

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Ciencias de la Tierra

"INVENTARIO GEORREFERENCIADO DEL ANILLO VIAL DE LA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL CAMPUS PROSPERINA"

PROYECTO DE GRADO

Previa a la obtención del Título de:

Ingeniero Civil

Presentado por:

NARJARA ANAXEL INFANTE CHÉRREZ ROBERTO EDUARDO VALENCIA ESCALANTE

GUAYAQUIL-ECUADOR 2018

DEDICATORIA

Primeramente, a Dios, a mis padres Víctor Emilio y Mercedes Ruth quienes han formado parte de esta travesía de manera incondicional, demostrándome que no importa las piedras que encuentre en el camino hay que luchar por nuestro destino. A mis hermanos que fueron gran apoyo en este Proyecto Víctor Daniel (+) que desde el cielo ilumina mis pasos, a Gelerman Steeven mi pequeño y a mi novio Aldo Roberth Coronel Sánchez quien ha sido mi consejero, mi compañero de estudio y ha estado siempre a lo largo de la carrera.

Narjara Anaxel Infante Chérrez

DEDICATORIA

Dedico esta tesis a mis padres Guillermo Eduardo Valencia Monroy y María Auxiliadora Escalante Ortiz pues con su ejemplo diario me enseñaron la importancia del trabajo honesto y bien realizado. Ellos me han apoyado y guiado en todo momento, y al concluir esta etapa de mi carrera profesional, sé que he llegado hasta aquí y seguiré avanzando, gracias a ellos y la formación integral que me dieron.

Roberto Eduardo Valencia Escalante

AGRADECIMIENTOS

A la Escuela Superior Politécnica del Litoral la patrocinadora de nuestros estudios, a los profesores que a lo largo de nuestra carrera compartieron conocimientos sus para que lleguemos a la meta. Le damos las gracias al PhD. Miguel Ángel Chávez por su guía en este proyecto, a la MSc. Carola Gordillo por su apoyo desmedido, a los estudiantes de la Materia de Vías por su tiempo y entrega, al Ing Juan Carlos Pindo, Ing José Navarrete por guiarnos y aportar con este proyecto.

Narjara Anaxel Infante Chérrez

Roberto Eduardo Valencia Escalante

TRIBUNAL DE GRADUACIÓN

PhD. Hugo Ernesto Egües Álava PRESIDENTE DEL TRIBUNAL

PhD. Miguel Ángel Chávez Moncayo
DIRECTOR DE MATERIA INTEGRADORA

MSc Carola Marcia Gordillo Vera MIEMBRO EVALUADOR

DECLARACIÓN EXPRESA

"La responsabilidad del contenido de esta Tesis de
Grado, nos corresponde exclusivamente; y el patrimonio
intelectual de la misma, a la Escuela Superior Politécnica
del Litoral"

(Reglamento de Exámenes y Títulos Profesionales de la ESPOL)
Narjara Anaxel Infante Chérrez
Roberto Eduardo Valencia Escalante

RESUMEN

El Campus Gustavo Galindo de la Escuela Superior Politécnica del Litoral cuenta con una infraestructura moderna y funcional permite que los diferentes institutos de ciencias, facultades y programas tecnológicos puedan desempeñar las tareas básicas de docencia, investigación y prestación de servicios. Debido al cambio de administración de privada a pública la demanda y aumento de alumnado, ocasiona que se implementen mayores medidas y estándares en sus instalaciones. Para mitigar los efectos secundarios de sobrepoblación de alumnado y de vehículos se han realizado campañas de reducción de velocidad dentro del campus, los cuales ayudan a solucionar problemas de acceso y seguridad vial dentro del campus. A causa de la concurrencia de automóviles, los accidentes o incidentes en puntos ya localizados y la deficiencia de su señalética se ha previsto tomar medidas que puedan dar solución a la situación en la que se encuentra. Con la ayuda de los estudiantes de la materia de Vías de la carrera de Ing. Civil, II Término 2016-2017, se hizo una recolección de datos con los que se separó y discernió la información válida para el proyecto.

INDICE GENERAL

DEDIC	CATORIA	II
DEDIC	CATORIA	III
AGRAI	DECIMIENTOS	IV
TRIBU	JNAL DE GRADUACIÓN	V
DECLA	ARACIÓN EXPRESA	VI
RESUI	MEN	VII
INDICE	E GENERAL	VIII
ABRE\	VIATURAS	XVI
SIMBC	DLOGIA	XVII
INDICE	E DE FIGURAS	XVIII
CAPÍT	TULO 1	25
INTRO	DDUCCIÓN	25
1.1	Planteamiento del problema	26
1.2	Justificación	26
1.3	Introducción	27
1.4	Objetivos	28
1.4	4.1 Objetivos General	28

1.4.2		Objetivos específicos	28			
CAPÍT	CAPÍTULO 230					
DESCF	RIPCIÓ	ON DEL ÁREA DE ESTUDIO	30			
2.1	Ubica	ación	31			
2.2	Inforr	nación disponible	32			
2.2	2.1	Antecedentes	32			
2.3	Inven	itario Vial	33			
2.4	Entid	ades inventario vial	33			
2.4	.1	Normativa seguridad vial en el Ecuador	34			
2.5	Segu	ridad vial	34			
2.5	5.1	Seguridad Vial	34			
2.5	5.2	Importancia de la Seguridad Vial	35			
2.5	5.3	El estudio de la Seguridad Vial	35			
2.5	5.4	Usuario de la Vía	36			
2.6	Seña	les de Tránsito	36			
2.7	Seña	lización de tránsito vertical	37			
2.7	7.1	Señalización de tránsito vertical	37			
2.7	7.2	Clasificación de señales verticales de tránsito	38			
2.7	'.3	Clasificación de las señales informativas	42			
2.7	'.4	Señales para trabajos en la vía y propósitos especiales	43			
2.7	' .5	Señales especiales delineadoras	43			
2.7	' .6	Características de Señales Verticales	44			

2.7.7	Símbolos o leyendas	48
2.7.8	Flechas	48
2.7.9	Triángulos ceda el paso	54
2.7.10	Pare	55
2.7.11	Mantenga a la derecha Bus	56
2.7.12	Carril exclusivo	56
2.7.13	No entre	57
2.7.14	Parada bus	57
2.7.15	Reduzca la velocidad	58
2.7.16	Velocidad máxima	58
2.7.17	Estacionamiento	59
2.7.18	Prohibido estacionar	60
2.7.19	Estacionamiento exclusivo para personas con movilidad	
reducida.		60
2.7.20	Ciclo vía	61
2.7.21	Puente Angosto	62
2.7.22	Cruce de peatones	62
2.7.23	Zona de juegos	63
2.7.24	Reductor de Velocidad	64
2.7.25	Señalización De Transito Horizontal	64
2.7.26	Clasificación de señales horizontales de tránsito	65
2.7.27	Clasificación Según su Altura	77

2.7	.28	Características Básicas de las demarcaciones	78
2.8	Marco	legal de velocidades	79
2.9	Veloc	idades máximas	80
2.10	Eleme	entos reductores de velocidad	80
2.1	0.1	Resaltos	81
2.1	0.2	Dimensiones	83
2.1	0.3	Bandas transversales de alerta	83
2.11	Instru	cciones y criterios para obras varias zonas laterales de la	
carre	tera		84
2.1	1.1	Guardavía metálicos	85
2.1	1.2	Requerimientos	86
2.12	Muros	s de hormigón	86
2.1	2.1	Tipos de muros y requerimientos	87
2.13	Pintur	a Termoplástica	88
2.1	3.1	Beneficios	88
2.14	Sinies	stros de tránsito ESPOL	89
2.15	Estad	ísticas	91
2.16	Revisión de norma92		
2.17	Tende	encia de siniestros de tránsito	93
2.18	Image	en orto mosaica (orto foto)	94
2.19	Metod	dología para determinar zonas de riesgo de accidente de	
tráfic	D		95

	2.1	9.1	Perfil de Susceptibilidad de la Carretera	99
	2.1	9.2	Factor Infraestructura	99
	2.1	9.3	Factor Clima	101
	2.1	9.4	Factores Geométricos de la Carretera	102
	2.1	9.5	Coeficiente de resistencia al deslizamiento con el péndulo	de
	TR	RL		104
	2.1	9.6	Matriz de Leopold	109
CA	PÍTU	JLO 3		114
ME	TOE	OLO	GÍA	114
3	3.1	Meto	dología a utilizar	115
3	3.2	Diagr	ama de flujo de Actividades Preparatorias	119
3	3.3	Levar	ntamiento de la red vial	121
3	3.4	Proce	eso de georreferenciación	121
3	5.5	Entida	ades	122
3	.6	Levar	ntamiento	125
	3.6	.1	Levantamiento de señalética	125
	3.6	.2	Reductores de velocidad	127
	3.6	.3	Guarda vías	128
	3.6	.4	Alcantarillas	129
	3.6	.5	Dibujo y edición en CAD	129
	3.6	.6	Digitalización base ESPOL	129
3	5.7	Post	proceso digital de fichas de campo	130

	3.7	'.1	Elementos viales	.130
	3.7	.2	Definición de propiedades (generación de datos geográfico	s o
	geo	odatab	ase)	.133
CA	PÍT	ULO 4		.135
A١	IÁLI	SIS DE	RESULTADOS	.135
2	1.1	Análi	sis cuantitativo	.136
	4.1	.1	Señalética vertical	.136
4	1.2	Análi	sis espacial	.145
2	1.3	Análi	sis zonas de riesgo de accidente de tráfico	.149
4	1.4	Análi	sis geométrico	.154
	4.4	.1	Cálculos geométricos del estado actual	.154
	4.4	.2	Datos geométricos recomendados y comparación	.159
4	1.5	Propu	uestas y/o alternativas de solución	.160
	4.5	.1	Seguridad vial	.160
	4.5	.2	Nuevo diseño de señalética horizontal adecuada	.163
	4.5	.3	Implementar una base de datos georrefenciada de la	
	info	ormaci	ón o estadísticas de incidentes o accidentes de tránsitos	.166
4	1.6	Estuc	lio de impacto ambiental	.167
	4.6	.1	Términos de referencia y descripción de línea base	.167
	4.6	5.2	Identificación de los Impactos Ambientales	.167
	4.6	.3	Impactos positivos generados	.168
	4.6	.4	Impactos negativos generados.	.168

4.6.5	Valoración y Evaluación de los Impactos ambientales	169
4.7 Plan	n de Manejo Ambiental	170
4.7.1	Responsabilidad y Verificación de la ejecución	171
4.7.2	Implementación del Plan de Manejo Ambiental	171
4.7.3	Estructura del Plan de Manejo Ambiental	172
4.7.4	Especificaciones para las Actividades del Inventario	
Georrefe	erenciado del Anillo Vial de la Escuela Superior Politécnica	ı del
Litoral ca	ampus Prosperina	172
4.7.5	Especificaciones para las Actividades después del Inver	ntario
Georrefe	erenciado del Anillo Vial de la Escuela Superior Politécnica	ı del
Litoral ca	ampus Prosperina	174
4.7.6	Planes de mitigación y control ambiental	175
4.7.7	Lineamientos Generales.	177
4.8 Tipo	os de Emergencia	178
4.8.1	Programa de Seguridad Industrial y Salud Ocupacional.	179
4.8.2	Programa de Rehabilitación y mantenimiento de la seña	lética
del cam	pus	180
4.9 Pres	supuesto	181
4.9.1	Análisis de Presupuesto Unitario	181
4.10 Aná	llisis de alternativas y selección	183
4.10.1	Selección de alternativa viable	183
CAPÍTULO	5	184

CONCLUSIONES Y RECOMENDACIONES	
CONCLUSIONES	185
RECOMENDACIONES	188
BIBLIOGRAFÍA	
ANEXOS	

ABREVIATURAS

INEN Instituto Ecuatoriano de Normalización

RTE Reglamento Técnico Ecuatoriano

AASHTO American Association of State Highway and Transportation

NEVI Norma Ecuatoriana Vial

MTOP Ministerio de Transporte y Obras Públicas

BTA Bandas transversales de alerta

SIMBOLOGIA

m/s Metros por segundo

h Hora

km Kilómetros

m Metros

m³ Metros cúbicos

mm Milímetros

INDICE DE FIGURAS

Figura 2.1 Localización del área de estudio	31
Figura 2.2 Ángulo de entrada y de observación	46
Figura 2.3 Línea de Separación	66
Figura 2.4 Doble Línea de Separación	67
Figura 2.5 Doble Línea Mixta de Separación	68
Figura 2.6 Línea de separación de la calzada	69
Figura 2.7 Líneas de prohibición de estacionamiento	71
Figura 2.8 Líneas zig zag de aproximación a cruce cebra	72
Figura 2.9 Líneas de pare	73
Figura 2.10 Líneas de Ceda el paso	74
Figura 2.11 Líneas de Detención	75
Figura 2.12 Líneas de cruce	76
Figura 2.13 Especificaciones de Resalto	82
Figura 2.14 Dimensiones de reductores de velocidades	83
Figura 2.15 Detalle vista en corte	84
Figura 2.16 Tipos de geometría de barreas de concreto	87
Figura 2.17 Estadísticas de siniestros de tránsito	91
Figura 2.18 Siniestros de tránsito anuales	92

Figura 2.19 Especificaciones mínimas de las vías	93
Figura 2.20 Perfil de Susceptibilidad para carreteras	96
Figura 2.21 Puntos con accidentes de tránsito	97
Figura 2.22. Orto foto campus Gustavo Galindo Velasco	98
Figura 2.23 Secciones de la carretera	104
Figura 3.1 Diagrama de actividades	120
Figura 3.2. Diagrama de proceso para georreferenciación	124
Figura 4.1. Distribución porcentual en la revisión de dimensiones	137
Figura 4.2. Distribución por tramos en la revisión de dimensiones	138
Figura 4.3. Disposición de guardavías	140
Figura 4.4. Capta faros de guardavías	141
Figura 4.5. Terminales de guardavías	141
Figura 4.6. Estado alcantarillas ESPOL	143
Figura 4.7. Cumplimiento ubicación cuneta	144
Figura 4.8. Cumplimiento altura	144
Figura 4.9. Densidad de Kernel avisos regulatorios	148
Figura 4.10. Densidad de Kernel avisos regulatorios y preventivos	150
Figura 4.11 Tramos Susceptibles a peligros	153
Figura 4.12 Plan de Manejo Ambiental	173

INDICE DE TABLAS

Tabla I Dimensiones de las señales preventivas 4	.0
Tabla II Distancia mínima de separación entre las señales 5	0
Tabla III Dimensiones de la flecha Avenida Divida5	1
Tabla IV Dimensiones de la flecha de viraje SOLO 5	1
Tabla V Dimensiones de la Simbología Curva abierta 5	2
Tabla VI Dimensiones de la flecha de viraje y girar en U	2
Tabla VII Dimensiones de las flechas rectas de viraje 5	3
Tabla VIII Dimensiones de la simbología No gire en U	3
Tabla IX Dimensiones de la simbología: Bifurcación en Y	4
Tabla X Dimensiones y Códigos de Triangulo Ceda el Paso	5
Tabla XI Dimensiones y Códigos de Símbolo Pare 5	5
Tabla XII Dimensiones de Simbología: De Manténgase a la derecha Buses	
5	6
Tabla XIII Dimensiones de Simbología: Carril Exclusivo	6
Tabla XIV Dimensiones de Simbología: NO ENTRE 5	7
Tabla XV Dimensiones de Simbología: Parada de Bus	7
Tabla XVI Dimensiones de Simbología:	8
Tabla XVII Dimensiones de Simbología: Límite Máximo de Velocidad5	9

Tabla XVIII Dimensiones de Simbología Estacionamiento	59
Tabla XIX Dimensiones de Simbología: Prohibido Estacionar	60
Tabla XX Dimensiones de Simbología: Estacionamiento para	
Discapacitados	61
Tabla XXI Dimensiones de Simbología Ciclo vía	61
Tabla XXII Dimensiones de Simbología Puente Angosto	62
Tabla XXIII Dimensiones de Simbología: Cruce de Peatones	63
Tabla XXIV Dimensiones de Simbología Zona de Juegos	63
Tabla XXV Dimensiones de Simbología Reductor de Velocidad	64
Tabla XXVI Ancho de la Línea de Separación	66
Tabla XXVII Separación entre líneas de los carriles	69
Tabla XXVIII Ancho del carril según las velocidades	80
Tabla XXIX Requerimientos construcción de guardavias	86
Tabla XXX Requerimientos construción muros	87
Tabla XXXI Beneficios de Pintura Termoplástica	89
Tabla XXXII Factor Infraestructura.	100
Tabla XXXIII Valores mínimos reglamentarios de Retrorreflectividad	101
Tabla XXXIV Factor clima.	102
Tabla XXXV Descripción de Factor Clima.	102
Tabla XXXVI Alineamiento horizontal de la carretera	103
Tabla XXXVII Descripción de alineamiento horizontal de carretera	103
Tabla XXXVIII Categoría e información de la vía	107

Tabla XXXIX División por tramos para el levantamiento de las entidades116
Tabla XL Registro de Grupos y Subgrupos Para Inventario Vial122
Tabla XLI Tipos de Emergencias en accidentes 178
Tabla XLII Análisis de Presupuesto Unitario de Señalética horizontal181
Tabla XLIII Análisis de Presupuesto Unitario de Señalética Vertical182
Tabla XLV. Datos de parámetros de Guarda vías elementos del 0 - 5 en el
Anillo Vial del Campus ESPOL
Tabla XLVI (Continuación tabla XLV)194
Tabla XLVII. Datos de parámetros de Guarda vías, elementos del 6 - 11 en el
Anillo Vial del Campus ESPOL
Tabla XLVIII (Continuación tabla XLVIII) 195
Tabla XLIX. Datos de parámetros de Alcantarillas, elementos del 0 - 25 en el
Anillo Vial del Campus ESPOL
Tabla L. Datos de parámetros de Alcantarillas, elementos del 26 -55 en el
Anillo Vial del Campus ESPOL197
Tabla LI. Datos de parámetros de Alcantarillas, elementos del 56 -84 en el
Anillo Vial del Campus ESPOL
Tabla LII. Datos de parámetros de Alcantarillas, elementos del 85 -114 en el
Anillo Vial del Campus ESPOL
Tabla LIII. Datos de parámetros de Alcantarillas, elementos del 115 -142 en
el Anillo Vial del Campus ESPOL199

Tabla LIV. Datos de parámetros de Reductores de velocidad, elementos 0 -	-
25 en el Anillo Vial del Campus ESPOL20)0
Tabla LV. Datos de parámetros de Reductores de velocidad, elementos 26 -	-
38 en el Anillo Vial del Campus ESPOL20)2
Tabla LVI. Datos de parámetros de señalética vertical elementos 0 - 20 en e	el
Anillo Vial del Campus ESPOL20)2
Tabla LVII. (Continuación tabla LVI)20)3
Tabla LVIII. (Continuación tabla LVII))4
Tabla LIX. (Continuación tabla LVIII))5
Tabla LX. Datos de parámetros de avisos horizontales, flechas, en el Anillo	
Vial del Campus ESPOL20)7
Tabla LXI. Datos de parámetros de siniestros en el Anillo Vial del Campus	
ESPOL20)8
Tabla LXII. Datos de parámetros de 10 avisos horizontales en el Anillo Vial	
del Campus ESPOL)9
Tabla LXIII. Metadatos entidad señalética vertical21	10
Tabla LXIV. (Continuación tabla LX)	11
Tabla LXV. (Continuación tabla LXI)	12
Tabla LXVI. Metadatos entidad señalética horizontal 21	14
Tabla LXVII. Metadatos entidad guarda vías	15
Tabla LXVIII. (Continuación tabla LXVII)21	16
Tabla LXIX. Metadatos entidad reductores de velocidad21	17

Tabla LXX. (Continuación tabla LXIX)	218
Tabla LXXI. Metadatos entidad alcantarillas	218
Tabla LXXII Intensidad	219
Tabla LXXIII Extensión	220
Tabla LXXIV Duración	221
Tabla LXXV Signo del Impacto	222
Tabla LXXVI Magnitud	223
Tabla LXXVII Reversibilidad	224
Tabla LXXVIII Riesgos	225
Tabla LXXIX VIA Valoración de impacto Ambiental	226

CAPÍTULO 1 INTRODUCCIÓN

1.1 Planteamiento del problema

En vista de la problemática y concurrencia de incidentes y/o accidentes viales dentro del campus de la Escuela Superior Politécnica del Litoral – Prosperina, se ha dispuesto realizar una investigación exhaustiva de las posibles falencias de los diferentes ámbitos que implica la seguridad vial tanto de los estudiantes, como profesores y particulares que hacen uso de la vía interna de la universidad.

1.2 Justificación

Tomando en cuenta el problema existente se realizará un Inventario Georreferenciado del Campus por medio de levantamiento topográfico y de trabajo de campo con un alcance de los activos como señalética horizontal, señalética vertical, accidentes, reductores de velocidad, índice de fricción, alcantarillas, alineamiento horizontal y peralte. El producto esperado es una base de datos georreferenciada y un estimado de presupuesto en rubros identificados para reparación o reemplazo y la intervención con una obra civil para la reducción de accidentes, el cual servirá para uso y manejo de las autoridades pertinentes para un cambio necesario para toda la comunidad Politécnica.

1.3 Introducción

El presente documento contiene información de normas y metodología de campo para la recopilación de información de la red vial ESPOL, vía principal, el cual permitirá saber el estado del pavimento superficial y condiciones de elementos de seguridad vial, resultados obtenidos, análisis cuantitativo de resultados, análisis espacial de los avisos verticales, análisis geométrico de la red vial, propuestas de solución para reducción de accidentes, conclusiones y recomendaciones.

La infraestructura vial de la Escuela Superior Politécnica del Litoral (ESPOL), ha adquirido una constante evolución a lo largo de los años y a su vez ha cursado unos pequeños déficits en su infraestructura provocados por acciones de tránsito, acciones constantes como factores climáticos, y desgaste del material. Las no favorables condiciones del entorno vial, señaléticas y condición superficial del pavimento, tienen un porcentaje de afectación para los usuarios.

Gracias a la información otorgada por el departamento de seguridad, se podrá determinar las principales causas de estas singularidades. Una manera para indagar y realizar una correcta recolección de datos viales es tomar registro de los accidentes y el estado de los elementos en la infraestructura vial, generando una base de datos georreferenciada, de

esta manera se pudo prescribir las áreas con mayor afectación y de esta manera proponer y seleccionar la mejor propuesta de solución.

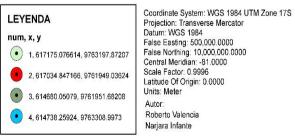
1.4 Objetivos

1.4.1 Objetivos General

Realizar un inventario georreferenciado de las condiciones de los pavimentos de la red vial ESPOL vía principal, elementos de protección vial, señalética y este facilite la toma de decisiones para inversiones futuras que se pueden emprender para el mantenimiento, rehabilitación, reconstrucción y mejoramiento de dichos elementos. Estas medidas garantizarán un confort para los usuarios y mejor uso de la carretera.

1.4.2 Objetivos específicos

 Analizar la condición de los pavimentos, las señaléticas horizontales y verticales y diversos activos para el levantamiento de datos necesarios del Inventario Vial.


- Realizar un levantamiento de datos en campo para la obtención de las coordenadas de las señaléticas que formaran parte del producto final.
- Presentar un Plano final del levantamiento con la georreferenciación de los diversos activos tanto en buen estado como deficientes, para así poder proponer una alternativa viable y factible para el cambio de las mismas.
- Determinar tramos susceptibles a accidentes de tránsito,
 caracterizando los tipos de peligros que puedan existir.
- Presentar alternativas de solución en los tramos susceptibles a peligros desde el punto de vista geométrico y de seguridad vial.

CAPÍTULO 2 DESCRIPCIÓN DEL ÁREA DE ESTUDIO

2.1 Ubicación

El proyecto analizó los tramos del anillo interno vial y la vía PARCON de la Escuela Superior Politécnica del Litoral que se encuentra ubicada en Km 30.5 Vía Perimetral Campus Gustavo Galindo. Con las coordenadas de localización mostradas en la figura 1.

Figura 2.1 Localización del área de estudio **Fuente:** Infante, N., Valencia, R., 2018

2.2 Información disponible

2.2.1 Antecedentes

La ESPOL tiene nombradía de ser una de las mejores universidades del país, siendo una de las principales alternativas de estudiantes para estudiar una carrera universitaria; más aún al convertirse en universidad pública ha incrementado el número de aspirantes que se registran en esta universidad.

Razón por la cual ha aumentado no solo el número de alumnos sino también el número de vehículos utilizados dentro del campus. Debido al aumento de vehículos, la universidad se vio en la necesidad de llevar a cabo diferentes proyectos de seguridad vial para prevenir futuros accidentes de tránsito, siendo principalmente la colocación de nuevas señaléticas de tránsito, pero ¿Qué ocurre con las ya instaladas y en mal estado?

Toda carretera necesita un mantenimiento, así como también las infraestructuras de protección vial. Gracias a inspecciones visuales por los años de uso de la carretera de Espol y evidencia fotográfica, sabemos que algunos elementos se encuentran en mal estado y los pavimentos ya presentan fallas no recomendadas para el uso de la misma, estos inconvenientes requieren una

solución para que la reputación de la seguridad vial en ESPOL no se vea afectada por el mal mantenimiento de la carretera.

2.3 Inventario Vial

Es un sistema que brinda al público en general información de las infraestructuras complementarias presentes (Por ejemplo, calzada, bermas, drenajes, taludes, alcantarillas, intersecciones, señales verticales de velocidad máxima, defensas antideslizamiento, defensas anti inundación, pasos deprimidos, y parámetros internacionales de condición funcional de las calzadas: índice de rugosidad internacional (IRRI), ahuellamiento), mediante inspección visual y el uso de equipos para ensayar la calidad actual de ciertos elementos.

Es importante señalar que, en este documento, se levantará solo las entidades establecidas en el capítulo 3 del campus Gustavo Galindo ESPOL.

2.4 Entidades inventario vial

Se dispuso una categorización de las entidades con sus respectivos subgrupos tal como se puede apreciar en la tabla del Capítulo 3 Sección 3.4 Registro de grupos y subgrupos para Inventario Vial en la tabla 33.

2.4.1 Normativa seguridad vial en el Ecuador

Los parámetros, límites y requerimientos de este proyecto se realizarán en base al Instituto Ecuatoriano De Normalización (RTE INEN I., 2012), American Asociation of State Highway and Transport (AASHTO 249-12, 2012), especificaciones generales para la construcción de caminos y puentes (MOP, 2002), normas de diseño geométrico de carreteras – 2003 (LOUIS BERGER INTERNACIONAL) y a la patente Norma Ecuatoriana de Vías (NEVI-12 MTOP, 2013)

2.5 Seguridad vial

2.5.1 Seguridad Vial

Se la puede definir como el atributo intrínseco de la vía que aporta a garantizar el respeto a la integridad física de los usuarios y de los bienes materiales aledaños a ella. Se debe tener presente en el diseño, construcción, mantenimiento y operación de una obra vial. (RTE INEN, 2012).

2.5.2 Importancia de la Seguridad Vial

No solo es importante en el ámbito económico, sino que también en lo social y cultural, ya que es necesario sensibilizar a las personas e informar sobre su seguridad vial e integridad física ante los caminos o carreteras usados comúnmente y así evitar un incremento de los accidentes de tránsito en el país ya sea por desperfectos en los vehículos, inconciencia humana o desmejoras en las vías.

2.5.3 El estudio de la Seguridad Vial

Este concepto se lo debe incorporar desde los primeros niveles del estudio del proyecto vial con el fin de no incurrir en costos de medidas de mitigación que pudieren ser más altos. Por ejemplo: El costo de optimizar el trazado de un nuevo proyecto de trazado. Esto resulta especialmente importante en Ecuador, donde existe un importante número de accidente y costos asociados a ellos. (RTE INEN, 2012).

2.5.4 Usuario de la Vía

Son los peatones, ciclistas que están en contacto con el camino o carretera además del conductor.

2.6 Señales de Tránsito

Para ser efectivos los dispositivos de control del tránsito solamente deben ser instalados cuando un estudio de ingeniería de tránsito haya indicado la necesidad de su uso.

Para el cumplimiento de lo indicado en el numeral 4.1, un dispositivo de control de tránsito debe cumplir los siguientes requisitos básicos:

- a) Cumplir y satisfacer una necesidad;
- b) Ser visible y llamar la atención del usuario vial;
- c) Contener, transmitir un mensaje claro y simple;
- d) Inspirar respeto, y
- e) Colocarse de modo que brinde el tiempo adecuado para una respuesta del usuario vial.

Las fallas que podría tener un dispositivo de control del tránsito para cumplir su función se deben generalmente a las siguientes causas:

- a) No tomar en cuenta a las condiciones de clima, condiciones físicas (como niveles y distancias de visibilidad), psicología del conductor y limitaciones de los vehículos;
- b) Falta de mantenimiento;
- c) Falta de respeto causada por uso excesivo del dispositivo de control de tránsito;
- d) Diseño inadecuado de las facilidades de tránsito de la vía (los dispositivos de control de tránsito no pueden solucionar fallas del diseño geométrico);
- e) Ubicación del dispositivo demasiado cercana a otro dispositivo de control de tránsito, incumpliendo en lo especificado en el numeral 5.8.2.1 de (RTE INEN, 2012, pág. 11)

2.7 Señalización de tránsito vertical

2.7.1 Señalización de tránsito vertical

Es un medio de comunicación de los usuarios que entrega información geográfica, turística, cultural y de servicio en tramo vial, que debe cumplir no solo con las especificaciones que demanda la ley en cuanto a características de tamaño, contraste,

color, retroreflectividad, composición e iluminación que puedan ser comprendidas por los usuarios sin importar la edad o estatus social y a su vez tomar las medidas preventivas necesarias acorde al mensaje que se entiende a través de las señales.

2.7.2 Clasificación de señales verticales de tránsito.

Dependiendo a la función que ejecutan se clasifican en diferentes grupos:

Señales Regulatorias

Son las que indican el uso, manejo, prohibiciones, restricciones, autorizaciones y obligaciones de las vías; así como también son las que dan una alerta al usuario de que si está o no infringiendo una ley.

Símbolos y flechas en color negro sobre fondo blanco para su fácil identificación. Se ubican al lado derecho de la vía.

Se deberá evitar, de no ser necesario, la inscripción de leyendas o mensajes adicionales en las señales verticales regulatorias. Y se clasifican de la siguiente manera según (RTE INEN, 2012, pág. 20)

- R1 Serie de Prioridad de Paso
- R2 Serie de Movimiento y Dirección
- R3 Serie de Restricción y circulación
- R4 Serie de Límites máximos
- R5 Serie de Estacionamientos
- R6 Serie de Placas complementarias
- R7 Serie Miscelánea

Señales Preventivas

Su propósito es poner en alerta al usuario de los peligros existentes en un tramo específico, así como posibles situaciones o riesgos presentes en el camino o aledaños a él, ya sea de manera temporal o permanente.

Según la funcionalidad de cada señal de advertencia, estas se pueden agrupar de la siguiente forma según (RTE INEN, 2012, pág. 54)

- P1 Serie de Alineamiento
- P Serie de Intersecciones y empalmes

- P Serie de aproximación a dispositivos de control de tránsito
- P Serie de anchos, alturas y pesos.
- P Serie de Asignación a carriles
- P Serie de obstáculos y situaciones especiales de la vía
- P Serie Peatonal
- P Serie de Complementarias

Mediante la normativa vigente (RTE INEN I., 1042) se conoce las dimensiones de las diferentes señales, para las velocidades respectivas como se aprecia en la Tabla II.

Tabla I Dimensiones de las señales

85 Percentiles	Dimensión
85 Percentiles	Dimension
Velocidad	(mm) de la
(km/h)	señal
Menos de 60	600 x 600
70 – 80	750 x 750
Más de 90	900 x 900

Fuente: (RTE INEN, 2012, pág. 55)

Señales Informativas

Entregan información al usuario que le servirá para poder llegar a su destino y conocer la distancia, tiempo, nombre de calles, lugares de turismo y diferentes servicios de manera segura, simple y directa. (RTE INEN, 2012, pág. 154)

Entre las funciones que justifican a una señal informativa tenemos las siguientes:

- Intersección con otras vías
- Carriles apropiados para cada destino
- Direcciones hacia destinos, calles o rutas
- Inicio de la salida a otras vías
- Distancias a que se encuentran los destinos
- Nombres de rutas y calles
- Servicios y lugares atractivos turísticos, social o cultural existentes en las inmediaciones de la vía
- Nombres de ciudades, ríos, puentes, calles, parques, lugares históricos entre otros.

2.7.3 Clasificación de las señales informativas.

a) Señales de información de Guía:

- Serie anticipada de advertencia de destino
- Serie de decisión de destino
- Serie de confirmación de jurisdicción vial
- Número de corredor vial, nombre de las vías
- De poblados
- Serie de información para autopistas
- Series diagramáticas
- Series de postes de kilometraje.

Símbolos y flechas en color negro sobre fondo verde retroreflectivo para su fácil identificación. Se ubican al lado derecho de la vía. (RTE INEN I., 1042, pág. 12)

b) Señales de información de Servicio:

Las señales de información de servicio informan a los usuarios de la vía de las direcciones, distancias, destinos, rutas, ubicación de servicios y puntos de interés turístico. (RTE INEN I., 1042, pág. 12)

2.7.4 Señales para trabajos en la vía y propósitos especiales

Se la denota con el (Código T). Advierten, informan y guían a los usuarios viales a transitar con seguridad sitios de trabajos en las vías y aceras además para alertar sobre otras condiciones temporales y peligrosas que podrían causar daños a los usuarios viales. (RTE INEN I., 1042, pág. 12)

2.7.5 Señales especiales delineadoras

Se denotan (Código D). Delinean al tránsito que se aproxima a un lugar con cambio brusco (ancho, altura y dirección) de la vía, o la presencia de una obstrucción en la misma. (RTE INEN I., 1042, pág. 12)

2.7.6 Características de Señales Verticales.

2.7.6.1 Mensaje de Señales Verticales

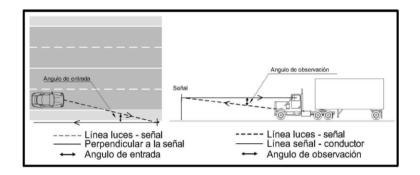
El mensaje transmitido por las señales debe ser nítido e inequívoco para el usuario de manera gráfica o por medio de leyendas o palabras claves para su fácil compresión.

2.7.6.2 Forma y color de Señales Verticales

Estas características ayudan a la rápida y fácil compresión de los mensajes inscritos en ellas y deben respetarse según la norma.

2.7.6.3 Tamaño de la Señal

Las dimensiones mínimas se dan de acuerdo a las especificaciones en función de la velocidad del proyecto de la vía y se ubican en a distancias homogéneas.


No obstante, en el caso de requerir aumento de tamaño o mejorar la visibilidad en una señal se deberá realizar un análisis técnico de la situación sin que se afecte la proporcionalidad entre todos sus elementos.

2.7.6.4 Diagramación de Señales

Deberán estar diagramadas según lo indicado en cuanto a característica de forma, color tal como se indica en las secciones del manual (NEVI-12 MTOP, 2013) y el reglamento (RTE INEN, 2012)

2.7.6.5 Retroreflectividad y Laminación de Señales

Este es uno de los parámetros más importantes de la señalización vertical ya que una señal debe ser visible tanto en el día como en la noche. Los conductores en la noche tendrán la facilidad de visualizar una señal al iluminarla con los focos de sus vehículos gracias a las láminas retroreflectivas que reflejan la luz recibida de la fuente emisora. (RTE INEN, 2012). Tal como se puede observar en la figura 2.

Figura 2.2 Ángulo de entrada y de observación **Fuente:** (NEVI-12 MTOP, 2013)

Donde:

- a) Angulo de Entrada: Es el ángulo formado entre un rayo de luz sobre la superficie retro- reflectante y una línea perpendicular a esa misma superficie.
- b) Angulo de Observación: Corresponde al ángulo formado por el rayo de luz emitido por los focos del vehículo sobre una superficie retroreflectiva y el rayo de luz retro reflejado a los ojos del observador.

2.7.6.6 Ubicación de las Señales Verticales

Se deben analizar las siguientes condiciones para la correcta ubicación e instalación de una señal.

 Distancia entre la señal y la situación que generó su instalación (Ubicación longitudinal).

- Distancia entre la señal y el borde de la calzada (Ubicación Transversal).
- Altura de ubicación de la placa de la señal.
- Orientación de la placa de la señal.
- Distancia mínima entre señales.

