Chapter 23 Solutions

O 10.0grams % 23 atoms[J electrons] 24
23.1 a) N= .02x10%° ————47.0 ————=2.62 x 10
@ N=go ot T [2.62 x 107

7.87 grams,/mol atom U
-3
(b) # electrons added = Q. L 00;; w0°c =6.25x 10"
e 160x10" C/electron
or 2.38 electrons for every 10° already present

9 2/ ~2 -19 ~\?

k gy, _ (8-99 % 10° N tm?/C?)(160 x 107 C) — _

23.2 (@ Fo=—"5+= 3.80x10- 0 m)’ =[159 x 1077 N | (repulsion)
r . X m

_Gmym, _ (667 x107 N tm? /kg?)(L67 x 1077 kg)*

b) F 129x107® N

®) Fy r2 (3.80 x 10719 m)?
The electric force is | larger by 1.24 x 10% times

(c) If keql—gZ:G% with ¢, =0, =q and m;=m, =m, then

T~ ! -11 2 2
q_ |G _ ;6.67><10 ! NEmZ/kgzj - [8.61x 10 C/kg
m \k | 899x10°NIm*/C
23.3 If each person has a mass of = 70 kg and is (almost) composed of water, then each person

contains

O
N = 70,000 grams %.02 X102 molecules 0 protons 5:2.3 x10% protons
%8 grams./mol mol moleculeU

With an excess of 1% electrons over protons, each person has a charge

q=(0.01)(L.6x107%° C)(2.3x10%)=3.7x10" C

S 5% gy 109y BRI 0% 17|
So F=k,—5==(9%10")——=—"—N=4x10" N [~ 10°° N
ez Y
This force is almost enough to lift a "weight" equal to that of the Earth:

Mg = (6 x 10% kg)(9.8 m/s?) =6 x10%° N~ 10% N
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2 Chapter 23 Solutions

234 We find the equal-magnitude charges on both spheres:
2 ‘ ! 4
0102 q 'F | 1.00x10" N -3
F=ke=—5 =ke—> SO =r [— =(1L00 m), =105x10"° C
¢ r? “r? q \ k, ( )\c 8.99 x10° N [in?/ C2

The number of electron transferred is then
Nyer =(105%107° C) /(160 %1079 C/e”) = 6.50 x 10 electrons
The whole number of electrons in each sphere is

O . _ _
Niot = 1009 §6.02 x 1023 atoms/mol)(47 e /atom) =2.62x10% e
%07.87 g/ mol

The fraction transferred is then

Nyer  [6.59 x 1015 . .
f= = ={2.51 x 10°| = 2.51 charges in every billion
Not %.62 x 1024DD 9 y

9 2/~2 -19 2 23 2
23.5 Fek 0% - (8.99x10° N tm?/c?)(1.60x 10 2C) (6.02x10%)
' [2(6.37 x 10° m)

- FE

*23.6 (a) The force is one of attraction. The distance r in Coulomb's law is the distance between
centers. The magnitude of the force is

o Nn? D(l2.0 x107° C)(18.0 1070 C)
T (0.300 m)?

0
le%qigh:%g_ggxl =[216x107° N
r

(b) The net charge of -6.00x10° C will be equally split between the two spheres, or
-3.00x107° C on each. The force is one of repulsion, and its magnitude is

ke _ O
F=—t12=899x]
v

o Nm20(3.00x107 ¢)(3.00x 10 C)
’ i (0.300 m)?

= [8.99x107' N



Chapter 23 Solutions 3

9 2 2 -6 -6
237 =k, % - (8.99x10° N [/ C )(7.00x120 C)200x10°C) _ o
r (0.500 m)
9 2 2 -6 -6
F, =k B - (899x10° Nm? /C?)(7.00x10° C)4.00x10° C) _, o
r (0.500 m)
F, =(0.503 +1.01) cos 60.0°=0.755 N , F,
. 7.00 uC
F, =(0.503 - 1.01) sin 60.0°= ~0.436 N
F>30.500 m
F =(0.755 N)i - (0.436 N)j = [0.872 N at an angle of 330° SN
¥ U \_ —
~4.00 uC

Goal Solution

Three point charges are located at the corners of an equilateral triangle as shown in Figure P23.7.
Calculate the net electric force on the 7.00—uC charge.

G: Gather Information: The 7.00-uC charge experiences a repulsive force F; due to the 2.00-uC
charge, and an attractive force F, due to the —-4.00-uC charge, where F, =2F;. If we sketch these
force vectors, we find that the resultant appears to be about the same magnitude as F, and is

directed to the right about 30.0° below the horizontal.

O: Organize: We can find the net electric force by adding the two separate forces acting on the
7.00-uC charge. These individual forces can be found by applying Coulomb’s law to each pair of
charges.

A: Analyze: The force on the 7.00-uC charge by the 2.00-uC charge is F; = k, ql—ng
¥

(8.99 x10° N 2/ cz)(mo x107® c)(z.oo x107® c)
(0.500 m)?

Fi (cos60°i +sin60°j) = Fy =(0.252i +0.436j) N

Similarly, the force on the 7.00-uC by the —4.00-uC charge is F, = k, h Z3f
r

o Nn20(7.00x107° C)(-4.00x10 C)
2 (0.500 m)?

g . . . .
F,= -Eg,gg x 10 (cos60°i —sin60°j) = (0.503i — 0.872j) N

Thus, the total force on the 7.00—uC, expressed as a set of components, is
F=F, +F,=(0.755i-0.436 j) N =0.872 N at 30.0° below the +x axis

L: Learn: Our calculated answer agrees with our initial estimate. An equivalent approach to this
problem would be to find the net electric field due to the two lower charges and apply F=gE to find
the force on the upper charge in this electric field.
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*23.8

*23.9

23.10

Chapter 23 Solutions

(@)

(b)

(@)

(b)

Let the third bead have charge Q and be located distance x from the left end of the rod. This
bead will experience a net force given by

F= ke(sg)Q i+ ke(q)Qz (i)
0 (d-x)
The net force will be zero if %: ! >, Or d—x:L
X (d—X \/3

This gives an equilibrium position of the third bead of x =10.634d
The equilibrium is | stable if the third bead has positive charge| .

kee? 1.60 x 1071° C)?
F=—3 =(899 x 10° N [m?/C?) ( 5 ) > =(8.22x10° N
r (0.529 x 10710 m)

mv I (8 22 1078 N)(o 529 x 10710 ) ) -
We have F = from which v=,—= ] =(2.19 x 10° m/s
r \'m \J 9.11x107% kg

kedQ
(d/2)° +x?
to the left, at an angle of tan'l(d/2x) to the x-axis. The two positive charges together exert
force

The top charge exerts a force on the negative charge which is directed upward and

ml G O -2k
= 2k,qQ Bl (=x)i 1/2D: ma or for x <<d/2, a= qu
Qd 4+ x? %E{dz/4+x2) E ma /8"

The acceleration is equal to a negative constant times the excursion from equilibrium, as in

a=-w’X, so we have Simple Harmonic Motion with w? = lwiéq?)Q
m
2| 7 md® . . .
T=—=|—- , where m is the mass of the object with charge -Q.
w |2 \kaQ
keqQ
Vmax = WA = 4a\“s n2d3
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23.11 For equilibrium, F, =~F;, or qE=-mg(=j). Thus, E :%j.
-31 2
@ E=M _(9.11x10 kg)(_91.980 m/s )j: (558107 N/C)]
q (-160x107 ¢)
27 2
mg. (167x107 kg)(9.80 m/s?). — _
b) E=—j= = 1{1.02x10 * N/C
® g’ (160x107 ) i= | /<)
23.12 ZFy =0: QEj+mg(-j)=0
_ (24.0x10° C)(610N/C) _
O m=— 1.49 grams
. TV
*23.13 The point is designated in the sketch. The magnitudes of the -250 +6.00
electric fields, E1, (due to the —2.50 x 107° C charge) and E, (due to 152_?_»51 %C %g
the 6.00 x 107 C charge) are — i

<~—d+1.00m—
ked _ (8.99 x 10° N - m?/C?)(2.50 x 107 C)

Ei="7 e ()
ke  (8.99 x 10° N - m?/C?)(6.00 x 107 C)
Ex=—% = (2

(d + 1.00 m)?

Equate the right sides of (1) and (2) to get (d + 1.00 m)? = 2.40d 2

or d+ 1.00 m = +1.55d

which yields d=182m or =-0.392m

The negative value for d is unsatisfactory because that locates a point between the charges

where both fields are in the same direction. Thus,|d = 1.82 m to the left of the -2.50 uC charge.

23.14 If we treat the concentrations as point charges,

0 o0 Nom’0 (40.0C)

E, =k % EB 99 x 1 o H(lOOO m)2 (-j) =3.60x10° N/ C (-j) (downward)

ox100 Nn’D (40.0C)

_, q_4 5
E_ =k, =89 3.60 x10° N/ C (-j) (d d
2 B c? (1000m)2( J)= .60 (73) (downward)

E=E,+E_= |7.20><105 N/C downward|

© 2000 by Harcourt, Inc. All rights reserved.



6 Chapter 23 Solutions

9 -6 y
. kg (899x10%)(7.00x107) i 00 e
2815 (@) E=5= (0.500) =2.52x10° N/C H7.00p
' 0.500 m
8.99x10°)(4.00x 107 2.00 | /\60°
E, = kLZq = ( )( > ) =1.44x10° N/C uC @—\>E—o—x
r (0.500) /El 2 =4.00 uC

E, = E, —E, cos 60°=1.44 x 10° - 2.52 x 10° cos 60.0°=18.0 x10° N/C

E, = -E; sin 60.0°= -2.52 x 10° sin 60.0°= -218 x 10 N/C

E =[18.0i —218j] x10° N/C = | [18.0i - 218j] kN/C |

(b) F:qE:(2.00><10‘6 (:)(18.0i—218j)><103 N/C =(36.0i -436j) x10™® N = [(36.0i -436j)mN

kg, . (8.99x10°)(3.00x107°) ) Y
*23.16 (a) E;= 921(—1):( )( 5 )(—J) = —(2-70><103 N/C)J 6.00 nC
ri (0.100) E, N
£kl \( i (8'99"109)(6'00’(10_9)( i) =-(5.99x10? N/C); E M
= —-1) = =1)=-{o. X |
o (0.300) / ©-3.00nC
E=E,+E, = [-(5.99x102 N/C)i-(2.70x10* N/C)]
() F=qE= (5.00 x107° c)(—599i - 2700j)N/C
F= (—3.oo><10‘6i—13.5x10‘6j)N = [(~3.00i -135j) uN
23.17 (@) The electric field has the general appearance shown. It is zero \I/
, where (by symmetry) one can see that the three %ﬂ\\//
charges individually produce fields that cancel out. '
(b) You may need to review vector addition in Chapter Three. ‘\\ f{
n+. v+w-\
E-k, 30, NN
7T
The magnitude of the field at point P due to each of the charges
along the base of the triangle is E =k, q/az. The direction of the field Ex 4E
in each case is along the line joining the charge in question to point }.{p

P as shown in the diagram at the right. The x components add to
zero, leaving

E= %(sin 60.0°)j +%(sin60.0°)j =|v3 %j
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Goal Solution

Three equal positive charges g are at the corners of an equilateral triangle of side a, as shown in Figure
P23.17. (a) Assume that the three charges together create an electric field. Find the location of a point
(other than «) where the electric field is zero. (Hint: Sketch the field lines in the plane of the charges.)
(b) What are the magnitude and direction of the electric field at P due to the two charges at the base?

G: The electric field has the general appearance shown by the black arrows in the figure to the right.
This drawing indicates that E =0 at the center of the triangle, since a small positive charge placed at
the center of this triangle will be pushed away from each corner equally strongly. This fact could be
verified by vector addition as in part (b) below.

The electric field at point P should be directed upwards and about twice the magnitude of the electric
field due to just one of the lower charges as shown in Figure P23.17. For part (b), we must ignore the
effect of the charge at point P, because a charge cannot exert a force on itself.

O: The electric field at point P can be found by adding the electric field vectors due to each of the two
lower point charges: E=E; +E,

A: (b) The electric field from a point charge is E= kerizf
As shown in the solution figure above, E;= ke% to the right and upward at 60°

a
E, = ke% to the left and upward at 60°
a
E=E; +Ep =k, ~5|(c0s60°i +sin60°j) + (~cos60°i +sin60°])] = k, ~3{2(sin60°j)| = 1.73k, b j
a a a

L: The netelectric field at point P is indeed nearly twice the magnitude due to a single @
charge and is entirely vertical as expected from the symmetry of the configuration. In ‘A,
addition to the center of the triangle, the electric field lines in the figure to the right
indicate three other points near the middle of each leg of the triangle where E=0 , but (¢ D
they are more difficult to find mathematically.

9 6 0, 0.500

2318 (a) E:k%q: (8'99“(21)1(;80)(10 ):14,400 N/C g Y E( m

r .
200 4= 2.00
- — H o— 4 MC/’ é é N HC
E,=0 and E, =2(14,400) sin 26.6°=1.29 10" N/C o ~H—x

+
“1.00m 1.00m

S0 E=129x10%j N/C

(b) F=Eq=(129x10%j)(-3.00x107%) = | -3.86x107%jN

© 2000 by Harcourt, Inc. All rights reserved.




8

k.(2 k. (3 k. (4
210 (@ E=feloiel kb k(20 ez(zq)(icos45.0°+jsin45.0°) G

23.20

23.21

23.22

Chapter 23 Solutions

(b)

@)

(b)

2 2

r r rs a a a
E=3.06 i +506 ) = [5.01 " ot 58.8°
a a a
2
F=qE= 59150 arsgee
a

The magnitude of the field at (x,y) due to charge q at (Xg,Yq)

is given by E=keq/r2 where r is the distance from (xg,Y,) to
(X,y). Observe the geometry in the diagram at the right.

From triangle ABC, r2=(x-x,)%+(y-yo)? or S A B

If=\/(X—Xo)2+(y—y0)2, sinezw, and cosf=

_ _keq (X =Xo) _ Ke 9(X — Xo)
Thus, E,=Ecosf=-:" 0/ = & L
r [(X = X0)" +(y = ¥o) ]

2 372

Ey=Esin9=ke—2q(y_yO)= ke a(y — ¥o)

d
o |- x0)2+(y - Vo)l

372

... . . Ke( keq keq(4ax)
The electric field at any point x is E= - =
yP x-a? ~ (x-(a) | -y

4a)(k
When x is much, much greater than a, we find E= ())(%

. ke Q/n
One of the charges creates at P a field E= RZ+ 22

at an angle 6 to the x-axis as shown.

When all the charges produce field, for n > 1, the components
perpendicular to the x-axis add to zero.

nke (Q/n)i o= keQxi
R2+ x2 CO0SP= (RZ + x2)372

The total field is

A circle of charge corresponds to letting n grow beyond all bounds, but the result does not
depend on n. Smearing the charge around the circle does not change its amount or its

distance from the field point, so it |does not change the field.| .
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k.q ke, . k.q - koqi 1.1 O nzk a;
23.23 E=Y S5 ~==S7(-i)+ (- e At St S D=
Zr2 a2( )(2)2( 0+ (3)() a2§22 3® O 6a’
2321 kAl _k(Q/1) | kQ (899 x10%)(22.0 x 10°) J=140cm
' B d(l +d) B d(l +d) - d(l +d) ~ (0.290)(0.140 + 0.290) ;<—d—>ﬂ”‘) . ‘)
<=36.0cm—>"
E ={1.59 x 10° N/C| , [directed toward the rod] .
ked
23.25 E=[=37  where dg = Ao dx
T dx 01d°  |kedo "
E =k A J Z = ke O X ) = Xo The direction is —i or left for Ap >0
@ [k AgXo dX(~i) 0 =
23.26 E=(dE= 08 = =k AgXoi [ X3 dx=—keAgXoi = | =20
I J.Xo E 070 I 070 %_2)(2 XO% 2Xo ( )
2397 E- kexQ  (8.99 x109)(75.0 x 10%)x  6.74 x 10° X
' T +ad)3? T x? 4010092 7 (x? +0.0100)%?

(& Atx=0.0100 m, E=6.64x10°i N/C =[6.64i MN/C

(b) Atx=00500m, E=241x10"iN/C=

(c) Atx=0.300m, E =6.40 x 10%i N/C = [6.40i MN/C
(d) Atx=1.00m, E =6.64 x10° i N/C =[0.664i MN/C

© 2000 by Harcourt, Inc. All rights reserved.
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2328 E= &
(X +a )3/2
. dE O 1 3x2 O
For a maximum, — =Qk, =0
ax Q %x +a )3/2 o2 +a2)2 3 O

2,2 2
X“+a“-3x“=0 or =—
V2

Substituting into the expression for E gives

_ k@ _ kQ [2Q]_[ 0
V2(3a%)¥? 33392 |3y3a%| | 6y3mepa’

23.29 E =2k, o x U

. =2nk.ol——mo———

B e ere
0 0 0
E= 2n(899x109)(7 90><10‘3 :4,46x108§—x
\/x + 03502 \/x2+0.123%

(a) Atx=00500m, E=3.83x10° N/C=
(b) Atx=0.100 m, E=3.24x10% N/C=
(©) Atx=0.500m, E=8.07x10" N/C=
(d) Atx=2.00m, E=6.68x10% N/C=

X O

2330 (a) From Example 23.9: E =27k, agl 725
VX©+R

a:%: 1.84x107 C/m?

E = (1.04 x 108 N/C)(0.900) = 9.36 x10” N/C =[93.6 MN/C

appx: E =27k, o= [104 MN/C (about 11% high)|

_ 8 O 300cm U g
(b) E=(104x108 N/C)[1- 0= (1.04 x 108 N/C)(0.00496) = [0.516 MN/C

0 130.0% +3.002 cmD

5.20x107°
(0.30)?

appx: E =k, Q =(8.99 x10%) = [0.519 MN/C (about 0.6% high)|
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23.32

23.33

Chapter 23 Solutions 11

0 0
The electric field at a distance X is E, =2nk,001- X 0
2 2
B Vx2+R20
O 1 O
This is equivalent to E, =2nk,o4d - o 0
g Ji1erZq
For large X, R“/x“<<1 an 1+—=1+—~
J V7 X2 2x2
O O 1+R2%/(2x?) -1
SO E, =21k, 01 - 21/ STH= 21k 0 /2 5
1+R“/(2x%) Il+R /(2x )J
k.Q 1/x? O 20
Substitute o= Q/mR?, E = — g )2 = kngz + R
1+R?/(2x?) 2
But for x > >R, %z iz SO E, = ke—z for a disk at large distances
X“+R /2 X X

The sheet must have negative charge to repel the negative charge on the Styrofoam. The
magnitude of the upward electric force must equal the magnitude of the downward
gravitational force for the Styrofoam to "float" (i.e., F, =Fg).

Oc O
Thus, -gE=mg, or —q ZH: mg which gives o=
0

_ 2egmg
q

Yy
dg sin 6 /'
Due to symmetry Ey :IdEy =0, and Ex :IdE sin 8=k Iq:—; Aq X
T ‘
where dg = Ads = Ard8, so that, E, :gjon sin 6d0:¥(—0059) = 2KeA \
0

q L _2keqm _ 2(8.99 x 10° N - m?/C?)(7.50 x 10° C)mr
where A = L and r= . Thus, Ex = Lz - (0.140 m)?2

Solving, E=E,=2.16 x 10’ N/C

Since the rod has a negative charge, E =(-2.16 x 10’ i) N/C =[-21.6i MN/C

© 2000 by Harcourt, Inc. All rights reserved.
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23.34 (a) We define x = 0 at the point where we are to find the field. One ring, with thickness dx, has

charge Qdx/h and produces, at the chosen point, a field

ke X Qdx .
02 +R%¥2 h

The total field is

d+h  Kk.Qxdx keQi d+h _
E= JUE =[, h zeQRz 77 ez?] X:d(X2+R2) 3/2 2x dx
all charge (x° + )
J d
_kQi (P +R)TVZ N kQig 1 . 1 .
e A L i (Rl s

(b) Think of the cylinder as a stack of disks, each with thickness dx, charge Q dx/h, and charge-

per-area g =Qdx/ niR?h. One disk produces a field

dE = 27keQaX o X Di
R%h (2 +RA)VZH
a d+h 2k de X
o, E= all charge x=d RZ%h El (x*> +R )VZH
i d+h d+h [ |d+h 2 2\1/2 |d+h[]
= 2kQi Lyav dx -3 (x2 + R2) V2 xdx 2= 2KQU 7T T ROTE
R%h Hd x=d B RMh gle 2 172 ¢ g
_ 2k.Qi o 2, 52\Y2 o oove0
E=" éﬁh d ((d+h) +R) +(d? + R
_ | 2k.Qi 2 . p2\W/2 _ 2 52\20
E= Wgu(d +R?) ((d+h) +R ) :
23.35 (a) The electric field at point P due to each element of length dx, is dE =(kedqz) and is directed
XS +y
along the line joining the element of length to point P. By symmetry,
EX:J'dEX:O and since dq = A dx, dE\y
R P
e - _ -y )
E=E, =(dE, = [dE cos 8 where cos 8=——-—— A
y I y I (x2 +y2)l2 //90 49\\
\
/ \
0/2 i Y
Therefore, E=2kAy [ — dX2 oy = 2k,A Sinby \
0 (E+y?)¥ y , \
2k A T O dx )
(b) For a bar of infinite length, 6 -~ 90° and E,=|—* Y A

y
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*23.36 (a) The whole surface area of the cylinder is A =27mr? +27mrL = 27r(r +L).

Q=0A=(15.0x10" C/m?)27(0.0250 m)[0.0250 m +0.0600 m] = [2.00x107%

(b) For the curved lateral surface only, A=2mrL.

Q=0A=(15.0x10" C/m?)27(0.0250 m)(0.0600 m) = |1.41x107 C

© Q=pV=pmriL= (500 x107° C/m3)n(0.0250 m)?(0.0600 m) = [5.89 x1071 C

*2337 (a) Every object has the same volume, V =8(0.0300 m)® =2.16 x10™* m?.

For each, Q = pV = (400 x 107 C/m3)(2.16 x 107 m3) = [8.64x10 C

(b) We must count the 9.00 cm? squares painted with charge:

Q)] 6 x 4 = 24 squares

Q=0A= (15.0 x107° c/m2)24.o(9.oo x107* m2) =[3.24x100

(i) 34 squares exposed

Q=0A= (15.0 x 107 c/m2)34.o(9.oo x 107 m2) =[4.59x101°

(iit) 34 squares

Q=0A=(150x10" C/m?)34.0(9.00x10* m?)= [4.59x107 C

(iv) 32 squares

Q=0A=(150x10" C/m?)32.0(9.00x10* m?)= [4.32x107° C

(c) (i) total edge length: ¢ =24 x(0.0300 m)

Q=2 10=(80.0x107? C/m)24x(0.0300 m) = [5.76 x 107 C

(i) Q=Ae= (80.0 x 10712 C/m)44 x(0.0300 m)=|106x107° C

(i) Q=A40=(80.0x1072 C/m)64 x(0.0300 m)=154x107° C

© 2000 by Harcourt, Inc. All rights reserved.
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(iv) Q=At= (80.0 x 10712 C/m)4o x (0.0300 m) =

0.960x1071° C




22.38

22.39

2340 (a)
(b)

23.41

2342 ()

(b)

©

Y
.

; _ =6 _
q 18

1
3

|q1 is negative, (@ is positive

F=gE=ma a=—"—
a m

v =vj+at

electron:

proton:

2] = gE _ (1602 x107'%)(6.00 x 10°)

m

, = (1602 10719)(520)(48.0 x 107°)
.=

9.11x1073¢

in a direction opposite to the field

= (1.602 x107*%)(520)(48.0 x 10™°) _

P 167 x107%/

in the same direction as the field

m

(167 x107%7)

vV =v; +2a(X —X;)

0=v;2 +2(-5.76 x 10'%)(0.0700)

V=Vi+at

0=2.84x10°% +(-5.76 x 10'®)t

Chapter 23 Solutions

= |4.39 x 10 m/s

2.39 x 10° m/s

=576x10°m/s so a=

v; =2.84x10%i m/s

© 2000 by Harcourt, Inc. All rights reserved.

t=14.93x107% s

-5.76 1011 m/s?
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E (1602x1072%)(640)
2343 (@) a= % = ( (1.67 - 10_27)

= |6.14 x 1010 m/s?

(b) v=v;+at

1.20 x 10° = (6.14 x 10%%)t

t=195x107s

© x=x=3(vi+V)t

x=4(120x10°)(195 10| = [1L7 m]

d) K=imv?= %(1.67 x 10727 kg)(1.20 x 10° m/s)? = |1.20 x 10715 ]

23.44 The required electric field will be [in the direction of motion|. We know that Work = AK

1 . . .
So, -Fd=-3% mvzi (since the final velocity = 0)

o
2 2 :

This becomes Eed = lmvi or E=—7
2 ed

1.60 x 1077 3 o , :
E = =T =11.00 x 10° N/C| (in direction of electron's motion)
(1.60 x 107 C)(0.100 m)

23.45 The required electric field will be [in the direction of motion]|.

Work done = AK so, -Fd= —% mv2i (since the final velocity = 0)

K
which becomes eEd =K and |E= cd
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Goal

Goal Solution
The electrons in a particle beam each have a kinetic energy K. What are the magnitude and direction of
the electric field that stops these electrons in a distance of d?

G: We should expect that a larger electric field would be required to stop electrons with greater kinetic
energy. Likewise, E must be greater for a shorter stopping distance, d. The electric field should be in
the same direction as the motion of the negatively charged electrons in order to exert an opposing
force that will slow them down.

O: The electrons will experience an electrostatic force F =gE. Therefore, the work done by the electric
field can be equated with the initial kinetic energy since energy should be conserved.

A: The work done on the charge is W =Fd=qE
and Ki +W =K; =0
Assuming V is in the +x direction, K+(-e)EM@i=0

eE [{di) =K
E is therefore in the direction of the electron beam: E= %i

L: As expected, the electric field is proportional to K, and inversely proportional to d. The direction of
the electric field is important; if it were otherwise the electron would speed up instead of slowing
down! If the particles were protons instead of electrons, the electric field would need to be directed
opposite to v in order for the particles to slow down.

23.46 The acceleration is given by ~ v2 =vi +2a(x—x)or  v? =0 + 2a(<h)

Solvi -
olving, a=-5p
2 -
. mv-J
Now 3 F=ma: —mgj+qE:—T
Theref e=B MY L gl
erefore q =B 7n +ngJ

(a) Gravity alone would give the bead downward impact velocity

2(9.80 m/s?)(5.00 m) =9.90 m /s
\

To change this to 21.0 m/s down, a electric field must exert a downward electric
force.

m [V 1.00 x 10 kg [N - s? 210 m/s)?
E {]

2
0 §
= -gQ = -9. 20=[34
B 9= FBR 9 ~ Toox10*N/c tkg - miH2Goom) 280 M/ [343C

© 2000 by Harcourt, Inc. All rights reserved.
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x _ 0.0500 =
2347 (@) t=—=——""_2=111x10"s = [111ns]
@ vV 4.50x10°

©) a = qE _ (1602 x 107)(9.60 x 10%)
y =

e =9.21x10" m/s’
(L67 %10 “")

y = Yi =Vyit +3at?

y=3(9.21x10")(111x107)? = 5,67 x 10° m =
© =

Vy = vy +ay = (9.21 x 101)(1.11 x 107) =

-19
2348 a, = gE _ (1602 %10 _%(1390)
m (9.11x10 )

=6.86x10% m/s?

@) t= 2v; sin@

from projectile motion equations
a
y

_ 2(8.20 x10°)sin 30.0°

— -8 —

©) he vi?sin2@ _ (8.20x10°)?sin%30.0° _

1.23 mm

t

_vi®sin26 _ (8.20 x10°)sin 60.0° _

é
2a 2(6.86 x10™7)

y

© R

E=(-720j) N/C

2349  v; =955 x 10 m/s

% 10-19
(a) ay:E:(l-GO 107%)(720)

Lo =6.90 x10'% m/s?
m (167 x1077")

2 3\2 i
_Visin26 _ 197 x 10 m <o that (9.55%10°)“sin26

a, 6.90 x 10'°

sin20=0961 6= 90.0°- 0=

R =127x107°

B t== S If 9=369°, t=[167 ns] If 9=531°, t=[221ns]
ix i
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*23.50 (a) The field, Ej, due to the 4.00 x 10~ C charge is in the —x direction.

keq . (8.99 x 10° N - m2/C?)(-4.00 x 10~° C)
Ei=—%r=

r (2.50 m)?

i =-5.751 N/C

Likewise, E; and Es, due to the 5.00 x 10~ C charge and the 3.00 x 10~ C charge are

keq . (8.99x 10° N - m%/C?)(5.00 x 107° C)
E, = — r = 500 7 i =112
r (2.00 m) ~400  |5.00 3.00
N/C nC nC nC E, E
S—o——o——gh
_ (899 x 107N - m?/C?)(3.00x10°C) . _ ‘0.500 ’ 0.800 ‘ 120 | 7
Eg= .20 m)? i =18.7N/C < e e
Ex =E; +E»,+E3= |24.2N/C]| in +x direction.
_keq . . Y
() Er=-7 = (-8.46 N/ C)(0.243i +0.970j) ENE,
k E
£, =-5 ¢ =(112 N/ C)(+) /
4 80 2.00m 3 Og
k n 2] 6, \n
Es=-% ¢ =(5.81N/C)(-0.371i +0.928;) -8 0'515+60 g~
e

Er = 0= |63.4° above —x axis|

(L6010 c)(640 N/ C)
167 x107%" kg

23.51 The proton moves with acceleration ‘ap ‘ :% = =6.13x10%° m/s?

(16010 c)(640 N/C)

while the e~ has acceleration |a,| = 1107 K
A1x g

=112x10" m/s? =1836a,

(a) We want to find the distance traveled by the proton (i.e., d = %aptz), knowing:

1,421,442 1,42
4.00 cm = $a,t? + 1 at? = 18371 a,t?)

_1,.,2_400cm _
Thus, d=3a,t" = T 21.8 um

© 2000 by Harcourt, Inc. All rights reserved.
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(b) The distance from the positive plate to where the meeting occurs equals the distance the
sodium ion travels (i.e., dy;, :%aNatz). This is found from:

10 eE o, 10 € o
4.00 cm = Lag,t? +Lat?: 4.00cm== % += %
27Nt 727 20299 ul 2085450

This may be written as 4.00 cm = Lag,t” +2(0.649a, )t* = 1 65(% aNatz)

0 o = haat? = 00 =

1.65

23.52 From the free-body diagram shown, >Fy=0

and T cos 15.0°=1.96 x 102 N 15°
T\
So T=203x102N

From YFy, =0, we have (E =T sin 15.0°

_Tsin150° _ (2.03x 1072N) sin 150°

or =525x10°C=[5.25uC
a E 1.00 x 10° N/C Fy = 0.0196N

2353 (a) Let us sum force components to find

E
SFx=(QEx-Tsin6=0, and 3F,=qEy,+Tcosf-mg=0 / / .
q

N

/
_ @
mg (1.00 x 107%)(9.80)

= = =1.09x10°C=[109nC
q (Excot 8+Ey) (3.0 cot 37.0° + 5.00) x 10° 'Fg

Combining these two equations, we get /

Free Body Diagram

(b) From the two equations for 3 Fy and 3 Fy we also find for Goal Solution

__ OEx _ 3N —
T=sg7gs =544x10° N = [5.44 mN
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Goal

Goal Solution

A ch

arged cork ball of mass 1.00 g is suspended on a light string in the presence of a uniform electric field,

as shown in Fig. P23.53. When E =(3.00i +5.00j) x10°> N/ C, the ball is in equilibrium at 6 = 37.0°. Find
(a) the charge on the ball and (b) the tension in the string.

G: (a) Since the electric force must be in the same direction as E, the ball must be positively charged. If
we examine the free body diagram that shows the three forces acting on the ball, the sum of which
must be zero, we can see that the tension is about half the magnitude of the weight.

O: The tension can be found from applying Newton's second law to this statics problem (electrostatics,
in this case!). Since the force vectors are in two dimensions, we must apply ZF =ma to both the x
and vy directions.

A:  Applying Newton's Second Law in the x and y directions, and noting that *F=T +qE+F, =0,
>F, =qE, —T sin 37.0°=0 (1)
2Fy =qE, +T c0s 37.0° —mg =0 (2)

We are given E, =3.00 x 10° N/C and E, =5.00 x10° N/ C; substituting T from (1) into (2):
-3 2
q= - ng D: D(1.00 X 103 Ol;g)(;.so m/s%) _ 109x10°8 C
X 00+—""_"x10° N/C
v *anarocl B ansrocl
(b) Using this result for g in Equation (1), we find that the tensionis T :#E;OO =5.44x10° N
i .

L:  The tension is slightly more than half the weight of the ball (Fy; =9.80 x 1078 N) so our result seems
reasonable based on our initial prediction.

2354 (a) Applying the first condition of equilibrium to the ball gives:

SF, =qE, ~Tsin6=0 or  T=YE _ GA
sing sin@
and ZF, =qE, +Tcos6-mg=0 or qB+Tcosf=mg

Substituting from the first equation into the second gives:

mg

q(Acot6+B)=mg, or q= (Acoto+8)

(b) Substituting the charge into the equation obtained from ZF, yields

mg oA O_ mgA
(Acot6+B)LkinL | Acos6 +Bsin8

© 2000 by Harcourt, Inc. All rights reserved.
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Goal Solution
A charged cork ball of mass m is suspended on a light string in the presence of a uniform electric field, as

shown in Figure P23.53. When E:(Ai+Bj) N/ C, where A and B are positive numbers, the ball is in
equilibrium at the angle 6. Find (a) the charge on the ball and (b) the tension in the string.

G: This is the general version of the preceding problem. The known quantities are A, B, m, g, and 6.
The unknowns are gand T.

O: The approach to this problem should be the same as for the last problem, but without numbers to
substitute for the variables. Likewise, we can use the free body diagram given in the solution to
problem 53.

A: Again, Newton's second law: -Tsin6+gA =0 (€))]
and +Tcos8+gB-mg=0 2
(a) Substituting T = ﬁ into Eq. (2), M +0B =mg

sin@ sin@
. mg
Isolatin on the left, =
94 a (Acot 6+B)
(b) Substituting this value into Eq. (1), T = MgA
S (Acos 6 +Bsin6)

L: If we had solved this general problem first, we would only need to substitute the appropriate values
in the equations for q and T to find the numerical results needed for problem 53. If you find this
problem more difficult than problem 53, the little list at the Gather step is useful. It shows what
symbols to think of as known data, and what to consider unknown. The list is a guide for deciding
what to solve for in the Analysis step, and for recognizing when we have an answer.

_ ke @y _150 .
23.55 F= 2z tan 6= 500 6=14.0 d—)l().() uC
- (8.99 x 10%)(10.0 x 107%)* 100 N 15.0 cm
1= (0.150)? - X
E. = (8.99 x 10°)(10.0 x 10™)° 250 N :
3 (0.600)2 -
(8.99 x 10%)(10.0 x 1072
=235N

2= (0.619)2
Fy = —F3—Fy cos 14.0° = =2.50 — 2.35 cos 14.0° = —4.78 N

Fy= —F1-F,sin 14.0° = -40.0 - 2.35 sin 14.0° = -40.6 N

Fret= \F2+F2 =\[C4.78)2 + (406) =

R, _-406 e
tan 9= =773 $=




23.56

23.57

23.58
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_15.0cm +

From Fig. A: dcos 30.0°=15.0cm, or =
cos 30.0°

30 cm d
40 d oo U 15.0 cm

From Fig. B: 0 =sin in
¢ [50.0 cm HB0.0 cm(cos 30.0°)

.- 20.3°
% .

d d
30°
]
i =tan 9 <_i_/ 15 cm @_/
m Figure A
or Fq =mgtan 20.3° (1)
50.0 cm
From Fig. C:  F, = 2Fcos 30.0 2D ka® o 30.0 )
rom Fig. C: q = 2Fco0s 30.0° = 5 [r0s 30.0°
50.300 m)* 5 e .-
F,=mg
Equati tions (1) and (2) 28 k& Soca00 tan 20.3 g
quating equations an , [ros 30.0° =mgtan 20.3°
50.300 m)? Figure B
2 o y
» _ mg(0.300 m)“tan 20.3 X
2k, cos 30.0° f
_.r" ,:\
_ 2 o FoeT N
- (2.00 %107 kg)(9.80 m/s?)(0.300 m)? tan20.3 L N\
2(8.99x10° N in? C2)cos 30.0° T e !
q=1/4.20x10™ C2 =2.05x1077 C=[0.205 uC Figure C

Charge Q/2 resides on each block, which repel as point charges:

- _ kl(Q/2)(Q/2)

| 2 =k(L -Ljy)

k(L-L) " (100 N/ m)(0.100 m)
=2L, |~ =2(0.400 m) | = [26.7 uC]
@2 ( m)\ (8.9 x10° N2/ C?) &

k 2 2
Charge Q72 resides on each block, which repel as point charges: F = e(Q/LZ)(Q/) = k(L - Li)

Solving for Q, Q=|2L M

K

© 2000 by Harcourt, Inc. All rights reserved.
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*23.59

*23.60

23.61

Chapter 23 Solutions

(@)

(b)

©

According to the result of Example 23.7, the lefthand rod

creates this field at a distance d from its righthand end: y
E= keQ < b =i
~d(2a + d) N S L I—
d(2a +d) —a | a b-a b+a
ip - QQ _ dx
F=a dd+29
 keQ? J—b dx  _kQ*p 1 2a+xd
F="7a x=b-2ax(x+2a) ~ 2a O 2a X |
—-2a
_ +keQ? , 2a+bh b O keQ? b2 | xeQ%m, O b O
=22 0" b tNoozan Taar MO0+ | e " 2o aatt

The charge moves with acceleration of magnitude a givenby >YF=ma= | q | E

- |9E 160 x 108 c(1.00N/C)

=1.76 x 10!t m/s?
m 9.11 x 1073 kg

_ v 3.00x10" m/s
Then v =v; +at =0 + at gives t=2 = 176 x 0N/ 171 ps

vm 3.00 x 10’ m/s)(1.67 x 107%" k
= iy X 9 _ 0.313s

\"
t=7— =— = =
a ~ gE (1.60 x 107° C)(1.00 N/C)

vm _ - :
From t = E S E increases, t gets in inverse proportion.

Q = Adl =1 %5 Ao cos GRAO= Ao R sin 6%5ss = A0R [1 - (-1)] = 2AcR

Q = 12.0 uC = (214)(0.600) m = 12.0 uC S0 Ao =10.0 uC/m ‘PA N

1 [3.00 4C)(AdI )T 1 H3.00 uC)(Ag cos? Rd6)0

dF, = 0s6 =
Y 4me, H R? 4711€, R? L cos 0
90.0° 2 -6 -6
N - m2[(3.00 x 107° C)(10.0 x 1078 C/m) o\ /-
_ 9 L 2
Fy = [ o0.0° %.99 x10° =7 0,600 ™) cos? 6d6
0° 360°
2
8.99(30.0) [, (1 . )
=————7110° N ~+>c0s260|d6b 2
e WL WAV
Fy = (0.450 N)(% rr+%sin 29[/7;2) =(0.707 N| Downward. O()C> 360°

Since the leftward and rightward forces due to the two halves of the
semicircle cancel out, F, =0.



23.62

23.63

(@)

(b)
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At equilibrium, the distance between the charges is r=2(0.100 m)sin10.0°=3.47 x10 m
Now consider the forces on the sphere with charge +q, and use 2F, =0:

mg

2F, =0: Tcos10.0°=mg, or T=——F"F"—
co0s 10.0°

@)

YF, =0  Fpe=F,-F; =Tsin10.0° @

Fnet is the net electrical force on the charged sphere. Eliminate T
from (2) by use of (1).

_mgsin 10.0°

— o — -3 2 o_ -3
et = = mgtan 10.0 =(2.00%10 kg)(9.80 m /5)tan 10.0°=3.46 x 107 N

Fnet is the resultant of two forces, F; and F, . Fq is the attractive force 08.Tcos 6
on +q exerted by —-q, and F; is the force exerted on +q by the external NT
electric field. Fi<( )= F,
Fret=F2—-F1 or Fo=Fpet+Fy mg
5.00x10°8 C|(5.00x1078 C
F, = (8.9 x10° NI]‘nZ/CZ)( I - ):1.87><10'2 N
(347 %10 m)
Thus, Fy=Fpet+ F1 yieldsF, =3.46x10° N+1.87 x1072 N=2.21x10"2 N
F, 221x1072N

and F, =qE, or E=-2=200000  ° =443 %10° N/C = [443KN/C

2=1 q 5.00 x 10—8 C
From the 2Q charge we have F.-T,sin6,=0 and mg-T,cos6,=0
Combining these we find Fe _TpsinG, _ tan 6, 0

mg T,cos6, 0 h

From the Q charge we have F.—-Tysinf =0 and mg-T,;cos6;, =0

. ) F, _T,siné Y2
Combining these we find —&=_1>""l —tang or 6, =6

g mg T,cos6; !
_ k:2QQ _ 2k,Q?

Fe = 2 2

(r/2)

If we assume 8 is small then tan 6 = 7 Substitute expressions for F, and tan 6 into either
equation found in part (a) and solve for r.

2
Fe _ tan8@ then 2k€§2 (LJ - and solving for r we find 7= [
mg T mg) 210

k020"
mg

© 2000 by Harcourt, Inc. All rights reserved.
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23.64 At an equilibrium position, the net force on the charge Q is zero. The equilibrium position
can be located by determining the angle 8 corresponding to equilibrium. In terms of lengths s,
%a\/S, and r, shown in Figure P23.64, the charge at the origin exerts an attractive force

kqu/(s+%aJ3)2. The other two charges exert equal repulsive forces of magnitude kqu/rZ.
The horizontal components of the two repulsive forces add, balancing the attractive force,

F cos 6 1 H
=k ‘ =0
Frer = k.Q40 g r? (s+%aV3)2%

1
Za

From Figure P23.64, r=—
sin 0

_1
s—jacote

1

The equilibrium condition, in terms of 6,is F 2@ 0
(~'3 +cot 6)

net = Da—z qu% cos @sin%6 -

Thus the equilibrium value of 8is 2 cos 8sin? 6(~'3 +cot 6)% =1.

One method for solving for @ is to tabulate the left side. To three significant figures the value
of 8 corresponding to equilibrium is 81.7°. The distance from the origin to the equilibrium

position is x = $a(v'3 +cot 81.7°) = [0.93%

0 2 cos @sin 6(\/3 +cot 6)?

y B+ 60° 4
‘ N 70° 2.654
a a 80° 1.226

+Q

e 2 e, 90 0
q ‘ 21«5 81° 1.091
81.5° 1.024
<203 S 81.7° 0.997

23.65 (a) The distance from each corner to the center of the square is o d
/ 2 2
V(L/2)" +(Lj2)" =L /v2 . R

The distance from each positive charge to -Q is then |z +L%/2.

Each positive charge exerts a force directed along the line joining

q and —-Q, of magnitude keQq
22 +12)2

The line of force makes an angle with the z-axis whose cosine is ————
V22 +12)2

The four charges together exert forces whose x and y components 4k,Qqz
add to zero, while the z-components add to F= _eizg/z
(22 + L2/2)




(b) For z<<L, the magnitude of this force is F,=

() The total non-contact force on the cork ball is: F=gqe+mg= mEp +

(b) [Yes]. without gravity in part (a), we get T

Chapter 23 Solutions 27

_ 4kQqz _(2)*?k,QqO]

B

Therefore, the object’s vertical acceleration is of the form |a, = -w?z

4(2)**k.Qq _ k.Qu~ 128

mL3 mL3

with @’ =

Since the acceleration of the object is always oppositely directed to its excursion from
equilibrium and in magnitude proportional to it, the object will execute simple harmonic
motion with a period given by

on_ 2 mB® | 7 m®

T o (128 kQu | (87 | kQa

gED
m O

which is constant and directed downward. Therefore, it behaves like a simple pendulum in
the presence of a modified uniform gravitational field with a period given by:

T=2m |t =2m e j = o]

-6 5
o+ o \9_80 . (2.00x 107 cl(100x10° N/ C

1.00x 1072 kg

L
=27 ——
| dE/m

2n/ 0.500 m
\ (2.00 x 107 C)(l.OO x10° N/C)/l.OO x1073 kg

T= =0.314 s (a 2.28% difference).

Due to symmetry the field contribution from each negative charge is Ly
equal and opposite to each other. Therefore, their contribution to
the net field is zero. The field contribution of the +q charge is

E=Kd__ka _4kg

2 (3a/4) 3&
in th . S _ 4k, q .
in the negative y direction, i.e,, E= | - 302 j

© 2000 by Harcourt, Inc. All rights reserved.
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(b) If F, =0, then E atP must equal zero. In order for the field to cancel at P, the —4q must be
above +q on the y-axis.

Then, E=0=- P O';eq 7 + ke(zzlq)’ which reduces to y? =4.00 m?.
.00 m y

Thus, y=%2.00 m. Only the positive answer is acceptable since the —4q must be located
above +q. Therefore, the —4q must be placed | 2.00 meters above point P along the +y —axis]|.

23.68 The bowl exerts a normal force on each bead, directed along
the radius line or at 60.0° above the horizontal. Consider the
free-body diagram of the bead on the left:

ZF, =nsin 60.0°-mg =0,

_ Mg
or n=-———
sin 60.0°
Also, 2F, = -F, +ncos 60.0° =0,
n
k q2 mg mg i
or ¢ -=ncos60.0°= ——>——=— Fe 60.0
R tan 60.0° V3 ()L -
mg
U mg '

ThUS, q: R%E
€

23.69 (a) There are 7 terms which contribute: '

3 are s away (along sides) '
3 are4/2 s away (face diagonals) and sin 8= % =cos 6 ‘
\s“

1is4/3 s away (body diagonal) and sing= 713

The component in each direction is the same by symmetry.

F=—trd+ ——+—Hi+j+k)= [ S (190)(i +j+k
s2 E‘ 212 3@35 JHk)= | =5 (L90)(I +j+ k)

‘ 2
b) F:\/Fi + Ff, +F2= 3.29kes—;1 away from the origin




2370  (a)

(b)
*23.71
23.72
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Zero contribution from the same face due to symmetry, opposite
face contributes

k.0 oscf osif, o _
4Dr— sin goD where r= \/DzD 0" =yJ15s5=1225s
pogfeds. 4 3—20': 218 %4
r (122) sin g=s/r
|The direction is the k direction.
0 0
dE = k, dq —Xi+0.150mj — kA(-xi+0.150 mj)dx  ae ,
2+(0.150m)2@\/x +(0.150 m)? Q [x (0.150 m) ]32 — -
ossom| T~ _
. —xi+0.150 mj)d X
E= dE=kA [0 (o mJ)3;<2 2
all charge X0 [x2 +(0.150 m)z]
0 _ ‘0.400 m _ ‘0.400 m[]
E:ke/\%“ : +i : . (0.21!?02m)jx : E
EVX +(0.150 m) \O (0.150 m)“+/x* +(0.150 m) \0 g
0 o Nin? o CL}. .
E = [.99x10° = E%z,s.ouo Eg|(2.34—6.67)/m+J(6.24—0)/m]
E=(-136i+196j)x10® N/C = [(-136i+1.96j) kN/C
By symmetry ZEX =0. Using the distances as labeled, Y.p
0 q . q . 2qU
E, =k sinf +———-sinf ——
257G (@ +y?) 2O
P—a N a
But sinf=—2Y  so E:ZE :2qu y —ig <Jfri) —(ZDLI \J‘?x
J(@+y?) vy TR ey Ty

3/2

Expand (a® +y?)" ¥ as (a® +y?) 32 =y - (3/2)a%y +. ..

Therefore, for a <<y, we can ignore terms in powers higher than 2,

O 2 O O 2]
and we have E:Zqu%—@gaj_iZD or |[E=[+ keSga T
y® [ROy* y*p o Yy o
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23.73

23.74

Chapter 23 Solutions

The field on the axis of the ring is calculated in Example 23.8, E=E, =

koxQ

(XZ + a2)3/2

The force experienced by a charge —q placed along the axis of the ring is

F= —kquﬁﬁz)yzﬁ and when x <<a, this becomes

This expression for the force is in the form of Hooke's law,

with an effective spring constant of

Since w=2rf =./k/m , we have

The electrostatic forces exerted on the two charges result in a

net torque 71 =-2Fa sin 6=-2Eqga sin 6.

For small 6, sin 6= 8 and using p = 2ga, we have

The torque produces an angular acceleration given by

Combining these two expressions for torque, we have

This equation can be written in the form

This is the same form as Equation 13.17 and the
frequency of oscillation is found by comparison
with Equation 13.19, or

_k.Qq
F=g a3 %
k = k,Qq/a’
f=| L kg
2\ mad
—
:_Epe - “/4
—_— ()
_d0 —
T=la= —
dt
@4.@ =0
dt? Ol
2
d—fz—wze where w2=@
dt |

f:wﬁ: i\/%
2y | 21 |




241  (a)

(b)

(©

24.2

24.3

24.4

24.5 @)

(b)

©

Chapter 24 Solutions

®g = EA cos 6= (3.50 x 10%)(0.350 x 0.700) cos 0° = |858 N - m?/C
6= 90.0°
®g = (3.50 x 10%)(0.350 x 0.700) cos 40.0° = [657 N - m?/C

®g = EA cos 6= (2.00 x 10* N/C)(18.0 m?)cos 10.0° = |355 kN - m?/C

®e =EACcos 6
A = mr? = 11(0.200)? = 0.126 m?

5.20 x 10° = E(0.126) cos 0°

E=4.14x105N/C=[4.14 MN/C

The uniform field enters the shell on one side and exits on the other so the total flux is .

A’ =(10.0 cm)(30.0 cm)

A’ =300 cm? =0.0300 m?
®e A =EA’cosO

¢, o =(7.80x10*)(0.0300)cos 180°

®g A = |-2.34 kKN On?/C

®¢, o = EA cos = (7.80 x 10*)(A) cos 60.0°

1J10.0cm O

=600 cm? = 0.0600 m?
%os 60.0°H

A =(30.0 cm)(w) =(30.0 cm)

®¢, 5 = (7.80x10*)(0.0600)cos 60°= |+ 2.34 kN n?/C

The bottom and the two triangular sides all lie parallel to E, so @ =0 for each of these. Thus,
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®e. oa = — 2.34 KNI?/C+2.34 kKNI?/C+0+0+0=[0]
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246  (a)
(b)
(c)
24.7
24.8
24.9
*24.10 (a)
(b)
2411 (a)

(b)

®¢ = E[A = (ai +bj)[Ai =[aA]

¢ = (ai +bj) [Aj = [bA]

O = (ai +bj) DAk = @

Only the charge inside radius R contributes to the total flux.

@ =EA cos8 through the base “
= °= _ . m?2
g =(52.0)(36.0)cos 180°= —1.87 kN - m2/C . OO‘m 6.00 m

Note the same number of electric field lines go through the base
as go through the pyramid's surface (not counting the base).

For the slanting surfaces, | ®g =+1.87 KNn?/C

The flux entering the closed surface equals the flux exiting the surface. The flux entering the
left side of the cone is ®¢ = [E[HA = . This is the same as the flux that exits the right
side of the cone. Note that for a uniform field only the cross sectional area matters, not shape.

Ke
r

E=

2

(8.99 x 109Q
(0.750)>

Q=-556x10°C=[-55.6 nC]

The charge has a |spherical|y symmetric| charge distribution.

8.90 x 10° = But Q is negative since E points inward.

; +2. -9 +21. —o4.
(g = i - (500 HC=9.00 UC +27.0 C -840 UC) . g gq 106 N . m/C = [~6.89 MIN - m/C
e 8.85x10"2 C? /N [in

Since the net electric flux is negative, more lines enter than leave the surface.
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24.12 ®g = ‘272
Through §; O = _227“3: - eg
0 0
Through S, ®g =~ ?EO_Q =[0]
Through S, Op = _ZQ‘;& == ZeQ
0 0
Through S, g = @

24.13 (a) One-half of the total flux created by the charge q goes through the plane. Thus,

10q 0O q
CDE, plane = CDE total = ZE;E_ E

(b) The square looks like an infinite plane to a charge very close to the surface. Hence,

q

CDE, square = (DE, plane = 2e
0

(c) |The plane and the square look the same to the charge.

24.14 The flux through the curved surface is equal to the flux through the flat circle, | E, rir

2415 (@) |3z| Simply consider half of a closed sphere.

() E (from ®g total = PE, dome + PE flat = 0)
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Goal Solution

A point charge Q is located just above the center of the flat face of a hemisphere of radius R, as shown in

Figure P24.15. What is the electric flux (a) through the curved surface and (b) through the flat face?

G: From Gauss’s law, the flux through a sphere with a point charge in it should be Q/e; so we should
expect the electric flux through a hemisphere to be half this value: ®_,..q =Q/2€,. Since the flat
section appears like an infinite plane to a point just above its surface so that half of all the field lines
from the point charge are intercepted by the flat surface, the flux through this section should also
equal Q/2e.

