s.f.). Recuperado el 22 de NOVIEMBRE de 2017, de https://www.ecured.cu/Provincia_de_Santo_Domingo_de_los_Ts%C3%A1chi las

Guerra, M. 2013. *Diseño de Cimentaciones Sismo Resistentes Utilizzando SAFE*. Quito.

Hormi2. (s.f.). Hormi2 La Nueva Generacion del Hormigón Armado. Obtenido de http://hormi2.com/tipos-de-panel/

M.Das, B. 1999. Fundamentos de Ingeniería Geotécnica. México: Thomson Learning.

NEC. 2015. Norma Ecuatoriana de la Construccion. En NEC, *Norma Ecuatoriana de la Construccion.*

NEC. 2015. Norma Ecuatoriana de la Construcción. Ecuador.

Novacero. 2017. Catálogo de Porductos. En Novacero, *Catálogo de Productos* (pág. 16).

SAP2000. (s.f.). SAP2000.

Tapia, C. 2010. Propuesta de mejoramiento del proceso constructivo para viviendas unifamiliares con sistema Hormi2. Obtenido de Escuela Politécnica Nacional: http://bibdigital.epn.edu.ec/handle/15000/2157

Ticona, A. 2014. *Análisis Granulometrico por tamizado ASTM D 422.* Lima : Universidad Nacional de Ingeniería .

TULSMA. 2015. Texto Unificado de Legislacion Secundaria del Ministro del Ambiente. Ecuador.