En general, una señal deberá cumplir los siguientes objetivos:

- Indicar el inicio y el fin de una restricción o autorización. En estos casos, la señal se instalará en el lugar específico donde ocurre la situación señalizada.
- Advertir e informar sobre condiciones de la vía o respecto a acciones que se deben o se pueden realizar más adelante.
- Informar con respeto a orientación geográfica y características socio – culturales que pudieran encontrase aledañas o cercanas a la vía. Entre estas últimas se pueden mencionar señales con información turística, cultural, de servicios etc.

 La distancia mínima de separación entre las diferentes señales debe tener como fincalidad que el conductor cuente con el tiempo y distancia necesaria para poder efectuar las maniobras adecuadas con su vehículo y no poner en riesgo su integridad y seguridad física. (RTE INEN, 2012)

Según la siguiente tabla 2 se tiene las velocidades y distancias de las señales según corresponda:

Con respeto a la altura de la placa de la señal, se deben conjugar variados factores, como: son Retroreflectividad, tránsito de peatones, vegetación, obstáculos cercanos etc.

2.7.7 Símbolos o leyendas

Se emplean tanto para guiar y advertir al usuario como para regular la circulación. Se incluye en este tipo de señalización

2.7.8 Flechas

Indican al usuario la dirección y sentido que deben seguir los vehículos que transitan por una pista de circulación.

Según las maniobras asociadas a ellas se tienen los siguientes tipos de flechas: (RTE INEN I. , 1042) Ver tabla II.

o Flecha de Avenida Dividida

Esta señal será ubicada en la esquina derecha de la vía que se aproxima a la intersección y puede ser instalada debajo de la señal de PARE o CEDA EL PASO o en un soporte separado. Tal como se muestra en la tabla III.

Tabla II Distancia mínima de separación entre las señales **VELOCIDAD (KM/H)**

		VELOOIDAD (MIMI)						
DISTANCIA SEGÚN	120 - 1°	10	100 –	90	80 -	60	50 - 3	0
PRECEDENCIA (M)	Mínima Absoluta	Mínima Recomendada	Mínima Absoluta	Mínima Recomendad a	Mínima Absolut a	Mínima Recomendad a	Mínima Absolut a	MÍNIMA RECOME N DADA
REGULATORIA O PREVENTIVA - REGULATORIA O PREVENTIVA	50	80	50	65	30	50	20	30
REGULATORIA O PREVENTIVA - INFORMATIVA	90	120	80	105	60	80	40	50
INFORMATIVA - REGULATORIA O PREVENTIVA	60	90	50	75	40	60	30	40
INFORMATIVA - INFORMATIVA	110	140	90	115	70	90	50	60

Fuente: (NEVI-12 MTOP, 2013, pág. 164)

Tabla III Dimensiones de la flecha Avenida Divida

Simbología	Código No.	Dimensiones (mm)	Dimensiones (mm) y serie de letras
AVENIDA	R2 – 20A	750 x 600	7.5 E
DIVIDIDA R2-20	R1 – 20 B	900 x 750	10 E

Fuente: (RTE INEN, 2012, pág. 33)

Flecha de Viraje Solo

Estas señales se emplean para indicar al conductor la obligación de seguir la dirección indicada por la flecha. Tal como se muestra en la tabla IV

Tabla IV Dimensiones de la flecha de viraje SOLO

Simbo	ología	Código No.	Dimensiones (mm)	Dimensiones (mm) y serie de letras
~		R2 – 15A (I o D)	750 x 900	140 Da
SOLO	SOLO	R1 – 2B (I o D)	900 x 1200	140 Da
R2-15/	R2-15 <i>D</i>			

Fuente: (RTE INEN, 2012, pág. 31)

Flecha curva abierta izquierda o derecha

Indican la aproximación a dos curvas contrapuestas y cuya tangente de separación es menor a 120 m; y se instalan en

aproximaciones a esta clase de curvas. Tal como se muestra en la tabla V

 Tabla V Dimensiones de la Simbología Curva abierta

 Simbología
 Código No.
 Dimensiones (mm)

 P1 – 2A (I o D)
 600 x 600

 P1 – 2B (I o D)
 750 x 750

 P1 – 2C (I o D)
 900 x 900

Fuente: (RTE INEN, 2012, pág. 57)

Flecha de Viraje y girar en U

Esta señal se emplea para indicar al conductor que no debe virar a la izquierda o en U, tal como se muestra en la tabla VI

Tabla VI Dimensiones de la flecha de viraje y girar en U

Simbología	Código No.	Dimensiones (mm)
	R2 – 10A (I)	600 x 600
(D)	R2 – 10B (I)	750 x 750
R2-10/	R2 – 10C (I)	900 x 900

Fuente: (RTE INEN, 2012, pág. 28)

Flecha Recta y de Viraje

Enseña la línea recta para que se vire en la dirección y sentido indicado por la flecha de viraje. Se utiliza en las proximidades de intersecciones, empalmes y enlaces para advertir a los conductores las maniobras permitidas en las pistas laterales. Tal como se muestra en la tabla VII

Tabla VII Dimensiones de las flechas rectas de viraje

Simbo	ología	Código No.	Dimensiones (mm)
		R2 – 9A (I o D)	600 x 600
		R2 – 9B (I o D)	750 x 750
R2-9I	R2-9D	R2 – 9C (I o D)	900 x 900

Fuente: (RTE INEN, 2012, pág. 28)

Flecha de viraje en U o Prohibido Girar en U.

Informa que es posible hacer o no un giro en u por el usuario. Tal como se muestra en la tabla VIII.

Tabla VIII Dimensiones de la simbología

	Código No.	Dimensiones (mm)
	R2 – 8A	600 x 600
	R2 – 8B	750 x 750
	R2 – 8C	900 x 900
R2-8		

Fuente: (RTE INEN, 2012, pág. 27)

Bifurcación en Y

Se utiliza solamente en vías rurales o urbanas de gran extensión, situadas en zonas poco urbanizadas y que no sean controladas por semáforos, ni tampoco cuando esa intersección estuviere regulada con señales de prioridad de paso (Pare, Ceda El Paso, Cruce Ferroviario), en cuyo caso se deberán utilizar las señales preventivas correspondientes. Tal como se muestra en la tabla IX.

Tabla IX Dimensiones de la simbología: Bifurcación en Y

Simbología	Código No.	Dimensiones (mm)
	P2 – 7A	600 x 600
	P2 – 7B	750 x 750
P2-7	P2 – 7C	900 x 900

Fuente: (RTE INEN, 2012, pág. 62)

2.7.9 Triángulos ceda el paso

Esta señal advierte al usuario de tomar precaución al llegar a una esquina o intersección y en el caso de venir otro vehículo en preferencia, detener el auto y ceder el paso y luego seguir en marcha. Tal como se muestra en la tabla X

Tabla X Dimensiones y Códigos de Triangulo Ceda el Paso

Simbología	Código No.	Dimensiones (mm)	Dimensiones (mm) y serie de letras	
			Línea 1	Línea 2
CEDA EL	R1 – 2A	750	120 En	100 Da
PASO	R1 – 2B	900	140 En	120 Da
R1-2	R1 – 2C	1200	160 En	140 Da

Fuente: (RTE INEN, 2012, pág. 22)

2.7.10 Pare

Es una de las más importantes de las señales ya que nos indica que se debe detenerse antes de cruzar la intersección y reanudar la marcha sólo cuando pueda realizarlo con seguridad. Tal como se muestra en la tabla XI.

Tabla XI Dimensiones y Códigos de Símbolo Pare

Simbología	Código No.	Dimensiones (mm)	Dimensiones (mm) y serie de letras
	R1 – 1A	600 x 600	200 Ca
PARE	R1 – 1B	750 x 750	240 Ca
R1 – 1	R1 – 1C	900 x 900	280 Ca

Fuente: (RTE INEN, 2012, pág. 21)

2.7.11 Mantenga a la derecha Bus

Se la utiliza básicamente para especificar que en este carril de la derecha solo deben circular y mantenerse un tipo de vehículos en este caso autobuses. Tal como se muestra en la tabla XII.

Tabla XII Dimensiones de Simbología:

De Mantengase	De Mantengase a la derecha Buses				
Simbología	Código No.	Dimensiones (mm)			
	R2 – 14b A	600 x 600			
→	R2 – 14b B	900 x 900			
	R2 – 14b C	1200 x 1200			
R2-14b					

Fuente: (RTE INEN, 2012, pág. 31)

2.7.12 Carril exclusivo

Indica el uso exclusivo de un carril para un tipo de automotor como por ejemplo "La Metro Vía" Tal como se muestra en la tabla XIII:

Tabla XIII Dimensiones de Simbología: Carril Exclusivo

Simbología	Código No.	Dimensiones (mm)
	R2 – 14b A	600 x 600
	R2 – 14b B	900 x 900
	R2 – 14b C	1200 x 1200
R3-11		

Fuente: (RTE INEN, 2012, pág. 38)

2.7.13 No entre

Impide el paso de vehículos a cierta zona. Tal como se muestra en la tabla XIV.

Tabla XIV Dimensiones de Simbología: NO ENTRE

Simbología	Código No.	Dimensiones (mm)
NO	R2 – 7A	600 x 600
ENTRE	R2 – 7B	750 x 750
R2-7	R2 – 7C	900 x 900

Fuente: (RTE INEN, 2012, pág. 27)

2.7.14 Parada bus

Parada exclusiva para los buses, lugar donde se puede dejar o recoger un pasajero. Tal como se muestra en la tabla XV:

Tabla XV Dimensiones de Simbología: Parada de Bus

Simbología	Código No.	Dimensiones (mm)
PARADA	R5-6	450 x 600
R5-6		

Fuente: (RTE INEN, 2012, pág. 49)

2.7.15 Reduzca la velocidad

Esta señal debe utilizarse en sitios donde la velocidad de aproximación es alta y se requiriere la reducción de la velocidad de circulación por una probable detención más adelante. Tal como se muestra en la tabla XVI.

Tabla XVI Dimensiones de Simbología:

	i la velocidad	
Simbología	Código No.	Dimensiones (mm)
	R4-4 A	750 x 600
REDUZCA LA VELOCIDAD	R4-4 B	900 x 1200
R4-4	R4-4 C	1500 x 1200

Fuente: (RTE INEN, 2012)

2.7.16 Velocidad máxima

Este símbolo indica la velocidad máxima permitida en el carril en que se ubica. Puede utilizarse para reforzar la señal vertical VELOCIDAD MÁXIMA, o en sitios tales Como túneles o puentes. Tal como se muestra en la tabla XVII:

Tabla XVII Dimensiones de Simbología: Límite Máximo de Velocidad

Simbología	Código No.	Dimensiones (mm)
	R4–1A	600 x 600
(30)	R4–1B	750 x 750
	R4-1C	900 x 900
R4-1		

Fuente: (RTE INEN, 2012, pág. 42)

2.7.17 Estacionamiento

Se utilizan para indicar sitios de estacionamiento en el área especificada por la flecha sin duración definida. La letra E indica zona de estacionamiento. Tal como se muestra en la tabla XVIII.

Tabla XVIII Dimensiones de Simbología Estacionamiento

Simbología	Código No.	Dimensiones (mm)	Dimensiones (mm) y serie de letras
	R5-3 A	600 x 600	30 E
	R5-3 B	750 x 750	40 E
	R5-3 C	900 x 900	50 E

Fuente: (RTE INEN, 2012, pág. 47)

2.7.18 Prohibido estacionar

Este símbolo indica la prohibición de estacionar en el carril en que se ubica. Cuando el tramo en que se aplica es superior a 15,00 m, se recomienda reiterarlo. Tal como se muestra en la tabla XIX.

Tabla XIX Dimensiones de Simbología: Prohibido Estacionar

Simbología	Código No.	Dimensiones (mm)
	R3 – 1A	600 x 600
	R3 – 1B	750 x 750
R3-1	R3 – 1C	900 x 900

Fuente: (RTE INEN, 2012, pág. 35)

2.7.19 Estacionamiento exclusivo para personas con movilidad reducida

Este distintivo indica que el lugar en que se encuentra señalizado debe ser utilizado exclusivamente sólo por vehículos autorizados por la entidad Regulatoria (CONADIS) para personas con discapacidad y movilidad reducida. Su color es fondo azul y símbolo blanco; sus dimensiones con módulos de 100 mm. Tal como se muestra en la tabla XX.

Tabla XX Dimensiones de Simbología: Estacionamiento para Discapacitados

Simbología	Código No.	Dimensiones (mm)
E R5-5a	R5-5 a	300 x 450

Fuente: (RTE INEN, 2012, pág. 48)

2.7.20 Ciclo vía

Este símbolo advierte que la calzada o carril donde se ubica está destinada sólo a la circulación de bicicletas. Se debe señalizar siempre que exista la posibilidad de ingreso a la ciclo vía o ciclo banda de otro tipo de vehículos, como ocurre en intersecciones y conexiones a calzadas laterales. Tal como se muestra en la tabla XXI:

Tabla XXI Dimensiones de Simbología Ciclo vía

Simbología	Código No.	Dimensiones (mm)	Dimensiones (mm) y serie de letras
E-Ta	R3 – 1A	600 x 600	10 D
(A)/(E)	R3 – 1B	750 x 750	15 D
CICLOVIA R3-12a	R3 – 1C	900 x 900	20 D

Fuente: (RTE INEN, 2012, pág. 39)

2.7.21 Puente Angosto

Esta señal debe ser utilizada siempre que adelante exista un puente cuyo ancho sea menor a la calzada de circulación. Tal como se muestra en la tabla XXII.

Tabla XXII Dimensiones de Simbología Puente Angosto

Simbología	Código No.	Dimensiones (mm)
	P4 – 1A	600 x 600
	P4 – 1B	750 x 750
	P4 – 1C	900 x 900
P4-1		

Fuente: (RTE INEN, 2012, pág. 73)

2.7.22 Cruce de peatones

Previene al conductor del vehículo de la existencia más adelante de un cruce peatonal cebra regulado por señales (P6-1). Obliga a reducir la velocidad y disponerse a detener el vehículo para dar preferencia de paso a los peatones que utilicen dicho cruce. Tal como se muestra en la tabla XXIII.

Tabla XXIII Dimensiones de Simbología: Cruce de Peatones

Simbología	Código No.	Dimensiones (mm)
	P3 – 5A	600 x 600
$\langle \bar{\lambda} \rangle$	P3 – 5B	750 x 750
DO 5	P3 – 5C	900 x 900

Fuente: (RTE INEN, 2012, pág. 72)

2.7.23 Zona de juegos

Esta señal debe utilizarse para advertir la aproximación a zonas recreacionales adyacentes a la vía. Tal como se muestra en la tabla XXIV.

Tabla XXIV Dimensiones de Simbología Zona de Juegos

Simbología	Código No.	Dimensiones (mm)
	P6 – 2A	600 x 600
	P6 – 2B	750 x 750
De a	P6 – 2C	900 x 900

Fuente: (RTE INEN, 2012, pág. 88)

2.7.24 Reductor de Velocidad

Esta señal debe utilizarse para advertir la aproximación a un resalto de velocidad. Tal como se muestra en la tabla XXV:

Tabla XXV Dimensiones de Simbología

	Reductor de Velocidad			
Simbología	Código	Dimensiones		
	No.	(mm)		
	P6 – 2A	600 x 600		
	P6 – 2B	750 x 750		
P6-2	P6 – 2C	900 x 900		

Fuente: (RTE INEN, 2012, pág. 88)

2.7.25 Señalización De Transito Horizontal

Esta sección corresponde a las demarcaciones, tipo de líneas, símbolos, letras, tachas retro- reflectantes complementarias, con la finalidad de informar, prevenir y regular el tránsito.

Considerando que la señalización horizontal se ubica sobre la calzada, presenta la ventaja, frente a otros tipos de señales sin que se distraiga la atención del usuario del carril en el que circula.

Por otro lado, presenta una gran desventaja gracias a efectos de visibilidad por diferentes factores ambientales tales como la lluvia, alto tráfico entre otros. (RTE INEN, 2012, pág. 168)

2.7.26 Clasificación de señales horizontales de tránsito.

Clasificación Según su Forma

La demarcación Plana, en función de su forma, se clasifica en los siguientes grupos: (RTE INEN I., 1042)

a) Líneas Longitudinales

Son las que delimitan los carriles, calzadas, zonas con y sin prohibición de adelantamiento, zonas con prohibición de estacionar y los carriles de uso exclusivo de determinados tipos de vehículos.

Este tipo de línea, se utiliza para delinear sub ejes longitudinales principales de la calzada de una vía. Se tiene:

b) Líneas de separación de flujos opuestos.

Estas líneas ser color amarillo, y pueden ser traspasadas siempre y cuando haya seguridad, se emplean donde las características geométricas de la vía permiten el rebasamiento y los virajes. Tal como se muestra en la tabla XXVI.

Tabla XXVI Ancho de la Línea de Separación

Velocidades máxima de la vía (km/h)	Ancho de la línea (m)	Patrón (m)	Relación señalización brecha
Menor o igual a 50	100	12.00	3 – 9
Mayor a 50	150	12.00	3 – 9

Fuente: (NEVI-12 MTOP, 2013) (RTE INEN, 2012)

Las tachas seran colocadas según se ilustra en la siguiente figura 3.

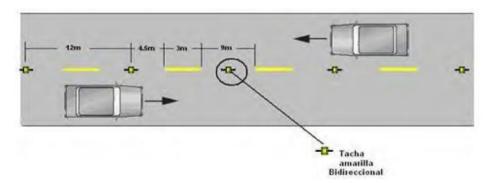


Figura 2.3 Línea de Separación Fuente: (RTE INEN, 2012)

c) Doble línea continua

Son dos líneas amarillas paralelas, de un ancho de 100 a 150 mm con tachas a los costados, separadas por un espacio de 100 mm.

Se emplean en calzadas con doble sentido de tránsito, en donde la visibilidad en la vía se ve reducida por curvas, pendientes u otros, impidiendo efectuar rebasamientos o virajes a la izquierda en forma segura. (RTE INEN, 2012) Según se muestra en la figura 4.

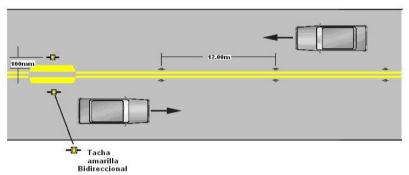


Figura 2.4 Doble Línea de Separación Fuente: (RTE INEN, 2012)

d) Doble línea mixta

Consisten en dos líneas amarillas paralelas, una continua y la otra segmentada, de un ancho mínimo de 100 mm cada una, separadas por un espacio de 100 mm. Los vehículos siempre que exista seguridad pueden cruzar desde la línea segmentada para realizar rebasamientos; es prohibido cruzar desde la línea continua para realizar rebasamientos. Según se muestra en la figura 5.

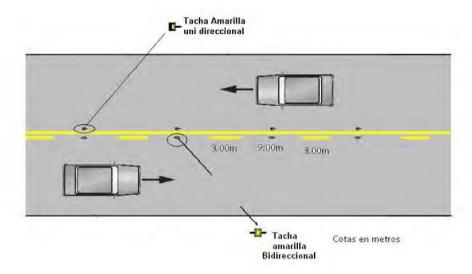


Figura 2.5 Doble Línea Mixta de Separación Fuente: (RTE INEN, 2012)

e) Líneas de separación de Carriles.

Ayudan a ordenar el tráfico y posibilitan un uso más seguro y eficiente de las vías, especialmente en zonas congestionadas. Estas líneas separan flujos de tránsito en la misma dirección, y son de color blanco, indicando la senda que deben seguir los vehículos. Tal como se muestra en la tabla 27

Tabla XXVII Separación entre líneas de los carriles

VELOCIDADES	ANCHO DE LA	_	ESPACIAMIENTO	
MÁXIMA DE LA	LÍNEA (M)	LA LÍNEA	DE LÍNEA (M)	
VÍA (KM/H)		PINTADA (M)		
MENOR O IGUAL	100	12.00	3 – 9	
A 50				
MAYOR A 50	150	12.00	3 – 9	
Fuente: (RTE INEN, 2012)				

Según se muestra en la figura 5

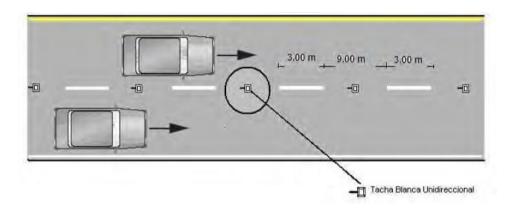


Figura 2.6 Línea de separación de la calzada Fuente: (RTE INEN, 2012)

f) Líneas de separación de carril Continuas

Se utilizan para segregar ciclo vías y carriles de solo BUS del resto del flujo vehicular en el mismo sentido de circulación y son de color blanco.

Por razones de seguridad, las líneas de separación de carril deben ser continuas a 20,00 m antes de la línea de PARE en las vías de un cruce controlado por la señal CEDA EL PASO o PARE y 30,00 m en accesos a cruces semaforizados. Para anchos de carriles según la norma de 3.65m. (RTE INEN, 2012, pág. 188)

g) Líneas de Borde de Calzada.

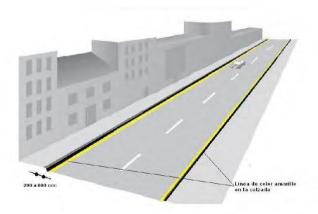
Estas líneas indican donde se encuentra el borde de la calzada, lo que les permite posicionarse correctamente en el carril por el que transita.

Líneas de borde de calzada continuas. Estas líneas continuas son las más usadas para señalar el borde de la calzada; su ancho mínimo en vías urbanas debe ser de 100 mm y en autopistas y carreteras de 150 mm.

Si se refuerzan con señalización complementaria como tachas, ésta debe ser del mismo color de la línea; excepcionalmente debe ser roja cuando se trata de bordes de calzada que no deben ser sobrepasados en ninguna circunstancia. En todo caso, no se recomienda instalarla a 5cm del lado anterior de la línea de borde de calzada. (RTE INEN, 2012, pág. 188)

h) Líneas de Prohibición de Estacionamiento

Esta señalización indica esta demarcada sobre la calzada junto a los bordillos, su color es amarillo; estas líneas se deben utilizar


71

junto con la señal vertical PROHIBIDO ESTACIONAR a menos que la geometría de la vía, de la acera, alguna norma o reglamentación lo restrinjan.

El ancho de estas líneas es de 100 mm; sin embargo, cuando se señale esta prohibición no debe señalizarse línea de borde de calzada. Se demarca a una distancia entre 200 a 800 mm del bordillo de la calzada dependiendo de la configuración de la vía.

Estas líneas no deben ser reforzadas con señalización complementaria (tachas) o utilizarse de forma simultánea con las líneas zig zag. (RTE INEN, 2012, pág. 190)

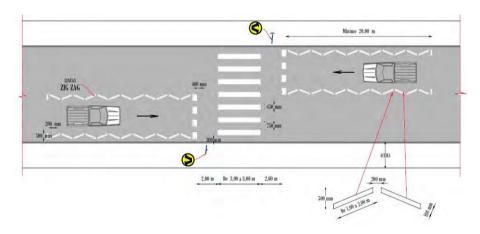

Según se muestra en la figura 7.

Figura 2.7 Líneas de prohibición de estacionamiento **Fuente:** (RTE INEN, 2012)

i) Líneas zig zag de aproximación a cruce cebra.

Se utilizan para indicar la aproximación de un cruce cebra lugar en el cual los vehículos deben disminuir su velocidad y detenerse si existe un peatón o peatones cruzando la calzada; prohíbe el rebasamiento y/o estacionamiento (RTE INEN, 2012, pág. 190). Según se muestra en la figura 8.

Figura 2.8 Líneas zig zag de aproximación a cruce cebra. **Fuente:** (RTE INEN, 2012)

j) Líneas Transversales

Se utilizan principalmente en cruces, para delimitar líneas de detención a los vehículos motorizados, y para demarcar sendas destinadas al tránsito de paso de peatones y/o ciclistas. Las más importantes son:

k) Líneas de Pare.

Indica a los vehículos que deben detenerse en vías con velocidades máximas permitidas iguales o inferiores a 50 km/h el ancho debe ser de 400 mm; en vías con velocidades superiores el ancho es de 600 mm. Según se muestra en la imagen 9.

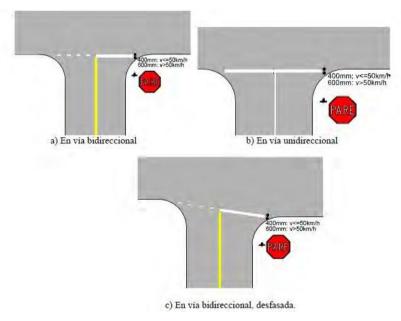


Figura 2.9 Líneas de pare Fuente: (RTE INEN, 2012)

I) Líneas de ceda el paso

Esta línea indica la posición segura para que el vehículo se detenga, si es necesario. Es una línea segmentada de 600 mm pintado con espaciamiento de 600 mm, en vías con velocidades máximas permitidas iguales o inferiores a 50 km/h el ancho debe ser de 400 mm; en vías con velocidades superiores el ancho es

de 600 mm, demarcada a través de un carril que se aproxima a un dispositivo de control de tránsito como:

- Señal vertical de ceda el paso
- Cruce de trenes a nivel
- Cruce cebra
- Redondeles
- Cruce escolar

Según se muestra en la figura 10.

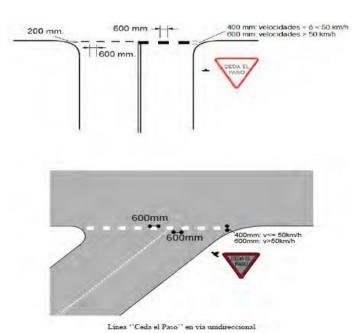


Figura 2.10 Líneas de Ceda el paso Fuente: (RTE INEN, 2012)

m) Líneas de detención.

Esta línea indica a los conductores que viran en una intersección, el lugar donde deben detenerse y ceder el paso a los peatones; razón por la cual será y, al peatón el sendero seguro de cruce. Es una línea segmentada de 600 mm por 200 mm de ancho, con espaciamiento de 600 mm. Se demarca en intersecciones controladas con señales de pare o ceda el paso a través del lado izquierdo en la aproximación de una vía menor y alineada con la línea de pare o ceda el paso. Según se muestra en la figura 11.

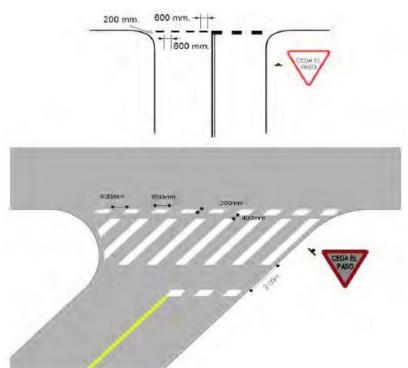


Figura 2.11 Líneas de Detención Fuente: (RTE INEN, 2012)

n) Líneas de cruce

Indica al peatón en que zona puede cruzar en forma segura y esta línea constituida por bandas paralelas al eje de calzada de color blanco, con una longitud de 3,00 m a 8,00 m, ancho de 450 mm y la separación de bandas de 750 mm. Se debe iniciar la señalización a partir del bordillo o borde de la calzada a una distancia entre 500 mm y 1000 mm, tendiendo al máximo posible. Esta distancia se utilizará para ajustar al ancho de la calzada. Según se muestra en la figura 12.

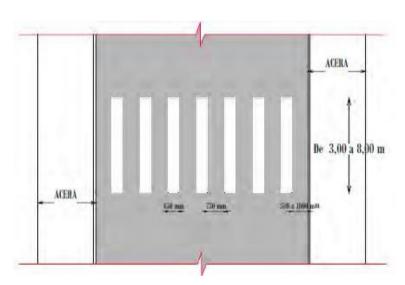


Figura 2.12 Líneas de cruce Fuente: (RTE INEN, 2012)

2.7.27 Clasificación Según su Altura

Se complementa la señalización horizontal para aquellos objetos mayores de 6 mm y hasta 200 mm de altura, el hecho de que esta señalización sea elevada aumenta su visibilidad, especialmente al ser iluminada por la luz proveniente de los focos de los vehículos, aún en condiciones de lluvia, situación en la cual generalmente, la señalización plana no es eficaz.

Según la funcionalidad de cada señal de advertencia, estas se pueden agrupar de la siguiente forma:

- P1 Serie de Alineamiento
- P Serie de Intersecciones y empalmes
- P Serie de aproximación a dispositivos de control de transito
- P Serie de anchos, alturas y pesos.
- P Serie de Asignación a carriles
- P Serie de obstáculos y situaciones especiales de la vía
- P Serie Peatonal

Serie de Complementaria

2.7.28 Características Básicas de las demarcaciones

2.7.28.1 Visibilidad Nocturna (Retroreflectancia)

a) Demarcaciones Planas

Estas deben cubrir las necesidades de los usuarios durante todo el día es por eso que se deben fabricar con los materiales apropiados, como pinturas que, junto a micro- esferas de vidrio, se someten a procedimientos que aseguran su Retroreflectividad. Bajos los siguientes parámetros según la (RTE INEN, 2012)

b) Demarcaciones Elevadas

La superficie retro reflectante para tachas debe ser siempre a lo menos de 10 cm2. Además se establece que los valores mínimos de Retroreflectividad serán los considerados en la Tabla 5.403- 02 correspondientes a la norma (RTE INEN, 2012), 2289-2009.

2.7.28.2 Visibilidad Diurna (Color)

a) Demarcaciones Planas

Por lo general las demarcaciones planas son blancas y excepcionalmente amarillas, para señalizar áreas especiales, como pistas "sólo buses" o donde esté prohibido estacionar. El color está definido por las coordenadas cromáticas del Sistema Normalizado CIE 1931 y lo especificado en la norma (RTE INEN, 2012) 1042-2009, debiendo cumplir lo siguiente:

2.8 Marco legal de velocidades

La Ley Orgánica de Transporte terrestre de Tránsito y Seguridad Vial. Guayaquil – Ecuador, 2012. En el artículo 1 establece como objetivo la organización, planificación, fomento, regulación, modernización y control del Transporte Terrestre, Tránsito y Seguridad Vial, con el fin de proteger a las personas y bienes que se trasladan de un lugar a otro por la red vial del territorio ecuatoriano, y a las personas y lugares expuesto a las contingencias de dicho desplazamiento, contribuyendo al desarrollo socio – económico del país en aras de lograr el bienestar general de los ciudadanos.

2.9 Velocidades máximas

Del Reglamento Técnico Ecuatoriano RTE INEN 004, numeral 5.4.3, establece las siguientes velocidades máximas según el ancho de carril: Según la tabla XXVIII.

Tabla XXVIII Ancho del carril según las velocidades

	ANCHO DEL CARRIL (M)
DE LA VÍA (KM/H)	
MENOR A 50	3,00m
DE 50 A 90	3,00m a 3,50m
MAYOR A 90	3,50m a 3,80m
F/DTE	INITALL 4040V

Fuente: (RTE INEN I., 1042)

2.10 Elementos reductores de velocidad

Los elementos reductores de velocidad ya existentes en la vía ESPOL son los resaltos y BTA, es por eso que haremos hincapié en datos relacionados a este dispositivo. Los dispositivos de resalto deberán cumplir especificaciones técnicas del material, aplicación de pintura dependiendo del nivel de iluminación. Estas especificaciones las puede encontrar en el numeral 5.1.3.1 y en el numeral 5.8.9.1 del RTE INEN 004.

2.10.1 Resaltos

La RTE INEN 004 en la sección 5.8.9 detalla recomendaciones técnicas para todos los tipos de reductores de velocidad. En estas recomendaciones encontramos las siguientes, para los resaltos:

- Distancia entre reductores debe ser mayor a 20m y menor a 100m
- En zonas urbanas la distancia de visibilidad de un reductor debe ser máximo de 100m
- Los reductores deben ser construidos en todo el ancho de la calzada, dejando espacio para la cuneta de drenaje
- En vías sin bordillo en necesaria su construcción
- En lo posible no deben ser construidos en vías principales que conectan al paradero de buses

Se deben cumplir las especificaciones de señaléticas de aproximación a un reductor de velocidad, establecidas en la RTE INEN 004 numeral 5.8.9.1 literal b o en la figura 14 siguiente

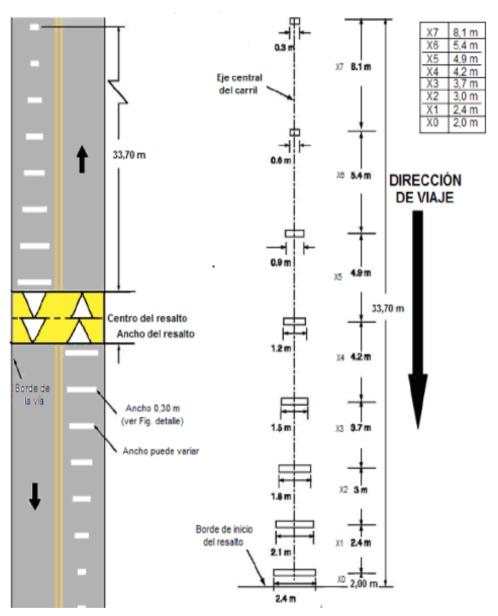
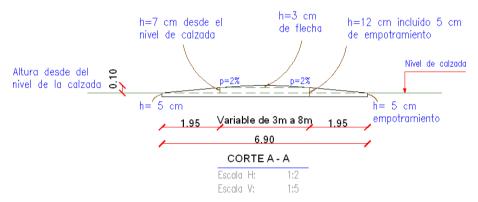



Figura 2.13 Especificaciones de Resalto Fuente: RTE INEN 004

2.10.2 Dimensiones

Dimensiones de los resaltos según la norma (RTE INEN I., 1042) especificado en la figura 15.

Figura 2.14 Dimensiones de reductores de velocidades **Fuente:** RTE INEN 004 Señalización Horizontal

2.10.3 Bandas transversales de alerta

Son estructuras que se colocan en el pavimento, con resaltos en la superficie de rodadura de 3,00 cm como máximo, teniendo la forma y dimensiones que se muestran en las figuras, además para su colocación en zonas urbanas se debe tomar en cuenta que se requiere dejar un espacio de 30,00 cm de los bordillos, veredas o banquetas, para permitir el drenaje superficial del agua en el pavimento hacia los sumideros. (MTOP, 2012). Tal como se ve en la figura 16.

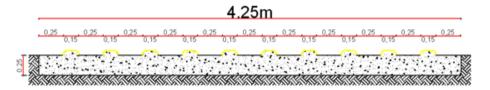


Figura 2.15 Detalle vista en corte Fuente: MOP, 2012

2.11 Instrucciones y criterios para obras varias zonas laterales de la carretera

Al diseñar una carretera lo ideal es hacerlo sin la presencia de peligros en su entorno, sin la necesidad de instalar estructuras para mantener la seguridad del usuario. No obstante, en la práctica es inevitable la presencia de muchos factores (como árboles, rocas, desniveles de terreno, acantilados, curvas peligrosas, etc.), lo que hace necesario considerar la instalación de dispositivos especiales para contener y re direccionar un vehículo fuera de control, reduciendo la probabilidad de accidentes por escape de la vía.

Los sistemas de contención presentes en la vía ESPOL es el siguiente:

Guardavía metálico

2.11.1 Guardavía metálicos

Estos son sistemas de contención lateral. diseñado específicamente de Sistemas para bordes carreteras. longitudinales aproximadamente paralelos al flujo vehicular, tienen la función de retener, en caso que sea necesario, también cambiar la dirección a los vehículos con elemento reflectantes.

Este sistema de protección vehicular metálica, es uno de los más usados en Ecuador y muchos países del mundo, debido a su alta efectividad para proteger a los usuarios de accidentes potencialmente mortales por escape de la vía. Este sistema es efectivo con un correcto diseño, buena instalación y con un mantenimiento adecuado.

Las especificaciones de colocación lateral en zonas rurales las puede encontrar en el RTE INEN 004 numeral 5.8.3.2, donde establece lo siguiente:

 Debe estar colocada a una distancia de por lo menos 600mm del borde, filo exterior de la berma o espaldón y en caso de existir cuneta se considera desde el borde externo Separación no debe ser menor de 2,00 m ni mayor de 5,00
 m al borde del pavimento, excepto si existen señales
 grandes de información donde requiere mayor separación

La Norma Técnica Ecuatoriana NTE INEN 2473 contiene requisitos de perfiles corrugados y postes de acero para los guardavías.

2.11.2 Requerimientos

Para la correcta evaluación de Guardavías metálicos la MOP – 001 –F – 2002 establece lo siguiente mencionado en la tabla XXIX.