O: We can apply the definition of electric flux directly for part (a) and then use Gauss’s law to find the
flux for part (b).

A: (a) With 0 very small, all points on the hemisphere are nearly at distance R from the charge, so the
field everywhere on the curved surface is keQ/R2 radially outward (normal to the surface).
Therefore, the flux is this field strength times the area of half a sphere:

_ _ _0 QQ: 2y_ 1 _Q
q)curved ‘IE (1A = EIocal'o‘hemis.phere - a(e ?%E)(“'RR ) = FGOQ(Z 77) = Teo
(b) The closed surface encloses zero charge so Gauss's law gives
®yrveg + Priag =0 B = ~Poyrveq = —2

curved flat — or flat = curved — 2
€

L: The direct calculations of the electric flux agree with our predictions, except for the negative sign in
part (b), which comes from the fact that the area unit vector is defined as pointing outward from an
enclosed surface, and in this case, the electric field has a component in the opposite direction (down).

) -6
2416 (2) D g = = % = 1.36x10° NOn®/C =[1.36 MN - m2/C |
' € 8.85x10
(®) P parshen = 2(1.36x10° NOn*/C)= 6.78x10° N*/C=[678 kN - m?/C |
(© the same number of field lines will pass through each surface, no matter how the
radius changes.
24.17 From Gauss's Law, ®g :fE A = qﬂ.

€o

-6
Thus, ®p==_ 00462x10 "C 5o, Nmm2/c

ey 8.85x10? C?/Nmn?




24.18

24.19

24.20

24.21

24.22

Chapter 24 Solutions 37

If R < d, the sphere encloses no charge and @ =¢;, /¢y = @

If R > d, the length of line falling within the sphere is 2\/R2 - d?

so b= |2A VR? —dz/e0

The total charge is Q-6|q|. The total outward flux from the cube is (Q—6\q\)/eo, of which
one-sixth goes through each face:

_|Q-6]q
(q)E)oneface - 6e, ‘

-6 - -6 2
(@g), ., = Q=618 (.00-6.00)x107° CININ® _ e Gy
one face 6e, 6x8.85x10712 C?

The total charge is Q-6|q|. The total outward flux from the cube is (Q —G\q\)/eo, of which
one-sixth goes through each face:

_|Q-6]q
(¢E)oneface_ 6e,

When R < d, the cylinder contains no charge and ®g= El .

Gin AL

When R>d,  ®g=-1
€o €o

9 2/n2 6 ~\[J
e noe = E Pngi = g%?gmz) _ é(&gg x 10 N((?:Oécm))glo.o x107 C| @ r{100x10°

®e pole = | 28.2 NI?/C
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24.23

24.24

24.25

(@)

(b)
©

(b)

©

Chapter 24 Solutions 39

:qﬂ: 170)(10_6 C _ , ,
e €o 8.85 x 10712 CZ/N 2 1.92x10° N[On /C
1.92x10" Nm?/C
(qJE)oneface :%(DE = 5
(CDE)oneface = |3-20 MN I__]Tnz/c|
g = |19.2 MN |]n2/c|

The answer to (a) would change because the flux through each face of the cube would not be
equal with an unsymmetrical charge distribution. The sides of the cube nearer the charge
would have more flux and the ones farther away would have less. The answer to (b) would
remain the same, since the overall flux would remain the same.

_ Gin

P = Jin.

E eo
8.60x104=— Gin___

8.85 x 10712

Gin =7.61x1077 C =

Since the net flux is positive, |the net charge must be positive| . It can have any distribution.

|The net charge would have the same magnitude but be negative.|

No charge is inside the cube. The net flux through the cube is zero. Positive flux comes out
through the three faces meeting at g. These three faces together fill solid angle equal to one-

eighth of a sphere as seen from ¢, and together pass flux %(q/eo). Each face containing a
intercepts equal flux going into the cube:

0= qJE, net — 3cI)E, abcd + q/8€0

P, abea =

© 2000 by Harcourt, Inc. All rights reserved.
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24.26 The charge distributed through the nucleus creates a field at the surface equal to that of a point
charge at its center: E =k,q,/r?

_(8.99 x 10° Nm2/C?)(82 x 1.60 x 107 C)
- [(208)}3 1.20 x 107> m] 2

E= |2.33 x 10% N/C| away from the nucleus

_keQr _
2421 (@) E=—3 = 0]

_ ke Qr (899 x10%(26.0 x 10°)(0.100)

(b) E= a3 - (0400)3 =1365 kN/C
ke Q  (8.99 x10%(26.0 x107°%)

© E=77 = (0.400)? -
ke Q (8,99 x 10%(26.0 x 107°)

d E=-7 = (0.600)2 = (649 kN/C

The direction for each electric field is radially outward.

2ke A
2428 (a) E=——
2(8.99 x 10%)(Q/2.40)
4 _
3.60 x 10* = 0.190)
Q=+9.13x10"" C=[+913nC
b [E=0
i dv
24.29 f E.da=dn LoV Py
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E= ZLr away from the axis
€o

Goal Solution
Consider a long cylindrical charge distribution of radius R with a uniform charge density p. Find the
electric field at distance r from the axis where r <R.

G: According to Gauss’s law, only the charge enclosed within the gaussian surface of radius r needs to be
considered. The amount of charge within the gaussian surface will certainly increase as p and r
increase, but the area of this gaussian surface will also increase, so it is difficult to predict which of
these two competing factors will more strongly affect the electric field strength.

O: We can find the general equation for E from Gauss’s law.

A If p is positive, the field must be radially outward. Choose as the gaussian surface a cylinder of length
L and radius r, contained inside the charged rod. Its volume is nr’L and it encloses charge prrrZL.
The circular end caps have no electric flux through them; there ElA =EdAc0s90.0°=0. The curved
surface has E[dA = EdAcos0°, and E must be the same strength everywhere over the curved surface.

2
Gauss’s law, fE @A =1 becomes EJdA _prt
€ €
urved
Surface
. . prrrzL
Now the lateral surface area of the cylinder is 27rlL:  E(27r)L = S
0
Thus, E= 2’: radially away from the cylinder axis
0

L: As we expected, the electric field will increase as p increases, and we can now see that E is also
proportional to r. For the region outside the cylinder (r >R), we should expect the electric field to
decrease as r increases, just like for a line of charge.

(100 cm [ f

= -2 2
O m D—8.60><10 C/m

24.30 a:(8.60><10‘6 C/cmz)

-2
g= = BOOXI0° - Ty g5x107N/C
26, 2(8.85x1077)

The field is essentially uniform as long as the distance from the center of the wall to the field
point is much less than the dimensions of the wall.

2431 (a) [E=0
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k.Q _ (8.99x10°)(32.0x107%) _
®) 2 (0_200)2 _

r



24.32
*24.33
(@)
(b)
©
(d)
2434  (a)

(b)

Chapter 24 Solutions 43

The distance between centers is 2 x5.90 x 10™® m. Each produces a field as if it were a point
charge at its center, and each feels a force as if all its charge were a point at its center.

N - m?[(46)* (1.60 x 107*° C)?

= 899 x 10° =350 x 10° N = [3.50 kN]
0 C2 (2 x5.90 x 107%° m)2

KeQ102
r2

F=

Consider two balloons of diameter 0.2 m, each with mass 1g, hanging

apart with a 0.05 m separation on the ends of strings making angles of :~10 T
10° with the vertical. s e
e
_ N _ mg |
2F, =Tcos10°-mg=0 O T= 05 10° mg
>F,=Tsin10°-F, =0 O F,=Tsin10°, so
Fo = 0-M9_in 10° = mgtan 10°= (0.001 kg)(.8 m/s?)tan 10°
¢~ Hos10°0 ' '
Fo=2x10°N | ~10® N or 1mN
F = keq2
e r2
8.99x10° N[m?/C?)q?
2x10° N= ( / )q

(0.25 m)°

q=12x107" C [~107" C or 100 nC

C_ka_ (8.99x10° Nm?/c?)(12x107 C)
L

=17x10* N/C [~10 kN/C
r (0.25 m)2 /

-7
dp=d=  22X10 C _y 050f Nam?/c [ ~10 kNImZ/C
e 8.85x107? C2/Nn
-6
p=_Q - 570x10 - =213x107%2 C/m?®
7®  £(0.0400)

in = p(4 %) = (2.13x1072)(4 7)(0.0200)° = 7.13x 107 C =
mr?) = (2.13x1072) (4 7)(0.0400)° =

Wl

Qin :P(
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kA 2[8.99x10° N sz/cz)[(z.oo x10°® C) /7.00 m]
243 (@ E= ﬁ - 0.100 m

E=[51.4 kKN/C, radially outward|

(b) &g =EAcos@=E(2mre)cos0°

®¢ =(5.14x10* N/CJ27(0.100 m)(0.0200 m)(1.00) =

24.36 Note that the electric field in each case is directed radially inward, toward the filament.

2k 2[8.99x10° Nn? C?)(90.0x10° C)

=[16.2 MN/C
r 0.100 m

2k _ 2(8.99x10° N2 ¢2)(90.0x 107 C}

=18.09 MN/C
r 0.200 m

2k 2(8.99x10° N2 c?)(90.0x10 C}

=162 MN/C
r 100 m

(@ E

b) E

(0 E

-6 2
24.37 E=2 = 9.00x %(1)2 Cz:/m 5= |508 kN/C, upward
2e, 2(8.85x107* C?/N [m?)

24.38 From Gauss's Law, EA :eg

0

= % = gyE = (8.85 x 1071%)(130)= 1.15 x 10° C/m? = |1.15 nC/m?
i in/1 A
24.39 { EdA=EQmrl)= a0 g dnT
€ 2meyr 2meyr

(8 r=3.00cm inside the conductor

30.0 x 10°°
(b) r=100cm E= =D = 5400 N/C, outward|
2m(8.85 x 107*%)(0.100)

~ 30.0 x 107°
 271(8.85 x 1071%)(1.00)

() r=100cm E =540 N/C, outward|




*24.40

*24.41

24.42

(@)

(b)

Chapter 24 Solutions 45

Just above the aluminum plate (a conductor), the electric field is E = o'/e;, where the charge Q
is divided equally between the upper and lower surfaces of the plate:

(QA/\Z):SA and E= Q

Thus g = =
2e0A

For the glass plate (an insulator), E=0/2e, where 0 =Q/A since the entire charge Q is on
the upper surface.

Therefore, E= Q
2epA

The electric field at a point just above the center of the upper surface is the same for each of
the plates.

E= %, vertically upward in each case (assuming Q > 0)
0

E=0/e o= (8.00 x 10%)(8.85 x 1071?) = 7.08 x 107" C/m?

0=708nC/m?|, positive on one face and negative on the other.

= Q= 0A =(7.08 x 107") (0.500)> C

>|0

Q=1.77x10" C = (177 nC|, positive on one face and negative on the other.

Use Gauss's Law to evaluate the electric field in each region, recalling that the electric field is
zero everywhere within conducting materials. The results are:

|E = 0 inside the sphere and inside the shell

E=k, % between sphere and shell, directed radially inward
r

E=k, g outside the shell, directed radially inward
r
Charge |-Q is on the outer surface of the sphere| .
Charge |+Q is on the inner surface of the shell|,

© 2000 by Harcourt, Inc. All rights reserved.
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and |+2Q is on the outer surface of the shell.




24.43

*24.44

24.45

(@)

(b)

(@)

(b)

Chapter 24 Solutions 47

The charge divides equally between the identical spheres, with charge Q/2 on each. Then they
repel like point charges at their centers:

ke(Q/2)(Q/2) ke Q? 8.99 x 109 N - m2(60.0 x 107 C)?
T (L+R+R)?> T 4L +2R)? T 4 C?(2.01 m)? -

The electric field on the surface of a conductor varies inversely with the radius of curvature of
the surface. Thus, the field is most intense where the radius of curvature is smallest and vise-
versa. The local charge density and the electric field intensity are related by

a
E=— or o=¢E
€o

Where the radius of curvature is the greatest,

0 =eqEmin = (8.85x 1072 C?/N n?)(2.80x10* N/C)= | 248 nC/m”

Where the radius of curvature is the smallest,

0 =€qEmax = (8.85x10™? C?/Nm?)(5.60x10* N/C)={496 nC/m?

Inside surface: consider a cylindrical surface within the metal. Since E inside the conducting
shell is zero, the total charge inside the gaussian surface must be zero, so the inside

charge/length = - A.

0= A0+ gy [ — =[A]

Outside surface: The total charge on the metal cylinder is 2Al =g, + Qgyt -

Uout = 271 + Al

so the outside charge/length =

e 2eBY) _6kA _[3)

r r 21meyr
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Q _ (8.99x10%)(6.40x10°)

2446 (@) E=-tr= = [2.56 MN/C, radially inward

r (0.150)

o
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2447 (a) The charge density on each of the surfaces (upper and lower) of the plate is:

-8
g:%ggg:%mzaoomo'%/mzz 80.0 nC/ m?
. m
_Oc0 _0O 8o00x10%C/m? O _
(b) E= OHK—EBSSXm_lZCZ/NszEk—|(9.04kN/C)k|

€ E= [(-9.04kN/C)k

24.48 (a) The charge +q at the center induces charge —q on the inner surface of the conductor, where its
surface density is:

—q

0' =
& | 4ma®

(b) The outer surface carries charge Q +q with density

Q+q
4mh®

Gb:

2449 (a) [E=0

- _kQ (8.9 x10°)(8.00x10°)

— — 7 —
(b) =5 = =7.99x10° N/C=|79.9 MN/C

r (0.0300)?

(0 |E=0

Q _ (8.99x10°)(4.00x107)

— — — 6 _
(d) E="tc= =7.34x10° N/C = [7.34 MN/C

r (0.0700)

24.50 An approximate sketch is given at the right. Note
that the electric field lines should be perpendicular
to the conductor both inside and outside.
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2451 (a) Uniform E, pointing radially outward, so &g = EA.  The arc length is =
ds = Rd 8, and the circumference is 2mr = 27R sin 6 ol 7

[’} [’}
A= [2mrds = [(27Rsin O)Rd6 = 2nR2Isin 6d6 = 27R?(-cos 6) \g =27nR?(1-cos )
0 0

1 Q 2 Q :
O =—— = 2mR“(1-cos@)=|—(1-cosB independent of R!
€ = 4 F 2R (1-00s0) = | 2= (1-c0s6) | [indiep ]

(b) For §=90.0° (hemisphere): ®g = -2 (1-cos90°)= |2
2eg 2ey

(c) For 8=180° (entire sphere). &g = %(1—003 180°) = Q [Gauss's Law]
0

*24.52 In general, E=ayi+bzj+cxk
V4
In the xy plane, z =0 and E=ayi+cxk },:o y=h
x=0 - y
O, = [E18A = [(ayi +cxk) koA @/
X=w- dA = hdx
2|W 2 X
CDE:chIW xdx=chX| = chw
x=0 2] 2
X=

*2453 (a) G =+3Q-Q=

(b) The charge distribution is spherically symmetric and ¢q;, >0. Thus, the field is directed
|radia||y outward| .

(c) E= —keqzi” S| 2R for e

r I’2

(d) Since all points within this region are located inside conducting material, for b<r<c.

() ®g=[EEA=0 O Uin =€®g = [0]

® o=

_ KeGin _ | 3kQ
@ ==

(radially outward) for a<r<b




24.54

24.55

(M

0

(k)

M

(@)

(b)
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Um0ty 4o rl
Gin =PV =z Q3 ) 7Tr3[|= +3Q
O3 1Ta a
I(eqin I(e O r3 0 r i
=N = £ +3Q0—r=|3k.Q—| (radially outward) for 0<r<a
r2 rnga@E eQa3 ( y )

From part (d), E=0 for b<r<c. Thus, for a spherical gaussian surface with b<r<c,
Oin = t3Q + Uinner =0 Where i, ner is the charge on the inner surface of the conducting shell.

This yields Gjnper =

Since the total charge on the conducting shell is E
Unet = Gouter + Ginner = —~Q, We have

Gouter = ~Q ~ Ginner = ~Q ~ (_SQ) = E

This is shown in the figure to the right. a b ¢ T

The sphere with large charge creates a strong field to polarize the other sphere. That means it
pushes the excess charge over to the far side, leaving charge of the opposite sign on the near
side. This patch of opposite charge is smaller in amount but located in a stronger external
field, so it can feel a force of attraction that is larger than the repelling force felt by the larger
charge in the weaker field on the other side.

fE@A = E(47r2) = gin e

E= P

— 4 3
Forr<a, qin—p(gnr)so _3e0

Conductor

Fora<r<bandc<r, (p=Q sothat|E= Q2
4mre,

Forb<sr<c, E=0,since inside a conductor.

Let q; = induced charge on the inner surface of the hollow sphere. Since E = 0 inside the
conductor, the total charge enclosed by a spherical surface of radius b < r < ¢ must be zero.

_ W -Q
471h? 47mh?

Therefore, Q1 +Q=0 and o1

Let g» = induced charge on the outside surface of the hollow sphere. Since the hollow sphere
is uncharged, we require q; + g2 =0

Q

47c?

and 0,=——=

© 2000 by Harcourt, Inc. All rights reserved.
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24.56
@)
(b)
©
24.57

fE@A =E(47r?) =T

€
-3.60x10° N/C}47(0.100 m)® = Q a<r<b
( / ) n ) 8.85x1072 C2/N n? ( )
Q=-4.00x10° c-
We take Q' to be the net charge on the hollow sphere. Outside c,
+2.00x10% N/C)47(0.500 m)? = Q+Q F>c
( / ) n ) 8.85x10712 C2/N m? (r>c)

Q+Q' =+556x10°C, so Q =+9.56x10° C=[+9.56 nC

For b<r<c: E=0 and g;, =Q +Q; =0 where Q is the total charge on the inner surface of the

hollow sphere. Thus, Q; =-Q ={+4.00 nC

Then, if Q, is the total charge on the outer surface of the hollow sphere,

Q,=Q' -Q, =9.56 NC—4.00 nC = [ +5.56 nC

The field direction is radially outward perpendicular to the axis. The field strength depends

on r but not on the other cylindrical coordinates 8 or z. Choose a Gaussian cylinder of radius r
and length L. If r<a,

_ Gin AL
qDE—eO and  E(27rL) e,
E= A or E= A (r<a)
27Ireg 27reg
AL 2-a%)L
If a<r<b, E(2mrL) = +pn£r a)
0
A 2_.2
E:M (a<r<b)
27re,
AL b? —a?)L
If r>b, E(27rL) = +pn( a)



27reg

E:A +pn(b2—a2)

(r>b)
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24.58 Consider the field due to a single sheet and let E.
and E_ represent the fields due to the positive and + -
negative sheets. The field at any distance from each ! | — || —
sheet has a magnitude given by Equation 24.8: : _
+ -_—
e+ =|e| =2 HE=2 |-|E=0
2eg + U
+ -_—

(@) To the left of the positive sheet, E. is directed
toward the left and E_ toward the right and the net

field over this region is .

(b) In the region between the sheets, E, and E_ are both directed toward the right and the net field
is

E :egtoward the right
0

(c) To the right of the negative sheet, E. and E_ are again oppositely directed and .

24.59 The magnitude of the field due to each sheet given by Equation 24.8 + +
is —|T|—[t| —
+ +
+ +
g . . + +
E =—— directed perpendicular to the sheet. E-9 |+|lg=0|*|E=<
2e == = ==
0 0 [+ + 0
+ +

(&) In the region to the left of the pair of sheets, both fields are directed
toward the left and the net field is

E= g to the left
€

(b) In the region between the sheets, the fields due to the individual sheets are oppositely directed
and the net field is

- [0

(¢) Inthe region to the right of the pair of sheets, both fields are directed toward the right and the
net field is

= | < to the right
€y
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Goal Solution

Repeat the calculations for Problem 58 when both sheets have positive uniform charge densities of value
o. Note: The new problem statement would be as follows: Two infinite, nonconducting sheets of charge
are parallel to each other, as shown in Figure P24.58. Both sheets have positive uniform charge densities

0. Calculate the value of the electric field at points (a) to the left of, (b) in between, and (c) to the right of
the two sheets.

G: When both sheets have the same charge density, a positive test charge at a point midway between
them will experience the same force in opposite directions from each sheet. Therefore, the electric
field here will be zero. (We should ask: can we also conclude that the electron will experience equal
and oppositely directed forces everywhere in the region between the plates?)

Outside the sheets the electric field will point away and should be twice the strength due to one sheet
of charge, so E=0/¢, in these regions.

O: The principle of superposition can be applied to add the electric field vectors due to each sheet of
charge.

A: For each sheet, the electric field at any point is \E\ = 0/(2ey) directed away from the sheet.

() At a point to the left of the two parallel sheets E =E (i) +E,(-1) =2E(H) = _egi
0
(b) At a point between the two sheets E=Eji +E,(-i) =0
() Ata point to the right of the two parallel sheets E =E;i +E,i =2Ei= egi
0

L: We essentially solved this problem in the Gather information step, so it is no surprise that these
results are what we expected. A better check is to confirm that the results are complementary to the
case where the plates are oppositely charged (Problem 58).

24.60 The resultant field within the cavity is the superposition of L]

two fields, one E, due to a uniform sphere of positive charge
of radius 2a, and the other E_ due to a sphere of negative
charge of radius a centered within the cavity.

3
ﬁnrp:4r[r2E+ SO E+:ﬂf:ﬂ
3 g 3eg  3eg

3 -
_ﬂmzmﬂfa so E_:m(_;l):irl
3 e 3eg 3eg
Since r=a+r,, _:M

3eg
E=p, +E =P _ P, PA_pa_, PR
3eg 3ep 3ey 3gg 3eg

Thus, [E,=0 and |(E, = % at all points within the cavity.
0
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24.61 First, consider the field at distance r <R from the center of a uniform sphere of positive
charge (Q = +¢) with radius R.

v O 4 D4 O ¢ O .
amr?)g=Gin - PV (——e[>—— SO E= directed outward
( ) & € 3R’ € Ha e R® H

(@) The force exerted on a point charge g = —e located at distance r from the center is then

a __|:| e |:|__|] g2 o —
FoaEs egzlneoRe’H_ EineoR3H_

e2 ke

2

by K=———=
®) 4me,R® | RS
() F,=mea :_EkBLeZD so a :_Dngeez . = —°r
r er R3 H’ r eR3H
o o w1 ke?
Thus, the motion is simple harmonic with frequency f=—=|— 3
2 | 2m\m,R
| 2
© 1 (8.99x10° Nin? C?)(L60x107° ]
(d)y f=2.47x10" Hz=—] 31 3
2| (9.11x10 kg)R
which yields R®=105x10" m3 or R=102x107% m=[102 pm
24.62 The electric field throughout the region is directed along x; E,
therefore, E will be perpendicular to dA over the four faces of y bA/ ]
the surface which are perpendicular to the yz plane, and E will A
be parallel to dA over the two faces which are parallel to the yz @1 X
plane. Therefore, ,/<am<c>

O, = —(EX\H)A " (EX\X=a+C)A = {3+ 2a2)ab + (3 + 2(a+ )2 Jab = 2ae(2a + ¢)

Substituting the given values for a, b, and ¢, we find ®g =[0.269 N - m2/C|

Q= Pe=238x10"?C=[238pC

24.63 fE @A = E(4nr?) = Gin
€
R 5 5
(@ Forr>R, g, =IAr2(4n'r2)dr 4™ and B2 | AR 5
3 5 5eqr
r 5 3
(b) Forr<R, g, :IAr2(4nr2)dr _ 4mAr and E= Art
5 5eq
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24.64 The total flux through a surface enclosing the charge Q is Q/ey. The flux through the disk is
(Ddisk :IE A

where the integration covers the area of the disk. We must evaluate this integral and set it
equal to % Q/ e, to find how b and R are related. In the figure, take dA to be the area of an
annular ring of radius s and width ds. The flux through dA is

E - dA =E dA cos 6 =E(2rrsds) cos 8

The magnitude of the electric field has the same value at all points within
the annular ring,

1 Q 1 Q b b
= and cosf=—=————
r (32+b2)1/2

41y 12 4Ty S° +Db2

Integrate from s =0 to s = R to get the flux through the entire disk.

_Qb R sds _ Qb [—(sz+b2)1’2] ‘R _Q
0

o R sk RN [ B
E, disk 260-[0 (52+b2)3/2 2e, 2ey (R2+b2)1/ZH

b 1

The flux through the disk equals Q/4e, provided that ——— = —.
g q Q o P (RZ + bz)l/z 2

This is satisfied if |[R =43 b].

r
24.65 fE MAzqﬂziIhmzdr
& €ogf
r 2

E4r[r2 :477-[‘%1 rdr 2477Tar7

€ 9 e 2
E= 2| = constant magnitude

2eq

(The direction is radially outward from center for positive a; radially inward for negative a.)
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24.66

24.67

Chapter 24 Solutions

(@)

(b)

(@)

(b)

. - . . . 1
In this case the charge density is not uniform, and Gauss's law is written as fE [dA :e—IpdV.
0

We use a gaussian surface which is a cylinder of radius r, length ¢, and is coaxial with the
charge distribution.

r
When r <R, this becomes E(2mrl ) = %I%\—%gdv. The element of volume is a cylindrical
079

shell of radius r, length | , and thickness dr so that dV = 27l dr.

ol po0a r O . . oof 0. 2rQ0
E(27rl ) = 0 —2___ - soinside the cylinder, E=|L0C 52
(27m) H e H2 3b0 y 2eo% 3b0

When r > R, Gauss's law becomes

2
. . _| PoR _ 2R
27TI’| Iga 32an dr or outside the cylinder, E 2eqr %1 e

Consider a cylindrical shaped gaussian surface perpendicular to

the yz plane with one end in the yz plane and the other end Y
containing the point x: V)
Use Gauss's law: ‘fE [dA = qeﬂ gaussian
0 surface
By symmetry, the electric field is zero in the yz plane and is ]
perpendicular to dA over the wall of the gaussian cylinder. / x
Therefore, the only contribution to the integral is over the end cap 2 *X'}
containing the point x : /
fEmA:qﬂ or EA:L(AX) NON N
€ €
so that at distance x from the mid-line of the slab, [E :%
0
F _(-eE )E O pe
a=—-= Hﬂ—
me eeOH(
The acceleration of the electron is of the form a=-w’x  with w= \ mpz
| M€
1 | pe

21 21

Thus, the motion is simple harmonic with frequency f= = —\/
M€




24.68

24.69

(@)

(b)

(@)

(b)
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Consider the gaussian surface described in the solution to problem 67.

For x>g, dg=pdV = pAdx =C Ax? dx
1

IEMA=—J’dq
€o

A2 1CATY3 0

_CA o 1
A= [ =30 Ha

3 3 3
E=Cd or E=Cd i for x>9; E=—ii for x< ——
24¢ 24¢, 2 24e
x 3
For —g<x<9 IEmA:iqu:% xzdx:CAX
2 2 € € 3eg
0
3 3
E:—Xi for x>0; E:—Cii for x<0
3eg 3eg
A point mass m creates a gravitational acceleration g= —G—;n r atadistancer.
r
. . _ Gm 2\ _
The flux of this field through a sphere is jig A = ——2(4711' ) =—-471Gm
r

Since the r has divided out, we can visualize the field as unbroken field lines. The same flux
would go through any other closed surface around the mass. If there are several or no masses
inside a closed surface, each creates field to make its own contribution to the net flux
according to

fg [HA = - 47‘[Gmin

Take a spherical gaussian surface of radius r. The field is inward so
fo A= g4’ cos 180° = — g 472
and - 4nGm;, = -4G$ m’p

Then, - g4m? =~ 4nG4m’p and g=4mpG

Or, since p:ME/%ﬂRES, g=
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25.1 AV =-14.0 V and

Q =-Nae=-(6.02x10%)(1.60 x 107°C) =-9.63 x 10* C

— W — — 4 —
AV = . S0 W=Q(AV) = (-9.63x 10° C)(-14.0 1/C) = |1.35 MJ

25.2 AK =dA VO 7.37 x 107 = gq(115)

q=6.41x101°C

25.3 W =AK =i VO
1
5 mvZ=¢(120 V) = 1.92 x 10717 ]

| -17
Thus, v= 573'84x10 )
\ m

-17
(a) For a proton, this becomes V= /w =152 x 10° m/s = [152 km/s

| 167x107" kg

[ 3.84x107Y7
b) If an electron, v=_ 227" ° =649 x10%° m/s = [6.49 Mm/s
®) \‘ 9.11x1073 kg

Goal Solution
(a) Calculate the speed of a proton that is accelerated from rest through a potential difference of 120 V.
(b) Calculate the speed of an electron that is accelerated through the same potential difference.

G: Since 120 V is only a modest potential difference, we might expect that the final speed of the particles
will be substantially less than the speed of light. We should also expect the speed of the electron to be
significantly greater than the proton because, with m, <<m,, an equal force on both particles will

result in a much greater acceleration for the electron.

p’

O: Conservation of energy can be applied to this problem to find the final speed from the kinetic energy
of the particles. (Review this work-energy theory of motion from Chapter 8 if necessary.)

© 2000 by Harcourt, Inc. All rights reserved.
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A: (a) Energy is conserved as the proton moves from high to low potential, which can be defined for
this problem as moving from 120 V down to 0 V:
Ki +U; + AE,,. = K; +U;
0+qV+0=21my,* +0
~19 Oo1lJ Oo_, -27 2
(1L60x107 C)(120 V)En v 5(167x10" kg)v,
Vp =152x10° m/s
(b) The electron will gain speed in moving the other way, from V;=0 to V;=120V:
Ki +U; + AE,. = K; +U;
0+0+0=23my2+qV
=1(9.11x107%" kg)v,? +(-1.60x107"° C)(120 1/ C)
Ve =6.49x10° m/s
L: Both of these speeds are significantly less than the speed of light as expected, which also means that
we were justified in not using the relativistic kinetic energy formula. (For precision to three
significant digits, the relativistic formula is only needed if v is greater than about 0.1 c.)
. 1 . .
254 For speeds larger than one-tenth the speed of light, > mv? gives noticeably wrong answers for
kinetic energy, so we use
0 1 O 20 1 0
K =me?————-1=(9.11x 107 kg)(3.00 x10® m/'s) -15=7.47x 1071
hi-vi/c¢? O ( )( ) Hi1-0.4002 H
Energy is conserved during acceleration: K;+ U; + AE = Ks + Us
0+qV;+0=747 x107° ] + qV;
_ o —747Tx10)  -7.47x 1071
The change in potential is Vi- V;: Vi-V;= q =l eox10-C - +46.7 kV
The positive answer means that the electron speeds up in moving toward higher potential.
25.5 W = AK = - qAV

0- $(9.11x10% kg)(4.20x10° m /)’ = - (-160x107° CJav

From which, AV =
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*25.6 (@) We follow the path from (0, 0) to (20.0 cm, 0) to (20.0 cm, 50.0 cm).

(b)

*25.7

*258  (a)
(b)

25.9

AU = - (work done)

AU = —(work from origin to (20.0 cm,0) ) - (work from (20.0 ¢cm,0) to (20.0 cm,50.0 cm) )

Note that the last term is equal to 0 because the force is perpendicular to the displacement.

AU = - (qE,)(AX) = — (12.0 x 107 C)(250 V/m)(0.200 m) = |-6.00 x 1074 ]

AU 6.00 x 1074

AV=— =_-———— = _500J)/C=[-500V
q 12.0x10°%C

_@vO_ 25.0x10°)/C

—_— = 6 —
4 1s0x102m L6710 N/C =[1.67 MN/C

E

@ VO=Ed = (5.90 x 10° V/m)(0.0100 m) = [59.0 V

TM=@AV)G (911 x 100 v@ = (160 x 10729)(59.0)

|vf = 4.55 x 108 m/s|

2 2
AU = -Im(ve -vi?) = 20 11x 107 kgS@lAO x10° m/s|" -(3.70x10° m/s) Ez 6.23x1078

AU = qAV: +6.23 x 1078 = (-1.60 x 107%)AV

AV =-38.9V| The origin is at higher potential.
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B c B y
*25.10 Vg-Va=-[ Els=-[ Els- [ Eds C > B
A A C
A

0.500 0.400 X
Vg -V =(-Ec0s180°) I dy - (Ec0s90.0°) I dx

—-0.300 —-0.200 ‘ \ ‘
Vg - Va = (325)(0.800) = [+260 V A E

25.11 (a) Arbitrarily choose V=0 at x=0. Then at other points, |, r Q
V =-Ex and U, =QV = -QEx. Between the endpoints of the %AM/\/\- m E

motion,

(K+Ug+Ug) =(K+Ug+Ug)¢ x=0

0+0+0=0+3Kfax = QEXpmax

so the block comes to rest when the spring is stretched by an amount

_20e _ 2[50.0x10° C)(5.00x10° V;m)
maxT ko 100 N/m

- [G50m]

(b) At equilibrium, XF, = -F,+F,=0 or kx=QE. Thus, the equilibrium position is at

- [cz50m]

Qe _(50.0x10 c}(5.00x10° NyC)
Tk T 100 N/m

2
(c) The equation of motion for the block is XF, = —kx +QE = sz;(. Let X' =x —%, or x=x"+

QE

so the equation of motion becomes:

2( 1 2
.. QEO d*(x' +QE k) d>x _ 0kQ,
kX' +=——"+QE=m , or =-
Ef (o dt? dt>  Om

This is the equation for simple harmonic motion (ax, = —wzx'), with w:\/k/m. The period of
the motion is then

T:ZLT:ZT[ 9:2,1374-00"9 :

W k ~“7\100 N/m

(d) (K+Ug+Ug) +AE=(K+Ug+Ug)y

0+0+0 = UyMgXmay =0 + FkxGay ~ QEXmax
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60

25.12

25.13

Chapter 25 Solutions

_2(QE - pymg) _ 2 [(50.0 x107® C)(5.00x10° N, C)-0.200(4.00 kg)(.80 m, sz)l

Xmax = =/ 0.343 m
max k 100 N/m
(a) Arbitrarily choose V =0 at 0. Then at other points V =-Ex and k 0
U, =QV = -QEx. Between the endpoints of the motion, %WM_ m
(K+Ug +Ug)i = (K +Uq +U,); I
x=0
0+0+0=0+ 3G ~ Q) 50 Xax = | 20
(b) At equilibrium, XF, = -F,+F, =0 or kx=QE. So the equilibrium position is at x = %
d?x QE QE

(©

the equation of motion becomes:

2( 1 2
. QEO, . _ d*(x +QEk) dx _ ko,
-k x'+=—_"+QE=m or =
Ef (o dt? dt>  Om

This is the equation for simple harmonic motion (axy = —wzx'), with w:\/’k/m

The period of the motion is then T :2—”: 277\/%
w
(d) (K+Ug+Ug) +AE=(K+Ug+Ug)g
0+0+0 = 4MGXax = 0+ 3Kiax = QEXpax
w = |2(QE - pmg)
max — k
For the entire motion,  y-y; =vyt+1a,t’
-0= 1,42 _ 2y
0-0=vjt+5ast so ay = T‘
SF, =ma,: -mg - qE = _2mv;
y y: t
_mRy; 0 M2y _
E—th 0 and E= g0t 95
For the upward flight:  vi; =vJ; +2a,(y - y;)
_ 0_2v _
0= Vi2 + ZD—T'%ymaX -0) and Ymax = %Vit

The block's equation of motion is ZF, = —kx+QE:md?. Let x' :X_T’ or x=x' +T' o]
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AVngImaxEmy:+% ;_95,

2.00kg [R(201 M) g g, m/s2H3(20.1 mys)(4.10 )] =

" 5.00x10°cO 4.10s
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25.14 Arbitrarily take V =0 at the initial point. Then at distance d downfield, where L is the rod
length, V=-Ed and U, =- ALEd

(@ (K+U); =(K+U);

0+0=2plv? - ALEd

[2)Ed 2(40.0 x1078 C/ m)(100 N / C)(2.00 m)
= | = = 10.400 m/s
o \/ (0.100 kg/m)

o

25.15 Arbitrarily take V = 0 at point P. Then (from Equation 25.8) the potential at the original

position of the charge is —E - s =—EL cos 6. At the final pointa, V =-EL. Suppose the table is
frictionless: (K +U); = (K +U);

0-gEL cosf=1mv? -qgEL

[2¢EL(1—cosB) _ |2(2.00x10~° C)(300 N / C)(1.50 m)(1 - cos 60.0°)
v==. = = 10.300 m/s
\ m \ 0.0100 kg

*25.16 (a) The potential at 1.00 cm is

q (8.99x10° N - m?/C?)(1.60 x 107'° C) —
Vi=kew = = =(1.44 x 107 V
r 1.00 x 10™“ m

(b) The potential at 2.00 cm is

g _(8.99x10°N-m?/C?(1.60 x 10 C)
- =

- =0.719x 107" V
2.00x 1072 m

V2=ke

Thus, the difference in potential between the two points is

AV =V,-V;=|-7.19x 108V

(c) The approach is the same as above except the charge is —1.60 x 107® C. This changes the sign
of all the answers, with the magnitudes remaining the same.

That is, the potential at 1.00 cm is |-1.44 x 107" V
The potential at 2.00 cm is — 0.719 x 107" V, s0 AV =V, - V; = |7.19 x 10 V| .
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25.17 (a) Since the charges are equal and placed symmetrically, 2.00 uC y{q 2.00 uC

_@ @__x
(b) Since F=qE =0, |E=0] x=-0800m 0 x=0.800m
N - m?2.00 x 10 CD
9
(c) —2ke —Z%QQXN = %§OSOOm i

v:4.50x104v:

_keas Kedz _, @9 29
2518 (@) Ex= 2 + x— 2_00)2 =0 becomes Ex = ke 8(— Wﬂ =0
Dividing by ke, 2gx? = q(x — 2.00)?

x% + 4.00x - 4.00 =0

B -4.00++/16.0+16.0 _
Therefore E =0when x= > =

(Note that the positive root does not correspond to a physically valid situation.)

_keqy Kedz  _ _, 14 29 _
®) V==~ *Zoo-x 0 or V=ke g3~ @oo—xg =0
Again solving for x, 2gx = ((2.00 — x)
For 0 <x<2.00 V =0when x =]0.667 m
-2

and 4 d

X2
For x <0 X=

koG4, _ —(8.99 x 10°)(1.60 x 10719)? _
2519 (@) U=-¢112 - = -435x1018)=[-272eVv
( ) r 0.0529 x 10‘9

b) U-= Kedada _ —(8.99 x 10%)(1.60 x 1019)2

= [-6.80 eV
r 22(0.0529 x 107°)
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© U= el _ —kee? [

r o0

Goal Solution

The Bohr model of the hydrogen atom states that the single electron can exist only in certain allowed
orbits around the proton. The radius of each Bohr orbit is r=n?(0.0529 nm) where n = 1,2, 3,....
Calculate the electric potential energy of a hydrogen atom when the electron is in the (a) first allowed
orbit, n=1; (b) second allowed orbit, n=2; and (c) when the electron has escaped from the atom (r = o).
Express your answers in electron volts.

G: We may remember from chemistry that the lowest energy level for hydrogen is E; =-13.6 eV, and

higher energy levels can be found from E, = E1/n2, so that E, =-3.40 eV and E, =0eV. (see section
42.2) Since these are the total energies (potential plus kinetic), the electric potential energy alone
should be lower (more negative) because the kinetic energy of the electron must be positive.

O: The electric potential energy is given by U = ke@

A: (@ For the first allowed Bohr orbit,
0 o NIM20(-1.60x107*° C)(1.60x107%° C) 18 -4.35x10718 )
U= B3.99 x 10 . - =-4.35x10718 ) = T =-27.2eV
cZ H (0.0529x 10 m) 160x107° J/ev

(b) For the second allowed orbit,
(-160x107* C)(1.60x107"° C) _

5 ~ -1.088x107* ) = -6.80 eV
2%(0.0529 x 107 m)

U =(8.99 x10° N [in? / C?)

() When the electron is at r = oo,

~1.60x107%° C)(l. 60 x 1072 c) o)

U= (8.99 x10° N H‘nZ/CZ)(

o0

L. The potential energies appear to be twice the magnitude of the total energy values, so apparently the
kinetic energy of the electron has the same absolute magnitude as the total energy.

9 —9 9
. _ gQ _ (5.00x107 C)(-3.00 x 10 C)(8.99 x 10°V - m/C)
2520 (@) U= drtegr = (0.350 m) =(-3.86x107"J

The minus sign means it takes 3.86 x 10~/ J to pull the two charges apart from 35 cm to a much
larger separation.

0 v & 4 2 (5.00x10™° C)(8.99x10° VI /C) _ (-3.00x10° C)(8.99 x 10° V [/ C)
4megr,  4megr, 0.175m 0.175m

V=103V



2521

V = (8.99 x 10%)(7.00 x 10~

1
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6) [l -1 _
[0.0100

v=|[-1.10x10"C= -11.0 MV

1 4.00 3.87
+ [ cm cm
0.0100 0.038701 /
~ - —q l

«—2.00 cmm —>1
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1 1 02 03
%2522 Us = 0aV1 +QiV2 + Vs = Ga - a2,

1

0
= (10.0 x 107 C)2(8.99 x10° N 2/ c2) + +
D600m " 0.150 m /(0.600 m) +(0.150 m)? .

Ve
25.23 U=U;+Uy+Uz+ U, @O—0)

U=0+Ugp+ (Uz+Uz)+ (Us + Uz + Usg)

U=0+-—t= EQ kQ Qfﬂg keQ Ql+—+1 @5_@

_ k,Q? 20 ke Q?
u=" QHTZQ_ 5.41 =

An alternate way to get the term (4 + 2/\52) is to recognize that there are 4 side pairs and 2 face
diagonal pairs.

9 2,2 -6
%95 24 el |, kep _ Ckeq_ , 899107 NI, C )(2.00x107 c)O y
. @ V=—_=+ D o= 3 a : @
h 1/(1.00 m)? +(0.500 m) P & (0.0500m)
V =3.22x10% V = [32.2 kV] 200 uC 2004C
(-1.00 m, 0) (1.00 m, 0)

(b) U:qV:(—3.OOX1O_6CET% 22 x 10% JD —9.65x1072 J

*25.25 Each charge creates equal potential at the center. The total potential is:

V = SD(DL(';q) E: —%Req
O O




*25.26 (a)
(b)
2527 (a)
(b)
2528 (a)
(b)
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Each charge separately creates positive potential everywhere. The total potential produced by
the three charges together is then the sum of three positive terms. There is located
at a finite distance from the charges, where this total potential is zero.

V :M-{-M = Zkeq
a a a
. . . myva
Conservation of momentum: 0=mqvyi+myvy (i) or vy= m,
ke (- K.(—
By conservation of energy, 0 +% = % movi + % mavs  + %
ke 010 Ke 010 1 1m2v2
e 0102 efaf2 _ 1 2 1Mmivi
and ntr, —d =72 Mvy 2 my
Comka, O 1 10
V=, 2KeU102 % _7@
\my(my +my) By +r, d
12(0.700 kg)(8.99x10° N %/ C?)(2x107° C)(3x10° C) g 4 1 o

"y (0.100 kg)(0.800 kg) Bx107 m " Toomn 08 m/g

myvy;  (0.100 kg)(10.8 m/s)

m, 0.700 kg -

If the spheres are metal, electrons will move around on them with negligible energy loss to
place the centers of excess charge on the insides of the spheres. Then just before they touch,
the effective distance between charges will be less than r; + rp, and the spheres will really be

moving [faster than calculated in (a)| .

Vo =

Conservation of momentum: 0=mvpi+ myv,(—i) or v,=myv;/m,
By conservation of energy, 0+ KO W% Imyi+imyvi+ ke(= G)ay
d (rp+r7)
and ety _ ket - 1, 2, 1mivi
rp+r, d 2 2 my
Comkag, O 1 10 Om, O omkag, O 1 10
v, = ! 20142 % _75 VZZ%la/lz 1MeH142 % _75
\‘ml(ml+m2) 1+r, d 2 \sz(ml+m2) 1*+r; d

If the spheres are metal, electrons will move around on them with negligible energy loss to
place the centers of excess charge on the insides of the spheres. Then just before they touch,
the effective distance between charges will be less than r; +r, and the spheres will really be

moving | faster than calculated in (a) | .
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8.99x10° N[m?/C?)(8.00x107° C
25.29 V:keQ so r:keQ:( / )( ):72'0VDm
r Vv Vv Vv
For V =100V, 50.0 V, and 25.0 V, |r =0.720 m, 144 m, and 2.88 m |

The radii are | inversely proportional| to the potential.

2530 (a) V(x)= keQr , ke Qp _ k. (+Q) + ke (+Q) 2,50,
. N o V2 + 22 \/‘x2 +(—a)2
V(x)
Vo= 2KQ _k@n 2 R
2,2 a [ 2 0.50
x? +a Hy (x/a)” +1H -

|
~
|
W
|
N
|
—_
o
—_
N
w
~

x/a

(k-Q/a) \;‘s(x/a)2 +1

0 Viy)=%Q k0 k() k(-0) I
r rpoly-d  fy+q 6t
V(Z) 4l
k,Qla
viy)=kQD 1 1 0 . il .
y a Hy/a—l\ y a+1\H -5 L1 2 3 4 5
-4
r—6
V(y):D1 1 0 _:180
(k.Q/a) Hy a-1 \y/a+1\E yla
25.31 Using conservation of energy, we have K; +U; =K; +U;.
k
But U :M, and r; =c. Thus, U; =0.
i
_ _ . . _ ke%rqgold _1 2
Also K; =0 (v¢ =0 at turning point), so U; =K;, or r%—imava
min

2(8.99 x 10° N [in? 7/ C2)(2)(79)(1.60 x 102 )’
_ lalgoig _ 2(8.99 % 9L )
min — 2 -

m, V2 (6.64 x 10~%" kg)(2.00 x 10’ m/s)?

=2.74x10% m=




25.32

25.33

25.34
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Using conservation of energy

kEEQ - kGEQ + 1

2
2mv

we have:

which gives: v =

or _ /(2)(8.99 x10° Nm?/C?)(-160x10°® c)a0°c)gp 1 1 O
| 9.11x10™ kg [0.0300 m  0.0200 mO
Thus, v={7.26x10° m/s|
Ko -2
u=y erq'q‘, summed over all pairs of (i, j) where i # j é ;@q
ij A
A
U =k A(-20) , (-20)(30) , (20)(3a) , a(20), _a(30) , 20(-20)0 S0
=k, 3 + + + + +— 0 ) 43
g b a b 2 a2+b? aZ+b’ I I
U= keqzD ~2 6 , 6 , 2 , 3 4 0

FD.400 0.200 0.400 0.200 0.447 0.447H

_ 9 20 4 _ 4 1 0O 1o
U_(&ggxlo )(6'00x10 )53.400 0.200 0.447H

Each charge moves off on its diagonal line. All charges have equal speeds.

S (K+U), = 3 (K+U)

2 2 2 2
O+Lkeq + Zkeq :4(lmv2)+L(eq ¥ 2k0”
L V2L 2 2L 242L

2
@_'_i@keq :vaz
A2 L

I 2
v= @H i@ikeq
\9 V80 mL
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25.35 A cube has 12 edges and 6 faces. Consequently, there are 12 edge pairs separated by s, 2 x 6 = 12
face diagonal pairs separated by \/E s, and 4 interior diagonal pairs separated \/5 S.

2 2
U= ked §2+£+imz 22.8'%;1
s V2 \3H s

25.36 V =a+bx=10.0 V+(~7.00 V/m)x
(@ Atx=0, V=
At x=3.00 m, v:
At X =6.00 m, v=

(b) E:—(:j—\;:—b:—(—Y.OO V/m)=[7.00 N/C in +xdirection
25.37 V = 5x - 3x%y + 2yz? Evaluate E at (1, 0 - 2)
—_— W —_— —_— —_—
Be=-> = = -5+6(1)(0) = -5
v
Ey=-—— = |+3x? - 27| =3(1)*-2(-2)*= -5
-2
—_— W —_— —_— —_—
E,=-— = = —4(0)(-2) =0

E= BB BT = (5 #()+ 0

2538 (a) For r<R v:ke?Q
dv
E =—-— =
' dr @
(b) Forr=z=R V:keTQ
' d 0O 20 |2
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25.39 E :_ﬂ:_iaﬁlnq +\“f‘|2+y2m
TR TaTag g

0 u
E :keiﬂ— y2 = keQ
Y IyE 12 +y2 +] I2+yZH y\;“‘I2+y2
25.40 Inside the sphere, E, =E, =E, =0.
Outside, E,=- % =- %(VO - Eyz +Egaz(x? +y? +22)” 3/2)
So E, = —[o +0+Eya’z(- 3/72)(x?% +y? + 22)75/2 (2x)] = [3Eya’xz(x? +y? + 2%)” %2
v J 3,092 4 y2 4 52\~ 372
=-—=-—|Vo-Ez+Eaz(x°+y° +z)
y EY dy( 0~ ko 0 )

5/2

E~= - Epa’z(- 372)(x? +y? +22)7 %22y = |3E,alyz(x? + y? + 22)”

;ﬂ = Ey- Ega’z(-3/2)(x2+y2+22) %2 (22) ~Epad(x 2 +y? +22)7 %2

E,= EO + E0a3(222—x2 _yZ)(X2+y2+22)—5/2

k
*2541 AV =V2R _VO = kej#_kej = keiQQ\/i— _1@: —0553;_Q
yRZ+(2R)> R RINS
*25.42 V:IdV: ! %
4megd r

All bits of charge are at the same distance from O, so

tm?0(-7.50 %10 C|

= 1 Q:D gN = |-
V ane, R B T B oo msng
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C 1 C
— 0 - 1=
m mQO m

N

O
2543 (a) [a]=§—|a=

d }\d <d>
(b) V =k J_q =ke X I xdx ked@‘d'ﬂ%"‘km \ —————x
r d+x) dH A R —
25.44 kedd _ Iax—$2
2+(L/2-x)
Letzzg—x. Then ng—z, and dx=-dz
V =k, IL/Z 2)(-dz) _ kaLI dz +kaI zdz :—kem‘In(z+\s"‘22+b2)+kea\s““‘22+b2
b2 + 22 2 ) p2+22 +72 2
keaL ‘ 2 - / 2 L
VERL gL/Z—x)+\§(L/2—x) +b25 +koa(L/2 - %) +1?
0 0
| O
2-L++(L/2)" +b?
v:—ke""lna'/ (L2 Ch a5 (L/Z—L)2+b2—\/(L/2)2+b2D
2 O 2,2 0 ° B B
g L/2++/(L/2)" +b
vo| _kat 8 O/b? +(12/2) - 1/20
2 %b2+(L2/4)+L/ZH
25.45 dV=Jke& where dq = ogdA = g2mrdr
2+ x?
V = 2mok J’ridr2= 2711<ea%;"x2+b2 —\/x2+a25 1 P
\r + X x\—>|
-R /\dx Ads 3R A dx
2546 v =k .[allcharge r ISR - eJ—semicircle R IR
-R 3R
V ==k, A In(=x) ki;‘

V =k, ARk eATT+K, AN 3= [k A(+21n 3)]
R
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bstituting ai Ues | _ keq s, (8.99 x 109 N-m2/C2) g
25.47 Substituting given values into V = T 750 % 10°V = (0.300 m)
- 7 250x107C 5
Substituting q=2.50x10"" C, = = |l.56 x 10 electrons|
1.60 x 10° C/e~
25.48 g1 + 2 =20.0 uC SO g1 =200 uC-qo
Qi _nn 200pC-g; 4.00cm
42 I S0 0 =6.00 cm
Therefore 6.00(20.0 uC - qp) = 4.00qy ;
Solving, g2 =12.0 uC and gy =20.0 uC -12.0 uC =8.00 uC

(8. 99 x 109)(8.00 x 10‘6)

(@ E-= krelgl = (0.0400)2 =4.50x10" V/m=

ke _ (8.9 x10%)(12.0x10™¢)

— 7 —
E, =& (0.0600) =3.00x10" V/m=

ra

ke
b) V,=V,=—2=(180 MV

9 -6
2549 (a) E=[0]: V:k%::(s.ggxloo)iig.omo ) - [167 MV

r

koq _ (8.99x10°)(26.0x107°)
by E=-t'= =[5.84 MN/C| awa
®) 2 (0_200)2 y

koq _ (8.99x10°)(26.0 x107%)
VvV =—"_1= = -117 MV
r (0.200) -

k.q _ (8.99x10°)(26.0 x107%)
c) E==F'= = -_11.9 MN/C| awa
© R? (0.140)? Y

v =Xl mermv
R
25.50 No charge stays on the inner sphere in equilibrium. If there were any, it would create an

electric field in the wire to push more charge to the outer sphere. Charge Q is on the outer

sphere. Therefore, |zero charge is on the inner sphere| and |10.0 UC is on the outer sphere| .
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2551 (8) Emax =3.00x10°V/m :ke—zQ :keTQ% :vmax%
r

Vmax = Emaxt = 3.00 x 10%(0.150) =

0 Cpmg, [ oy,

E,oxr? _ 3.00 x10°(0.150)
= = =17.51 uC
Qmax ke 8.99 x 109

Goal Solution
Consider a Van de Graaff generator with a 30.0-cm-diameter dome operating in dry air. (a) What is the
maximum potential of the dome? (b) What is the maximum charge on the dome?

