Promoter tagging in banana (Musa spp.)
using the luciferase reporter gene -
development and applications

E. Santos, S. Remy, E. Thiry, S. Windelinckx,
R. Swennen and L. Sági
Katholieke Universiteit Leuven
Laboratory of Tropical Crop Improvement
Objective

- Isolate promoters from banana (*Musa* spp.) with constitutive, tissue specific, and cold stress responsive expression patterns
Content

I. The promoter tagging system

II. Luciferase expression patterns

III. Tagging of cold-responsive promoters

IV. Conclusions and perspectives
I. The promoter tagging system

promoter trap vector

Agrobacterium transformation

Screening for different parameters (abiotic and biotic stresses)
I. The promoter tagging system

Luciferase reporter gene

- Highly sensitive
- Non destructive screenings
- Short half-life of enzyme

\[
\text{Luciferin} + \text{ATP} + \text{O}_2 \xrightarrow{\text{LUC}} \text{Oxyluciferin} + \text{AMP} + \text{PPi} + \text{CO}_2 + \text{light (562 nm)}
\]

ultrasensitive digital CCD camera system
I. The promoter tagging system

High throughput screening for LUC activation

Months after *Agrobacterium* infection

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>...</th>
</tr>
</thead>
</table>

Medium

- ZZ
- RD1
- RD2
- Reg

Culture

- 400-600/sample
- 5,600-8,400/image
- 11,000-17,000/day

Screening

- ✓
- ✓
- ✓
- ✓
I. The promoter tagging system

Tagging constructs

pluc19

pETKUL2

pKCKUL1

662 bp

31 bp

pUbi-luc

pUbi-luc\(^+\)
Effect of tagging constructs on activation frequency

<table>
<thead>
<tr>
<th>Exp.</th>
<th>Tagging constructs</th>
<th>Total # of cell colonies screened</th>
<th>BLA frequency* (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>pLuc19</td>
<td>1,550</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>pET2</td>
<td>19,000</td>
<td>2.50</td>
</tr>
<tr>
<td>2</td>
<td>pET2</td>
<td>4,695</td>
<td>0.90</td>
</tr>
<tr>
<td>3</td>
<td>pET2</td>
<td>8,862</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>pKC1</td>
<td>33,390</td>
<td>2.03</td>
</tr>
</tbody>
</table>

* Baseline luciferase activity
II. Luciferase expression patterns

Cell colony stage

Live

pluc19 (luc) 0.06%

11,000 – 17,000 colonies/day

pETKUL2 (luc+) 2.5%
II. Luciferase expression patterns

In vitro plantlet stage

- **Live**
- **LUC**

Constitutive expression

Root specific expression
III. Tagging of cold responsive promoters

<table>
<thead>
<tr>
<th>Temperature</th>
<th>2 months after transformation</th>
<th>4 months after transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LIVE</td>
<td>26°C</td>
</tr>
<tr>
<td>18°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

26°C Cold 2.5 h

Cold 2.5 h
Cold responsive luciferase activity (CRLA) at 8°C of transgenic cultures (~16,000) during regeneration

<table>
<thead>
<tr>
<th>Screening for CRLA</th>
<th>1st (Colony)</th>
<th>2nd (Cult)</th>
<th>3rd (Cult)</th>
<th>4th (Cult)</th>
<th>5th (Cult)</th>
<th>6th (Cult)</th>
<th>7th (Plantlet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of lines showing CRLA</td>
<td>106</td>
<td>98</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>28</td>
<td>26</td>
</tr>
<tr>
<td>Percentage of lines showing CRLA</td>
<td>0.67%</td>
<td>0.62%</td>
<td>0.26%</td>
<td>0.26%</td>
<td>0.26%</td>
<td>0.18%</td>
<td>0.16%</td>
</tr>
</tbody>
</table>
III. Tagging of cold responsive promoters

Cell culture stage

pET2 lines

Live 26°C 8°C 26°C

Low luc expression

High luc expression

Relative Light Units

Time [hours]

26°C 8°C 26°C

17 17

28 28

Low luc expression

26°C

av1
III. Tagging of cold responsive promoters

In vitro plantlet stage

Temperature [°C]

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time [minutes]</th>
</tr>
</thead>
<tbody>
<tr>
<td>26°C</td>
<td>8°C</td>
</tr>
<tr>
<td>8°C</td>
<td></td>
</tr>
</tbody>
</table>

Relative Light Units

<table>
<thead>
<tr>
<th>Relative Light Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>120</td>
</tr>
<tr>
<td>140</td>
</tr>
<tr>
<td>160</td>
</tr>
</tbody>
</table>

Live

- pET2-34
- 26°C 20 min
- 8°C 3h40
III. Tagging of cold responsive promoters

Quantification of localized LUC expression in pseudostems of *in vitro* plantlets under cold stress

- **pET2-154**
 - Relative Light Units
 - Time [hours]

- **pET2-111**
 - Relative Light Units
 - Time [hours]

- **pET2-34**
 - Relative Light Units
 - Time [hours]

- **pET2-17**
 - Relative Light Units
 - Time [hours]
III. Tagging of cold responsive promoters

pET2-111

pET2-17
Conclusions

- Tagging constructs optimized
- Cold screening system developed
- Candidate lines obtained with enhanced and repressed CRLA patterns

Perspectives

- Confirmation of CRLA patterns in greenhouse plants
- Isolation of putative promoter sequences
- Bioinformatic analysis of promoter sequences