Tabla XXIX Requerimientos construcción de guardavias

Postes	Pueden ser de madera, hormigón o metálicos
Barandales	Instalación sin discontinuidades y de acuerdo a los planos
	Longitud de perno menor a 2,5cm
	Zona exterior con ausencia de galvanizado deberán ser recubiertas
	con dos capas de pintura anticorrosiva según la especificación
	ASTM D 520 – ASTM D 79.
	Esquinas de Guardacaminos que miren hacia el tráfico deberán estar enterradas.
	La distancia de traslape para la junta de los elementos deberá de
	ser menor a 20cm y asegurada con pernos.
	La cimentación de los postes de acero serán de hormigón tipo B.
	1105

Fuente: MOP – 001 –F – 2002

2.12 Muros de hormigón

Los requerimientos de diseño de este sistema se encuentran en la normativa AASHTO (2002).

2.12.1 Tipos de muros y requerimientos

Para la correcta construcción de muros la MOP – 001 –F – 2002 establece lo siguiente en la tabla XXX.

Tabla XXX	Requerimie	entos cons	trucion murc)S
				•

Muros de contención	Pueden ser fundidas en sitio, prefabricadas o formadas por excavación
	Deberán cumplir con las especificaciones del MOP - 001 - F
	2002 sección 801.
	Apariencia uniforme y llana
	Los extremos de la barrera deberán de ir disminuyendo
	uniformemente hasta llegar al nivel del suelo
	T

Fuente: MOP – 001 –F – 2002

Los sistemas de muros de contención están conformados por los siguientes:

- Perfil New Jersey
- Perfil F
- Muro liso

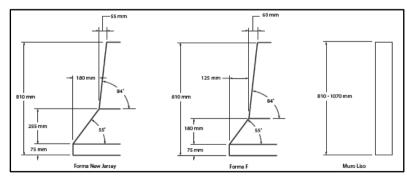


Figura 2.16: Tipos de geometría de barreas de concreto Fuente: AASHTO (2002)

2.13 Pintura Termoplástica

Es una pintura de demarcación vial de alto desempeño en durabilidad y reflectividad, formulada en estado sólido, que para aplicar debe ser fundida a altas temperaturas y aplicado con equipos especiales.

Sirve para otorgar mayor flexibilidad y soporte ante la manipulación en transporte y aplicación. De 1,6 a 3,0 mm de espesor. 2,0 y 2,3 mm son los más comunes. Formas, colores y figuras acorde a INEN 1042.

Para su colocación se la puede prefabricar, y entregar de pre-cortada y pre-formada entregadas en cajas de cartón para su protección. Y su instalación no es compleja solo se requiere pre-calentar la superficie del pavimento a unos 150°C o en casos especiales usar un imprimante que ayude al proceso.

2.13.1 Beneficios

- Durabilidad de 3 a 6 años, según tráfico y espesor
- Rápida y fácil instalación
- Menos molestias a la ciudadanía
- Equipo de instalación de bajo costo

- Figuras perfectas
- Características de la Pintura Termoplástica tabla XXXI.

Tabla XXXI Beneficios de Pintura Termoplástica

	TERMOPLASTICA AASTHO M249	ACRILICA TIPO 1
Definición en su uso	Permanente	Mantenimiento
Durabilidad	2 a 5 años	2 a 6 meses
Reflectividad 6 meses*	Blanco 325 mcd Amarillo 200 mcd	Blanco 100 mcd Amarillo 80 mcd
Equivalencia en número de aplicaciones	1 aplicación	2 a 5 aplicaciones
Relación costo Beneficio	Mayor a la largo plazo	Menor a corto plazo
Inversión Inicial	Mayor	Menor

Fuente: (RTE INEN I., 1042) (AASHTO 249-12, 2012)

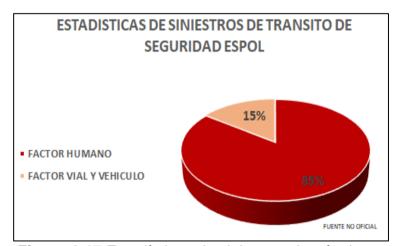
2.14 Siniestros de tránsito ESPOL

Gracias al departamento de Seguridad Espol se pudo ilustrar las estadísticas de siniestros de tránsitos proporcionados por este departamento y realizar un inventario de accidentes de tránsito para proponer soluciones, presentaremos gráficas con el número de

accidentes anuales dentro del campus con los registros brindados por este departamento, y se podrá estimar el número probable de siniestros hasta concluir el año 2017 con respecto a la relación existente entre el porcentaje de factor humano, vía y vehículo que infieren en un siniestro de tránsito.

¿Cómo se define accidente y cuáles son los motivos por los que pueden darse?

Se define como un suceso eventual o imprevisto por el uso de un vehículo de tracción mecánica que afecta directamente a las personas y pone en riesgo su salud e integridad física.


Los accidentes de tránsito de acuerdo a su causa pueden clasificarse en cuatro tipos:

- Falla mecánica, por ejemplo; Desperfectos en el sistema de frenos del vehículo.
- Falla humana, por ejemplo; No respetar derecho referente de paso.
- Deficiencia de la infraestructura, por ejemplo; Inadecuada señalización de tránsito.
- Condiciones del entorno.

 Conductor y terceras personas, pero se lo considera con finalidad de analizar el hecho.

2.15 Estadísticas

Según las estadísticas del Departamento de Seguridad ESPOL los siniestros suscitados dentro del campus ESPOL en son en su mayoría producidas por el factor humano, como se puede observar en la figura 18.

Figura 2.17 Estadísticas de siniestros de tránsito **Fuente:** Departamento de seguridad ESPOL

Según los datos proporcionados por el Departamentos de Seguridad ESPOL podremos representar una gráfica con la cantidad de siniestros registrados desde marzo del 2015, que se inició con la contabilización y registro de los siniestros hasta la presente fecha.

Consideran que, durante el mes de enero y febrero, ESPOL aún se encuentra en su periodo de estudio y que los meses donde más se registran siniestros de tránsito según la ATM son los meses de diciembre y enero. Tal como se puede apreciar en la figura 19.

Figura 2.18 Siniestros de tránsito anuales **Fuente:** Autoridad de Tránsito Municipal

Estos datos no son clasificados correspondientes al nivel de siniestros, en este caso son datos generales de siniestros dentro del campus, pero con la finalidad de ilustrar, analizar y tener como conocimiento cuántos accidentes se dan dentro de un año en la vía del campus ESPOL.

2.16 Revisión de norma

Los factores influyentes en los accidentes de tránsito son abundantes, pero la Highway Safety Manual (HSM) los divide en 3 grupos que

engloban todos los factores con su respectivo porcentaje de incidencia. Como se ilustra en la figura 20.

En este caso luego de la construcción y habilitación de la vía, la manera de poder indagar y realizar un auditorio vial es registrando todos los siniestros de tránsito y el sitio donde ocurrieron con la georreferenciación del lugar, previo a esto también se puede iniciar una auditoría solo de inspección y avalúo.

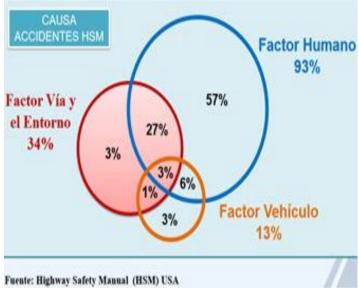


Figura 2.19 Especificaciones mínimas de las vías Fuente: Highway Safety Manual

2.17 Tendencia de siniestros de tránsito

Según estudios realizados por un estudiante de ESPOL observó la distribución a donde tienden los siniestros de tránsito, como por ejemplo

la Biblioteca Central y el tramo desde el cementerio (cruce de vía principal hacia EDCOM) hasta garita, son los puntos donde se registran mayor cantidad de siniestros gracias a un inventario de fotografías otorgados por el departamento de seguridad ESPOL.

Por medio de orto foto del campus ESPOL y la ayuda de los sistemas de información geográfica se procedió a procesar los datos proporcionados por el Departamento de Seguridad de ESPOL e información obtenido de la Web y redes sociales con su respectivo registro fotográfico como señal de validez. Se lo ilustró por medios de puntos de diferentes colores, representando distintos niveles de siniestros; los puntos rojos significan accidentes que pongan en riesgo la vida del conductor o terceras personas; el color amarillo representa accidentes con menos riesgos de mortalidad, pero de igual importancia; de color verde están los accidente que no ponen en tanto riesgo al usuario en este caso la mayoría estudiantes y se lo puede verificar en la siguiente Figura 21

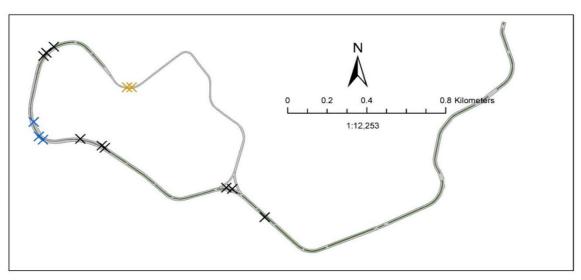
2.18 Imagen orto mosaica (orto foto)

Gracias a (POLICONSTRUC s.a., 2018) con su informe "Levantamiento topográfico de alta precisión de la zona especial de desarrollo económico y de las áreas académica – científica del campus Gustavo

Galindo Velasco" se pudo obtener un levantamiento topográfico de alta precisión con imagen aérea para la vía principal del campus, objeto de estudio de este documento con una precisión absoluta horizontal/vertical de 3cm/5cm.

2.19 Metodología para determinar zonas de riesgo de accidente de tráfico

Es un método muy eficaz, el cual consiste en ayudar a determinar los diferentes factores que se influyen en la alta o baja concentración para puntos estratégicos para accidentes de tráficos, y esta manera poder evitarlos o minimizarlos, para de esta manera mejorar o reforzar la seguridad Vial. (Sanabria, Barrantes, & Aguiar Moya, Ph.D., 2013) Existen tres factores que ayudaran a mitigar y reducir la acritud presentada ante cualquier incidente o accidente. Los cuales son:


- Diseño y Plan de Mantenimiento
- Política
- Manejo de Demanda Vs Reducción de Tráfico

Este método también menciona los principales problemas para producir una colisión o choque. Teniendo los principales como:

- Fricción en el pavimento.
- Retroreflectividad de la señalética en el pavimento.
- Alineamiento geométrico.
- Factor clima.

Figura 2.20 Perfil de Susceptibilidad para carreteras.
Fuente: (Sanabria, Barrantes, & Aguiar Moya, Ph.D., 2013)

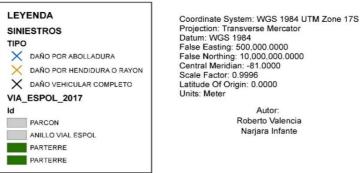


Figura 2.21 Puntos con accidentes de tránsito Fuente: Infante, N., Valencia, R., 2018

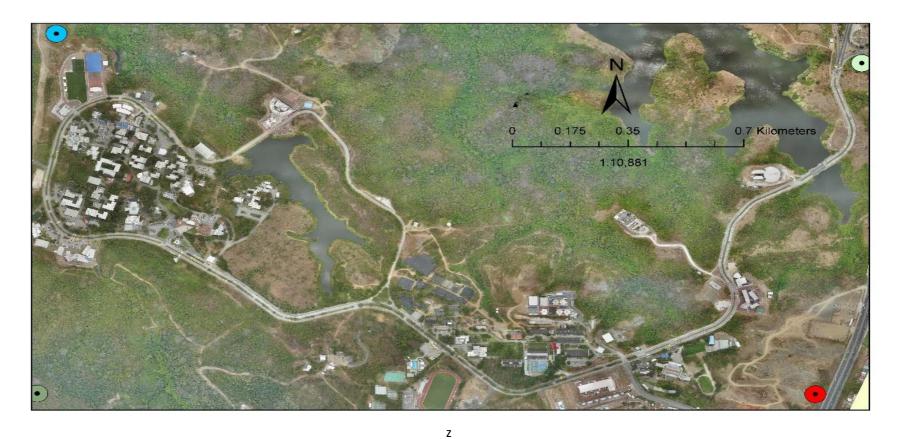


Figura 2.22. Orto foto campus Gustavo Galindo Velasco Fuente: (POLICONSTRUC s.a., 2018)

2.19.1 Perfil de Susceptibilidad de la Carretera

Para este caso se debe aplicar el Principio de Superposición para tramos equivalentes a 100m. Para un mejor análisis se ilustra lo siguiente:

2.19.2 Factor Infraestructura

Se consideran varios factores para poder analizar este paso tales como:

- Retroreflectividad de la pintura en la señalética horizontal y vertical
- Coeficiente de fricción de la superficie de pavimento
- IRI

Para ello es necesario tomar en cuenta la siguiente tabla: XXXII.

Tabla XXXII Factor Infraestructura.

Clasificación Internacional de Pavimento Por GN

			Nivel			
Numer o de agarre	Condició n	Resbaladiz o	Peligro	Riesgo Promedi o de Accident e	Categorí a	Pes o
< 0,50	Malo	Muy Resbaladiz o	Muy Peligros o	> 20	4	8
0.50 – 0.60	Regular	Resbaladiz o	Peligros o	16 – 20	3	6
0.60 – 0.78	Bueno	Poco Resbaladiz o	Poco Peligros o	10 - 16	2	4
> 0,78	Muy bueno	No Resbaladiz o	No Peligros o	< 16	1	2

Fuente: (Sanabria, Barrantes, & Aguiar Moya, Ph.D., 2013)

También es necesario considerar los valores mínimos de retroreflectividad considerados a continuación en la siguiente tabla:

Tabla XXXIII Valores mínimos reglamentarios de Retrorreflectividad

Valores Mínimas reglamentarias de Retrorreflectividad				
Tipo de Marca en el pavimento	Color de Pintura	Carretera Rural < 65kmph	Carretera secundaria 75 – 90kmph	Carretera principal > 80kmph
Con marcador de – pavimento elevado	Blanco	50 mcd/lx/m ²	55 mcd/lx/m²	110 mcd/lx/m ²
	Amarillo	50 mcd/lx/m ²	55 mcd/lx/m²	110 mcd/lx/m ²
Sin marcador de – pavimento elevado	Blanco	140 mcd/lx/m ²	160 mcd/lx/m ²	240 mcd/lx/m ²
	Amarillo	140 mcd/lx/m ²	160 mcd/lx/m ²	240 mcd/lx/m ²

Fuente: (Sanabria, Barrantes, & Aguiar Moya, Ph.D., 2013)

2.19.3 Factor Clima

Para obtener este factor es indispensable contar y saber con el porcentaje de días de lluvia y con el promedio anual de lluvias, para esto es necesario considerar las concentraciones y descripción de lluvia de las siguientes tablas:

Tabla XXXIV Factor clima.

Clasificación	Concentración	Descripción (días/Iluvia/año)	Peso
1	Muy baja	0 – 20%	3
2	Baja	20 – 40%	3
3	Regular	40 – 60%	2
4	Alta	60 – 80%	1
5	Muy Alta	80 -100%	0

Fuente: (Sanabria, Barrantes, & Aguiar Moya, Ph.D., 2013)

Tabla XXXV Descripción de Factor Clima.

Clasificación	Descripciónn (mm/año)	Peso
1	< 2000	0
2	2000 – 3000	1
3	3000 – 4000	2
4	> 4000	3

Fuente: (Sanabria, Barrantes, & Aguiar Moya, Ph.D., 2013)

2.19.4 Factores Geométricos de la Carretera

- Tipo de Terreno
- Alineamiento de la carretera
- Alineamiento Horizontal

• Numero de Curvas

Tabla XXXVI Alineamiento horizontal de la carretera

Clasificación	Descripción	Curvas/Km	Peso
1	Muy sinuosas	> 15	3
2	Curvas Frecuentes	10 -15	3
3	Algo sinuosas	5 - 10	2
4	Algunas curvas	2 - 5	1
5	Recto con curvas suaves	0 - 2	0

Fuente: (Sanabria, Barrantes, & Aguiar Moya, Ph.D., 2013)

- Alineamiento Vertical
- Pendientes de la carretera

Tabla XXXVII Descripción de alineamiento horizontal de carretera.

Clasificación	Descripción	Peso
1	Piso	0
2	Ondulado suave	1
3	Ondulado duro	2
4	Carretera montañosa	3

Fuente: (Sanabria, Barrantes, & Aguiar Moya, Ph.D., 2013)

A continuación, se debe analizar las secciones de las carreteras con alta susceptibilidad en accidentes.

Figura 2.23 Secciones de la carretera Fuente: (Sanabria, Barrantes, & Aguiar Moya, Ph.D., 2013)

Mediante una inspección visual en un tramo aproximado de 500m el resultado comprende a una clasificación basada en el Record Total de puntos de susceptibilidad para poder encontrar un porcentaje alto de susceptibilidad.

También se debe considerar las categorías generales de seguridad mostrados en la siguiente tabla XXXVIII.

2.19.5 Coeficiente de resistencia al deslizamiento con el péndulo de TRRL

Objetivo del ensayo:

Tiene como finalidad realizar la toma medidas de resistencia al deslizamiento en pavimentos en el campo con la ayuda del péndulo del Transport and Road Research Laboratory (British Portable Skid Resistance Tester), para conseguir un coeficiente de resistencia al deslizamiento (CRD) que demuestre las características antideslizantes de una superficie con relación a los neumáticos de los automóviles.

Características de los equipos:

El péndulo con la zapata y su placa soporte, debe pesar 1.500 ±30g. Su centro de gravedad estará situado en el eje del brazo a una distancia de 411 ± 4 mm del centro de suspensión. La circunferencia descrita por el borde de la zapata, con centro en el eje de suspensión, tendrá un radio de 508 mm. (ICG, 2000) Véase en la tabla XXXIX

El péndulo debe tener un ajuste vertical, que permita una distancia de recorrido entre la zapata y la superficie a ensayar, de 125 ± 1.6 mm de longitud. El resorte del brazo y la palanca de la cabeza del péndulo se deben acondicionar para producir una presión de 2.500 ±100 g, entre la zapata de 76.2 mm de ancho y la superficie de ensayo. La variación de tensión del resorte sobre la zapata, no será mayor de 200 g/cm. (ICG, 2000)

La zapata de caucho va pegada sobre una placa de aluminio con orificio circular para su fijación al pivote (F) del brazo del péndulo, formando un ángulo de 70° con el eje de este brazo y de manera tal, que solamente la arista posterior de la zapata quede en contacto con la superficie a medir, pudiendo girar alrededor del pivote (F), recorriendo las desigualdades de la superficie de ensayo, manteniéndose en un plano normal al de oscilación del péndulo. (ICG, 2000)

Las dimensiones de las zapatas de caucho a emplear en medidas de resistencia al deslizamiento serán de 76.2 mm por 25.4 mm y 6.35 mm de espesor El peso del conjunto zapata y placa soporte de aluminio, será de 36 ± 7 g. (ICG, 2000).

Tabla XXXVIII Categoría e información de la vía

Catamanía	ITEM	Puntos
Categoría	ITEM	Asegurables
A - N	Descripción	Número
Α	Una alineación y una sección transversal	2
В	Carriles de aceleración o desaceleración	4
С	Intersecciones	8
D	Señalización vertical e iluminación	15
E	Demarcación y delineación	15
F	Barreras de contención y zonas de espacio lateral	7
G	Semáforo	9
Н	Peatones y ciclistas	9
I	Puentes y alcantarillas	8
J	Pavimentos	8
K	Provisión para vehículos pesados	4
L	Cursos de agua e inundación	8
М	Otros	5
N	Alineación N y sección transversal	2

Fuente: (Sanabria, Barrantes, & Aguiar Moya, Ph.D., 2013)

Procedimiento del ensayo

Primeramente, se efectúa una inspección visual del pavimento de la carretera y se la divide en tramos no mayores a los 1000m, a continuación, se elige una zona dentro de este tramo con separaciones entre 5 a 10m en distribución transversal para los puntos de ensayo. Es recomendable realizarlo en las zonas con mayor desgaste o no donde se sospeche tipologías de deslizamiento. (ASTM E303)

Se debe encerar el equipo y ajustar la altura de la cabeza del péndulo de manera que la zapata de caucho entre en contacto sobre la superficie del pavimento y recorra la longitud normada de 125 ±1.6 mm según (AASHTO 249-12, 2012).

Se deberá realizar un muestreo con mínimo 5 toma de datos o repeticiones por tramos con una tolerancia de ±3 unidades. Antes de la ejecución de cada muestra se deberá limpiar con un cepillo la superficie de pavimento, cerciorándose de que quede libre de partículas sueltas. Se medirá la temperatura ambiente en el punto de ensayo, se comprobará la temperatura del agua, cuyo recipiente deberá estar a la intemperie durante la ejecución del ensayo. (ICG, 2000)

Antes de efectuar las medidas de ensayo, se humedecerá la zapata con abundante agua limpia y se mojará la superficie del pavimento, extendiendo el agua sobre el área de contacto. Posteriormente para la ejecución del ensayo el péndulo trabajará en caída libre lo que denotará la lectura con la aguja en el equipo. Se realiza este proceso una y otra vez hasta obtener los cinco valores mencionados anteriormente. Los cuales definirán el estado de la rugosidad de la vía estudiada. (AASHTO T278, 2012) (ASTM E303)

2.19.6 Matriz de Leopold

Matriz Intensidad

La cantidad de la matriz intensidad varía de 1 – 10 dependiendo del grado de deterioro producido, siendo: (Espinoza, 2002)

0 = impactos leves o imperceptibles.

1 = muy bajo impacto.

10 = indica mayor impacto.

Ver en la sección de anexos Tabla 46

Matriz Duración

El rango numérico de la matriz duración va desde 0 – 10, siendo: (Espinoza, 2002)

0 = para actividades donde impactos son imperceptibles

1 = para impactos menores a 5 años

5 = para impactos de 5 -10 años

10 = para impactos mayores a 10 años

Ver en la sección de anexos Tabla 47

Matriz Extensión

El intervalo numérico de la extensión fluctúa de 0 – 10, siendo: (Espinoza, 2002)

10 = para impactos regulares

5 = para impactos locales

1 = para impactos puntuales

0 = no causantes de daño al ambiente

Ver en la sección de anexos Tabla 48

Matriz Signo

Dicha matriz como su nombre lo indica no tiene un valor numérico entre un rango, sino que la representamos con: (Espinoza, 2002)

1 = para impactos ambientales positivos

-1 = para impactos ambientales negativos

Sin signo si no se causa ningún impacto en el medio ambiente

Ver en la sección de anexos Tabla 49

Matriz Magnitud

Las cantidades de la matriz magnitud están vinculadas por las matrices intensidad, duración y extensión por un factor correspondiente a cada matriz. (Espinoza, 2002)

Para la matriz intensidad un coeficiente de 0,3, para la matriz extensión y matriz duración un coeficiente de 0,35; así el valor de la matriz magnitud resultara de la siguiente operación: (Espinoza, 2002)

M=± (Intensidad*Coef. int) + (Extension*Coef. ext) +
(Duracion*Coef. dur)

Ver en la sección de anexos Tabla 50

Matriz de Reversibilidad

El valor numérico de la matriz de reversibilidad se encuentra dado de 1 - 10 según sea factible el grado de reversibilidad que pueda ocurrir en los impactos, siendo: (Espinoza, 2002)

1 = altamente reversibles

5 = medianamente reversibles

10 = impactos irreversibles

Ver en la sección de anexos Tabla 51

Matriz de Riesgo

El valor numérico de la matriz de riego varía según la posibilidad de que ocurran impactos a los factores ambientales, siendo: (Espinoza, 2002)

1 = impactos de probabilidad baja

5 = impactos de probabilidad media

10 = impactos de alta probabilidad de ocurrencia

Ver en la sección de anexos Tabla 52

Matriz de Valoración de Impacto Ambiental (V.I.A.)

113

Los valores numéricos de la matriz V.I.A. implican las cantidades

de las matrices de magnitud, reversibilidad y riesgo, las que se

multiplican por un factor que pertenece a cada matriz. (Espinoza,

2002)

Para la matriz magnitud un factor de 0,4, para la matriz de riesgo

un factor de 0,4 y para la matriz de reversibilidad un factor de 0,2;

donde el valor de la matriz V.I.A. estará dado como:

V.I.A.

=ReversibilidadFrev*RiesgoFriesgo*|Magnitud|Fmagnitud

Ver en la sección de anexos Tabla 53

Rango de Impacto Ambiental

Nos da a conocer el nivel de impacto reflejado en las actividades

de cada uno de los componentes ambientales, su valor numérico

varía entre 0 – 10; donde: (Espinoza, 2002)

0 = Neutro

1 - 4 = Bajo

4 - 7 = Medio

7 - 10 = Alto

CAPÍTULO 3 METODOLOGÍA

3.1 Metodología a utilizar.

En el presente capítulo se manifiesta cómo se generó toda la información para el levantamiento vial georreferenciado del campus politécnico. Cabe recalcar que el proceso de levantamiento se realizó el día lunes 13 de noviembre hasta el día jueves 30 de noviembre de 2017.

Primeramente se comenzó con un plano básico de topografía de planimetría otorgado por el departamento de planificación de ESPOL, el mismo que debió ser editado con las los Shapes más importantes en este caso Curvas de Nivel, Edificios y detalles para luego generar un plano en CAD solo con la información de la red vial principal, para una correcta georreferenciación, conjuntamente se utilizó una orto fotografía para la creación de capas denotadas como avenidas, parterres y calzadas dentro del programa.

Para el levantamiento de información de campo con el uso de planos, fichas de campo en donde se identificarán las fallas existentes a más de realizar un proceso de información con softwares ArcGis. Al mismo tiempo de propiciar una toma de datos que minimice los errores humanos, para lo cual se seccionó en dos actividades importantes a realizar como las capacitaciones y los procesos operativos.

Las actividades de capacitaciones son aquellas que se ejecutaron para una adecuada planificación y conocimientos de los trabajos en campo con el fin de que los mismos se realicen en un calendario programado. También para que los parámetros de información de las características de los elementos complementarios de la vía principal ESPOL sean tomados de la manera correcta.

Estas tareas de capacitaciones son de gran importancia, ya que las características de las entidades se obtienen de manera subjetiva, dependiendo del criterio de la persona, entonces una adecuada planificación y preparación de las actividades de campo garantizará que los trabajos se realicen en el tiempo previsto. Estas capacitaciones se realizaron a un grupo de 40 estudiantes de la materia Vías del II Término 2017, quienes colaboraron con el levantamiento de la información requerida.

Tabla XXXIX División por tramos para el levantamiento de las entidades.

INVENTARIO VIAL			
Tramos	Activos	Grupos	
1 —	Señalética Vertical	1	
	Señalética Horizontal	2	
2 —	Señalética Vertical	7	
	Señalética Horizontal	6	
3 —	Señalética Vertical	8	
	Señalética Horizontal	5	
4	Señalética Vertical	12	

	Señalética Horizontal	11
E	Señalética Vertical	13
5 -	Señalética Horizontal	3
_	Señalética Vertical	10
	Señalética Horizontal	9
6	Reductores de Velocidad	15
_	Alcantarillado	14
-	Muro y Vallas de Seguridad	4
	=	

Fuente: Infante, N., Valencia, R., 2018.

Cabe recalcar que para la facilidad de uso manejo y compresión de la misma se hizo una división por tramos en kilómetros o metros, los mismos que se le adjudicaron por grupos a los estudiantes de Vías tal como se puede apreciar en la siguiente tabla XL y los tramos divididos se puede apreciar en los anexos.

Para finalmente realizar un análisis comparativo de las entidades existentes y comprobar si las mismas cumplen o no con la normativa vigente además de ayudar a proponer la mejor solución posible y económica para el caso.

Las actividades preparatorias son las siguientes:

 a) Recopilación de información secundaria, textos guías, normas vigentes relacionados a inventarios viales.

- b) Presentación del proyecto a estudiantes involucrados y se formaron equipos de trabajo con los estudiantes de la materia Vías del II Término 2017.
- c) Generación de fichas de campos manuales con criterios de interpretación del estado físico de la entidad, medidas geométricas y geolocalización. El manejo de la información de la libreta de campo donde se especifican las características de estado y geolocalización se realiza de manera subjetiva.
- d) La subdivisión de tramos es de aproximadamente 1000m para los diferentes grupos de trabajo y su respectiva generación de planos georreferenciados para la geolocalización de los elementos.

Las actividades operativas se refieren a las que intervienen en las fichas de campo, el manejo y uso de los documentos necesarios para realizar la toma de datos. Y posteriormente efectuar el respectivo trabajo de oficina en donde se manipulará y pulirá la investigación previamente obtenida para así plasmar una base de datos con la que se pueda establecer el proyecto para tener una plataforma firme del mismo.

3.2 Diagrama de flujo de Actividades Preparatorias

A continuación, se ilustra en la figura 23 un diagrama de flujo de las actividades preparatorias de manera detallada a lo largo de este proceso.

Figura 3.1 Diagrama de actividades **Fuente:** Infante, N., Valencia, R., 2018.

3.3 Levantamiento de la red vial

El levantamiento se efectuó con precisión denotando las características de la vía principal y zonas aledañas, conjuntamente se utilizó una fotografía aérea, es decir una orto fotografía georreferenciada tal como se ilustró en la figura 20 y con la ayuda del software ArcGis.

Adicional se plasmó la digitalización de los elementos significativos de la misma para poder presentar la mejor propuesta a ejecutarse dentro del Campus Politécnico. También se suministrará como resultado un nuevo plano con las mejoras en cuanto a la señalética horizontal, señalética vertical, muro, y rompe velocidades según las entidades mencionadas anteriormente.

3.4 Proceso de georreferenciación

La georreferenciación de la entidad respectiva se realizó con un plano de ESPOL, ilustrado con una grilla de coordenadas que ayudará al equipo de campo para la identificación de tramos y coordenadas, dónde de manera subjetiva se ubicarán las entidades señaladas para conseguir las coordenadas proyectadas.

Esta metodología de campo fue escogida se adoptó por el corto tiempo de planificación y ejecución del proyecto. Por lo tanto, las zonas

aledañas, estado de la vía, ubicación y estados de los elementos viales, se efectuarán en trabajo de gabinete a cargo de los estudiantes interesados del proyecto (Autores).

Con la ayuda de AUTOCAD se procederá al dibujo y ubicación referenciada de estos elementos para luego exportar a un formato SIG.

Tal como se ilustra en la figura 24 un diagrama de flujo de los pasos realizados para la georreferenciación de las entidades.

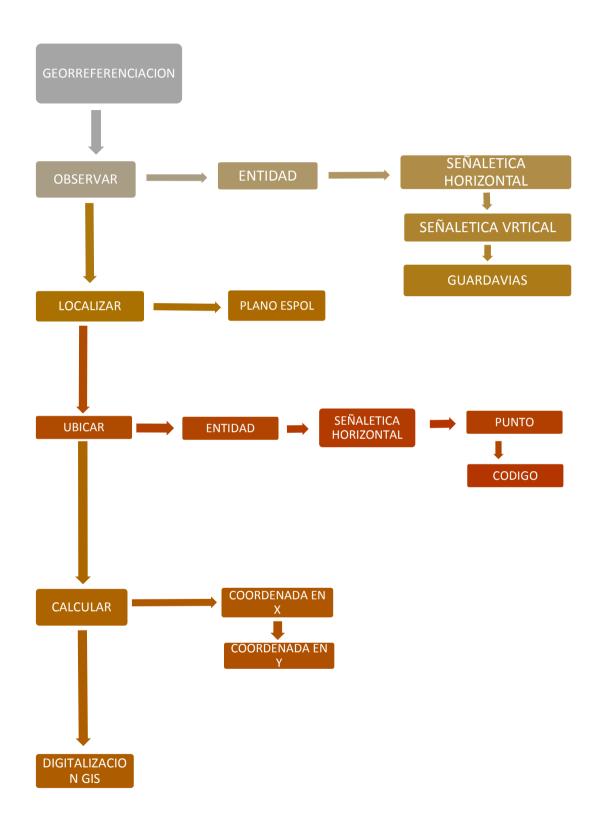

3.5 Entidades

Tabla XL Registro de Grupos y Subgrupos Para Inventario Vial

REGISTRO DE GRUPOS Y SUBGRUPOS PARA INVENTARIO VIAL **ETRUCTURAS** SEGURIDAD **DRENAJE** ALINEAMIENT **PAVIMENT MAYORRES VIAL** 0 0 **HORIZONTAL** ALCANTARILLA Señalización Sumideros Índice de **Tangentes** S > 1.5MVertical fricción **MUROS** Señalización Alcantarilla internacional Curvas Horizontal Reductore Rejillas Radio de giro s de Velocidad Cruces Cajas Peralte Peatonale s (Cebra) Tubería de **AALL** Tubería de **AAPP** Canaletas **Ductos** cajón

Fuente: Infante, N., Valencia, R., 2018.

Ilustración de las entidades tomadas en cuenta a lo largo del proyecto, en la tabla XLI, se describen las actividades operativas para el levantamiento vial de cada entidad previsto en el proyecto.

Figura 3.2. Diagrama de proceso para georreferenciación **Fuente:** Infante, N., Valencia, R., 2018.

3.6 Levantamiento

3.6.1 Levantamiento de señalética

Posteriormente, se describen los parámetros tomados en cuenta para el levantamiento de las entidades.

3.6.1.1 Vertical

- a) Los códigos para los diferentes tipos de señaléticas verticales, establecidos en la RTE INEN 004.
- b) Si existe una señalética no normada, sólo se la ubicará obteniendo sus coordenadas y no se medirá los demás atributos.
- c) Evidencia fotográfica
- d) Coordenadas del elemento
- e) Ubicación lateral de la entidad con respecto al borde más alejado del bordillo y con respecto a la instalación avisando la aproximación de un cruce de vías, paso de peatones, reductores de velocidad.
- f) Tipo de poste y estado del mismo

- g) Características geométricas, es decir, medidas horizontales y verticales sin importar la forma que tenga.
- h) Tipo de material de la placa para el aviso retroreflectivo y el estado del mismo.
- i) Evaluación de la disposición de los remaches.

El modelo de la ficha de campo llenada por los estudiantes involucrados en el proyecto, lo puede ver en el ANEXO A.

3.6.1.2 Horizontal

- j) Nombre de la clasificación de señaléticas horizontales, establecidos en la RTE INEN 004.
- k) Si existe una pintura de tráfico no normada, sólo se la ubicará obteniendo sus coordenadas y no se medirá los demás atributos.
- I) Evidencia fotográfica.
- m) Coordenadas del elemento.
- n) Los tipos de pintura de tráfico que estén presentes en la vía principal, siendo en base de agua, termoplástica o acrílicas.

- o) Color de pintura utilizada usada, siéndolo amarillas o blancas.
- p) Estado físico en que se encuentre la pintura.
- q) Dentro de los atributos evaluamos el contraste que se refieren a la opacidad, nitidez o claridad.
- r) Tener presente la evaluación de la existencia de tachas y su ubicación es importante para evaluar la correcta disposición de las señaléticas horizontales.
- s) El modelo de la ficha de campo llenada por los estudiantes involucrados en el proyecto, lo puede ver en el ANEXO B.

3.6.2 Reductores de velocidad

- a) Tipo de reductor de velocidad, clasificación establecida en la RTE INEN 004.
- b) Estado de la entidad.
- c) Coordenadas del eje.
- d) Datos geométricos como el ancho y la altura.
- e) Ubicación de la cuneta en los extremos.

f) El modelo de la ficha de campo llenada por los estudiantes involucrados en el proyecto, lo puede ver en el ANEXO C.

3.6.3 Guarda vías

- g) Características del guarda vías identificando el tipo de barrera.
- h) Coordenadas inicial y final del guardavía.
- i) Estado de la barrera se obtendrá de manera subjetiva, dependiendo del criterio del equipo de trabajo.
- j) Disposición del cumplimiento de la normativa con respecto a la altura del guarda vías.
- k) Presencia de prismas reflectivo en la barrera.
- I) Terminales y discontinuidades de la barrera.
- m) El modelo de la ficha de campo llenada por los estudiantes involucrados en el proyecto, lo puede ver en el ANEXO D

3.6.4 Alcantarillas

- n) Estado de la alcantarilla, se obtendrá de manera subjetiva dependiendo del criterio del equipo de trabajo.
- o) Coordenadas de la entidad

El modelo de la ficha de campo llenada por los estudiantes involucrados en el proyecto, lo puede ver en el ANEXO E.

3.6.5 Dibujo y edición en CAD

Se obtuvo un plano final una vez ya depurado el inicial, para proceder con la subdivisión de tramos para facilitar el dominio del mismo y se consiga una mejor visualización y ubicación de las entidades.

3.6.6 Digitalización base ESPOL

Se procedió con el ingreso de datos en una hoja de Excel ya programada para saber el estado de las señales comparando con la normativa vigente (RTE INEN I., 2012).