G:

Van de Graaff generators produce voltages that can make your hair stand on end, somewhere on the
order of about 100 kV (see the Puzzler at beginning of Chapter 25). With these high voltages, the
maximum charge on the dome is probably more than typical point charge values of about 1 uC.

The maximum potential and charge will be limited by the electric field strength at which the air
surrounding the dome will ionize. This critical value is determined by the dielectric strength of air

which, from page 789 or from Table 26.1, is Egiicay =3 X10° V/m. An electric field stronger than this
will cause the air to act like a conductor instead of an insulator. This process is called dielectric
breakdown and may be seen as a spark.

From the maximum allowed electric field, we can find the charge and potential that would create this
situation. Since we are only given the diameter of the dome, we will assume that the conductor is
spherical, which allows us to use the electric field and potential equations for a spherical conductor.
With these equations, it will be easier to do part (b) first and use the result for part (a).

A: (b) For a spherical conductor with total charge Q, |E| :ke—ZQ
.
g2 (3.00x10° V/m) (0.150 m)’
Q=—-= 5 >——5—(1NIOn/VIT)=7.51uC
Ke 8.99x10° NOm“/C
9 2 y~2 -6
@ v=kQ_(8.99x10° NIN®/CHT 1107 C) o,

r 0.150 m

These calculated results seem reasonable based on our predictions. The voltage is about 4000 times
larger than the 120 V found from common electrical outlets, but the charge is similar in magnitude to
many of the static charge problems we have solved earlier. This implies that most of these charge
configurations would have to be in a vacuum because the electric field near these point charges
would be strong enough to cause sparking in air. (Example: A charged ball with Q=1 uC and
r =1 mm would have an electric field near its surface of

=9x10°V/m

1 (9x10° NaZ/c?)(1x107 )
ST T (0.001 m)?

which is well beyond the dielectric breakdown of air!)
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k Y
25.52 V=—"— and E:re—zq Since E=—,

Vv 6.00 x 10° V
b) r== =———— =[0.200m| and
(b) E  3.00x10°V/m -

\Y

@ o=, =[B3uc]

38)(54)(1.60 x 10792

*25.54 (a) To make a spark 5 mm long in dry air between flat metal plates requires potential difference

V =Ed=(3.0x10° V/m)(5.0x107* m) =15 x10* v |-10* v

(b) Suppose your surface area is like that of a 70-kg cylinder with the density of water and radius
12 cm. Its length would be given by

70x10% cm® = n(12 cm)’| | =16 m

The lateral surface area is A=2mr| =27(0.12 m)(16 m)=12 m?

The electric field close to your skin is described by E = 9= i SO
ey Aeg

N g _ c? O -
—EA}= E&.omo‘5 —31.2 m?2)8.85 x 10712 ~10° C
Q L C )EB Nm2H

1 2 1 Y
2655 () V=kQpi57 - x *x—an +Q |

2(x +a)(x—a) + x(x + )] | 2ke Qa’
X(X + a)(X — a) 0 7| x3 - xa?

% =kng((X_a)_

| 2ke Qa® a
by Vv= 3 for 3 << 1
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_dv _ d 02k,Qa* O_ | (2k.Qa%)(3x* —a%) —
2556 (@) E=-g = E&Se— oty e(x3—xa2)2 and [E,=E,=0

2(8.99 x 10° N 2/ C2)(3x 107 C)(2 x 1073 m)2[3(6 x102 m)? - (2x1073 m)z]

(b) Ex=
(610 m)® - (6 x10 m)(2x 1073 m)2]2

Ex = 609 x 10® N/C = [609 MN/C

__Q
2557 () E_MQ =

_ Q
4anlgr

_|[Vv]_ so00v _
= _SOOV/m_

) V=-3000v=— 2
471104 (6.00 m)

~3000 V
= 6.00 m) = [-2.00 uC
Q (8.99><109VDm/C)( )

25.58 From Example 25.5, the potential created by the ring at the electron's starting point is

V. = k.Q :ke(er)\a)
b +a? X2 +al

while at the center, itis V; =2mk,A. From conservation of energy,

4k A U a U

:m—e(Vf_Vi): mee %_\/xi2+a2%

, 4n(1. 60 x 10‘19)(8. 99 x 109)(1.00 x 107
Vi =

)C 0.20 -
9.11x107 @l 1(0.100)? +(0.200)? Q

=|1.45 x 10’ m/s




25.59

25.60

(@)

(b)

(@)

(b)

©
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Take the origin at the point where we will find the potential. One ring, of width dx, has
charge Qdx/h and, according to Example 25.5, creates potential

k.Q dx

av=——=—~—
hyx?+R?

The whole stack of rings creates potential

2
V= d+h_ kQdx :kehQIn%(+\/X2+Rzad+h— kQ, d+h+y(@+h?+R?

all charge .[d h\/X2+R2 ¢ | h d+\/d2+R2

A disk of thickness dx has charge Qdx/h and charge-per-area Qdx/nR?h.  According to
Example 25.6, it creates potential

_ Qdx 0/ 2. 2 _ .0
dV—27Tker[R2h X“+R" —xpg

Integrating,

V= J’;+h2kEQ%\/x2+R dx—xde 2kQ§x\/x +R2+—In§<+\x +R2E

20f*h

X
2

R%h

O
Ca
: O+ h+(d+h?+R*EH

v= | K gd+h)\;‘(d+h)2+R2—d\/d2+R2—2dh—h2+R2I \( ’
2 2, p2
d+\d +R

h

0 __ 36.0x10°C/m? 03 KN
20y 2(885%x10 Cc?/N-m?) T C

The positive plate by itself creates a field E=

away from the + plate. The negative plate by itself creates the same size field and between the
plates it is in the same direction. Together the plates create a uniform field 4.07 kN/C in the
space between.

Take V = 0 at the negative plate. The potential at the positive plate is then

V-0=[**""(-4.07 kN/ C)dx

The potential difference between the plates is V = (4.07 x 103 N/C)(0.120 m) = |488 V

.2 O_0,..2 O
E‘gmv +qVDi—Bmv +qVDf

qV = (160 x 100 C)(488 V) = 5 mv} =
= [306 km/s
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78

25.61

25.62

Chapter 25 Solutions

(d)

(®)

®

(@)

(b)

viZ=v? +2a(x - x)

(3.06 x 10° m/s)? = 0 + 2a(0.120 m)

a=3.90 x 10" m/s?|

SF =ma = (167 x 1027 kg)(3.90 x 10! m/s?) =

F  651x107'°N

9 T1e0x100C =[407kn/C]

Q k k 2
W =[Vdq where V=§—q; Therefore, (W = gg
0
B
Vg —V,p = —IA Elds and the field at distance r from a uniformly _a

charged rod (where r > radius of charged rod) is
A _2kA ‘

21egr r

In this case, the field between the central wire and the coaxial
cylinder is directed perpendicular to the line of charge so that

Iy ZkeA
a r

Vg =V :—Ir dr = 2k, A Ingﬁﬁ, or [AV =2kA Iné%ﬁ

From part (a), when the outer cylinder is considered to be at zero potential, the potential at a
distance r from the axis is

_ o, O
V =2kA InDlr 0
. L O
The field at r isgiven by E= NV -2k, A ' D]—Lguz ZkeA
or JH e
But, from part (a), 2k, A = L. Therefore, |E= _ AV OO
In(ra/ry) In(ra/ry) OO
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25.63 VoV = [ Elr =" A gr
n rn27mgr
Vo-Vi= A InDZD
21y rlg
k k.2
25.64 For the given charge distribution, V(x,y,z)= er(q) + e(r )
1 2
where =y (x+R)Z+y?+22 and r, = \x? +y? +22
The surface on which V(x,y,z)=0
.. 01 20
is given b k -—p=0,0r 2ry=r
g y eQHTl I’ZE 1=
This gives: 4(x +R)* +4y? +47% =x% +y? + 72
. . . . 2,..2,.2, 8B A L20_
which may be written in the form: XTryt e o R% +(0)y +(0)z + B R°;=0 K|
The general equation for a sphere of radius a centered at (xo,yo,zo) is:
2 2 2
(x=x0)" +(y=v0)" +(z-2)" -a* =0
or  x?+y?+z? +(—2x0)x+(—2y0)y+(—220)z+(x§ +ys +28 —az):O 2

Comparing equations [1] and [2], it is seen that the equipotential surface for which V =0 is
indeed a sphere and that:

—2X0:%R; -2y =0; -2z5=0; x§+y§+zg—a2:%R2

4 o 6 40, _ 4.2
Thus, X, = -=R, =z,=0, and a°= ———Eﬁ =—R".
0 3 Yo = 2o 09 3 9
. . . 04 O . . 2
The equipotential surface is therefore a sphere centered at 03 R,O,OD ,having a radius §R
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25.65 (a) From Gauss's law, (no charge within)
_p Oa 0, (1L00x107%) _ | 89.90
EB—keﬁ—(8-99x10) v = 0,2 qv/m

r 0O 20

- -9
EC:ke(in-;qB):(g_ggx]_OQ)( 5-002><1O ): 0 45_05\//m
r

_ -9
(b) VC - ke (qA + qB) - (899 x 109) ( 5.00 x 10 ) — D_ 45.0 DV
r r o r O
O At ry, V=- 50 - _150v
0.300
. r 89.9 m 1 0_|0 89.90
Inside r,, Vg==-150V+ [ ——dr =-150+89.9 = - =| =450+ ——V
20 7B [ Or 0.3000° |0 r O
B 89.9 _ -
O At r, V=-450+ =+150V so Va=+150V
0.150
25.66 From Example 25.5, the potential at the center of the ring is
V; =k.Q/R and the potential at an infinite distance from the ring .
is V¢ =0. Thus, the initial and final potential energies of the | ¢ .
point charge are: -
Uniformiy
2 charged ring
ui:Qvi:ke% and U; =QV; =0
From conservation of energy, K;+U; =K; +U;
2 2
1 2 - keQ i — 2k,Q
or sMvi+0=0+—""— ivin Vi = [y ——
2 Mvi R gving IV MR
25.67 The sheet creates a field E; = zii for x> 0. Along the x-—axis, the line of charge creates a
field
A .
E,= away (=1) for x<3.00 m

27 [ ~ 27§(3.00 m - x)
The total field along the x —axis in the region 0<x<3.00 m is then

o _ A
"B 2m(3.00-x)

E=E, +E, §



@
(b)
25.68
2569 (a)
(b)
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The potential at point x follows from

xd o A O
V-Vy,=-[( EOdx= - X
i 55 2ng e
oX A X 0O
=V - -~
20 2ng gl 3.000
-9 2 -9
V =100 KV - (25.O><1E)12 CZ/m )x2 _ 80.0><1_(1)2 C2:/m . E]l X 0O
2(8.85 1072 C?/N [?) 2m(8.85 %1072 C2/ N m?) .000
V =[100kV -141 1.44 kV) In1.00 -
e % ( ) El OOmH
At x=0.800m, V=316V
and U =QV =(2.00x10 C|(316 J/C)=6.33x107 J=[633 nJ
sl 4y TN %:1+L+\/a+L +p2 U
V =k, J = kA In§<+\;‘(x +b)% = kA In O
VX2 +b? a 0 a+a?+02 [
0 ]
_ 0V _|2kpcos@
E=——r="7 3
or r
100 O
In spherical coordinates, the 8 component of the gradient is T Ooal
1wV O_ | kepsin@
Therefore, Eg=--+——"=|"*—F—
97 rOpeD ré
o_2k€p o) — o) — o_kep
Forr>>a, E/(0°)=—- and E(90°)=0, Eg(0°)=0 and Ey(90°)=—5
r r

These results are |reasonab|e forr >> a| .

However, for |r - 0, E(0) - oo| .

_ K.py oV _ 3kpxy
V= (x2 +ey2)3/2 and |E, = v (2 +ey2)5/2
£ o 9V _ e|o(2y2—x2)

y 0)/ (X +y )5/2
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25,70 (a) |Ea>Epg since E= av
As
AV 6-2)V

(b) Eg= —E == "Zem - 200 N/C| down

(c) The figure is shown to the right, with sample field lines sketched in.

ke dq

Vre +x

25.71 For an element of area which is a ring of radius r and width dr, dV =— 5

dg=o0dA =Cr(2nrdr) and

Ror2dr Ny O X 0]

V=C@mk)[—5—— = C(rk,)[IRVR? +x% +x%In :
Jo'\r +x° ¢ 8 EI?2+\/R2+XZ%

k
25.72 dU =Vdg where the potential V = eTq

The element of charge in a shell is dg = p (volume element) or dq = p(4rmr2dr) and the
charge q in a sphere of radius r is

r 3
Wmre O
=4mpfr?dr=
g p{ a3 H
Substituting this into the expression for dU, we have

3
U :Ekequjq— emeLT %30(4m dr) = k H) 2 dr

U= IdU k%ﬁaoj’rd-kglﬁao

But the total charge, Q =p%nR3. Therefore, |U==-—"=-
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AV 1

*25.73 (a) From Problem 62, E:WF
a/'b

o . . SvO10
We require just outside the central wire 5.50 x 10° A M#H
m InD).SSO m O0ry,

I

[0.850 mO_
Iy

or (110 m'l)rbln 1

We solve by homing in on the required value

r, (m) 0.0100 |0.00100 |0.00150 |[0.00145 |0.00143 |0.00142

O
110 m™)r |nm850 m 4.89 0.740 1.05 1.017 1.005 0.999
b Eirb E . . . . . .

Thus, to three significant figures, |r, =142 mm
50.0 kV o 1 0O
b) Atr, E= =19.20 kV/m
o # 7 In(0.850 m/0.00142 m) [0.850 mU]
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*26.1

26.2

26.3

26.4

26.5

(@)
(b)

(@)

(b)

(@)

(b)

(@)

(b)

©

(@)

(b)

Chapter 26 Solutions

Q=C(AV) = (4.00 x 107 F)(12.0 V) = 4.80 x 10° C = [48.0 pC
Q=C(AV) = (4.00 x 107 F)(1.50 V) = 6.00 x 10° C = [6.00 pC

Q _100x107°C 6

C=—<=""""""  ~=100x10"%F =[1.00 uF
AV 10.0V
Q

100x107% C
AV="=""""—"_~=T100V
C 100x10°°F 100 V]

£ = K. _ (4.90x10" N/ C)(0.210 m)®
=2 -

: =0.240 uC
r 8.99 x 10° N [m? / C? H

g _0240%x107% _
o=—+=—"""—"_=[1.33uC/m2
A 47-[(0.120)2
C = 4meyr = 47(8.85 x 10722)(0.120) = [13.3 pF

C=4meyR
C
= =k, C =(8.99 x 10° N - m?/C?)(1.00 x 1072 F) = [8.99 mm
e = X )
471(8.85 x 10712 C?)(2.00 x 1073 m)
C=4meyR = N m? =[0.222 pF

Q=CV=(222x 102 F)(100 V) = |2.22 x 107 C

QA _R
Q R

0 RO
+ =rl+—= =3.50Q, =7.00 uC
Q1 +Q; El R, EQz Q, M

[Q2=2.00uC] [Q:=5.00 uC|

vlzvzz%z%z >.00 uC =8.99x10* V = [89.9 kv
1 2

-1
(8.99 x10° m/F) (0.500 m)

© 2000 by Harcourt, Inc. All rights reserved.
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6.5 coK&A _ (100)E85 x 1072 C%)(1.00 x 10% m)?
' CE N - m2(800 m)

=|11.1 nF

The potential between ground and cloud is

AV = Ed = (3.00 x 10° N/C)(800 m) = 2.40 x 10° V

Q=C(AV) = (11.1 x 107° C/V)(2.40 x 10° V) = [26.6 C

267 (a) AV =Ed

200V

E=z=——— =|11.1 kV/m

1.80 x 103 m
g

by E=—

(b) &

o= (1.11 x 10* N/C)(8.85 x 102 C?/N - m?) = |98.3 nC/m?

A (8.85 %1072 c2 /N tn?(7.60 cm?)(1.00 m /100 cm)?

o ¢ = [374 pF
© d 180x107% m P
= Q = —12 —
d Aav=g Q =(20.0 V)(3.74 x 102 F) = [74.7 pC
26.8 c=K%A _g00x1075 F
4= KeoA _ (1)(8-85 x 10_12)(21.0 x 10‘12)

C 60.0 x 1071

d=3.10%x107° m:

26.9 - ©0A (av) Q_ ;- (av)
d A d
_ep(av) _ (8.85 x 1072 2N tn?)(150 V)

= e oo o) 2
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26.10 With 6=, the plates are out of mesh and the overlap area is zero.

With 6=0, the overlap area is that of a semi-circle, 7R?/2. By
proportion, the effective area of a single sheet of charge is
(- 6)R? /2.

+ + +
+ + +
+ + |+
+ + |+

When there are two plates in each comb, the number of adjoining
sheets of positive and negative charge is 3, as shown in the sketch.
When there are N plates on each comb, the number of parallel
capacitors is 2N —1 and the total capacitance is

= (on -1 o etane - 2N =Deo(m-0)R? 2 _[(2N 1) 5 (n-0)R?

distance d /2 d

50.0

2611 (a) C=

ﬂmz

[?_D 9
2ke In 2(8. 99><1O)Ing258D

@d

. _ B
(b) Method 1: AV =2k AIn 50

_ _810x10°C 5
A=q/1 =—F55m— =162x107 C/m
— 9 —7
AV =2(8.99 x 10%)(1.62 x 107") In 2270 v 58D 3.02 kV]
Q 810x107°

Method 2: AV = ol =W =13.02 kV

26.12 Let the radii be b and a with b = 2a. Put charge Q on the inner conductor and —Q on the outer.
Electric field exists only in the volume between them. The potential of the inner sphere is
V, =k.Q/a; that of the outer is V, =k,Q/b. Then

V, -V, = e Q _ kQ éb Qand C=g Q_ _ Areab
a b ~4me, O ab V,

a -V, b-a
2
Here C=M=87Teoa a= c
a 81,
The intervening volume is Volume—fnb3—ina3—7(fna3)—7(3n) c _ _ic
s 3 3 3718 me,®  384rey’?

-6 ~2 3
Volume = —(20.0x10 _ch: /Zth) s = |2.13 x 10" m®
384 71(8.85 x 10712 C2 / N@n?)

The outer sphere is 360 km in diameter.
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26.13 2F,=0: Tcosf-mg=0 3F, =0: Tsin@ —Eq=0

Dividing, tanG:E, S0 E:mtane
mg q

mgdtan @ _ (350 x 107° kg)(9.80 m /s%)(4.00 x 10”2 m) tan 15.0°
AV =Ed = = = [1.23 kv
q 30.0 x 10‘9 C

26.14 SFy =0: Tcosf-mg=0 SF,=0: Tsin6 —Eq=0
Dividing, tan@:r%, S0 E:%tana and AV = Ed = mgd;"me

ab (0.0700)(0.140)
2615 (a) C= = = [15.6 pF]
@) ke(b—a) (8.99 x10°)(0.140 - 0.0700) n

Q Q _4.00x10°%cC
by C=— AV:—:iz-ZSGkV
(b) AV C 156x10°2F

Goal Solution

An air-filled spherical capacitor is constructed with inner and outer shell radii of 7.00 and 14.0 cm,
respectively. (a) Calculate the capacitance of the device. (b) What potential difference between the
spheres results in a charge of 4.00 p C on the capacitor?

G:

Since the separation between the inner and outer shells is much larger than a typical electronic
capacitor with d ~ 0.1 mm and capacitance in the microfarad range, we might expect the capacitance of
this spherical configuration to be on the order of picofarads, (based on a factor of about 700 times
larger spacing between the conductors). The potential difference should be sufficiently low to prevent
sparking through the air that separates the shells.

The capacitance can be found from the equation for spherical shells, and the voltage can be found
from Q =CAV.

(a) For a spherical capacitor with inner radius a and outer radius b,
C= ab _ (0.0700 m)(0.140 m)
k(b-2) ~ (8.99x10° N in? C2)(0.140 -0.0700) m

=156x107'! F =15.6 pF

-6
) av=3=E00x10"C)_) 56,105 v =256 kv
C ™ 156x10F

The capacitance agrees with our prediction, but the voltage seems rather high. We can check this

voltage by approximating the configuration as the electric field between two charged parallel plates

separated by d = 7.00 cm, so

_ AV _2.56x10° V
d 0.0700 m

This electric field barely exceeds the dielectric breakdown strength of air (3 x 10° V/m), so it may not

even be possible to place 4.00 uC of charge on this capacitor!

E =3.66x10° V/m
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26.16 C=4megR = 4n(8.85x 1072 /N in?)(6.37 x 10° m) =

*26.17 (a) Capacitors in parallel add. Thus, the equivalent capacitor has a value of

Ceq=Cy + C; =5.00 uF + 12.0 uF = [17.0 pF

(b) The potential difference across each branch is the same and equal to the voltage of the battery.

(©) Qs=C(AV) = (5.00 uF)(9.00 V) = and Qi =C(AV) = (12.0 pF)(9.00 V) =

*26.18 (a) In series capacitors add as

1 1

11
Coqq C; ' C, “500puF TT20pF 2aNd Ceq=[3531F

(c) The charge on the equivalent capacitor is

Qeq = Ceq (AV) = (3.53 UF)(9.00 V) = 31.8 uC

Each of the series capacitors has this same chargeonit. So Q;=0Q,=(31.8uC
(b) The voltage across each is

_Qp  31.8uC _Qy _318pC

AVi= G =5gowF S[638Y]  and  AVp= g = Tgppe =[265V]

1 1 1
26.19 Cp=C1+CzC—S =C—1 +C_2
1 1 _Cp_C1+C1

Substitute C, = Cp-Cy

1
C, °C, "C,-C; T CiC,-Cy)

simplifying, C3 - C1Cp+ C,Cs=0

l~2_
Cp £4/Cp” —4C,C; 1
2

_ _1 |
G = _Ecpi\fzt

2 _
Cp” —CyCs
We choose arbitrarily the + sign. (This choice can be arbitrary, since with the case of the

minus sign, we would get the same two answers with their names interchanged.)

Cy=1C, +,1¢,2 - C,C, = 2(9.00 pF) + | 2(9.00 pF)° - (9.00 pF)(2.00 pF) =

1

1.2 _1 _
ECp —\;Zcp —CpCs =3 (9.00 pF) —1.50 pF =(3.00 pF

C,=C,-C,=
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2620 Cp = Cl + C2 and i = i i
G C G
1 1 1 _G-G+G

Substitute C, =C, -Cy: C7=07 ¢, ¢ Eb
S 1 1 Cl p_Clljl

Simplifying, Cf-CiC,y +C,Cs=0
C,+,C2-4C,C
_ PP prs _ |1 1.2
and Cl - 2 - ECp + \/4Cp _CpCs

where the positive sign was arbitrarily chosen (choosing the negative sign gives the same
values for the capacitances, with the names reversed). Then, from C, =C;, -C;

|1 1.2
C2 - ECp _\“‘ZCP CpCs
1 1 1 _ —FH—
2621 (&) ¢ =150 T300 Cs=250MF 150  3.00
_ _ —| uF uE L g
Cp = 2.50 + 6.00 = 8.50 F 600 200
-1 n“ uF
o 1 1 0
= + = .96 uF
%~ B 50 uF 20,0 uF A .
11
() Q=(AV)C = (15.0 V)(5.96 uF) = [89.5 uC| on 20.0 uF . 2';’19
Q _89.54C 6.00 | 20.0
AV = =447V uF | uF
Cc ~20.0 pF I}
15.0-4.47=10.53V
’_8|50 20|0_‘
Q = (AV)C= (10.53)(6.00 pF) = [63.2 uC| on 6.00 uF 20 200
89.5 - 63.2 = [26.3 uC| on 15.0 puF and 3.00 pF
26.22 The circuit reduces first according to the rule for C C
. : X : . I
capacitors in series, as shown in the figure, then i o
according to the rule for capacitors in parallel, c C L C/2
shown below. I 1 O 1
1, 1011, i \—H%
Ceq = CSH +fD 1.83C
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90
26.23
*26.24 (a)
(b)
26.25
(@)
(b)

_Q 6. Q _
C= AV SO 6.00 x 10™° = 500 and Q=(120pC
_ _Q
Q:=120pC-Q, and INERS
-0 _Q 120-9, _Q 11
c: ~C ° 600 ~3.00 AV TC, C;
(3.00)(120 - Q;) = (6.00)Q2 Slo__as/2

360

Q2= ggp =[400kC]
Q= 120 pC — 40.0 pC =

In , to reduce the effective capacitance:

1 _ 1
32.0 uF  34.8 UF

1
C,=————=———=|398 uF
S TSI
In [parallel], to increase the total capacitance:

29.8 uF +C, =32.0 pF

Co= [2.204F]

1
+ —
Cs

€A _ 260A _

With switch closed, distance d* = 0.500d and capacitance C' = q | 2C

Q =C'(AV) = 2C(AV) = 2(2.00 x 107® F)(100 V) =

The force stretching out one spring is

Fe Q% _4C*(av)® _2C?(av)® _ 2c(av)?
2e0A  2g,A (egA/ d)d d

One spring stretches by distance x =d 74, so

F_2C(AV)?40_ 8C(AV)? _ 8(2.00x107° F)(100 V)2
k=—=0200 oo = =[2.50 kKN/m
X d O d2 (8.00x 107 m)?




26.26 Positive charge on A will induce equal negative charges on B, D,
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|1 |1 |1
A”B C“D E”F J_

and F, and equal positive charges on C and E. The nesting spheres
form three capacitors in series. From Example 26.3,

_ab  _R(2R)_2R
Cag = K(b—a) =
-3 kR Kk

(3R)(4R) _ 12R

C =
7 KR K,
o = (5R)(6R) _ 30R
EF k.R Ke
1 60R

C.., = =
9 k,/2R+k,/12R+k,/30R |37k,

100 100
26.27 nC = =
L L
c Cc ¢C
n capacitors
100C
— 2 — —
C=— 50 n2=100 and n=[10]

Goal Solution

A group of identical capacitors is connected first in series and then in parallel. The combined capacitance
in parallel is 100 times larger than for the series connection. How many capacitors are in the group?

G:

Since capacitors in parallel add and ones in series add as inverses, 2 capacitors in parallel would have a
capacitance 4 times greater than if they were in series, and 3 capacitors would give a ratio C,/C; =9, so

maybe n=,/C; /C, =+/100 =10.

The ratio reasoning above seems like an efficient way to solve this problem, but we should check the
answer with a more careful analysis based on the general relationships for series and parallel
combinations of capacitors.

Call C the capacitance of one capacitor and n the nhumber of capacitors. The equivalent capacitance for
n capacitors in parallel is

Cp=Ci+Cy+...+C,=nC

The relationship for n capacitors in series is 1 =i+i+ e +i =n
S Cl C2 Cn C
C 'C,
Therefore —2=C -p2 or n= =2 =100 =10
C, C/n \ Cs

Our prediction appears to be correct. A qualitative reason that C,/C; = n? is because the amount of

charge that can be stored on the capacitors increases according to the area of the plates for a parallel
combination, but the total charge remains the same for a series combination.

© 2000 by Harcourt, Inc. All rights reserved.
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26.28

26.29

26.30

*26.31

*26.32

Chapter 26 Solutions

(@)

(b)

(@)

(b)

-1 a
01l 10 o Cy
Co=2 = + = —333,F
ST 05.00 10.00 H o —
::C3
Cpy = 2(3.33) + 2.00 = 8.66 IF | |
_ _ G, G,
Cpa = 2(10.0) = 20.0 pF

01 1 D—l CZ CZ
Cog=——+———— =[6.04pF
¢4 [B.66 20.00 b

Qeq = Ceq(AV) = (6.04x107° F)(60.0 V) =3.62x107 C

Qeq _3.62x1074 C
=Qu, SO AV, =4 =207 -8V
Qo1 = Qeg PL7C, 866x10°F

Qs =C5(AV,) = (2.00x 10 F)(418 V) =

-1
o1l 10

C.o==—+-—~—- =292 4F

S .00 7.000 H

Cp=2.92+4.00+6.00=|129 yF

U= 7 C(AV)2 = 3(3.00 uF)(12.0 V) 2 = [216 13
U= 3 C(AV)? = 3(3.00 uF)(6.00 V) 2 = [54.0 1]

1
U= 35 C(av)?
The circuit diagram is shown at the right. —__—100 v ::221(:) ::531(:)
Cp=Cy + Cp = 25.0 pF + 5.00 pF = 30.0 pF
1 -
U = 5(30.0 x 107°)(100) * = [0.150 J —
. X 25.0 uF
it ip™_g 1l 1 pt_ AV
C=i,*C0 T 5opF TEoopFn  CALTHF 200 uF
|_

1
U= 35 C(av)?

2U (0.150)(2)
AV =, |—= """ 7 =268V
\c \/4.17 x1070



*26.33

26.34

26.35

26.36

26.37
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N| =

_1Q? & A
Use U = C

and C= d

1
Ifd, =2d;, C,= 5 C;. Therefore, the |stored energy doubles| .
2

U:B:EeOEZ
vV 2

100x107" 1

v 5(8.85 x 10712)(3000)?

- -3 3] = -3 31000 LO_
V={2.51x107 m?| =(2.51x107 m®)- 0= 2500

W=U=IFdx so de—uzi[QZD: =
dx dxHzcH ™ dx e, AH |2€0A

Plate a experiences force — kxi from the spring and force QEi due to the electric field created by
plate b accordingto E=0/2e; =Q/2Ae,. Then,

2 2
X = oA -9
2A &g 2Ae, k

k

where A is the area of one plate.

The energy transferred is W = 1Q(AV) =$(50.0 C)(1.00 x 10° V) = 2.50 x10° J and 1% of this (or
W"* =250 x 107 J) is absorbed by the tree. If m is the amount of water boiled away, then

W' = m(4186 J/kg °C)(100 °C - 30.0 °C) + m(2.26 x 10° J/kg) = 2.50 x 10" J

giving m =9.79 kg
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26.38 U=21c(av)? where C=4meR=2 and av=KQ_o=kQ
2 Ke R R
10R 0k,QLF _ | kQ?
Uu== e = €
28.H RO | 2R
2
26.39 keQ” _ 2
2R
_ kee? _(8.99x10° N[m®/C)(160x107*° C)* _ a0
2me?  2(9.11x 1073 kg)(3.00 x 108 m /s)? :
. KCHA  4.90(8.85 x 10722 F/m)(5.00 x 1074 m?) ™
26.40 C=—pg— = > 00102 m =1.08 x 10"* F=[10.8 pF

KChA  2.10(8.85x 1072 F/m)(1.75 x 10™ m?)
*26.41 C= = =8.13x 101 F=(81.3pF
@) d 4.00 x 10° m

(b)  AVimax = Emax d = (60.0 x 10° V/m)(4.00 x 10™° m) = [2.40 kv

*26.42 Qmax = C(AVmax), but AVmax = Emax d
K LHA
Also, C = ii

K LA
Thus, Qmax = d—(Emax d) =« [hAEmax

(@) With air between the plates, k = 1.00 and Emax = 3.00 x 10° V/m. Therefore,
Qmax = K L AEmax = (8.85 x 1072 F/m)(5.00 x 10 m?)(3.00 x 10° V/m) = [13.3nC
(b) With polystyrene between the plates, k = 2.56 and Eax = 24.0 X 10% V/m.

Qmax = K [ AEmax = 2.56(8.85 x 1072 F/m)(5.00 x 10~ m?)(24.0 x 10® V/m) = [272 nC

K ChA 9 3.70(8.85x 10712)(0.0700) 0
26.43 c= 95.0x10™ =
a g (0.0250% 10)
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=1.04 m
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*26.44 Consider two sheets of aluminum foil, each 40 cm by 100 cm, with one sheet of

plastic between them. Suppose the plastic has k [ 3, Emax ~ 107 V/m and thickness
1 mil = 2.54 cm/1000. Then,

ook [hA  3(8.85x 10712 CZ/N - m?)(0.4 m?)

~[10°F
d 254 x10°m
Vv _
AV = Eppd ~ 5107 EE(Z'M x10° m)~
* H H . _ g _ 48.0 [J.C _
26.45 (a) W.ith air between the plates, we find Cp= A 120V T 4.00 pF

(b) When Teflon is inserted, the charge remains the same (48.0 uC) because the plates are isolated.
However, the capacitance, and hence the voltage, changes. The new capacitance is

C' =Kk Co = 2.10(4.00 pF) = [8.40 pF

48.0 uC
() The voltage on the capacitor now is  AV' = CQ =ﬁ =|5.71V
and the charge is |48.0 uC
26.46 Originally, C =, A/d =Q/ (AV);

(a) The charge is the same before and after immersion, with value Q =L A(AV); /d.

(8.85x1072 C?)(25.0 x 10™* m?)(250 V)
= = [369 pC
Q N m? (L50x1072 m)

(b) Finally, Ci=kh A/d =Q /(AV)s
80.0(8.85x 10712 C?)(25.0 x 104 m?)

Ct = = [118 pF

f N [? (150 x 1072 m)

_Qd _ BAQV)d _(AV), 250V _
(Av)f_KDOA_ kbAd Kk 80.0 =[3.12V]

(©) Originally, U =4ic(av)?= ﬂ)Az(dAV).Z

. A(AV)2 _ [HA(AV)?
Finally, Uy =1c(av)? = X5 L= '
y 72 (AV); 2d k? 2dk

ARV (k - 1)
2d K

So, AU=U;-U-=

(- 8.85x 10712 C?)(25.0 x 10™* m?)(250 V)? (79.0) 255
=[-455n)

AU = 2 =
N [m?2(150 x 102 m)80




26.47

2648 (a)
(b)
(©
(d)

26.49
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i: 1 + 1 :ke(b_a)+ke(c_b)
c 0O Kqab O 0O K,bc O Kqab K,hc
H.(0-a)H He(c-nH
_ 1 _ K1K5 abc _ 47T K K, abc L))
S CEE A R I =
e(b-2) ke ke Ko (bC — ac) + k, kq (ac — ab) | K,bc — kqab + (k; — K,)ac
Kiab K,bc

KChA _ (173)(8.85x10712)(1.00 x 10™* m?)
C=«k(C,= = = -1.53 nkF
o7 g 0.100x1073 m

The battery delivers the free charge

Q=C(AV) = (153 x 10° F)(12.0 V) =

The surface density of free charge is

-9
=Q_184X10 °C _ 14 g4 x10% c/m?
A 100x107" m

The surface density of polarization charge is

_,24.10_.0_ 10 -4 2
o, = agl pial agl 730 1.83x10" C/m
We have E = Eo/k and Eq = AV/d; hence,

AV 12.0V
E="2 = = [694 V/m
kd  (173)(1.00 x10™* m)

The given combination of capacitors is equivalent to the circuit A B C D

diagram shown to the right. | 1 1

40uF 10uF 40 uF

Put charge Q on point A. Then,
Q = (40.0 UF)AV pg = (10.0 UF)AVge = (40.0 UF)AVcp

S0, AVgc =4AV g =4AV,p, and the center capacitor will break down first, at AVg: =15.0 V.
When this occurs,

AV, = AV, = 3(AV,) =375V

and Vap =Vag +Vpe +Vep =3.75 V+15.0 V+3.75V = [225V

© 2000 by Harcourt, Inc. All rights reserved.
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*26.50 (a) The displacement from negative to positive charge is
2a=(-1.20i +1.10j)mm - (1.40i -1.30j)mm =(-2.60i +2.40j)x10™> m

The electric dipole moment is

p = 2a=(3.50x 10 C)(-2.60i +2.40j) x 10 m =|(-9.10i +8.40j) x10™2 C in

() T=pxE :[(—9.10i +8.40j) x 1072 C i

x|(7.80i - 4.90j) x10° N/C
( ) )

7 =(+44.6k —65.5k) x10 N On = [ -2.09x10® N tink

© U=-plE= —[(—9.10i +8.40j)x1072 C Dm] Ep(7.80i - 4.90j) x 10° N/C]

U=(7L0+412)x107° =

(d) |p|=+(9.10)* +(8.40)* x 107 Cin =12.4x 1072 Cn

|E|=+/(7.80)% +(4.90)* x10® N C=9.21x10° N/C

Umax =|P||E[=114 ), Uy, = 114 nJ

Umax = Ynmin = | 228 nJ

*26.51 (a) Let x represent the coordinate of the negative charge.
Then x+2acos@ is the coordinate of the positive charge.

The force on the negative charge is F_=-gE(x)i. The
force on the positive charge is

F. = +qE(x + 2acos 6)i OqE(x)i +q3—5(2acos 0)i

The force on the dipole is altogether F=F_+F, = q3—5(2acos G)i = pg—icosei
(b) The balloon creates field along the x —axis of k%(]i.
Thus, g€ _ (—2)3keq
dx X
-2)(8.99 x10°|(2.00 x10°
At x=160cm, OE 2 (PBox10%)200:107) TTE TN
dx (0.160) Clin

y 0 N O .. :
F:(6.30x10 J CDTn)D—8.78><106 oSO i =[55.31 mN]



26.52
*26.53 (a)
(b)
(©
(d)
2654 (a)
(©
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A
2mr [

2mr 0 = din S0 E=
L

v =-[E@r=[" A_gr=—2 g
3 nom iy 2mG 0

Amax

2mlg

_ 6 V -3 25.0 O _
AV = Eﬁ 20 x 10 Ego.loo x 10 m)an S AV max =

= Emaxrinner

Consider a gaussian surface in the form of a cylindrical pillbox with ends of area A’'<<A
parallel to the sheet. The side wall of the cylinder passes no flux of electric field since this
surface is everywhere parallel to the field. Gauss’s law becomes

EA'+EA':iA', S0 Q
OA

E=——| directed away from the positive sheet.
2 0A

In the space between the sheets, each creates field Q/2 [JA away from the positive and toward
the negative sheet. Together, they create a field of

=0

OA

Assume that the field is in the positive x —direction. Then, the potential of the positive plate
relative to the negative plate is

+plate +plate Q i[ﬁ—idx): +Q7d

AV = _I—plate Elds =~ -plate ﬁ A

Capacitance is defined by: C= Q__Q _|DA_KhA

AV Qd/OA d d
c-l , 1pn*, 0l 107 e 3.00 uF 6.00 uF
“300*6000 t200°4000 a ) e
Qac = Cac (AVa) = (2.00 uF)(90.0 V) = 180 uC 2.00 uF 4.00 uF
A7

Therefore, Q3=Q¢= ==90 —~
Qur = Cer AV ) = (133 F)(90.0 V) =

© 2000 by Harcourt, Inc. All rights reserved.
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(b)

(d)

*26.55

avs= 2 = 3op =[E00V]
= -39
avo= & =7 =[@0Y]
aVi= 2 = rooyr =[E0Y]
Ur= 3 Ceq (AV)2= 3(3.33 x 106)(90.0 V) 2 =

The electric field due to the charge on the positive wire is perpendicular to the wire, radial,
and of magnitude

A
2mwlgr

+

The potential difference between wires due to the presence of this charge is

__ twire _ A d ﬁ_ A D-dO
AV, = I—WireE r= ZITQJ.D—dr _ZHQInD d O

The presence of the linear charge density —-A on the negative wire makes an identical
contribution to the potential difference between the wires. Therefore, the total potential
difference is

- _ A ,0D-dO
AV—2(AV1)—ﬁInD 0

and the capacitance of this system of two wires, each of length ¢, is

Q Al Al weyl

TAV AV (2 D-d\ , (D-d
In|—= In|—=
& d d

C TE,

The capacitance per unit length is: N =m
d




26.56

26.57

26.58
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(a) We use Equation 26.11 to find the potential energy. As we will see, the potential difference

(b)

(@)

AV changes as the dielectric is withdrawn. The initial and final energies are

Uie LRI s LR
'_Z%ig an f_Z%fD
1 %0
But the initial capacitance (with the dielectric) is C; = kCs. Therefore, U= 5 K %
I

Since the work done by the external force in removing the dielectric equals the change in
potential energy, we have

2 2 2
~ 1 %0 1@%0 1%
W= u-uis 3o - 2 = 2l

To express this relation in terms of potential difference AV;, we substitute Q = C; (AV;), and
evaluate:

W = % Ci(AV)X(k-1) = %(2.00 x 107° F)(100 V) %(5.00 — 1.00) = |4.00 x 107> ]

The positive result confirms that the final energy of the capacitor is greater than the initial
energy. The extra energy comes from the work done on the system by the external force that
pulled out the dielectric.

The final potential difference across the capacitor is AV; = C%

_ Ci .
Substituting Cs :7' and Q = C; (AV)) gives AVs = k AV; = (5.00)(100 V) =

Even though the capacitor is isolated and its charge remains constant, the potential difference
across the plates does increase in this case.

K = 3.00, Emax = 2.00 x 108 VV/m = AV pay 7d

Keg A 5
For C= d =0.250 x 10 F,

Cd _ C(AV i) (0.250 x 107)(4000) >
A= = = =(0.188 m
Key KeEmax (3.00)(8.85 x 1071%)(2.00 x 108)

K1€g A/2 Ko€g A/2 K3€y A/2 [—— ) —>|
Ci=—q ¢ CeETgm i CTTam

+— = =
Cs0 C,+C3 d [k, + k30

‘4—&—)‘
/K
N

‘m_
— ~
N

1 11 C,C e A 0 Kykz [
EIC_Q 0 23—0D23D

<—p/2->‘

e A K2K
0 %(_1+ 2K3

S n I s
= + + =
C Cl [EZ C3|:| d Dz K2 + K3

]
L
]

© 2000 by Harcourt, Inc. All rights reserved.
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(b) Using the given values we find: Crotal = 1.76 x 1072 F = [1.76 pF
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26.59 The system may be considered to be two capacitors in series: ¥t A | n
Y v
e epA s T |
CFT and C,= 6 t ¥4 f T
AT
1.1 .1 _htt
C~C "C, " eA
€A | &A
Tt+t, T |s-d

Goal Solution

A conducting slab of a thickness d and area A is inserted into the space between the plates of a parallel-
plate capacitor with spacing s and surface area A, as shown in Figure P26.59. The slab is not necessarily
halfway between the capacitor plates. What is the capacitance of the system?

G:

It is difficult to predict an exact relationship for the capacitance of this system, but we can reason that
C should increase if the distance between the slab and plates were decreased (until they touched and
formed a short circuit). So maybe C Dl/(s—d). Moving the metal slab does not change the amount
of charge the system can store, so the capacitance should therefore be independent of the slab position.
The slab must have zero net charge, with each face of the plate holding the same magnitude of charge
as the outside plates, regardless of where the slab is between the plates.

If the capacitor is charged with +Q on the top plate and —-Q on the bottom plate, then free charges
will move across the conducting slab to neutralize the electric field inside it, with the top face of the
slab carrying charge —Q and the bottom face carrying charge +Q. Then the capacitor and slab
combination is electrically equivalent to two capacitors in series. (We are neglecting the slight
fringing effect of the electric field near the edges of the capacitor.) Call x the upper gap, so that
s—d-x is the distance between the lower two surfaces.

For the upper capacitor, Ci=Lp A/x

and the lower has C, = DA
s—d-x

So the combination has C= 1 = 1 = LA
1 1 X _s-d-x s—-d

+
G C LA LA

The equivalent capacitance is inversely proportional to (s—d) as expected, and is also proportional to
A. This result is the same as for the special case in Example 26.9 when the slab is just halfway
between the plates; the only critical factor is the thickness of the slab relative to the plate spacing.

© 2000 by Harcourt, Inc. All rights reserved.
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(@) Put charge Q on the sphere of radius a and —Q on the other sphere.

Relative to V =0 at

infinity,
k k
the potential at the surface of a is V, :eTQ —E—Q
-k k
and the potential of b is Vp = TeQ + a—Q
k k k k
The difference in potential is Va—Vp = ;Q + EQ - (ejQ - E—Q
0 0
and c= 9 4"@
Va=-Vb ~|Hya)+(yb)-(2/d)H
Asd - oo, 1/d becomes negligible compared to 1/a. Then,
1 1 1
C= 4 by and = = +
1/a+1/b C lampa  4mipb

as for two spheres in series.

Note that the potential difference between the plates is held constant at AV, by the battery.

c,=b  ang Cf:q—f:q°+q
AV, AV; AV,
_ %*‘q qu
But C; =kC;, so EF
u f K i i VE
Thus, sz or K= 1+i
Jo Jo

C= E[(ﬂ— x)ﬂ+1<£x] =

d ?[ﬂZHZx(K— 1)]

26.60
(b)

26.61

2662 (a)
(b)
(©

1({e,(AV)?

_ _ L (&AV) )\r,2 _
u=1c@vy = 2( y )[12 +0x(c — 1)
|F|= i to the left

dx
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_ (2000)*(8.85 x 10™%)(0.0500)(4.50 - 1) _

= 1.55x107° N
2(2.00x107%)

d F

© 2000 by Harcourt, Inc. All rights reserved.
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*26.63 The portion of the capacitor nearly filled by metal has capacitance « [f (£x)/d — c and stored

energy QZ/ZC - 0. The unfilled portion has capacitance [}¢ (£-x)/d. The charge on this
portion is Q =(£-x)Qq /L.

Q* [(-x)Q/1" [odd(-x)

The stored U=
(8) The stored energy is U=~ “2el(t-x)fd | 2,05

2 2

Qyd(e- Qyd

b F=- u__4 0(3x)=+03
dx | dx pIN 2,0

F= to the right

F
Stress =— —
(c) ress I%;

121 (oY 1 (QVY_
(d) M—EE()E—EEO— —EEO — 5| =

26.64 Gasoline: 126000 BUHgsg I CH 100 gal Thoom’0_ o0 g7 3

gal BtulHB.786 x 103 m®H670 kg H_ kg

(12.0 J/C)(100 C/s)(3600 s)

Battery: 16.0 kg

=2.70x10° J/kg

1(0.100 F)(12.0 V)’

Capacitor:
0.100 kg

=72.0 J/kg

Gasoline has 194 times the specific energy content of the battery
and 727 000 times that of the capacitor
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26.65 Call the unknown capacitance C,

Q=Cy(AVi) =(C, + C)(AVy)

_ C(avy) _ (10.0 uF)(30.0V) _
Cu= (AV))-(AVy)| ~ (100V-30.0V)

Goal Solution

An isolated capacitor of unknown capacitance has been charged to a potential difference of 100 V. When
the charged capacitor is then connected in parallel to an uncharged 10.0-u F capacitor, the voltage across
the combination is 30.0 V. Calculate the unknown capacitance.

G: The voltage of the combination will be reduced according to the size of the added capacitance.

(Example: If the unknown capacitance were C =10.0 uF, then AV, =50.0 V because the charge is now
distributed evenly between the two capacitors.) Since the final voltage is less than half the original,
we might guess that the unknown capacitor is about 5.00 uF.

. We can use the relationships for capacitors in parallel to find the unknown capacitance, along with
the requirement that the charge on the unknown capacitor must be the same as the total charge on
the two capacitors in parallel.

: We name our ignorance and call the unknown capacitance C,. The charge originally deposited on
each plate, + on one, — on the other, is

Q=C,AV =C,(100 V)

Now in the new connection this same conserved charge redistributes itself between the two capacitors
accordingto Q=Q; +Q,.

Q1 =Cy(30.0V)and Q, =(10.0 uF)(30.0 V) =300 uC

We can eliminate Q and Q; by substitution:

300 uC

C,(100 V) =C,(30.0 V) +300 uC  so W=y

=4.29 uF

The calculated capacitance is close to what we expected, so our result seems reasonable. In this and
other capacitance combination problems, it is important not to confuse the charge and voltage of the
system with those of the individual components, especially if they have different values. Careful
attention must be given to the subscripts to avoid this confusion. It is also important to not confuse
the variable “C” for capacitance with the unit of charge, “C” for coulombs.

© 2000 by Harcourt, Inc. All rights reserved.
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26.66

26.67

26.68

26.69

(@)

Put five 6.00 pF capacitors in series.

The potential difference across any one of the capacitors will
be:

AV = AViey _ 1000V

5

=200V

and the equivalent capacitance is:

1 u

0
Q_S%mp g o Ce

_ 6.00 pF

=120 pF

When AVg, =0, AVpe= AVg, and Q _Q
C, Cs

Also, AVp,=AVy4, or R

; ,0Q, 00,0
From these equations we have C, EEEEQJ%EQ

However, from the properties of capacitors in series, we have

= 0= 1600 1) = [F00F]

Therefore,

Q:1=Q7 and Q3=0Q4

Let C = the capacitance of an individual capacitor, and Cs represent the equivalent capacitance
of the group in series. While being charged in parallel, each capacitor receives charge

Q = CAV¢ng = (5.00 x 107 F)(800 V) = 0.400 C
While being discharged in series,

Q_ Q _ o4ooc
C. C/10 500x10°F

AV giseh = =~

or 10 times the original voltage.

C :%A: QO
7 d T av,

When the dielectric is inserted at constant voltage,
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_ Co(AVy)®
2

C:KCO:%; UO
0

_CVe) _KkCo(AVe)? U

U
2 2 Uo

The extra energy comes from (part of the) electrical work done by the battery in separating the
extra charge.

(b) Qu=CyAV, and Q=CAV,=kCyAV, SO

© 2000 by Harcourt, Inc. All rights reserved.
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2670 ()

(b)

26.71

A slice of width (dx) at coordinate x in 0 < x < L has thickness xd /L filled with dielectric k5,
and d —xd/L is filled with the material having constant k; This slice has a capacitance given

by

_ xd + dL-xd  _ Kkyxd+Kpdl — Kpxd
dC @KZ €0 (dx)W Q @Kl € (dx)W @ K,eoWL(dX) K;eyWL(dx) K1K 2 €WL(dx)
xd/L xd/ L
K1 Ko eoWL(dx)

dc=
KodL + (K —Ky)xd

The whole capacitor is all the slices in parallel:

c =IdC =IL KiKpeWL(dX) _ Kik,e0W
x=0 KoLd +(ky —Kp)xd  (ky—Kj)d

I;<2|_o|+(;<1 K2)Xd) (K1 — K,)d(dx)

_KiKp eoWL
(k1 —K3)d

_ K1Ky eOW L

KleeoWL In ﬁ
(k1=

|n[K2Ld+(K1 Kz)Xd] (k;—kp)d  k
17Kz 2

5 [Inkitd=In r,Ld] =

To take the limit k, - k,, write kK, =«,(1+x) and let x - 0. Then

2
c =K (1+x)egWL In (1+x)
(Ko + KoX — K5)d

Use the expansion of In(1 + x) from Appendix B.5.

K§(1+x)q)W|_(X

1+x) (pWL

C= S ix24ix3, .y =f@EOBWL G 4,
K,xd 2 3 ) d -3 )
lim C = X2 LYWL _ | kp A

X -0 d d

The vertical orientation sets up two capacitors in parallel, with equivalent capacitance

b (A2) | kG (A2) e +100A
d d 02 0d

Cp=

where A is the area of either plate and d is the separation of the plates. The horizontal
orientation produces two capacitors in series. If f is the fraction of the horizontal capacitor
filled with dielectric, the equivalent capacitance is

1 fd  (1-f)d _CF+k(1-f)0 d O « DQ)A

—= + =[G O=% or G=0

Cs khbA LA g k A o +«(1 f)Dd
+1_ K

Requiring that C, =C, gives

2 T Tek(o1) or (k+1)[f+k@-f)] =2

For k =2.00, this yields 3.00[2.00 - (1.00)f] = 4.00, with the solution f = :



26.72

26.73

26.74

Initially (capacitors charged in parallel),

gy = C1(AV) = (6.00 pF)(250 V) = 1500 pC

g2 = Co(AV) = (2.00 pF)(250 V) = 500 pC

After reconnection (positive plate to negative plate),

. _ + _ Ototal _ 1000 uC _
=01-0,=1000uC and AV'=1& ="""""" =125V
Gotar = 1= G2 H Ciotar  8.00 UF

Therefore,

g, = C,(AV') = (6.00 uF)(125 V) =
0 = C,(AV') = (2.00 uF)(125 V) =

Emax occurs at the inner conductor's surface.

Ernax = ZK;A from Equation 24.7.