Parterre, avenida y calzada

Ilustración del parterre, la avenida principal del campus Gustavo Galindo ESPOL Tal como se puede ver en el plano: Estructuras mayores campus ESPOL, para el tramo PARCON y anillo vial ESPOL en la sección de Anexos.

3.7 Post proceso digital de fichas de campo

A continuación, se muestra las entidades digitalizadas y georreferenciadas en software ArcGis de la información obtenida en campo.

3.7.1 Elementos viales

3.7.1.1 Señalética vertical

Ilustración de las señaléticas verticales de la avenida principal del campus Gustavo Galindo ESPOL. Los avisos verticales levantados los puede observar en la sección anexos, planos:

- Avisos verticales y estado, Anillo vial ESPOL
- Avisos verticales y estado, Garita PARCON Garita ESPOL

3.7.1.2 Señalética horizontal

Ilustración de las señaléticas horizontales de la avenida principal del campus Gustavo Galindo ESPOL. Los avisos horizontales levantados los puede observar en la sección anexos, planos:

- Avisos horizontales, Anillo vial ESPOL
- Avisos horizontales, Garita PARCON Garita
 ESPOL

3.7.1.3 Guarda vías

La digitalización de esta entidad la realizamos con el formato tipo línea dibujando lo más cercano posible el eje del guarda vías. A continuación, se muestra los guardavías clasificados por el tipo y estado. Los guardavías levantados los puede observar en la sección anexos, planos:

Estructuras mayores campus ESPOL

3.7.1.4 Alcantarillas

Para la digitalización de esta entidad escogimos el formato tipo punto dibujando el punto central de la alcantarilla, caja de registro, ducto cajón o sumideros. Se presenta una ilustración del estado de las alcantarillas pluviales de la avenida principal del campus Gustavo Galindo ESPOL. Las alcantarillas levantadas los puede observar en la sección anexos, planos:

Estructuras mayores campus ESPOL

3.7.1.5 Reductores de velocidad

Para la digitalización de esta entidad escogimos el formato línea dibujando el eje del reductor de velocidad y guiándonos con la orto fotografía. También cuenta con categorías de valores únicos especificadas en los parámetros tomados en cuenta, numeral 3.5.3. Los reductores de velocidad levantados los puede observar en la sección anexos, planos:

Avisos horizontales, Anillo vial ESPOL

Avisos horizontales, Garita PARCON – Garita
 ESPOL

3.7.2 Definición de propiedades (generación de datos geográficos o geodatabase)

Generación de Base de Datos Gis obtenidos con los parámetros levantados en cada entidad. La definición de los datos, información que los caracteriza y describe el contenido lo puede encontrar en la sección de Anexos

3.7.2.1 Señalética vertical

La geodatabase de la entidad señalética vertical se presenta en la sección de Anexos.

3.7.2.2 Señalética horizontal

La geodatabase de la entidad señalética vertical se presenta en la sección de Anexos.

3.7.2.3 Guardavías

La geodatabase de la entidad guardavías se presenta en la sección de Anexos.

3.7.2.4 Alcantarillas

La geodatabase de la entidad alcantarillas se presenta en la sección de Anexos.

3.7.2.5 Reductores de Velocidad

La geodatabase de la entidad Reductores de Velocidad se presenta en la sección de Anexos.

CAPÍTULO 4 ANÁLISIS DE RESULTADOS

4.1 Análisis cuantitativo

El análisis de información está basado en 5 bases de datos las cuales fueron identificadas en la sección ANEXOS. Las tablas de la 42 a la 45 corresponden a datos de la entidad de Guarda vías, tabla 46 a la 50 de la entidad alcantarilla, tabla 51 a la 52 de la entidad de reductores de velocidad, tabla 53 a la 56 de la entidad de señalética vertical, tabla 57 a entidad señalética horizontal, flechas, y por último la tabla 59 a la entidad señalética horizontal, líneas.

4.1.1 Señalética vertical

Basándose en los datos proporcionados, para la entidad señalética vertical, se han dividido en dos secciones con respecto al cumplimiento de la normativa RTE INEN 004: Revisión de dimensiones y revisión de ubicación de remaches. La sección revisión de dimensiones, se la analiza, con respecto a las longitudes horizontales y verticales del elemento sin importar su forma (rombo, circular, rectangular).

Considerando esos datos del respectivo año, las dimensiones correctas de las señaléticas para velocidades menores a 60 Km/h son: 600x600, 450x600, 750x600, 750x900, 900x300, 600x800,

teniendo para cada dimensión: 250, 6, 2, 1, 1, 1 y 31 elementos que no tienen placa informativa.

En la figura 26 se presenta la distribución general en la revisión de dimensiones de los 292 elementos en total y en la figura 27 se presenta un desglose por tramo levantado.

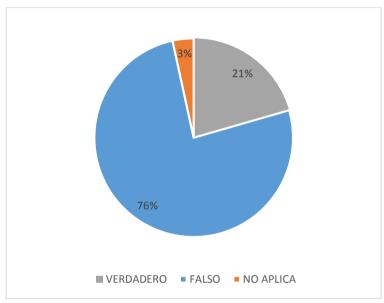
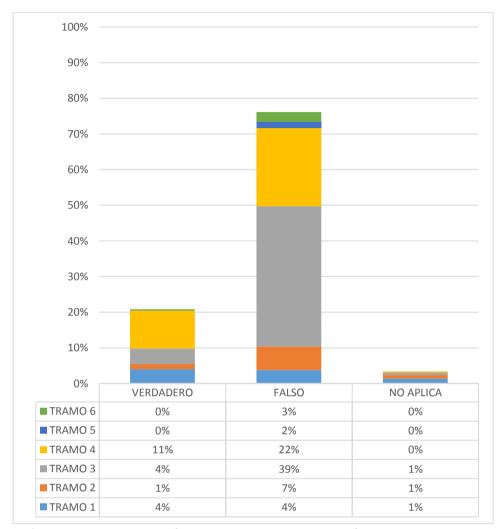



Figura 4.1. Distribución porcentual en la revisión de dimensiones

Fuente: Infante, N., Valencia, R., 2018.

Figura 4.2. Distribución por tramos en la revisión de dimensiones **Fuente:** Infante, N., Valencia, R., 2018.

Analizando los dos gráficos, se puede observar que un 76% de las señaléticas existentes no cumplen la norma con respecto a sus dimensiones, dos son los tramos que presentan más elementos sin cumplir la norma, estos son los tamos 4 y 3. El tramo 3 va

desde el colegio COPOL hasta la FCSH y el tramo 4 va desde la FCSH hasta la FCT.

En estos tramos se va a requerir una intervención de cambio de señalética, esperando así reducir el 34% de factores viales y el entorno en los accidentes de tránsito. Entonces las señaléticas verticales existentes con respecto a sus dimensiones, no son las adecuadas para brindar una buena utilidad a los conductores en el campus.

Desde el punto de vista de geolocalización de las señaléticas y el análisis estadístico de los mismos, se realizará en la sección 4,2 utilizando de manera básica y no tan profunda la geo estadística, realizar un mejor análisis para cada entidad y determinar una mejor propuesta.

4.1.1.1 Guardavías

Basándose en los datos proporcionados, para la entidad guardavías, el análisis de información está basado en 3 secciones: Disposición, capta faros y terminales con

respecto al cumplimiento de la normativa MOP 001F - 2002.

Considerando los datos obtenidos, existen 12 guardavías metálicas ubicadas en el anillo vial ESPOL y el tramo PARCON, en su mayoría en buen estado y de perfil omega. En la figura 28, 29 y 30 se muestra la distribución por porcentaje de las secciones establecidas.

Figura 4.3. Disposición de guardavías **Fuente:** Infante, N., Valencia, R., 2018.

Figura 4.4. Capta faros de guardavías **Fuente:** Infante, N., Valencia, R., 2018.

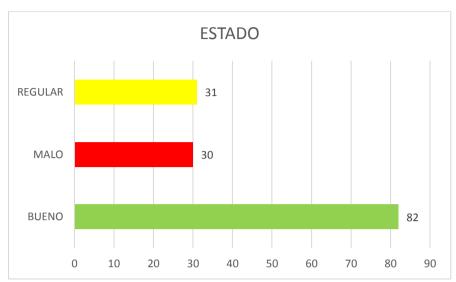
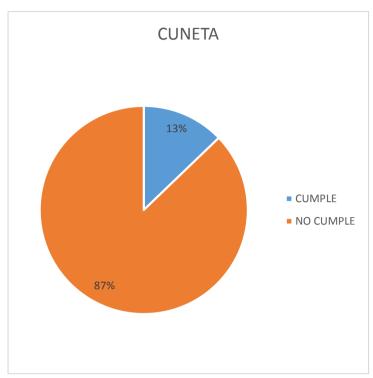
Figura 4.5. Terminales de guardavías **Fuente:** Infante, N., Valencia, R., 2018.

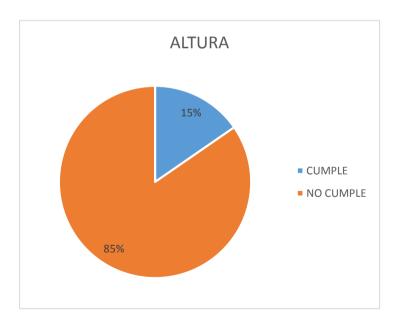
Analizando los tres gráficos, se puede observar que un 75% de guardavías metálicos necesitan ser cambiados y un 25% requieren mantenimiento, más del 90% no cuentan con prismas reflectivo o capta faros, esto implica a una mala instalación e indebido uso de guardavías existente y por

último un 67% cuenta con mala instalación en los terminales, esto implica posibles accidentes mortales ya que la mayoría de los guardavías en sus esquinas no cuentan con una protección para disminuir los impactos.

4.1.1.2 Alcantarillas

Basándose en los datos proporcionados, para la entidad alcantarillas, encontramos que existen 143 alcantarillas de AALL y AASS, las cuales, de manera subjetiva y resumida, encontramos 82, 30, 31 en buen, mal y regular estado respectivamente. Para esta entidad no se propondrá una solución de las que se encuentren en mal estado por no ser parte de los objetivos de este documento. En la figura 31 se muestra el estado de las alcantarillas en ESPOL.


Figura 4.6. Estado alcantarillas ESPOL Fuente: Infante, N., Valencia, R., 2018.

4.1.1.3 Reductores de velocidad

Según los datos proporcionados, para la entidad reductores de velocidad, dividimos el análisis en dos grupos: ubicación cuneta y cumplimiento de altura. Las dimensiones según la norma la mencionamos en la sección 2.10, las cuales nos basamos para hacer un correcto análisis de esta entidad. En la figura 32 y 33 se muestra un resumen de los elementos que, cumplen o que no cumplan, con la norma para cada grupo.

Figura 4.7. Cumplimiento ubicación cuneta **Fuente**: Infante, N., Valencia, R., 2018.

Figura 4.8. Cumplimiento altura **Fuente**: Infante, N., Valencia, R., 2018.

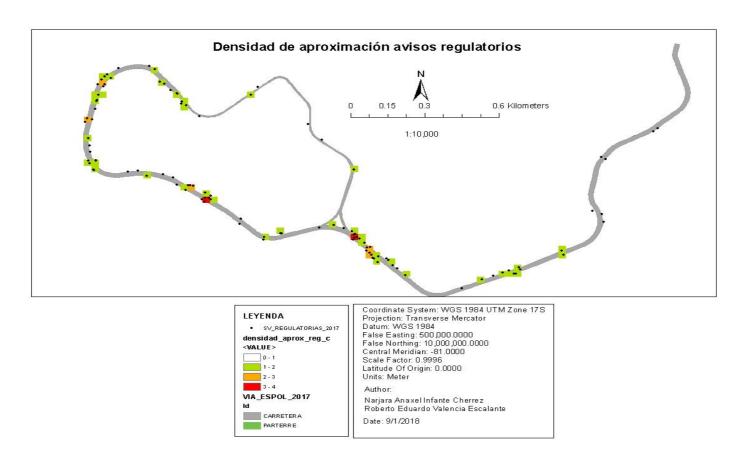
Desde el punto de vista de ubicación, los reductores de velocidad, están colocados en lugares estratégicos pero la mayoría no cumplen con las dimensiones establecidas de las normas. Esto significa que los elementos necesitan ser intervenidos solo para que cumplan las dimensiones correctas.

4.2 Análisis espacial

En esta sección se analiza la ubicación de las señaléticas regulatorias en la vecindad de esta entidad, tomando en cuenta la distancia permitidas entre las mismas, establecidas por la RTE INEN o recomendadas por la NEVI 2012 y así poder determinar en qué tramos de la vía principal de ESPOL existen un número excesivo e innecesario de señaléticas verticales.

Conceptualmente, se utilizará un modelo de investigación a partir de una muestra de observaciones con datos independientes, distribución continua y los datos estén compartiendo un mismo atributo. El modelo es la función de densidad de Kernel aplicada en el software ArcGis, los usos comunes incluyen estimar densidad de hogares, informes de accidentes, carreteras o líneas de servicios públicos que influyan en una ciudad.

La estimación de la densidad de Kernel sirve para analizar en una escala grande la tendencia de datos de puntos. Es por eso que se localizará las entidades de señalética vertical en los tramos de PARCON y anillo vial ESPOL y con ayuda de esta densidad se podrá mostrar la cantidad de señales que no cumplen la distancia mínima permitida.

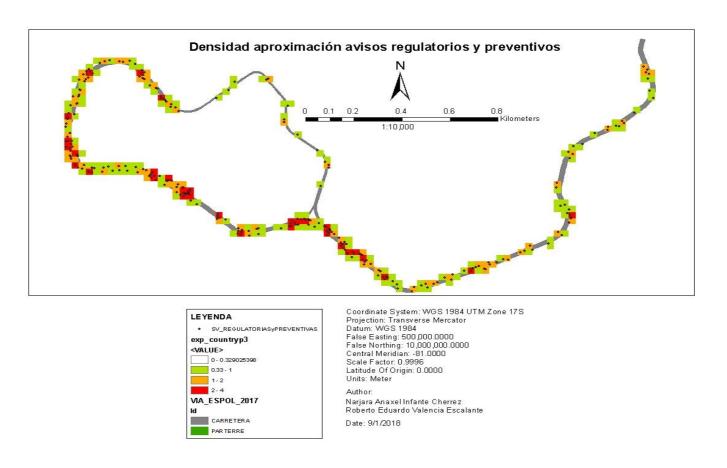

El cálculo de densidades por el método de Kernel tiene aplicaciones comunes para el estudio de evolución demográfica, estudio de casas en una ciudadela, etc. A pesar de las limitaciones del propio método se planteó la adecuación del mismo para su aplicación en el análisis de la ubicación de las señaléticas.

En este análisis se identificará un patrón espacial de distribución y focos de concentración de los elementos, la vecindad de estudio se tomó en cuenta un radio de circunferencia de 30m. Este valor fue obtenido de un promedio de las distancias mínimas recomendadas de separación entre señales, velocidades entre 30 – 50 km/h, *tabla 2.* En la figura 34 se muestra el caso del campus ESPOL.

Como se puede observar en el plano de densidades generado, las señaléticas verticales regulatorias no presentan concentraciones extremas en el anillo vial ESPOL. Esto nos indica que, la mayoría de señaléticas, si están cumpliendo con la distancia mínima recomendada por la NEVI 2012.

Ahora mostraremos un análisis tomando en cuenta señaléticas preventivas y regulatorias, con el fin de tratar de demostrar la existencia de avisos acumulados. En la figura 35 se muestra el caso.

En este caso, se puede observar tres puntos de acumulación de avisos, siendo mínimo de 4 y máximo 10 elementos muy cercanos, las concentraciones se acumulan en la intersección en Y, cerca al edificio del rectorado y en la curva para ingresar a las facultades de mecánica y ciencias de la tierra, en la figura 36 se muestra un intervalo de la cantidad


Figura 4.9. Densidad de Kernel avisos regulatorios **Fuente:** Infante, N., Valencia, R., 2018.

de señaléticas identificadas por una escala de colores. Estas concentraciones de avisos se las puede relacionar con los puntos de accidentes ocurridos, ver figura 21, entonces se puede observar una primera tendencia de los accidentes en los puntos donde hay concentración de señalética y se puede concluir que, avisos muy cercanos generan confusión a los usuarios de la vía y por ende se puede originar un accidente. Más adelante se presentará una metodología para determinar zonas de riesgos, en la cual trataremos de confirmar esta primera tendencia obtenida.

4.3 Análisis zonas de riesgo de accidente de tráfico

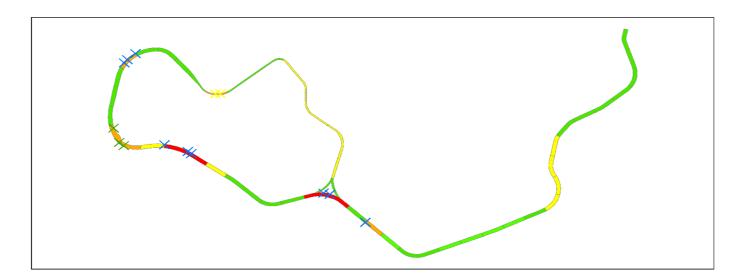
Este estudio se realizó en el campus Prosperina en una carretera de segundo nivel con dos carriles bidireccionales, con una longitud aproximada de 5km.

Una vez analizada la muestra y tomando en cuenta todos los factores y la distribución de frecuencias se denota el perfil principal de susceptibilidad, por consiguiente, se analiza el factor de infraestructura para verificar los niveles de retroreflectividad para observar los tipos de marca en el pavimento que para el centro de la línea será un color amarillo y para los bordes un color blanco.

Figura 4.10. Densidad de Kernel avisos regulatorios y preventivos **Fuente:** Infante, N., Valencia, R., 2018.

Mediante la tabla 34 según el número de agarre y la condición es regular, resbaladiza y peligrosa con un riesgo y promedio de accidente de 16 – 20. Lo que es un resultado bastante significativo para el tipo de carretera estudiada en este proyecto considerada como Carretera Rural según la importancia y uso de la misma.

La retroreflectividad para esta vía dependerá de la marca en el pavimento con una velocidad menor o igual a 40km, la misma que será de 140mcd/lx/m2.


El factor clima es fundamental para saber el porcentaje de lluvia y el promedio anual del mismo. La concentración para este proyecto es muy baja con clasificación 1 con una descripción de 0 – 20% de días/lluvia/año.

Los factores geométricos de la carretera según el alineamiento horizontal serán de clasificación 4 cuya descripción concurriría en algunas curvas, y para el alineamiento vertical de la carretera sería ondulado suave clasificación 2 según los estudios realizados y la Metodología para Determinar las zonas de Riesgo para accidentes de tráfico. (Sanabria, Barrantes, & Aguiar Moya, Ph.D., 2013)

Para una mejor apreciación de los perfiles según los factores de susceptibilidad y la base de datos estadísticos de los accidentes dentro de Espol otorgados por el Ab. Iván Ugalde Ponce Jefe de Seguridad Vial. Se

realizó un plano en donde se podrá identificar zonas susceptibles a peligro con más altos riesgos.

Tales como se pueden verificar en la sección de anexos en las tablas correspondientes a Susceptibilidad de Peligros en donde se detallará los factores de infraestructura, geométrico horizontal, geométrico vertical y clima. Véase en el plano siguiente:

Figura 4.11 Tramos Susceptibles a peligros **Fuente:** Infante, N., Valencia, R., 2018

4.4 Análisis geométrico

4.4.1 Cálculos geométricos del estado actual

En esta sección se analizará el cumplimiento del alineamiento horizontal en las curvas pertenecientes a los tramos susceptibles a accidentes, con riesgo intolerable e importante, ver figura 36. Para efectuar el análisis geométrico se utilizó el documento de (LOUIS BERGER INTERNACIONAL).

Para el correcto estudio se determinó la velocidad de diseño para la carretera, los radios de giros y peralte de las curvas pertenecientes a los tramos críticos, el tráfico promedio anual, clase de carretera y velocidad de diseño.

TPDA

El Tráfico Promedio Diario Anual (TPDA) indica el número de vehículos que circulan en ambos sentidos de la carretera, el día completo dentro de un año. El TPDA como dato para diseño o mantenimiento, requiere de una tasa de incremento vehicular y un periodo de vida útil para poder determinar el $TPDA_{proyectado}$.

Este dato es importante porque así conseguimos la clase de carretera, velocidad de diseño y más parámetros necesarios para poder realizar un análisis geométrico de la vía principal del campus ESPOL.

En nuestro caso el TPDA fue escogido de (Camatón & Sotomayor, 2006), en dónde indican un

$$TPDA_{proyectado} = 825 \frac{vehículos}{dia}$$

con tasa de incremento vehicular proyectado del 3.00% y un periodo de diseño de 20 años.

CLASE DE CARRETERA

Según el (MOP, 2002), cuadro III-2 Relación Función Clase MOP y tráfico.

En donde se visualiza las clases de Carretera I, II, III, IV y V según el TPDA del año final de diseño de la vía analizada. Con la clasificación del (MOP, 2002), la vía es una carretera de clase III, para tráficos de 300 a 1000 vehículos por día.

VELOCIDAD DE DISEÑO

Se estima una velocidad de diseño según el TPDA, clase de la carretera y el tipo de terreno según el (MOP, 2002) anexos

normas. La misma que, con relieve montañoso, la velocidad recomendable para este caso es de 60 km/h.

VELOCIDAD DE CIRCULACIÓN

Es la velocidad real de un vehículo a lo largo de la vía. Esta velocidad es posible determinar en el (MOP, 2002) cuadro IV – 2 Relaciones entre velocidades de circulación y de diseño. La misma que, con un volumen de transito bajo, nos indica un valor de 55km/h. Esta velocidad es un valor recomendado para el diseño de elementos viales, es importante recalcar que la realidad es diferente, ya que la velocidad de macha de los usuarios es variada durante el día, dependiendo principalmente del volumen de tránsito, hoy en día, como valor pico, la velocidad de circulación está alrededor de 80 km/h.

MÁXIMO COEFICIENTE DE FRICCIÓN LATERAL

De acuerdo a (LOUIS BERGER INTERNACIONAL) capítulo V Sección D, tabla B.1, se necesita ciertos tipos de requerimientos tales como estabilidad contra el volcamiento, estabilidad contra el deslizamiento, comodidad del viaje y explotación económica del vehículo. De acuerdo a la tabla V.1 el máximo coeficiente de fricción lateral sería 0.15 para brindar comodidad al usuario.

RADIO DE GIRO

Los radios de giro, son los arcos de círculo formados por dos tangentes consecutivas en las curvas de los tramos críticos los cuales permiten realizar la maniobra de giro de un vehículo de manera segura. Para determinar estos radios, se digitalizó la proyección horizontal desde una orto foto del campus, gracias a la ayuda de los elementos de la curva circular simple establecidos en (LOUIS BERGER INTERNACIONAL).

Los radios de giro calculados los puede observar en la sección anexos, planos:

- Elementos de la curva circular, tramo 2100-2200m
- Elementos de la curva circular, tramo 2800-2900m
- Elementos de la curva circular, tramo 3500-3600m

PERALTE REQUERIDO

El peralte es la pendiente transversal de la calzada, para proveer de comodidad y seguridad al vehículo que circula en la curva horizontal, sin embargo, el peralte no debe exceder su valor máximo recomendado ya que, si es exagerado puede provocar el deslizamiento del vehículo al interior cuando circula a baja velocidad.

Con los datos previamente obtenidos de radio de giro, máximo coeficiente de fricción lateral, velocidad de diseño se procedió a calcular el peralte requerido para los tramos de alto riesgo en índice de accidente según (MOP, 2002).

Tramo 2200-2400m

$$e = \frac{V^2}{127R} - f$$

Donde:

e = Peralte de la curva, m/m

V = Velocidad de diseño, km/h

R = Radio de la curva, m

F = Máximo coeficiente de fricción lateral

Se obtiene:

$$e = \frac{60^2}{127 * 143.65} - 0.15$$

$$e = 4.73\%$$

PERALTE REAL

Tramo 2200-2400m

El peralte real fue encontrado realizando una topografía altimétrica del terreno, levantado puntos de coordenadas y elevación en ambas direcciones, tales como: extremos externos e internos de la calzada y parterre.

En la parte anexos, plano peralte curva 2200-2400m, puede encontrar el peralte real de este tramo.

4.4.2 Datos geométricos recomendados y comparación

Radio de giro

Según (MOP, 2002), los radios mínimos de curvas en función del peralte requerido y del coeficiente de fricción lateral, página 37, nos da un valor de radio mínimo de 140m y el peralte máximo de diseño recomendado para carreteras de dos carriles y caminos vecinales de construcción es del 10%. Para este estudio analizaremos el tramo más crítico por fluencia de carros y el mayor número de intersecciones de vías, este es el tramo A, lo puede observar en la parte anexos plano general.

Según el manual (MOP, 2002) para diseño geométrico, encontramos que el tramo A necesita un peralte del 4.73% en su longitud de curva, si observamos el peralte real, encontramos que

los valores rondan del 1% al 2%, entonces se puede notar que esta curva no está cumpliendo con el requerimiento para evitar inestabilidad por deslizamiento o volcamiento por lo cual necesita una rápida intervención. Este estudio no tiene como objetivo proponer un cambio en el diseño geométrico, sino que, en la sección recomendaciones se puede encontrar algunas ideas para poder mejorar o corregir esta problemática.

4.5 Propuestas y/o alternativas de solución

4.5.1 Seguridad vial

Cambio de señaléticas en mal estado

Se considera que el cambio de la señalética es indispensable para la disminución de incidentes dentro del campus por lo mismo se generará un presupuesto que ayudará a mitigar los efectos colaterales que infieren en la mala distribución, colocación y mantenimientos de las mismas.

Por lo que se manifestara las opciones para el cambio o mantenimiento de las señaléticas categorizadas por entidades a continuación.

Señalética vertical.

Para la señalética vertical después de haber revisado una a una la señal se pudo verificar el incumplimiento de norma para la misma en cuanto a dimensión, tamaño, color, retroreflectividad, ubicación y función. Además de la contaminación visual que poseen algunas señales debido a la falta de retroreflectividad para zonas oscuras o tránsito nocturno, ocasionan fuertes incidentes y en su mayoría concurrentes accidentes para ciertos tramos. Es necesario el cambio de estas señales conservando la ubicación respectiva de cada señal, para disminuir los efectos colaterales o secundarios que estas pudieran provocar, esta permuta se realizará solo con las señales regulatorias, ya que, estas son las más importantes debido a que regulan, controlan el buen uso de la vía y el incumplimiento de la misma constituye en una infracción la Ley.

En el campus encontramos 291 señales verticales en total, 107 son regulatorias, las cuales, un 76% de señales regulatorias no cumplen con las dimensiones, entonces aproximadamente una cantidad de 81 señales regulatorias van a ser cambiadas.

En la parte anexos se podrá encontrar un costo estimado del reemplazo de las señales verticales en mal estado, aprovechando

el material en buen estado, tales como las bases, tubos o remaches, para el ahorro económico en el proyecto.

Nuevo diseño señalética vertical

En los análisis realizados se encontraron tramos con susceptibilidad a peligros de tránsito, donde un tramo es el más crítico localizado como TRAMO A, en el plano general en los anexos. En este tramo se propone una nueva señalética vertical con el fin de prevenir accidentes a futuro. A continuación se enlista las señaléticas utilizadas, cantidad y abscisa, de la norma vigente (RTE INEN, 2012).

- R4-1A, 4 señales, abscisado: 1 + 960, 2 + 500.
- D6-2 (I y D), 8 señales, abscisado: 2 + 130, 2 + 160, 2 +
 190, 2 + 220, 2 + 235, 2 + 250, 2 + 280.
- P7-4A, 2 señales, abscisado: 2 + 130, 2 +280.
- P7-2A, 2 señales, abscisado: 1 + 990, 2 + 470.
- RA-4A, 2 señales, abscisado: 2 + 200, 2 + 400.
- R2-8A, 2 señales, misma ubicación.
- R1-1A, 2 señales, misma ubicación.
- R3-12a A, 2 señales, misma ubicación.

P1-6A (I y D), 2 señales, misma ubicación.

El diseño de la señalética en el tramo crítico lo puede observar en la sección anexos, plano: Propuesta tramo peligroso. Así como el presupuesto estimado de la nueva señalética.

4.5.2 Nuevo diseño de señalética horizontal adecuada.

Para los reductores de velocidad se pudo verificar que estos si cumplen su función y están ubicados en zonas estratégicas donde son necesarios, aunque algunos de ellos están diseñados con normativas anteriores, se sabe que el 85% incumplen a la normativa vigente (RTE INEN I., 2012) con alturas aproximadas desde 10cm a 13cm, pero por lo pronto no son prioridad. Aunque estudios revelan que su mala funcionalidad y dimensiones son los principales causantes en fallas y deterioros de carters o piezas de los automóviles.

La universidad no se responsabiliza por estos daños, pero si son causales de múltiples demandas económicas al ocurrir un accidente ya sea por culpa humana o falla técnica. Motivo por el cual será necesario ponerle mayor asunto quizás no por ahora, pero si a futuro.

Se propone un nuevo diseño de señalética horizontal para todo el campus debido al incumplimiento de las normas vigentes (MOP,

2002) en el diseño y ubicación de los reductores de velocidad, y a la deficiencia de visualización de la señalética horizontal tanto como en el día y en la noche, en diferentes tramos analizados que son alrededor de un 80% del estudio examinado.

Para ello se detalla en los planos: Plano propuesta señalética horizontal tramo PARCON y Plano propuesta señalética horizontal tramo Anillo Vial, la nueva ubicación, distribución y geometría de los reductores de velocidad, pintura horizontal tales como líneas, avisos y todo lo que contempla la señalización horizontal vial. Además de implementar el uso BTA para optimizar recursos, y economizar gastos.

Marcas longitudinales (RTE INEN, 2012)

- Líneas de borde de pavimento
- Líneas centrales
- Líneas de separación de carriles segmentadas
- Líneas de continuidad
- Líneas continúas de borde, con espaldón o berma
- Líneas de barrera
- Línea ceda el paso
- Línea de cruce cebra
- Líneas de "Cruce cebra" con líneas en zig zag

- Demarcación paradero de bus
- Demarcación de ceda el paso
- Demarcación de velocidad máxima
- Demarcación aproximaciones abiertas
- Demarcación no bloquear cruce
- Señalización complementaria de advertencia
- Resalto en calzada bidireccional con dos carriles de circulación

Los cuales servirán para mantener una velocidad reducida, para la identificación y resguardo de los peatones, y así poder advertir a los conductores de la necesidad de efectuar alguna acción preventiva.

En cuanto a señalética horizontal la deficiencia de la misma no es tan notoria puesto a que si se le da un mantenimiento por parte de las autoridades en un periodo de seis meses, aunque este recurso es menos rentable, por lo que se analizó cada señal encontrada dentro del campus y se comprobó la falla de las mismas además de que su función gracias a la calidad se ve afectada a corto plazo, puesto que si se realiza mantenimiento esta no es eficiente en cuanto a durabilidad.

Por lo que se estudió un posible cambio de Pintura de agua que es la que normalmente se usa, a Pintura termoplástica que gracias a su funciones y características es la más recomendable dentro del campus, si es un poco más costosa, pero analizando su relación Costo – Beneficio se comprueba que esta será de mayor ayuda y economía para la universidad, además de mostrarle un mejor cambio y apreciación visual a las instalaciones de ESPOL

4.5.3 Implementar una base de datos georrefenciada de la información o estadísticas de incidentes o accidentes de tránsitos.

Con la ayuda de una base de datos georreferenciada de los censos o detalles de los accidentes ocurridos dentro del campus será mucho más factible y de amplio conocimiento los tramos de alto índice de peligrosidad, debido a la incurrencia de los mismos en diferentes puntos denominados ya como puntos críticos en este estudio.

Para ello se efectuó un modelo recomendable de los factores o parámetros a levantar en caso de accidentes. Véase en Anexos Basado en (Autoridad del Tránsito y Tranporte Terrestre De Panamá)

4.6 Estudio de impacto ambiental

4.6.1 Términos de referencia y descripción de línea base

Para el presente estudio se consideraron los aspectos más importantes y los que necesariamente debían ser tomados en cuenta por los efectos secundarios que infieren en la población ensayada, el cual se desarrollará en las instalaciones del anillo Vial interno de la Escuela Superior Politécnica del Litoral, comprendidas por los tramos ya mencionados anteriormente que abarcan el acceso principal de **PARCON** y las vías principales de acceso a las Facultades de Ingeniería, en donde actualmente se encuentran los edificios de la Escuela de Diseño y Comunicación Visual **(EDCOM)** y del Centro de Lenguas Extranjeras **(CELEX)**.

4.6.2 Identificación de los Impactos Ambientales.

Para la identificación del impacto ambiental ocasionado en el proyecto y las molestias o afecciones que pudieran ocasionar al usuario se realizó una encuesta en donde se preguntaba cuáles eran las principales contrariedades que causaba la mala señalética dentro del campus, con lo cual se obtuvo que:

- La mayoría de las señaléticas no están en buenas condiciones,
 en cuanto a, visibilidad y tamaño por lo que pueden ocasionar
 daños consecutivos por exceso de velocidad o distracción de los conductores.
- •La falta de iluminación provoca pequeño incidente en la vía, los cuales representan un 30% de los estudiantes que usan la vía en horarios nocturnos.

4.6.3 Impactos positivos generados.

Se destacan los aspectos más perceptibles que fueron de mayor relevancia a lo largo de este proyecto:

- Facilitar el acceso a las instalaciones internas del Campus Politécnico.
- Crear un ambiente tranquilo y seguro para la circulación de los usuarios de la vía.
- •Incremento de precauciones viales dentro de anillos viales internos para Universidades o Urbanizaciones entre otras.

4.6.4 Impactos negativos generados.

Los más evidentes para este proyecto son:

- •Incomodidad del usuario al no tener una buena visibilidad de las señaléticas dentro del campus.
- •El daño que provoca la exagerada altura de los rompe velocidades, ocasionando daño en los automotores y en algunos casos pérdida total del vehículo.
- •La inseguridad al momento de conducción por el conocimiento de accidentes frecuentemente ocasionado en esas áreas por razones obvias y sin atención previa para mitigar dichos daños.

4.6.5 Valoración y Evaluación de los Impactos ambientales.

Se deberá analizar y evaluar los efectos de los impactos ambientales negativos del proyecto mediante el método de Matrices de Impacto Ambiental.

Teniendo en cuenta que solo se podrá analizar componentes ambientales del factor Socioeconómico que es el más afectado para este proyecto para los cuales se tendrá en cuenta los factores de:

- Incremento de índice poblacional
- Demográfico
- Salud

Las actividades correspondientes a cada fase del proyecto son:

- 1. Deserción de datos en CAD.
- 2. Separación por tramos de las entidades en ArcGis.
- 3. Estudio y levantamiento de información geográfica en campo.
- Creación de un nuevo Plano con las entidades levantadas en campo.
- 5. Análisis y selección de la mejor propuesta.

Para analizar los daños e impactos ambientales se partirá de la Matriz de Leopold con lo cual es importante conocer los siguientes términos. (Espinoza, 2002)

4.7 Plan de Manejo Ambiental.

Como principal acción del Plan de Manejo Ambiental (PMA) minimizar los efectos que pudieran causar los diferentes factores sociales en los que se desarrollará el proyecto.

Respetando a las exigencias de la normativa y Legislación Ambiental ecuatoriana, Legislación Local Ordenanzas Municipal de la ciudad de Guayaquil, a las disposiciones en cuanto a Salud, Seguridad y Protección Ambiental.

4.7.1 Responsabilidad y Verificación de la ejecución.

Se deberá respetar los parámetros y normas del Ecuador en cuanto a la Legislación ambiental y seguridad Vial de tal forma que puedan ser atendidos e intervenidos de manera consecutiva y no solo en el caso de remodelaciones a futuras ampliaciones de la vía, tomando en cuenta que se deberá poner mayor interés en el anillo vial del campus ya que este comparte por tramos con ciclistas y se deberá velar la seguridad de los mismo.

4.7.2 Implementación del Plan de Manejo Ambiental.

Este proceso se realizará básicamente para proteger los factores del ecosistema natural a lo largo del proyecto y por consiguiente en su tiempo de vida y ejecución prevaleciendo las exigencias ambientales. Para ello se plantea dividir el proyecto por fases las cuales son:

- Fase 1: Actividades Deserción de datos en CAD.
- Fase 2: Actividades Separación por tramos de las entidades en ArcGis.
- Fase 3: Actividades Estudio y levantamiento de información geográfica en campo.

- Fase 4: Creación de un nuevo Plano con las entidades levantadas en campo.
- Fase 5: Análisis y selección de la mejor propuesta.

4.7.3 Estructura del Plan de Manejo Ambiental.

A continuación, se ilustra en la figura 38, la estructura del plan de manejo ambiental para una mejor compresión del mismo, además de facilitar la revisión de la información de forma más rápida y subjetiva.

4.7.4 Especificaciones para las Actividades del Inventario

Georreferenciado del Anillo Vial de la Escuela Superior

Politécnica del Litoral campus Prosperina.

A continuación, se realiza una breve introducción en cuanto al Plan de Manejo Ambiental (PMA) a los involucrados en el proyecto de tal forma que todos tengan conocimiento de las posibles limitaciones y responsabilidades del mismo.

Figura 4.12 Plan de Manejo Ambiental **Fuente:** Infante, N., Valencia, R., 2018.

Primeramente, se realizará inspecciones de campo para verificar y controlar el estado de las señaléticas existentes.

Por el tipo de anillo vial interno del campus se lo podrá hacer mediante brigadas estudiantiles de la Carrera de Ingeniería Civil en colaboración con el departamento de Seguridad Vial del campus, con una previa capacitación de las normativas ecuatorianas y las medidas de seguridad con el propósito de garantizar la integridad humana.

Las autoridades competentes de la universidad tendrán la obligación de estar al tanto en cuanto a la información actualizada de los posibles accidentes o incidentes que se pudieran ocasionar a lo largo del año.

Por consecuente el promotor del proyecto, o el departamento oficial de Seguridad Vial deberá tener un plan de acción inmediata por cualquier incidente ambiental o accidente vehicular que involucre a la comunidad Politécnica, así mismo tener una relación estrecha con el departamento de Bomberos por si se llegara a necesitar de su asistencia.

4.7.5 Especificaciones para las Actividades después del Inventario Georreferenciado del Anillo Vial de la Escuela Superior Politécnica del Litoral campus Prosperina.

Como es de conocimiento el departamento de Seguridad Vial de ESPOL tiene ya un registro de los accidentes o incidentes de los años 2014, 2015, 2016 y 2017 de deberá continuar con el registro del mismo, para a futuro tener datos más concretos y estadísticos de los mayores puntos de concurrencia de los efectos colaterales de la señalética poco eficiente.

El encargado del departamento deberá tomar las medidas correspondientes para minimizar los efectos ambientales que se pudieran dar a lo largo de la vida útil de las señales ya existentes, además de tomar medidas preventivas que ayudaran a mitigar estos daños.

4.7.6 Planes de mitigación y control ambiental

4.7.6.1 Plan de Prevención y Seguridad Vial.

Dicho Plan es el encargado de determinar las medidas que serán ejecutadas para minimizar los efectos principales y secundarios que conlleven la ejecución del proyecto y el mantenimiento de las señales ya existentes o en su defecto la instalación de nueva señalética.

4.7.6.2 Plan de Comunicación, Capacitación y Educación Ambiental.

El valor fundamental de este Plan es brindar toda la información necesaria para la ejecución del proyecto y así lograr resultados de calidad.

Con lo cual se dispone a capacitar a los estudiantes y autoridades involucradas con el fin de mantener un equilibrio y dominio en los lineamientos y normativas ambientales para la ejecución del proyecto, además de proveer los Programas que faciliten el uso y manejo de dicha información.

Estas capacitaciones se realizarán paulatinamente cuando sean requeridas en el caso de tener un plan de mantenimiento o nuevo inventario, con lo cual se reforzarán y actualizarán las normas y requerimientos de hacer algún cambio si este fuera necesario en la señal ya existente.

4.7.6.3 Plan de Monitoreo y Seguimiento.

Su objetivo principal es el de garantizar el desarrollo del Plan de Manejo Ambiental y fiscalizar de carácter vigoroso los impactos registrados durante el proceso del Inventario Vial 2017.

Por lo que es necesario realizar una evaluación constante de los factores ambientales, reconociendo y enfatizando el principal factor que es el socioeconómico, seguido del ambiental por lo que se deberá Propiciar una información detallada de los resultados obtenidos en el Inventario para las próximas rehabilitaciones o mantenimientos de las Señales y Sistemas de Seguridad Vial.

4.7.6.4 Plan de Contingencias y Riesgos.

Como ya es de conocimiento y por lo cual se realizó este proyecto era para minimizar los accidentes dentro del campus por falla humana o deficiencia de la señalética. Este plan es tiene como finalidad realizar un seguimiento durante estos acontecimientos como por ejemplo Falta de Señales en lugares de alto riesgo, exceso de velocidad, olvido de freno de mano, entre otros.

4.7.7 Lineamientos Generales.

Es necesario seguir incuestionables normas para minimizar los efectos secundarios que pudieran suceder durante un incidente;

Como lo son tener un contacto permanente con el departamento de Bomberos de la Ciudad de Guayaquil para apresurar cualquier procedimiento de alta jerarquía como es salvar una vida humana.

Tener brigadas que se encarguen de la atención en personas heridas por el evento, servicios de primeros auxilios, abastecimiento de agua, extintores etc. Todo lo necesario para preservar el derecho de vida, seguido de las instalaciones del campus y así no agrandar los daños.

4.8 Tipos de Emergencia.

Los principales eventos de emergencia pueden ser posibles accidentes vehiculares, choques múltiples, atropellamientos e incendios.

Tabla XLI Tipos de Emergencias en accidentes

Tipos de Emergencias	Acciones	Equipos
Accidentes	Evaluar los	Botiquín de
Vehiculares	acontecimientos y	emergencia
	brindar primeros auxilios	Personal
	Llamar a las autoridades	Capacitado
	competentes como	Vehículo o
	Bomberos y Agencia de	ambulancia
	Tránsito Municipal	Personal contra
		incendio.
Atropellamientos	Evaluar los	Botiquín de
	acontecimientos y	emergencia
	brindar primeros auxilios	_

		Personal
		Capacitado
Incendios	Llamar al cuerpo de	Extintores
	bomberos	Equipo médico
	Notificar a las	calificado
	autoridades	Personal contra
	competentes	incendio.
	Brindar Primeros	
	Auxilios	

Fuente: Infante, N., Valencia, R., 2018.

4.8.1 Programa de Seguridad Industrial y Salud Ocupacional.

Se deberá tomar en cuenta las normas de salud y seguridad para minimizar los daños o efectos que se pudieran ocasionar durante un accidente o incidente todo en cuanto se puede preservar y salvaguardar la vida e integridad humana.

El promotor del proyecto será el responsable de facilitar y exigir el uso a los involucrados del mismo, equipos de protección personal (EPP) para cubrir las diferentes áreas y posible evento. Para lo cual es indispensable equipos como: Chaleco reflectivo, Botas de seguridad con punta de acero y si es posible cascos.

Es fundamental reconocer e identificar los riesgos ocupacionales, sistemas de prevención y control de riesgos ocupacionales y la salud en general. Para estar preparados ante cualquier evento ya sea antes, durante y después del propósito.

4.8.2 Programa de Rehabilitación y mantenimiento de la señalética del campus.

Se tomará en cuenta a futuro este proyecto como una base y fuente de información actualizada para poder partir de un inicio claro y conciso, con el cual se impartirán capacitaciones a personal calificado para poder realizar el mantenimiento debido a la vía con lo que se ahorrará tiempo y recursos ya utilizados en esta sección. Se deberá actualizar constantemente las normativas vigentes para evitar lo que se ha venido presentando hasta ahora que es el incumplimiento de la misma.

4.9 Presupuesto

4.9.1 Análisis de Presupuesto Unitario

4.9.1.1 Presupuesto costos directos: Nuevo diseño señalética horizontal

Tabla XLII Análisis de Presupuesto Unitario de Señalética horizontal

	<u>'</u>	•			
RUBRO	DESCRIPCION	UNIDAD	CANTIDAD	PRECIO UNITARIO USD	PRECIO TOTAL USD
1	DEMARCACIÓN DE LINEAS CONTINUAS BLANCAS	m	17,753.71	133	23,612.43
2	DEMARCACIÓN DE LINEAS SEGMENTADAS	М	1,175.30	133	1,563.15
3	DEMARCACIÓN DE FLECHAS	UNIDAD	3.00	9.33	27.99
4	DEMARCACIÓN DE AVISOS VELOCIDAD MÁXIMA ABSCISA: 2+350.00	UNIDAD	4.00	9.33	37.32
5	DEMARCACIÓN DE LINEAS CONTINUAS AMARILLAS	М	8,503.92	133	11,310.21
6	HORMIGÓN F'C 280 Kg/cm2 (18 REDUCTOR VELOCIDAD)	M3	112.95	170.88	19,300.90
7	DEMARCACIÓN PASOS CEBRA	M2	490.72	9.33	4,578.43
8	DEMARCACIÓN LETRAS	UNIDAD	2.00	9.33	18.66
9	MANTENIMIENTO DE SEÑALIZACIÓN HORIZONTAL	М	1.00	2.73	2.73
10	DEMARCACIÓN AVISOS VELOCIDAD MÁXIMA ABSCISA: 3+900.00	М	4.00	9.34	37.36
11	COLOCACIÓN BTA	UNIDAD	8.00	4.37	34.96
12	DEMARCACIÓN AVISOS ZIGZAG	UNIDAD	14.00	9.33	130.62
13	DEMARCACION LINEAS DE NOBLOQUEO/ GARITA	M2	203.92	6.86	1,398.89
14	DEMARCACIÓN PARADERODE BUSES	UNIDAD	2.00	9.33	18.66
15	DEMARCACION LINEAS DE NOBLOQUEO/ Y	M2	2.00	6.88	13.76
16	ACERODE REFUERZOFY=4200 Kg/cm2 (inc. Alambre #3) (18 REDUCTOR VELOCIDAD)	Kg	1,600.00	2.06	3,296.00
		TOTAL			65,382.07

Fuente: Infante N., Valencia R. 2018

4.9.1.2 Presupuesto costos directos: Nuevo diseño señalética vertical tramo crítico

Tabla XLIII Análisis de Presupuesto Unitario de Señalética Vertical

RUBRO	DESCRIPCION	UNIDAD	CANTIDAD	PRECIO UNITARIO USD	PRECIO TOTAL USD
1	Pare	M2	2,00	224,54	449,08
2	Reduzca la velocidad	M2	2,00	313,91	627,82
3	Curva	M3	8,00	225,04	1.800,32
4	Rompe velocidad	M3	1,00	224,84	224,84
5	Ciclovia	M3	1,00	247,14	247,14
6	Giro en u	M2	2,00	255,23	510,46
7	Prohibido girar en u	M3	2,00	224,84	449,68
8	Limite de velocidad	KG	5,00	247,79	1.238,95
9	Delineador	M2	8,00	206,34	1.650,72
10	Proximos metros	M2	1,00	308,39	308,39
11	interseccion	M2	1,00	157,90	157,90
12	Metros	M2	2,00	224,84	449,68
13			35,00		8.114,98

Fuente: Infante N., Valencia R. 2018

4.10 Análisis de alternativas y selección

4.10.1 Selección de alternativa viable.

Analizando los diferentes parámetros y el costo – beneficio que representaría la obra y proyecto, en fin, se pudo determinar que lo más conveniente para la realización de este trabajo sería la propuesta de la sección 4.5.1 Seguridad Vial; Cambio de señaléticas en mal estado y diseño nueva señalética tramo crítico.

Dado que sus valores son más rentables y por lo tanto más alcanzables a corto plazo además de que el presupuesto inicial al ser una universidad estatal se deberá adaptar a las debidas disposiciones y a los ajustes Gubernamentales que dependerán exclusivamente de las aportaciones y aprobaciones del Ministerio de Transportes y Obras Públicas del Ecuador.

CAPÍTULO 5 CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES.

La investigación realizada para el Inventario de Georreferenciación del anillo vial de la Escuela Superior Politécnica del Litoral ubicada en la ciudad de Guayaquil, en el Kilómetro 15 ½ vía Perimetral se concluye lo siguiente:

- La señalética es básica y cumple su función desde un punto de vista general pero ya detallando información y después de revisar los resultados mediante encuestas, estudios, actividades de campo y oficina. Las señales son deficientes para la categoría y demanda estudiantil de la universidad.
- Se deberá realizar un cambio, mantenimiento y revisión a detalle de cada señal mencionada en el escrito. Operando con la normativa vigente para Seguridad Vial de la Constitución Ecuatoriana.
- En la vía principal del campus ESPOL, tramo PARCON y anillo vial, con la metodología aplicada existen zonas susceptibles accidentes de tránsito, las mismas que concuerdan con los accidentes suscitados y registrados desde el año 2015.
- Más de un 80% de las entidades levantadas, de seguridad vial, no son aptas para su uso según la norma vigente (RTE INEN I., 2012). Esto se debe al tiempo de uso elevado, de los elementos, sin un mantenimiento o cambio respectivo.
- Gracias a la metodología para determinar zonas de riesgo de tránsito de (Sanabria, Barrantes, & Aguiar Moya, Ph.D., 2013), se puede concluir

que el tramo más crítico susceptible a peligros localizado en la abscisa 2 + 200 – 2 + 400, para este estudio está muy relacionado con los tramos donde existen un número excesivo e innecesario de señaléticas verticales y a su vez no cumplen con las dimensiones establecidas por la norma.

- La mejor propuesta basándonos en el presupuesto más barato, es el cambio de la señalética regulatoria y la propuesta de señalética en el tramo crítico.
- ❖ El campus cuenta con una señalización vertical estratégica, pero con el paso del tiempo se han deteriorado, sin recibir un mantenimiento o cambio de elementos que ya no puedan brindar su correcta función. Por esta razón en el inventario realizado encontramos que más del 85% de los 291 elementos en total, no cumplen las dimensiones y necesitan un reemplazo.
- El mayor impacto ambiental generado para este proyecto será el Social debido a las inconformidades o incomodidades que esta pudiera causar durante su ejecución de la misma manera el impacto positivo será de gran aporte para la comunidad creando nuevas plazas de trabajo tanto como para la comunidad politécnica como para el público en general.
- ❖ La señalética horizontal existente en el campus es de pintura en base agua, la cual si brinda una buena retroreflectividad pero necesita mantenimiento cada 6 meses, esto se traduce en costos anuales innecesarios para brindar una buena señalización. En la nueva propuesta de señalización horizontal, está basado en pintura termoplástica, material

que brinda una excelente retroreflectividad, tiene un costo más elevado, pero se compensa con la durabilidad que le da a la marca realizada, es por eso que se puede concluir que usar pintura termoplástica para la señalización es más viable para brindar una serviciabilidad alta a los conductores en las noches y es más durabilidad.

RECOMENDACIONES

Una vez analizados cada uno de los capítulos se recomienda para este proyecto realizar lo siguiente:

- Es recomendable primeramente realizar un inventario anual o periódicamente para saber las condiciones con las que se encuentran los elementos viales.
- Realizar lo antes posible el cambio de las señaléticas que no cumplen con la normativa y provocan grandes incidentes y pérdidas tanto como económicas como materiales para así prevenir la integridad del alumnado politécnico.
- Cuanto a señalética horizontal se analizó los beneficios y la economía que representaría cambiar de pintura acrílica convencional para tráfico a Pintura Termoplástica que, si bien su costo es mayor, pero a la larga resulta ser más económica.
- Realizar cambios en los reductores de velocidad que no cumplen con la altura, ya que esto provoca daños materiales en los vehículos de los usuarios de la vía.
- Realizar campañas para reducir la velocidad de circulación en la vía, esto es importante ya que la vía está diseñada para una velocidad de diseño elevada, si un usuario acelera, este no sentirá mucha diferencia por el ancho de la vía y es un motivo suficiente para que ocurran los accidentes.

- ❖ Se recomienda realizar un estudio más profundo en el alineamiento horizontal del anillo vial del campus, siendo más específicos, analizar el peralte en las curvas criticas ubicadas en 2 + 200.00, 2 + 400.00, 2 + 900.00, 3 + 100.00.
- ❖ Como propuesta para mejorar el peralte existente en las curvas críticas, se puede realizar un relleno con material asfaltico RC – 2, como bacheo, hasta llegar a la cota requerida.
- Con el fin de evitar accidentes a futuro, se recomienda reforzar o rediseñar la guarda vías existentes, ya que estos no son aptos para brindar su función y así salvaguardar la integridad de los usuarios del campus ESPOL.

RTE INEN, I. (2012). Reglamento Técnico Ecuatoriano 004 - Señalización Vial.

Quito.

AASHTO 249-12, A. (2012). Termoplastica. USA.

AASHTO T278, A. A. (2012). Ensayo de TRRL. USA.

ASTM E303. (s.f.). Ensayo de TRRL.

Autoridad del Tránsito y Tranporte Terrestre De Panamá. (s.f.). FORMATO ÚNICO Y DEFINITIVO PARA ACCIDENTES DE TRANSITO MENOR DE PANAMÁ.. PANAMÁ.

Camatón, A. R., & Sotomayor, J. P. (2006). Estudios y diseños de alternativas para la rehabilitación del tramo de via: lago - interseccion con via principal ESPOL. Solución y reubicación de la tuberia de agua potable existente. *Dspace*, 605.

Espinoza, G. (2002). Gestión y Fundamentos de Evaluación de Impacto Ambiental. Santiago, Chile: ANDROS impresores.

ICG, I. (2000). Coeficiente de Resistencia al deslizamiento con el Péndulo de TRRL.

LOUIS BERGER INTERNACIONAL, I. (s.f.). *Normas de Diseño Geométrico de Carreteras*. Quito-Ecuador: T.A.M.S. – ASTEC y revisadas por el Consorcio de Consultores ". (New Jersey, USA) - PROTECVIA CIA. LTDA.

MOP, 0. (2002). Especificaciones generales para la construcción de caminos y puentes.

Nat. Hazards Earth Syst. (2009).

NEVI-12 MTOP, N. E. (2013). PROCEDIMIENTO DE OPERACION Y SEGURIDAD VIAL. QUITO.

POLICONSTRUC s.a. (2018). Levantamiento Topográfico de alta Precisión de la Zona Especial de Desarrollo Económico y de las Áreas Académica - Científica del Campus Gustavo GAlindo Velasco. Guayaquil.

RTE INEN, I. (1042). PIntura Acrilica.

RTE INEN. (2012). Instituto Ecuatoriano de Normalización. Quito.

Sanabria, J., Barrantes, R., & Aguiar Moya, Ph.D., J. (2013). Road Evaluation

Unit Coordinator - National Laboratory of Materials and Structural Models

(LanammeUCR). Costa Rica.

Datos De Campo

Guarda Vías (Barandal)

Tabla XLIV. Datos de parámetros de Guarda vías elementos del 0 - 5 en el Anillo Vial del Campus ESPOL

FID	ID	ΧI	ΥI	XF	YF	ESTADO	DISPOSICIO	PRISMA	TERMINALES	DISCONTINU	TIPO
0	0	617095.40	9762828.75	617027.40	9762773.19	bueno	adecuada	inadecuado	adecuado	no existe	mixto perfil omega
1	0	617084.52	9762844.58	617016.25	9762787.69	bueno	inadecuada	adecuado	adecuado	tramos simples y dobles	mixto perfil omega
2	0	616247.50	9761986.06	616169.82	9761954.73	malo	inadecuada	no existe	adecuado	no existe	simple perfil omega
3	0	616071.95	9761961.32	616062.49	9761955.77	bueno	inadecuada	no existe	inadecuado	no existe	simple perfil cuadrado
4	0	616052.57	9761977.26	616053.36	9761956.69	bueno	inadecuada	no existe	inadecuado	no existe	simple perfil cuadrado
5	0	615842.44	9762212.28	615777.27	9762271.1	bueno	adecuada	no existe	inadecuado	no existe	perfil circular

Fuente: Infante, N., Valencia, R., 2018.

Tabla XLV (Continuación tabla XLV)

FID	COMENTARIO	LONGITUD
0	SIMPLE HASTA INICIO DE PUENTE, DOBLE EN LA LONGITUD DEL PUENTE Y TERMINA SIENDO SIMPLE, TAMBIEN PRESENTA PRISMAS DOBLADOS.	87.81
1	SIMPLE HASTA INICIO DE PUENTE, DOBLE EN LA LONGITUD DEL PUENTE Y TERMINA SIENDO SIMPLE, TAMBIEN PRESENTA UN TRAMO CON DEFORMACION.	88.85
2	NO CUMPLE CON NORMATIVA DE ALTURA PARA GUARDAVIAS Y CON UBICACIÓN LATERAL, TAMBIÉN PRESENTA PRISMAS CON DEFORMIDAD.	83.76
3	EL GUARDAVIA NO CUMPLE CON NORMATIVA DE UBICACION LATERAL	12.38
4	EL GUARDAVIA NO CUMPLE CON NORMATIVA DE UBICACION LATERAL	21.85
5		87.81

Tabla XLVI. Datos de parámetros de Guarda vías, elementos del 6 - 11 en el Anillo Vial del Campus ESPOL

FID	ld	Xi	Yi	Xf	Yf	ESTADO	DISPOSICIO	PRISMA	TERMINALES	DISCONTINU	TIPO
6	0	615778.258	9762581.3	615744.697	9762633.79	BUENO	ADECUADA	NO EXISTE	ADECUADO	NO EXISTE	SIMPLE
											PERFIL
											OMEGA
7	0	615637.089	9762720.7	615609.522	9762818.41	REGULAR	INADECUADA	NO EXISTE	INADECUADO	NO EXISTE	SIMPLE
											PERFIL
											OMEGA
8	0	615240.86	9762414.02	615406.009	9762269.08	BUENO	NO ESTA	NO EXISTE	INADECUADO	NO EXISTE	PERFIL
							NORMADO				CIRCULAR
9	0	615282.671	9762374.45	615406.247	9762264.4	BUENO	NO ESTA	NO EXISTE	INADECUADO	NO EXISTE	PERFIL
							NORMADO				CIRCULAR
10	0	615520.657	9762261.79	615616.274	9762289.8	BUENO	NO ESTA	NO EXISTE	INADECUADO	NO EXISTE	PERFIL
							NORMADO				CIRCULAR
11	0	615632.943	9762294.32	615671.444	9762304.36	BUENO	NO ESTA	NO EXISTE	INADECUADO	NO EXISTE	PERFIL
							NORMADO				CIRCULAR

Tabla XLVII (Continuación tabla XLVIII)

FID	COMENTARIO	LONGITUD
6	EL GUARDAVIA NO CUMPLE CON NORMATIVA DE UBICACION LATERAL TAMBIEN TIENE DEFORMACION	63.56
7	NO CUMPLE CON NORMATIVA DE ALTURA, TAMBIÉN PRESENTA DEFORMACIONES	106.78
8		219.783
9		165.58
10		99.63
11		39.88

Alcantarillas

Tabla XLVIII. Datos de parámetros de Alcantarillas, elementos del 0 - 25 en el Anillo Vial del Campus ESPOL

FID	ld	COORDENADA_X	COORDENA_Y	COMENTARIO	MATERIAL	ESTADO
0	0	616444.218	9762088.46	REJA CUADRADA TOTALMENTE OBSTRUIDO	METALICA	MALO
1	0	616444.194	9762057.19	CAJA DE REGISTRO SIN SELLAR Y EN MAL ESTADO	HORMIGON	MALO
2	0	616088.513	9761950.64	TUBERIA CIRCULAR PARCIALMENTE OBSTRUIDA	HORMIGON	REGULAR
3	0	616069.167	9761961.21	TUBERIA CIRCULAR PARCIALMENTE OBSTRUIDA	HORMIGON	REGULAR
4	0	616054.875	9761972.32	TUBERIA CIRCULAR	HORMIGON	BUENO
5	0	616047.628	9761970.92	TUBERIA CIRCULAR PARCIALMENTE OBSTRUIDA	HORMIGON	REGULAR
6	0	616014.057	9762027.16	CAJA DE REGISTRO SELLADA	HORMIGON	BUENO
7	0	615928.587	9762094.52	REJA CUADRADA PARCIALMENTE OBSTRUIDA	METALICA	REGULAR
8	0	615920.408	9762101.74	TUBERIA CIRCULAR PARCIALMENTE OBSTRUIDA	HORMIGON	REGULAR
9	0	615914.226	9762106.03	REJA CUADRADA TOTALMENTE OBSTRUIDO	METALICA	MALO
10	0	615901.163	9762118.5	DUCTO CUADRADO PARCIALMENTE OBSTRUIDO	HORMIGON	REGULAR
11	0	615878.466	9762141.5	TUBERIA CIRCULAR PARCIALMENTE OBSTRUIDA	HORMIGON	REGULAR
12	0	615869.715	9762146.66	TUBERIA CIRCULAR PARCIALMENTE OBSTRUIDA	HORMIGON	REGULAR
13	0	615863.579	9762152.87	TUBERIA CIRCULAR	HORMIGON	BUENO
14	0	615774.407	9762277.05	CAJA DE REGISTRO SELLADA	HORMIGON	BUENO
15	0	615774.52	9762275.4	REJA CUADRADA PARCIALMENTE OBSTRUIDA	METALICA	REGULAR
16	0	615838.983	9762209.8	CAJA DE REGISTRO SELLADA	HORMIGON	BUENO
17	0	615847.26	9762199.33	TUBERIA CIRCULAR TOTALMENTE OBSTRUIDA	PLASTICO	MALO
18	0	615882.061	9762167.12	CAJA DE REGISTRO SELLADA	HORMIGON	BUENO
19	0	615898.266	9762151.97	CAJA DE REGISTRO SELLADA	HORMIGON	BUENO
20	0	615903.631	9762146.46	CAJA DE REGISTRO SELLADA	HORMIGON	BUENO
21	0	615909.659	9762141.15	CAJA DE REGISTRO SELLADA	HORMIGON	BUENO
22	0	615920.206	9762135.65	REJA CUADRADA PARCIALMENTE OBSTRUIDA	METALICA	REGULAR
23	0	615941.745	9762113.93	REJA CUADRADA PARCIALMENTE OBSTRUIDA	METALICA	REGULAR
24	0	615944.25	9762111.84	TUBERIA CIRCULAR TOTALMENTE OBSTRUIDA	HORMIGON	MALO
25	0	615969.262	9762084.03	TUBERIA CIRCULAR TOTALMENTE OBSTRUIDA	HORMIGON	MALO

Tabla XLIX. Datos de parámetros de Alcantarillas, elementos del 26 -55 en el Anillo Vial del Campus ESPOL

26	0	616002.777	9762053.37	CAJA DE REGISTRO SELLADA	HORMIGON	BUENO
27	0	616218.832	9761996.23	TUBERIA CIRCULAR	HORMIGON	BUENO
28	0	616308.971	9762032.12	TUBERIA CIRCULAR	HORMIGON	BUENO
29	0	615541.149	9762987.51	TUBERIA CIRCULAR TOTALMENTE OBSTRUIDA	HORMIGON	MALO
30	0	615535.166	9762995.35	TUBERIA CIRCULAR TOTALMENTE OBSTRUIDA	HORMIGON	MALO
31	0	615467.855	9763014.74	DUCTO CAJON	HORMIGON	BUENO
32	0	615466.649	9763012.3	CAJA DE REGISTRO SELLADA	HORMIGON	BUENO
33	0	615440.463	9762994.7	REJA CUADRADA PARCIALMENTE OBSTRUIDA	METALICA	REGULAR
34	0	615424.197	9762980.27	CAJA DE REGISTRO SELLADA	HORMIGON	BUENO
35	0	615416.905	9762976.04	REJA CUADRADA	METALICA	BUENO
36	0	615393.6	9762957.07	REJA CUADRADA	METALICA	BUENO
37	0	615379.772	9762943.9	CAJA DE REGISTRO SELLADA	HORMIGON	BUENO
38	0	615374.094	9762941.71	REJA CUADRADA	METALICA	BUENO
39	0	615372.607	9762939.21	CAJA DE REGISTRO SELLADA	HORMIGON	BUENO
40	0	615372.084	9762935.53	CAJA DE REGISTRO SELLADA	HORMIGON	BUENO
41	0	615382.481	9762930.94	TUBERIA CIRCULAR TOTALMENTE OBSTRUIDA	PLASTICO	MALO
42	0	615413.78	9762955.84	REJA CUADRADA PARCIALMENTE OBSTRUIDA	METALICA	REGULAR
43	0	615251.629	9762840.88	CAJA DE REGISTRO SELLADA	HORMIGON	BUENO
44	0	615235.86	9762834.78	CAJA DE REGISTRO SELLADA	HORMIGON	BUENO
45	0	615120.658	9762886.5	TUBERIA CIRCULAR PARCIALMENTE OBSTRUIDA	HORMIGON	REGULAR
46	0	615117.733	9762894.68	CAJA DE REGISTRO SELLADA	HORMIGON	BUENO
47	0	615097.59	9762882.78	TUBERIA CIRCULAR TAPADA A PROPOSITO	HORMIGON	MALO
48	0	615094.133	9762904.38	REJA CIRCULAR	METALICA	BUENO
49	0	615087.02	9762946.13	CAJA DE REGISTRO SELLADA	HORMIGON	BUENO
50	0	615050.523	9762953.04	REJA CUADRADA TOTALMENTE OBSTRUIDO	METALICA	MALO
51	0	615043.809	9762961.16	REJAS TOTALMENTE OBSTRUIDO	METALICA	MALO
52	0	615010.304	9762991.47	REJA CIRCULAR	METALICA	BUENO
53	0	615031.699	9763008.16	CAJA DE REGISTRO SELLADA	HORMIGON	BUENO
54	0	614981.663	9763032.07	CAJA DE REGISTRO SELLADA	HORMIGON	BUENO
55	0	615000.144	9763044.64	CAJA DE REGISTRO SELLADA	HORMIGON	BUENO

Tabla L. Datos de parámetros de Alcantarillas, elementos del 56 -84 en el Anillo Vial del Campus ESPOL

56	0	614976.278	9763062.19	CAJA DE REGISTRO SELLADA	HORMIGON	BUENO
57	0	614974.018	9763066.97	CAJA DE REGISTRO SELLADA	HORMIGON	BUENO
58	0	614912.276	9763056.94	REJA CUADRADA PARCIALMENTE OBSTRUIDO	METALICA	REGULAR
59	0	614888.792	9763075.43	TUBERIA CIRCULAR CLANDESTINA	PLASTICO	BUENO
60	0	614869.52	9763072.32	REJAS CUADRADAS	METALICA	BUENO
61	0	614865.864	9763071.32	REJAS CUADRADAS	METALICA	BUENO
62	0	614862.341	9763070.06	REJAS CUADRADAS	METALICA	BUENO
63	0	614858.551	9763068.73	REJAS CUADRADAS	METALICA	BUENO
64	0	614855.095	9763067.67	REJAS CUADRADAS	METALICA	BUENO
65	0	614851.505	9763066.34	REJAS CUADRADAS	METALICA	BUENO
66	0	614847.981	9763064.74	REJAS CUADRADAS	METALICA	BUENO
67	0	614844.591	9763063.08	REJAS CUADRADAS	METALICA	BUENO
68	0	614837.246	9763060.3	REJA CUADRADA PARCIALMENTE OBSTRUIDO	METALICA	REGULAR
69	0	614868.601	9763070.37	CAJA DE REGISTRO CUADRADA SELLADA	HORMIGON	BUENO
70	0	614832.224	9763057.62	REJA CUADRADA TOTALMENTE OBSTRUIDO	METALICA	MALO
71	0	614835.328	9763057.62	DUCTO CAJON PARCIALMENTE OBSTRUIDO	HORMIGON	REGULAR
72	0	614796.984	9762996.28	DUCTO CIRCULAR PARCIALMENTE OBSTRUIDO	HORMIGON	REGULAR
73	0	614786.702	9762984.4	CUNETA PARCIALMENTE OBSTRUIDA	HORMIGON	REGULAR
74	0	614754.204	9762976.54	CAJA DE REGISTRO CUADRADA SELLADA	HORMIGON	BUENO
75	0	614738.716	9762937.1	CAJA DE REGISTRO CUADRADA SELLADA	HORMIGON	BUENO
76	0	614712.036	9762817.35	CAJA DE REGISTRO CUADRADA SIN SELLAR	HORMIGON	REGULAR
77	0	614694.485	9762717.9	TUBERIA CIRCULAR TOTALMENTE SELLADA	HORMIGON	MALO
78	0	614698.135	9762677.79	CAJA DE REGISTRO CUADRADA SELLADA	HORMIGON	BUENO
79	0	614716.778	9762607.74	TOTALMENTE OBSTRUIDA Y NO SE PUEDE DISTINGUIR	-	MALO
80	0	614752.311	9762552.49	REJA CUADRADA TOTALMENTE OBSTRUIDO	METALICA	MALO
81	0	614754.372	9762550.7	TUBERIA CIRCULAR TOTALMENTE OBSTRUIDA	HORMIGON	MALO
82	0	614820.718	9762527.03	TUBERIA CIRCULAR	HORMIGON	BUENO
83	0	614814.735	9762539.86	CAJA DE REGISTRO CUADRADA SELLADA	HORMIGON	BUENO
84	0	614881.679	9762533.81	CAJA DE REGISTRO CUADRADA SELLADA	HORMIGON	BUENO
	Ta	abla LI. Datos de parám	netros de Alca	antarillas, elementos del 85 -114 en el Anillo Via	l del Campus ES	POL
85	0	615008.985	9762550.97	CAJA DE REGISTRO CUADRADA SIN TAPA	HORMIGON	BUENO
86	0	615035.403	9762541.49	CAJA DE REGISTRO CUADRADA SELLADA	HORMIGON	BUENO

87	0	615061.403	9762526.6	CAJA DE REGISTRO CUADRADA SELLADA	HORMIGON	BUENO
88	0	615083.622	9762518.33	REJA CUADRADA	METALICA	BUENO
89	0	615133.732	9762491.86	REJA CUADRADA PARCIALMENTE OBSTRUIDA	METALICA	REGULAR
90	0	615186.915	9762454.27	REJA CUADRADA OBSTRUIDA COMPLETAMENTE	METALICA	MALO
91	0	615196.357	9762435.35	REJA CUADRADA COLAPSADA	METALICA	MALO
92	0	615200.645	9762435.7	REJA CUADRADA OBSTRUIDA COMPLETAMENTE	METALICA	MALO
93	0	615208.074	9762430.86	REJA CUADRADA OBSTRUIDA COMPLETAMENTE	METALICA	MALO
94	0	615209.021	9762433.9	CUADRADA SELLADA	HORMIGON	BUENO
95	0	615241.89	9762374.07	TUBERIA CIRCULAR	HORMIGON	BUENO
96	0	615253.856	9762393.04	REJA CUADRADA	METALICA	BUENO
97	0	615385.064	9762280.69	REJA CUADRADA	METALICA	BUENO
98	0	615458.824	9762242.64	REJA CUADRADA	METALICA	BUENO
99	0	615469.461	9762243	REJA CUADRADA	METALICA	BUENO
100	0	615479.979	9762244.77	REJA CUADRADA	METALICA	BUENO
101	0	615568.583	9762259.71	CAJA DE REGISTRO CIRCULAR	HORMIGON	BUENO
102	0	617103.194	9763125.86	CAJA DE REGISTRO CUADRADA SELLADA	HORMIGON	BUENO
103	0	617082.074	9763126.66	CAJA DE REGISTRO CUADRADA SELLADA	HORMIGON	BUENO
104	0	617112.769	9763024.68	REJA CUADRADA PARCIALMENTE OBSTRUIDA	METALICA	REGULAR
105	0	617130.865	9763029.95	REJA CUADRADA PARCIALMENTE OBSTRUIDA		REGULAR
106	0	617147.33	9762984.82	CAJA DE REGISTRO CUADRADA SELLADA		BUENO
107	0	617126.709	9762979.87	CAJA DE REGISTRO CUADRADA SELLADA	HORMIGON	BUENO
108	0	617155.284	9762949.05	CAJA DE REGISTRO CUADRADA SELLADA	HORMIGON	BUENO
109	0	617113.667	9762844.29	REJA CUADRADA OBSTRUIDA COMPLETAMENTE	METALICA	MALO
110	0	617101.837	9762859.33	REJA CUADRADA OBSTRUIDA COMPLETAMENTE	METALICA	MALO
111	0	617110.409	9762852.36	CAJA DE REGISTRO CUADRADA SELLADA	HORMIGON	BUENO
112	0	617108.052	9762854.07	CAJA DE REGISTRO CUADRADA SELLADA	HORMIGON	BUENO
113	0	617062.109	9762802	DERIVADORA LATERAL REJA CUADRADA	METALICA	BUENO
114	0	617048.925	9762814.68	DERIVADORA LATERAL REJA CUADRADA	METALICA	BUENO
				=		

Tabla LII. Datos de parámetros de Alcantarillas, elementos del 115 -142 en el Anillo Vial del Campus ESPOL