AV =2k A InDiD from Example 26.2

ChO

E :L
M aln(b/ a)

O

AV may = Emax@ I 7= (18.0 % 105 V/m)(0.800 x 1073 m) In

E:% . AV =2k |ng’£

AV, = Er @ In%g

d\;”;ax =E, ang% a%@%—;%: 0
In%gzl or g:el SO a:g

© 2000 by Harcourt, Inc. All rights reserved.
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26.75

26.76

Assume a potential difference across a and b, and notice that the potential difference across the
8.00 uF capacitor must be zero by symmetry. Then the equivalent capacitance can be
determined from the following circuit:

4.00 uF 4.00 uF

. E:] E:] b . 6.0?IMF 6.0(|)IMF b a3.0|0|uF b
| 1 1 0 1

2.00 uF 2.00 uF

By symmetry, the potential difference across 3C is zero, so the circuit reduces to

€ 2c+4C 6

ﬂT} : mﬂ .
| 3C | 2C 4C
C 2C C 2C

C

w]




Chapter 27 Solutions

27.1 1= 29 AQ=1At= 5 = -3
. = Q=1At=(30.0x107° A)(40.05) =1.20 x 103 C
1.20x 1073 C
N= 2 - — =750 x 10% electrons
€ 1.60 x 10™° C/electron
*27.2 The atomic weight of silver = 107.9, and the volume V is

V = (area)(thickness) = (700 x 10™* m?)(0.133 x 10 m) = 9.31 x 10 m?
The mass of silver deposited is mpy = pV = (10.5 x10° kg/m3)(9.31>< 1078 m3) =9.78x1072 Kg.
and the number of silver atoms deposited is

6.02 x 10%% atoms

— -2 — 23
N = (9.78 ¥ 10 ko) 079 kg =5.45x 10
V. 120V
|= 5 = =—— =667TA=6.67C/s
R 1800
_AQ  Ne _ (545x10%)(1.60x10°C) .
A== = = AT =131x10*s=3.64 h
t
27.3 Q(t) =Jo 1dt = 1p7(1 - ¥T)

@ Q= lor(t-¢™) =[0632)1o7]
(B) QoD = lor(1 -1 =
© Q)= lor(d - &) =loT]
Z2 _ my? ke

. k.e
27.4 a) Usin t - wegett v=4
@) 9 r g \mr

2

={2.19x10° m/s|.

(b) The time for the electron to revolve around the proton once is:

_2nr _ 2m(5.29 107! m)

v (219x10° m/s) =152x107% s

The total charge flow in this time is 1.60x107*° C, so the current is

© 2000 by Harcourt, Inc. All rights reserved.
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|—M=105x10‘3A= 1.05 mA
152x107%s 7 '
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215 w= 2?7T where T is the period.

q_ qw _ (8.00x107° C)(1007rrad/s) 7
|l=1= 12 = =400x10 "A= -400nA

27.6 The period of revolution for the sphere is T :%T, and the average current represented by this

qw
2m|’

revolving charge is | :%:

01.00 m O

27.7 q=4t3 +5t+6 A =(2.00 cm?) =2.00x107* m?
00 cmH

(@ 1(100s)= %

= (12t2 + 5)‘ -[170A
t=100's =100

0 1=)-_ 1T.0A

_ 2
A 2.00x10 4 mZ LBo0KAZm

27.8 =49
dt
q=[dq=[ldt =J';’24°s(1oo A) sin (12071t /s)dt

_-100C

_+100C _
oo [cos(71/2) - cos 0] = oo

! 5.00 A
219 (@) J=-= = [99.5 KA/m2
@ I= = 10T

1 I 11
b)) p=-3; —=-—
4 A, 4A

A=iA, so (4 00><10‘3)2—1nr2

1_4 2 ' _4 2

r; =2(4.00x107%)=8.00x10° m=

© 2000 by Harcourt, Inc. All rights reserved.
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27.10 (a) The speed of each deuteron is given by K :% mv?
(2.00 x 105)(1.60 x 10719 J) = %(2 x 1.67 x 10727 kg) v2 and v =1.38x10" m/s
The time between deuterons passing a stationary point is tin I=q/t
10.0 x 10° C/s=1.60 x 107 C/t or t=160x10"s

So the distance between them is vt = (1.38 x 10’ m/s)(1.60 x 10714 s) =12.21x107" m
(b) One nucleus will put its nearest neighbor at potential

ke (8.99 x 10° N - m?/C?)(1.60 x 107° C) —
V=2 = - =16.49 x 107° V
r 2.21x10"' m

This is very small compared to the 2 MV accelerating potential, so repulsion within the beam
is a small effect.

-6
2711 (a) =4 =_800X10 A I s A/ m?

A n{100x10°° m)2

2
(b) From J=nevy, we have n= - 129'55 A/m 5 = | 5.31x10° m~3
evy  (160x107° C)(3.00x10° m/s)
AQ Npe (6.02x10%)(L60x1079 C) —
() From |=AQ/At, we have At=—"=—"A"= = ={120x10"s
| | 8.00x10 ° A
(This is about 381 years!)
*27.12 We use | =ngAvy where n is the number of charge carriers per unit volume, and is

identical to the number of atoms per unit volume). We assume a contribution of 1 free
electron per atom in the relationship above. For aluminum, which has a molecular weight of
27, we know that Avogadro’'s number of atoms, Na, has a mass of 27.0 g. Thus, the mass per

atom is
2709 2109 s
NA ~ 6.02x108 4.49 x 107 g/atom
h _ density of aluminum 2.70 g/cm®
US M= "mass per atom " 4.49 x 1072 g/atom
atoms atoms
n=6.02 x 102 ——— =6.02 x 1028 ——
cm
| 5.00 A
Therefore, vg= = =1.30 x 10% m/s

NgA  (6.02 x 102 m=3)(1.60 x 107° C)(4.00 x 10°® m?)

or, vy = 0.130 mm/s|
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AV _ 120V
*27.13 l=—= =0.500 A = {500 mA
R 2000

27.14 (a) Applying its definition, we find the resistance of the rod,

AV 150V
R=—=—"———=3750Q =|3.75kQ
| 4.00 x 10—3 A

(b) The length of the rod is determined from Equation 27.11: R=pf¢/A. Solving for ¢ and
substituting numerical values for R, A, and the values of p given for carbon in Table 27.1, we

obtain
RA _ (3.75x10° Q)(5.00 x10™® m?)
0=""= =[536 m
P (3.50 x10™° Q ()
_ _p . _ 2 100m 12 7.2
27.15 AV = IR and R="C: A =0.600 Mm? F555mme = 6:00 107 m
Ay =P | = AVA _ (0.900 V)(6.00 x 10" m?)
CA ~opl (5.60 %1078 Q- m)(1.50 m)
1=[6.43 A
I 3.00 A
27.16 J=—5=0E = ————— =0(120N/C)
Tr 71(0.0120 m)

1
0=553(Q-m)*t p= e 0.0181Q - m

2717 (a) Given M =pyV =pAl where p; = mass density, we obtain: A= M

Pl
Taking py = resistivity R= ﬂ = i = %dlz
' ’ A OMO M
Hog
MR (1. 00 x 10‘3)(0. 500)
Thus, I = =1 = N
\pog | (L70%x107°)(8.92x 10°)
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-3
Thus, r— 100)(12 =140x10"* m
mqjl \ 7(8.92 x 10%)(1.82)

The diameter is twice this distance: |diameter =280 pm

*27.18 (a) Suppose the rubber is 10 cm long and 1 mm in diameter.

_pl _4pl 4(1013 Q DTn)(lO'l m) _

A nd? (107 m)’

_4pl 4L7x10°Q-m)10° m)
®) R=T ¢ (2 x 1072 m)?

AV 102V
- - -16
© =R 0% 0
102 v
9
=

3
. . . 0 90.0g EV

27.19 The distance between opposite faces of the cube is =2.05cm
PP %O 5 g/cm E

_pl _pl _p _159x107° Qlin _ —
a == =" " >~ =777x107" Q=777 nQ
( ) A |2 | 2,05)(10_2 m

@ 128V L00X0TV g
R 777x107 0

_ 1059 ‘em?® %02x1023 electrons
107.87 g, mol " mol [

6 3 0
= Eé 86 x 1022 eIectronsD:U 00 x10 cm 5 g6 x 1028/m3
H 1o0m® H

| 12.9 Cs
| =ngqvA and v= = ! = -_3.28 m/s
| ngA ~ (5.86x10% m*)(1.60 x 10 C)(0.0205 m)’ -



27.20

27.21

27.22

27.23

27.24

27.25

. _pl
Originally, R="—
g y A

R, p( /3) _ _
3A 9A

Finally,
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The total volume of material present does not change, only its shape. Thus,

Ad ¢ =A(L251;)=Al; giving A;=A;/125

I 1 25I
The final resistance is then: R; = i p

pAII - pCuI

”(rAl)z 77(rcu)2
Tal 1%:\/2-82*10_8 -

Ar A/125

1505 ]

fcw \Pcy 1170x1078
-13 2
JooE  so  godo800x107° A/m
E 100V/m
pl1 Pl o 2
R=—"+-—~- "= | . + 0l /d
A A, (ol 1+p3l )

_ (4.00 %1073 Q [M)(0.250 m)+(6 00 %1073 Q [M)(0.400 m) _

= [6.00 x 107° (Q - m)™?

378 Q

9.11 x 10731 14
=247 x10s

(3.00x 1073 m)?
__m_ so ="
p= ng’r ~ png?

©(1.70 x 1078)(8.49 x 10%%)(1.60 x 10%%)?

(1.60 x 10719)E(2.47 x 10714

E
Vg = ?n_ T o) 7.84x1074 =
Therefore E=0.181V/m

9.11 x 10731
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Goal Solution

If the drift velocity of free electrons in a copper wire is 7.84x10™ m/s, what is the electric field in the
conductor?

G: For electrostatic cases, we learned that the electric field inside a conductor is always zero. On the

other hand, if there is a current, a non-zero electric field must be maintained by a battery or other
source to make the charges flow. Therefore, we might expect the electric field to be small, but
definitely not zero.

The drift velocity of the electrons can be used to find the current density, which can be used with
Ohm’s law to find the electric field inside the conductor.

: We first need the electron density in copper, which from Example 27.1 is n=8.49 x10%® e /m3. The
current density in this wire is then

J=nqvg =(8.49x10% e /m3)(1.60x107*° C/e")(7.84x10™* m/s) =106 x10" A/ m?
Ohm’s law can be statedas J=0E=E/p where p=17x 108 Qi for copper, so then
E=pJ=(170x10"% QM)(L06x10" A/m?)=0.181V/m

This electric field is certainly smaller than typical static values outside charged objects. The direction
of the electric field should be along the length of the conductor, otherwise the electrons would be
forced to leave the wire! The reality is that excess charges arrange themselves on the surface of the
wire to create an electric field that “steers” the free electrons to flow along the length of the wire from
low to high potential (opposite the direction of a positive test charge). It is also interesting to note
that when the electric field is being established it travels at the speed of light; but the drift velocity of
the electrons is literally at a “snail’s pace”!

2726 (a) n is |unaffected]

| .
(b) \J\:lelsmt
(©) J=nevy so vq

mo
(d 1= g is as long as o does not change due to heating.

27.27 From Equation 27.17,

_m _ 9.11x107
ng’p (8.49 x20%)(1.60 x 10‘19)2(1. 70x10°9)

| :vr:(8.60x105 m/s)(2.47 x 10714 s) =2.12x108m=

=2.47x10 s




27.28

*27.29

27.30

27.31

(@)

(b)

©

(d)

(e)
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At the low temperature Tc we write  Rc = % = Ry[1+a(T¢ ~To)] where To=20.0°C
. AV AV
At the high temperature Ty, Rp = T TIAC Ro[1+0’(Th ‘To)]
Then (AV)/(100A) _ 1+(3.90 x10%)(38.0)
(AV)/ ¢ 1+ (3.90 x 107°)(-108)
and lc = (1.00 A)(1.15/0.579) =
R = Ry[1+a(AT)] gives 140 Q = (19.0 Q)[l +(4.50x1073/° C)AT]
Solving, AT =1.42x10°°C=T-20.0°C
And, the final temperature is |T =1.44 x10° °C|

R =R+ Ry =R [1+a,(T-Tg)] + Rn[1+an(T = Ty)]

a
0=Rea¢ (T - To) + Rnan (T = To) ) Rc:—Rna—n
C
an
R = _Rn — + Rn
ac
Rn=R( - an/ay)t Rc=R( - ac/ap)™
0.400 x 103/C°) Ot
Rn=10.0kQEl— ( - )D
0 (-0.500 x 1073/C°)J

Rh=5.56 kQ and R.=4.44kQ

p=po[1+a(T-Ty)| =(2.82x107° Q Dm)[1+ 3.90 x 10‘3(30.0°)] =[3.15x10%Q - m

=E- _020V/M __[earvi05 A/m?
P 315x10°° Qm

. md? . m(1.00x107* m)? 6 N
1=dA=="J= n (6.35x10° A/m?)=[49.9 mA

2 8.02x 102 electrons
0 2698g O
H.70x10° g/ m3H

J (6.35x106 A/ m?)
V,=—= = -_659 m/s
9" ne ” (6.02x10% electrons/ m3)(160 x 107 C) H

AV =E ¢ =(0.200 V/m)(2.00 m)= [0.400 V

=6.02 x 10% electrons/ m?®
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ag =3.90 x 107°/°C  (Table 27.1) a=24.0 x 10°/°C (Table 19.2)

*27.32 For aluminum,
_pl _po(l+agAT)1+anT) _ _ (L+aeAT) (1.39)
R="—= —R——1.234Q——-1.71Q
A A(1+anT)? ®@+aaT) ( ) (1.0024)
27.33 R =Ro[l + a AT]

R - Rp = Roa AT

R-Rg _ _ 3 _
Ro o AT = (5.00 x 10™°)25.0 =0.125

27.34 Assuming linear change of resistance with temperature, R = Ro(1 + a AT)

R 77x= (100 Q)[l +(3.92x 10‘3)(—216°c)] =

1 EIpw O
27.35 P=poll+alAT) or ATy =— -1
( ) Qw Haow E
R i h 4 h AT, = 1 ED4(1‘70X10_8) 1Ij 47.6 °C
equire that = so that = -10=47.6"°
a A =20, W Hisox10°7°CH 5.60x10° L
Therefore, Tyw =47.6 °C+T, =|67.6°C
1 DARO_01 02R, -Ry _ 1
27.36 a=—_—"= =
R,LATD MR, HT-T, T-T,
S0, T="C4+T and T= 20.0°C e} T=|252x10°°C
OgO" 'O B a00x10° co2H'
_ P _600W
*27.37 I_N =150V - 5.00 A
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27.38 P =0.800(1500 hp)(746 W/hp) = 8.95 x 10° W
P =1(AV)

8.95 x 10° = 1(2000)

27.39 The heat that must be added to the water is
Q = mc AT = (1.50 kg)(4186 J/kg°C)(40.0°C) = 2.51 x 10° ]
Thus, the power supplied by the heater is

_ W _Q _ 251x10°)
P=%T =% = " e00s

sanceis Ro(BV) _ (10V7
and the resistanceis R =5 T oW T 289 Q

=419W

27.40 The heat that must be added to the water is Q =mc(T2-Ty)
mc(T, =T
Thus, the power supplied by the heat is P = W = Q = M
At At t
2 2
and the resistance is R= (av) = (av)’t
P mc(T, - T,)

P _(avy’/R _Oav O _dorf

=400 1 361
Po (AV,)?2/R DAV,H 200

27.41

_ EP - PO _ DP _ _
A% = W%moo/o) "B, - 1@100%) = (1361-1)100 =
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Goal Solution

Suppose that a voltage surge produces 140 V for a moment. By what percentage does the power output of
a 120-V, 100-W light bulb increase? (Assume that its resistance does not change.)

G: The voltage increases by about 20%, but since P=(AV)’ /R, the power will increase as the square of

the voltage:

Py (AVPP/R (140 V)
P; (AV’/R (120 VY

=1.361 ora 36.1% increase.

We have already found an answer to this problem by reasoning in terms of ratios, but we can also
calculate the power explicitly for the bulb and compare with the original power by using Ohm’s law
and the equation for electrical power. To find the power, we must first find the resistance of the bulb,
which should remain relatively constant during the power surge (we can check the validity of this
assumption later).

AV, (120 v)?

© From P=(AV)? /R, we find that R=--"—, _ =144 Q
P 100 W
AV
The final current is, I = SV MoV 0.972 A
R 144 Q
(Av)* _(a0v)’
. . Pr= = =136V
The power during the surge is R 144 Q
136 W -100 W

So the percentage increase is =0.361=36.1%

100 W

Our result tells us that this 100-W light bulb momentarily acts like a 136-W light bulb, which
explains why it would suddenly get brighter. Some electronic devices (like computers) are sensitive
to voltage surges like this, which is the reason that surge protectors are recommended to protect
these devices from being damaged.

In solving this problem, we assumed that the resistance of the bulb did not change during the
voltage surge, but we should check this assumption. Let us assume that the filament is made of
tungsten and that its resistance will change linearly with temperature according to equation 27.21.
Let us further assume that the increased voltage lasts for a time long enough so that the filament
comes to a new equilibrium temperature. The temperature change can be estimated from the power
surge according to Stefan’s law (equation 20.18), assuming that all the power loss is due to radiation.
By this law, T «4/P sothata 36% change in power should correspond to only about a 8% increase in
temperature. A typical operating temperature of a white light bulb is about 3000 °C, so
AT =0.08(3273 °C) =260 °C. Then the increased resistance would be roughly

R=Ry(1+a(T-T,))=(144 Q)(l +4.5x% 10‘3(260)) 0310 Q

It appears that the resistance could change double from 144 Q. On the other hand, if the voltage
surge lasts only a very short time, the 136 W we calculated originally accurately describes the
conversion of electrical into internal energy in the filament.
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AV)?
27.42 P=1(AV) = % =500 W
_ M —2 2Q
= Goow) ~ %+
P _RA _(24.2Q)m(2.50x10™* m)? _
a) R==I o) | =—= =13.17m
(@) A P 1.50x107° Q

() R=Rg[l+aAT] = 24.2 Q[1+(o.4oo x107%)(1180)| = 35.6 Q

(AV)? _ (110)?
P= = =[340 W
R T 36

pl (1 50x10°°Q - m)25 0Om
27.43 R=Z ———
A 71(0.200 x 1073 m)

=298 0
AV = IR = (0.500 A)(298 Q) = 149 V
_AV 149V
@ E="==35gm =397 V/m
(b) P =(AV)l = (149 V)(0.500 A) = |74.6 W

(© R=Ry[1+a(T-Ty) =298 Q[1+(o.4oo x1073 /C°)320C°[ =337 Q

AV (149V)
R~ (337Q)

= (AV)I = (149 V)(0.443 A) =

I = =0443 A

1C 11 W s
27.44 (a) AU =q(AV) = It(AV) = (55.0 A - h)(12.0 V)ElA SBSV ng T B 660 W - h = [0.660 KWh

$0.0600 _
(b) Cost =0.660 kWh Fwhp = [3.96¢]

27.45 P=1(AV) AV =IR

(AV)? _ (10.0)?
P = = = [0.833 W
T 10
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J/s 18600 s0
clockd 1h O

27.46 The total clock power is (270 x10° clocks)§.5o =2.43x10'2 J/h

W . .
From e=-—9 the power input to the generating plants must be:
in

Qin _ Wou/t _ 2.43x10" J/h
t e 0.250

=9.72x10* J/h

and the rate of coal consumption is

1100 kg coal O kg coal metric ton
Rate =(9.72 x10'? J/h =2.95x10° == == =|295 —~ —
ate = / )533.0x106JE h h
27.47 P =1(AV) =(170 A)(110 V) =187 W

Energy used in a 24-hour day = (0.187 kW)(24.0 h) = 4.49 kWh

0.0600
O cost =4.49 kWh E$kWh B = $0.269 = [26.9¢

27.48 P =I(AV) = (2.00 A)(120 V) = 240 W
AU = (0.500 kg)(4186 J/kg°C)(77.0°C) = 161 ki

AU 1.61x10°J

“Tp T T 240W = [6725]

27.49 At operating temperature,

(@ P =1(AV)=(1.53 A)(120 V) =|184 W
(b) Use the change in resistance to find the final operating temperature of the toaster.

R = Ro(l + a AT)

120 120 .
I53 = 180 [1+(o.4oo><10 )AT]
AT = 441°C

T =20.0°C + 441°C =
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Goal Solution

A certain toaster has a heating element made of Nichrome resistance wire. When the toaster is first
connected to a 120-V source of potential difference (and the wire is at a temperature of 20.0 °C), the initial
current is 1.80 A. However, the current begins to decrease as the resistive element warms up. When the
toaster has reached its final operating temperature, the current has dropped to 1.53 A. (a) Find the power
the toaster consumes when it is at its operating temperature. (b) What is the final temperature of the
heating element?

G: Most toasters are rated at about 1000 W (usually stamped on the bottom of the unit), so we might
expect this one to have a similar power rating. The temperature of the heating element should be hot
enough to toast bread but low enough that the nickel-chromium alloy element does not melt. (The
melting point of nickel is 1455 °C, and chromium melts at 1907 °C.)

O: The power can be calculated directly by multiplying the current and the voltage. The temperature can

be found from the linear conductivity equation for Nichrome, with a=0.4x10"° °C? from Table
27.1.

A: (@ P=(AV)I=(120 V)(L53 A)=184 W

(b)  The resistance at 20.0 °C is Ry = AV _120V _ 66.7 Q
I 180A
At operating temperature, = 120V =78.4Q
153 A

1+alT -Ty)|

Neglecting thermal expansion, R= % = po( i\ 0)) = R0(1+ a(T —To))
T=T, fRR =L _og ey 184 9/6?'37 9_11:461 °C
a 0.4x107° °C

L: Although this toaster appears to use significantly less power than most, the temperature seems high
enough to toast a piece of bread in a reasonable amount of time. In fact, the temperature of a typical
1000-W toaster would only be slightly higher because Stefan’s radiation law (Eq. 20.18) tells us that

(assuming all power is lost through radiation) T « %%, so that the temperature might be about 700 °C.
In either case, the operating temperature is well below the melting point of the heating element.

27.50 P =(10.0 W/ ft%)(10.0 ft)(15.0 ft) = 1.50 kW
Energy = P t = (150 kW)(24.0 h) = 36.0 kWh

Cost = (36.0 kWh)($0.0800 / kwWh) =

*27.51 Consider a 400-W blow dryer used for ten minutes daily for a year. The energy converted is

P t = (400 3/s)(600 s/d!)(365 d) 09 x 107 J%E@O KWh

We suppose that electrical energy costs on the order of ten cents per kilowatt-hour. Then the
cost of using the dryer for a year is on the order of

Cost 0(20 kWh)($0.100/kWh) = $2
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AV (AV)?
*27152 (@) I=~ so P=(AV)I=-—Fx
(AV)* _ (120V)* _ AV _ (120V)2
R="%" = mow =15782 and R="—= = Toow = 1440
_ P _25.0W _Q _100C
®) 1= Ay =T120v “0W8A=T =
- R = he charge has I ial
t= 5208 A —|480s The charge has [lower potential energy| .
AU 1.00J
(c) P:25.0W:T :T
1.00J _ _
t= 555w —10.0400s The energy [changes from electrical to heat and light] .

(d) AU =Pt = (25.0 I/5)(86400 s/d)(30.0 d) = 64.8 x 10°J

The energy company sells .

_ 6, $0.0700q K W -spgp h [ _
Cost =64.8 x10") 7%Wh 0I00000 J 0360050 ~

. $0.0700 kW h
Cost per joule = v % 0 x 10° J@ =|$1.94 x 1078/)

*27.53 We find the drift velocity from I = nqvg A = ngvy mr?

| 1000 A

- =249 x 107 m/s
ngmr?  8.00 x 102 m=3 (1.60 x 107° C) (1072 m)?

Vg =

200 x 103 m

X X
v= ¢ t=— = —————— =804x108s=[255yr
t \ 249 x 104 m/s

500 Q[
*27.54 The resistance of one wire is %5(100 mi) =50.0Q

The whole wire is at nominal 700 kV away from ground potential, but the potential difference
between its two ends is

IR = (1000 A)(50.0 Q) = 50.0 KV

Then it radiates as heat power P = (AV)I = (50.0 x 10° V)(1000 A) = [50.0 MW



2755
(@)
(b)
*27.56
2757

Separating variables,

In % = U(T —To)
LpolJ

p D100[1*‘ a(T ‘To)]

The resistance is
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We begin with the differential equation a= —7=

and P = poe

From the series expansion e* 01 + X, (x << 1),

Consider a 1.00-m length of cable. The potential difference between its ends is

P 200W
AV=2=220 =667 mV
I~ 300 A m
_ AV _667x10°V
R==" ="30A  ~222pQ

-8
ol pl o /(1.70 %1078 Q-m)(1.00 m)
Then R=—=-—5 gives r=,—= = [1.56 cm
A 7t O V=R 2(22.2x10° Q)
_RA_(av)A
P T
£ (m) R(Q) p(Q - m)
0.540 10.4 1.41 x 1078
1.028 21.1 1.50 x 1078
1.543 31.8 1.50 x 1076

p = |1.47 x107° Q- m| (in agreement with tabulated value)

p= RTA: 150 x10° Q- m| (Table 27.2)
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27.58

*27.59

*27.60

(@)

(b)

©

(@)

(b)

(©

(d)

(®)

(@)

(b)

©

(d)

(e)

2 wires - £=100 m

01080
R= 300m

(100 m) = 0.0360 Q
(AV)home = (AV)jine — IR = 120 — (110)(0.0360) = [116 V
P = 1(AV) = (110 A)(116 V) = [12.8 KW

P wires = 1°R = (110 A)%(0.0360 Q) = [436 W

__dv._ (0-4.00)V _ -
Sl (o.5oo—o)m"

ol (400x107® Qm)(0.500 m)

R=Er- - [oeral

n(1. 00x107* m)

|V _ 400V _

R 0637Q

3=1i= 6.28 A =2.00x10%i A/m? = | 200i MA/m?

A {100 x 10 m)2

p3=(4.00x10® @ )(2.00 x10°i A/m?)=8.00i V/m=E

dv(x) . _|V.
E=- ax i LI
4pL
R:ﬂ:L2
A mrd
AV V rrd?
=R =
4pL
J—I—l- i|
=xi= oL
Vv
pI=ri=[g]
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10R O 10, .0
27.61 R=Ry[l+a(T-T 0 T=Ty+-p—-1eTy+—52-1
o[ ( o)] 0 a% E 0 aﬁl a
. lo 1 9
Inthiscase, I=7~, so T=T,+—(9)=20°+———— =|2020°C
10 0" 5 ® 0.00450/°C 2020 °C]
AV 120 6.00 . _ .
27.62 R=—~ ==~ =q_305 thus 1201-360=6.001 and 1=600A
12.0V
Therefore, R = 600A - 2.00 Q
X 8.00x 10° W
2763 (a) P=I1(AV S0 (=2 ST N 667 A
@ (V) AV 12.0V -
AU 2.00x107 ] 3 3
b) t=—=—"—"7-"—=250x10 and d=vt=(20.0m/s){2.50 x10° s) =|50.0 km
®) P 8.00x10° W xS ( )( )
1+ aT-T)l1+a'(T-T
2764 (a) We begin with R=P Pl + o —To)] l[1+a'(T-Ty)]
A Ag[1+2a' (T = T)|
Ro[l+a(T-T) [1+a' (T-T
which reduces to R = 0[ ( 0)] [ ( O)]
[1+2a' (T - To)|
(b) For copper: Po=170x1078 Qin, @=3.90x107° °C™!, and a'=17.0x107° °C?

_pdlo _ (170 x107°)(2.00)

A, m(0.100x107%)? = [108 9]

The simple formula for R gives:

R =(108 0)[1+(3.90 x1072°C})(100°C - 20.0°C) =

while the more complicated formula gives:

Ro

1080 [1+ (3.90 x 103°C1)(80.0° C)] [1+ (17.0x107 °C‘1)(80.0°C)]
q - (1089) =[1418 0

- [1 +2(17.0 x 1076 °C_1)(80.O°C)J
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27.65 Let a be the temperature coefficient at 20.0°C, and o’ be the temperature coefficient at 0 °C.
Then p=po[1+a(T-20.0°C)],and p=p'[1+a'(T -0°C)] must both give the correct resistivity
at any temperature T. That is, we must have;

po[1+a(T -20.0°C)| = p'[1+a'(T-0°C)] (1)

Setting T = 0 in equation (1) yields: p' = po[1-a(20.0°C)],
and setting T = 20.0°C in equation (1) gives: o =p'[1+0a'(20.0°C)|
Put p' from the first of these results into the second to obtain:

Po = Po[1- (20.0°C)][1+ @’ (20.0°C)|

Therefore 1+a’(20.0°C):;
1-a(20.0°C)
a

which simplifies to '= m

From this, the temperature coefficient, based on a reference temperature of 0°C, may be
computed for any material. For example, using this, |Tab|e 27.1 becomes at 0°C

Material Temp Coefficients at 0°C
Silver 41x1073/°C
Copper 42x107%/°C
Gold 3.6 x107%/°C
Aluminum 4.2 x10°3/°C
Tungsten 49x107%/°C
Iron 5.6 x1073/°C
Platinum 4.25x107%/°C
Lead 42 x107%/°C
Nichrome 0.4 x10°3/°C
Carbon -05x10°3/°C
Germanium 24 x 1073/°C
Silicon -30 x 10" 3/°C
2766 (a) R=P -|_ Pt
N

~ (3:50x10° @n)(0.0400 m)

— 7 —
® R_n1(0.0120 m)? - (0.00500 m)2]_3_74x10 o= 3.4
() dr =LA __pdr :(_p )d—7 so R= Irb dr _ Llnl}bD
A (QarL \2aL 2nides v 7| 2l B,

(3.50x10° Qi) 10

d R= In =122x10° Q=[122 MQ
@ 2m(0.0400 m)  [0.5000] 122 M)
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27.67 Each speaker receives 60.0 W of power. Using #=12R, we then have
I = P = \/760'0\/\/ =387A
R 4.00 Q

The system is |not adequately protected| since the [fuse should be set to melt at 3.87 A, or less

27.68 AV=-E-1 or dV=-E- dx
AV =-IR=—E |
=BT _Apy Apo pa®oloa |V
dt R pl p dx dx

Current flows in the direction of decreasing voltage. Energy flows as heat in the direction of
decreasing temperature.

27.69 R= J.de de where y=y; + yl Face H=
|- ny .
1 -
_7_]’ 5/ y2 yl a '-I-:-—r ___.___F'.tt
0y, +Y2™Y1 y1 W(Yz y1) 0
O
R = __pL |n%g
w(yz =y1) 1
27.70 From the geometry of the longitudinal section of the resistor shown in the —*
figure, we see that I
(b-r)_(b-2a)
y h

From this, the radius at a distance y from the base isr=(a- b)% +b

For a disk-shaped element of volume dR —p—dg
mr

h
J; [(a- b)(y/h) + b]

I(au +h)?  a(au+b)’ mab

Using the integral formula
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27.71

()

(i)

(iii)

I = 1p[exp(eAV / ksT) ~1]

with  1,=100x10° A, e=160x107"° C, and kg =138x1072 J/K.

and

The following includes a partial table of calculated values

and a graph for each of the specified temperatures.

For T =280 K:
AV (V) 1(A)
0.400 0.0156
0.440 0.0818
0.480 0.429
0.520 2.25
0.560 11.8
0.600 61.6
For T =300 K:
AV (V)  1(A)
0.400 0.005
0.440 0.024
0.480 0.114
0.520 0.534
0.560 2.51
0.600 11.8
For T =320 K:
AV (V) 1(A)
0.400 0.0020
0.440 0.0084
0.480 0.0357
0.520 0.152
0.560 0.648
0.600 2.76

0.973
0.223
0.051

52.5
13.4
3.42
0.864
0.217

T=280K
30
25
»
g 20 \
s LN
~ 5 \\
0 T
0.40 0.45 0.50 0.55 0.60
delta V (Volts)
T=300K
100
— 80 \
E 60
AP AN
S y C
= 20 -
0
0.40 0.45 0.50 0.55 0.60
delta V (Volts)
T=320K
200
— 160 \
£ 120X
\
S 80 C
40
0
0.40 0.45 0.50 0.55 0.60
delta V (Volts)
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r——======" i
AV)? (11.6 V)? 115.0 V i
28.1 a) P= ( becomes 200W= —4—— so R=[673Q I !
@ R R _.,_.| |,—'\'H'l"t‘—;—
(b) AV =1IR SO 116V=1(6.73Q) and I1=172A h 1.6 Y Jl
E=IR+Ir SO 150V =116V + (172 A)r .uRu

Figure for Goal
r=197Q Solution

Goal Solution

A battery has an emf of 15.0 V. The terminal voltage of the battery is 11.6 V when it is delivering 20.0 W
of power to an external load resistor R. (a) What is the value of R? (b) What is the internal resistance of
the battery?

G: The internal resistance of a battery usually is less than 1 Q, with physically larger batteries having less
resistance due to the larger anode and cathode areas. The voltage of this battery drops significantly
(23%), when the load resistance is added, so a sizable amount of current must be drawn from the
battery. If we assume that the internal resistance is about 1 Q, then the current must be about 3 A to
give the 3.4V drop across the battery’s internal resistance. If this is true, then the load resistance
must be about R=12V/3A=4Q.

O: We can find R exactly by using Joule’s law for the power delivered to the load resistor when the
voltage is 11.6 V. Then we can find the internal resistance of the battery by summing the electric
potential differences around the circuit.

A: (@) Combining Joule's law, P =AVI, and the definition of resistance, AV =IR, gives

_Aav? (116 V)
P~ 200W

R =6.73 Q

(b)  The electromotive force of the battery must equal the voltage drops across the resistances:
E=IR+Ir, where |=AV/R.

E-IR _ (E-AV)R _(150V-116 V)(6.73 Q)
I AV 116 V

=197 Q

L: The resistance of the battery is larger than 1 Q, but it is reasonable for an old battery or for a battery
consisting of several small electric cells in series. The load resistance agrees reasonably well with our
prediction, despite the fact that the battery’s internal resistance was about twice as large as we
assumed. Note that in our initial guess we did not consider the power of the load resistance;
however, there is not sufficient information to accurately solve this problem without this data.
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28.2

28.3

28.4

285

(@)

(b)

(@)

(b)

(@)

(b)
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AVierm = IR

becomes 10.0 V = 1(5.60 Q)

so | =

AVierm=E-1Ir

becomes 10.0V = E€-(1.79 A)(0.200 Q)

so E=

The total resistance is R = % =5.00Q W W —

Riamp = R = 'batteries = 5.00 Q - 0.408 Q = _ T
o

Phatteries _ (0-408 Q)12

—————- =0.0816 = [8.16%)
Piotal (5.00 Q)I? n

Here E=I1(R+r), so |I= € = 126V =2.48 A
R+r (500Q + 0.0800 Q)

Then, AV =IR=(2.48 A)(5.00 Q)= [12.4 V] T % %

Let I, and 1, be the currents flowing through the battery and the headlights, respectively.

Then, I;=1,+35.0A,and £€-1;,r-1,R=0

) €=(1,+35.0 A)(0.0800 Q) +1,(5.00 Q) =12.6 V
giving I, =193 A

Thus, AV, =(1.93 A)(5.00 Q) =

AV = 11R; = (2.00 A)R; and AV = I,(R; + Ry) = (1.60 A)(R + 3.00 Q)

Therefore, (2.00 A)R;=(1.60A)(R1 +3.00Q) or R;=(120Q

© 2000 by Harcourt, Inc. All rights reserved.
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28.6

*28.7

*28.8

(@)

= L =412 Q

R (¥7.00 Q) +(120.0 Q)

R¢=R;+Ry,+R3=4.00+412+9.00= |17.1Q

() AV =IR

340V =1(17.1Q)

1=(1.99 A| for 4.00 Q, 9.00 Q resistors

Applying AV = IR, (199 A)(4.12Q)=8.18V

7.00 Q

8.18V =1(7.00Q) so I =(1.17 A| for 7.00 Q resistor
8.18V =1(10.0Q) so 1 =10.818 A| for 10.0 Q resistor

If |all 3 resistors are placed in parallel|,

= — 4+ —== = — and R:].OOQ

For the bulb in use as intended,

P _75.0W _ _ﬂ _1l20v
= =0.625 A and R= I = 065 A =192 Q

AV 120V

Now, presuming the bulb resistance is unchanged,

_ 120V
T 1936Q

=0.620 A

Across the bulb is AV = IR =192 Q(0.620 A) = 119 V

so its power is P = (AV)I = 119 V(0.620 A) =

AAMA

- 120V

YVyy

0.800 Q

0.800

192 Q

YYYY




28.9

(b)

(@)

28.10

If we turn the given diagram on its side, we find that it is the
same as Figure (a). The 20.0-Q and 5.00-Q resistors are in series, so
the first reduction is as shown in (b). In addition, since the 10.0-Q,

5.00-Q, and 25.0-Q resistors are then in parallel, we can solve for
their equivalent resistance as:

_ 1
eq =
q 1,1 1
100Q 500Q 250Q

R

):2.949

This is shown in Figure (c), which in turn reduces to the circuit
shown in (d).

Next, we work backwards through the diagrams applying

I= AV/R and AV =IR. The 12.94-Q resistor is connected across
25.0-V, so the current through the battery in every diagram is

AV _ 250V

R ~ 12040

=193 A

In Figure (c), this 1.93 A goes through the 2.94-Q equivalent
resistor to give a potential difference of:

AV = IR = (1.93 A)(2.94 Q) = 5.68 V

From Figure (b), we see that this potential difference is the same
across Vg, the 10-Q resistor, and the 5.00-Q resistor.

Therefore, Vg =

Since the current through the 20.0-Q resistor is also the current
through the 25.0-Q line ab,

=0.227A=

_Vap _ 568V
"Ra  2500Q

120V = IR :|%+ﬂ+ﬂ+ﬂ or 1ol (220 V)
eq 1 s A Ay 01 1 L+LD
il 2 /\3 /\4 E%
ol (120 V)
Vo= = -[295V
2 A, 01 1 1 10
Pla " A YA T A
1 A Az Ay

© 2000 by Harcourt, Inc. All rights reserved.
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10Q
v Ij;S \%

10Q
YY) b
T VWY .

5.0Q

AAAA
Yyvy

AAAA
YYYY
n
o

KJ.

20
Q

AAAA
YYYY

<

wn

)
AAAA

YYvy

<5
[\
Ok
AAAA
YYYY

0=

_

Qo
AMA
VWV

0

Q 9

LR
AAA
YWy

@

Sl

<5
AAAA
YYYY
[\®]
QG
AAAA
YYyy

<>

12.94 =
Q=

— —_
Do Qo
0=
AAA
VV#& «Ah%
Lo}
p
p)
YYYVY

(d)
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28.11 (a) Since all the current flowing in the circuit must pass through the 100 Q
series 100-Q resistor, P = RI? a100 Q W b
—WA\— 100 Q—

P_[250W W
Pmix:RImaxz SO Imax:\/R:\lOOg):OSOOA

1

_ ol  1o7,2
Req=100Q + os+ oo "0 =150 0

AVmax = Req Imax =
(b) P =(AV)I =(75.0 V)(0.500 A) =|37.5 W| total power

P,=125.0 W Py= P3:R|2:(100 Q)(0.250 A)ZZ 6.25 W

28.12 Using 2.00-Q, 3.00-Q, 4.00-Q resistors, there are 7 series, 4 parallel, and 6 mixed combinations:
Series Parallel Mixed The resistors may be arranged in patterns:
200Q 6.00Q 0923Q156Q MW o— MM
300Q 700Q 120Q 2.00Q —MWW— W AMA
4.00 Q 9.00 Q 1.33Q 222Q —MWA—WW—WW-o —MWW—WW
5.00Q 1.71Q 3.71Q MMW——o AW
433Q AMM AMA
YYyy YYVY
520 Q o] —o
AAAA AMA
YYVYY Yyy
28.13 The potential difference is the same across either combination. I— R
AAAA
YYYy
1 01 10 3= R
AV = IR =3l SO R=—+—-=3
% + ﬁ (R 5000 MW

R
=5 =3 and R =1000 Q = [1.00 kQ 500

1+

28.14 If the switch is open, I=E/(R' +R) and P=E2R /(R +R)?
If the switch is closed, |=E/(R+R'/2) and P=E%(R'/2)/(R+R'/2)?
2o 2
Then, ER £°R

(R'+R)?2 2(R+R'/2)?

2R? + 2RR' + R'2/2 =R'? + 2RR’ + R?

The condition becomes  R?=R'?/2 so R'=v2R =+2(1.00Q)=| 1.41Q



28.15

28.16
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4 2.00 Q
— D 1 1 D _ AAAA
Rp = [37.00 +7l.00|] =0.750 Q VVVy j ]
L 180 3008 1002
- - v o7 T
Ry =(2.00+0.750 +4.00) Q =6.75 Q 100 O
VAVAVAVA
_AV _18.0V _
Ibattery _?3_6-759 =2.67T A 2.00Q
18.0 < 0.750
P=I?R:  P,=(2.67 A)’(2.00 Q) 1% T =0
P,= [142W] in2.00Q 4.00 Q
P,=(2.67 A)’(4.00 Q)= [284 W] in 4.00 Q 180 _[
AV, =(2.67 A)(2.00 Q) =533V, AV, =(2.67 A)(4.00 Q) =10.67 V PP

AV, =180V -AV,-AV,=2.00V (= AVz=AV,)

_(avg)? _(2.00 V) _ :
Pa= R  3.00Q =[133W] in 3000

_(avy)® _(2.00 V)" _ :
PR T 1000 = [.00W] in 1000

Denoting the two resistors as x and vy,

_ g - L ,1
x+y=690, an 150 = X +y
11 1 (690-X)+X
750 ~ x T 890-x - x(690-x)

x2 - 690x + 103,500 = 0

G \/(690)% - 414,000

2

x=470Q| y=[2200]

© 2000 by Harcourt, Inc. All rights reserved.
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2817 (a) AV =IR: 33.0V=1,(110Q) 33.0V=1,(22.00Q)

28.18

()
©

(d)

(e)

1,=3.00A 1,=150A
P=1%R: P1=(3.00 A)(1.0Q)  P,=(150 A)*(22.0 Q)

P1=99.0 W P,=49.5W

|The 11.0-Q resistor uses more power.|

P+ P,= [148W P =1(AV)=(4.50)(33.0) = {148 W

R=R;+R,=11.0Q+22.0Q=33.0Q

AV = IR: 33.0V=1(330Q), so 1=100A
P =I%R: P1=(100 A)’(11.0Q)  P,=(1.00 A)*(22.0 Q)
P1=1L0 W P,=22.0W

|The 22.0-Q resistor uses more power.|

P1+ P,=12(Ry +R,) = (100 A)*(33.0 Q) =

(L00 A)(33.0V)=[33.0 W

P=1(AaV)

| The parallel configuration uses more power.|

+15.0 — (7.00)1; — (2.00)(5.00) = 0

5.00 = 7.00l, S0

I3=1;+1,=2.00 A

0.714 + 1, =2.00 o]

=129 A
+& - 2.00(1.29) — (5.00)(2.00) = 0

L i
A

7.00Q 15.0V

5.00

2.00 Q

—AWW—]

—

£
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28.19 We name the currents 1y, I,, and I3 as shown. 3.00 Q
AVAVAVAV
From Kirchhoff's current rule, I3=1y+1, L1 4
¢ ‘ 5.00 1.00 I
Applying Kirchhoff's voltage rule to the loop containing I, and I3, «Q «Q :
12.0 V — (4.00)15 — (6.00)l, — 4.00 V = 0 =800 1Y
‘ S TR T AR = 20 79 120
8.00 = (4.00)13 + (6.00)I, 4-\90 \ T

Applying Kirchhoff's voltage rule to the loop containing I, and I,
—(6.00)I, — 4.00 V + (8.00)I, =0
(8.00)1; = 4.00 + (6.00)1,

Solving the above linear systems, |1; =846 mA, 1,=462mA, I13=131A

All currents flow in the directions indicated by the arrows in the circuit diagram.

*28.20 The solution figure is shown to the right. —(A) A
E
& 3
\E v
\%
A
*28.21 We use the results of Problem 19.
(@) By the 4.00-V battery: AU = (AV)It = 4.00 V(-0.462 A)120 s = [-222 )
By the 12.0-V battery: 120V (1.31 A) 120 s = 1.88 kJ
(b) By the 8.00 Q resistor: IRt = (0.846 A)?(8.00 Q) 120 s =687 J
By the 5.00 Q resistor: (0.462 A)*(5.00 Q) 120 s = [128]
By the 1.00 Q resistor: (0.462 A)%(1.00 Q) 1205 =[25.6J
By the 3.00 Q resistor: (1.31 A)%(3.00 Q) 1205 = [616 J
By the 1.00 Q resistor: (1.31 A)%(1.00 Q) 120 s = 205 J

() —222)+1.88kJ=|1.66kJ[ from chemical to electrical.

687 J+ 128 ]+ 25.6 J + 616 J + 205 J = 1.66 kJ from electrical to heat.

© 2000 by Harcourt, Inc. All rights reserved.
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28.22

28.23

(@)

(b)

We name the currents Iy, I,, and I3 as shown. b c 400kQ d
I YYYy
[ 70.0 - 60.0 — 1, (3.00 kQ) — 1; (2.00 kQ) =0 IlT_ & 2] €, R, 83__113
] 80.0 — I3 (4.00 kQ) - 60.0 — I, (3.00 kQ) = 0 700V Te0.0V T80.0
Vv
3] h=1;+ I3 Ry 2 3.00kQ
Substituting for 1, and solving the resulting simultaneous 2.00 k@
equations yields a Vé\;v e ¥
11 =10.385 mA| (through R;)
I3={2.69 mA| (through R3)
I, =13.08 mA| (through Ry)
AV = —60.0 V - (3.08 mA)(3.00 kQ) =[-69.2V
|Point ¢ is at higher potential. |
Label the currents in the branches as shown in the first figure. b R ¢ 2R 4
Reduce the circuit by combining the two parallel resistors as 250 o 500
shown in the second figure. \Y% 4R SR —v
I] 12
. ) N } 4 AN }
Apply Kirchhoff's loop rule to both loops in Figure (b) to 4 3
obtain: :
a [— e
(2.71R)1; +(L71R)1, =250 and (L71R)l; +(3.71R)I, = 500 @)
With R =1000 Q, simultaneous solution of these equations
i R ¢ 2R
yields:
250 500
I,=10.0mA and 1, =130.0 mA v ik v
111 S17IR %2
From Figure (b), V. -V, =(1; +1,)(L71R) =240 V
n 14
Thus, from Figure (a), 1, = Ve~Va_ 240V _g) 6 ma (b)

4R 4000 Q
Finally, applying Kirchhoff’s point rule at point a in Figure (a) gives:

I=1,-1;=60.0 mA -10.0 mA = +50.0 mA,

or I =150.0 mA flowing from point a to point e| .




28.24

28.25

Name the currents as shown in the figure to the right. Then (—’f_lﬁ
w X

w+Xx+z=y. Loop equations are
—200w - 40.0 + 80.0x =0
—80.0x +40.0 + 360 — 20.0y =0

+360 - 20.0y - 70.0z + 80.0=0

Eliminate y by substitution.

Eliminate x:

Eliminate z = 17.5 — 13.5w to obtain

Now

and for the 200 Q,

Using Kirchhoff’s rules,
12.0-(0.0100)1, - (0.0600)1; =0
10.0 +(1.00)1, - (0.0600)15 =0
and Iy =1,+I;
12.0-(0.0100)1, - (0.0700)15 =0

10.0 +(1.00)I, - (0.0600)15 = 0
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zZ

4

X = 2.50w + 0.500
F400 — 100x — 20.0w - 20.02 = 0
H#40 - 20.0w - 20.0x -90.02 =0

(850 — 270w — 2002 = 0
F430 - 70.0w - 90.02 =0

430-70.0w —-1575+1215w =0

w =70.0/70.0 = (1.00 A upward in 200 Q

z=4.00 A upward in 70.0 Q|

x=3.00 A upward in 80.0 Q|

y=8.00 A downward in 20.0 Q|

AV = IR = (1.00 A)(200 Q) = [200 V

=L |k 13*

0.0100 1.00 < 0.0600
Q Q = Q
Starter

T12.0V Tl0.0 v

Live Dead
battery battery

Solving simultaneously, I2:|0.283Adownward in the

dead battery,

and 13 = (171 A downward| in the starter.

© 2000 by Harcourt, Inc. All rights reserved.
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28.26

28.27

(@)

(b)

Vg = (1.00)13 +(1.00)(1, — 1,)

Vg =(100)1; +(1.00)1, +(5.00)(1 = 1y + 1)
Vg =(3.00)(1 = 1y) +(5.00)(1 = 1, +1,)

Let I=100A, I;=%, and I, =y

Then, the three equations become:

Vg =2.00x-y, or y=2.00x-Vy

V4, = —4.00x +6.00y +5.00

and V4, =8.00-8.00x +5.00y

Substituting the first into the last two gives:
7.00V,, =8.00x +5.00 and 6.00V,, =2.00x +8.00

Solving these simultaneously yields V,, = % \Y/

Vi _271/17TV

Then, Ry =% =T 00 A

We name the currents |4, I,, and I3 as shown.
=1 +15

Counterclockwise around the top loop,

12.0 V - (2.00 Q)3 — (4.00 Q)I; = 0

Traversing the bottom loop,

8.00 V = (6.00 Q)I, + (2.00 Q)13 =0

5 and

w| s
Wl

|1:3.00—%|3 I, = +

V, — (0.909 A)(2.00 Q) = Vj,

I 100 1, -1, 1.00
O 120y

—_ —»

114—

L 120V 4.00Q

Bl 2000

——||—’WW—

oh

8.00V 6.00Q

3 I__MM,_



28.28

28.29

28.30

(@)

(b)

©

(@)

(b)

©
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We apply Kirchhoff's rules to the second diagram. 2.00Q
VAVAVAV
50.0 - 2.001, - 2,001, =0 ) L1500 24.00 24.00 J_ 20.0
b :> Q :: Q V
20.0 — 2.00I3 + 2.001, = 0 2)
T Il AAAA

1=l +I3 (3) 28’(')'9
Substitute (3) into (1), and solve for Iy, I, and I3 000
I;,=200A; 1,=500A; I3=150A W

) -L.50.0 £2.00 20.0
Then apply P =12R to each resistor: -V =z Q

tn b —‘113

(2.00 Q)1 : P = 1,2(2.00 Q) = (20.0 A)2(2.00 Q) =

2.00 Q
. 02 -
(4.00Q): P= D 2 AD (4000Q) =
(Half of I, goes through each)

(2.00 Q)3 : P = 152(2.00 Q) = (15.0 A)2(2.00 Q) =

RC = (1.00 x 108 Q)(5.00 x 10 F) = [5.00 s R 1.00 x 10°Q
( )( ) vAvAvAvA
Q=CE=(5.00 x 107 C)(30.0 V) = [150 pC 5.00 uF
E _ure 30.0 D -10.0 | o
I(t)=—¢e = ex .06 A °—
=g 100x10° - PHL00 x 10°)(5. 00><10‘6)H [.06 uA]

I(t) = —loe™RC

Q _  510x10°C
RC ™ (1300 Q)(2.00 x 10° F)

lo= =196 A

—-9.00x 107 s D

) =-(1.96A) exp Edlsoo Q)20 x10° P

-8.00x10°%s D

t “URC = (5,10 uC = -o 235 uC
q(t) = Qe™™ = (5.10 uC) exp E{lsoo Q)(2.00 x 10° F) ] :

The magnitude of the current is [lg=1.96 A
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28.31 u=1c(av)® and AV=Q/C

N [~

Therefore, U =Q2/ZC and when the charge decreases to half its original value, the stored

energy is one-quarter its original value: [U; =%U0

28.32 (a) T=RC=(1.50 x 10° Q)(10.0 x 10°F) =
(b) T=(1.00x10° Q)(10.0 x 10°F) =

10.0V

(c) The battery carries current =
50.0 x 10° Q

=200 pA

wre_ 0 100V [ ot/ 1.00s

The 100 kQ carries current of magnitude I =lge 3
HOO x 10 QDD

So the switch carries downward current 200 A + (100 pA)et/1.00 S‘|

28.33 (a) Call the potential at the left junction V| and at the right Vr. After a j .
"long" time, the capacitor is fully charged. =1Q =8Q
10 T
- 100V Vi1 240 200
VL = 8.00 V because of voltage divider: 1 = =2.00A o =
5.00 Q
V. =10.0V - (2.00 A)(1.00 Q) =8.00 V
. . O 200Q O
Likewise, VR = hﬂ 100V =200V
.00 Q +8.00 Q7
10.0V
or Igr = =1.00 A
10.0Q
VR = (10.0 V) - (8.00 Q)(1.00 A) = 2.00 V
Therefore, AV =V -Vg=8.00-200=[6.00V
9.00 @
(b) Redraw the circuit R= L =3.60 Q WW
(179.00 Q) +(1/6.00 Q)
1.00 uF
|1
RC=360x10°s 1
6.00 Q
1 VAVAVAVA
and ¢YRC= = oo t=RCIn 10 =[8.29 ps
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2834 (1) T=RC=(4.00x10°0)(3.00x107 F)= 400 M
0 1=Eevre o120y J_lZ.O V 3.00 uF =
R 4.00x10° T Switch

q=CéE[1-e7R%] =3.00x107°(12.0)[1 - e”+/12)

q=36.0uC|1-e” 120 I =3.00 pAe V120
28.35 avy =2
c
Then, if q(t) = Qe” YR AV(t) = Avoe—t/RC
AV(t) — g~ t/RC
AV,
0 O
Therefore 1_ exp 4.00 -
2 Q_ R(3.60x 10 @
olo_ 4.00

In =-
20 R(3.60x10°°
R =1.60 MQ

28.36 AV, =2
C
Then, if q(t)=Qe 'R AV(t) = (AV,)e VRE
and AV(T) _ e HRC
(aV,)
When AV(t) = %(AVO), then  eWRC=1
t OL0
-——=Iln="=-In2
RC  [pO
t
Thus, R =
C(In2)
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2837 o=Q[1-e "] s0 8O - g _gtrRe
Q
0.600 = 1 — ¢~ 0900/RC or e~ 0-900/RC —1 _0.600 = 0.400
-0.900 -0.900
=1n(0.400 thus RC=———=0.982s
RC (0.400) In(0.400) 0.982 5|
28.38 Applying Kirchhoff’s loop rule, =1,(75.0 Q) +(1-1,|R, =0 Galvanometer
‘ ( g) P N\75.0 Q
Therefore, if 1 =100 A when I, =150 mA, [gf I-I,
_> AAA

1.(75.00Q) (1L50x107% A)(75.0 Q I p
o _1e(7509) | X ) foisa t

P (|—|g) T 100 A-150x107 A

28.39 Series Resistor —» Voltmeter R. /’,{_‘“\
T5L2
AV = IR: 25.0 = 1.50 x 1073(R; + 75.0) L\-J
it b
Solving, R = 16.6 kQ Figure for Goal
Solution
Goal Solution

The galvanometer described in the preceding problem can be used to measure voltages. In this case a
large resistor is wired in series with the galvanometer in a way similar to that shown in Figure P28.24b
This arrangement, in effect, limits the current that flows through the galvanometer when large voltages
are applied. Most of the potential drop occurs across the resistor placed in series. Calculate the value of
the resistor that enables the galvanometer to measure an applied voltage of 25.0 V at full-scale deflection.