115 0	617042.117	9762809.81	TUBERIA CIRCULAR	PLASTICO	BUENO

116	0	617039.444	9762807.53	TUBERIA CIRCULAR OBSTRUIDA COMPLETAMENTE	HORMIGON	MALO
117	0	617035.701	9762804.12	TUBERIA CIRCULAR	HORMIGON	BUENO
118	0	617032.225	9762801.18	TUBERIA CIRCULAR PARCIALMENTE OBSTRUIDA	HORMIGON	REGULAR
119	0	617057.891	9762797.51	TUBERIA CIRCULAR OBSTRUIDA COMPLETAMENTE	HORMIGON	MALO
120	0	617054.549	9762794.5	TUBERIA CIRCULAR OBSTRUIDA COMPLETAMENTE	HORMIGON	MALO
121	0	617049.937	9762790.36	TUBERIA CIRCULAR OBSTRUIDA COMPLETAMENTE	HORMIGON	MALO
122	0	617045.258	9762786.68	TUBERIA CIRCULAR PARCIALMENTE OBSTRUIDA	HORMIGON	REGULAR
123	0	617034.509	9762777.98	DERIVADORA LATERAL TAPADA	HORMIGON	REGULAR
124	0	617022.01	9762793.16	DERIVADORA LATERAL REJA CUADRADA	HORMIGON	BUENO
125	0	616983.713	9762766.22	CAJA DE REGISTRO CUADRADA SELLADA	HORMIGON	BUENO
126	0	616930.15	9762710.78	REJA CUADRADA PARCIALMENTE OBSTRUIDA	METALICA	REGULAR
127	0	616934.079	9762708.59	CAJA DE REGISTRO SIN SELLAR	HORMIGON	REGULAR
128	0	616796.27	9762629.71	REJA CUADRADA	METALICA	BUENO
129	0	616762.138	9762557.96	CAJA DE REGISTRO CUADRADA SELLADA	HORMIGON	BUENO
130	0	616783.678	9762556.05	CAJA DE REGISTRO CUADRADA SELLADA	HORMIGON	BUENO
131	0	616772.108	9762502.87	REJA CUADRADA	METALICA	BUENO
132	0	616737.002	9762456.96	TUBERIA CIRCULAR PARCIALMENTE OBSTRUIDA	HORMIGON	REGULAR
133	0	616765.736	9762418.58	TUBERIA CIRCULAR PARCIALMENTE OBSTRUIDA	PLASTICO	REGULAR
134	0	616775.729	9762323.05	CAJA DE REGISTRO CUADRADA SELLADA	HORMIGON	BUENO
135	0	616786.506	9762257.95	REJA CUADRADA	METALICA	BUENO
136	0	616777.784	9762257	TUBERIA CIRCULAR	HORMIGON	BUENO
137	0	616766.298	9762259.2	REJA CUADRADA PARCIALMENTE OBSTRUIDA	METALICA	REGULAR
138	0	616622.581	9762143.41	CAJA DE REGISTRO CUADRADA SELLADA	HORMIGON	BUENO
139	0	616613.257	9762161.7	CAJA DE REGISTRO CUADRADA SELLADA	HORMIGON	BUENO
140	0	616541.783	9762105.56	REJA CUADRADA OBSTRUIDA COMPLETAMENTE	METALICA	MALO
141	0	616533.538	9762122.03	REJA CUADRADA OBSTRUIDA COMPLETAMENTE	METALICA	MALO
142	0	616456.436	9762091.89	REJA CUADRADA OBSTRUIDA COMPLETAMENTE	METALICA	MALO
				E		

Reductores de velocidad

Tabla LIII. Datos de parámetros de Reductores de velocidad, elementos 0 – 25 en el Anillo Vial del Campus ESPOL

fid	id	xi	xf	yi	yf	largo_m	material	estado	cuneta	cuneta_cm_	norma	ancho_m	altura_cm	norma_altu
0	0	616463	616466	9762091	9762083	8	hormigón	regular	18	18	falso	1.3	7	verdadero
1	0	616590	616594	9762136	9762131	7	hormigón	regular	49	11	falso	4.46	13	falso
2	0	616609	616612	9762158	9762152	7	hormigón	regular	11	36	falso	4.39	12	falso
3	0	616792	616799	9762321	9762322	7	hormigón	regular	36	7	falso	4.4	12	falso
4	0	616766	616772	9762374	9762377	7	hormigón	regular	34	6	falso	4.39	13	falso
5	0	616822	616828	9762645	9762641	7	hormigón	regular	35	6	falso	4.42	12	falso
6	0	616952	616955	9762730	9762724	7	hormigón	regular	35	6	falso	4.33	13	falso
7	0	617121	617127	9762885	9762882	7	hormigón	regular	37	11	falso	4.45	14	falso
8	0	617105	617108	9763161	9763160	3	plástico	regular	54	9	falso	0.36	4	verdadero
9	0	617104	617107	9763171	9763171	3	plástico	regular	12	10	falso	0.35	4	verdadero
10	0	617096	617099	9763173	9763173	3	plástico	regular	36	7	falso	0.35	4.5	verdadero
11	0	617092	617095	9763170	9763169	3	plástico	regular	19	16	falso	0.35	12	verdadero
12	0	616401	616404	9762065	9762059	7	plástico	regular	30	36	verdadero	0.35	5	verdadero
13	0	616395	616398	9762050	9762044	7	plástico	regular	34	40	verdadero	0.35	4.5	verdadero
14	0	616268	616263	9762005	9762018	14	hormigón	regular	50	0	falso	4.03	12	falso
15	0	616088	616091	9761954	9761961	7	hormigón	regular	0	0	falso	3.5	14	falso
16	0	615952	615957	9762089	9762095	7	hormigón	regular	0	0	falso	4	13	falso
17	0	615883	615888	9762139	9762144	7	hormigón	regular	0	0	falso	3.96	12	falso
18	0	615775	615780	9762256	9762262	7	hormigón	bueno	44	44	verdadero	3.9	10	falso
19	0	615774	615758	9762267	9762278	20	plástico	bueno	20	10	falso	0.38	4.5	verdadero
20	0	615776	615758	9762267	9762278	21	plástico	bueno	30	7	falso	0.38	4.5	verdadero
21	0	615750	615742	9762393	9762395	8	hormigón	regular	0	0	falso	5	10	falso
22	0	615689	615693	9762313	9762307	7	hormigón	regular	15	40	falso	4.8	8	falso
23	0	615445	615443	9762232	9762225	7	hormigón	regular	0	0	falso	3.95	11	falso
24	0	615253	615249	9762379	9762373	7	hormigón	regular	0	0	falso	3.97	11	falso
25	0	615145	615149	9762460	9762466	7	plástico	bueno	44	44	verdadero	0.37	7	verdadero

Tabla LIV. Datos de parámetros de Reductores de velocidad, elementos 26 - 38 en el Anillo Vial del Campus ESPOL

26	0	615052	615048	9762516	9762510	7	HORMIGON	BUENO	35	35	VERDADERO	4.13	7	VERDADERO
27	0	614818	614818	9762549	9762542	7	HORMIGON	REGULAR	16	16	FALSO	4	13	FALSO
28	0	614802	614801	9762538	9762531	7	HORMIGON	REGULAR	0	0	FALSO	4	7	VERDADERO
29	0	614751	614758	9762576	9762582	9	HORMIGON	REGULAR	0	0	FALSO	3.4	7	VERDADERO
30	0	614773	614776	9762542	9762548	7	HORMIGON	REGULAR	0	0	FALSO	4.5	7	VERDADERO
31	0	614702	614709	9762759	9762758	7	PLASTICO	REGULAR	13	43	FALSO	0.38	4.5	VERDADERO
32	0	614737	614744	9762866	9762865	7	PLASTICO	REGULAR	10	10	FALSO	0.38	5	VERDADERO
33	0	615024	615030	9762985	9762990	7	HORMIGON	REGULAR	0	0	FALSO	4.76	11	FALSO
34	0	615034	615039	9762993	9762998	7	HORMIGON	REGULAR	0	0	FALSO	3.82	10	FALSO
35	0	615132	615137	9762854	9762858	7	HORMIGON	REGULAR	20	0	FALSO	3.96	13	FALSO
36	0	615374	615369	9762928	9762934	7	HORMIGON	REGULAR	0	0	FALSO	4.01	12	FALSO
37	0	615472	615468	9763005	9763012	8	HORMIGON	REGULAR	0	0	FALSO	4.3	13	FALSO
38	0	615536	615542	9762979	9762983	8	HORMIGON	REGULAR	0	0	FALSO	4	12	FALSO

Señalética vertical (Tramo 1)

Tabla LV. Datos de parámetros de señalética vertical elementos 0 - 20 en el Anillo Vial del Campus ESPOL

fid	x	У	tramo	tipo	aviso	pictograma	b	h	norma	cumple_dim
0	617105.915	9763041.86	tramo 1	no aplica	no aplica		no aplica	no aplica	no aplica	no aplica
1	617122.636	9763025.24	tramo 1	no aplica	p1 - 6a		no aplica	no aplica	600x600	no aplica
2	617128.986	9763006.3	tramo 1	no aplica	no aplica	no aplica	no aplica	no aplica	no aplica	no aplica
3	617115.545	9763013.39	tramo 1	no aplica	no aplica	no aplica	no aplica	no aplica	no aplica	no aplica
4	617125.176	9762983.22	tramo 1	más adelante reductor de velocidad	p6 - 2a 600		600	600x600	verdadero	
5	617132.796	9762925.33	tramo 1	puente angosto	p4 -1a		600	600	600x600	verdadero
6	617146.343	9762888.61	tramo 1	cambio de direcciã³n	dl - 2a		750	750	600x750	falso
7	617068.344	9762818.44	tramo 1	curva tipo u	p1 - 6a		900	900	600x600	falso
8	617017.967	9762776.74	tramo 1	curva tipo u	p1 - 6a		900	900	600x600	falso
9	617024.846	9762766.27	tramo 1	límite máximo de velocidad	r4 - 1a		600	600	600x600	verdadero
10	616991.932	9762755.05	tramo 1	puente angosto	p4 -1a		900	900	600x600	falso
11	617004.949	9762750.92	tramo 1	pare	r1 - 1a		600	600	600x600	verdadero
12	616955.393	9762734.33	tramo 1	curva tipo u	p1 - 6a		600	600	600x600	verdadero
13	616960.129	9762750.13	tramo 1	cambio de dirección	dl - 2a		900	900	600x750	falso
14	616902.529	9762718.45	tramo 1	más adelante reductor de velocidad	р6 - 2а		900	900	600x600	falso
15	616853.078	9762665.43	tramo 1	cambio de dirección	dl - 2a		600	600	600x600	verdadero
16	616811.962	9762616.7	tramo 1	límite máximo de velocidad	r4 - 1a		900	900	600x600	falso
17	616794.148	9762627.59	tramo 1	límite máximo de velocidad	r4 - 1a		600	600	600x600	verdadero
18	616798.622	9762597.49	tramo 1	más adelante reductor de velocidad	p6 - 2a		600	600	600x600	verdadero
19	616814.771	9762654.33	tramo 1	cambio de dirección	dl - 2a		900	900	600x600	falso
20	616746.128	9762477.34	tramo 1	más adelante reductor de velocidad	p6 - 2a		600	600	600x600	verdadero

Tabla LVI. (Continuación tabla LVI)

Dime	nsión	Tipo de ma	Estado	Estado eva	Cumple rem	Evaluación	Ubicación	CUMPLE UBI	EVALUACI 1	Altura m	EVALUACI 2

0	Α	NO APLICA	1	NO APLICA	5	Ninguna de las anteriores	FALSO	0	3.1	3
0	А	NO APLICA	3	NO APLICA	0	Ninguna de las anteriores	FALSO	0	2.6	3
0	NO APLICA	NO APLICA	1	NO APLICA	0	NO APLICA	FALSO	0	2.45	3
0	А	NO APLICA	1	NO APLICA	5	Ninguna de las anteriores	FALSO	0	2.63	3
5	Α	В	3	FALSO	0	MAYOR A 100 m	VERDADERO	5	3.1	3
5	Α	В	3	FALSO	0	EN CURVA	VERDADERO	5	2.7	3
0	А	В	3	FALSO	0	Ninguna de las anteriores	FALSO	0	2.6	3
0	Α	В	3	FALSO	0	MAYOR A 100 m	VERDADERO	5	2.76	3
0	Α	В	3	FALSO	0	MAYOR A 100 m	VERDADERO	5	2.4	3
5	А	В	3	FALSO	0	Ninguna de las anteriores	FALSO	0	3.1	3
0	Α	В	3	FALSO	0	MENOR A 75 m	VERDADERO	5	2.4	3
5	А	Α	5	FALSO	0	Ninguna de las anteriores	FALSO	0	1.7	3
5	Α	С	1	FALSO	0	MAYOR A 100 m	VERDADERO	5	2.5	3
0	Α	Α	5	FALSO	0	MAYOR A 100 m	VERDADERO	5	2.61	3
0	Α	В	3	FALSO	0	EN CURVA	VERDADERO	5	2.5	3
5	А	Α	5	FALSO	0	Ninguna de las anteriores	FALSO	0	2.63	3
0	А	Α	5	FALSO	0	Ninguna de las anteriores	FALSO	0	2.63	3
5	А	Α	5	FALSO	0	Ninguna de las anteriores	FALSO	0	3.1	3
5	Α	В	3	FALSO	0	MAYOR A 100 m	VERDADERO	5	3.1	3
0	А	Α	5	FALSO	0	Ninguna de las anteriores	FALSO	0	3.1	3
5	Α	Α	5	FALSO	0	MAYOR A 100 m	VERDADERO	5	2.6	3

Tabla LVII. (Continuación tabla LVII)

DISTANCIA_	EVALUACI_3	TIPO_DE_PO	ESTADO_POS	CALIFICACI	Placa_15	Poste_5	INSTALACIO	Total_25	Cod_foto
880	3	С	Α	5	6	5	6	17	SV-000
233	1	С	В	3	3	3	4	10	SV-001
550	1	С	Α	5	1	5	4	10	SV-002
920	3	С	В	3	6	3	6	15	SV-003
730	3	С	В	3	8	3	11	22	SV-004
710	3	С	В	3	8	3	11	22	SV-005
960	3	С	В	3	3	3	6	12	SV-006
2300	3	С	В	3	3	3	11	17	SV-007
2360	3	С	Α	5	3	5	11	19	SV-008
7400	3	С	В	3	8	3	6	17	SV-009
2360	3	С	В	3	3	3	11	17	SV-0010
930	3	С	В	3	10	3	6	19	SV-0011
2560	3	С	В	3	6	3	11	20	SV-0012
720	3	С	Α	5	5	5	11	21	SV-0013
2560	3	С	В	3	3	3	11	17	SV-0014
740	3	С	В	3	10	3	6	19	SV-0015
740	3	С	Α	5	5	5	6	16	SV-0016
930	3	С	В	3	10	3	6	19	SV-0017
930	3	С	Α	5	8	5	11	24	SV-0018
730	3	С	Α	5	5	5	6	16	SV-0019
660	3	С	В	3	10	3	11	24	SV-0020

Tabla LVIII. (Continuación tabla LVIII)

FID	INTERVENCI	INTERVEN_1	INTERVEN_2
0	CAMBIO	NO REQUIERE INTERVENCIÓN	MANTENIMIENTO

1	CAMBIO	MANTENIMIENTO	MANTENIMIENTO
2	CAMBIO	NO REQUIERE INTERVENCIÓN	MANTENIMIENTO
3	MANTENIMIENTO	MANTENIMIENTO	MANTENIMIENTO
4	MANTENIMIENTO	MANTENIMIENTO	NO REQUIERE INTERVENCIÓN
5	MANTENIMIENTO	MANTENIMIENTO	NO REQUIERE INTERVENCIÓN
6	CAMBIO	MANTENIMIENTO	MANTENIMIENTO
7	CAMBIO	MANTENIMIENTO	NO REQUIERE INTERVENCIÓN
8	CAMBIO	NO REQUIERE INTERVENCIÓN	NO REQUIERE INTERVENCIÓN
9	MANTENIMIENTO	MANTENIMIENTO	MANTENIMIENTO
10	CAMBIO	MANTENIMIENTO	NO REQUIERE INTERVENCIÓN
11	MANTENIMIENTO	MANTENIMIENTO	MANTENIMIENTO
12	MANTENIMIENTO	MANTENIMIENTO	NO REQUIERE INTERVENCIÓN
13	CAMBIO	NO REQUIERE INTERVENCIÓN	NO REQUIERE INTERVENCIÓN
14	CAMBIO	MANTENIMIENTO	NO REQUIERE INTERVENCIÓN
15	MANTENIMIENTO	MANTENIMIENTO	MANTENIMIENTO
16	CAMBIO	NO REQUIERE INTERVENCIÓN	MANTENIMIENTO
17	MANTENIMIENTO	MANTENIMIENTO	MANTENIMIENTO
18	MANTENIMIENTO	NO REQUIERE INTERVENCIÓN	NO REQUIERE INTERVENCIÓN
19	CAMBIO	NO REQUIERE INTERVENCIÓN	MANTENIMIENTO
20	MANTENIMIENTO	MANTENIMIENTO	NO REQUIERE INTERVENCIÓN

Flechas

Tabla LIX. Datos de parámetros de avisos horizontales, flechas, en el Anillo Vial del Campus ESPOL

	tipo	dirección	cod_foto	x	у	estado	intervenci
0	aviso dirección	salida	f-000	617103.933	9763163.61	malo	pintar nuevamente
1	doble dirección	salida	f-001	617106.275	9763162.58	malo	pintar nuevamente
2	aviso reductor	salida	f-002	616946.303	9762721.57	malo	pintar nuevamente
3	aviso reductor	salida	f-003	616945.033	9762724.27	malo	pintar nuevamente
4	aviso reductor	entrada	f-004	617125.631	9762888.96	malo	pintar nuevamente
5	aviso reductor	entrada	f-005	617129.177	9762887.21	malo	pintar nuevamente
6	aviso reductor	entrada	f-006	616274.542	9762013.38	malo	pintar nuevamente
7	aviso reductor	entrada	f-007	616275.931	9762010.27	malo	pintar nuevamente
8	aviso reductor	salida	f-008	615435.441	9762232.05	malo	pintar nuevamente
9	aviso reductor	salida	f-009	615434.251	9762227.61	malo	pintar nuevamente
10	aviso reductor	salida	f-0010	615245.433	9762381.12	malo	pintar nuevamente
11	aviso reductor	salida	f-0011	615243.062	9762378.39	malo	pintar nuevamente
12	aviso reductor	entrada	f-0012	615153.316	9762456.5	malo	pintar nuevamente
13	aviso reductor	entrada	f-0013	615155.326	9762459.46	malo	pintar nuevamente
14	aviso reductor	salida	f-0014	615041.767	9762514.49	malo	pintar nuevamente
15	aviso reductor	salida	f-0015	615042.931	9762518.62	malo	pintar nuevamente
16	aviso reductor	entrada	f-0016	614827.137	9762542.75	malo	pintar nuevamente
17	aviso reductor	entrada	f-0017	614827.137	9762546.46	malo	pintar nuevamente
18	aviso reductor	salida	f-0018	614795.175	9762538.2	malo	pintar nuevamente
19	aviso reductor	salida	f-0019	614794.117	9762534.5	malo	pintar nuevamente
20	aviso dirección	entrada	f-0020	614735.591	9762567.94	malo	pintar nuevamente
21	aviso dirección	salida	f-0021	614718.869	9762600.64	malo	pintar nuevamente
22	aviso reductor	salida	f-0022	614706.169	9762767.75	malo	pintar nuevamente
23	aviso reductor	salida	f-0023	614709.979	9762767.12	malo	pintar nuevamente
24	aviso reductor	entrada	f-0024	614737.072	9762857.18	malo	pintar nuevamente
25	aviso reductor	entrada	f-0025	614740.776	9762856.23	malo	pintar nuevamente
26	aviso reductor	entrada	f-0026	615020.283	9762992.65	malo	pintar nuevamente
27	aviso reductor	entrada	f-0027	615023.378	9762994.71	malo	pintar nuevamente
28	aviso reductor	salida	f-0028	615043.884	9762989.9	malo	pintar nuevamente
29	aviso reductor	salida	f-0029	615040.859	9762987.37	malo	pintar nuevamente
30	aviso reductor	salida	f-0030	615141.687	9762851.53	malo	pintar nuevamente
31	aviso reductor	entrada	f-0031	615128.101	9762861.89	malo	pintar nuevamente
32	aviso reductor	entrada	f-0032	615374.19	9762935.09	malo	pintar nuevamente
33	aviso reductor	entrada	f-0033	615475.47	9763013.36	malo	pintar nuevamente
34	aviso reductor	salida	f-0034	615465.406	9763003.54	malo	pintar nuevamente
35	aviso reductor	salida	f-0035	615368.27	9762925.83	malo	pintar nuevamente
36	aviso reductor	entrada	f-0036	615545.614	9762974.98	malo	pintar nuevamente
37	aviso reductor	salida	f-0037	615531.803	9762986.65	malo	pintar nuevamente
38	aviso una sola dirección	entrada	f-0038	617092.045	9763165.55	malo	pintar nuevamente
39	aviso una sola dirección	entrada	f-0039	617095.485	9763164.89	malo	pintar nuevamente

Siniestros ESPOL

Tabla LX. Datos de parámetros de siniestros en el Anillo Vial del Campus ESPOL

FID	Id	TIPO	X_UTM	Y_UTM
0	0	Daño vehicular completo	615697.97	9762293.41
1	0	Daño vehicular completo	615728.163	9762286.7
2	0	Daño vehicular completo	615892.726	9762135.69
3	0	Daño vehicular completo	615083.88	9762505.76
4	0	Daño vehicular completo	615068.202	9762517.12
5	0	Daño vehicular completo	614959.424	9762553.45
6	0	Daño por abolladura en el vehículo	614723.524	9762643.14
7	0	Daño por abolladura en el vehículo	614749.63	9762566.26
8	0	Daño por abolladura en el vehículo	614770.423	9762548.63
9	0	Daño vehicular completo	614773.06	9762994.6
10	0	Daño vehicular completo	614787.663	9763011.86
11	0	Daño vehicular completo	614825.365	9763044.14
12	0	Daño por hendidura o rayón	615196.079	9762827.75
13	0	Daño por hendidura o rayón	615219.643	9762828.58

Señalética horizontal

Tabla LXI. Datos de parámetros de 10 avisos horizontales en el Anillo Vial del Campus ESPOL

OBJEC TID	Linetyp e	AVISO	COD_A VISO	Cod_f oto	INTERVENCI	MANT_R _ESP	Shape_L ength	COLO R	X_INI	Y_INI	X_FIN	Y_FIN	SH_PINT	SH_ FIS
1	Contin uous	LINEA DE PROHIBICIÓN DE ESTACIONAMIENTO	LPE	SH- 000	PINTAR NUEVAMENTE		72.02525 06	AMARI LLO	616743 .415	976243 3.87	616768 .596	976236 7.23	EN BASE DE AGUA	MAL A
2	Contin	LINEA DE PROHIBICIÓN DE ESTACIONAMIENTO	LPE	SH- 001	PINTAR NUEVAMENTE		61.12858 96	AMARI LLO	616773	976235 4.37	616778	976229 4.1	EN BASE DE AGUA	MAL
3	Contin	LINEA DE SEPARACIÓN DE CARRILES CONTINUA	LSPC	SH- 002	PINTAR NUEVAMENTE		27.80042 54	BLANC O	617090 .153	976310 4.28	617098 .728	976307 7.83	EN BASE DE AGUA	MAL
4	Contin uous	LINEA DE SEPARACIÓN DE CARRILES CONTINUA	LSPC	SH- 003	PINTAR NUEVAMENTE		27.80042 54	BLANC O	617101 .246	976310 7.47	617109 .82	976308 1.03	EN BASE DE AGUA	MAL A
5	Contin	LINEA DE SEPARACIÓN DE CARRILES CONTINUA	LSPC	SH- 004	PINTAR NUEVAMENTE		180.3651 16	BLANC O	617137 .179	976299 8.86	617099 .138	976283 6.91	EN BASE DE AGUA	MAL A
6	Contin	LINEA DE SEPARACIÓN DE CARRILES CONTINUA	LSPC	SH- 005	PINTAR NUEVAMENTE		97.16616 57	BLANC O	616820 .656	976265 6.2	616770 .606	976257 3.9	EN BASE DE AGUA	MAL A
7	Contin	LINEA DE SEPARACIÓN DE CARRILES CONTINUA	LSPC	SH- 006	PINTAR NUEVAMENTE		83.61382 8	BLANC O	616824	976264 0.98	616781	976257 0.47	EN BASE DE AGUA	MAL
8	Contin	LINEA DE BORDE CALZADA	LBC	SH- 007	PINTAR NUEVAMENTE		1022.422	BLANC O	617111	976317 3.75	616798	976234 6.14	EN BASE DE AGUA	MAL
9	Contin	LINEA DE PROHIBICIÓN DE ESTACIONAMIENTO	LPE	SH- 008	PINTAR NUEVAMENTE		1020.911	AMARI LLO	617111	976317 3.6	616798	976234 6.85	EN BASE DE AGUA	MAL
10	Contin	LINEA DE BORDE CALZADA	LBC	SH- 009	PINTAR NUEVAMENTE		61.34668 62	BLANC O	616774	976235 4.46	616779	976229 3.97	EN BASE DE AGUA	MAL A

METADATOS ENTIDADES

Señalética vertical

A continuación, mostramos los metadatos del inventario realizado de los datos georreferenciados, proveen información sobre los datos espaciales producidos.

Tabla LXII. Metadatos entidad señalética vertical

Nombre del campo	Tipo	Longitud del campo	Descripción del Campo	Opciones del campo
FID	OID	4	Auto numérico.	
Х	Numérico (real)	NA	Coordenadas en X-Este (m) UTM.	
Υ	Numérico (real)	NA	Coordenadas en Y-Norte (m) UTM.	
TRAMO	String	254	Parte de recorrido de la vía de estudio	
TIPO	String	254	Tipo de señalética definida en la RTE INEN 004	
AVISO	String	254	Código RTE INEN 004 de la señal (Ej. R1-1)	
PICTOGRAMA	String	254	Pictograma de la señal basado en el código del RTE INEN 004.	
В	String	254	Dimensión horizontal de la placa sin importar su forma.	
Н	String	254	Dimensión vertical de la placa sin importar su forma	
Norma	String	254	Dimensiones horizontal y vertical establecidas por la norma RTE INEN 004	
Cumple_dim	String	254	Tamaño de la señal cumple o no la norma establecida en RTE INEN 004 Parte 1.	VERDADERO=Cumple; FALSO= No cumple.
Dimensión_	Integer	10	Calificación del tamaño de la señal. Se basa en Cumple_dim.	Si cumple se le asigna un valor de 5 y si no cumple 0.

Tabla LXIII. (Continuación tabla LX)

Tipo_de_ma	String	254	Material de la placa.	A para Aluminio, B para plástico y C para otro material.
Estado	String	254	Estado físico aparente de la placa. Será bueno si está perfecta, regular si tiene algunos defectos pero cumple su función y malo si no cumple su función.	A para Bueno, B para Regular y C para Malo.
Estado_eva	Integer	10	Calificación del estado de la placa.	Valores a asignar 5, 3 y 1.
Cumple_rem	String	254	Evaluación de la ubicación de los remaches, será verdadero si cumple las especificaciones del RTE INEN 004 y falso si no lo hace.	Verdadero; falso.
Evaluacion	Integer	10	Evaluación de la ubicación de los remaches, depende de Cumple_rem. Se asigna un valor de 5 para verdadero y 0 para falso.	5, 0.
Ubicación	String	254	Ubicación de la señal respecto al peligro o evento que advierte. Tomándose como referencia la distancia de colocación de norma INEN RTE 004 o de la seguridad del usuario. Ejemplos: Paso cebra, resalto, interacciones, etc.	
CUMPLE_UBI	String	254	Evaluación de verdadero y falso de la ubicación a un evento, dependerá de ubicación. Sera verdadero si: Mayor a 100m, menor a 75m y en curva y falso si: ninguna de las anteriores.	

Tabla LXIV. (Continuación tabla LXI)

EVALUACI_1	Integer	10	Valores asignados a CUMPLE_UBI. Sera 5 si es verdadero y 0 si es falso.	5, 0.
Altura_m	Double	19	Altura en m del poste	
EVALUACI_2	Integer	10	Evaluación de la altura del poste. Se asigna un valor de 5 si es igual a 1.5m, un valor de 3 si es mayor a 1.5m y un valor de 1 si es menor a 1.5m.	5, 3, 1.
DISTANCIA_	Integer	10	Distancia lateral al lado más alejado del bordillo, medida en centímetros.	
EVALUACI_3	Integer	10	Valor asignado a la distancia lateral, depende de DISTANCIA Si la distancia es igual a 600cm se asigna 5, si es mayor a 600cm se asigna 3 y si es menor a 600cm se asigna 1.	5, 3, 1.
TIPO_DE_PO	String	254	Tipo de poste. A: tubo cuadrado, B: tubo redondo, C: perfil omega, D: tubo de hormigón.	A; B; C; D.
ESTADO_POS	String	254	Estado físico aparente del poste. Será bueno si está perfecto, regular si tiene algunos defectos, pero cumple su función y malo si no cumple su función. Opciones de campo, A= Bueno; B= Regular; C= Malo.	A; B; C.
CALIFICACI	Integer	10		5, 3, 1.

		ESTADO_POS. Si es A vale 5, si es B vale 3 y si es C vale 1.	
Integer	10	Calificación total sobre 15 puntos del estado de la placa	
Integer	10	Calificación total sobre 5 del estado del poste.	
Integer	10	Calificación sobre la instalación del aviso	
Integer	10	Calificación final sobre 25 para determinar una intervención.	
String	254	Intervención recomendada en la placa	
String	254	Intervención recomendada en el poste	
String	254	Intervención recomendada en la instalación	
String	50	Código establecido para las fotos de campo	
	Integer Integer String String String	Integer 10 Integer 10 Integer 10 String 254 String 254 String 254	Integer 10 Calificación total sobre 15 puntos del estado de la placa Integer 10 Calificación total sobre 5 del estado del poste. Integer 10 Calificación sobre la instalación del aviso Integer 10 Calificación final sobre 25 para determinar una intervención. String 254 Intervención recomendada en la placa String 254 Intervención recomendada en el poste String 254 Intervención recomendada en la instalación String 254 Código establecido para las

Señalética horizontal

Tabla LXV. Metadatos entidad señalética horizontal

Nombre del campo	Tipo	Longitud del campo	Descripción del Campo	Opciones del campo
AVISO	String	254	Tipo de señalética definida en la RTE INEN 004	
COD_AVISO	String	10	Código establecido para el tipo de aviso	
COLOR	String	50	Color de la pintura de la señalética horizontal	BLANCA, AMARILLA
COD_FOTO	String	50	Código establecido para la foto	
X_INI	Numérico (REAL)	NA	Coordenadas en X-Este (m) del inicio del tramo evaluado.	
Y_INI	Numérico (REAL)	NA	Coordenadas en Y-Norte (m) del inicio del tramo evaluado.	
X_FIN	Numérico (REAL)	NA	Coordenadas en X-Este (m) del fin del tramo evaluado.	
Y_FIN	Numérico (REAL)	NA	Coordenadas en Y-Norte (m) del fin del tramo evaluado.	
SH_PINT	String	50	Tipo de pintura	Agua; termoplástica
SH_FIS	String	50	Estado físico aparente de la señalética horizontal. Será bueno si está perfecta, regular si tiene algunos defectos pero cumple su función y malo si no cumple su función.	Bueno; Regular; Malo
INTERVENCI	String	50	Intervención recomendada	
MANT_R_ESP	String	50	Mantenimiento realizado a las líneas de avisos horizontales durante el proyecto "Inventario vial georreferenciado ESPOL	Adecuada, (La demarcación se distingue del pavimento); 2) Inadecuada, (La demarcación no sé distingue del pavimento).

Guarda vías

Tabla LXVI. Metadatos entidad guarda vías

Nombre del campo	Tipo	Longitud del campo	Descripción del campo	Opciones del campo
Xi	Double	8	Coordenadas en X-Este (m) del inicio del tramo evaluado.	
Yi	Double	8	Coordenadas en Y-Norte (m) del inicio del tramo evaluado.	
Xf	Double	8	Coordenadas en X-Este (m) del fin del tramo evaluado.	
Yf	Double	8	Coordenadas en Y-Norte (m) del fin del tramo evaluado.	
ESTADO	String	50	Estado aparente del guardavía.	1) Bueno (el guardavía no presenta defectos aparentes); 2) Regular (El guardavía presenta defectos pero cumple con su función); 3) Malo (El guardavía está muy deteriorado).
DISPOSICION	String	50	Disposición del elemento de contención respecto a la altura (aplica para barreras metálicas).	1) Adecuada (El guardavía cumple la normativa de aplicación de ALTUR)A; 2) Inadecuado (El guardavía no cumple la normativa de aplicación de ALTURA).
PRISMA	String	50	Existencia de capta faros en el guardavía (aplica a barreras metálicas). Prismas reflectivo.	1) No existen capta faros del guardavía; 2)
TERMINALES	String	50	Tipo de terminales del guardavía.	1) No existe (No existen terminales en el guardavía); 2) Adecuado (Existen terminales en buen estado y acordes a la normativa internacional); 3) Inadecuado (Existen terminales en mal estado y acordes a la normativa internacional).
DISCONTINU	String	50	Secciones sin guarda vía.	

Tabla LXVII. (Continuación tabla LXVII)

TIPO	String	50	Tipo de elemento de contención.	Tipo A) Barrera Metálica de barandal simple; Tipo B) Barrera Metálica de barandal doble; Tipo C) Barrera Metálica de barandal triple; D) Barrera de hormigón. E) Barandal puente. F) Otros tipos. Tipo 2 Barrera de hormigón; Tipo 3 Barandal Puentes; Tipo 4 Otros tipos.
COMENTARIO	String	254		
LONGITUD	Double	8	Longitud estimada del elemento de contención (m).	
Cod_foto	String	50	Código asignado para la foto	

Reductor de velocidades

Tabla LXVIII. Metadatos entidad reductores de velocidad

Nombre del campo	Tipo	Longitud del campo	Descripción del Campo	Opciones del campo
FID	Numérico (ENTERO)		Auto numérico.	Código enumerado de la siguiente manera: #, # es el número del poste
Xi	Integer	4	Coordenadas en X-Este (m).	
Yi	Integer	4	Coordenadas en Y-Norte (m).	
Xf	Integer	4	Coordenadas en X-Este (m).	
Yf	Integer	4	Coordenadas en Y-Norte (m).	
Largo	Integer	4	Largo del resalto medido en m	
Material	String	50	Material del resalto.	Hormigón, plástico.
Estado	String	50	Estado físico aparente del reductor de velocidad. Será bueno si está perfecta, regular si tiene algunos defectos pero cumple su función y malo si no cumple su función.	Bueno, regular y malo
Cuneta	Integer	4	Indica la ubicación de la cuneta en el lado izquierdo del reductor de velocidad.	
Cuneta_cm_	Integer	4	Ubicación cuneta del extremo derecho, medida en cm.	
COD_FOTO	String	50	Código establecido para la foto de campo	
Altura_cm	Double	8	Altura del reductor de velocidad, medida en campo en cm.	
Ancho_m	Double	8	Ancho del reductor de velocidad, medida en campo medida en m.	

Tabla LXIX. (Continuación tabla LXIX)

Cumplimiento_altura	String	50	Cumplimiento de la norma con respecto a la altura del reductor de velocidad	Si cumple: VERDADERO, No cumple: FALSO
Norma	String	50	Cumplimiento de la norma con respecto a la ubicación de la cuneta del reductor de velocidad	Si cumple: VERDADERO, No cumple: FALSO
Norma_altu	String	50	Cumplimiento de norma con respecto a la altura del resalto.	
Xm	Double	8	Coordenada punto medio UTM	
Ym	Double	8	Coordenada punto medio UTM	
DIRECCIÓN	String	50	Dirección de la vía	

Fuente: Infante, N., Valencia, R., 2018.

Alcantarillas

Tabla LXX. Metadatos entidad alcantarillas

Nombre del campo	Tipo	Longitud del campo	Descripción del Campo	Opciones del campo
FID	OID	4	Auto numérico.	Código enumerado de la siguiente manera: #, # es el número del poste
COORDENADA	Double	8	Coordenada Este (X) UTM	
COORDENADA_1	Double	8	Coordenada Este (Y) UTM	
MATERIAL	String	254	Material de la alcantarilla	Hormigón, plástico
ESTADO	String	254	Estado aparente de la alcantarilla	Bueno, Regular, Malo
COMENTARIO	String	254	Comentarios u observaciones del elemento.	
Cod_foto	String	50	Código asignado para las fotos de campo	

VALORACIÓN DE IMPACTO AMBIENTAL

Intensidad

Tabla LXXI Intensidad

Actividades	Biol	ógico		Aire		Agı	ıa	Suelo	Aspecto Social
	Flora	Fauna	Ruido	Contaminantes	Agua Sub.	Agua Sup.	Calidad de agua		Económico
Rehabilitación de vías	6	0	6	6	0	0	0	5	8
Mantenimiento de señalética	0	0	1	2	0	0	0	2	8
Actualización según Normas	0	0	0	0	0	0	0	0	3
Campaña de velocidad	0	0	0	0	0	0	0	0	10
Capacitaciones viales	0	0	0	0	0	0	0	0	10
Simulacro de accidentes	0	0	0	0	0	0	0	0	10

Extensión

Tabla LXXII Extensión

Actividades	Bio	ógico		Aire		Agua		Suelo	Aspecto Social
	Flora	Fauna	Ruído	Contaminantes	Agua Sub.	Agua Sup.	Calidad de agua		Económico
Rehabilitación de vías	5	5	1	0	0	0	0	5	5
Mantenimiento de señalética	5	5	1	0	0	0	0	5	5
Actualización según Normas	5	5	5	0	0	0	0	5	5
Campaña de velocidad	5	5	1	0	0	0	0	0	5
Capacitaciones viales	5	5	1	0	0	0	0	0	5
Simulacro de accidentes	5	5	1	0	0	0	0	5	5

Duración

Tabla LXXIII Duración

Actividades	Biol	lógico		Aire		Agua		Suelo	Aspecto Social
	Flora	Fauna	Ruído	Contaminantes	Agua Sub.	Agua Sup.	Calidad de agua		Económico
Rehabilitación de vías	1	1	1	1	0	0	0	1	1
Mantenimiento de señalética	1	1	1	1	0	0	0	1	1
Actualización según Normas	1	1	1	1	0	0	0	1	1
Campaña de velocidad	1	1	1	1	0	0	0	1	1
Capacitaciones viales	1	1	1	1	0	0	0	1	1
Simulacro de accidentes	1	1	1	1	0	0	0	1	1

Signo del Impacto

Tabla LXXIV Signo del Impacto

Actividades	Biol	ógico		Aire		Agua		Suelo	Aspecto Social
	Flora	Fauna	Ruido	Contaminantes	Agua Sub.	Agua Sup.	Calidad de agua		Económico
Rehabilitación de vías	-1	-1	-1	0	0	0	0	-1	1
Mantenimiento de señalética	-1	-1	-1	0	0	0	0	1	1
Actualización según Normas	0	0	0	0	0	0	0	0	1
Campaña de velocidad	0	0	0	0	0	0	0	0	1
Capacitaciones viales	0	0	0	0	0	0	0	0	1
Simulacro de accidentes	0	0	0	0	0	0	0	0	1

Magnitud

Tabla LXXV Magnitud

Actividades	Riol	ógico		Aire	•	Agua		Suelo	Aspecto Social
Actividades	Бібі	Ugico		7.11.0		Agua		Jueio	
	Flora	Fauna	Ruido	Contaminantes	Agua Sub.	Agua Sup.	Calidad de agua		Económico
Rehabilitación de vías	-4,1	-2,3	-2,5	0	0	0	0	-3,8	4,7
Mantenimiento de señalética	-2,3	-2,3	-1	0	0	0	0	2,9	4,7
Actualización según Normas	0	0	0	0	0	0	0	0	3,2
Campaña de velocidad	0	0	0	0	0	0	0	0	5,3
Capacitaciones viales	0	0	0	0	0	0	0	0	5,3
Simulacro de accidentes	0	0	0	0	0	0	0	0	5,3

Reversibilidad

Tabla LXXVI Reversibilidad

			IUN	IL LANTING VE	Jibiliada				
Actividades	Biol	ógico		Aire		Agua		Suelo	Aspecto Social
	Flora	Fauna	Ruido	Contaminantes	Agua Sub.	Agua Sup.	Calidad de agua		Económico
Rehabilitación de vías	10	10	10	0	0	0	0	8	1
Mantenimiento de señalética	1	1	5	0	0	0	0	1	1
Actualización según Normas	5	5	0	0	0	0	0	0	1
Campaña de velocidad	5	5	0	0	0	0	0	0	1
Capacitaciones viales	5	5	0	0	0	0	0	0	1
Simulacro de accidentes	5	5	1	0	0	0	0	0	1

Riesgos

Tabla LXXVII Riesgos

Actividades	Biolo	ógico		Aire		Agua		Suelo	Aspecto Social
	Flora	Fauna	Ruido	Contaminantes	Agua Sub.	Agua Sup.	Calidad de agua		Económico
Rehabilitación de vías	5	1	1	1	1	1	1	5	5
Mantenimiento de señalética	5	1	1	1	1	1	1	1	5
Actualización según Normas	1	1	1	1	1	1	1	1	1
Campaña de velocidad	1	1	1	1	1	1	1	1	1
Capacitaciones viales	1	1	1	1	1	1	1	1	1
Simulacro de accidentes	1	1	1	1	1	1	1	1	5

VIA – Valoración de Impacto Ambiental

Tabla LXXVIII VIA Valoración de impacto Ambiental

Actividades	Biol	ógico		Aire		Agua		Suelo	Aspecto	TOTAL
	Flora	Fauna	Ruido	Contaminantes	Agua Sub.	Agua Sup.	Calidad de agua		Social Económico	
Rehabilitación de vías	5,69	2,78	2,88	0,00	0,00	0,00	0,00	5,16	3,01	19,52
Mantenimiento de señalética	2,26	1,40	1,62	0,00	0,00	0,00	0,00	1,53	3,01	9,82
Actualización según Normas	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,59	1,59
Campaña de velocidad	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,95	1,95
Capacitaciones viales	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,95	1,95
Simulacro de accidentes	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	3,16	3,16
TOTAL	7,95	4,18	4,50	0,00	0,00	0,00	0,00	6,69	14,67	

APU - Nuevo Diseño Señalética Horizontal

NOMBRE DEL PROPONENTE: Narjara Anaxel Infante Cherrez & Roberto Eduardo Valencia Escalante

PROYECTO: SEÑALETICA HORIZONTAL CAMPUS ESPOL

HOJA 1 DE 26

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 100 UNIDAD: m

DETALLE: DEMARCACIÓN DE LINEAS CONTINUAS BLANCAS

EQUIPOS					
DESCRIPCION	CANTIDAD	TARIFA	COSTOHORA	RENDIMIENTO	COSTO
	Α	В	C=A*B	R	D=C*R
Herramienta menor 5 % M/O					0.0008
Fusor Borum 250	1.000	3.6400	3.6400	0.0007	0.002
SUBTOTAL M=					0.0028
MANO DE OBRA		T		I I	
DESCRIPCION	CANTIDAD	JORNAL/HR	COSTOHORA	RENDIMIENTO	COSTO
(CATEGORIAS)	Α	В	C=A*B	R	D=C*R
Peon (estr.ocp. E2)	2.000	3.5400	7.0800	0.0007	0.0047
Chofer tanquer o (estr.oc.Cl)	1.000	5.0000	5.0000	0.0007	0.0033
Oper ador en gener al	1.000	3.8200	3.8200	0.0007	0.0025
Técnico de obras civiles (estr.ocp. C2)	1.000	6.8700	6.8700	0.00066	0.0045
SUBTOTAL N=		1			0.0150
MATERIALES		1,000,00	0417045	DDEGLOUBLE T	00070
DESCRIPCION		UNIDAD	CANTIDAD A	PRECIOUNIT. B	COSTO C=A* B
Pintur a ter moplastica e=2.3mm (ancho 15cm)		m	1.000	1.1500	1.1500
SUBTOTAL O=					1.1500
TRANSPORTE		T		1	
DESCRIPCION		UNIDAD	CANTIDAD A	TARIFA B	COSTO C=A*B
SUBTOTAL P=					0.0000
		TOTAL COSTO	DIRECTOS X=(M	+N+O+P)	1.1678
			YUTILIDAD	13.83%	0.1615
		OTROSINDIR	***************************************	D.00 /0	0.00
		COSTOTOTAL			1.3293
Outropy il Fahrana del 2040		0.000.000.000.000.000.000.000.000.000.000.000	FERTADO	\$	1.33
Guayaquil, Febrero del 2018		VALUK U	IENIADU	Φ	1.33

HOJA 2 DE 26

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 2.00 UNIDAD: М

DETALLE: DEMARCACIÓN DE LINEAS SEGMENTADAS

DESCRIPCION	CANTIDAD	TARIFA	COSTOHORA	RENDIMIENTO	COSTO
	Α	В	C=A*B	R	D=C*R
Herramienta menor 5 % M/O					0.0008
Fusor Borum 250	1000	3.6400	3.6400	0.0007	0.002
SUBTOTAL M=				_	0.0028
MANO DE OBRA		Į.		Ļ.	0.0020
DESCRIPCION	CANTIDAD	JORNAL/HR	COSTOHORA	RENDIMIENTO	COSTO
(CATEGORIAS)	CANTIDAD	B	C=A*B	R	D=C*R
Peon (estr.ocp. E2)	2.000	3.5400	7.0800	0.0007	0.0047
Chofer tanquer o (estr.oc.Cl)	1.000	5.0000	5.0000	0.0007	0.0047
Operador en general	1.000	3.8200	3.8200	0.0007	0.0025
Técnico de obr as civiles (estr.ocp. C2)	1000	6.8700	6.8700	0.00066	0.0045
SUBTOTAL N=				_	0.0150
MATERIALES				L	
DESCRIPCION		UNIDAD	CANTIDAD	PRECIOUNIT.	COSTO
			Α	В	C=A*B
Pintur a ter mopl astica e=2.3mm (ancho 15cm)		m	1.000	1.1500	1.1500
SUBTOTAL O=					1.1500
RANSPORTE		I			
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			A	В	C=A*B
SUBTOTAL P=					0.0000
			DIRECTOS X=(M	+N+O+P)	1.1678
			YUTILIDAD	13.83%	0.1615
		OTROS INDIR			1.3293
Quayaquil, Febrero del 2018		000000000000000000000000000000000000000	FERTADO	\$	1.33
wayayuii,i esi ei u uei 20 lo		TALON U	LIVIADO	Ψ	1.33

HOJA 3 DE 26

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 3.00 UNIDAD: UNIDAD

DETALLE: EQUIPOS DEMARCACIÓN DE FLECHAS

DESCRIPCION	CANTIDAD	TARIFA	COSTOHORA	RENDIMIENTO	COSTO
	Α	В	C=A*B	R	D=C*R
Herramienta menor 5 % M/O					0.0008
Avisos pr efor mados maquinar ia ZEHTNHER	1000	3.6400	3.6400	0.0007	0.002
SUBTOTAL M=					0.0028
MANO DE OBRA					
DESCRIPCION	CANTIDAD	JORNAL/HR	COSTOHORA	RENDIMIENTO	COSTO
(CATEGORIAS)		В	C=A*B	R	D=C*R
Peon (estr.ocp. E2)	2.000	3.5400	7.0800	0.0007	0.0047
Chofer tanquer o (estr.oc.Cl)	1.000	5.0000	5.0000	0.0007	0.0033
Operador en general	1.000	3.8200	3.8200	0.0007	0.0025
Técnico de obr as civiles (estr.ocp.C2)	1.000	6.8700	6.8700	0.00066	0.0045
SUBTOTAL N=				_	0.0150
MATERIALES					0.0 80
DESCRIPCION		UNIDAD	CANTIDAD	PRECIOUNIT.	COSTO
2200.41 0.01		51415/15	A	В	C=A*B
Mar cas de pavimento (flechas, letras, etc)		u	1.000	8.1800	8.1800
SUBTOTAL O=					8.1800
TRANSPORTE				•	
DESCRIPCION		UNIDAD	CANTIDAD A	TARIFA B	COSTO C=A* B
SUBTOTAL P=					0.0000
		TOTAL COSTO	DIRECTOS X=(M-	+N+O+P)	8.1978
			YUTILIDAD	13.83%	11338
		COSTOTOTAL			9.3316
Guayaquil, Febrero del 2018		VALOR O	FFRTADO	\$	9.33

HOJA 4 DE 26

0

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 4.00 UNIDAD: UNIDAD DETALLE: DEMARCACIÓN DE AVISOS VELOCIDAD MÁXIMA ABSCISA: 2+350.00

DECODEDOM I	CANTIDAD	TADICA	COCTOLIODA	DENDIMIENTO	ООСТО
DESCRIPCION	CANTIDAD	TARIFA B	COSTOHORA C=A*B	RENDIMIENTO R	COSTO D=C* R
Her ramienta menor 5 % M/O	Α	В	C=A B	N.	0.0008
	1.000	2.6400	3.6400	0.0007	0.0008
Avisos pr efor mados maquinar ia ZEHTNHER	1.000	3.6400	3.0400	0.0007	0.002
SUBTOTAL M=				_	0.0028
MANO DE OBRA					0.0026
DESCRIPCION	CANTIDAD	JORNAL/HR	COSTOHORA	RENDIMIENTO	COSTO
(CATEGORIAS)	CANTIDAD	B	C=A*B	R	D=C*R
,	2,000				
Peon (estr.ocp. E2)	2.000	3.5400	7.0800	0.0007	0.0047
Chofer tanquer o (estr.oc.Cl)	1.000	5.0000	5.0000	0.0007	0.0033
Operador en general	1.000	3.8200	3.8200	0.0007	0.0025
Técnico de obr as civiles (estr.ocp. C2)	1.000	6.8700	6.8700	0.00066	0.0045
NUDTOTAL N				_	0.0450
SUBTOTAL N=					0.0150
MATERIALES DESCRIPCION		UNIDAD	CANTIDAD	PRECIOUNIT.	COSTO
DESCRIPCION		UNIDAD	A	B B	C=A*B
Mar cas de pavimento (flechas, letras, etc)		u	1.000	8.1800	8.1800
SUBTOTAL O=				-	8.1800
RANSPORTE				<u> </u>	
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			Α	В	C=A*B
SUBTOTAL P=				_	0.0000
00101/L1 -		TOTAL COSTO	DIRECTOS X=(M-	τΝτΟτΒ)	8.1978
			YUTILIDAD	13.83%	1.1338
		OTROSINDIR			
		COSTOTOTAL	DEL RUBRO FERTADO	\$	9.3316
Guayaquil, Febrero del 2018					9.33

HOJA 5 DE 26

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 5.00 UNIDAD: М DETALLE: DEMARCACIÓN DE LINEAS CONTINUAS AMARILLAS

DESCRIPCION	CANTIDAD	TARIFA	COSTOHORA	RENDIMIENTO	COSTO
223341 3/34	A	В	C=A*B	R	D=C*R
Herramienta menor 5 % M/O		_	• 11 -		0.0008
Fusor Borum 250	1.000	3.6400	3.6400	0.0007	0.002
SUBTOTAL M=				_	0.0028
MANO DE OBRA					0.0020
DESCRIPCION	CANTIDAD	JORNAL/HR	COSTOHORA	RENDIMIENTO	COSTO
(CATEGORIAS)	Α	В	C=A*B	R	D=C*R
Peon (estr.ocp. E2)	2.000	3.5400	7.0800	0.0007	0.0047
Chofer tanguer o (estr.oc.Cl)	1.000	5.0000	5.0000	0.0007	0.0033
Operador en general	1.000	3.8200	3.8200	0.0007	0.0025
Técnico de obras civiles (estr.ocp.C2)	1000	6.8700	6.8700	0.00066	0.0045
SUBTOTAL N=					0.0150
MATERIALES DESCRIPCION		UNIDAD	CANTIDAD	PRECIOUNIT.	COSTO
DESCRIPCION		UNIDAD	CANTIDAD A	B B	C=A* B
Pintur a ter moplastica e=2.3mm (ancho 15cm)		m	1,000	1.1500	1.1500
SUBTOTAL O=				_	1.1500
RANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			Α	В	C=A*B
LIDTOTAL D		l			0.0000
UBIOIAL P=					
OBIOIAL P=			DIRECTOS X=(M-		1.1678
ORIOIAL P=		INDIRECTOS'	YUTILIDAD	+N+O+P) 13.83%	1.1678 0.1615
SUBTOTAL P=			YUTILIDAD		
OBIOIAL P=		INDIRECTOS'	YUTILIDAD ECTOS %		

HOJA 6 DE 26

0

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 6.00 UNIDAD: МЗ DETALLE: HORMIGÓN F'C 280 Kg/cm2 (18 REDUCTOR VELOCIDAD)

EQUIPOS					
DESCRIPCION	CANTIDAD	TARIFA	COSTOHORA	RENDIMIENTO	COSTO
	A	В	C=A*B	R	D=C*R
Herramienta menor 5 % M/O					2.2145
Concreter a de 1Saco	1.000	3.1300	3.1300	1.3300	4.1629
Vibrador de Manguera	1.000	2.0000	2.0000	1.3300	2.660
G					
SUBTOTAL M=				_	9.0374
MANO DE OBRA					
DESCRIPCION	CANTIDAD	JORNAL/HR	COSTOHORA	RENDIMIENTO	COSTO
(CATEGORIAS)	Α	В	C=A*B	R	D=C*R
Peon (estr.ocp. E2)	5.000	3.5400	17.7000	1.3300	23.5410
Albañil (estr.ocp. D2)	1.000	5.2000	5.2000	1.3300	6.9160
Carpintero (estr.ocp. D2)	1.000	5.2000	5.2000	1.3300	6.9160
Maestro (estr.ocp. C1)	1.000	5.2000	5.2000	13300	6.9160
Wacstr o (cstr.sop. o)	1.000	0.2000	0.2000	1.0000	0.0 100
SUBTOTAL N=					44.2890
MATERIALES		T			
DESCRIPCION		UNIDAD	CANTIDAD	PRECIOUNIT.	COSTO
			Α	В	C=A*B
Cemento tipo I (50 Kg)		kg	483.000	0.1500	72.4500
Piedra 3/4"		m3	0.924	13.0000	12.0120
Arena		m3	0.462	10.0000	4.6200
Agua		m3	0.200	1.5000	0.2993
NUDTOTAL O				_	22.22.0
SUBTOTAL O= TRANSPORTE					89.3813
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
DEGMECION		UNIDAD	A CANTIDAD	B	C=A*B
Transporto do comento		Kg/Km	483.000	0.008	3.8640
Transporte de cemento					
Transporte de material petreo		m3- km	5.544	0.640	3.5482
SUBTOTAL P=				-	7.4122
		TOTAL COSTO	DIRECTOS X=(M	+N+O+P)	150.1199
			YUTILIDAD	13.83%	20.7616
			ECTOS%	2.0079	20.7 3 10
		COSTOTOTAL			170.8815
			***************************************	····	~~~~~
Guayaquil, Febrero del 2018		VALOR O	FEKIADU	\$	170.88

HOJA 7 DE 26

0

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 7.00 UNIDAD:

DETALLE: DEMARCACIÓN PASOS CEBRA

EQUIPOS

DESCRIPCION	CANTIDAD A	TARIFA B	COSTOHORA C=A*B	RENDIMIENTO R	COSTO D=C* R
Her ramienta menor 5 % M/O	A	В	C=A B	K	0.0008
Equipo manual THERMOMARK	1.000	3.6400	3.6400	0.0007	0.0008
Equipornanda in Environment	1.000	3.0400	3.0400	0.0007	0.002
SUBTOTAL M=					0.0028
MANO DE OBRA	ļ.	Ų	<u>.</u>	!	
DESCRIPCION	CANTIDAD	JORNAL/HR	COSTOHORA	RENDIMIENTO	COSTO
(CATEGORIAS)	Α	В	C=A* B	R	D=C*R
Peon (estr.ocp. E2)	2.000	3.5400	7.0800	0.0007	0.0047
Chofer tanquer o (estr.oc.Cl)	1.000	5.0000	5.0000	0.0007	0.0033
Operador en general	1.000	3.8200	3.8200	0.0007	0.0025
Técnico de obras civiles (estr.ocp. C2)	1.000	6.8700	6.8700	0.00066	0.0045
, , , , , , , , , , , , , , , , , , , ,					
SUBTOTAL N=				_	0.0150
MATERIALES					
DESCRIPCION		UNIDAD	CANTIDAD	PRECIOUNIT.	COSTO
			Α	В	C=A*B
Mar cas paso cebra		m2	1.000	8.1800	8.1800
SUBTOTAL O= TRANSPORTE					8.1800
DESCRIPCION		UNIDAD	CANTIDAD A	TARIFA B	COSTO C=A*B
SUBTOTAL P=				<u> </u>	0.0000
		TOTAL COSTO	DIRECTOS X=(M	+N+O+P)	8.1978
		INDIRECTOS'	YUTILIDAD	13.83%	1.1338
		OTROS INDIR	ECTOS%		
		COSTOTOTAL			9.3316
Guayaquil, Febrero del 2018			FERTADO	\$	9.33
majagan, i obi oi o doi zo b				Ψ	0.00

M2

HOJA 8 DE 26

0

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 8.00 UNIDAD: UNIDAD

DETALLE: DEMARCACIÓN LETRAS

EQUIPOS					
DESCRIPCION	CANTIDAD	TARIFA	COSTOHORA	RENDIMIENTO	COSTO
	Α	В	C=A* B	R	D=C*R
Herramienta menor 5 % M/O					0.0008
Avisos preformados maquinar ia ZEHTNHER	1.000	3.6400	3.6400	0.0007	0.002
SUBTOTAL M=				_	0.0028
MANO DE OBRA				!	0.0020
DESCRIPCION	CANTIDAD	JORNAL/HR	COSTOHORA	RENDIMIENTO	COSTO
(CATEGORIAS)	O/11411D/1D	В	C=A*B	R	D=C*R
Peon (estr.ocp. E2)	2.000	3.5400	7.0800	0.0007	0.0047
Chofer tanquer o (estr.oc.Cl)	1.000	5.0000	5.0000	0.0007	0.0033
Operador en general	1.000	3.8200	3.8200	0.0007	0.0035
Técnico de obras civiles (estr.ocp. C2)	1.000	6.8700	6.8700	0.00066	0.0025
Technico de obrias civiles (estr.ocp. oz)	1.000	0.8700	0.0700	0.00000	0.0043
SUBTOTAL N=				_	0.0150
MATERIALES				1	
DESCRIPCION		UNIDAD	CANTIDAD	PRECIOUNIT.	COSTO
			Α	В	C=A*B
Mar cas de pavimento (flechas, letras, etc)		u	1.000	8.1800	8.1800
SUBTOTAL O=					8.1800
RANSPORTE				<u> </u>	
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			Α	В	C=A*B
SUBTOTAL P=					0.0000
			DIRECTOS X=(M	+N+O+P)	8.1978
			YUTILIDAD	13.83%	1.1338
		COSTOTOTAL			9.3316
Quayaquil, Febrero del 2018			FERTADO	\$	9.33
zuayayun, r ebi el 0 del 20 lo		TALON O	LIVIADO	Ψ	3.33

HOJA 9 DE 26

0

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 9.00 UNIDAD: М

DETALLE: MANTENIMIENTODE SEÑALIZACIÓN HORIZONTAL

DESCRIPCION	CANTIDAD	TARIFA	COSTOHORA	RENDIMIENTO	COSTO D-C*P
Her ramienta menor 5 % M/O	Α	В	C=A*B	R	D=C* R 0.0005
nerramientamenti 5 %WO	1,000			0.2000	0.0005
	1.000			0.2000	
	1.000			0.2000	
Subtotal M=				-	0.0005
MANO DE OBRA					
DESCRIPCION	CANTIDAD	JORNAL/HR	COSTOHORA	RENDIMIENTO	COSTO
(CATEGORIAS)	Α	В	C=A* B	R	D=C*R
Peon (estr.ocp. E2)	2.000	3.5400	7.0800	0.0007	0.0047
Técnico de obr as civiles (estr.ocp. C2)	1000	6.8700	6.8700	0.00066	0.0045
recritco de obrias civires (estr.ocp. cz)	1000	6.6700	6.6700	0.00066	0.0045
SUBTOTAL N=				_	0.0092
MATERIALES	1			<u>. </u>	
DESCRIPCION		UNIDAD	CANTIDAD	PRECIOUNIT.	COSTO
			Α	В	C=A*B
Mantenimiento pintur a		m	1.000	2.3900	2.3900
SUBTOTAL O=					2.3900
RANSPORTE				1	
DESCRIPCION		UNIDAD	CANTIDAD A	TARIFA B	COSTO C=A* B
SUBTOTAL P=					0.0000
			DIRECTOS X=(M		2.3997
		INDIRECTOS'	YUTILIDAD	13.83%	0.3319
		OTROS INDIR			
		COSTOTOTAL			2.7316

HOJA 10 DE 26

0

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 10.00 UNIDAD: М DETALLE: DEMARCACIÓN AVISOS VELOCIDAD MÁXIMA ABSCISA: 3+900.00

CANTIDAD	TARIFA	COSTOHORA	RENDIMIENTO	COSTO
Α	В	C=A* B	R	D=C*R
				0.0008
1.000	3.6400	3.6400	0.0007	0.002
			_	0.0028
				0.0020
CANTIDAD	JORNAL /HR	COSTOHORA	RENDIMIENTO	COSTO
				D=C*R
2.000				0.0047
				0.0033
				0.0025
1.000	6.8700	6.8700	0.0007	0.0045
				0.0150
	UNIDAD	CANTIDAD A	PRECIOUNIT. B	COSTO C=A* B
	u			8.1800
				8.1800
	UNIDAD	CANTIDAD A	TARIFA B	COSTO C=A*B
	u/km		0.250	
	m3- km		0.640	
	Kg/Km	1.000	0.008	0.008
	u/km		0.080	
				0.0080
	TOTAL COCTO	DIRECTOS X=(M	+N+O+P)	8.2058
ĺ	IDIALOGIO			
	***************************************	YUTILIDAD	13.83%	
	***************************************	YUTILIDAD	13.83%	1.1349
	INDIRECTOS	YUTILIDAD ECTOS%	13.83%	
	A 1000 CANTIDAD 2.000 1000 1000	A B 1000 3.6400 CANTIDAD JORNAL/HR B 2.000 3.5400 1000 5.0000 1000 6.8700 UNIDAD UNIDAD u/km m3-km Kg/Km	CANTIDAD JORNAL/HR COSTOHORA C=A*B	CANTIDAD

HOJA 11 DE 26

0

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 11.00 UNIDAD: UNIDAD

DETALLE: EQUIPOS COLOCACIÓN BTA

DESCRIPCION	CANTIDAD A	TARIFA B	COSTOHORA C=A*B	RENDIMIENTO R	COSTO D=C*R
Her ramienta menor 5 % WO	^	В	C=A B	, <u>, , , , , , , , , , , , , , , , , , </u>	0.0005
Herramientamenti 5 % W O					0.0003
SLIDTOTAL M.				_	0.0005
SUBTOTAL M= MANO DE OBRA					0.0003
DESCRIPCION	CANTIDAD	JORNAL/HR	COSTOHORA	RENDIMIENTO	COSTO
(CATEGORIAS)	A	В	C=A*B	R	D=C*R
Peon (estr.ocp. E2)	2.000	3.5400	7.0800	0.0007	0.0047
T(: 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4000	0.0700	0.0700		0.0045
Técnico de obr as civiles (estr.ocp. C2)	1000	6.8700	6.8700	0.0007	0.0045
SUBTOTAL N=				_	0.0092
MATERIALES		1		<u> </u>	0.0092
DESCRIPCION		UNIDAD	CANTIDAD	PRECIOUNIT.	COSTO
 			A	В	C=A*B
Subtotal o=				_	3.8300
TRANSPORTE				1	0.0000
DESCRIPCION		UNIDAD	CANTIDAD A	TARIFA B	COSTO C=A* B
SUBTOTAL P=				_	0.0000
			DIRECTOS X=(M		3.8397
			YUTILIDAD	13.83%	0.5310
		OTROSINDIR			
		COSTOTOTAL			4.3707
Guayaquil, Febrero del 2018		VALOR O	FERTADO	\$	4.37

HOJA 12 DE 26

0

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 12.00 UNIDAD: UNIDAD

DETALLE: DEMARCACIÓN AVISOS ZIGZAG

DESCRIPCION	CANTIDAD	TARIFA	COSTOHORA	RENDIMIENTO	COSTO
50/11/0	A	В	C=A*B	R	D=C*R
Herramienta menor 5 % M/O	4000	0.0400	0.0400	0.0007	0.0008
Avisos pr efor mados maquinar ia ZEHTNHER	1.000	3.6400	3.6400	0.0007	0.002
Subtotal M=					0.0028
MANO DE OBRA				l l	
DESCRIPCION	CANTIDAD	JORNAL/HR	COSTOHORA	RENDIMIENTO	COSTO
(CATEGORIAS)		В	C=A* B	R	D=C*R
Peon (estr.ocp. E2)	2.000	3.5400	7.0800	0.0007	0.0047
Chofer tanquer o (estr.oc.Cl)	1.000	5.0000	5.0000	0.0007	0.0033
Operador en general	1.000	3.8200	3.8200	0.0007	0.0025
Técnico de obras civiles (estr.ocp. C2)	1.000	6.8700	6.8700	0.00066	0.0045
SUBTOTAL N=				_	0.0150
MATERIALES				· · · · · · · · · · · · · · · · · · ·	
DESCRIPCION		UNIDAD	CANTIDAD	PRECIOUNIT.	COSTO
			Α	В	C=A*B
Mar cas de pavimento (flechas, letras, etc)		u	1.000	8.1800	8.1800
SUBTOTAL O=				_	8.1800
RANSPORTE			04NTTT:-		000=0
DESCRIPCION		UNIDAD	CANTIDAD A	TARIFA B	COSTO C=A* B
SUBTOTAL P=					0.000
		TOTAL COSTO	DIRECTOS X=(M+	-N+O+P)	8.198
		INDIRECTOS Y	UTILIDAD	13.83%	1.134
		OTROS INDIRE	CTOS %		
		OTROS INDIRE	ECTOS % DEL RUBRO		9.332

HOJA 13 DE 26

0

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 13.00 UNIDAD: M2

DETALLE: DEMARCACION LINEAS DE NOBLOQUEO/ GARITA

-					
DESCRIPCION	CANTIDAD	TARIFA	COSTOHORA	RENDIMIENTO	COSTO
	Α	В	C=A*B	R	D=C*R
Herramienta menor 5 % M/O					0.0008
Equipo manual THERMOMARK	1,000	3.6400	3.6400	0.0007	0.002
Subtotal M=				-	0.0028
MANO DE OBRA					0.0020
DESCRIPCION	CANTIDAD	JORNAL/HR	COSTOHORA	RENDIMIENTO	COSTO
(CATEGORIAS)	Α	B	C=A* B	R	D=C* R
Peon (estr.ocp. E2)	2.000	3.5400	7.0800	0.0007	0.0047
Chofer tanquer o (estr.oc.Cl)	1.000	5.0000	5.0000	0.0007	0.0033
Operador en general	1.000	3.8200	3.8200	0.0007	0.0025
Técnico de obras civiles (estr.ocp. C2)	1.000	6.8700	6.8700	0.00066	0.0045
SUBTOTAL N=				-	0.0150
MATERIALES			ON ITS 15	PDE016: ": "=	200=2
DESCRIPCION		UNIDAD	CANTIDAD	PRECIOUNIT.	COSTO
			Α	В	C=A*B
Mar cas de pavimento ter mopl astica		u	1.000	6.0300	6.0300
SUBTOTAL O=					6.0300
					6.0300
SUBTOTAL O= IRANSPORTE DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	6.0300 COSTO
RANSPORTE		UNIDAD	-		COSTO
RANSPORTE		UNIDAD	CANTIDAD A	TARIFA B	
RANSPORTE		UNIDAD	-		COSTO
RANSPORTE DESCRIPCION		UNIDAD	-		COSTO C=A*B
RANSPORTE DESCRIPCION			A	В	COSTO C=A*B
RANSPORTE DESCRIPCION		TOTAL COSTOL	A DIRECTOS X=(M+	B N+O+P)	COSTO C=A*B
RANSPORTE DESCRIPCION		TOTAL COSTOLINDIRECTOS Y	A DIRECTOS X=(M+ 'UTILIDAD	В	COSTO C=A*B
RANSPORTE		TOTAL COSTOI INDIRECTOS Y OTROS INDIRE	A DIRECTOS X=(M+ /UTILIDAD CTOS%	B N+O+P)	0.000 0.000 6.030 0.834
TRANSPORTE DESCRIPCION		TOTAL COSTOLINDIRECTOS Y	A DIRECTOS X=(M+ /UTILIDAD CTOS% DEL RUBRO	B N+O+P)	COSTO C=A*B

HOJA 14 DE 26

0

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 14.00 UNIDAD: UNIDAD

DETALLE: DEMARCACIÓN PARADERODE BUSES

EQUIPOS					
DESCRIPCION	CANTIDAD	TARIFA	COSTOHORA	RENDIMIENTO	COSTO
	Α	В	C=A*B	R	D=C*R
Herramienta menor 5 % M/O					0.0008
Avisos preformados maquinar ia ZEHTNHER	1.000	3.6400	3.6400	0.0007	0.002
SUBTOTAL M=				_	0.0028
MANO DE OBRA				!	0.0020
DESCRIPCION	CANTIDAD	JORNAL/HR	COSTOHORA	RENDIMIENTO	COSTO
(CATEGORIAS)	O/11411D/1D	В	C=A*B	R	D=C*R
Peon (estr.ocp. E2)	2.000	3.5400	7.0800	0.0007	0.0047
Chofer tanquer o (estr.oc.Cl)	1.000	5.0000	5.0000	0.0007	0.0033
Operador en general	1.000	3.8200	3.8200	0.0007	0.0035
Técnico de obras civiles (estr.ocp. C2)	1.000	6.8700	6.8700	0.00066	0.0025
Technico de obrias civiles (estr.ocp. oz)	1.000	0.8700	0.0700	0.00000	0.0043
SUBTOTAL N=				_	0.0150
MATERIALES				1	
DESCRIPCION		UNIDAD	CANTIDAD	PRECIOUNIT.	COSTO
			Α	В	C=A*B
Mar cas de pavimento (flechas, letras, etc)		u	1.000	8.1800	8.1800
SUBTOTAL O=					8.1800
RANSPORTE				<u> </u>	
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			Α	В	C=A*B
SUBTOTAL P=					0.0000
			DIRECTOS X=(M	+N+O+P)	8.1978
			YUTILIDAD	13.83%	1.1338
		COSTOTOTAL			9.3316
Quayaquil, Febrero del 2018			FERTADO	\$	9.33
zuayayun, r ebi el 0 del 20 lo		TALON O	LIVIADO	Ψ	3.33

FORMULARIO# 15

HOJA 15 DE 26

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 15.00 UNIDAD: M2

DETALLE: DEMARCACION LINEAS DE NOBLOQUEO/ Y

DESCRIPCION	CANTIDAD	TARIFA	COSTOHORA	RENDIMIENTO	COSTO
	Α	В	C=A*B	R	D=C*R
Herramienta menor 5 % M/O					0.0008
Equipo manual THERMOMARK	1.000	3.6400	3.6400	0.0007	0.002
SUBTOTAL M=				_	0.0028
MANO DE OBRA					0.0026
DESCRIPCION	CANTIDAD	JORNAL/HR	COSTOHORA	RENDIMIENTO	COSTO
(CATEGORIAS)	Α	B . 5 400	C=A* B	R	D=C* R
Peon (estr.ocp. E2)	2.000	3.5400	7.0800	0.0007	0.0047
Chofer tanquer o (estr.oc.Cl)	1.000	5.0000	5.0000	0.0007	0.0033
Operador en general	1.000	3.8200	3.8200	0.0007	0.0025
Técnico de obras civiles (estr.ocp.C2)	1.000	6.8700	6.8700	0.00066	0.0045
NIDTOTAL N					0.0450
SUBTOTAL N= MATERIALES					0.0150
DESCRIPCION		UNIDAD	CANTIDAD	PRECIOUNIT.	COSTO
DESCRIPCION		UNIDAD	CANTIDAD A	B B	C=A*B
Mar cas de pavimento ter moplastica		u	1,000	6.0300	6.0300
SUBTOTAL O=				_	6.0300
RANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			Α	В	C=A*B
SUBTOTAL P=				-	0.0000
		TOTAL COSTO	DIRECTOS X=(M-	+N+O+P)	6.0478
			YUTILIDAD	13.83%	0.8364
		OTROS INDIR			
		COSTOTOTAL			6.8842
Vicuoguil Februro del 2040			FERTADO	\$	6.88
Guayaquil, Febrero del 2018		VALUK U	FERTADO	Ф	0.00