G:

The problem states that the value of the resistor must be “large” in order to limit the current through
the galvanometer, so we should expect a resistance of kQ to MQ.

The unknown resistance can be found by applying the definition of resistance to the portion of the
circuit shown in Figure 28.24b.

AVg, =25.0V; From Problem 38, 1=150mA and Ry;=75.0Q. For the two resistors in series,
Req = Rs + Ry so the definition of resistance gives us: AVy, = I(Rg +Ry)

_AVy o o 250V

g 53— 75.0Q=16.6 kQ
| 150x10°A

Therefore, R

The resistance is relatively large, as expected. It is important to note that some caution would be
necessary if this arrangement were used to measure the voltage across a circuit with a comparable

resistance. For example, if the circuit resistance was 17 kQ, the voltmeter in this problem would
cause a measurement inaccuracy of about 50%, because the meter would divert about half the current
that normally would go through the resistor being measured. Problems 46 and 59 address a similar
concern about measurement error when using electrical meters.




Chapter 28 Solutions 149

28.40 We will use the values required for the 1.00-V voltmeter to obtain the internal resistance of the
galvanometer. AV = 1g(R + 1)
AV 1.00 V
Solve for rg: rg=7 ~R= ————— -900Q=1000Q
g 1.00x 10 A

We then obtain the series resistance required for the 50.0-V voltmeter:

\% 50.0V
R=7— —-rg= —— -100Q =[49.9 kQ
e " Tooe 107 A

lgfg  14(60.0 Q)
= = - = 99 = 9 =
28.41 AV =1grg =(1-1g)Ry, or R, ENRE Ao\ oswma
Therefore, to have | =0.100 A =100 mA when Iy =0.500 mA: T

Ll

R

R, = (0.500 mA)(60.0 Q) _ | 100 mAY)

99.5 mA Figure for Goal
Solution

Goal Solution

Assume that a galvanometer has an internal resistance of 60.0Q and requires a current of
0.500 mA to produce full-scale deflection. What resistance must be connected in parallel with the
galvanometer if the combination is to serve as an ammeter that has a full-scale deflection for a current of
0.100 A?

G:

An ammeter reads the flow of current in a portion of a circuit; therefore it must have a low resistance
so that it does not significantly alter the current that would exist without the meter. Therefore, the
resistance required is probably less than 1 Q.

From the values given for a full-scale reading, we can find the voltage across and the current through
the shunt (parallel) resistor, and the resistance value can then be found from the definition of
resistance.

The voltage across the galvanometer must be the same as the voltage across the shunt resistor in
parallel, so when the ammeter reads full scale,

AV =(0.500 mA)(60.0 Q) =30.0 mV

Through the shunt resistor, | =100 mA - 0.500 mA =99.5 mA
Therefore, = ﬂ = M =0.302 Q
I 99.5mA

The shunt resistance is less than 1 Q as expected. It is important to note that some caution would be
necessary if this meter were used in a circuit that had a low resistance. For example, if the circuit

resistance was 3 Q, adding the ammeter to the circuit would reduce the current by about 10%, so the
current displayed by the meter would be lower than without the meter. Problems 46 and 59 address a
similar concern about measurement error when using electrical meters.
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RoR3 _ RoR3 1000 Q
28.42 Ry = = = = 1400 Q
X Ry 250R, 250 -

28.43 Using Kirchhoff’s rules with R, <<1,
2
-(21.0Q)1, +(14.0Q)1, =0, so I, :§|2

70.0-21.01, -7.00(1; +1) =0, and

70.0-14.01, ~7.00(1, ~ 15) =0

The last two equations simplify to

=15, and 10.0-3.001, =1,

Solving simultaneously yields: Ig=]0.588 A

10.0—4.00(§|2)

28.44 R:p—AL and R =Ph

2 2
But, V=AL=AL;, so R:& and Ri:&
\Y \Y

Therefore, R =

p(Li +AL) pLi[1+ (AL Li)]2
Vv

=Ri[L+a]* where a -4t
\Y% L

This may be written as: |R =Rj(1+2a+ 012)|

E, & E.R, [U8.0Q0
28.45 X =_8. £ =T5X= 1.0186 V) =(1.36 V
R, X R, %6.0 Qg )
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*28.46 (a) In Figure (a), the emf sees an A 20,000 Q ; 20.000 Q 20.000 O
equivalent resistance of : A ;
200.00 Q. 560000V AR
6.000 0 V R © \ P 0 ®
| =————=10.030 000 A
20000 - L0 00A W MWy
180.00 Q 180.00 Q 180.00 Q
(@) (b) (©
The terminal potential difference is AV = IR =(0.030 000 A)(180.00 Q) = [5.400 0 V
-1
. o 1 1 0
b) In Figure (b), Req = + =178.39 Q
(b) I Figure (b) “~ Hi80.00 @~ 20000 oH

The equivalent resistance across the emf is 178.39 Q +0.500 00 Q +20.000 Q =198.89 Q

E 6.0000V
The ammeter reads l=—=—————=10.030 167 A
R 10800 LLO0I7A
and the voltmeter reads AV = IR =(0.030 167 A)(178.39 Q) = [5.3816 V
0 1 1 g

(c) In Figure (c), =178.89 Q

+
Hi80.50 @ * 20 000 @
Therefore, the emf sends current through Ryt =178.89 Q +20.000 Q =198.89 Q
| = 6.0000 V

The current through the battery is = =0.030168 A
198.89 Q

but not all of this goes through the ammeter.

The voltmeter reads AV = IR =(0.030 168 A)(178.89 Q) = [5.396 6 V
AV _ 5396V

The ammeter measures current |=—=——7"—=10.029898 A

The connection shown in Figure (c) is better than that shown in Figure (b) for accurate readings.

P 1500 W
2847 (@) P =1(AV So for the Heater, l=—= =125 A
@ (Av) AV 120V
750 W
For the Toaster, I = T20W - 6.25 A
. _looow .
And for the Grill, I = 20V - 8.33 A| (Grill)

(b) 125+6.25 + 8.33 =|27.1 A| The current draw is greater than 25.0 amps, so this would not be
sufficient.
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2848 (2) P=I?R=12 Ol O_ (100 A)*(1.70 x107° Q [in)(16.0 ft)(0.3048 m / ft)

OAD" m0.512 x 1073 m)? - [QI1 W
(b) P =12R=100(0.101 Q) =

N

RCU _ \‘“pCu —_
lcy = lcu =4/7—==(20.0)=0.776(20.0) ¥ 15.5 A
Rautg, = Bt = 10 (2n0) 0 176z00) FTE5

28.49 12Rar = 13uRey S0

NS

\

*28.50 (a) Suppose that the insulation between either of your fingers and the conductor adjacent is a
chunk of rubber with contact area 4 mm? and thickness 1 mm. Its resistance is

"l D(1013 Qi)(107% m)

1 02x10" Q
A 4x10° m

The current will be driven by 120 V through total resistance (series)

2x10"° Q+10* Q+2x10° QO5x10%° Q

_AV 120V

-~ |~10"A
R 5x10®0Q

Itis: |

(b) The resistors form a voltage divider, with the center of your hand at potential V, /2, where Vy
is the potential of the "hot" wire. The potential difference between your finger and thumb is

AV = IR ~(10_14 A)(lo"' Q)~1O_10 V. So the points where the rubber meets your fingers are at
potentials of

~Vayg0y| and |~Yh-o100y
2 2
*28.51 The set of four batteries boosts the electric potential of each bit of charge that goes through them

by 4 x 1.50 V = 6.00 V. The chemical energy they store is
AU = gAV = (240 C)(6.00 J/C) = 1440 ]

AV 6.00V

The radio draws current | = = =0.0300 A
R 200 Q
So, its power is P = (AV)I = (6.00 V)(0.0300 A) = 0.180 W =0.180 J/s
Then for the time the energy lasts, we have P=E/t: t= E__140J _ 8.00x10% s
P 0.1801J/s

. Q 240 C
We could also compute this from | = Q/t: t= T

- - 3 —
= 0.0300A - 8.00 x10°s=12.22 h



*28.52

28.53

28.54

(@)

(b)
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[ ) E°R , Oe20
| = , SO P=IR= or R+r) =
R+r (R+r)? (R+1) I
_&? 2 _ 2 2 _
Let x =, then (R+r)" =xR or R*+(2r-x)R-r“ =0
With r=1.20 Q, this becomes R?+(2.40-x)R-144 =0,
~(2.40 - x) +(2.40 - x)? - 5.76
which has solutions of R= ( X) \(2 X)
_ +4.21+(4.21)* -5.76
With £€=920V and P=12.8 W, x=6.61: R= \ = 13.84Q or
. 384 0]
0.375Q
2 +1.59 + \/(1.59)? - 5.76 =
For £=9.20V and P=21.2 W, XE%:3.99 R= \/(2 ) :1'59i; 3.22

The equation for the load resistance yields a complex number, so [there is no resistance| that will
extract 21.2 W from this battery. The maximum power output occurs when R=r =120 Q, and

that maximum is: Py = £2/4r =17.6 W

Using Kirchhoff’s loop rule for the closed loop, +12.0-2.001-4.001=0, so 1=2.00A

Vi =V, = +4.00 V - (2.00 A)(4.00 Q) - (0)(10.0 Q) = -4.00 V

Thus, |AV,,|=[4.00 V| and [point a is at the higher potential| .

The potential difference across the capacitor — AV(t) = AVmaX[l—e‘t/RC]
_ -6 o
Using 1Farad =1 s/Q, 4.00 V = (10.0 V)%—e (200 5)/R100x10 5 Q)E

—(3.00 x 10° Q)/R e—(s.oo x10° Q)/

Therefore, 0.400 =1.00—¢ or R =0.600

£ 3.00x10° Q
R

3.00%10° Q 5
d R=-2—"""—_2"=+587x10° Q= [587 kQ
an In(0.600)

Taking the natural logarithm of both sides, = In(0.600)

© 2000 by Harcourt, Inc. All rights reserved.
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28.55

28.56

Let the two resistances be x and y. X y
P 225 W
Then, R =x+y=—"F3=—"-=900Q =9.00 Q - x X
sTETY IR (5.00 A)? Y

xy _Pp_ 500w
and R, = =—= > =2.00Q

x+y 12 (5.00A)
s0 X9.000-%) _; 59 x2 =9.00% +18.0 = 0

X +(9.00 Q - x)

Factoring the second equation, (x -6.00)(x —3.00) =0
SO X=6.00 Q or x=3.00 Q
Then, y=9.00 Q —x gives y=3.00Q or y=6.00Q

The two resistances are found to be |6.00 Q| and |3.00 Q| .

Let the two resistances be x and y.

xy _Pp

7

Then, Rs=x+y:P—25 and Ry = =
| X+y |

From the first equation, y = % - X, and the second

x(P/12-x] P P.P
becomes ( o/ 5 ) =1 or XZ—QP—ZS§<+ =0
x+‘PS/I —xi I I I

Using the quadratic formula, x =

P, P2 -4P,P,
212 '

Then, y:%—x gives y =

P>, PZ-4P,P,
212 '

52 52
P+ P§ —4PP, o Ps = P$ —4P P,

The two resistances are 212 2|2




28.57 The current in the simple loop circuit will be | =
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&

R+r — —AWW——

@ AVigr= E-1Ir= % and  AVier - £as 11 Il
_ £ £

(b) I—R+r and | - ?as R

R
—12p — 2
(© P=I'R=¢& (R +1) Figure for Goal
Solution

Py 2
= EREDR N+ EXR+1) 2= 26R, £

= + =0
(R+1)®  (R+r)
Then 2R=R+r and

Goal Solution

A battery has an emf £ and internal resistance r. A variable resistor R is connected across the terminals of
the battery. Determine the value of R such that (a) the potential difference across the terminals is a
maximum, (b) the current in the circuit is a maximum, (c) the power delivered to the resistor is a
maximum.

G:

If we consider the limiting cases, we can imagine that the potential across the battery will be a
maximum when R = o (open circuit), the current will be a maximum when R =0 (short circuit), and
the power will be a maximum when R is somewhere between these two extremes, perhaps when
R=r.

We can use the definition of resistance to find the voltage and current as functions of R, and the
power equation can be differentiated with respect to R.

(a) The battery has a voltage AV iormina =€~ Ir = Rgfr oras R - o, AVigrminal = €
S . _ & &
(b) The circuit's current is I = oras R - 0, - =
R+r r
2
(c) The power delivered is P=I°R= LRZ
(R+T)

To maximize the power P as a function of R, we differentiate with respect to R, and require that
dP/dR=0

o2 2
WP _ g2R( )R+ 3+ E2R+1) 2= 2E R+ 2 >=0
dR (R+r)°> (R+r)
Then 2R=R+r and R=r

The results agree with our predictions. Making load resistance equal to the source resistance to
maximize power transfer is called impedance matching.
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2858 (a) E-1(ZR)-(E +E,)=0

28.59

(b)

©

(@)

(b)

40.0'V - (4.00 A)[(2.00 +0.300 +0.300 + R)Q)] - (6.00 + 6.00) V = 0; 50 R =
Inside the supply, P =1%R =(4.00 A)*(2.00 Q) =

Inside both batteries together, P = 12R = (4.00 A)*(0.600 Q)= [9.60 W

For the limiting resistor, P =(4.00 A)*(4.40 Q) =
P =1(& +&,) = (4.00 A)[(6.00+6.00)V] =

Let R, = measured value, R = actual value, a K _

Ir = current through the resistor R ¢ @

| = current measured by the ammeter. e I _

When using circuit (a), IRR =AV =20000(1-1g) or R =20000 %L —1@ (V) ©
R

Figure for Goal

. _ AV _Av I _ R solution
But since | = = and Ig = R Wwe have k- R.
R-R
and R = 20000 (R—”‘) @)
m
: (R-Rm)
When R > Ry, we require - a— 0.0500
Therefore, R = R(1 - 0.0500) and from (1) we find R <1050 Q
When using circuit (b), IRR = AV - 1g(0.5 Q).
) AV
But since Ig = R Rm = (0.500 + R) (2)
m
_ (Rm—-R)
When Ry, > R, we require —Rr < 0.0500

From (2) we find R>10.0Q
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Goal Solution

The value of a resistor R is to be determined using the ammeter-voltmeter setup shown in Figure P28.59.
The ammeter has a resistance of 0.500 Q, and the voltmeter has a resistance of 20000 Q. W.ithin what
range of actual values of R will the measured values be correct to within 5.00% if the measurement is
made using (a) the circuit shown in Figure P28.59a (b) the circuit shown in Figure P28.59b?

G: An ideal ammeter has zero resistance, and an ideal voltmeter has infinite resistance, so that adding
the meter does not alter the current or voltage of the existing circuit. For the non-ideal meters in this
problem, a low values of R will give a large voltage measurement error in circuit (b), while a large
value of R will give significant current measurement error in circuit (a). We could hope that these
meters yield accurate measurements in either circuit for typical resistance values of 1 Q to 1 MQ.

O: The definition of resistance can be applied to each circuit to find the minimum and maximum current
and voltage allowed within the 5.00% tolerance range.

A: (a) In Figure P28.59a, at least a little current goes through the voltmeter, so less current flows through
the resistor than the ammeter reports, and the resistance computed by dividing the voltage by the
inflated ammeter reading will be too small. Thus, we require that AV/1=0.950R where | is the
current through the ammeter. Call Iz the current through the resistor; then | -1y is the current in
the voltmeter. Since the resistor and the voltmeter are in parallel, the voltage across the meter equals
the voltage across the resistor. Applying the definition of resistance:

AV = 1gR=(1-1g)(20000Q) so | _ Ir(R+20000 Q)

20000 Q
Our requirement is IrR >0.95R
Ol (R +20000 Q)0
20000 Q
Solving, 20000 Q =0.95(R +20000 Q) =0.95R +19000 Q
and R< 1000 ©2 or R<105kQ
0.95

(b) If R is too small, the resistance of an ammeter in series will significantly reduce the current that
would otherwise flow through R. In Figure 28.59b, the voltmeter reading is 1(0.500 Q) + IR, at least a
little larger than the voltage across the resistor. So the resistance computed by dividing the inflated
voltmeter reading by the ammeter reading will be too large.

V 1 (0.500 Q) + IR

We require T <105R so that I <1.05R

Thus, 0.500 Q<0.0500R and R=10.0Q

L: The range of R values seems correct since the ammeter’s resistance should be less than 5% of the

smallest R value (0.500 Q <0.05R means that R should be greater than 10 Q), and R should be less
than 5% of the voltmeter’s internal resistance (R <0.05x20 kQ =1kQ). Only for the restricted range
between 10 ohms and 1000 ohms can we indifferently use either of the connections (a) and (b) for a
reasonably accurate resistance measurement. For low values of the resistance R, circuit (a) must be
used. Only circuit (b) can accurately measure a large value of R.
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28.60 The battery supplies energy at a changing rate ((jT'tE =P=El= EEE e VRCE
Then the total energy put out by the battery is IdE I o? expD ngt
_E° t M dt[ 2 0O to _ e2 _ o2
J’dE—?( RC)I0 ex pD RCD RCD - CexpD EDO =-E°C[0-1]=€&€“C
2
The heating power of the resistor is (chI'f =P=AVgxl =1 R= Ri— expg Rzég
. O 2t
So the total heat is IdE IO ?expD oC gdt
oL 2L [T 2dt0_ &% o 2 _ _E% £’

E’OR
dE=S LA C Texpe S =S 2 0-1=5>
JE=g 0 Dfo PO Rc RC™ 2 PO Reh, = 2 0THT

. . o 1 1 .
The energy finally stored in the capacitor is U == C(AV)? = 7 CE&2?. Thus, energy is conserved:

1 1 . . .
£ = 5 ExC+ 5 £2C  and resistor and capacitor share equally in the energy from the battery.

2861 (a) qzc(Av)[l—e“RC]
10.0

- < 10° % 10-°
q=(1.00x10—6 F)(loo V)|:l—e‘ (2-00 10 )(1.00 10 ):| -

_dg _ AV -yre
b 1=4-AY
(b) dt DREF

0 100V -5.00 -8
== 2TV =3.37x10°% A=[33.7nA
[0.00x10° Q

dU _d01¢’0_qdg_0go

© & s cH ca o

du _09.93x107° C

= ooxio® o vH> x10° A)=3.34x107 W =[334 nW
.00 x
(d) Phaery = IE=(3.37x107° A)(10.0 V) =3.37 107 W = [337 nW



28.62

28.63 (a)

(b)
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Start at the point when the voltage has just reached e
%V and the switch has just closed. The voltage is %V =4 .
and is decaying towards 0 V with a time constant RgC. Voltage- ,L EE Rg —/vV
controlled (\ ; =
switch

\
m\
‘Ig

VC (t) — %Vg_t/RBC

) v(h
§V. Vv

2V/3 a - d
Therefore, %E{/:%\/%—t/%c or e_t/RBC=% v/3 i /V\

or tp,=RgCIn 2

We want to know when V(t) will reach

After the switch opens, the voltage is %V, increasing toward V with time constant (RA + RB)C:

When V¢(t) = %v, %v =V —§Ve‘t/(RA+RB)C or e/ (Ra*Re)C =%
) t,=(Ra +Rg)C In2 and T=t;+t;=[(Ra + 2Rg)C In 2|
First determine the resistance of each light bulb: P = (AV)Z/R ‘
H
2 2 ‘M
r=@V) _U20V)Y _ o0 il
P 60.0 W |43
We obtain the equivalent resistance Req of the network of light bulbs
by applying Equations 28.6 and 28.7:
Reg =R, + ! =240 Q +120 Q =360 Q
T (1/Ry) +(1/Ry)
. . . (AV)? _ (120 V)?
The total power dissipated in the 360 Q is P= = = 140.0 W
power dissip
The current through the network is given by P = IzReq: I = /i - 400w 1
| Req 360Q 3
The potential difference across Rj is AV =1IR; = E% A§240 Q)= (80.0V

The potential difference AV,3 across the parallel combination of R, and Rj is

m 1 O

k. A _
Vo =R = g A /7240 Q)+ (17200 Q)H
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28.64 AV = IR 60.0 20.0 50.0 100
S vV vV Vv

(a) 20.0V =(1.00 x 107 A)(R; + 60.0 Q) Common 19.94 30.0 50.0

kQ kQ kQ

Ry =1.994 x 10% Q = [19.94 kQ
(b) 50.0 V = (1.00 x 1073 A)(R, + Ry + 60.0 Q) R, = [30.0 kQ
(€) 100V = (1.00 x 10 A)(R3 + Ry + 60.0 Q) R3 = [50.0 kQ

28.65 Consider the circuit diagram shown, realizing that G\ 25.00
l4 =100 mA. For the 25.0 mA scale: W
Ie| 11 R R 5
—_ AAAN AAAN AAAN
(240 mA)(Rl +R, + R3) = (1 00 mA)(ZSO Q) If I WW 10()'mA"”50.0'mA"w %EX
Common Terminal ~ Terminal Terminal
25.00
or RitRy+R3=5—+-0Q 1
1+R R = 500 @
For the 50.0 mA scale: (49.0 mA)(R; +R,) = (1.00 mA)(25.0 Q +Ry)
or 49.0(R; +R;) =25.0 Q +Ry )
For the 100 mA scale: (99.0 MA)R; = (100 mA)(25.0 Q +R; +R;)
or 99.0R; =25.0 Q +R, + R, ©)

Solving (1), (2), and (3) simultaneously yields

|R =0260Q, R,=0.261Q, R;=0521Q]

28666  Ammeter:  1gr=(0.500 A-1)(0.220 Q) (G r
yYvy
or 14(r+0.220 Q) =0.110 V 1) Isf 0.220 O
0.500 =
Voltmeter:  2.00 V = I(r +2500 Q) ) A Tl 0504

L_/GNr 25000

AAAN ANAA
YYvy

Solve (1) and (2) simultaneously to find:




28.67 (a)

(b)

©)

(d)
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After steady-state conditions have been reached, there is no DC current through the capacitor.

Thus, for R3: | g, =0 (steady—state)|

For the other two resistors, the steady-state current is simply determined by the 9.00-V emf
across the 12-kQ and 15-k Q resistors in series:

£ _ 9.00 V

For Ry and Ry '®itR) TRYR, - (120kQ+15.0kQ)

= [333 pA (steady-state)|

After the transient currents have ceased, the potential difference across C is the same as the
potential difference across Ry(= IR,) because there is no voltage drop across R3. Therefore, the
charge Qon Cis

Q=C(AV)R, = C(IRp) = (10.0 uF)(333 uA)(15.0 kQ) =

When the switch is opened, the branch containing R; is no longer part of the circuit. The
capacitor discharges through (R, + R3) with a time constant of (R, + R3)C = (15.0 kQ + 3.00

kQ)(10.0 uF) = 0.180 s. The initial current I; in this discharge circuit is determined by the initial
potential difference across the capacitor applied to (R, + R3) in series;

_ (AV)e _ IR, _ (333uA)(15.0kQ)
' (Ry+R3) (R, +R3) (15.0kQ+3.00kQ)

= 278 A

Thus, when the switch is opened, the current through R o 12.0kQ
changes instantaneously from 333 pA (downward) to 5° "R c L1100
278 uA (downward) as shown in the graph. Thereafter, it : uF

decays according to

— 15.04 3.00
£79.00V R, RyE o

Ig, = lie™/(ReRIC = | (278 pA)e /01809 (fort > 0)

2

The charge g on the capacitor decays from Q; to Qi/5 (@)
according to
q= Qe V(RerR)C I, (mA) Switch
0.333 v opened
Qi _ Q,e(~/0.1805)
I
> 0278 F — —
|
5 = /0180 ‘ t
‘ t=0
In5= 180 ms (b)

t=(0.180s)(In 5) =

© 2000 by Harcourt, Inc. All rights reserved.
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n€o_o1l

28.68 AV =Ee7YRC 50 In

A plot of InDiD

tav O

Using the given data values:

(@) A least-square fit to this data
yields the graph to the right.

Sx; =282, =x?=186x10%,

N(zxiyi) - (2x)(Zyi)
N(2x?) - ()

Slope =

The equation of the best fit line is:

(b) Thus, the time constant is T=RC =

and the capacitance is C = Lo

R 10.0x10° Q

Cav O™ ORCO

versus t should be a straight line with slope = Rilc

t (s) AV (V) |In(&/av)
0 6.19 0

4.87 5.55 0.109
11.1 4.93 0.228
19.4 4.34 0.355
30.8 3.72 0.509
46.6 3.09 0.695
67.3 2.47 0.919
102.2 1.83 1.219

1.4 1
1.2 4
1.0 A

In(€/AV) " |

0

<,
0.4 4
0.2
b

*

0

20

40

60 80

t(s)

100

120

ZXiyi = 244,

0.0118

Intercept =

Zyi = 403,

(inz)(z)’i) - (2)(2xy1)

N =8

N(=x?) - (=)’

0O€ 0
In=—-=(0.0118)t + 0.0882
ChvO ( )

1

1

= =184.7s
slope 0.0118
84.7s  _ 847 IF

=0.0882
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28.69

r i3 —_— i3

tHs
;
i

/

/! N
another set of

?hjggggl%nso?etzntial 3junctionsat
P the same potential

28.70 (a) For the first measurement, the equivalent circuit is as shown

in Figure 1. fg— L 5 b

C
Rap =Ri =Ry +R, =2R, Ry% %RX %Ry
1 .

SO Ry = > Ry (1) Figure 1

For the second measurement, the equivalent circuit is shown a Rz .

in Figure 2. T —

1 R Rx

Thus, Rec =Ry = SRy +Ry @) Y Ry
Figure 2

Substitute (1) into (2) to obtain: R, = %%ng+ Ry, or Ry =R, —%Rl

(b) If R;=13.0Q and R, =6.00 Q , then

|The antenna is inadequately grounded| since this exceeds the limit of 2.00 Q.

28.71 Since the total current passes through R, that resistor will dissipate R1
the most power. When that resistor is operating at its power limit of Rs
32.0 W, the current through it is

Itzotal =B=M=16.0 AZ or liotal =4.00 A Rz
R 200Q R1=R2=R3=2.00Q

Half of this total current (2.00 A) flows through each of the other two
resistors, so the power dissipated in each of them is:

2
P =2 o) R=(2.00 AY2(2.00 0) = 8.00 W

Thus, the total power dissipated in the entire circuit is:

© 2000 by Harcourt, Inc. All rights reserved.
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Piotal =32.0 W +8.00 W +8.00 W = |48.0 W

28.72 The total resistance between points b and c is: 00kQ  1=200pF
2.00 kQ)(3.00 kQ
_(200ka)300ka) _, 5
2.00 kQ +3.00 kQ
.00 kQ »=3.00F
The total capacitance between points d and e is: ZI(I)V
o |
C =2.00 yF +3.00 uF =5.00 uF
The potential difference between point d and e in this series RC
circuit at any time is:
AV = E[1-e7RC] = (220.0 V)[1-e7100f]
Therefore, the charge on each capacitor between points d and e is:
0y = Cy(AV) = (2.00 4F)(120.0 V)1~ 10| = | (240 pC)[1 -1
and g = C,(AV) = (3.00 4F)(120.0 V)[1-&1%" ¢] = | (360 pC)[1 -1/
. - _£ _er=[e2
28.73 (a) Req =3R =0 Peeries = €1 = | €%/3R
1 R 3E 3€?
b) R, = = | =— P =€l =
®) Req (1/R)+(1/R)+(1/R) 3 R parallel R

() Nine times more power is converted in the |parallel| connection.



29.1

29.2

29.3

*29.4

29.5

(@)
(b)

©
(d)

(@)
(b)
©
(d)

(@)

(b)

Chapter 29 Solutions

up

out of the page, since the .,
charge is negative. (

no deflection

into the page

At the equator, the Earth's magnetic field is horizontally north. Because an electron has
negative charge, F = qv x B is opposite in direction to v x B. Figures are drawn looking down.

Down x North = East, so the force is dlrected
North x North = sin 0° = 0: |Zero deflect|0n| @@
West x North = Down, so the force is dlrected - i\/ 4 ~

Southeast x North = Up, so the force is m (d)

Fe=qvxB; |Fg|(-j)=—-e|v|ixB 0 y
Therefore, B = \B\(—k) which indicates the |negative z direction| 2 Z)_'x

Fg = quB sin 6= (1.60 x 107° C)(3.00 x 10 m/s)(3.00 x 107! T)sin 37.0°

Fg=1(8.67 x 107 N

L 8.67 x 107 N
- M 167 %102 kg

= [5.19 x 101° m/s?|

F=ma=(1.67 x 107%7 kg)(2.00 x 10*® m/s?) =3.34 x 1074 N = qvB sin 90° hd v« B

F 334 x 107N -
B=— = =) 7 =12.09x10™T B
v (1.60 x 107 C)(1.00 x 10" m/s)

The right-hand rule shows that B must be in the -y direction to yield a
force in the +x direction when v is in the z direction.
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*29.6 First find the speed of the electron: AK = % mv?2 = e(AV) = AU
2(160x107%° C)(2400 3/ C
v 22aV) ( )3(1 ):2.90><107m/s
Vm \ (9.11><10' kg)

(@ Fe, max = QvB = (1.60 x 10™%° C)(2.90 x 107 m/s)(1.70 T) =

(b) Fg min= @ occurs when v is either parallel to or anti-parallel to B

29.7 Gravitational force: Fq=mg = (9.11 x 107! kg)(9.80 m/s?) = |8.93 x 1070 N down|
Electric force: Fe = GE = (~1.60 x 10° C)100 N/C down = [1.60 x 10" N up|
; . _ _(_ -19 6 M 0O s NG 0O
Magnetic force: Fg=quxB= ( 16010 C)Eé.oo x10° T Ex %o.o x10° 2 N
FE=-4.80x10"Y Nup= |4.80 x 1071 N down|
29.8 We suppose the magnetic force is small compared to gravity. Then its horizontal velocity

component stays nearly constant. We call it v i.

2:

From Vy

vyi’ +2a,(y - ;) the vertical component at impact is —/2ghj. Then,

Fg = qv x B =Q(vi - /2gh j) x Bk = QuB(~j) - Q,/2gh Bi

Fg = QuB vertical + Q+/2gh B horizontal

Fg =5.00 x 10 C(20.0 m/5)(0.0100 T) j + 5.00 x 10~° C4/2(9.80 m/5?)(20.0 m) (0.0100 T) i

Fg = [(1.00 x 10°° N) vertical + (0.990 x 10" N) horizontal|

29.9 Fg = qvB sin 6 so 8.20 x 1073 N = (1.60 x 10™*° C)(4.00 x 10® m/s)(1.70 T)sin 6

sin 8=0.754 and 6 =sin"1(0.754) =



Chapter 29 Solutions

29.10 gE = (~1.60x107%° C)(20.0 N/ C)k =(-3.20 x 107 N)k
2F=gE+qvxB=ma
(—3.20 x 10718 N)k ~1.60 x 10719 C(1.20 x 10* m/s i) x B = (9.11 x 10°31)(2.00 x 102 m/s?)k
—(3.20 x 1078 N)k — (1.92 x 10715 C - m/s)i x B = (1.82 x 10718 N)k

(1.92 x 10 C - m/s)i x B = - (5.02 x 10728 N)k

The magnetic field [may have any x-component|. B, = @ and By = [-2.62 mT

29.11 Fg=qvxB
i j ok
vxB=|+2 -4 +1=(12-2)i+(1+6)j+(4+4)k =10i +7j+8k
+1 +2 -3

lvxB|=102+7% +8% =14.6 T(In /s

|Fa|=q/vxB|=(160x107° C)(14.6 Trm/s) = |2.34 10 N

i j K
29.12 Fe=qvxB=(-160x107%) 0 370x10° 0
140 210 0

Fg = (—1. 60 x107° C)[(O -0)i+(0-0)j+ (0 -(1.40 T)(3,70 x10° m/s)) k] _ (8.29 <1014 k) N

29.13 Fg=ILBsin 8 with Fg = Fg=mg
. m .
mg = ILB sin 0 SO —Lg:IBsme
m (oo cm/mU0 -
1=2.00A and — =(0.500g/cm =5.00x10"“ kg/m
L =(0500g )%OOOg/kgH g
Thus (5.00 x 1072)(9.80) = (2.00)B sin 90.0°

B =0.245 Tesla| with the direction given by right-hand rule:
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Goal Solution

A wire having a mass per unit length of 0.500 g/cm carries a 2.00-A current horizontally to the south.
What are the direction and magnitude of the minimum magnetic field needed to lift this wire vertically
upward?

G: Since 1=200A south, B must be to the east to make F upward according to the
right-hand rule for currents in a magnetic field.

The magnitude of B should be significantly greater than the earth’s magnetic field (~50 uT), since we
do not typically see wires levitating when current flows through them.

O: The force on a current-carrying wire in a magnetic field is Fgz =11 x B, from which we can find B.

A: With 1 to the south and B to the east, the force on the wire is simply Fg =11 Bsin90°, which must
oppose the weight of the wire, mg. So,

B:i;j gomp_[9.80 m/s? Eﬂlozcm/m

=== =0.245T
Il 1 10 g 20A cmEH 0°g/k gE

L: The required magnetic field is about 5000 times stronger than the earth’s magnetic field. Thus it was
reasonable to ignore the earth’s magnetic field in this problem. In other situations the earth’s field
can have a significant effect.

29.14 Fg = IL x B = (2.40 A)(0.750 m)i x (1.60 T)k = [(-2.88 ) N

29.15 (a) Fg=ILBsin 8=(5.00 A)(2.80 m)(0.390 T) sin 60.0° = [4.73 N
(b) Fg=(5.00 A)(2.80 m)(0.390 T) sin 90.0° = |5.46 N

) Fg = (5.00 A)(2.80 m)(0.390 T) sin 120° = [4.73 N

29.16

mg _ (0.0400 kg/m)(9.80 m/s2)
L

360T =10.109 A
The direction of | in the bar is .

X X X X X X
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29.17 The magnetic and gravitational forces must balance. Therefore, it is necessary to have Fg =
BIL =mg, or | =(mg/BL) = (A g/B) [A is the mass per unit length of the wire].

(1.00 x 107% kg/m)(9.80 m/s?)

Thus, 1= =[196 A| (if B =50.0 uT)
(5.00 x 107° T)

The required direction of the current is , since East x North = Up.

29.18 For each segment, 1=5.00A and B=0.0200 N/Amj
Segment L Fg=1(LxB)
ab —-0.400 m j @

be 0.400 m k [(40.0 mN) (= i)] .
cd -0.400 mi+0.400 m j

[(40.0 mN)(-K)] Pt

29.19 The rod feels force Fg = I(d xB) = Id(k) x B(-j) = 1dB(i) | B l

l

PN
The work-energy theorem is  (Kirans * Krot); + AE = (Kirans *+ Krot); ‘%
2

0+0+Fscos€=%mv +%Iw2 I

y
_1 2\ v =3 mv? <
IdBLcos 0° mv +5 ( mR )ERD and IdBL = Zmv }_»x @
\
zZ

<
<

»|
1

[41dBL / 4(48.0 A)(0.120 m)(0.240 T)(0.450 m)
V= = =11.07 m/s
\ 3m \ 3(0.720 kg)
29.20 The rod feels force Fg = I(d x B) = Id(k) x B(~j) = IdB(i)
The work-energy theorem is (Kirans * Krot); + AE = (Kirans * Krot),

0+0+Fscost9:%mv2+%la)2

AV IE l41dBL
IdBLcos 0° —lmv +1(1lmRr2)=" and v=| ——
( )[RD \ 3m

© 2000 by Harcourt, Inc. All rights reserved.
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29.21

*29.22

29.23

*29.24

29.25

Chapter 29 Solutions

(@)

(b)

The magnetic force on each bit of ring is 1 ds x B =1 ds B radially

inward and upward, at angle 8 above the radial line. The radially
inward components tend to squeeze the ring but all cancel out as

forces. The upward components | ds B sin 6 all add to

1 2B sin B up| .

Take the x-axis east, the y-axis up, and the z-axis south. The field is
B =(52.0 uT) cos 60.0° (-k) +(52.0 uT) sin 60.0° (-j)

The current then has equivalent length: L' =1.40 m(-k)+0.850 m(j)

Fg = IL'xB =(0.0350 A)(0.850j - 1.40k)m x(-45.0j-26.0k)107° T

Fg =3.50x107% N(-22.1i —63.0i) =2.98x10™° N(-i)=[2.98 N west

2rr =2.00 m so r=0.318 m

W=1A=(17.0 x 102 A)[n(o.318)2 m2] =[5.41 mA . m2
T=uxB so 1=(541%x10° A -m?(0.800T)=[4.33 mN - m

T=pBsin 6 so  4.60 x 10 N - m = p(0.250) sin 90.0°

H=184x102A m?=[18.4 mA - m2

r=100(0.800 T)(0.400 x0.300 m?)(1.20 A)sin60°

Note that 6 is the angle between the magnetic
moment and the B field. The loop will rotate so
as to align the magnetic moment with the B field.
Looking down along the y-axis, the loop will

rotate in a direction. @) (0)

7= NBAI sin 6 T\
a




29.26

29.27

*29.28

(@)

(b)

@)

(b)

©

(d)

Chapter 29 Solutions 7

Let 6 represent the unknown angle; L, the total length of the wire; and d, the length of one
side of the square coil. Then, use the right-hand rule to find

U =NAI = %gdzl at angle 6 with the horizontal.

At equilibrium, 21=(UxB)-(rxmg)=0

OiLBd .. Omgdd .

JLBU o_ Ay _ _ OmgdJ _OiLBdQg
O 4 Dsm(90.0 6) 02 Dsm9—0 and — =

02 D5|n¢9 DTDCOSQ

O
= tan LB L 15,1 H(8.40 AY4.00 m)(0.0100 1)) EEIR
HmgH H 2(0.100 kg)(9.80 m /%) H

Ty = g—"‘fd cosf= %(3.40 A)(4.00 m)(0.0100 T)(0.100 m) cos 3.97° =

From 1 = u x B = IA x B, the magnitude of the torque is IAB sin 90.0°

Each side of the triangle is 40.0 cm/3.
Its altitude is 4/13.32 - 6.672 cm = 11.5 cm and its area is

A= 7(115 cm)(13.3 cm) = 7.70 x 103 m?

Then 7=(20.0 A)(7.70 x 10° m?)(0.520 N - s/C - m) =

Each side of the square is 10.0 cm and its area is 100 cm? = 107> m?.

7=(20.0 A)(102m?)(0.520 T) =

r=0.400 m/2m=0.0637 m

A=mr?=127x102%m?

7=(20.0 A)(1.27 x 102 m?)(0.520) =

The circular loop experiences the largest torque.

Choose U = 0 when the dipole moment is at 6 = 90.0° to the field. The field exerts torque of
magnitude uBsin@ on the dipole, tending to turn the dipole moment in the direction of
decreasing 6. Its energy is given by

2 . 0
u-o :I90.0° HBSInGdQ:”B(_COSG)‘go.m =-uBcos6 +0 or U=-u-B

© 2000 by Harcourt, Inc. All rights reserved.



8 Chapter 29 Solutions

*29.29 (a) The field exerts torque on the needle tending to align it with the field, so the minimum
energy orientation of the needle is:

| pointing north at 48.0° below the horizontal |

where its energy is Ui, = —uBc0os0° = —(9.70 x107% AEn‘nz)(SS.O x107° T) =-5.34%x107" )

It has maximum energy when pointing in the opposite direction,

south at 48.0° above the horizontal |

Where its energy i Upay = —4B 005 180° = +(9.70x 10 A[m?)(55.0x107° T) = +5.34x107 J

(0) Upin *W =Upa: W =Upgy ~Upin = +5.34x107 J-(-5.34x107 J) = [1.07 1]

2930 (@) T=uxB, SO 7= x BOO=pB sin 8 = NIAB sin 6

Tmax = NIABSIN90.0° = 1(5.00 A)[ 7(0.0500 m)Z](B.OO x107 T)=

(b) U=-pM, so -uB<sU<+uB

Since uB =(NIA)B =1(5.00 A)[ 71(0.0500 m)Z](s.oo x107 T) =118 p,

the range of the potential energy is: | -118 Wl <U < +118 uJ|

2931 (a) B=50.0x10°T; v=6.20x10%m/s

Direction is given by the right-hand-rule:

Fg =qvB sin 6

Fg = (1.60 x 107 C)(6.20 x 106 m/s)(50.0 x 107 T) sin 90.0° = |4.96 x 107" N

2 2 -27 6 2
mv mv (1.67 x 107" kg)(6.20 x 10° m/s)
(b) F=—— o} r= = =11.29 km
2932 (a) 3 mv2=q(Av) 2(320 x 102 kg) v2 = (1.60 x 1029 C)(833 V) v =913 km/s

2

mv
The magnetic force provides the centripetal force: qvB sin G:T
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mv (3.20 x 107%® kg)(9.13 x 10* m/s)

- gBsin90.0° (1 60 x 102° C)(0.920 N - s/C - m)

© 2000 by Harcourt, Inc. All rights reserved.
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mv
29.33 For each electron, |g|vB sin 90.0° = —— and v=——

The electrons have no internal structure to absorb energy, so the collision must be perfectly
elastic:

K

Tmvg +0=1mvi; + Imvg,

[2B%RZ 0 (e2B%R20_ e2B2
K=1m Lo+lm 2= R? +R3
2 m2 2 E m2 E om ( 1 2)
e(1.60 x 107 C)(0.0440 N 3/ C [in)? ) )
K= 0.0100 m)? +(0.0240 m)?| = [115 keV
2(9.11x107% kg) [( Y ) ]
o mv? qRB
29.34 We begin with qvB = R+ SO V=~

2nR _ 2mR_2mm

The time to complete one revolutionis T = = =
% MRBO  gB

Om O
. 2mm 2
Solving for B, B = T =16.56%x10™°T
— 12 _ 2q(av)
29.35 q(av) =3mv or v_\“c m
2 [ |
Also, qvB =" so r:mv:m\/Zq(AV) - ‘52m(A2V)
r g BV m | B
2m, (AV
Therefore, rs = Lz)
eB
o _2my(av) _ 2emg)av) _ cemy(av)o_
T8 e H e H"
Oq e e
2(4m_)(AaV)  2m.(AV)O
and r02:2ma(A2V): ( P)(2 ):2 mp(2 ) =2r,2
0qB (2¢)B H e H

The conclusion is: g =rg :ﬁrp
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Goal Solution

29.35 A proton (charge +e, mass my), a deuteron (charge +e, mass 2my), and an alpha particle, (charge
+2e, mass 4m,) are accelerated through a common potential difference AV. The particles enter a
uniform magnetic field B with a velocity in a direction perpendicular to B. The proton moves in a
circular path of radius r,. Determine the values of the radii of the circular orbits for the deuteron ry and

the alpha particle r, in terms of rp,.

G: In general, particles with greater speed, more mass, and less charge will have larger radii as they
move in a circular path due to a constant magnetic force. Since the effects of mass and charge have
opposite influences on the path radius, it is somewhat difficult to predict which particle will have the
larger radius. However, since the mass and charge ratios of the three particles are all similar in
magnitude within a factor of four, we should expect that the radii also fall within a similar range.

O: The radius of each particle’s path can be found by applying Newton’s second law, where the force
causing the centripetal acceleration is the magnetic force: F=qv xB. The speed of the particles can be
found from the kinetic energy resulting from the change in electric potential given.

A: An electric field changes the speed of each particle according to (K +U). =(K+U),. Therefore,

assuming that the particles start from rest, we can write gAV = %mvz.

mv2

The magnetic field changes their direction as described by XF =ma:  qvBsin 90°= e

mv_m 20AV _1 [2mAV
B g8V m BV ¢

thus r=

1 ‘2mpAV
For the protons, = E\/

2(2m,)AV
For the deuterons, LA ) \/er

BV e

_ 1 2(4mp)AV ‘
For the alpha particles, g B\ =v2r,

L: Somewhat surprisingly, the radii of the deuterons and alpha particles are the same and are only 41%
greater than for the protons.

2
29.36 (a) We begin with qvB = % or gRB=mv. But, L=mvR = qRZB.

25
Therefore, R= \/L = 4'(30 x10 © JIs = ) =0.0500 m =

‘B \3(1.60x10 19 c)(1.00x10 T

Lo 4.00%x107% )3 _
MR~ (9.11x 10 kg}(0.0500 m)

(b) Thus, v= 8.78 x10° m/s

© 2000 by Harcourt, Inc. All rights reserved.
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29.37

29.38

29.39

29.40

29.41

Chapter 29 Solutions

_qB _(160x107° C)(5.20T) _

w=-"— — |4.98 x 108 rad/s|
m 167 x10% kg
% mv? = q(AV) so v= \ 2(av)
Cm
[= mv. s (= m./2q(AV)/ m
~ B - qB
, . m (AZV) and (r)? = m (sz)
qg B Q9 B
_g8’r’ 3y ([@)B() m _q {r)° _eeer(f
= and (m)=“"L—2/1 5o — ==
2(AV) 2(AV) m q r? UOedRO
E=1mv? =e(aV) and evBsin90°= mv?/R
g=v_m 2e(AV) _1 [2m(AV)
eR eRV m RY e
! -27 6
_ L 206710 kg0.0x10° V) _ [y
5.80x10% m | 160x107° C
A - (7.94x107% m)(1.60x 10 (180 T)
9B v 4.60x10° m/s

- O 1u O
m=4.97 x107%" k =[2.99u
9BL66 <107 kgH

The particle is singly ionized: either a tritium ion, | H" |, or a helium ion, gHe+

3

Fg=F o} qvB = gE where v=+2K/m. K is kinetic energy of the electrons.

2k C2(750)(160 % 10—19)d’ 2

E=vB=,—B=

om g o) - Rz



29.42
(@)
(b)
29.43
29.44
29.45 (a)
(b)
29.46
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K= % mv? = q(AV) so V= \/

mv _my2q(AV)/m _1 /Zm(AV)

2
mv

Fol= Bl =— =

Fel =l <B=" == BY g

2(238 x 1.66 x10727)2000] 1 [J i
My3g = =8.28x10 “m = (8.28 cm
238 \/ 160x 10719 (1200

Yo - Mo - (23805 _, g6,
Fgs | Myss 23504

The ratios of the orbit radius for different ions are independent of AV and B.

2500 V/m

=7.14x10* m/s
0.0350 T

In the velocity selector: V= % =

v (218 x107%° kg)(7.14 x10* m/s)

In the deflection chamber: r= =10.278 m
98 (160x10™° C}(0.0350 T) 0278 m
K= 3 mv2 (34.0x10° ev)(L60x107%° 3 /eV) = 2(167 x 10777 kg)v?
2
mv 1.67 x 107%7 kg)(8.07 x 10’ m/s
v =807 x 107 m/s r=og = ( 9)( ) —loTe2m
q (1.60 x 1071 C)(5.20 T)
mv?2
FB = QVB = _R
v _gBR _gB _ (1.60x10719C)(0450T) _ -
W= "R ~m " = |4.31><10 rad/s|

1.67 x 107%" kg

BR 1.60 x 107 C)(0.450 T)(1.20 m
V= qm _ X X ) _ 5.17 x 10’ m/s

1.67 x 107%" kg

mv 4.80 x 1078 kg - m/s
= = s =[300T
ar "~ (160 x 101 C)(1000 m)

© 2000 by Harcourt, Inc. All rights reserved.
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1.00 cm

25.0 N
— 102 - o = =
29.47 =tan™ 55 =682° and R= Sinesze ~108cm R-g >

Ignoring relativistic correction, the kinetic energy of the electrons = -l S om

is 10 em
% mv?2 = q(AV) so v:\zq(mAV):1.33><108 m/s
. mv? . .
From the centripetal force - qvB, we find the magnetic -
field

mv _ (9.11x107%! kg)(1.33x108 m/s)
B= = = -701 mT
[gR  (160x107*° C)(1.08 x107% m) -

2048 (a) Ry=— s0  n=—+ = ! =(7.44x10% m™3

ng Ry (160x107 C}(0.840x 10 m*/C)

1B

b) AVy =
(b) H =t

L nqt(?VH) _ (7.44 x 1028 m‘3)(1. 60 x 10‘192()(.;2(’(:200 x107° m)(15.0 x107 V) 9T

t(AV 6 2
2949 1 _t(AVy) _ (35.0x107° V)(0.400 x10 m) _ 370 X 10° M3/C
nq IB (21.0 A)(1.80 T)
. B .
29.50 Since AVy = nat and given that 1 =50.0 A, B =130 T, and t = 0.330 mm, the number of

charge carriers per unit volume is

IB
n= —— ={1.28x10°m™
e(AVH)t

The number density of atoms we compute from the density:

- 8.92 gl mole6.02 x10% atoms10° cm®0_
0T m® HeasgHH  mole H1m® H

8.46 x 10%® atom/m?

So the number of conduction electrons per atom is

n _ 128x10%°
— ==t =152
Ny 8.46x10% 152
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_nqt(avy,) _ (8:48%10% m™®)(160x10™° C)(5.00x 10 m|(5.10x 107 V)

29.51 B =

I 8.00 A

B=432x10"°T=

Goal Solution

In an experiment designed to measure the Earth's magnetic field using the Hall effect, a copper bar 0.500
cm thick is positioned along an east-west direction. If a current of 8.00 A in the conductor results in a Hall
voltage of 5.10 pV, what is the magnitude of the Earth's magnetic field? (Assume that

n = 8.48 x 1028 electrons/m3 and that the plane of the bar is rotated to be perpendicular to the direction of

B.

G:

(O

The Earth’s magnetic field is about 50 uT (see Table 29.1), so we should expect a result of that order of
magnitude.

The magnetic field can be found from the Hall effect voltage:

(B gV

H nqt |

From the Hall voltage,

(8.48x10% &"/m?)(1.60x 10 C/e7)(0.00500 m)(5.10 x 102 V) .
B= o =4.32x10° T=43.2 4T

The calculated magnetic field is slightly less than we expected but is reasonable considering that the
Earth’s local magnetic field varies in both magnitude and direction.

2052 (a) AV = S0 nat_ B O0B0T _yg45905 T
nqt | AVy  0.700x107° V Vv
Then, the unknown field is B= g%tgAvH)

B=(114x10° T/V)(0.330 107 V) =0.0377 T =

® _q1ax105 * $0 n:gl.14><105 Tot
\Y, v gt
n=l14x10° 0 0.120 A =[4.29x10% m3

VD(l. 60 x 10720 c)(z.oo x1073 m)

© 2000 by Harcourt, Inc. All rights reserved.
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29.53
(@)
(b)
29.54
29.55 (a)
(b)
29.56

psinge= M p-¥ o8 0
alvesingo = B° nas¥ a2

The time it takes the electron to complete rrradians is

6  6m (rrrad)(9.11 x 1073 kq) )
t: -_ = _B = 19 = 179 X 10 S
w (1.60 x 107'° C)(0.100 N - s/C - m)

2p2,.2 -19 2 -2 . \2
Br® _¢(1.60x107" C)(0.100 N3/ Cm)“(2.00x10™“ m)
K,=dmv2=4 = = [351 keV]

e 2 om 2(911)( 10—31 kg) -

> Fy=0: +n-mg =20
> Fx=0: —pgn + 1Bd sin 90.0° =0
_ pkmg _ 0.100(0.200 kg)(9.80 m/s?)