HOJA 16 DE 26

0

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 16.00 UNIDAD: Kg

DETALLE: ACERODE REFUERZOFY=4200 Kg/cm2 (inc. Alambre #3) (18 REDUCTOR VELOCIDAD)

DESCRIPCION	CANTIDAD	TARIFA	COSTOHORA	RENDIMIENTO	COSTO
	Α	В	C=A*B	R	D=C*R
Herramienta menor 5 % M/O					0.0288
Cortadora- dobladora	1000	0.5000	0.5000	0.0330	0.017
Subtotal M=				<u> </u>	0.0458
MANO DE OBRA	•				
DESCRIPCION	CANTIDAD	JORNAL/HR	COSTOHORA	RENDIMIENTO	COSTO
(CATEGORIAS)	Α	В	C=A* B	R	D=C*R
Peon (estr.ocp. E2)	2.000	3.5400	7.0800	0.0330	0.2336
Fierrero (estr.ocp. D2)	1.000	5.2000	5.2000	0.0330	0.1716
Maestro (estr.ocp. C1)	1.000	5.2000	5.2000	0.0330	0.1716
SUBTOTAL N=					0.5768
MATERIALES					
DESCRIPCION		UNIDAD	CANTIDAD A	PRECIOUNIT. B	COSTO C=A*B
Acero de refuerzo fy=4200 kg/cm2		kg	1.050	1.0700	1.1235
Alambre Recocido # 18		kg	0.032	1.5000	0.0473
				•	
SUBTOTAL O=				-	1.1708
RANSPORTE		1		<u> </u>	00
DESCRIPCION		UNIDAD	CANTIDAD A	TARIFA B	COSTO C=A*B
transporte de acero		Kg/Km	1.082	0.015	0.016
SUBTOTAL P=				_	0.0160
			DIRECTOS X=(M		1.8094
		INDIRECTOS' OTROS INDIR	YUTILIDAD ECTOS %	13.83%	0.2502
		COSTOTOTAL	DEL RUBRO		2.0596

APU - Nuevo Diseño Señalética Vertical

NOMBRE DEL PROPONENTE: Narjara Infante y Roberto Valencia

PROYECTO: Señalización Vertical de ESPOL Campus Gustavo Galindo

HOJA 1 DE 26

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 1,00 UNIDAD: M2

DETALLE: Pare

DESCRIPCION	CANTIDAD A	TARIFA B	COSTOHORA C=A*B	RENDIMIENTO R	COSTO D=C*R
Herramienta menor 5 % M/O	A	В	C=A"B	K	
	4000	75 0000	75 0000	0.00000	0,2128
Hormigon premezclado f'c=210 k	1,000	75,0000	75,0000	0,22222	16,667
SUBTOTAL M=				_	16,8798
MANO DE OBRA					
DESCRIPCION	CANTIDAD	JORNAL/HR	COSTOHORA	RENDIMIENTO	COSTO
(CATEGORIAS)	Α	В	C=A*B	R	D=C*R
Peon (estr.ocp. E2)	2,000	3,5400	7,0800	0,2222	1,5733
Chofer tipo E	1,000	5,2000	5,2000	0,2222	1,1556
Tecnico de Obras Civiles (estr.o		6,8700	6,8700	0,2222	1,5267
SUBTOTAL N=				_	4,2556
MATERIALES					
DESCRIPCION		UNIDAD	CANTIDAD	PRECIOUNIT.	COSTO
			Α	В	C=A*B
Fondo cromato		m3	1,000	26,0000	26,0000
Panel de aluminio de 2 mm de es	p. (rectagula	kg	1,000	3,9800	3,9800
Pintura elestomérica		m3	0,080	25,2200	2,0176
Lamina micro prismática de grai	n reflectiv. (b	m3	1,000	20,0000	20,0000
Clavo de acero de 2"	`	m3	1,000	0,2000	0,2000
Encofrado		m3	1,000	4,0000	4,0000
Asfalto RC-2		gln.	1,000	0,3200	0,3200
Brocha de 4" mango rojo		u	1,000	5,4000	5,4000
Pintura de caucho		gln	0,080	7,8200	0,6256
Señal Pare		u	1,000	140,6000	140,6000
SUBTOTAL O=					203,1432
RANSPORTE		LINUDAD	OANTEAD	TABIEA	00070
DESCRIPCION		UNIDAD	CANTIDAD A	TARIFA B	COSTO C=A*B
Transporte de cemento		kg/km	1,000	0,008	0,008
Transporte de señalética		u/km	1,000	0,250	0,250
SUBTOTAL P=					0,2580
		TOTAL COSTC	DIRECTOS X=(M	+N+O+P)	224,5366
			/UTILIDAD	0,00%	0,0000
		OTROS INDIRI			
COSTOTOTAL DEL RUBRO					
		COSTOTOTAL	DEL RUBRO		224,5366

PROYECTO: Señalización Vertical de ESPOL Campus Gustavo Galindo

HOJA 2 DE 26

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 2,00 UNIDAD: M2

DETALLE: Reduzca la velocidad

EQUIPOS					
DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
	Α	В	C=A*B	R	D=C*R
Herramienta menor 5 % M/O					0,2128
Hormigon premezclado f'c=210 k	1,000	75,0000	75,0000	0,22222	16,667
SUBTOTAL M=					16,8798
MANO DE OBRA					
DESCRIPCION	CANTIDAD	JORNAL/HR	COSTOHORA	RENDIMIENTO	COSTO
(CATEGORIAS)	Α	В	C=A*B	R	D=C*R
Peon (estr.ocp. E2)	2,000	3,5400	7,0800	0,2222	1,5733
Chofer tipo E	1,000	5,2000	5,2000	0,2222	1,1556
Tecnico de Obras Civiles (estr.o	1,000	6,8700	6,8700	0,2222	1,5267
,	,	·	,		,
SUBTOTAL N =					4,2556
MATERIALES				1	,
DESCRIPCION		UNIDAD	CANTIDAD	PRECIOUNIT.	COSTO
			Α	В	C=A*B
Encofrado		m3	1,000	4,0000	4,0000
Asfalto RC-2		kg	1,000	0,3200	0,3200
Brocha de 4" mango rojo		m3	1,000	5,4000	5,4000
Pintura de caucho		m3	1,000	7,8200	7,8200
Fondo cromato		m3	1,000	1,1300	1,1300
Panel de aluminio de 2 mm de es	sp. (rectagula	u	1,000	3,9800	3,9800
Lamina micro prismática de gra		u	1,000	20,0000	20,0000
Clavo de acero de 2"	(u	1,000	0,2000	0,2000
Pintura elestomérica		gln	1,000	25,2200	25,2200
Señal Reduzca la velocidad		u	1,000	224,4500	224,4500
00.10.1.000200.10.100.000		G.	,,000	,	,
SUBTOTAL O=					292,5200
TRANSPORTE				L	,
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			Α	В	C=A*B
Transporte de cemento		kg/km	1,000	0,008	0,008
Transporte de señalética		u/km	1,000	0,250	0,250
			, , , -		,
SUBTOTAL P=					0,2580
		TOTAL COSTO	DIRECTOS X=(M	+N+O+P)	313,9134
			YUTILIDAD	0,00%	0,000
		OTROS INDIR			
		COSTO TOTAL			313,9134
0- ene- 00		VALOR OF		\$	313,91
3 3110 00				Ψ	- 10,0 :

PROYECTO: Señalización Vertical de ESPOL Campus Gustavo Galindo

HOJA 3 DE 26

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 3,00 UNIDAD: M3

DETALLE: Curva

EQUIPOS					
DESCRIPCION	CANTIDAD	TARIFA	COSTOHORA	RENDIMIENTO	COSTO
	Α	В	C=A*B	R	D=C*R
Herramienta menor 5 % M/O					0,2128
Hormigon premezclado f'c=210 l	1,000	75,0000	75,0000	0,2222	16,667
SUBTOTAL M=				_	16,8798
MANO DE OBRA					10,0100
DESCRIPCION	CANTIDAD	JORNAL/HR	COSTO HORA	RENDIMIENTO	COSTO
(CATEGORIAS)	0	В	C=A*B	R	D=C*R
Peon (estr.ocp. E2)	2,000	3,5400	7,0800	0,2222	1,5733
Chofer tipo E	1,000	5,2000	5,2000	0,2222	1,1556
Tecnico de Obras Civiles (estr.o		6,8700	6,8700	0,2222	1,5267
recinco de coras civiles (estr.o	1,000	0,0700	0,0700	0,2222	1,3207
SUBTOTAL N=					4,2556
MATERIALES					
DESCRIPCION		UNIDAD	CANTIDAD	PRECIOUNIT.	COSTO
			Α	В	C=A*B
Encofrado		m3	1,000	4,0000	4,0000
Asfalto RC-2		gln.	1,000	0,3200	0,3200
Brocha de 4" mango rojo		u	1,000	5,4000	5,4000
Pintura de caucho		gln	0,080	7,8200	0,6256
Fondo cromato		gln	1,000	26,0000	26,0000
Panel de aluminio de 2 mm de es	sp. (rectagula		1,000	3,9800	3,9800
Pintura el estomérica		gln	0,080	25,2200	2,0176
Lamina micro prismática de gra	n reflectiv (h		1,000	20,0000	20,0000
Clavo de acero de 2"		u	2,000	0,2000	0,4000
Señal Curva		u	1,0000	140,9000	140,9000
Geriai Cui va		u	1,0000	H0,9000	H0,9000
SUBTOTAL O=					203,6432
RANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
T		1 . /	A 1000	В	C=A*B
Transporte de cemento		kg/km	1,000	0,008	0,008
Transporte de señalética		u/km	1,000	0,250	0,250
SUBTOTAL P=					0,2580
		TOTAL COSTO	DIRECTOS X=(M	+N+O+P)	225,0366
			/UTILIDAD	0,00%	0,0000
		OTROS INDIRE			······
		COSTOTOTAL			225,0366
Guayaquil, Febrero del 2018		VALOR OF		\$	225,04

PROYECTO: Señalización Vertical de ESPOL Campus Gustavo Galindo

HOJA 4 DE 26

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 4,00 UNIDAD: M3

DETALLE: Rompe velocidad

EQUIPOS					
DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
	Α	В	C=A*B	R	D=C*R
Herramienta menor 5 % M/O					0,2128
Hormigon premezclado f'c=210 l	1,000	75,0000	75,0000	0,2222	16,6670
SUBTOTAL M=					16,8798
MANO DE OBRA					
DESCRIPCION	CANTIDAD	JORNAL/HR	COSTOHORA	RENDIMIENTO	COSTO
(CATEGORIAS)	Α	В	C=A*B	R	D=C*R
Peon (estr.ocp. E2)	2,000	3,5400	7,0800	0,2222	1,5733
Chofer tipo E	1,000	5,2000	5,2000	0,2222	1,1556
Tecnico de Obras Civiles (estr.o	1,000	6,8700	6,8700	0,2222	1,5267
SUBTOTAL N=					4,2556
MATERIALES					
DESCRIPCION		UNIDAD	CANTIDAD	PRECIOUNIT.	COSTO
			Α	В	C=A*B
Encofrado		m3	1,0000	4,0000	4,000
Asfalto RC-2		gln.	1,0000	0,3200	0,320
Brocha de 4" mango rojo		u	1,0000	5,4000	5,400
Pintura de caucho		gln	0,0800	7,8200	0,626
Fondo cromato		gln	1,0000	26,0000	26,0000
Panel de aluminio de 2 mm de es	sp. (rectagula	u	1,0000	3,9800	3,9800
Pintura elestomérica		gln	0,0800	25,2200	2,0176
Lamina micro prismática de gra	n reflectiv. (b		1,0000	20,0000	20,0000
Clavo de acero de 2"	•	u	1,0000	0,2000	0,2000
Señal Rompe velocidad		u	1,0000	140,9000	140,9000
,			,	,,,,,,,,,	.,
SUBTOTAL O=					203,4436
TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			Α	В	C=A*B
Transporte de cemento		kg/km	1,000	0,008	0,008
Transporte de señalética		u/km	1,000	0,250	0,250
SUBTOTAL P=					0,2580
		TOTAL COSTO	DIRECTOS X=(M	+N+O+P)	224,8370
		INDIRECTOS \	YUTILIDAD	0,00%	0,000
		OTROS INDIRI			
		COSTOTOTAL	DEL RUBRO		224,8370
Guayaquil, Febrero del 2018		VALOR OF		\$	224,84
Jayaquii, i Coi Gi O UGi ZO IO		,, <u>-</u>		Ψ	+,

PROYECTO: Señalización Vertical de ESPOL Campus Gustavo Galindo

HOJA 5 DE 26

ANALISIS DE PRECIOS UNITARIOS

RUBRO:

5,00

UNIDAD: M3

DETALLE: Ciclovia

EQUIPOS					
DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
	Α	В	C=A*B	R	D=C*R
Herramienta menor 5 % M/O					0,2128
Hormigon premezclado f'c=210 k	1,000	75,0000	75,0000	0,2222	16,6667
SUBTOTAL M=					16,8795
MANO DE OBRA					
DESCRIPCION	CANTIDAD	JORNAL/HR	COSTOHORA	RENDIMIENTO	COSTO
(CATEGORIAS)	Α	В	C=A*B	R	D=C*R
Peon (estr.ocp. E2)	2,000	3,5400	7,0800	0,2222	1,5733
Chofer tipo E	1,000	5,2000	5,2000	0,2222	1,1556
Tecnico de Obras Civiles (estr.o	1,000	6,8700	6,8700	0,2222	1,5267
SUBTOTAL N =					4,2556
MATERIALES				•	
DESCRIPCION		UNIDAD	CANTIDAD	PRECIOUNIT.	COSTO
			Α	В	C=A*B
Encofrado		m3	1,000	4,0000	4,0000
Asfalto RC-2		gln.	1,000	0,3200	0,3200
Brocha de 4" mango rojo		u	1,000	5,4000	5,4000
Pintura de caucho		gln	0,080	7,8200	0,6256
Fondo cromato		gln	1,000	26,0000	26,0000
Panel de aluminio de 2 mm de es	sp. (rectagula	u	1,000	3,9800	3,9800
Pintura elestomérica		gln	0,080	25,2200	2,0176
Lamina micro prismática de gra	n reflectiv. (b	u	1,000	20,0000	20,0000
Clavo de acero de 2"		u	1,000	0,2000	0,2000
Señal Ciclovia		u	1,000	163,2000	163,2000
SUBTOTAL O=					225,7432
TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			Α	В	C=A*B
Transporte de cemento		kg/km	1,000	0,008	0,0080
Transporte de señalética		u/km	1,000	0,250	0,250
SUBTOTAL P=					0,2580
		TOTAL COSTO	DIRECTOS X=(M	+N+O+P)	247,1363
			YUTILIDAD	0,00%	0,0000
		OTROS INDIR	ECTOS %		
		COSTOTOTAL	DEL RUBRO		247,1363
Guayaquil, Febrero del 2018		VALOR OF	ERTADO	\$	247,14
			•		

PROYECTO: Señalización Vertical de ESPOL Campus Gustavo Galindo

HOJA 6 DE 26

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 6,00 UNIDAD: M2

DETALLE: Giro en u

EQUIPOS					
DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
	Α	В	C=A*B	R	D=C*R
Herramienta menor 5 % M/O					0,2128
Hormigon premezclado f'c=210 k	1,000	75,0000	75,0000	0,2222	16,6667
SUBTOTAL M=					16,8795
MANO DE OBRA					
DESCRIPCION	CANTIDAD	JORNAL/HR	COSTOHORA	RENDIMIENTO	COSTO
(CATEGORIAS)	Α	В	C=A*B	R	D=C*R
Peon (estr.ocp. E2)	2,000	3,5400	7,0800	0,2222	1,5733
Chofer tipo E	1,000	5,2000	5,2000	0,2222	1,1556
Tecnico de Obras Civiles (estr.o	1,000	6,8700	6,8700	0,2222	1,5267
SUBTOTAL N =					4,2556
MATERIALES				•	
DESCRIPCION		UNIDAD	CANTIDAD	PRECIOUNIT.	COSTO
			Α	В	C=A*B
Encofrado		m3	1,000	4,0000	4,0000
Asfalto RC-2		gln.	1,000	0,3200	0,3200
Brocha de 4" mango rojo		u	1,000	5,4000	5,4000
Pintura de caucho		gln	1,000	7,8200	7,8200
Fondo cromato		gln	1,000	26,0000	26,0000
Panel de aluminio de 2 mm de es	sp. (rectagula	u	1,000	3,9800	3,9800
Pintura elestomérica		gln	1,000	25,2200	25,2200
Lamina micro prismática de gra	n reflectiv. (b	u	1,000	20,0000	20,0000
Clavo de acero de 2"		u	1,000	0,2000	0,2000
Señal Giro en u		u	1,000	140,9000	140,9000
SUBTOTAL O=					233,8400
TRANSPORTE				-	
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			Α	В	C=A*B
Transporte de cemento		kg/km	1,000	0,008	0,0080
Transporte de señalética		u/km	1,000	0,250	0,2500
			1,000		
SUBTOTAL P=				Γ	0,2580
		TOTAL COSTO	DIRECTOS X=(M	+N+O+P)	255,2331
		INDIRECTOS \	YUTILIDAD	0,00%	0,000
		OTROS INDIR	ECTOS %		
		COSTOTOTAL			255,2331
Guayaquil, Febrero del 2018		VALOR OF	ERTADO	\$	255,23
J 1 - ,			-, -		

PROYECTO: Señalización Vertical de ESPOL Campus Gustavo Galindo

HOJA 7 DE 26

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 7,00

UNIDAD: M3

DETALLE: Prohibido girar en u

DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
	Α	В	C=A*B	R	D=C*R
Herramienta menor 5 % M/O					0,2128
Hormigon premezclado f'c=210 l	1,000	75,0000	75,0000	0,2222	16,667
SUBTOTAL M=				_	16,8798
MANO DE OBRA	I .				,
DESCRIPCION	CANTIDAD	JORNAL/HR	COSTO HORA	RENDIMIENTO	COSTO
(CATEGORIAS)	Α	В	C=A*B	R	D=C*R
Peon (estr.ocp. E2)	2,000	3,5400	7,0800	0,2222	1,5733
Chofer tipo E	1,000	5,2000	5,2000	0,2222	1,1556
Tecnico de Obras Civiles (estr.o		6,8700	6,8700	0,2222	1,5267
(,,,,,,	2,0.00	-,	,	,,==:
SUBTOTAL N=					4,2556
MATERIALES					
DESCRIPCION		UNIDAD	CANTIDAD	PRECIOUNIT.	COSTO
			Α	В	C=A*B
Encofrado		m3	1,000	4,0000	4,0000
Asfalto RC-2		gln.	1,000	0,3200	0,3200
Brocha de 4" mango rojo		u	1,000	5,4000	5,4000
Pintura de caucho		gln	0,080	7,8200	0,6256
Fondo cromato		gln	1,000	26,0000	26,0000
Panel de aluminio de 2 mm de es	en (rectaquil		1,000	3,9800	3,9800
Pintura elestomérica	sp. (i ectaguit	gln	0,080	25,2200	2,0176
Lamina micro prismática de gra	n rofloativ (k		1,000	20,0000	20,0000
	iii eiiectiv. (L				
Clavo de acero de 2"		u	1,000	0,2000	0,2000
Señal Prohibido girar en u		u	1,000	140,9000	140,9000
SUBTOTAL O=					203,4432
TRANSPORTE		1,6,05,5	CANTES	TA DI = :	000=0
DESCRIPCION		UNIDAD	CANTIDAD A	TARIFA B	COSTO C=A*B
Transporte de cemento		kg/km	1,000	0,008	0,008
Transporte de señalética		u/km	1,000	0,250	0,250
SUBTOTAL P=					0,2580
		TOTAL COSTO	DIRECTOS X=(M	+N+O+P)	224,8366
		INDIRECTOS \	0,0000		
OTROS INDIRECTOS %				0,00%	
					224,8366
		COSTOTOTAL	DEL KUBKO	l l	224,0300

PROYECTO: Señalización Vertical de ESPOL Campus Gustavo Galindo

HOJA 8 DE 26

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 8,00 UNIDAD: KG

DETALLE: Limite de velocidad

DESCRIPCION	CANTIDAD A	TARIFA B	COSTO HORA C=A*B	RENDIMIENTO R	COSTO D=C*R
Herramienta menor 5 % M/O		_	0		0,2128
Hormigon premezclado f'c=210 l	1,000	75,000	75,000	0,2222	16,6670
Thermigen promozorado To-Zio	1,000	70,000	70,000	0,222	10,007 0
SUBTOTAL M=				_	16,8798
MANO DE OBRA					10,0100
DESCRIPCION	CANTIDAD	JORNAL/HR	COSTO HORA	RENDIMIENTO	COSTO
(CATEGORIAS)	Α	В	C=A*B	R	D=C*R
Peon (estr.ocp. E2)	2,000	3,540	7,080	0,2222	1,5730
Chofer tipo E	1,000	5,200	5,200	0,2222	1,1560
Tecnico de Obras Civiles (estr.o		6,870	6,870	0,2222	1,5270
SUBTOTAL N=					4,2560
MATERIALES	1			-	,
DESCRIPCION		UNIDAD	CANTIDAD	PRECIOUNIT.	COSTO
			Α	В	C=A*B
Encofrado		m3	1,000	4,0000	4,0000
Asfalto RC-2		gln.	1,000	0,320	0,3200
Brocha de 4" mango rojo		u	1,000	5,400	5,4000
Pintura de caucho		gln	0,080	7,8200	0,6256
Fondo cromato		gln	1,000	26,000	26,000
Panel de aluminio de 2 mm de es	sp. (rectagula		1,000	3,980	3,980
Pintura elestomérica		gln	0,080	25,220	2,018
Lamina micro prismática de gra	n reflectiv (b		1,000	20,000	20,000
Clavo de acero de 2"		u	1,000	0,200	0,200
Señal Limite de velocidad		u	1,000	163,850	163,850
OLIDTOTAL O					000 0000
Subtotal o= Transporte					226,3936
		UNIDAD	CANITIDAD	TADICA	COSTO
DESCRIPCION		_	CANTIDAD A	TARIFA B	COSTO C=A*B
Transporte de cemento		kg/km	1,000	0,008	0,008
Transporte de señalética		u/km	1,000	0,250	0,250
SUBTOTAL P=					0,2580
		TOTAL COSTO	DIRECTOS X=(M	+N+O+P)	247,7874
			YUTILIDAD	0,00%	0,0000
		OTROS INDIRI			,
		COSTO TOTAL			247,7874
					,

PROYECTO: Señalización Vertical de ESPOL Campus Gustavo Galindo

HOJA 9 DE 26

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 9,00 UNIDAD: M2

DETALLE: Delineador

EQUIPOS					
DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
	Α	В	C=A*B	R	D=C*R
Herramienta menor 5 % M/O					0,2128
Hormigon premezclado f'c=210 l	1,000	75,0000	75,0000	0,2222	16,667
SUBTOTAL M=				_	16,8798
MANO DE OBRA					
DESCRIPCION	CANTIDAD	JORNAL/HR	COSTOHORA	RENDIMIENTO	COSTO
(CATEGORIAS)	Α	В	C=A*B	R	D=C*R
Peon (estr.ocp. E2)	2,000	3,5400	7,0800	0,2222	1,5733
Tecnico de Obras Civiles (estr.o	1,000	6,8700	6,8700	0,2222	1,5267
Chofer tipo E	1,000	5,2000	5,2000	0,2222	1,1556
	,	,	,	,	,
SUBTOTAL N=					4,2556
MATERIALES	1			-	· · · · · · · · · · · · · · · · · · ·
DESCRIPCION		UNIDAD	CANTIDAD	PRECIOUNIT.	COSTO
			Α	В	C=A*B
Encofrado		m3	1,000	4,0000	4,0000
Asfalto RC- 2		gln.	1,000	0,3200	0,3200
Brocha de 4" mango rojo		u u	1,000	5,4000	5,4000
Pintura de caucho		gln	0,080	7,8200	0,6256
Fondo cromato		gin	1,000	26,0000	26,0000
	n /rootogul		1,000	3,9800	3,9800
Panel de aluminio de 2 mm de es	sp. (rectagur			· ·	
Pintura elestomérica		gIn	0,080	25,2200	2,0176
Lamina micro prismática de gra	n reflectiv. (b		1,000	20,0000	20,0000
Clavo de acero de 2"		u	1,000	0,2000	0,2000
Señal Delineador		u	1,000	122,4000	122,4000
SUBTOTAL O=				_	184,9432
TRANSPORTE					.5 .,5 102
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
		S. 1.5/ 15	A	B	C=A*B
Transporte de cemento		kg/km	1,000	0,008	0,008
Transporte de señalética		u/km	1,000	0,250	0,250
alloporto do condictida		G/ IXIII	1,000	0,200	5,200
SUBTOTAL P=					0,2580
		TOTAL COSTO	DIRECTOS X=(M	+N+O+P)	206,3366
			YUTILIDAD	0,00%	0,0000
		OTROS INDIR			,
		COSTO TOTAL			206,3366
Guayaquil, Febrero del 2018		VALOR OF		\$	206,34
Suayayuii, rebi el 0 del 20 10		AVEOU OI	200,54		

PROYECTO: Señalización Vertical de ESPOL Campus Gustavo Galindo

HOJA 10 DE 26

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 10,00 UNIDAD: M2

DETALLE: Proximos metros

DESCRIPCION	CANTIDAD A	TARIFA B	COSTOHORA C=A*B	RENDIMIENTO R	COSTO D=C*R
Herramienta menor 5 % M/O			0		0,2128
Hormigon premezclado f'c=210 k	1,000	75,0000	75,0000	0,2222	16,667
Tiorningon premezciado 1 c=2 lo r	1,000	73,0000	75,0000	0,2222	10,007
SUBTOTAL M=				_	16,8798
MANO DE OBRA					•
DESCRIPCION	CANTIDAD	JORNAL/HR	COSTOHORA	RENDIMIENTO	COSTO
(CATEGORIAS)	Α	В	C=A*B	R	D=C*R
Peon (estr.ocp. E2)	2,000	3,5400	7,0800	0,2222	1,5733
Tecnico de Obras Civiles (estr.o		6,8700	6,8700	0,2222	1,5267
Chofer tipo E	1,000	5,2000	5,2000	0,2222	1,1556
Giorei tipo L	1,000	3,2000	3,2000	0,2222	, 550
SUBTOTAL N=					4,2556
MATERIALES					
DESCRIPCION		UNIDAD	CANTIDAD	PRECIOUNIT.	COSTO
			Α	В	C=A*B
Encofrado		m3	1,000	4,0000	4,0000
Asfalto RC-2		gln.	1,000	0,3200	0,3200
Brocha de 4" mango rojo		u	1,000	5,4000	5,4000
Pintura de caucho		gln	0,080	7,8200	0,6256
Fondo cromato		gln	1,000	26,0000	26,0000
Panel de aluminio de 2 mm de es	n (rectanula		1,000	3,9800	3,9800
Pintura el estomérica	p. (i ootagait	gln	0,080	25,2200	2,0176
Lamina micro prismática de gra	n reflectiv (h		1,000	20,0000	20,0000
Clavo de acero de 2"	in enectiv. (c		1,000	0,2000	0,2000
		u 	1,000	· ·	
Señal Proximos metros		u	1,000	224,4500	224,4500
SUBTOTAL O=					286,9932
TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD A	TARIFA B	COSTO C=A*B
Transporte de cemento		kg/km	1,000	0,008	0,008
Transporte de señalética		u/km	1,000	0,250	0,250
•			3,080		
SUBTOTAL P=		TOTAL 222			0,2580
	TOTAL COSTC	308,3866			
	INDIRECTOS \	0,00%	0,0000		
	OTROS INDIR				
	COSTOTOTAL	308,3866			
Guayaquil, Febrero del 2018		VALOR OF	ERTADO	\$	308,39

PROYECTO: Señalización Vertical de ESPOL Campus Gustavo Galindo

HOJA 11 DE 26

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 11,00 UNIDAD: M2

DETALLE: interseccion

DESCRIPCION	CANTIDAD A	TARIFA B	COSTO HORA C=A*B	RENDIMIENTO R	COSTO D=C*R
Herramienta menor 5 % M/O			0		0,2128
Hormigon premezclado f'c=210 l	1,000	75,0000	75,0000	0,2222	16,667
Thermigen promozorado 1 o-2 lo l	,,000	70,000	70,0000	0,222	10,001
SUBTOTAL M=				_	16,8798
MANO DE OBRA					,
DESCRIPCION	CANTIDAD	JORNAL/HR	COSTO HORA	RENDIMIENTO	COSTO
(CATEGORIAS)	Α	В	C=A*B	R	D=C*R
Peon (estr.ocp. E2)	2,000	3,5400	7,0800	0,2222	1,5733
Chofer tipo E	1,000	5,2000	5,2000	0,2222	1,1556
Tecnico de Obras Civiles (estr.o	,	6,8700	6,8700	0,2222	1,5267
()	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7,	-,-	-,	,
SUBTOTAL N=					4,2556
MATERIALES				ll	1,200
DESCRIPCION		UNIDAD	CANTIDAD	PRECIOUNIT.	COSTO
			Α	В	C=A*B
Encofrado		m3	1,000	4,0000	4,0000
Asfalto RC-2		gln.	1,000	0,3200	0,3200
Brocha de 4" mango rojo		u	1,000	5,4000	5,4000
Pintura de caucho		gln	0,080	7,8200	0,6256
Fondo cromato		gln	1,000	26,0000	26,0000
Panel de aluminio de 2 mm de es	en (rectacula		1,000	3,9800	3,9800
Pintura el estomérica	sp. (i cotagait	gln	0,080	25,2200	2,0176
Lamina micro prismática de gra	n rofloctiv (k		1,000	20,0000	20,0000
	iii enectiv. (L		1,000	0,2000	0,2000
Clavo de acero de 2"		u		· ·	
Señal Interseccion		u	1,000	73,9500	73,9500
SUBTOTAL O=					136,4932
TRANSPORTE		1,6,05,5	CANTESAS	TA DI = 1	000=0
DESCRIPCION		UNIDAD	CANTIDAD A	TARIFA B	COSTO C=A*B
Transporte de cemento		kg/km	3,080	0,008	0,025
Transporte de señalética 16,000		u/km	1,000	0,250	0,250
SUBTOTAL P=					0,2750
		TOTAL COSTO	157,9036		
	INDIRECTOS \	0,0000			
	INDIRECTOS YUTILIDAD 0,00% OTROS INDIRECTOS %				
		COSTO TOTAL	DEL RUBRO		157,9036
Guayaquil, Febrero del 2018		VALOR OFERTADO \$			157,90

PROYECTO: Señalización Vertical de ESPOL Campus Gustavo Galindo

HOJA 12 DE 26

ANALISIS DE PRECIOS UNITARIOS

RUBRO:

12.00

UNIDAD: M2

DETALLE: Metros

EΩI	IIP	\sim
FUI	JIP	כנו

EQUIPOS					
DESCRIPCION	CANTIDAD A	TARIFA B	COSTOHORA C=A*B	RENDIMIENTO R	COSTO D=C*R
Herramienta menor 5 % M/O					0,2128
Hormigon premezclado f'c=210	1,000	75,000	75,000	0,22222	16,667
SUBTOTAL M=					16,880
MANO DE OBRA					
DESCRIPCION	CANTIDAD	JORNAL/HR	COSTOHORA	RENDIMIENTO	COSTO
(CATEGORIAS)	Α	В	C=A*B	R	D=C*R
Peon (estr.ocp. E2)	2,000	3,540	7,080	0,22222	1,573
Chofer tipo E	1,000	5,200	5,200	0,22222	1,156
Tecnico de Obras Civiles (estr.o	1,000	6,870	6,870	0,22222	1,527
SUBTOTAL N=				_	4,256
MATERIALES					7,200
DESCRIPCION		UNIDAD	CANTIDAD A	PRECIOUNIT. B	COSTO C=A*B
Encofrado		m3	1,000	4,000	4,000
Asfalto RC-2		gln.	1,000	0,320	0,320
Brocha de 4" mango rojo		u	1,000	5,400	5,400
Pintura de caucho		gln	0,080	7,820	0,626
Fondo cromato		gln	1,000	26,000	26,000
Panel de aluminio de 2 mm de es	sp. (rectagula	u	1,000	3,980	3,980
Pintura el estomérica		gln	0,080	25,220	2,018
Lamina micro prismática de gra	n reflectiv. (b	u	1,000	20,000	20,000
Clavo de acero de 2"		u	1,000	0,200	0,200
Señal Metros		u	1,000	140,900	140,900
SUBTOTAL O=				_	203,443
TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD A	TARIFA B	COSTO C=A*B
Transporte de cemento		kg/km	1,000	0,008	0,008
Transporte de señalética		u/km	1,000	0,250	0,250
SUBTOTAL P=					0,258
		TOTAL COSTO	224,837		
INDIRECTOS YUTILIDAD 0,00%					0,000
OTROS INDIRECTOS %					
COSTO TOTAL DEL RUBRO					224,837
	VALOR OF	224,84			

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FORMATO ÚNICO Y DEFINITIVO PARA ACCIDENTES DE TRANSITO MENOR

A. FECHA LUGAR Y CLASE DE ACCIDENTE

1. Fecha:/	//		A) Hor	ra:	A.M	P.M
día	mes año					
2. Lugar: ESCUELA SU	JPERIOR POLITE	CNICA DEL LITORAL				
-						
<u> </u>			(Nombre de la	la facultad ce	ercana)	
e) Nombre de la calle,	, avenida, etc					
f) Sucedió:	En Inter	sección	Entre Inte	ersección		
,, 20000.01						
3. Trayecto:	a) Recta	b) Curva		c)	En pendiente	e o en Cuesta
4. Superficie de la Vía	a) Concrete	o b) Asfalto	Tierra	d)	Otros	
Capernole de la via	d)Ooncrea	Asiano (·//			(Especifique)
						(======================================
5. Condiciones de la Vía	a) Seca	b) Humedad	c) Buena	d)	Defectuosa	
or containing as in via		,				
						,
6.Clase de Accidente:	a) olisión	Caída de objet	to del vehículo			de vehículos en el
	e) Otros				accidente	9
	e) Otros _	//-				
		(E	specifique)			
	B. CONDUCTOR			E	B. CONDUCT	TOR
1. Nombre			1. Nombre			
2. No. De Cédula	16	H.:	2. No. De Cédula			_Tel.:
3.Sexo a) F	b) M	Edad	3.Sexo a)	F	b) M	Edad
A November 1			A Marchard Palaci			
4. Nacionalidad			4. Nacionalidad			
	C. PROPIETARIO)		C	C. PROPIETA	ARIO
1. Propietario			Propietario			
2 No de Cédula						
2. No.de Cédula 2. No.de Cédula						
D. VEHÍCULO		D. VEHÍCULO				
1. No. De Placa	Color		1. No. De Placa		Colo	r
2. Marca	Tipo		2. Marca		Tipo	
3. Cia. De Seguro			3. Cja. De Seguro			
4. No. De Póliza	Año	del Vehiculo	4. No. De Póliza			Año del Vehículo

E. INDIQUE CON UNA X LOS DAÑOS DEL VEHÍCULO

2 3 4 5 6 7 1 15 16 17 18 19 8 11 11 10 9	2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 19
EN ESTE CUADRO DIBUJE LA POSICIÓN FINAL DE LOS VEHÍCULOS	NARRE BREVEMENTE LO SUCEDIDO EN EL ACCIDENTE
El firmante:	de generales indicadas en el presente documento, declara bajo
juramento que la información brindada y sus anexos es fiel a los h	echos acontecidos, asumiendo las responsabilidades legales por toda
falsedad uomisión.	
La presente y sus anexos revisten carácter de declaración jurada y	toda información engañosa y/o que oculte la real situación importando
una simulación de los hechos o actos que se presenten para el re	esarcimiento de los daños ocasionados, será sancionado conforme al
artículo 366 del Código Penal.	
	ey No. 21 del 28 de mayo de 2010, y su reglamentación
que dicta medidas sobre accidentes de trá	nsito menores, en las vías públicas del País"
Inspector de la compañía de Seguro o Testigos.	
Firma:	Cédula:
Firma:	Cédula:
"De ser posible aportar foto	grafías o Videos de la escena"
CONDUCTOR	CONDUCTOR
¿Se considera usted Responsable en este accidente?	¿Se considera usted Responsable en este accidente?
Sí No	Sí No
Firma:	Firma:
Cédula:	Cédula

Fuente: (Autoridad del Tránsito y Tranporte

Terrestre De Panamá)