B="19 = (o0A©500m _ - [392mT

The |e|ectric current experiences a magnetic force| . J

I(h x B) in the direction of L.

The sodium, consisting of ions and electrons, flows along the pipe 4
transporting no net charge. But inside the section of length L,
electrons drift upward to constitute downward electric current ||z

J x (area) = JLw.

The current then feels a magnetic force  I|h xB| = JLwhB sin 90°

This force along the pipe axis will make the fluid move, exerting
pressure
F_ JLwhB

area hw

The magnetic force on each proton, Fg=qv x B =qvB sin 90°

downward perpendicular to velocity, supplies centripetal force, guiding it 1.00 m &
into a circular path of radius r, with

g = IV d S
qvB = — an r= 38 r

We compute this radius by first finding the proton's speed: K = % mv?

2(5.00 x10° eV)(1.60x107%° J/eV
Lol 1A )( )

=3.10x10' m/s
Tm | 1.67 x107%" kg




(b)
(@)

*29.57 (a)
(b)
(c)
29.58

Chapter 29 Solutions

mv _ (1.67 x 102" kg)(3.10 x 10" m/s)(C - m)
- (1.60 x 107%° C)(0.0500 N - s)

. . 100m 1m — >
From the figure, observe that sin = r = 576 m

The magnitude of the proton momentum stays constant, and its final y component is

Now, r= =6.46 m

_q_B

~(1.67 x 1077 kg)(3.10 x 107 m/s) sin(8.90°) = |-8.00 x 102 kg - m/s|

If B=B,i+B,j+B,k, Fg =av xB =e(v; i) x(B,i +B,j+B,k) = 0+evB, k - ev;B,]

Since the force actually experienced is Fg = F;j, observe that

| B, could have any value|, (B, =0, and

If v=-v;i, then Fg =qvxB=e(~v;i)x (B, i +0j~F/evik) = [Fi]]

If g=—e and v =v;i, then Fg =qv xB = —¢(v; i) x (B, i +0j—F;/ev; k) = ﬂ

Reversing either the velocity or the sign of the charge reverses the force.

A key to solving this problem is that reducing the normal force (up)
will reduce the friction force: Fg =BIL or B=Fg/IL .
nj| g B
When the wire is just able to move, XF, =n+Fgcosf-mg=0 Sf I T{( N
—~—@®-
so n=mg-Fgcos6 W l%
Y B
_ _ DA mg
and f = u(mg - Fgcos 6) o)
Also, >F, =Fgsing—-f=0
i — - i — - pmg
so Fgsin@=f: Fgsin@=pu{mg-Fgcosf) and Fg=—T""""——
B B H(mg - Fg cos ) B sing+ ucoso

We minimize B by minimizing Fg: dh:(um )(COS:_”S”]:)Z
sin @+ cos

=0 O wusinB8=cosf
de

Thus, 6= tan'lﬁl%ﬁ: tan™(5.00) = 78.7° for the smallest field, and

_Fe oo (m)
IL 01 Osin@+pcos@

. go.zoo)(g.so m/sz)g 0.100 kg/m

=0.128 T
min A 150 A Fpin 78.7° + (0.200) cos 78.7°

| Bmin =0.128 T pointing north at an angle of 78.7° below the horizontal

© 2000 by Harcourt, Inc. All rights reserved.
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29.59

29.60

29.61

*29.62

Chapter 29 Solutions

(@)

(b)

The net force is the Lorentz force given by F=gqE+quvxB= q(E +v % B)

F =(3.20 %107 (4i - 1j - 2k) + (2i + 3j - 1K) x (2i + 4] + 1K)| N

Carrying out the indicated operations, we find: F=|(352i-160j)x107® N
OF, O 3 52 .
6=cos™* D—XD: cos* @ 4 4°
F (3.52)2 +(1.60)?

=27 8
-y _ (L67x10 )AS0X10) ) _T313% 10° m| =31.3 km
B (L60x10%)(5.00x107%)

No, [the proton will not hit the Earth| .

Let Ax; be the elongation due to the weight of the wire and Ll P
let Ax, be the additional elongation of the springs when the I 1200 240V
magnetic field is turned on. Then Fmagnetic = 2k Axz where k
is the force constant of the spring and can be determined
from k = mg/2Ax;,. (The factor 2 is included in the two
previous equations since there are 2 springs in parallel) ©® ©® ©® ® ©®
Combining these two equations, we find o ® ® ® ®

-—500cm——>

D mg U _mg sz
but Fg|=1|LxB|=ILB
ti B
magne IC EQAX]_ % X]_ ‘ ‘ ‘ ‘
-3
Therefore, where | = 240V =2.00A, B= Mg &x; = (0.0100)(9.80)(3.00 ><10_3) =10.588 T
12.0 Q ILAX;  (2.00)(0.0500)(5.00 x 107%)
Suppose the input power is 120 W = (120 V)I: I~1A=10° A
rev [l minTRmrad] rad

Suppose w = 2000 ~200 —

PP mintU60s (1rev U s
and the output power is 20 W = 1w = T%OO re;dg 7~10"1 Nn
Suppose the area is about (3 cm)x (4 cm), or A~10"° m?
From Table 29.1, suppose that the field is B~1071T

Then, the number of turns in the coil may be found from 7 ONIAB:

0.1 N [in ~ Ngl glo m)glo_l Dguvmg N~10°
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29.63 Call the length of the rod L and the tension in each wire alone T/2. Then, at equilibrium:
SF, =Tsin6-ILBsin 90.0° = 0 or Tsin6=ILB
ZF, =Tcos6-mg= 0, or Tcos8=mg
L
Therefore, tan@= 18 = IB or B= Mtan 0
mg (m/L)g [

(0.0100 kg/m)(9.80 ms?)

B= 500 A tan(45.0°) =

29.64 Call the length of the rod L and the tension in each wire alone T/2. Then, at equilibrium:
SF, =Tsin6-ILBsin90.0° = 0 or Tsin6=1ILB
ZF,=Tcos6-mg= 0, or Tcos8=mg

m/L
tanG:E: IB or B:wtanez M ang
(m/L)g | |
2
. mv
29.65 2F=ma or qvB sin 90.0° = -
v qB
O the angular frequency for each ion is W= = 2rf and
gBO1 _ 10 _(L60x10C)240T)np 1 _ 1 [

A=f,-f, =851 1
27 o, myu0 27m(166x102 kg/u)12.0u  14.0 uC

Af =1, — 14 = 4.38 x 10° 571 = [438 kHz

29.66 Let vy and vg be the components of the velocity of the positron y
parallel to and perpendicular to the direction of the magnetic
field.

(@) The pitch of trajectory is the distance moved along x by the Zﬁm

positron during each period, T (see Equation 29.15).

(2rm0O \
=v,T = 85.0° B
p=v,T =(vcos )%E

=|1.04 x 10% m

0= (5.00 x 10%)(cos 85.0°)(27)(9.11x 10731)
(0.150)(1.60 x 1072%)

mvp mv sin 85.0°

(b) From Equation 29.13, r= Bg = Bg

CEEE 107%1)(5.00 x 10%)(sin 85.0°)
(0.150)(1.60 x 1072%)

=[1.89x10™% m

© 2000 by Harcourt, Inc. All rights reserved.
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A
29.67 7| = 1AB where the effective current due to the orbiting electrons is I = A_(: = %
21R
and the period of the motion is T= v
2 2
q° _mv _ ke
=——or V=0 —=
R W mR
I B3
Substituting this expression for v into the equation for T, we find T= Zn\mzi
' 07Ke
-31 -1143
T:hJ@uxm_ngxm ) 152w s
V(160 x1071%)?(8.99 x 10%)
1.60 x107

Therefore, | r\ [TA‘ 71(5.29 x 1071)2(0.400) = {3.70 x 10°%* N - m

152x10°16

Goal Solution
Consider an electron orbiting a proton and maintained in a fixed circular path of radius

R =5.29 x 10-11 m by the Coulomb force. Treating the orbiting charge as a current loop, calculate the
resulting torque when the system is in a magnetic field of 0.400 T directed perpendicular to the magnetic
moment of the electron.

G: Since the mass of the electron is very small (~10%° kg), we should expect that the torque on the
orbiting charge will be very small as well, perhaps ~10"*° Nih.

O: The torque on a current loop that is perpendicular to a magnetic field can be found from
|T|=1AB sin6. The magnetic field is given, 8 = 90°, the area of the loop can be found from the radius

of the circular path, and the current can be found from the centripetal acceleration that results from
the Coulomb force that attracts the electron to proton.

2
A: The area of the loop is A= mr? = rr(5.29 x1071 m) =8.79%x107% m?

If v is the speed of the electron, then the period of its circular motion will be T =27R/v, and the
effective current due to the orbiting electron is |1 =AQ/At=¢/T. Applying Newton’s second law with
the Coulomb force acting as the central force gives

2 2 3
XF = keqz SLLLA sothat v=q /k—e and T= 2n/mR
R R VmR \ o2,
-31 A1 3
Toop| (910x10°% kg)(5.29x10™ m)® L o6

J@ﬁoxwigcf@BQXNQN[m%Cﬂ

1.60x10%° C

To0x1000 ¢ U(6:29% 107 m)2(0.400 T)=3.70 x10™%* N [in

The torqueis | T|= E%ETAB: |7|=

L: The torque is certainly small, but a million times larger than we guessed. This torque will cause the
atom to precess with a frequency proportional to the applied magnetic field. A similar process on the
nuclear, rather than the atomic, level leads to nuclear magnetic resonance (NMR), which is used for
magnetic resonance imaging (MRI) scans employed for medical diagnostic testing (see Section 44.2).
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29.68 Use the equation for cyclotron frequency w=-— or m= B_ B
m w 2rf

_(1.60x107¥ C)(5.00x1072 T) _

— 3.82 x 10° kg
(2m)(5.00 rev/1.50x107° s)

2069 (a) K=}mv?=6.00MeV =(6.00x10° eV)SLGO x1079 0 XXX X
evl Bin=1.00T
X X X X
K=19.60x107%) X X X x
X X X X
2(9.60x107%% ) . XX
v 1 =339x10" m’s X oxox x
\1.67X10 kg X X X X
2 167 x107% kg)(3.39x10” m/s
Fe=qB=""" 5o R:@:( _1)9( /)20.354m
R qB (160x107%° Cl(100 T)
Then, from the diagram, x =2Rsin 45.0° =2(0.354 m)sin 45.0° = [0.501 m
(b) From the diagram, observe that 6" = .
29.70 (a) See graph to the right. The Hall
voltage is directly proportional to the 120.00
magnetic field. A least-square fit to 100.00 |
the data gives the equation of the best
fitting line as: 80.001
AV (UV) 60.00 -
avy, =(100x107 V/T)B 40.00
20.00 A
(b) Comparing the equation of the line 0.00 ‘ ‘ ‘ ‘ ‘ ‘
which fits the data best to 0.00 020 040 060 0.80 100 1.20
B (T)
AV 01 o
H HﬁntB
observe that: 1 —100x10™ V/T, or t= ! -
nqt nq(l.OO x 10 V/T)

Then, if 1=0.200 A, g=160x107° C, and n=1.00x10% m~3, the thickness of the sample is

. 0.200 A =125x10"* m=10.125 mm

(1. 00 x 102 m‘3)(1. 60 x1071° c)(l. 00x107* Vv T)

© 2000 by Harcourt, Inc. All rights reserved.
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*29.71 (a) The magnetic force acting on ions in the blood stream will

*29.72

Chapter 29 Solutions

(b)

(@)

(b)

©

deflect positive charges toward point A and negative
charges toward point B. This separation of charges
produces an electric field directed from A toward B. At
equilibrium, the electric force caused by this field must
balance the magnetic force,

DAV O
o] qvB=qE = qDTD

-6
or v—AV = 160x10 "V =11.33m/s

~ Bd (0.0400T)(3.00x10% m]

. Negative ions moving in the direction of v would be deflected toward point B, giving

A a higher potential than B. Positive ions moving in the direction of v would be deflected
toward A, again giving A a higher potential than B. Therefore, the sign of the potential
difference does not depend on whether the ions in the blood are positively or negatively
charged.

When in the field, the particles follow a circular 9
path according to qu:mvz/r, so the radius of v Bis directed
the pathis;  r=mv/qB y=h I/\Q out of the page

Bh
When r:h:m—g, that is, when v=q?, the

particle will cross the band of field. It will move
in a full semicircle of radius h, leaving the field at

(2h, 0,0) with velocity v = -vj].

gBh . . . — . _mv .
When v <-—, the particle will move in a smaller |semicircle| of radius r=—<h. It will
i the p B
leave the field at (2r, 0, 0) with velocity .

gBh . . - . mv
When v >-"—, the particle moves in a |circular arc| of radius r =— > h, centered at (r, 0, 0).
- the p B (r.0.0)

The arc subtends an angle given by @=sin"'(h/r). It will leave the field at the point with

coordinates [r(1-cos6), h, 0] with velocity [ Vi =vsin6i +vcosj] .




30.1

*30.2

303 (a)

(b)

Chapter 30 Solutions

|
5o Mol

_ Bog(v/27R)
2R 7

2R

- [257)

We use the Biot-Savart law. For bits of wire along the straight-line sections, ds is at 0° or 180°
to ~, so dsx ~=0. Thus, only the curved section of wire contributes to B at P. Hence, ds is

tangent to the arc and ~ is radially inward; so ds x ~= |ds| | sin 90° = |ds| 0. All points
along the curve are the same distance r = 0.600 m from the field point, so

Ibsx~| | | I
— | H _H _H
3= [ls| = | H0—r— = S fos] = L s -
all current -7
Pe<77)30.0°
where s is the arclength of the curved wire, RN

U2 0
s=rf8=(0.600 m)30.0°%WE =0.314 m

T mp (3.00 A)
A 00600 my2 (0314 M)

Then, B = %0-7

B =261 nT into the page|

dul 4 3md 1 y ey
= - - = — == W
i 4 %054 > 40 where 2 B I._L"d-.::-r -
f '“"w;,'l g
is the distance from any side to the center. -:-ffﬂ_p ‘:ﬂ‘ﬂi{
#.‘- .
g
Ga
400x10° &2 420
= —_— NTA -5 — -
0200 02 T 20 2\/5 x10™ T =1{28.3 uT into the paper|

Figure for Goal
Solution

For a single circular turn with 41 =2nR,

Morrl (477 x 107)(10.0)
2R TR 4(0.400)

=[24.7 uT into the paper

© 2000 by Harcourt, Inc. All rights reserved.
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Goal Solution

(@ A conductor in the shape of a square of edge length | =0.400 m carries a current
| =10.0 A (Fig. P30.3). Calculate the magnitude and direction of the magnetic field at the center of the
square. (b) If this conductor is formed into a single circular turn and carries the same current, what is the
value of the magnetic field at the center?

G:

As shown in the diagram above, the magnetic field at the center is directed into the page from the
clockwise current. If we consider the sides of the square to be sections of four infinite wires, then we
could expect the magnetic field at the center of the square to be a little less than four times the
strength of the field at a point | /2 away from an infinite wire with current I.

B<gtol _y
27a

47x1077 Tin/ A)(10.0 A)C
= 40.0 uT
27(0.200 m) ]

Forming the wire into a circle should not significantly change the magnetic field at the center since
the average distance of the wire from the center will not be much different.

Each side of the square is simply a section of a thin, straight conductor, so the solution derived from
the Biot-Savart law in Example 30.1 can be applied to part (a) of this problem. For part (b), the Biot-
Savart law can also be used to derive the equation for the magnetic field at the center of a circular
current loop as shown in Example 30.3.

(a) We use Equation 30.4 for the field created by each side of the square. Each side contributes a field
away from you at the center, so together they produce a magnetic field:

44amrx107° T/ A)10.0 A) s o[
B:M 055-00537”":': ( )( )D\/Z +£

amal >4 40 471(0.200 m) Hz "2 H
so at the center of the square, B=2.00/2x10" T=28.3 UT perpendicularly into the page

(b) As in the first part of the problem, the direction of the magnetic field will be into the page. The
new radius is found from the length of wire: 4i=2nR,so R=21/m=0.255 m. Equation 30.8 gives
the magnetic field at the center of a circular current loop:

g Hol _ (4731077 T/ A)(10.0 A)

=2.47x107° T=24.7 uT
2R 2(0.255 m)

Caution! If you use your calculator, it may not understand the keystrokes: . _ . ... .. To
get the right answer, you may need to US€ | .\ vme- - e

The magnetic field in part (a) is less than 40uT as we predicted. Also, the magnetic fields from the
square and circular loops are similar in magnitude, with the field from the circular loop being about
15% less than from the square loop.

Quick tip: A simple way to use your right hand to find the magnetic field due to a current fflf'." T%@
loop is to curl the fingers of your right hand in the direction of the current. Your extended |/ 7%

thumb will then point in the direction of the magnetic field within the loop or solenoid. =

© 2000 by Harcourt, Inc. All rights reserved.
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30.4

30.5

30.6

30.7

30.8

30.9

-7
B _ Mol _4mx10""(1L00A) _ 200 %107 T
271w 27(1.00 m)

Forleg 1, dsx ~= 0, so there is no contributonto 1 .P
the field from this segment. For leg 2, the wire is L]
only semi-infinite; thus, I x___l

10ugl O_ |Hol [J

_ 1Ml H_|Hob
B== = |—— into the paper ,
2mxH |anx I (e
L 9B
2 =

! _ Mol _20.0mx1077 _
B=£0 R=EC - T -[314cm

We can think of the total magnetic field as the superposition of the field due to the long
straight wire (having magnitude pl/2nR and directed into the page) and the field due to the
circular loop (having magnitude pgl/2R and directed into the page). The resultant magnetic
field is:

5=} + 10010, 1p{47rx 1077 T/ A)(7.00 A)
2R ] 2(0.100 m)

=580x107° T

or B=58.0 uT (directed into the page)

We can think of the total magnetic field as the superposition of the field due to the long
straight wire (having magnitude pgl/27R and directed into the page) and the field due to the
circular loop (having magnitude (il /2R and directed into the page). The resultant magnetic
field is:

20, LOHol (girected
B= gl + ~O2R (dlrected into the page)

For the straight sections dsx ~= 0. The quarter circle makes one-fourth the field of a full
loop:

-7
B=1 Hol _ Hol into the paper B= (47x10 _ Tn/A)(5.00 A)
4 2R B8R 8(0.0300 m)

=|26.2 uT into the paper
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30.10 Along the axis of a circular loop of radius R, ——
B Along Axis of Circular Loop
B = ,u0|R2 1.00
- 5 2\372 0.80
2(x +R ) 0.60
B/B o 0.40
/2 0.20
B _ DE 1 ﬁ 0.00
or B. - T000 100 200 300 400 500
0 x/R)" +1 : : . . ' '
xR +15 .
where By = 1yl /2R.
X/R B/By
0.00 1.00
1.00 0.354
2.00 0.0894
3.00 0.0316
4.00 0.0143
5.00 0.00754

30.11 gg=Hol 271

ED a’ b? H
_| Ml 10
B =| =~ = —=— directed out of the paper
12 Ca b0 pap
30.12 Apply Equation 30.4 three times:
O d O

> % toward you

B:IJ—OI 0s0 - —
4“% \Jd% +a

| O a O
@ away from you
2

— - cos 180°Qg toward you
4ma H /g2 + 32 %

Hol 9% + d? - dy/a? + 2
B= 3 away from you
2mady a® +d°

© 2000 by Harcourt, Inc. All rights reserved.
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30.13  The picture requires L = 2R

10
=1 %“— Ho (cos 90.0° - cos 135°) + /Jo (cos 45.0° - cos 135°)
2 B2rB" 4R
- c0s 90.0°) into the page
= =10.475 into the page
R HZ 2H OR O g G page)
30.14 Label the wires 1, 2, and 3 as shown in Figure (a) and let the I @1
magnetic field created by the currents in these wires be AN
By, B>, and B; respectively. P :a AN
/ AS
/o |l g N a
Ml _ o O~ —-—8-— -~ 3 A ©1
(@) AtPointA: B =B, = — and B; = . AN Bl ,’cC 3
ﬂ ) 2m3a [
2mav2 Tl( ) \\\ \a ///
|
The directions of these fields are shown in Figure (b). 1®2

Observe that the horizontal components of B;andB,
cancel while their vertical components both add to Bs.

Therefore, the net field at point A is:

_ Mol o 10
B, =B, cos 45.0° + B, cos 45.0° + B cos 45.0° + =
AT 2 3 2naE(/2 38

Figure (b)

(4 mx107" T Dm/A)(Z 00 A) 72

Ba = cos 45° +10 33 T
A 2n100x102m) B2 i [334T] n B

‘\45%130/‘
[
(b) At point B: B, and B, cancel, leaving Bz =B = Hol . l

2n(2a) *C
(473107 Tom/A)(2.00 A) 133
By = ! = [20.0uT
® 2n(2)(1.00x102 m) Figure (c)

. . _n Mol _ Mol
c) Atpoint C: B, =B, = — and B with the directions shown in Figure (¢). Again,
(© p 1=B; H—)Z a2 355 m gure (c). Ag

the horizontal components of B; and B, cancel. The vertical components both oppose Bs
giving

O

_ Uo! Hol _ Mol [Rcos45.0° [
B =2 cos 45.0° D— -1-=
c- Hzﬂafi g 2m TomBE V2 H IEI



30.15

*30.16

30.17

(@)

(b)

©

(d)
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Take the x-direction to the right and the y-direction up in the plane of 11®\ 5.00 cm
] ~

the paper. Current 1 creates at P a field | ~ > p
-7 |
B = Mol _ (2.00x107 Tim)(3.00 A) )
' 2m A(0.0500 m) 1300
B, =12.0 uT downward and leftward, at angle 67.4° below the —x axis. : /’ 1C2n?
1/

Current 2 contributes : /’
(2.00x107 Trin)(3.00 A) _ _ b

B, = clockwise perpendicular to 12.0 cm X

A(0.120 m)
B, =5.00 uT to the right and down, at angle —22.6°

Then, B=B; +B, =(12.0 uT)(~i cos 67.4°~j sin 67.4°) + (5.00 uT)(i cos 22.6°~j sin 22.6°)
B=(-111uT)j-(1.92 uT)j= [(-13.0 uT)j

Let both wires carry current in the x direction, the first at Y

y = 0 and the second at y =10.0 cm. " | =500 Ay 10.0 em
gl (4mx107 Tm/A)(5.00 A) 1 =800 A (5
B=—"k= k —_—
2 271(0.100 m) ¥

B=|100x10"° T out of the page

Fg = I,L x B =(8.00 A)[(l.OO m)i x (100 x107 T)k] - (8.00x10° N)(-i)

Fg =8.00x10™> N toward the first wire

(47rx 107 T A)(8.00 A)

8= 40 (-K)= 27(0.100 m)

27

(-k)=(1.60x107 T)(-k)

B=|160x10" T into the page

Fg = I,L xB = (5.00 A)[(l.oo m)ix(160x107° T)(- k)] =(8.00x 107 N(+])

Fg = | 8.00x10° N toward the second Wire|

By symmetry, we note that the magnetic forces on the top and
bottom segments of the rectangle cancel. The net force on the
vertical segments of the rectangle is (using Equation 30.12)

E _p0|1|2|u1 —Bji
B™ o +a cO

Substituting given values Fg = —2.70 x 10° i N = [-27.0 uN i

© 2000 by Harcourt, Inc. All rights reserved.
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G

oal Solution

In Figure P30.17, the current in the long, straight wire is I; =5.00 A and the wire lies in the plane of the
rectangular loop, which carries 10.0 A. The dimensions are ¢ =0.100 m, a =0.150 m, and | =0.450 m. Find
the magnitude and direction of the net force exerted on the loop by the magnetic field created by the wire.

G:

Even though there are forces in opposite directions on the loop, we must remember that the
magnetic field is stronger near the wire than it is farther away. By symmetry the forces exerted on
sides 2 and 4 (the horizontal segments of length a) are equal and opposite, and therefore cancel. The
magnetic field in the plane of the loop is directed into the page to the right of I;. By the right-hand
rule, F=11xB is directed toward the left for side 1 of the loop and a smaller force is directed toward
the right for side 3. Therefore, we should expect the net force to be to the left, possibly in the uN
range for the currents and distances given.

The magnetic force between two parallel wires can be found from Equation 30.11, which can be
applied to sides 1 and 3 of the loop to find the net force resulting from these opposing force vectors.

F=F +F, =Ml O 1 _Ea_llo'l'z' 0 -a O
e c 21 (c+a)

(47rx 107 N7 A?)(5.00 A)(10.0 A)(0.450 m)@( 0.150 m

2m 0.100 m)(0.250 m)

F=(-270x10°i)N  or F=270x10° N toward the left

The net force is to the left and in the uN range as we expected. The symbolic representation of the net
force on the loop shows that the net force would be zero if either current disappeared, if either

dimension of the loop became very small (a - 0 or | - 0), or if the magnetic field were uniform
(¢~ o).

30.18 The separation between the wires is y

a = 2(6.00 cm) sin 8.00° = 1.67 cm.

(@) Because the wires repel, the currents are in

lopposite directions| .

(b) Because the magnetic force acts horizontally,

X
F 121
8 _ Mo = tan 8.00°
Fq 21ma mg
, Mg 2rm . _
<= T m tan 8.00 SO 1=167.8 A




30.19

30.20

30.21
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Each wire is distant from P by (0.200 m) cos 45.0° = 0.141 m

Each wire produces a field at P of equal magnitude:

_ Mol _ (200x107"T-m)(5.00 A)
T om A(0.141 m)

A =7.07uT

Carrying currents into the page, A produces at P a field of 1T, 0.5\
7.07 uT to the left and down at -135°, while B creates a |~ o 0.200m K“*{f )
field to the right and down at — 45°. Carrying currents >~ f'/
toward you, C produces a field downward and to the right
at — 45°, while D's contribution is downward and to the
left. The total field is then

4 (7.07 uT) sin 45.0° = |20.0 uT| toward the page's bottom

Let the current | flow to the right. It creates a field B = pyl/27md  at the proton's location.
And we have a balance between the weight of the proton and the magnetic force

mg(—j) +qu(-1i) x % (k)=0 atadistance d from the wire

vl _ (160 x1071° C)(2.30 x 10* m/s)(4rx 107" Tn/A)(1.20x10™° A) _
d= = =15.40 cm
27mg 2m(1.67 x 107%7 kg) (9.80 m/s?)

From Ampére's law, the magnetic field at point a is given by B, = ygl,/2mr,, where 1, is the
net current flowing through the area of the circle of radius r,. In this case, 1, =1.00 A out of
the page (the current in the inner conductor), so

(4n>< 1077 T /A)(l. 00 A)

B, = -
2m(1.00x 1073 m)

= | 200 uT toward top of page

Similarly at point b: By, = I;;)Tlrb
b

, where 1 is the net current flowing through the area of the

circle having radius ry,.

Taking out of the page as positive, 1, =100 A-3.00 A=-2.00 A ,or I, =2.00 A into the page.
Therefore,

-7
B, = (4mx10 " Tim/A)2.00 A) _ | 133 uT toward bottom of page

27m(3.00 x 1072 m)

© 2000 by Harcourt, Inc. All rights reserved.
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*30.22 (a)

(b)

©

(d)

3023 (a)

(b)

*30.24 (a)

(b)

3025 (a)

(b)

Mol . . . .
In B=——, the field will be one-tenth as large at a ten-times larger distance: |400 cm
= g g 400 cm|

Mol , Mol k) so :47T><10‘7T-m(2.00A)D 1 1

_ ) o
= om <" om, B ST A [0.3985 m ~ 0.4015 mp ~ 20T

Call r the distance from cord center to field point and 2d = 3.00 mm the distance between
conductors.

B

gtolgl 1 p_ bl 2d
Toom-d r+d0 T 27r%-d?

(3.00 x 1073 m)

—225x10°mz 0 T

The field of the two-conductor cord is weak to start with and falls off rapidly with distance.

T-m
10 + _ -7 [l
750 x 1077 T= %.00 x 10 A D(2.00 A) 2

The cable creates |zero| field at exterior points, since a loop in Ampére's law encloses zero

total current. Shall we sell coaxial-cable power cords to people who worry about biological
damage from weak magnetic fields?

HoNI

Binner = F = 3.60 T
HoNI

Bouter = F = 1.94 T

Mol Mo(2.50 A)

0
B=——r forr<a o] B= ————(0.0125m) ={10.0 uT
2ma’® 2m(0.0250 m)? ( )
| 250 A
r= 2O Ho( ) =0.0500m = [2.50 cm beyond the conductor's surface|

T 2mB 2m(10.0 x 107 T)

One wire feels force due to the field of the other ninety-nine.
Within the bundle, B= 0! =317 %107 T.
’ H nR? H

The force, acting inward, is Fg = I B, and the force per unit length
is

Fs -3 .

£ =[6.34x 102 N/m inward
Bx1/r

B O r, so B is greatest at the outside of the bundle. Since each wire

carries the same current, F is |greatest at the outer surface| . | R

Figures for Goal
Solution

T
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Goal Solution

A packed bundle of 100 long, straight, insulated wires forms a cylinder of radius R = 0.500 cm. (&) If each
wire carries 2.00 A, what are the magnitude and direction of the magnetic force per unit length acting on a
wire located 0.200 cm from the center of the bundle? (b) Would a wire on the outer edge of the bundle
experience a force greater or less than the value calculated in part (a)?

G: The force on one wire comes from its interaction with the magnetic field created by the other ninety-
nine wires. According to Ampere’s law, at a distance r from the center, only the wires enclosed
within a radius r contribute to this net magnetic field; the other wires outside the radius produce
magnetic field vectors in opposite directions that cancel out at r. Therefore, the magnetic field (and
also the force on a given wire at radius r) will be greater for larger radii within the bundle, and will
decrease for distances beyond the radius of the bundle, as shown in the graph to the right. Applying
F =11 x B, the magnetic force on a single wire will be directed toward the center of the bundle, so that
all the wires tend to attract each other.

O: Using Ampere’s law, we can find the magnetic field at any radius, so that the magnetic force F=11xB
on a single wire can then be calculated.

A: (@) Ampere’s law is used to derive Equation 30.15, which we can use to find the magnetic field at
r = 0.200 cm from the center of the cable:

pgler  (470x107 Tn 7 A)(99)(2.00 A)(0.200x 1072 m) .
B= > = - =3.17x10° T

2R 27(0.500 %107 m)

This field points tangent to a circle of radius 0.200 cm and exerts a force F=11xB toward the center of
the bundle, on the single hundredth wire:
F/l = 1Bsin6=(2.00 A)(3.17 x 107 T)(sin 90°) = 6.34 mN /m
(b) As is shown above in Figure 30.12 from the text, the magnetic field increases linearly as a
function of r until it reaches a maximum at the outer surface of the cable. Therefore, the force on a
single wire at the outer radius r =5.00 cm would be greater than at r =2.00 cm by a factor of 5/2.

L: We did not estimate the expected magnitude of the force, but 200 amperes is a lot of current. It would
be interesting to see if the magnetic force that pulls together the individual wires in the bundle is
enough to hold them against their own weight: If we assume that the insulation accounts for about
half the volume of the bundle, then a single copper wire in this bundle would have a cross sectional
area of about

(1/2)(0.02)7(0.500 cm)? = 4 x 107" m?
with a weight per unit length of pgA = (8920 kg/m3)(9.8 N/kg)(4 x1077 m2) =0.03N/m
Therefore, the outer wires experience an inward magnetic force that is about half the magnitude of
their own weight. If placed on a table, this bundle of wires would form a loosely held mound
without the outer sheathing to hold them together.
2B (27)(1.00 x 107%)(0.100)
30.26 F Bl =ppl, I = = =1500 A
rom f Ho Mo 471% 1077 -

© 2000 by Harcourt, Inc. All rights reserved.
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-]

30.27 Use Ampere’s law, mes:uOI. For current density J, this 2
becomes
7’1 R
fBEﬂs:uon A

(@) For ry <R, this gives

2mr, = Hoforl (br)(27w dr) and

_ | mgbr? - .
B= | =5+ (for r; <R or inside the cylinder)

(b) When r, >R, Ampére’s law yields

(27m2)8 = o [, (br)(27r dr) = 27 4bR° /3,

u brR® . .
or B= 03# (for r, >R or outside the cylinder)
2

30.28 (a) See Figure (a) to the right. Z

(b) At a point on the z axis, the contribution from each wire has / ‘ P
Ho (@ "o ({®)

magnitude B :7| and is perpendicular to the line from \/ AN
2ma® +2° /

this point to the wire as shown in Figure (b). Combining fields,

the wvertical components cancel while the horizontal (Currents are into
components add, yielding the paper)
0 0 Figure (a)
By —2[17” ol SInGD‘ /IJOI 2 g MZOIZ 5
Rma? +22 0 e +22 a2 + 22 n(a +z)

The condition for a maximum is:

_,2
9By _ —polz(22) | o -0 or L'(a Z)_O

5 ] ) At a distance z
dz I'l'(a2 + 22) ”(a tz ) n (a + 22) above the plane of
the conductors

Thus, along the z axis, the field is a maximum at . Figure (b)



30.29

30.30

30.31

*30.32

(@)

(b)
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N B
B:uol—l o] |:m:3l.8mA

10.0
I = =(3.98 KA
(4% 1077)(2000)
Fs -
T =IB= [39.8 kN/m radially outward|

This is the force the windings will have to resist when the magnetic field in the solenoid is
100T.

Emr?

pl

pl
mr?

The resistance of the wire is R, = so it carries current | = R£ =
e

If there is a single layer of windings, the number of turns per length is the reciprocal of the
wire diameter: n=1/2r.

Wo€m? o€ (4rrx 107 T - m/A)(20.0 V)r(2.00 x 10 m)

So, B =npgl = = =464 mT
Mol = o 201 2(1.70 x 10° Q - m)(10.0 m)

The field produced by the solenoid in its interior is
given by

B = uonl (~i) = amrx 107 %ﬁ;ﬂ-o 15.0 A)(-i)
m

B= —(5.65 x 1072 T)i

The force exerted on side AB of the square current
loop is

(FB)AB =ILxB=(0.200 A)[(Z.OO x1072 m)j x (5.65 x 102 T)(—i)] %}\
(Fa)ag = (2-26 x1074 N)k

Similarly, each side of the square loop experiences a force, lying in the
plane of the loop, of |226 UN directed away from the center| . From the

above result, it is seen that the net torque exerted on the square loop by
the field of the solenoid should be zero. More formally, the magnetic
dipole moment of the square loop is given by

1 =1A=(0.200 A)(2.00x102 m)’(~i) = ~80.0 pA n?

The torque exerted on the loop is then T=uxB= ( —-80.0 uA [? i) X (—5.65 x 1072 Ti) = @

© 2000 by Harcourt, Inc. All rights reserved.
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3033 (a) ch:J’BmA:Bm:(si+4j+3k)TEQz.50x10‘2m)zi

®g =3.13x107° T? =3.13x10"° Wb = [3.13 mWb

(9)] (CDB)total :jEB A = El for any closed surface (Gauss’s law for magnetism)

30.34 (a) g =BLCA=BA where A is the cross-sectional area of the solenoid.

Pg = WONI H"r )=[*

(b) ®p=BA=BA= B“OIN'Hn(r%—rf)]

O

E(4rr>< 107 T n/A)(300)(12.0 A)

R @wom) (007 - 007 107 m]"~ (227 pwD]

3035 (a) (®g);,, =BIA = BrR*cos(180-6)=|-BmR? cos 6

(b) The net flux out of the closed surface is zero: (®g);. +(Ps),,veq =0

(qJB)curved = [BmR? cos 6

30.36 d% :%(EA) _dQzdt _ 1
€ €
(a) dE _ |719><10“V/m s|
dt eOA
® d0Q _ ,0
b Bls = eyuy—= SO 2mrB = egliy — O
(b) f oHo 5 oMo dt% E
g = HolT _ Ho(0.200)(5.00 x10° ) oowioT T
2A 271(0.100)?
037 (2 Pe-dQ7U_ 1 ©I0A)  —[113x10° vim/s
dt e & 885x10 2 CZ/NIn

©) 1= GE =1=[0100A]
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3038 (1) |=— e
' Comr l“

ev
uzlAzéﬁng:b.z?xlo-z“A-mZ

The Bohr model predicts the correct magnetic moment.
However, the "planetary model" is seriously deficient in other
regards.

(b) Because the electron is (=), its [conventional] current is

clockwise, as seen from above, and p points |downward]| .

30.39 Assuming a uniform B inside the toroid is equivalent [
NI '

to assuming r << R, then By O Hg TR and a tightly !

|

|

wound solenoid.

_ . (630)(3.00)
0 = Ho ) 0.200)

With the steel, B = kmBo = (1 + X)Bo = (101)(0.00189 T) B=0101T

=0.00189 T

2040 8= i = 2 ,;ITI’EI . (2mm)B _ 271(0.100 m)(1.30 T) _

UN " 5000(47rx 107 Wh/A[m)(470)

30.41 g = unlA

B = unl = (750 x 477 10‘6@%@0.500) =0.188 T
71(0.200)

A=800x10%m? and  ®g=(0.188 T)(8.00 x 10" m?) =150 x 107 T - m?) =

30.42 The period is T = 2r1/w. The spinning constitutes a current | = % = %
m
2
u=1A= %HRZ = QWR" i\ the direction of @

_ (6.00 x 10~° C)(4.00/5)(0.0200 m)* _
2

480x10° A -m?

© 2000 by Harcourt, Inc. All rights reserved.
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30.43 B=pp(H+M) so  H=—-2 - M=[2.62x10° A/m
Ho

30.44 B=py(H + M)

2.00T

Ho
But M =xnug where pg is the Bohr magneton, n is the number of atoms per unit volume,

and x is the number of electrons that contribute per atom. Thus,

If ugM =2.00 T, then the magnetization of the ironis M =

M _2.00T_ 2.00T
T nug  Npgly (8.50 x10%8 m‘3)(9.27 x10724 N |]‘n/T)(4 mx107 T I]n/A)

=12.02

*30.45 (a) Comparing Equations 30.29 and 30.30, we see that the applied field is described by Bj = pgH.
Then Eg. 30.35 becomes M = C% = %uOH, and the definition of susceptibility (Eqg. 30.32) is

Ho

=0

X:M:
H

-4
T (2.70x107%)(300 K) KA
(b) c:f:( — ) =(6.45x10* =—
Ho  4mx107" TOn/A T [in

B _ HoNI _ (471x1077)(5.00)(0.600) _
3046 (a) B, =B = = = -12.6 T
( ) h coil IR 0.300 H k B
. B 12.6 uT
b) B,=Bsing .B=—"=""""_=(560uT
®) h ¢ sing sin13.0° g
I

8.00 x 10%? A - m?
30.47 (@) Number of unpaired electrons = =18.63 x 10%°
@) p 9.27 x 10724 A - m?

Each iron atom has two unpaired electrons, so the number of iron atoms required is
1(8.63x10%).

4.31 x 10*° atoms)(7900 kg/m?
(b) Mass = & oms)(7909 K9/M?) _ [ 01 x 109 kg
8.50 x 10%° atoms/m




Chapter 30 Solutions 205

Goal Solution

The magnetic moment of the Earth is approximately 8.00 x 1022 A-m2. (a) If this were caused by the
complete magnetization of a huge iron deposit, how many unpaired electrons would this correspond to?
(b) At two unpaired electrons per iron atom, how many kilograms of iron would this correspond to?

(Iron has a density of 7900 kg/ms3, and approximately 8.50 x 1028 atoms/m3.)

G:

We know that most of the Earth is not iron, so if the situation described provides an accurate model,
then the iron deposit must certainly be less than the mass of the Earth (Mg, =5.98 x1024 kg). One
mole of iron has a mass of 55.8 g and contributes 2(6.02 x1023) unpaired electrons, so we should
expect the total unpaired electrons to be less than 1050,

The Bohr magneton ug is the measured value for the magnetic moment of a single unpaired
electron. Therefore, we can find the number of unpaired electrons by dividing the magnetic moment
of the Earth by pg. We can then use the density of iron to find the mass of the iron atoms that each
contribute two electrons.

) HB:%.27X10_24%%L NOnfd 1T 1/AS§:9.27><10_24AD‘n2

) HNG/cm

22 2
The number of unpaired electrons is N = 8.00x10° Alin® _ 8.63x10% ¢
9.27 x107* Ain?

(b) Each iron atom has two unpaired electrons, so the number of iron atoms required is
1N =1(8.63x10"°) = 4.31x10* iron atoms.

(4.31 x 104 atoms)(?goo kg/m3)
Thus, MFE = 28 3
8.50 x 10 atoms/ m

=4.01x10% kg

The calculated answers seem reasonable based on the limits we expected. From the data in this
problem, the iron deposit required to produce the magnetic moment would only be about 1/15 000
the mass of the Earth and would form a sphere 500 km in diameter. Although this is certainly a large
amount of iron, it is much smaller than the inner core of the Earth, which is estimated to have a
diameter of about 3000 km.

_ Mol _ 5 _
3048 B= R 200x 10T =(20.0 uT

HolR?

— — 9 :
049 B= oo 50 1=200x10°A| flowing west
| 10.0
3050 (a) Bo= —L— _ Ho(10.0) _ so [I=300A t100
2m(0.270)  271(0.0900) A
I
416(10.0) R S

(b) Ba= m =188.9 uT| out of paper

© 2000 by Harcourt, Inc. All rights reserved.
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*30.51

30.52

(@)

(b)

Suppose you have two 100-W headlights running from a 12-V battery, with the whole
200 W
v - 17 A current going through the switch 60 cm from the compass. Suppose the

dashboard contains little iron, so u OWe. Model the current as straight. Then,

Hol  (4mx1077)17 —
B=t— = +————|~10°T
o = amos)

If the local geomagnetic field is 5 x 10~ T, this is [~10~* times as large,| enough to affect the
compass hoticeably.

A ring of radius r and width dr has area dA = 27rir dr. The current inside radius r is
| :Igz drdr = ZHJOIOrr dr - ZH(JO/RZ)IOrr?’ dr = 2713y r?/2 - 21{ 3y /R?)(r*/4)

Ampére's law says B(err) = Ul = /JorrJo(rz - r4/2R2),

Oorg 1or 0
or B=ugJRF =———=- Ofor r<R
%[RD 4RO

and  B(271r) = tplygrg = ,uO[rrJORZ - rrJORZ/Z] = Uy TIR? /2

2
or Bzﬂzyo‘]ol:e for r=R

4r 4(r/R)
0.300
0.250 T\
0.200 / \

B /pol oR 0.150 / \
0.100 / \
0.050 ,j%
0.000
0 2 4 6
R

(c) To locate the maximum in the region r <R, require that

This gives the position of the maximum as | r=+2/3R| .
Opd? 10pd %0
Here B=puyJ)RE—~—5 -—— 5 =10.272 ugJoR
HoJo g;l:@[l 4RO 5

2
dB _ Hodo _3lJoJozr -0
d 2 4R



30.53

30.54

30.55

30.56
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Consider a longitudinal filament of the strip of width
dr as shown in the sketch. The contribution to the
field at point P due to the current dl in the element dr
is

dl
dB=E" where di = I(dr/w)
2mr
b Mol dr Mol w
— — 0 — [0 o0
B=[dB= — k =[—1I + k
J l 2nwr 2nw nE{ bO

. HoN
We find the total number of turns: B =T

BI _ (0.0300 T)(0.100 m)A

B =239 x10°
Hol (4= 107" T - m)(1.00 A)

Each layer contains (10.0 cm/0.0500 cm) = 200 closely wound turns

so she needs (2.39 x 103/200) = .

The inner diameter of the innermost layer is 10.0 mm. The outer diameter of the outermost

layer is 10.0 mm + 2 x 12 x0.500 mm =22.0 mm. The average diameter is 16.0 mm, so the
total length of wire is

(2.39 x 10%)71(16.0 x 103 m) =

IR2
On the axis of a current loop, the magnetic field is given by B= Z(XZHEW
where in this case | = (2:/@ . The magnetic field is directed away from the center, with a

strength of

_ MowR®g 115(20.0)(0.100)2(10.0 x 107%) _ —
B R, 77 -

471{(0.0500)2 + (0.100)2]

IR?
On the axis of a current loop, the magnetic field is given by B = Z(XZHE)FW

o o q __ MowR%g
where in this case | = . Therefore, = ————377
/v 4m(x + R?)
R 2 w
when x = 7, then B:%:L
4 f,(%Rz) 2.5\5 R
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IR?
30,57 (a) Use Equation 30.7 twice: By = %
2(x“ +R9) I I
Bop, +B,< MR7D 1 + ! H R R,
=BxatbBxe= "> sz TRYZ T (R-x7Z+ Rz)a/zg
1 . |<—R—>|

g_MoIRZg 1 .\
T2 HxZ+RYVZ T RZ+xZ-2xR)7?H

2 i} _
dB _ HolR D_§(2x)(x2 + R2) V2 —g(ZR2 +x?% - 2xR) 5/2(2x - 2R)E

(b) dx 2 H2

dB _

Substituting x :g and cancelling terms, ™ 0
X

0°B _ _BUpIR®* [ 2, n2v-52_ £y2/u 2. p2y-7/2 2,2 -5/2 20002 4 2 -7/2
d—z——T[(x +R“) 7 =5x°(x“+ R“) Y“+(2R“ + x“—2xR) 7“=5(x = R)“(2R* + x“— 2xR)
X

Again substituting x :g and cancelling terms, ™
X

30.58 "Helmholtz pair* - separation distance = radius

2 2
ZHolR 75 = MOIR/Z =_Holtor 1 turn
2[(R/2)2+R2] EE.,.]_ﬁ R3 L40R
B B
NI (47rx107)100(10.0)
For N turns in each coil, B=H0"" =
140R 1.40(0.500)

B=

=(1.80x10°° T




30.59

(@)

(b)

*30.60 (a)

(b)

(©

(d)

*30.61 (a)

(b)
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. . . I N \\“

Model the two wires as straight parallel wires (!) <2 _/
\-/

11 -

UOIZL . Bl
Fg = —— (Equation 30.12 :
5% @ ) \2@%
/

(47 1077)(140)?2710.100)
Fg = =12.46 N| upward
’ 27(1.00 x 107%) " /-\
246 N-m »
Qloop = - loop 8 _ 1107 m/s? upward v
oop

—>
140 A

In dB:4“—°2Idsx ~, the moving charge constitutes a bit of current as in | =ngvA. For a
mr

positive charge the direction of ds is the direction of v, so dB = %nqA(dS)v x ~. Next, A(ds)
nr

is the volume occupied by the moving charge, and nA(ds) =1 for just one charge. Then,

__Ho
4nr?

.- (47rx107 Tom/A)(160x107%° €)(2.00x 107 ms) o0 =

4n(1.oo x 10‘3)2

qv x ~

Fg =q/vxB|=(160x107 C)(2.00x10" m/s)(3.20 %107 T)sin 90.0°

Fg = [1.02x107%* N directed away from the first proton

(8.9 107 Nm?/C?)(1.60x 107 C)2

Kk
Fe - qE - eq%qZ - - 5
r (1. 00 x 10 )

F. = | 2.30x107% N directed away from the first proton

Both forces act together. The electrical force is stronger by two orders of magnitude. It is
productive to think about how it would look to an observer in a reference frame moving
along with one proton or the other.

4mrx1077 T0n A)(24.0 A
g = Ko :( )( ): 2.74x1074 T
2 27(0.0175 m)

At point C, conductor AB produces a field %(2.74><1O_4 T)(—j), g@/ conductor DE produces a
field of %(2.74><1O_4 T)(—j), . BD produces no field, and AE produces negligible field. The

total field at Cis  [2.74x107* T(-j)|.

© 2000 by Harcourt, Inc. All rights reserved.
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(©) Fg=ILxB=(24.0 A)(0.0350 mk)x|5(2.74 x 107 T)(—j)] = |(115x102 N)i

sF_(115x10° N)i

mCl.
d a==—=Y"—"_" ] -|0384 —j
@ m  3.00x107% kg Eb 5?20

(e) The bar is already so far from AE that it moves through nearly constant magnetic field. The
force acting on the bar is constant, and therefore the bar’s |acce|eration is constant | .

(f) v§=v?+2ax=0+2(0.384 m/s?)(L30 m), so v; = [(0.999 mys)i




30.62

3063 (a)
(b)

30.64

30.65

30.66
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Fe _Holale _Mg | :ZITa(m/I)g

At equilibrium, B
I 2ma I Hola

_ 270.0250 m)(0.0100 kg/m)(9.80 m's?)
B (473107 Tm A)J(150 A)

- [E7A]

B

The magnetic field due to an infinite sheet of charge (or the magnetic —V

field at points near a large sheet of charge) is given by B=pyJ,/2 .
The current density J; =1/ and in this case the equivalent current e

of the moving charged belt is

d S
I:%:%(alx):alv; V:_)t( B/ (/

_ _ Hoov
Therefore, J; = ov and |B="—5

If the sheet is positively charged and moving in the direction shown,
the magnetic field is | out of the page, parallel to the roller axes.

TM _ (4.00 K)(10.0%)(8.00 x 10°" atoms / m*)(5.00)(9.27 x 10™** 1/ T?) _ 597 x 10t KU

C=
B 5.00 T T2 m?

At equilibrium, ZT=+\u><B\—mg% cos 5.00°g=0,
or B sin 5.00° :m?gl_ cos 5.00°

~ mgL _(0.0394 kg)(9.80 m’s?)(0.100 m)
o 24 tan 5.00° 2(7.65 J/T)tan 5.00°

Therefore,

The central wire creates field B=pl,/2nR counterclockwise. The curved portions of the
loop feels no force since 1 x B=0 there. The straight portions both feel 11 x B forces to the
right, amounting to

Fg=1,2L Holy _|HolilaL 4 e right
2nR R

© 2000 by Harcourt, Inc. All rights reserved.
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30.67 When the conductor is in the rectangular shape shown in figure 20!
(a), the segments carrying current straight toward or away from N )
point P; do not contribute to the magnetic field at P;. Each of the Y : 0
other four setions of length | makes an equal contribution to the 7— """ 13‘1 “““ —[—

total field into the page at P;. To find the contribution of the @)
horizontal section of current in the upper right, we use

B=%(cos 6, -cos 8,) with a=I, 6,=90°, and 6, =135°

30 4% Q) - Jz nI

When the conductor is in the shape of a circular arc, the magnitude or the field at the center is

given by Equation 30.6, B= fy%lq 6. From the geometry in this case, we find R = % and =11

Holmt — _ polmm

Therefore, B, = a7 16l

=
; so that i:ﬁ
B, 1

2 2n(9.00x10%)(150 x10°¢)

30.68 | = = =675 A
Ho 47%x10
Flow of |positive current is downward or negative charge flows upward| .
30.69 By symmetry of the arrangement, the magnitude of the net

magnetic field at point P is B = 8Bgx where By is the contribution
to the field due to current in an edge length equal to L/2. In
order to calculate Bg, we use the Biot-Savart law and consider the
plane of the square to be the yz-plane with point P on the x-axis.
The contribution to the magnetic field at point P due to a current
element of length dz and located a distance z along the axis is
given by Equation 30.3.

4nI r?

From the figure we see that

/ L2/4+x2

r=x% + (L2 7 4)+ 22 and |dlx~|=dzsin@=dz,|—— 22" X
VX (L2 74) |d1x~ 2720242

By symmetry all components of the field B at P cancel except the components along x
(perpendicular to the plane of the square); and



30.70  (a)

(b)

30.71
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Box = Bgcosg where cos@= L
v L2/4+x°
L/2 | 0 d
Therefore, By, = Hol w and B =8By,.

am r
0
Using the expressions given above for sin 8 cos ¢ and r, we find

HolL?

207 | 2
27'[H< +L—E’\/XZ+L7

From Equation 30.10, the magnetic field produced by one loop at the center of the second loop

2 p
is given by B= HOIR = O( 3 ) “OM where the magnetic moment of either loop is
2x3 271X 2mx3

U= I(nRZ). Therefore,

2
F \‘u— DKok I3 0 3po(R* 1) _ | 3mpt*R?
O2 Ok40 2mx* 2 x4

4 41rx1077 Tin/A)(10.0 A)? 5.00><10_3m4
=S S0 T ANOONT 007 ] g

X 2 (5.00 x 1072 m)4

There is no contribution from the straight portion of y
the wire since dsx~=0. For the field of the spiral,

_ Hgl (dsx~) 7
(47T) r?

21
Lo \ds\sme\ \ 0. Brrol
B= 47'[J|’2 47_1_):0(\/5(“')9“1':'4 EErT

0

2m

B :LOI r_2 dr = - L()I(r—l)
4 A 4

21

6=0

Substitute r=¢% B= Z(;T[ ]Zn = _%[6—271_ eo] = ”—Ol(l— e_2”) (out of the page)

© 2000 by Harcourt, Inc. All rights reserved.
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30.72

30.73

(@)

(b)

B =By + oM
- B-B
M=B"B0 and ™ _[B-By|
Ho Ho
Assuming that Band B, are parallel, this

becomes M =(B-By)/Hy

The magnetization curve gives a plot of M
versus By.

The second graph is a plot of the relative
permeability (B/By) as a function of the applied
field By.

Consider the sphere as being built up of little rings of radius
The contribution to the

r, centered on the rotation axis.
field from each ring is

2
r=dl

dB:MO73/2 where dl = dQ ®aQ
2(x2 +r2) t 2m

dQ = pdV = p(27w dr)(dx)
_ Mopwr 3 drdx . Q

dB =, 7 where p= pp—
2(x +r ) 3R

_ 4R AR pope ridrdx
Letv=r2+x?, dv=2rdr, and r?=v-x?

2
=R (} “opw(v X)d dx
=—RJ=x2 2 237

2
g = HoP® (R %Vm‘i
4 x=-R |:| X

O x2 0
a

4 JROR a4 b D
2Upw2R®  4R? 20| popaR?
B=-"0 - +2R°= | P
4 H3r 2 H 3

15

Magnetization Curve

B
~ 1.0
<
= 5.0
E 0.0 + r T T T — T T T 1
0 1 2 3 4 5 6 7 8 9 10
Bo(mT)
Relative Permeatliby
B0
E/By  avoo
04 . .
[l 10 30 1]
By toT)

o=t

IJOpw R_ a V]/Zdv XJ—

( —|x]) +2x Srl

4x+2R[dx

O

V32 dvﬁjx

1 i
x|

i




30.74

30.75

(@)

Consider the sphere as being built up of little rings of radius r,
centered on the rotation axis. The current associated with each

rotating ring of charge is

de
t

di = [p 2nrdr)(dx)]
The magnetic moment contributed by this ring is

dy = A(dl) = rr? %T[p(ZHrdr)(dx)] = e drdx

2 _ 2
+R - OR?-x2 q g +R %R —X Ed _
U= rrw;j’ = d r rEdX—an’X:_R — X = TTw
R O 20 50
u =T (R“—ZszZ+x“)dx:L“’pafe“(ZR)—ZRZEQR 2R
4 J=r 4 g
nwp s, 4, 20_ nwm® (160_ | 4nmwR®
= 19Pg u
BT R et | e P

Note that the current | exists in the conductor with
a current density J=1/A, where

A= 7'r[a2 —a2/4—a2/4] = 1ma’ /2
Therefore, J= 2I/7Ta2.

To find the field at either point P, orP,, find By
which would exist if the conductor were solid,
using Ampére’s law. Next, find B;and B, that
would be due to the conductors of radius a/2 that
could occupy the void where the holes exist. Then
use the superposition principle and subtract the
field that would be due to the part of the conductor
where the holes exist from the field of the solid
conductor.

B = 7H0J(na2) . = 7‘10‘] n(a/ 2)2 and

At point Py,

27r Yo2n(r-a/2)’
pdma® 1 1 O
B=B,~B, -8B, = 21 g 4(r-a/2) 4(r+a/2)5
O r2 - 52 20
_ Ho(21)pr® -t —2rt g IE«,ZLdeected to the left
2 H4r(r —a2/4)H mr H4r? —a? g

© 2000 by Harcourt, Inc. All rights reserved.
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x=-R 4

I

_ 1pdn(a2)’

27 2n(r+a/2)’
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J( mra? 2
(b) At point P,, B :M and B =B; :M—ai.
r 2mr? +(a/2)°

The horizontal components of Bj and B, cancel while their vertical components add.

2
HoJ("a )—ZD ppdma®/a By

B=B;-Bjcos8-B;cosO= ;
27 myr? +a 4 Hr? +a2/a

B = HoJ(naz) Ei r2 g_ Lo(21)8  2r?2 O | pol r? +a20  directed toward the

2mr 2(r2+32/4)H 2mr g 4r2+a2E|F mr [flﬁr2+a28 top of the page




Chapter 31 Solutions

Adg| _ A(NBA)
31.1 E=|—B|= = (500 mV
At o - (500 mY|
31.2 =A% _ ABLA) _ 1.60 mV and loop _£_le0mv_ 0.800 mA
At At R 200Q
ABA cos 6 0S 6 — cos 6;
31.3 £ = -N —_ = _NB mr? %M
At 0 At 0
_ 180°—cos 0[]
= 25.0(50.0 x 1076 T) {0,500 m)? 05 20" ~C0S ©
( )"( ) O 020s O
E=[+9.82 mV
dog dB  [ABmax _
31.4 Q) €= -—— = Ao = |—Xe VT
(@) at at .
0.160 m?)(0.350 T
0 =1 202)(3 L 002200 - F7gmY
(c) Att=0, E£=[28.0mV
do A(NBA
315 f=NF2 = (NBA) _320kv 50 1= € =[160A
At R

© 2000 by Harcourt, Inc. All rights reserved.
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Goal Solution
A strong electromagnet produces a uniform field of 1.60 T over a cross-sectional area of 0.200 m2. A coil
having 200 turns and a total resistance of 20.0 Q is placed around the electromagnet. The current in the

electromagnet is then smoothly decreased until it reaches zero in 20.0 ms. What is the current induced
in the coil?

G: A strong magnetic field turned off in a short time (20.0 ms) will produce a large emf, maybe on the
order of 1kV. With only 20.0 Q of resistance in the coil, the induced current produced by this emf
will probably be larger than 10 A but less than 1000 A.

O: According to Faraday’s law, if the magnetic field is reduced uniformly, then a constant emf will be
produced. The definition of resistance can be applied to find the induced current from the emf.

A: Noting unit conversions from F=qvxB and U =qV, the induced voltage is

d(BA) _ _, [0-BAcosg_ *+200(L60 7)(0.200 m?)(c0s 0°) 4 N3/ Cincr Ve

E=-N =3200 V
dt 0 At U 20.0x107° s 0 T [N O

£

2 €320V _

R 20.0Q

L: This is a large current, as we expected. The positive sign is indicative that the induced electric field is
in the positive direction around the loop (as defined by the area vector for the loop).

do N(BA -0
316 £=-N dtB - N )
At

NBA _ NB(7r?) _ 500(0.200)71(5.00 x 107%)2 _
At = = ‘= =17.85%x10"s
AR o107 7.85 x10°

d(BA) di B
317 € = =g =0500 HonA 3¢ = 0.480 x 103V
& 480x10*
a) lyjpg= = =— =|160A
( ) ring R 3.00 x 10'4

Hol
© Bang= A

(c) Cail's field points downward, and is increasing, so

|Bring POints upward|

3.00 cm

_d(BA) _ d 2 Al
318 €] = —gr— =0.500 ponA g = 0.500 Hon 7Tz

© 2000 by Harcourt, Inc. All rights reserved.
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31.9

(@)

(b)

©

(@)

(b)

Lo = E _ Honmgﬁ
= R TITR At
g Mol _|ponmmoAl
- 2ry - 4rR At
The coil's field points downward, and is increasing, so |Bring points upward| .

dog =pmA=Ho g @y = " HILOX | Koll Ch*wD P
B 2mx Bjx=h 21T X 2 O h O

dog _ dEpOIL D1+W[D _ QgL [h+WDZdI

dt th2n O %DhEHT

(47rx107 T myA)(1.00 M), [100+10.0

€=- 27T "G 100 %OO

The long wire produces magnetic flux into the page through the rectangle (first figure, above).
As it increases, the rectangle wants to produce its own magnetic field out of the page, which it

does by carrying |counterclockwise| current (second figure, above).

E= -
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31.10 ®g = (Uon1)Asoienoid
do di
E=-N TtB = _Nuon(mgolenoid)a = _Nuon(mszolenoid)(GOO A/S) cos(120t)

€=-15.0(47rx107 T n/A)(L.00 x 10°/m) (0.0200 m)?(600 A/s) cos(120t)

| E = -14.2 cos(120t) mV |

31.11 For a counterclockwise trip around the left-hand loop, P
with B = At -— [, -—
2 o .-f & -Z-Z b £
d 2 J B _ o I 1‘ _
a[At(za )coso] 1,(5R) ~ IpgR =0 . 0 © © & @
= 2 i e lI' o = =
P
and for the right-hand loop, “ s “
il {-:I i

%[Atazl +1pgR = 15(3R) =0
where Ipg =11 = I, is the upward current in QP
Thus, 2Aa” = 5R(Ipg + 1) — IpgR =0
and Aa® +1poR = 1,(3R)
2Aa° - 6Rlpg — 3(Aa” + IpgR) =0

2

lpg = g—aR upward, and since R =(0.100 Q/m)(0.650 m) = 0.0650 Q

_ (1.00x107° T/5)(0.650 m)°

=283 uA upward|

|
PQ 23(0.0650 Q)
_|A®g| _ B0, _
31.12 € =27 Ngge o = N(0.0100 +0.0800t)A

Att=500s,  £=30.0(0.410 T)[n(0.0400 m)Z] = [61.8mV

© 2000 by Harcourt, Inc. All rights reserved.
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31.13 B = ponl = 14gn(30.0 A)(1- e 46%) n turns/m

(o1 :J’BdA = Uon(30.0 A)(l_e-l.GOt) A

g = 1n(30.0 A)(L-e ) R?

E=-N dng = - Npton(30.0 A) 7R?(1.60)e~ -0

N turns

€ = —(250)(411x 107" N/A?)(400 m~')(30.0 A)[n(o.oeoo m)>?|1.60 s e ™0t

€ =(68.2 mVv)e ™" counterclockwise

31.14 B = tonl = pgnl e (167 1 turns/m

g = [BAA = Lighlmax (1= &™) dA

Pg = HoNlmax (1 - e” ") 7R?

at

ddg _

E=-N el NNl ey TRZ0E™

€= Nuonlmaanzae_”t counterclockwise

NI 2 AB cos 6

31.15 S:E(NBI 2 cos 6) =
dt At

o Ent (80.0 x 1073 V/)(0.400 s)
\/ NABcos6 | (50)(600x10™° T -200 x 107® T)cos(30.0°)

Length = 41 N = 4(1.36 m)(50) =

=136m
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Goal Solution

A coil formed by wrapping 50.0 turns of wire in the shape of a square is positioned in a magnetic field so
that the normal to the plane of the coil makes an angle of 30.0° with the direction of the field. When the
magnetic field is increased uniformly from 200 puT to 600 puT in 0400 s, an emf of
80.0 mV is induced in the coil. What is the total length of the wire?

G:

O:

If we assume that this square coil is some reasonable size between 1cm and 1 m across, then the total
length of wire would be between 2 m and 200 m.

The changing magnetic field will produce an emf in the coil according to Faraday’s law of induction.
The constant area of the coil can be found from the change in flux required to produce the emf.

ddg
dt

dB

By Faraday’s law, E=-N =-N %(BACOS 0) = -NAcos @ pm

For magnitudes, ‘E‘ =NA cosf E‘%g

g 3

and the area is A= ‘ ‘ - 80.0 x 1(36 \Y, =18 2
N cos g PABO 50(cos 30 OO)EBOO x1078 T-200x1078 TO

Hat D ~'H 0.400 s

Each side of the coil has length d =+/A, so the total length of the wire is

L=N(4d)=4NVA = (4)(50)V1.85 m? =272 m

The total length of wire is slightly longer than we predicted. With d =136 m, a normal person could
easily step through this large coil! As a bit of foreshadowing to a future chapter on AC circuits, an
even bigger coil with more turns could be hidden in the ground below high-power transmission lines
so that a significant amount of power could be “stolen” from the electric utility. There is a story of
one man who did this and was arrested when investigators finally found the reason for a large power
loss in the transmission lines!

31.16 The average induced emf is given by &€=

AP
Oat O

Here N=1, and APy = B(Asquare ~ Acircle)

with Acircle = T2 = 11(0.500 m)? = 0.785 m?

Also, the circumference of the circle is 27 = 277(0.500 m) = 3.14 m

_3.14m

Thus, each side of the square has a length L =0.785 m,

and Asquare = L =0.617 m?

So  A®g =(0.400 T)(0.617 m? - 0.785 m?) = - 0.0672 T Om?

. . -0.0672 T Om?
The average induced emf is therefore: E=—- ——  —  =|0.672V
g 01005 0.672 V|

© 2000 by Harcourt, Inc. All rights reserved.
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31.17 In a toroid, all the flux is confined to the inside of |
the toroid. N =500 |

B_Ho'\“ _ 500 ugl L» ‘

27 27 -

dzdr

g = [BdA = Soogzmax sinatf <

_500ﬂ0|max b+RO T
%_7271 asma)tInD = O - | N’ =20

b |[<R—|
£ =N 9%P8 = o200 Holmax O o TR +RO, ot |
dt U 2m OR O

O

4
=27 Darx107 2 50,0 A) 37729 50.0200 m)ln%(wm oswt = [(0.422 V) cos wr|
2m A S 4.00 cm

31.18 The field inside the solenoid is: B =puonl = g glﬁgl

Thus, through the single-turn loop  ®g = BAyenoid :uoglﬁgmz)l

. . . _ Adg
and the induced emf in the loop is E=- T_ uODI g(n'r )

N1 Ol = 1,0
I O At O

chB dCDB =1.10 T (upward)

31.19 e=-Nn8 IR=-NI78
dt dt T T T T
__N __N
ldt = -5 dog fidt=—— [dog i ER
-_N -_NAlg -B
Aoy = RA(Bf B
N ]

AL

Q__
_ DZOO -
Q=- g100><10 m?)(-1.10-1.10) T =[0.880 C

_Blv
R

v =1.00m7/s R —

3120 1=

|




31.21

*31.22

31.23

31.24

31.25

(@)

(b)

(@)

(b)

©
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Fg|=1[1xB[=11B. When I= E/R and €= Bl v, we get ]

212 2 2
_ B'RV(I B)=2 L{ v (2.50)°(1.20)°(2.00) _ 5 o5 R | —

F
B 6.00 : F

The applied force is [ 3.00 N to the right |

21 2,,2
P:IZR:BIRV =6.00W or P=Fv=[6.00W

Fg=11B and E=Blv
R R | v
2
Fy= 1R and | = /M: 0.500 A
| v V'R
IR =[2.00 W

For constant force, P =F[=(100 N)(2.00 m/s)= W

The downward component of B, perpendicular to v, is (50.0 x 107° T) sin 58.0° = 4.24 x 10° T

E=Bl v=(4.24x107° T)(60.0 m)(300 m /) =

The |left wing tip is positive| relative to the right.

d MAQ
E=-N-- BAcos & =—-NB cos 8 +—]
dt AatH

(3.00 m x 3.00 m sin 60.0°) — (3.00 m)?

&€ =-1(0.100 T) cos 0° 0100s =121V
1.21V
| = =[0.121 A A
10.0Q 3.00 rr/ N.oo m

The flux is into the page and decreasing. The loop makes its 3_00&%.00111
[
B

own magnetic field into the page by carrying

current.

w=(2.00 rev/s)(2rrrad/rev) = (4.00)rrrad/s
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31.26

31.27

(@)

(b)

©

(d)

(@)

(b)

©

Bext = Bext | and Byt decreases; therefore, the induced
field is Bo = By i (to the right). Therefore, the current

is |to the right| in the resistor.

Bext = Bext (i) increases; therefore, the induced field
Bo = Bp (+i) is to the right, and the current is

to the right| in the resistor.

Bext = Bext (-K) into the paper and Bey: decreases;
therefore, the induced field is By = By (-K) into the

paper. Therefore, the current is in the

resistor.

By the Lorentz force law, Fg = q(v x B). Therefore, a
positive charge will move to the top of the bar if B is

-

~v ([((

S N/

The force on the side of the coil entering the field

(consisting of N wires) is
F =N(ILB) = N(IwB)

The induced emf in the coil is

€1=N

so the currentis | =

The force on the leading side of the coil is then:

to the left

2022
DNBWV%NB N“B“w“v

counterclockwise.

|<

|

(b)
o
+
+ v
(d)

Once the coil is entirely inside the field, ®g =NBA = constant,so £€=0, 1=0, and F= @

As the coil starts to leave the field, the flux decreases at the rate Bwv, so the magnitude of the
current is the same as in part (a), but now the current flows clockwise. Thus, the force exerted

on the trailing side of the coil is:
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2p2,,,2
F= Wmthe left again

31.28 (a) Motional emf & = Bwv appears in the conducting water. Its /} R I
ist , if the plat b d, i - =
resistance, if the plates are submerged, is . M —
S
pL _pw ‘ T
A T ab b
4 ~
Kirchhoff's loop theorem says Bwv - IR - b - 0 \><
| = Bwv  abvB
pw ., 3R
R+ ab p+
100 m)(5.00 m)(3.00 m/s)(50.0 x 107¢ T
(b) lg= ( X X X ) =10.750 mA
100Q - m
31.29 Look in the direction of ba. The bar magnet creates a field into the page, and the field

increases. The loop will create a field out of the page by carrying a counterclockwise current.
Therefore, current must flow from b to a through the resistor. Hence, Vg — Vp will be

[regative].

31.30 E:%Bwl 2 -

3131 Name the currents as shown in the diagram: I, I,

- -

Left loop: +Bdv, - I,R, = I;R; =0 S L B e

p 2 ~ 2Rz =iy . 111 Al

. v,=4.00 m/s x |[3=2.00 m/s
Right loop: +Bdvy - I3R3 + 1R; =0 2 g ﬁlzx = ’ /

* | s.00@F "

At the junction: I, =1+ I3
R,=10.0 Q R;=15.0Q

Then, BdV2 - I]_Rz - |3R2 - IlRl :0

I,R
I3:de3+11
Rs  Rj
BdvsR, I;R,R
so, Bdv, - I;(Ry +R,) - ——=2 - L 129

R3 R3
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V2R3_V3R2 D
I, =Bd upward
1= PR R, +RRs + RRsH P
Ha¥iaY) 1R3 3

B 0 (4.00m/s)(15.0Q)-(2.00m/s)(10.0Q) O _
'1=(0.0100 T)(0.100m) H5.00 Q)(10.0 Q) + (5.00 Q)(15.0 Q)+ (10.0 Q)(15.0 Q)5

upward
dB dod e
3132 (a) g =600t2-8.00t |€|=— S
nR%(dB/dt)  8.0071(0.0250)2 ( .
At t=200s, £ = 2208/dY) - 8.007(0.0250) \~ ~
21T, 277(0.0500) g

/

F=gE=[8.00x 10721 N| clockwise for electron

(b) When 6.00t*-8.00t=0, t=

dB do
31.33 ——= =00600t |E|=—=
dt
dB
At t=3.00s, E= nrf H m——— | 1.80 x 10~ N/C perpendicular tor; and counterclockwise
1
dCD ZDdBD
*31.34 E=—PL=mr E a1l
dt Tad §
dB Orr? OdB
E(2nR) = mr? —, or =
CrR=m g T
dB dl
B = pynl =
Ha Caadrn
| =3.00¢%200 % =0.600"20

2
m 0.200t

At t=10.0s, E= n)(0.600e™
27'11?(HO )( )

becomes  E —(2(2002028(;“))(471 x 107" N / A2)(1000 turns/ m)(0.600)e2%=[2.23x10° N/C
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3135 (@) fEM1= d%
2mE = (mz)i—? so E ={(9.87 mV/m) cos (100 7t)|

(b) The E field is always opposite to increasing B. O

© 2000 by Harcourt, Inc. All rights reserved.
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31.36

31.37

31.38

31.39

(@)

(b)

(@)

(b)

For the al _ 3000 L&V_p2rradi mingy_ oy
or the alternator, w= mTn T Tev e 605 0= 314 rad/s

dPg _
dt

£=-N —250%[(2.50 x107* T On?)cos(314 t/s)| = +250(2.50 x 107* T - m?)(314/5s) sin(314t)

|£=(19.6 V) sin(3141)|

Emax =196V

Emax = NABw = (1000)(0.100)(0.200)(1207) = B

normal

E(t) = -NBAw - sin wt =-NBAwsin 6 _ - axis

I
2 ’

|€] is maximal when |sin 9| =1, or 6=+

so the |plane of coil is parallel to B|

Let 8 represent the angle through which the coil turns, starting from 6 =0 at an instant when
the horizontal component of the Earth's field is perpendicular to the area. Then,

E=- N%BAcos 6=- NBA%cos wt =+ NBAw sin wt

Here sin wt oscillates between +1 and -1, so the spinning coil generates an alternating voltage
with amplitude

- 2mrad
Emax = NBAw = NBA27zf = 100(2.00 x 10~ T)(0.200 m)?(1500 =[12.6 mV
max ( X (1500

B = ponl =(471x107 Tim/A)(200 m™)(15.0 A) =3.77x107 T
For the small coil, g = NB A = NBA coswt = NB(7r2)cos ot

dPg _

Thus, €=- " NB7rwsin wt

€ =(30.0)(3.77 10" T)(0.0800 m)*(4.0075 ™% sin(4.007t) =  (28.6 mV)sin(4.007t)
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31.40 As the magnet rotates, the flux
through the coil varies 1
sinusoidally in time with &g =0
at t=0. Choosing the flux as
positive when the field passes
from left to right through the
area of the coil, the flux at any | !/!w== 0 ‘ ‘ ‘ ‘
time may be written as ( 0.5 1 1.5 2
P = =P SiNWL S0 the 0.5 1
induced emf is given by

0.5 1

E=-——"—"2=wd,,, COSwWt. T = (wt/2 m)

|t

The current in the coil is then | =

wd
= % COSwWt = | | 145 COS it

3141 (a) F=NIIB

Tmax = 2Fr = NI1 wB = [0.640 N - m

(b) P =10w=(0.640 N - m)(120rrrad/s)

Prmax =241 W/ (about 3 hp)

3142 (8) Emax =BAw=B(mR?)w £

Enma = (130 T)g(0.250 m)> 54.0071%5 w \

Fi 1
£ = |1.60V gure

VANVA
(b) E:I;ﬂ%dez%fjn sin0do = [0 \/ \

(c) The maximum and average £ would remain unchanged.

Figure 2
(d) See Figure 1 at the right.

(e) See Figure 2 at the right.

3143 (a) ®g=BAcos 8=BAcos wt = (0.800 T)(0.0100 m?) cos 271(60.0)t = ‘ (8.00 mT - m?) cos(377t)‘

© 2000 by Harcourt, Inc. All rights reserved.
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31.44

31.45

*31.46

(b)
©

(d)

(e)

(@)

(b)

(©

E= CD =[(3.02 V) sin (3771)]

I = ER = ((3.02 A) sin (3771)]

P =12R = [(9.10 W) sin? (3771)|

P=Fv=rTw s0 ngz |(24.1 mN - m) sin? (3771)|

At terminal speed, the upward magnetic force exerted on " —1

the lower edge of the loop must equal the weight of the +—
loop. That is, [ 1 |i

Mg = Fg = IWB = D‘ngs = [B"Wt glvB

Thus,

MR _ /(0.150 kg)(9.80 m's)(0.750 )
- | wiv _\ (100 m)2(2.00 m/s)

- 7]

B Induced

See the figure above with Problem 31.44.

20,2
At terminal speed, Mg =Fg =IwB= Dé’gNB _ [Bwv; §NB - %
or v = MgR
b B%w?
The emf is directly proportional to v,, but the current is inversely proportional to R. A large R

means a small current at a given speed, so the loop must travel faster to get F,, =mg.

At given speed, the current is directly proportional to the magnetic field. But the force is
proportional to the product of the current and the field. For a small B, the speed must

increase to compensate for both the small B and also the current, so v, 0 B?.

The current in the magnet creates an upward magnetic field, so the N and S poles on the

solenoid core are shown correctly. On the rail in front of the brake, the upward flux of B
increases as the coil approaches, so a current is induced here to create a downward magnetic
field. This is clockwise current, so the S pole on the rail is shown correctly. On the rail

behind the brake, the upward magnetic flux is decreasing. The induced current in the rail will
produce upward magnetic field by being counterclockwise as the picture correctly shows.



31.47

31.48

*31.49

*31.50 (a)

(b)

©
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F=ma=qE+qvxB

i j K
a= %[E +vxB] where vxB=|200 0 0 |=-200(0.400)j +200(0.300)k
0.200 0.300 0.400

_ 160x1071°

= 12715001 ~80.0j + 60.0Kk] = 9.58 x 107[-30.0j + 60.0K]
. X

(-2.87 x10° j +5.75 x 10° k) m/s2

a=2.87 x10°[-j+2Kk]m/s? =

i j Kk
F=ma=qgE+qvxBso a:%[E+VXB] where vxB=|10.0 0 0 |=-4.00j
0 0 0.400
(-160x107% _ _ _ e _
a=W[Z.50I+5.00]—4.00]]=(—1.76><10 Ji2.50i +1.00j]

(~4.39x 101§ - 176 x 10 ) m/s?

£=-N g(BAcose) = —N(mz) cos0 3B
dt dt

€= -(30.0)n{2.70x10™? m)z(l)%[S0.0 mT +(3.20 mT) sin (277 523t /3]

€= (30.0)n(2.70x10 m)’(3.20 10 T)(27)(523/s) cos(277 523t /s)

€= |-(7.22x107 V) cos(2r 5231 /3)

Doubling the number of turns. € (mV)
|Amplitude doubles: period unchanged| 107 (@)  Original
5 4 Curve
Doubling the angular velocity. 0.5 1.0 15 2.0
[doubles the amplitude: cuts the period in half| 0 ’ ’ P '(nis)
-5+ )
Doubling the angular velocity while reducing the (b)
number of turns to one half the original value. -10 t

|Amp|itude unchanged: cuts the period in half
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234 Chapter 31 Solutions

*31.51

31.52

*31.53

(@)

(b)

AB _

€=-N A(BAcos@) = —N(nr )cosO — 1(0 00500 m )(1)[MD
At At

020.0x107°% s 0875V

£ 0875V
=S =-2°0PV _138A
R 0.0200 Q 438 A

P=EI=(0.875 V)(43.8 A) = [38.3 W

In the loop on the left, the induced emf is

r—0.50 m l 0.50 m —|

|E|= d(DB —A = 7(0.100 m)*(100 T/s) = T
L n=010m L =015m .
> > on<S 050m
and it attempts to produce a counterclockwise 993 s0a> 5on:.
current in this loop. in Bou

In the loop on the right, the induced emf is

= 7(0.150 m)?(100 T/s)=2.257TV

and it attempts to produce a clockwise current. Assume that |, flows down through the
6.00-Q resistor, 1, flows down through the 5.00-Q resistor, and that I; flows up through the
3.00-Q resistor.

From Kirchhoff’s point rule: =1 +1 Q)
Using the loop rule on the left loop: 6.001; +3.00l3 =77 2
Using the loop rule on the right loop: 5.001, +3.0013 =2.25 11 3)

Solving these three equations simultaneously,

1 =[065A]. 1,=[F0A], and 1,=[09BA

The emf induced between the ends of the moving bar is
€ =Bl v=(2.50 T)(0.350 m)(8.00 m/s)=7.00 V

The left-hand loop contains decreasing flux away from you, so the induced current in it will
be clockwise, to produce its own field directed away from you. Let I, represent the current

flowing upward through the 2.00-Q resistor. The right-hand loop will carry counterclockwise
current. Let I; be the upward current in the 5.00-Q resistor.



*31.54

31.55

(@)

(b)

©
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Kirchhoff’s loop rule then gives: +7.00 V-1,(2.00Q)=0 1,=[350 A
and +7.00 V- 15(5.00Q)=0 13={140 A
The total power dissipated in the resistors of the circuit is

P=Ely+El; =E(l; +15) =(7.00 V)(3.50 A +1.40 A) =

Method 1. The current in the sliding conductor is downward with value
I,=350A+140 A=4.90 A. The magnetic field exerts a force of

Fm =11 B=(4.90 A)(0.350 m)(2.50 T) =4.29 N directed _ toward the right on this conductor. An
outside agent must then exert a force of (4.29 N| to the left to keep the bar moving.

Method 2: The agent moving the bar must supply the power according to
P=FLv =Fvcos0’. The force required is then:

_P_343W _
Y 8.00 m/s

Suppose we wrap twenty turns of wire into a flat compact circular coil of diameter 3 cm.
Suppose we use a bar magnet to produce field 10°T through the coil in one direction along

its axis. Suppose we then flip the magnet to reverse the flux in 107ts. The average induced
emf is then

F-_NAPs A[BAcos ] _ _NB(mz)[poslSO -cos0°[]
At At t At 0

c_ _ -3 20 =2 O _. -4
€ = -(20)(10 T)n(0.0150 m) T e] B

€+ Einduced d = | '
l=——x——  and  Einducea =~ gy (BA) SO
e ||| sy 2

=m at e o o o .T
dv IBd Bd Bd [ ]
Tt = m = R €+ Einduced) = R (€-Bvd) -

. . . du dv

To solve the differential equation, let u=(&-Bvd), il -Bd T

1du _ Bd u du__t (Bd)?
“Bddt —mRrR Y S° Iuo u Lzo mR at
! ing from t=0tot= P LR = =
ntegrating fromt=0tot=t, Nds = T mR t or T
e—Bzdzt/mR
Since v=0when t =0, ug=€&€ and u=&-Bvd
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236 Chapter 31 Solutions

£-Bvd = e B VIR

and
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3156 (a) For maximum induced emf, with positive charge at the top of the antenna,

31.57 I =

F+ =g+ (v x B), so the auto must move east

5.0 x 103 mQJ
(b) E£=Blv = (5.00 x 107 T)(1.20 m) %% cos65.0° = [4.58 x 10~ V]

0 3600s

DA

:U\UJ
~—+

(15.0 uT)(0.200 m)?
S0 =IAt= =[1.20uC
g 05000

Goal Solution

The plane of a square loop of wire with edge length a=0.200 m is perpendicular to the Earth's magnetic
field at a point where B=15.0 uT, as shown in Figure P31.57. The total resistance of the loop and the
wires connecting it to the galvanometer is 0.500 Q. If the loop is suddenly collapsed by horizontal forces
as shown, what total charge passes through the galvanometer?

G:

O:

For the situation described, the maximum current is probably less than 1 mA. So if the loop is closed
in 0.1 s, then the total charge would be

Q =IAt=(1mA)(0.15)=100 uC

We do not know how quickly the loop is collapsed, but we can find the total charge by integrating the
change in magnetic flux due to the change in area of the loop (a2 - 0).

Q= [t J"SF:“ ng% =1 Id%—— J'd(BA)— Rf -

=0 2 -6 2
0= _B AD _Ba” _(15.0x10" T)(0.200 m)~ _ 120x10°° C
R 2 R 0.500 Q

1=a

The total charge is less than the maximum charge we predicted, so the answer seems reasonable. It is
interesting that this charge can be calculated without knowing either the current or the time to
collapse the loop. Note: We ignored the internal resistance of the galvanometer. D’Arsonval
galvanometers typically have an internal resistance of 50 to 100 Q, significantly more than the
resistance of the wires given in the problem. A proper solution that includes Rg would reduce the
total charge by about 2 orders of magnitude (Q ~0.01 uC).
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dqg N
* = — = =-N—E -
3158 (a) I=¢ where E=-N i J’dq Rc.!d(DB
1

31.59

31.60

31.61

(b)

(b)
©

(d)

dog ®2

XM
[72]
(@]

N
and the charge through the circuit will be |Q| =R (®2-Dy)

N Orid_ BAN
=—mAcos0-BACOS — =
Q R% pH R

RQ _ (200Q)(5.00x107*C) _

SO B= ox = =[0.250 T
NA (100)(40.0 x 1074 m?)
£
£=BIv=0360V I= £ =[0.900 A
5 = [0:900 A

Since the magnetic flux B - A is in effect decreasing, the
induced current flow through R is from b to a. is at
higher potential.

. Magnetic flux will increase through a loop to the left of ab. Here counterclockwise
current will flow to produce upward magnetic field. The in R is still from b to a.

€= Bl v at a distance r from wire <71
Ol ' T
& =" @v ‘ v
£l B I ¢
(a) At time t, the flux through the loop is ®g =BACosH = (a+bt)(m2)coso° = ni{a +bt)r?
Att=0, ®g=|mar?
by €= 9% _ 2 d(a+bt) _ - 7ibr?
dt dt
& mbr?
0 1=2=|-TB0
© = =
O 2 2.4
@ P=&l=F" a—nbrz)= Uil
H R R




31.62

31.63

31.64

(@)
(b)

©

(@)

(b)

(©

(d)

@)

(b)
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B 2
—(NBA)— 1D(TDna = m‘K

0=ce=[Emin

B into the paper is decreasing; therefore, current will attempt to counteract this. Positive

charge will go to |upper plate| .

The changing magnetic field through the enclosed area |induces an electric field
surrounding the B-field, and this pushes on charges in the wire.

The flux through the coil is @z = B[A =BAcos8 =BAcoswt. The induced emf is

E = —N&:—NBAM

= NBAwsin wt.
dt

Emax = NBA® = 60.0(1.00 T)(0.100 x 0.200 m?)(30.0 rad/s) = [36.0 V

ddg _ £ dPg|  _ Emax _ 360V _ ~
—==—, th = = =0.600 V = (0.600 Wh/
a N ™ T TN 00
At t=0.0500 s, wt =150 rad and € = Eaxsin(1.50 rad) =(36.0 V)sin(1.50 rad) = (35.9 V

The torque on the coil at any time is 7 =|u xB|=|NIA x B| = (NAB)I sin wt\ P max [Dgﬁsm wt|

2 2
When &€ =&, sinwt=1.00 and T= Emax _ (36.0V)

@R (30.0 rad’s)(10.0 Q)

Pg

We use € =- NA—, with N =1.
At

Taking a =5.00 x 10-3 m to be the radius of the washer, and h = 0.500 m,

g O a? -
Adg =B,A ~BA=A(B,-B)= mlo ol _Hol = @Kol O 1 _ 10_ —poahl
nh+a) 2mBH 2 O[h+a ad 2(h+a)
The time for the washer to drop a distance h (from rest) is: At= \ Zgh
Therefore, &= Mol __ Hoahl /i _ _Hoal \/ih
2(h + a)At  2(h+a) \2h  2(h+a)

(411107 T [In/A)(5.00 x 10 m)(10.0 A) /(9.80 m/s?)(0.500 m)

= : = (97.4 nV
2(0.500 m +0.00500 m) \ 2

Since the magnetic flux going through the washer (into the plane of the paper) is decreasing
in time, a current will form in the washer so as to oppose that decrease. Therefore, the

current will flow in a | clockwise direction| .

and €=
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31.65 g=-Nn9% -y E(BAcos 6)
dt dt
£ = -NBoos 8 o2 0= —200(50.0 x 107° T)(cos 62.0°) 220 107 M0, o
ot | P 1Tes B
31.66 Find an expression for the flux through a rectangular area r- T T T 1 7
"swept out" by the bar in time t. The magnetic field at a distance | : o
|

|
|
x from wire is |
<—7’—>| | i
B= LOI 414—| T
271X

and dJB:J'BdA. Therefore, ‘

r+l
B~ IJSM I dx where vt is the distance the bar has moved in time t.
m X
dog _ uolv
Then, |&]= T = In E]l
31.67 The magnetic field at a distance x from a long wire is B :éjil. Find an expression for the
TIX

flux through the loop.

r+w
_ lJo _ uoll dx uo" w
0P =22 (1dx) 50 J gu ‘0
Therefore, g=-9% _tllv_w and =& |Kllv_w
dt 2mr (r+w) R 21TRr (r +w)
31.68 As the wire falls through the magnetic field, a motional emf £ =Bl v is induced in it. Thus, a
counterclockwise induced current of | = £/R =Bl v/R flows in the circuit. The falling wire

is carrying a current toward the left through the magnetic field. Therefore, it experiences an

upward magnetic force given by Fg =1l B=B? ?v/R. The wire will have attained terminal
speed when the magnitude of this magnetic force equals the weight of the wire.

212
Thus, % =mg, or the terminal speed is v, = ;nz—?lz
3 2 2 d®s 2
31.69 @ = (6.00t° — 18.0t°) T - m and E= -9t - -18.0t“ + 36.0t

Maximum & occurs when % =-36.0t + 36.0 = 0, which givest = 1.00 s.

. . o4 (-18.0 + 36.0)V
Therefore, the maximum current (att=1.00s)is |I== = —  =(6.00 A
( ) R~ s00n  L0XA



31.70
*31.71 (a)

(b)
31.72
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For the suspended mass, M: *F=Mg-T=Ma

For the sliding bar, m: ZF=T-11B =ma, where Izgz%
2,2 2|2
Mg—BI V=(m+M)a or a=y= Mg __B7
dt m+M R(M+m)
2|2
IV av :J'tdt where a= Mg and ,B:L
0 (a-pBv) Jo M+m R(M +m)

v=Z@-ePhty= MgR %_ o8 2t/R(M+m)E

Therefore, the velocity varies with time as 5 22, 2

_dog dB d
5——NT =-NAG¢ ——NAE(p.onl)

where A = area of coil, N = number of turns in coil, and n = number of turns per unit length
in solenoid. Therefore,

d
€] =NpoAn [4 sin(12071t)] = Np0oAN(4807) cos(1207t)

€ = 0(amx 107 )[n(0.0500 m)?] (2.00 x 10)(4807) cos(120Trt) = |(1.19 V) cos(1207t)|

AV (1.19 V)? cos?(1207t)
I=—=— and P=AVI =
R (8.00 Q)

(119 v)?

1UL19V) . g5 mw
2 (8.00Q)

1 _
cos 26, the average value of cos’@is 5 , so P =

N
Nl =

From cos? = 5 +

The induced emf is € =Bl v where B :%, v=y, +gt:(9.80 m/sz)t, and

y=y; - $9t? =0.800 m - (4.90 m/s?)¢,

(47rx 107 Tin/A)(200 A)

) (L18x107)t
) 277[0.800 m - (4.90 m/s2)i?

0.800 — 4.90t?

](0.300 m)(9.80 m/s?)t =

(118 x107*)(0.300)
0.800 - 4.90(0.300)°

At t=0.300s, E=l

JV:
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31.73

31.74

31.75

The magnetic field produced by the current in the straight wire is [—
perpendicular to the plane of the coil at all points within the coil.
The magnitude of the field is B =yl /27r. Thus, the flux linkage is

_ IJoNIL h+w dr _ HoNImaXL |:h+W[|
= B2 WAL In
2 Jhor 21 0 hnh 4

e ~ —>
‘4—&'—»‘4:—»

Ndg sin(at + @)

S

E= _IJONImaXLwlnEl_'_ﬂD

Finally, the induced emf is
2m hU

cos(wt + @)

oo (4 X 10‘7)(100)(50.0)(0.200 m)(20077s ™) Ingl+ 5.00 cm[]

cos(wt +
5.00 cm O S (@Ht @)

2T

E= | -(87.1 mV) cos (2007t + <0)|

The term sin(wt+ @)in the expression for the current in the straight wire does not change
appreciably whenwt changes by 0.100 rad or less. Thus, the current does not change
appreciably during a time interval

0.100
(20077s7%)

We define a critical length, ct=(3.00 x 108 m /s)(1.60 x 10 -4 s)=4.80 x 10* m equal to the

distance to which field changes could be propagated during an interval of 160 x 10 ~4s. This
length is so much larger than any dimension of the coilor its distance from the wire that,
although we consider the straight wire to be infinitely long, we can also safely ignore the field
propagation effects in the vicinity of the coil. Moreover, the phase angle can be considered to
be constant along the wire in the vicinity of the coil.

=160x107%s.

If the frequency w were much larger, say, 2007tx10° s™%, the corresponding critical length
would be only 48.0 cm. In this situation propagation effects would be important and the
above expression for & would require modification. As a "rule of thumb" we can consider
field propagation effects for circuits of laboratory size to be negligible for frequencies, f = w/2m,
that are less than about 106 Hz.

®p

d
®g =BAcos 6 qt ~ —wBAsing; CCW | Torque

2
N ”\/”’
CWM

The area of the tent that is effective in intercepting magnetic field lines is the area
perpendicular to the direction of the magnetic field. This is the same as the base of the tent.
In the initial configuration, this is

I0-sin @

r01B sin 6 [0 —sin? 6]

A; = L(2L cos ) = 2(1.50 m)? cos 60.0° = 2.25 m?
After the tent is flattened, A, =L(2L) = 21% = 2(1.50 m)? = 4,50 m?
B(AA) _ (0.300 T)(4.50 - 2.25) m?

. . AD
The average induced emf is: E=-""B-_ = =[-6.75V
g At At 0.100 s
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Al 3,y CL50 A-0.200 Al_ o
*32.1 \8\_LA = (300 x 107 H) 5 2005 0= L95x107V=[195mV

32.2 Treating the telephone cord as a solenoid, we have:

2 3
_ HUgN“°A (47T><10 T Om Z A)(70. O) (m)(6.50x 10~ m)
L= -1 36 uH

[10.500 AT
323 \s\ +L = _(200 M) or00 <0 1

324 L = uon®Al  so n—\i |7 80 x 10% turns/m
HoA

N o LI
32,5 L= B . ¢, =— =240 nT - m?| (through each turn
% 0, L1 - [ 7] (o exh

2
32.6 \E\:Lﬂ where L=HoN'A
dt |
-7 2 -4 2
uoN2ADdl _ (477x1077 T /A )(300)°(7rx 107 m?)
Thus, 0 = 10.0 A/s) = [2.37 mV
I Hdt 0.150 m ( /s)
di
32.7 Erak=—E=Lgr =L g dt (Imax SiN @t) = Lwlmax €0S wt = (10.0 x 1073)(12077)(5.00) cos ct

Eback = (6.007) cos(1207tt) = {(18.8 V) cos(377t)|

© 2000 by Harcourt, Inc. All rights reserved.
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24.0x1073 vV
*32.8 From [€] = L%g we have L= Df/D = 100A/s

Oat0

_ Nog _ LI (240x107%H)(4.00A) 5
From L = o we have P = N - 500 =119.2uT - m

=240x 1073 H

_ MoN2A  14p(420)%(3.00 x 107%)
32.9 L="7—7= 0.160

_oodldl g -175x10°V
€=~ dt 7dt T | T 416x10°%H _m

=416x10"*H

2
32.10 The induced emf is € = —L%, where the self-inductance of a solenoid is given by L= Holl\liA.
Thus, a__E. _Eilz
L UoNZA
_ RN
32.11 €] = Lﬁ =(90.0 x 10 )ﬁ(t -6t) V

(@) Att=1.00s, E£=[360mVv
(b) Att=400s, €=
(c) €=1(90.0 x 107%)(2t - 6) = 0 when

450
3212 (a) B =ponl = o EM—ZOE(O.MOO mA) =[188 uT

(b) ®z=BA=[3.33x10°T.-m?

_ Nog

c) L =10.375 mH
|

© 2000 by Harcourt, Inc. All rights reserved.
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(d) |B and ®g are proportional to current; L is independent of current
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HoN?A  pp(120)271(5.00 x 107%)2

3213 (@) L= —7— = 56500 =[15.8 pH
) ®p=i" g L= HalPA - 800(1.58 x 1075 H) = [12.6 mH
Ho |

N NBA NA NI NZ2A Area
32.14 L=—8 = = L A
| [ | TR 21R
32.15 E=Ep k==L dar
dt
di = - Lokt
L
If we require | - 0ast - oo, the solutionis | =§e_kt =%
kL dt
©& it g g
=(ldt=[ e *dt=- =0 = <o
Q= ko kL k2L Q| k2L
32.16 | :g(l—e_Rt/")

0.900 € = é[l— ¢~R(3.005)/2.50 H]
R R

0 R(3.00s)0_
expD E IR 0.100

2.50 H
R= In10.0= 1192 Q
300 1920]

© 2000 by Harcourt, Inc. All rights reserved.
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I(A)
L ' -t/T - e - - - o o
32.17 T= 35 =0200s: — =1-¢ i
R lmax 1
(@) 0500=1-¢Y0200  t=17In2.00=[0.139s 1]
b) 0.900=1-e020 _ t=7In10.0=[0461s |7 A—
®) - 0 0.2 0.4 0.6
Figure for Goal
Solution
Goal Solution
A 12.0-V battery is about to be connected to a series circuit containing a 10.0-Q resistor and a 2.00-H

inductor. How long will it take the current to reach (a) 50.0% and (b) 90.0% of its final value?

G:

The time constant for this circuitis 7=L/R=0.2 s, which means that in 0.2 s, the current will reach
1/e = 63% of its final value, as shown in the graph to the right. We can see from this graph that the
time to reach 50% of |, should be slightly less than the time constant, perhaps about 0.15 s, and the

time to reach 0.91,,, should be about 2.571=0.5s.

The exact times can be found from the equation that describes the rising current in the above graph
and gives the current as a function of time for a known emf, resistance, and time constant. We set
time t=0 to be the moment the circuit is first connected.

_ /T

At time t, i(g)=£0-¢")

R
where, after a long time, Imax = Ed-e ) _¢€

R R

_ a-1/0.200's
At 1(t) = 0.5001 05, (0.500)§ = % s0 0.500 =1-¢ ¥/0-200s
Isolating the constants on the right, In(e‘tlz'OO 5) =1In(0.500)
and solving for t, b 693 or £=0.139 s
0.200 s

(b) Similarly, to reach 90% of 1,,, 0.900=1-¢ Y7 and t =-1In(1-0.900)
Thus, t = (0.200 s)In(0.100) = 0.461 s

The calculated times agree reasonably well with our predictions. We must be careful to avoid
confusing the equation for the rising current with the similar equation for the falling current.
Checking our answers against predictions is a safe way to prevent such mistakes.




32.18

*32.19 (a)

(b)

©

(d)

*32.20

3221 (a)

(b)
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-t/1. ﬂ e—t/rD_lD

Taking 7 =L/R, I =1lge =1

g / 0 dt 0 0 TD

R+L9 =0 will be true if IORe‘t/T+L(I0e'VT)D—£D:O
dt O 70

Because 7=L/R, we have agreement with 0 =0

7=1/R=200x10"%s =[2.00 ms] o
S
_ _—7\_ .00V,  —0250/2.00) _ -
1= a1 e”)_mooggl e )=[0176 A] £ =
_E _ 6.00 V _ MW
ma= 2 = 2000 =[150A]
0.800 = 1—¢¥200Ms _ t=_(2.00 ms) In(0.200) =

£

120
= (1 _ e—t/T) - 300 (1 _ e—l.80/7.00) =302 A

AVR = IR = (3.02)(9.00) = 27.2 V

AV = E-AVR=120-272=(92.8V

AVg = IR =(8.00 Q)(2.00 A)=16.0V  and If----- /R
AV, =E-AVR,=36.0V-16.0V=20.0V

AV 16.0 V
Therefore, R = = (0.800
AV, 200V 0.800

0 T 27T

AVg = IR =(4.50 A)(8.00 Q) =36.0 V .
Figure for Goal

Solution
AV =E-0Vg = 0]

© 2000 by Harcourt, Inc. All rights reserved.
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G

oal Solution

For the RL circuit shown in Figure P32.19, let L =3.00 H, R =8.00 Q, and € =36.0 V. (a) Calculate the ratio
of the potential difference across the resistor to that across the inductor when | = 2.00 A. (b) Calculate the
voltage across the inductor when | = 4.50 A.

G:

The voltage across the resistor is proportional to the current, AV, = IR, while the voltage across the
inductor is proportional to the rate of change in the current, £ =-Ldl/dt. When the switch is first
closed, the voltage across the inductor will be large as it opposes the sudden change in current. As the
current approaches its steady state value, the voltage across the resistor increases and the inductor’s
emf decreases. The maximum current will be € /R = 450 A, so when | = 2.00 A, the resistor and
inductor will share similar voltages at this mid-range current, but when | = 4.50 A, the entire circuit
voltage will be across the resistor, and the voltage across the inductor will be zero.

We can use the definition of resistance to calculate the voltage across the resistor for each current.
We will find the voltage across the inductor by using Kirchhoff's loop rule.

@) When 1=2.00 A, the voltage across the resistor is AVg = IR =(2.00 A)(8.00 Q) =16.0 V
Kirchhoff's loop rule tells us that the sum of the changes in potential around the loop must be zero:

AVg _16.0V

E-AVg-E =360V-16.0V-E =0 s0 £ =200V and
ROTL - - g 200V

=0.800

(b)  Similarly, for 1=4.50 A, AVg =IR=(4.50 A)(8.00 Q)=36.0V
E-AVg-& =36.0V-36.0V-E =0 S0 £ =0

We see that when 1=2.00 A, AVg <&, but they are similar in magnitude as expected. Also as
predicted, the voltage across the inductor goes to zero when the current reaches its maximum value.
A worthwhile exercise would be to consider the ratio of these voltages for several different times after
the switch is reopened.

L
*32.22 After a long time, 12.0 V = (0.200 A)R Thus, R =60.0 Q. Now, 1= 5 gives

R

L = 7R = (5.00 x 10~% 5)(60.0 V/A) = [30.0 mH

32.23 | = Imax(l_e_tlr): ﬂ: _Imax(e—t/T)D_ED

dt 0 70

15.0 H dl R
=0500s: — = — Il €77 and  lpax= g

dt L

_dl R, 4, g 100V _

di
(b) t=150s 7 = % YT = (6,67 A/s)e” 15/050) = (567 A/s)e 3% = [0.332 ATs
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32.24 = e (1-77) e
S
0.980 = 1-¢~300X10°/7 et LS
0.0200 = ¢~3:00%107°/7 i
YVyy
-3
= 300%10 °_7 6751074
In(0.0200)
T=L/R,s0 L=T1R=(7.67x107*)(10.0)= [7.67 mH
32.25 Name the currents as shown. By Kirchhoff’s laws: 4.00 Q 8.00 Q
I AVAVAVAV I AVAVAVAV
lp =1 +13 1) ! ; l 3
2
+10.0 V- 4.001; -4.001, =0 @ L100 =400 100
di '
+1O'OV_4'OO'1_8'00'3_(1'00)(Tt3 =0 (3) S
From (1) and (2), +10.0-4.001, -4.001,+4.001;=0 and I, =0.50015 +1.25 A
Then (3) becomes  10.0 V - 4.00(0.50015 +1.25 A)=8.00 15 — (L oo)dﬁ =0

t
(1.00 H)(dl5/dt) +(10.0 Q)15 =5.00 V

We solve the differential equation using Equations 32.6 and 32.7:

=[(0.500 A)[1-¢0¥s

_500V -(10.0Q)t/1.00 H
5(0=10.0 Q[l_e eoal

150 A-(0.250 A)e 20t/

1;,=125+0.50015 =

) L L[ 3.00H 3
32.26 a) Using T=RC=—, wegetR=,/—=,/———————=100x10° Q=11.00 kQ
@ 9 R g Yc V3.00x107°F

() 7=RC=(100x10° 0)(3.00x107° F)=3.00x107 s =

© 2000 by Harcourt, Inc. All rights reserved.



250 Chapter 32 Solutions

32.27

3228 (a)
(b)
(©

32.29

(@)

(b)

©

For t<0, the current in the inductor is zero. At t=0, it starts to ORS

grow from zero toward 10.0 A with time constant 00a] |

T=L/R=(10.0 mH)/(100 Q):l.OOxlO‘4 S. 2‘03:6

_ I(t)—>
_ v ~10000t/

For 0<t<20045s, 1= lngl-e  cF|(10.00 A)L-e ‘)
=100 10.0
= Q mH

At t =200 ps, I =(10.00 A)(1-¢2%) =8.65 A

Thereafter, it decays exponentially as | = Ioe_t' T, sofor t>200 us,

| = (8.65 A)e—loooo(t—200us)/s = (8.65 A)e—10000t/s +2.00 — (8.65e2'°0 A)e—lOOOOt/s = ((63.9 A)e—lOOOOt/s

£ 120V

== = =11.00 A
R 120Q -
Initial current is 1.00 A, : AV, = (1.00 A)(12.00 Q) = (12.0 V

AV 1500 (1.00A)(12000) =[ 1.20 kV]

- dl R _
| = Imax € °YL: It :—|maxf g RU/L and
Solving 12.0 V = (1212 V)e 1212t/2.00 so

0.140 . . g 6'OOV=1.22A

T 4.90Q

4,
= lnax(1-¢™7) s0 0.220=122(1-e™")

e™7=0.820 t = -71n(0.820) =

O _10[Q

| =1, 1-e 00286=(L22 A)(1—e‘35°)= 122A
0 0
-t/T

I = lhax®

A S
0
l B
12,0 1200 2.00
v o H
AVAVAVAV
120 @

di
—L 57 =AVL = Imax Re™VE

9.90 x 1073 = ¢606t

and 0160=122¢"" so  t=-rIn(0.131) =



32.30

32.31

32.32

(@)

(b)

©

(d)

(@)

(b)
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For a series connection, both inductors carry equal currents at every instant, so dl/dt is the
same for both. The voltage across the pair is

dl dl dl

b b .

eth ldt 2dt eq 1 2

dl dl dl dl dl dl

—=L,—Ll=L,—2=AV wherel=1,+1, and —=—-1+22
“dt - tdt 2 dt L 1rn dt ~ dt dt
Thus, AVL-AVL , AV, and 11,1

Leq Ly L, Leq L1 Ly

dl dl dl
Loy—+R.,I=L;—+IR; +L,—+ IR

eth eq 1dt 1 2dt 2

Now | and dl/dt are separate quantities under our control, so functional equality requires both

||_eq:|_1+|_2 and Rgq=R;+R,
dl dl dl dl _dl;  dl
AV =Ly —+Rggl =L;—2+Ryl;=L,—2+R,l, where I=1,+1, and ——=—1+=2
g 4T Tlgr YT TZgr 22 12 dt ~ dt = dt
o 1 1 1
We may choose to keep the currents constant in time. Then, =+ —
Req Rl RZ
. 1 1 1
We may choose to make the current swing through 0. Then, —_— ==+ =
Leq Ll I-2

This equivalent coil with resistance will be equivalent
to the pair of real inductors for all other currents as well.

N®g  200(3.70 x 1074

L=—— = 175

= 42.3mH SO

1 1
U=3LI% = 5(0.423H)(1.75A) =[0.0648 J

The magnetic energy density is given by

B2 (4.50 T)?
u= 2— = s
Ho  2(1.26x10°% T m/A)

=(8.06 x 10° 3/m?

The magnetic energy stored in the field equals u times the volume of the solenoid (the
volume in which B is non-zero).

U=uV=(8.06x10° I/md) [(0.260 m)7(0.0310 m)2] = [6.32 K

© 2000 by Harcourt, Inc. All rights reserved.
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32.33

32.34

32.35

*32.36

32.37

(@)

(b)

(@)

(b)

©

(@)

(b)

©

(d)

N2A _  (68.0)% m(0.600 x 1072)?
| 0 0.0800

U =1L1%7=1(8.21x107° H)(0.770 A)? —

=8.21uH

U=l l 0E f _Le? _ (0.800)(500)
T2 T2 DTD 8R2 T 8(30.0)°
_ D€, _ o-(R/L

R al e ] SO

Bt:In2 o]
L

2 2

=127.81

al e—(R/L)t] L e(R/LR _1
2R DR

0.800
*' n2=—.on2=

1 1
U=3 LI?= 5(4.00 H)(0.500 A) > =[0.500]

du
o = LI=(4.00 H)(1.00 A) = 4.00 /s =
= (AV)I = (22.0 V)(0.500 A) = [11.0 W

From Equation 32.7,

The maximum current, after a long time t , is

At that time, the inductor is fully energized and

Piost = 1R = (2.00 A)*(5.00 Q) =

Pinductor = I(Avdrop) - IEI

_ LI? _(10.0 H)(2.00 A)? _
U=—">-= ; = [20.03

__2%.0 400 3

=2.00 A.

DM

= 1(AV) = (2.00 A)(10.0 V) =[20.0 W]



Chapter 32 Solutions 253

E? B2
32.38 We have u=ey— and u=—
2 24
2 2
Therefore €y E_B SO B? = eyloE>
2 24

s 6.80x10° V/m
B=E. ey =~ YL 0 = 1227x10°3T
Ve = 3 0% 108 m/s

2

32.39 The total magnetic energy is the volume integral of the energy density, u = %
0

Because B changes with position, u is not constant. For B =By(R/r) us= D&TBOZ R

[l 0 [l uo E]r D

Next, we set up an expression for the magnetic energy in a spherical shell of radius r and
thickness dr. Such a shell has a volume 4mr? dr, so the energy stored in it is

[ B, 2R* Udr

du = u(4nr2dr) = BTHTZ
0

We integrate this expression for r =R to r =  to obtain the total magnetic energy outside the
sphere. This gives

253 -5 1\2 6 3
21Bg R 271(5.00 x 10™ T)“(6.00 x 10° m) s
U= = =12.70 x 10*°J
Mo (1.26 x 1078 T. m/A)

32.40 11 (t) = I;maxe " sinat with 1, =5.00 A, @ =0.0250 s, and w =377 rad/s.
d—ltl = I maxe " (-arsin wt + wcos wt)
At t=0.800's, d—'tl =(5.00 A/s)e™*%% [~(0.0250)sin(0.800(377)) + 377 cos(0.800(377))|
% =185x10% A/s
Thus, & = _M%: M= deélt ) 1.8;3.12(5)3VA/3 )

© 2000 by Harcourt, Inc. All rights reserved.
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32.41 £, = —M% = ~(100 x10™* H)(1.00 x 10* A /) cos(1000t)

(gz)max =

&

_ |_96.0mV _
22 M= i, /dt] 120 A/s

Ng®ga _ 700(90.0 x107%)
3243 (a) M=—BTBA =(18.0 mH
(a) N 250

®, _ 400(300 x107°)
b) Ly=—A="27 J-1343mH
) La= 3.50 34.3 mH]

dia _

) E=- e —(18.0 mH)(0.500 A/'s) =

NpPr, _ Na(BiAy) _ Naf(tonl)A]
ly Iy I,

M = (1.00)(4n>< 107 T mm)% (5.00 x 1073 m)zgz

32.44 M= =Ny ughAq

32.45 B at center of (larger) loop: B; = %
_®, _BiA, _ (ol /2R) (%) _ | pyrr?
(@) M=—2=-1"2= =
Iy Iy Iy 2R

_ Ho7(0.0200)°

®) 2(0.200)



*32.46

32.47

32.48
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Assume the long wire carries current 1.  Then the magnitude of the magnetic field it
generates at distance x from the wire is B =pyl/2mx, and this field passes perpendicularly
through the plane of the loop. The flux through the loop is

uoll 170 mm dx ,uOII InDl70 O
(0.4000

The mutual inductance between the wire and the loop is then

g = [BIHA = [BAA = [B(l dx) =

1(4mx 107" T On/A)(2.70 103 m)

N,®p,  Nopgll . 0170 O Nyl
M=—2712 = 20" | 250 (1,45 1.45
I 2l (b.4000 27 (1.45) = 21 (1.45)
M =7.81x1071% H = [781 pH
With | =1, +1,, the voltage across the pair is: I(t)—> I(t)—>
L1§ M %Lz » Leq§
so. _diy AV Ml
t L, L, dt —
2 (@) (b)
and _LZdL.FM(AV).FMidL:AV
dt Ly L, dt
(-Likp + M) 2 = V(L - M) i
By substitution, - dﬁ: ﬂ+M diy
dt L, L, dt
leads to (-LiL, + M?) d'l =AV (L, - M) 2]
Adding[1]to[2], (-~ LiL, + M 2)% =AV(L, + L, -2M)
_ 2
So. Log =~ AV _| LiL, - M
diZdt |[Ly+L, -2M
i H — 1 2 — (1,2
At different times, (Ue)ma = (V) ma s0 [EC(AV) ]max = (§LI )max

c '1.00x10°° F
Imax = 1 (AY) e ~\100x107H (40.0V)=

© 2000 by Harcourt, Inc. All rights reserved.
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L 120.0x107° H
32.49 [3cavy] = () so (aVe), . = \/c limax = \/W (0.100 A) =[20.0V]

32.50 When the switch has been closed for a long time, battery, resistor, MW
and coil carry constant current |, =&/R. When the switch is
opened, current in battery and resistor drops to zero, but the coil —¢ Lg Lc
carries this same current for a moment as oscillations begin in the
LC loop.
a/c

We interpret the problem to mean that the voltage amplitude of
these oscillations is AV, in $C(aV)” = 3LIZ,,.

c(av)® _ c(av)’R? (0500 x 107 F)(150 V) (250 Q) _

Then, L= = =(0.281H
7= 500V 0261 H
1 1
32.51 C= = = [608 pF
(2mf)’L  (2706.30 x 10°)? (1.05 x 10°)

Goal Solution
A fixed inductance L = 1.05 pH is used in series with a variable capacitor in the tuning section of a radio.
What capacitance tunes the circuit to the signal from a station broadcasting at 6.30 MHz?

G:

It is difficult to predict a value for the capacitance without doing the calculations, but we might expect
a typical value in the uF or pF range.

We want the resonance frequency of the circuit to match the broadcasting frequency, and for a simple
RLC circuit, the resonance frequency only depends on the magnitudes of the inductance and
capacitance.

1

The resonance frequency is fqg=———
2myLC

1 1
- 2, 2
(2mfo)°L {(27m)(6.30 x10° Hz)| (1.05x107® H)

Thus, =608 pF

This is indeed a typical capacitance, so our calculation appears reasonable. However, you probably
would not hear any familiar music on this broadcast frequency. The frequency range for FM radio
broadcasting is 88.0 — 108.0 MHz, and AM radio is 535 — 1605 kHz. The 6.30 MHz frequency falls in the
Maritime Mobile SSB Radiotelephone range, so you might hear a ship captain instead of Top 40
tunes! This and other information about the radio frequency spectrum can be found on the National
Telecommunications and Information Administration (NTIA) website, which at the time of this
printing was at http://www.ntia.doc.gov/osmhome/allochrt.html
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1 1 1
32.52 f=— = L= = =[0.220 H
21 LC (2mf)>C (27 [120)%(8.00 x 107°) 0.220H|
1 1 _
3253 (a) f =[135 Hz

2mVLC  277,/(0.0820 H)(17.0 x 10 F)

(b) Q =QpaxCOswt = (180 uC) cos(847 x 0.00100) =
© I= ‘Z—? = —WQ e SiN Wt = —(847)(180) sin (0.847) =

() Q=CE=(L00x107% F)(12.0 V)= [12.0uC
© 3CE&%=1L1%,,
c 1.00x1076 F
lmax =€ 11— =12V [———— " = [37.9 mA
e L \/ ot LS79mA

(d) Atall times U =1C&%=21(1L00x107° F)(12.0 V)* = [72.0 ]

1 1 10.0 @ 0.100 H
3254 (@ f=—> = = [503 Hz ~
27mVLC 277,(0.100 H)(1.00 x 10~° F) [s03 Fiz] Y i
L 120 1.00
Vv —|_ uF

32.55 w= ‘CL =— ! =1.899x10* rad s
VLG (3.30 H)(s40x 1072 F)
\
_ _dQ _ -
Q =Qmaxcoswt, |= b —WQmax SN Wt
2
o’ ([105 x 10‘5] cos[(1.899 x10* rads)(2.00x107 s)] )
@ Uc=-x= =0 = [6.03J
2C 2(840x107%2)
2 fa2 t)
b U :llezlL 22 -2 t:Qmaxsm (w
(b) U =3LI% = 3L Qnaysin®(wt) = =1 ==
(105107 ¢’ sin? [(1 899 x 10* rad)s)(2.00x10°3 s)]
U, = | = [0529

2(840 x 10712 F)

(©)  Ugotal =Uc +U = [6.56]

© 2000 by Harcourt, Inc. All rights reserved.
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0 f

(220 10‘3) (180x107) @2 2 22 iolo's)@

Therefore, fd:;)—’dT:
© R=|%=[o90]

1 ORCf_

3256  (a) wd:\/E T _\ =158x10% rad /s

3257 (a) wOZVI%C: ! — = |4.47 krad/s

1/(0.500)(0.100 x 1076)

1 _pR(f _
b) wy=.— =14.36 krad/s
® @
(© fw _ 2.53% lower
w,

0

32.58 Choose to call positive current clockwise in Figure 32.19. It drains charge from the capacitor
accordingto | =-dQ/dt. A clockwise trip around the circuit then gives

+ 2 r-19 -

C dt
+ Q + d—QR +L d.dQ =0, identical with Equation 32.29.
C dt dt dt
_Rt _Rt
3259 (@) Q=Qmaxt 2- cos wyt so Imax O& 2L
_Rt Rt
0.500=¢ 2L and — =-In(0.500)
2L
2L RLO
= —In(O 500) = | 0.693 ORr O
(b) U,0Q2, and U =0.500U, so Q =4/0.500 Qmax = 0.707Qmax

_2L 2LO
t= R In(0.707) = (0. 347DR 0 (half as long)
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32.60 With Q=Q.x at t=0, the charge on the capacitor at any time is Q =Q,, COSwt where
w=1/VLC. The energy stored in the capacitor at time t is then

2 2
U - :mcos2 wt =Ug cos? wt.

2C 2C
When U =1u cos wt=1+ and wt=1rrad
4 -0 2 3
2 2
Therefore, L:E or t =T
JLC 3 LC 9
_ _ _ ot?
The inductance is then: L= —=
mC
dI d(20.0t)
32.61 a) & =-L—=-1.00mH = |-20.0 mV
@ & =-Lg =100 mH)

b) Q= Iot ldt= Iot(zo.Ot)dt ~10.0t2

_-Q_ -1o.ot* [T AW
Mo === e (10.0 Mv/s?)t
2
2 -10.0t2
© When 2 >12 or ( )_ > 1(1.00x10‘3)(2o.0t)2,
2C ~ 2 2(1.00><10 6) 2

then 100t* > (400 x 10'9)t2. The earliest time this is true is at ~ t=4.00x10"° s = [63.2 us

3262 (a) EL:—L%:—L%(Kt): LK
®) | :‘L—?, $0 Q:IOt Idt:IOI Ktdt = 1 Kt?
and AV :§: - 222
(© When ic(ave) =1L1?, ic Difct:gz u(k2e?)
Thus t=[2+LC

© 2000 by Harcourt, Inc. All rights reserved.
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32.63
32.64
@
(b)
(©)
*32.65 (a)

(b)

©

2 la2

1Q°_ 1 f 1) s 3Q?

2C 2ch20 2 \4cL
The flux through each turn of the coil is P = L1 Bt
N 2N YV C

where N is the number of turns.

Equation 30.16: B:“ZO'\”
b
_ _ /,loNl NIh dr uONIh [bD
®g = [BdA =
B I {Zm Ir 2 EbD
LNy _ | pN*h (b
I 2 [hO

Uo(500)%(0.0100), [12.0(1_
L= In =(91.2 uH
21T [ho.od

2 2 -4 2
_ MoN“ DAD_ Hp(500)° .00 x 107 m“U_
= i = -0.9 H
appx 2 ORO 271 E 0.110 H m

NioIR? Nyl

At the center,

- 2(R2 +02)3/2 " IR

So the coil creates flux through itself @z =BAcosH = % mR% cos0°= gNuolR
When the current it carries changes, & =-N 4% _ -N— NuORd—I Lﬂ

dt 2 dt dt
o) L= gNZHoR

- - : L 71 mp _ =
2r=303m), so r=014m; L=z 1 Eimxlo A H 0.14m=28x107 H [~ 100 nH

L  28x107V-s/A

R = 270V/A  =10x107°s
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32.66 (a) If unrolled, the wire forms the diagonal of a 0.100 m

(10.0 cm) rectangle as shown. The length of this rectangle 9.80 m
is 0.100m
/ 2 2 E L >
L' =+/(9.80 m)“ - (0.100 m)
The mean circumference of each turn is C=2nr', where r’ :&20'644 mm is the mean
radius of each turn. The number of turns is then:
f 2 2
L' _ +/(9.80 m)” ~(0.100 m)
N=—= =127
C 271[24'0+0'644Dx 10-3 m
O 2 O
1.70x107% Qn)(10.0 m
(b) R=ﬂ:( )( 5 ):0.5229
A n(o.322 x1073 m)
2
_UN?A 800 L' TF 12
( L= = —— 7(r
© == gep ™M)
) 800(4n>< 10‘7) 0 (9.80 m)? - (0.100 m)? o L24.0+0.64400, s sz
0.100m [n(24.0+0644)x103mE B 2 O H

L =7.68x1072 H=

32.67 From Ampere’s law, the magnetic field at distance r <R is found as:

B(27m) =y0J(nr2) =u0§#§m2), or B =2‘%Lr2

The magnetic energy per unit length within the wire is then

U_ R B2 Ml R 5 HlP TRAD | Ko
T—J-O %(zmdr)_4m4j’0 r dr—74nR4 BTE— 167‘[

This is independent of the radius of the wire.

© 2000 by Harcourt, Inc. All rights reserved.
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32.68 The primary circuit (containing the battery and solenoid) is an : 24.0 Q
RL circuit with R=14.0 Q, and 820 turns
2p  (47x1077)(12 500)*(1.00 x 1074 =
L= HN"A ( Ju2 s00)( ). 0.280 H W——=
I 0.0700 14.0 Q
q
(@) The time for the current to reach 63.2% of the maximum = 60.0 12500
value is the time constant of the circuit: v turns
L_0280H S
T=—= =0.0200 s = |20.0 ms
R 1400Q o
(b) The solenoid's average back emf is ‘5 ‘— LEHD— Lle ~00
U o0 TH At H
- - CAV[O_ [60.0 V[I_
where It =0.6321ax = 0.632D RO 0'632D14_0 oo 271 A
= O271A O
Thus, E|1=(0.280H) =———— =379V
‘ L‘ ( )Eb.ozoo s0 37.9V]

(c) The average rate of change of flux through each turn of the overwrapped concentric coil is the
same as that through a turn on the solenoid:

Ad  pon(A1)A (4% 107 Tiim/A)(12500/0.0700 m)(2.71 A)(1.00 x 1074 m?)

At At 0.0200 s

(d) The magnitude of the average induced emf in the coil is \EL\= N(AGJB/At) and magnitude of
the average induced current is

| = iL - NDA®sO_ ﬂ(&m x 1073 v) =0.104 A =

32.69 Left-hand loop: E-(1+1,)R;-1,R, =0 — MA—oo—
R, S
Outside loop: E-(I +|2)R1—Lﬂ:0 £
dt Te 2R, L
Lo . dl
Eliminating I, gives E’—IR'—LE:O
This is of the same form as Equation 32.6, I(t) _E (1—e_R't/'-)

so its solution is of the same form as Equation 32.7: "R
But R'=RR,/(R;+R;) and E =R,E/(R;+R;), so E_ER,/R1*Ry) _ E
R R;R,/(Ry+R;) Ry

Thus I(t):£(1—e_R't Ly
Ri
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32.70 When switch is closed, steady current 1, =120 A. When o MWW
the switch is opened after being closed a long time, the S 5.00
current in the right loop is Q
L 6.00 100z
| = Ioe—th/L *T \% Q 3
ri/L _ lo Rt _ OO
SO e = and —=In=
| L 0y O

Ryt (1.00 Q)(0.150 s)
Theref L=—2—~= =0.0956 H = |95.6 mH
SreTore: In(lo/1)  In(1.20 A/0.250 A) 0.0956

3271 (a) While steady-state conditions exist, a 9.00 mA flows clockwise around the right loop of the
circuit. Immediately after the switch is opened, a 9.00 mA current will flow around the outer
loop of the circuit. Applying Kirchhoff’s loop rule to this loop gives:

+€; =[(2.00+6.00) x10° 0| 9.00 <10 A) =0

+& = | 72.0 V with end b at the higher potential |

(b) A
T imad Current in 5=
10t K SEEEE s0 100
A ] -,1 f—tiy15)
5—¥ -5 _/,I:-’_— l
“urrent in
v[]J 50 100 Hps) -0+ R,

(c) After the switch is opened, the current around the outer loop decays as

- -Rt/L

1= 1maxe

with lhax =9.00 mA, R =8.00 kQ, and L=0.400 H

Thus, when the current has reached a value | =2.00 mA, the elapsed time is;

0L, Olpax0_ 0 0.400H [ 09.000 .
t= — Jn=MmaX = In =7.52x107° s=|75.2 us
(RO O | O (Boox10° QO M.0oH

© 2000 by Harcourt, Inc. All rights reserved.
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32.72 (a) The instant after the switch is closed, the situation is as shown in L=0 AV. =&
the circuit diagram of Figure (a). The requested quantities are: ! O
Ir = &/R
[1L=0, 1c=&/R, 1g=&/R] YWt
-0 AVR =
[AV =&, AVc =0, AVg=§&] AVe=0 :LT_EO
lc= &/R A—k
&
Figure (a)
(b) After the switch has been closed a long time, the steady-state =0 AV.=0
conditions shown in Figure (b) will exist. The currents and o
voltages are: I/W\;)
||L:0' Ic =0, IR:0| Q=C& L av=0
ANc=& +|,.
AV =0, AV =&, AVg=0 .
0
Figure (b)
32.73 When the switch is closed, as /”A—r—rﬁ;;ﬁ;e_“\\‘
shown in Figure (a), the current : i
in the inductor is I: 7.50 l\ : 7.50 i
Q ; Q :
12.0-7.501-10.0=0 - 1 =0.267 A RZ 450 R ! 450 oo
> 1 H Al
] mH -y 0.267 ! mH
When the switch is opened, the =120 +1 100 120 A A | +l 100 l i
e ey . . 1
initial current in the inductor \% I TV T 4 | E TV i

remains at 0.267 A.

IR =AV: (0.267 A)R<80.0V (@) (b)

Goal Solution

To prevent damage from arcing in an electric motor, a discharge resistor is sometimes placed in parallel
with the armature. If the motor is suddenly unplugged while running, this resistor limits the voltage
that appears across the armature coils. Consider a 12.0-V dc motor with an armature that has a resistance

of 7.50 Q and an inductance of 450 mH. Assume that the back emf in the armature coils is 10.0 V when
the motor is running at normal speed. (The equivalent circuit for the armature is shown in Figure
P32.73.) Calculate the maximum resistance R that limits the voltage across the armature to 80.0 V when
the motor is unplugged.
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G: We should expect R to be significantly greater than the resistance of the armature coil, for otherwise a
large portion of the source current would be diverted through R and much of the total power would
be wasted on heating this discharge resistor.

O: When the motor is unplugged, the 10-V back emf will still exist for a short while because the motor’s
inertia will tend to keep it spinning. Now the circuit is reduced to a simple series loop with an emf,
inductor, and two resistors. The current that was flowing through the armature coil must now flow
through the discharge resistor, which will create a voltage across R that we wish to limit to 80 V. As
time passes, the current will be reduced by the opposing back emf, and as the motor slows down, the
back emf will be reduced to zero, and the current will stop.

A: The steady-state coil current when the switch is closed is found from applying Kirchhoff's loop rule to
the outer loop:
+12.0 V-1(7.50 Q)-10.0 V=0

SO 1= 200V _ 0.267 A
7.50 Q
We then require that AVg =80.0 V =(0.267 A)R
SO R=SYr - 800V _459
| 0.267 A

L: As we expected, this discharge resistance is considerably greater than the coil’s resistance. Note that
while the motor is running, the discharge resistor turns P =(12 V)2/300 Q=0.48 W of power into
heat (or wastes 0.48 W). The source delivers power at the rate of about
P =1V =[0.267 A+(12 V/300 Q)|(12 V) =3.68 W, so the discharge resistor wastes about 13% of the
total power. For a sense of perspective, this 4-W motor could lift a 40-N weight at a rate of 0.1 m/s.

L= HoNZA (4n>< 107" T A)(1000)2(1.00 x 1074 m2)

3274 (a 17 - =2.51x10"* H = [251 pH
@ ? 0.500 m
b) M= No®; _ Np®; _ NBA _ Nz[lJo(Nl/l 1)'1]A _ HoN1NLA
Il Il Il Il Il
47x1077 T [n/A)(1000)(100)(1.00 x 10™* m?)
M = ( =2.51x107° H= -25.1 H
0.500 m a
di di dQ, _ Ml
0 &=-M=—2%, or I;IRj=-M—2 and |;=—t=-T"-2
© & dt o dt 7 gt T Ry dt

__M t __M _ __ M, _ Mly;
Q = RTIO di; = RT('zf |2i)— RT(O |2i)_T1I

(251107 H)(100 A)

- =2.51x10° c=[25.1nC

© 2000 by Harcourt, Inc. All rights reserved.
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32.75

32.76

32.77

(@)

(b)

©

(@)
(b)

g . 2U
It has a magnetic field, and it stores energy, so L = 7 is non-zero.

Every field line goes through the rectangle between the conductors.

b =Ll SO . 1IW :
I 1Jy=a
_Llpwma 110 +_ Mol Illob( 2110)(|nyw_a
] ny 2n(w y T 2y a
— HoX | LW —a[]
Thus - InD T 0
R I(t) X R
For an RL circuit, 1(t)=1p,e | : —2=1-10"%=¢ L O1-—t
max L
R

-8 -9
Tt=10"° s0 Ry = —14X10 A0 I575107%

(2.50 yr)(3.16 x 107 s/ yr)

(If the ring were of purest copper, of diameter 1 cm, and cross-sectional area 1 mm?, its
resistance would be at least 107¢ Q).

Ug = 3 LIZ= 3(50.0 H)(50.0 x 10° A) 2 = [6.25 x 100

Two adjacent turns are parallel wires carrying current in the same direction. Since the loops
have such large radius, a one-meter section can be regarded as straight.

|
Then one wire creates a field of = Hoo
2mnr
This causes a force on the next wire of F=1Bsin@
2
giving F=1 “—OlsinQO":M
27r 27r
1.00 m)(50.0 x 10° A)?
Solving for the force, F=(4mx 107" N/A?) ( X ) 2000 N
(27(0.250 m)



32.78

(@)

(b)

©

(d)
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P=1(AaV)

9
:L:w:5'00x103A
AV 200x10° V

From Ampere’s law, B(zm) = Uolenciosed  OF B :%

At r=2a=0.0200 M, Iy oseq =5.00x10° A and

(4 %107 Tlin ’A)(S.OO x 10° A)

B= =0.0500 T = [50.0 mT
27(0.0200 m) 0.0500

At r=b=0.0500 M, lgcoseq = =5.00x10% A and

(4 %1077 T n ’A)(S.OO x 10° A)

B= =0.0200 T =120.0 mT
271(0.0500 m)

_ _ r=b[B(r)]2(2rrrI dr) _ pol? bdr _ el | O
i R T T 2 e

(4rrx 12077 T m/A)(5.00x10° A)(1000x10° m) (5,00 om O

_ 6 1 _
" InH2.00cmH'2'29x10 J—

The magnetic field created by the inner conductor exerts a force of repulsion on the current in
the outer sheath. The strength of this field, from part (b), is 20.0 mT. Consider a small
rectangular section of the outer cylinder of length | and width w. It carries a current of

(5.00x10 A)% 71(0.0500 m)H

(5.00 x 10° A)w

A (20.0 x1073 T) sin 90.0°
271(0.0500 m)

and experiences an outward force F=1Bsin0=

F_F_ (5.0010® A)(20.0x107 T}

The pressure on it is P=—=— = (318 Pa
P A wl 27(0.0500 m) 318 Pa|

© 2000 by Harcourt, Inc. All rights reserved.
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*32.79 (a)

(b)

©

(d)

(e)

4mx10"7 T0Om/A)(1400)(2.00 A
g = HoN! :( / )( I ): 2.93x107° T (upward)

| 120 m
B2 (2.93x107° T)2 J CLNDnO N
u=——-= = =3.4 —3 =3.42 72: 3.42 Pa
24 2(47T><10 TDm/A) m30 17 m

To produce a downward magnetic field, the surface of the super conductor

must carry a [clockwise| current. B 1

The vertical component of the field of the solenoid exerts an inward force on the
superconductor. The total horizontal force is zero. Over the top end of the solenoid, its field
diverges and has a radially outward horizontal component. This component exerts upward
force on the clockwise superconductor current. The total force on the core is . You

can think of it as a force of repulsion between the solenoid with its north end pointing up,
and the core, with its north end pointing down.

2
F=PA=(3.42 Pa)§1(1.10 x102 m) E: 130x1073 N

Note that we have not proven that energy density is pressure. In fact, it is not in some cases;
see problem 12 in Chapter 21.
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33.2
(@)
(b)
33.3
334 ()
(b)
335
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AV(t) = AV gy SIN(WE) = V2 AV sin(awt) = 2002 sin[271(100t)] = [(283 V) sin (6281)]

AV s = % =120V

(AV 1s)? (120 V)
pP= - R= =(193 Q
R 75.0 W
(120 V)?
R=22"2 =144 Q
oy

Each meter reads the rms value. AV =100V
_ 100V _
AV s = e 70.7V @®
R=240Q
AAAA

AV 707V _ WW
ms =R 400 " 1ERA Lo

Avg = AV o SiN Wt
AVg =0.250(AV nax ). so  sinwt=0.250, or wt=sin"*(0.250)

The smallest angle for which this is true is wt =0.253 rad. Thus, if t=0.0100 s,
0.253 rad

w=———=|(253rad/s
0.0100 s

The second time when Avg = 0.250(Avmax), wt = sin_1(0.250) again. For this occurrence,
wt = 1-0.253 rad =2.89 rad (to understand why this is true, recall the identity sin(m-6)=sin6
from trigonometry). Thus,

2.89 rad
t=——=10.114s
25.3 rad/s -

iR = lmax Sinwt becomes 0.600 = sin(w 0.00700)
Thus, (0.00700)w = sin~%(0.600) = 0.644
and w=91.9rad/s=2mf o)

© 2000 by Harcourt, Inc. All rights reserved.
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336 P = Iyms(AVyms) and AV, =120 V for each bulb (parallel circuit), so:

P 150 W AV 120 V
l,=l,=—1 = =|1.25A|, and R, =—-ms — =196.0Q| =R
1727 AV, e 120V 7, T125A 96.00] =R,

P, _100W AV 120 v
l;=—2—="_—=[0.833A|, and Ry=—'ms = =144 Q
ST AV, 120V 7 1, T 0833A 1440)

33.7 AV =150V and Ry =8.20 Q +10.4 Q=18.6 Q

| OV 150V
" Riow 186 Q

.806 A
Pspeaker = IrzmsRspeaker = %g(lOA Q)=(3.38W

=0.806 A =12 I ;s

80.0 mA
33.8 FOF Imax = 80.0 mA, Irms = = 56.6 mA

\2
) - Vms _ 500V
(XOmin = 7= = 50566 A -

XL 884 Q

XLZZHfLaL:W Em > |7.03H

339  (a X, :%:%:1&3 Q

Imax

X 13.3
L=2L=——>° _=0.0424 H=[42.4 mH
o = 250.0)

AV g _ 100

() X, = ;=40.00

Imax

X, _ 400
w=—"—=——""———=1942rad/s
L 42.4 x 10—3

0] 5 500
33.10 At50.0 Hz, X = 271(50_0 HZ)L = 271(50.0 HZ)D 60.0 Hz [_ 2Y-

Fpn(60.0 Hz)g  60.0

(54.0Q)=45.0Q

_ AV _ V2(AVi) _ V2(100 V)

| =[3.14 A
maCX, X, 45.0 Q

© 2000 by Harcourt, Inc. All rights reserved.
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33.11

33.12

33.13

33.14

33.15

(@)

(b)

(@)

(b)

(80.0 V)sin[(65.0 17)(0.0155) - 17/2]
(65.0 7 rad, s)(?0.0 x1073 H)

i (t) =(5.60 A)sin(1.59 rad) =

i (t) =% sin(wt - 17/2) =

w=2mf=2m(60.0/s)=377 rad/s
X, =wL =(377/5)(0.0200 V3/A)=7.54 Q

L .

Imax =2 Irms =2 (15.9 A)=22.5 A

i(6) = 1., Sin 0t = (22,5 A)sin mn(io.o) Dllg—zg = (22.5 A)sin120°=19.5 A

U =$Li2 =1 0.0200 %5(19.5 A)? =

AV
L :Nf% where @y is the flux through each turn. N ®g max =Llg, max = XL w

W X,

VZ(AVL rms) 120 V3
, DTECDm%NDm%\/J 0 >
N® = = :-_0.450T-m
B.max 27t V2 m(60.0) 0 N3 J ca

Xe=— . L _<175Q
2mfC’ 27f(22.0x1075)

1
<f [f>413Hz
27(22.0 x 1076)(175) [1>41.3 He|

1 _1 .
Xe D2 50 X(44)=$X(22): [Xc<8750Q

\2 (Avrms)

C

Imax =2 (120 V)277(60.0/5)(2.20x 1076 C/ V)=
Imax =2 (240 V)277(50.0/5)(2.20 x 10" ° F) = [235 mA

=V2(AV s )27 C

Imax :\2 Irms =
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33.16 Qmax = C(AV nax) = c[\E(AV,mS)] = |V2C(AV 1)
33.17 Imax = (AVmax )JwC = (48.0 V)(27)(90.0 s 1)(3.70 x 107® F) =
33.18 Xc L L =2.650Q

" wC  27m(60.0/5s)(L00x10°3 C/ V)

Ve (t) = AV hax Sin wt, to be zeroatt=0

0 1 0
ic :A\)/(ﬂsm(wu 0= wsingnggs‘s_l+9o.0°gz (64.0 A)sin(120°+90.0°) =[~32.0 A
C .

3319 (a) X =l =27(50.0)(400 x 10°3) = 126 Q 400 mH

1 1

== 5 =719Q
wC  27(50.0)(4.43 x107%)

Xe

Z= \;’RZ +(X_ = Xc)? =+/500% + (126 - 719)® =776 Q

AV max = Imax Z = (250 x 1073)(776) = [194 V

_ X - X O 26 -7190_ — =
(b) @=tan 0RO tan O 500 O° Thus, the [Current leads the voltage.

33.20 wlL = i - W 1 !

wC VLC  /(57.0x1076)(57.0 x107%)

=175x10% rad/s

3321 (1) X_= L = 2m(50.0 (250 x 1073 H) =
b) Xc= chc =[27t50.0 s)(2.00 %10 ) e
© Z=\R2+(X_ ~Xc)’ =
@ lmax = szm o s 1 522 1012)/3 Q-
() @=tan™t éx%xc% tan™}(-10.1) =

© 2000 by Harcourt, Inc. All rights reserved.
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3322 (1) Z=\R%+(X_-Xc)=168.0%+(16.0-101)° = [109 0
X, = wL = (100)(0.160) = 16.0 Q

1 1
Xpr=—= =101Q
°wC (100)(99.0x10°)

AV 40.0V
b) | = —max — =10.367 A

© tang=XL=Xc 160-101_ oo
R 68.0

@= —-0.896 rad = -51.3°

Iax = 0367 A| |w=100rad/s| |p=-0.896 rad =-51.3°

33.23 X, =2mfL =2n(60.0)(0.460) = 173 Q

X~ = 1 = 1
° " 2nfC " 2n(60.0)(21.0x107°

=126 Q
)

X, -Xe _173Q-126 Q
R 150 Q

@=0.304 rad =

(b) Since X_ > X¢, @is positive; so |vo|tage leads the current| .

(@) tang= =0.314

1 1

= = 5 —=133x10°Q
2mfC 27(60.0 Hz)(20.0 x 10712 F)

33.24 Xc

Z =+/(50.0 x10° Q)% + (133 x 108 Q)° ~1.33x 108 Q

_ AVyps 5000 V

- -5
lrms = Z " 133x1F Q =3.77x107 A

(AVrms) oy = lrimsRoody = (3.77 % 107° A)(50.0x10% Q)= [1.88 v



33.25

33.26

33.27

(@)

(b)

(©

(d)

(@)

(b)

1 1 -
~ wC  271(50.0)(65.0 x 107%)

X¢ 49.0 Q

X, = wL =27m(50.0)(185x107%) =58.1 Q

Z =[R2+ (X, —Xc)? = V/(40.0) +(58.1-49.0)2 =410 Q

AV 150
Imax = =212 =27 =3.66 A

AVR = Imax R = (3.66)(40) = [146 V

AV| = Imax X = (3.66)(58.1) = 2125 = [212 V

AV = Imax Xc = (3.66)(49.0) = 179.1 V = [179 V

AV, - AV = 2125-179.1=[33.4V

R =300 Q

_ = 00 _
X, = wl _2715‘_’7 s™0.200 H) =200 ©

-1
_ 1 _ 00 1 % \O _

Z=\R%+(X_ -Xc)*=319Q and q):tan—lgx;r\)xcg:

X, =2n(100 Hz)(20.5 H) =1.29x10* Q

AV ms -

Irms

200V
4.00 A

Z= =50.0Q

(X, —Xc)? =22 -R? = (50.0 Q)? - (35.0 Q)°

1
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XL =200 Q 7

XL - Xc =109 Q

Xc=909Q |

20.0°

11N
205 H
200 V ‘C =
100 Hz
35.0 Q2

AAA
YVvy

0,

X, —Xe =129%x10* Q -

= +357Q |C=123 nF or 124 nF

2m(100 Hz)C

AV 1ms = lrms XL = (4.00 A)(1. 29 x10% Q) =

Notice that this is a very large voltage!

© 2000 by Harcourt, Inc. All rights reserved.
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33.28
@)
(b)
©
33.29

X, = wL =[(10007/:5)(0.0500 H)| =50.0 Q

-1
Xe =1/ wC = [(1000/5)(50.0 x107 F)] =20.00
Z =R+ (X, - Xc)

Z =/(40.0)% +(50.0 - 20.0)? =50.0 Q

lms = (AVms)/ Z =100 V /50.0 Q
lems = [2.00 A
@=Arctan EX'- EXC B
@ = Arctan 300Q _ 36.9°
40.0 Q
P = (AV ) Irms €OS @ =100 V/(2.00 A) cos 36.9° = [160 W

Pg = 12,cR =(2.00 A)? 40.0 Q = [160 W

w= 1000 rad/s, R =400 Q,

010
AVimax = 100 V, wL =500 Q, Bw%%z 200 Q

P e T o
= IR? + L - —— =+/400% +300% =500 Q
\J Efu wcH
AV 100
| . =——Max = == =0 200 A
max Z 500

The average power dissipated in the circuit is

_(0.200 A)? _
p= OO A (400 0) =

C=5.00x%x10"°F,

I:)zlrzmsR:

YYvy

A1k
50.0 mH
OV 40.0 <
> Q 3
50.0 uF
1
L =0.500 H

020

max

2
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Goal Solution

An ac voltage of the form Av =(100 V)sin(1000 t) is applied to a series RLC circuit. If R = 400 Q,
C=5.00puF, and L =0.500 H, what is the average power delivered to the circuit?

G: Comparing Av =(100 V)sin(1000 t) with Av = AV, sin wt, we see that
AV =100V and  w=1000s?

Only the resistor takes electric energy out of the circuit, but the capacitor and inductor will impede the
current flow and therefore reduce the voltage across the resistor. Because of this impedance, the
average power dissipated by the resistor must be less than the maximum power from the source:

Prax = (8 i) _(100V) _ 12.5W
max 2R 2(400Q)

O: The actual power dissipated by the resistor can be found from P =12.(R, where |, = AV, 7/ Z.

100

Al BV =" =707V
\

In order to calculate the impedance, we first need the capacitive and inductive reactances:

Xe =L = o5 =200Q  and X, =wL=(10005)(0.500 H) =500
wC (1000 s1)(5.00x10°° F)
Then, Z =[R2 +(X_ - Xc)? = /(400 Q)% +(500 Q - 200 Q)? =500 Q
AV _T0.7V

2
I == = - =0141A  and  P-= 12,sR = (0.141 A)*(400 Q) =8.00 W

L: The power dissipated by the resistor is less than 12.5 W, so our answer appears to be reasonable. As
with other RLC circuits, the power will be maximized at the resonance frequency where X, =X so
that Z=R. Then the average power dissipated will simply be the 12.5 W we calculated first.

33.30 Z=\R2+(X_ - Xc)? or (X_-Xc)=1Z?-R?

(X, = Xc)=1(75.0 Q)2 - (45.0 Q)% =60.0 Q

10X X O_
———="=1an
g rR O ths5.0 QU

460.0 Q[

@=tan =53.1°

_ DV _ 210V

| = =2.80 A
rms Z 75.0 Q

P = (AVns)1rms €0s @ = (210 V)(2.80 A)cos(53.1°) = [353 W

© 2000 by Harcourt, Inc. All rights reserved.
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33.31

*33.32

33.33

(@)

(b)

(@)

(b)

(©

(d)

P = I, (AVs) COS @ = (9.00)(180) cos(~37.0°) = 1.29 x 10° W

P=12R so 1.29x10% =(9.00)°R and R=[16.0Q
X, - X¢ X, - X
tanp="—"+—"+ becomes tan(-37.0°) =—-——¢; S0 XL -Xc=[-12.0Q
p="1 (-37.09 = L~ X
X, = wl = 27(60.0/5)(0.0250 H) = 9.42 Q
Z =R+ (X, - Xc)? =4(20.0)% +(9.42)* ©=22.1Q
AV 120V
| = ms = —— __=|543A
msez 2210 543 4]
@=tan"(9.42/20.0) = 25.2° o) power factor = cos ¢=[0.905
. 1
We require ¢@=0. Thus, X = Xc¢: 942Q=————
quire @ LT oe 27(60.0 s H)C
and C=(281 uF
O\
Pp=Pyg 0r (AVms), (Irms), COS ¢ = %

(BVims)y = R(AVms), (1rms ), €05 @ =+(20.0 ©)(120 V)(5.43 A)(0.905) =

Consider a two-wire transmission line:

L. P 100 x 10% W =2 00x10° A
M AVins 50.0x10°V AVims

loss = (0.0100)P = 175 Ryine = 1ins(2Ry)

0.0100)P (0.0100)(100 x10° W
(0.0100)P _

Thus, Ry =\ = =0.125 Q
21 2(2.00 x 103 A)
2
But Rlzﬂ or ,A\:HziI
A 4 R

-

R

R1

4(1.70x107® Q m|(100 x 10°
Therefore d=\/H=\/ ( : )( - m) =0.132m=

Ry n(0.125 Q)



33.34

33.35

33.36

33.37
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Consider a two-wire transmission line:

Ri1
P ) P
g = — d loss = 12, R = ——
rms Avrms an power 10ss rms " line 100 Avrms1 RL
0p o P (AVms)’ R
Thus, 2R,) = — or R, =\ __Mms/_ !
Fav,. 0 (2R) =160 1™ 200p
_pd _ (AVims) _ n{2r)? _ 200pPd
R, =PY = \2¥ms) or A= = .
A 200P 4 (AVome)
and the diameter is or=| | 800pPd

\ 7"(AVrmS)2

One-half the time, the left side of the generator is positive, the

top diode conducts, and the bottom diode switches off. The R1
power supply sees resistance
AVrmsi RL

2
01 1 D . (Avrms)

and the power is ~~——
PR 2RE P R

R
The other half of the time the right side of the generator is

positive, the upper diode is an open circuit, and the lower diode

has zero resistance. The equivalent resistance is then

2 2
Reg =R+ 2L+ 15t 7R Ry poBVems) _4(AVims)
BR RE Req 7R
2
_ _ [(AVrms ms)’ /7 Rl 1AV 1ms)
The overall time average power is: .
2 14R
1 1
At resonance, =2mfL and —=C
2mfC (2mf)°L

The range of values for C is |46.5 pF to 419 pF‘

wo =2m(99.7 x10°) =6.26 x 108 rad /s = 1
VLC
c=—1t - ! = 1.82pF

wy’L  (6.26 x10%)?(1.40 x107%)

© 2000 by Harcourt, Inc. All rights reserved.
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33.38 L=20.0mH, C=1.00x10", R=20.0Q, AVmay =100V
. oo 1 ]1
a) The resonant frequency for a series —RLC circuitis f= / 3.56 kHz
@) q y 2n\Le ~
(b) At resonance I ax = AVmax _ 5.00 A
' max R
wol

(¢) From Equation 33.36, Q= =122.4

R

(d)  AV[ max = XL max = WoL Imax = [2.24 kV

33.39 The resonance frequency is w, =1/4LC. Thus, if w=_2awy,
XL=OJL=§\L@=2/L and Xczi \/LC \/
LC \c wC “2\c
Z=\R?+(X_ - Xc)* = R?+2.25(L/C) 50 lyg = 2rms = BVrms

Z  |R?+2.25(L/C)

and the energy dissipated in one period is Q = PAt:

Q:

2(Avrms)2 R meno_ (szrms)z RC (mic)- 4n(AV2rms)2 RC+LC
R?+2.25(L/C) 0w 0 R%C +2.25L 4R?C +9.00L

With the values specified for this circuit, this gives:

_ 47500 V)?(10.0 9)(100x10°® F)**(10.0x 120 H)**

4(10.0 Q)2(100 x107° F) + 9.00(10_0 x1073 H) -

33.40 The resonance frequency is w, =1/+LC. Thus, if w=2awy,

—w %\— and X :i:\E:EE
CTwc 2c " 2\c

AVI’I’\’\S = AVI’rT'IS
In2
Z  |R?+2.25(L/C)

Then Z:\/R2+(XL—XC)2:\/R2+2.25(L/C) SO lyme =

and the energy dissipated in one period is

AT{AV s ) RCALC
4R2C +9.00L

_ _ (Avrms)zR Rmo_ (Avrms)2 RC _
O P R o as(L /) Dw R +2 250 C) =
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*33.41 For the circuit of problem 22,  wy = ‘,1 =— L =251rad s
VLC \/(160 x1073 H)(99.o x 107 F)
-3
woL _ (251 rad;s)(160 107 H)
= = = 0591
Q=R 68.0 Q
o wl L 1L 1 |460x10°H
For the circuit of problem 23, =0 - == == =10.987
P Q=R “RVLC R\C 150 Q\/21.0><1O_6F

The |circuit of problem 23| has a sharper resonance.

3342 (a) AV ms=15(120V)=[9.23V
(b) AVl,rms I1, rms — AV2,rms I2,rms

(120 V)(0.350 A) = (9.23 V)1, 1ms

12 rms = % = |4.55 A| for a transformer with no energy loss

© P= from (b)

N, _ [RO00

33.43 (AVout), 1y = N—l(A i) = Dﬁgno V)=971V

971V
(Avout)rms = ( \2 ) =

_N, _ (2200)(80) _ ——
3344 (a) (AVZ’ rms) = N—l(AVL rms) N, = 10 1600 windings
1.50)(2200
(b) |1, rms(Avl, rms) = IZ,rms(AVZ,rms) |1, ms — ( ].):EO ) =
1.20)(2200
(c) 0.950 I1,rms(AV1,rms) = I2,rms(AV2,rms) Il,rms = (110(%)(950)) =[23A

© 2000 by Harcourt, Inc. All rights reserved.
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33.45 The rms voltage across the transformer primary is MW ——— -
| |
Nl § | :
N, (AV;z rmS) @AVS rms 1 g ; RL%E
N NP [Ny
so the source voltage is AV s = I3 ims Rs + N71 (AVZ,rms) : ;
2
AV AV
The secondary current is (;rms) so the primary current is % (;rms) =1y rms
L 1 L

NZ(AVZ,rms)Rs + Nl(AVZ,rms)
NiRp Ny

Then AV s =

N1 AV, rms)é_ 5(50.0 Q) 330.0 V- 5(25.0 V)OO
2

( 1RL ) s ms -

N

N, AV, 10.0x10° V
3346 (a) AVy s = WZ(Avl,rms) 2 _ rms
1

2= = = [833
N; AV s 120 V

(b) I2,rms (AVZ, rms) =0.900 Il, rms (Avl, rms)

AV 3
© Z,= 2,rms _ 10600>;jOAV -85 kO

I2,rms

6
3347 (@) R=(4.50x10"*Q/m)(6.44 x 10° m) =290 Q and Iy = P _500x10W_.50a

AV ps  5.00 x 10° V

Ploss = 12, R = (10.0 A)?(290 Q) = [29.0 kW

(o) Ploss = 2.90 x 10* _

-3
P so0x10° L2 *10

(c) Itis impossible to transmit so much power at such low voltage. Maximum power transfer
occurs when load resistance equals the line resistance of 290 Q, and is

(4.50 x 10° V)?

=17.5 kw, far below the required 5000 kW
2[2(290 Q)



33.48
@)
(b)
33.49
@)

(b)

AVout: ‘ XC
AVin - \/R? +X&

For the filter circuit,

1 1
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At f =600 Hz, Xc = = < —7=332x10° Q
2mfC 27600 Hz)(8.00x 10°° F)
4
and AA\\//OL“ =— 3.32x10° Q - =[L00
" (90.0 0) +(3.32x10* Q)
At f =600 kHz =L - 1 =33.2Q
’ ©2mfC 27(600x10° Hz)(8.00x10° F)
and BVour _ _ 332-2 2 ~=[034
AVin 1(90.0 Q)* +(33.2 Q)
For this RC high-pass filter, AVout _ R "
in ||RZ+X2 H
Day,  Er Ay, ©
When 2Vout - 0.500,
in
AVout/AVin
then —%0 %2 ~0,500 or X =0.866 !
1(0.500 Q)% +X&
(b)
If this occurs at f =300 Hz, the capacitance is
1 1 4
c= = =6.13x107% F = [613 pF
2mfXc  2m(300 Hz)(0.866 Q) Vout”Vin
1 -
With this capacitance and a frequency of 600 Hz, ©
C
1 f,Hz
Xc = =0.433 Q
© " 27(600 Hz)(6.13x 107 F) 300 600
Figures for Goal
AVoyy . R _ 0.500 Q Solution

= = [0.756
MVin  R?+X2  (0.500 Q)2 +(0.433 Q)2

© 2000 by Harcourt, Inc. All rights reserved.
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Goal Solution

The RC high-pass filter shown in Figure 33.22 has a resistance R = 0.500 Q. (a) What capacitance gives an
output signal that has one-half the amplitude of a 300-Hz input signal? (b) What is the gain (AV,,; / AV;,)
for a 600-Hz signal?

G: Itis difficult to estimate the capacitance required without actually calculating it, but we might expect a
typical value in the uF to pF range. The nature of a high-pass filter is to yield a larger gain at higher
frequencies, so if this circuit is designed to have a gain of 0.5 at 300 Hz, then it should have a higher
gain at 600 Hz. We might guess it is near 1.0 based on Figure (b) above.

O: The output voltage of this circuit is taken across the resistor, but the input sees the impedance of the
resistor and the capacitor. Therefore, the gain will be the ratio of the resistance to the impedance.

AVoy . R
BVin  R?+(ywC)’

(@ When AV / AV, =0.500
. . _ 1 _ 1 _
solving for C gives C= ‘ = “ =613 uF
oav,, f . (2m)(300 Hz)(0.500 Q)\/(2.00)? -1
\/ Vout

(b) At600 Hz, we have  w=(2 nrad)(GOO s'l)

AV gyt _ 0.500 Q 0,756
AV, | '
" (0500 Q)% + . L

\ H12007 rad /s)(613 uF)H

SO

L: The capacitance value seems reasonable, but the gain is considerably less than we expected. Based on
our calculation, we can modify the graph in Figure (b) to more transparently represent the
characteristics of this high-pass filter, now shown in Figure (c). If this were an audio filter, it would
reduce low frequency “humming” sounds while allowing high pitch sounds to pass through. A low
pass filter would be needed to reduce high frequency “static” noise.

33.50 AV = 1y(r+RY +X2, and AV, =1\ R+ X ity
Thus, when AV, =24V, (r+R)*+ X = 4(R2 + XE) L =250 mH é T
vy AV:
or (250 Q)Z + XE = 4(500 Q)2 + 4XE R =5.00 Q J

which gives X, =27f(0.250 H) = @ Q and f=[842Hz

\




*33.51

@

(b)

©

(d)

(®)

)
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C
AA\\//out — R - &éﬂ, 1}
in \/RZ +(X_ = Xc)
Vin R Vout
2
At 200 Hz: 1. (8.00 Q) L
4 0
2 1
(8.00 Q) + #007L -———3
0 400mC
0 if
At 4000 Hz: (8.00 Q)2 + 8000 77L ‘;D =4(8.00 Q)2
0 8000mmC
At the low frequency, X, — X <0. This reduces to 4007mTL - ! . -13.9Q 1
400711C
For the high frequency half-voltage point, 80007L 1 . +13.9Q 2]
800077C

Solving Equations (1) and (2) simultaneously gives C=|54.6 uF and L=[580uH

AVout - AV U

When X =X¢, =11.00
AV, AV O
. 1 1
X =X requires  fg = = =894 Hz
2m/LC 27'[\/(5.80 x1074 H)(5.46 10" F)
At 200 Hz, AVou _R_1 and  X¢>X,
Vin Z 2

R AVour
Lo o o
XL - X
L C Z AVin

so the phasor diagram is as shown:

_ . —RO____ 100 S
9= ~cos™ 3 n=~cos™ g s0  [AV, leads AV;, by 60.0
At fy, X =Xc SO | AV, and AV, have a phase difference of 0°
At4000 Hz, BYour =R ang x -xc>0
AV,, Z 2

AVin
V4
X0~ X or
Thus, @= cos'l%gz 60.0° ; CTA 4 AVou
R

or  [AVyy lags AV;, by 60.0°

(@Voums) _(38Vinms) _ 3(38Vinma) 2
AL 200 Hz and at 4 kHz, p =iz outrms) _\28Vinmms) _2{28Vinmex) _ (10.0V) _ meey
! R R R 8(8.00 Q)

2

At fO p= (A\/out,rms)2 — (Avin,rms) — %(Avin,max)2 — (10-0 V)2 -

R R R 2(8.00 Q)

Wl _2mfyl _ 2m(894 HZ)(5.80 x107* H)
R R 8.00 Q

- [0a0a]

We take: Q=

© 2000 by Harcourt, Inc. All rights reserved.
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33.52

33.53

For a high-pass filter,

(AVout) _ R

(Avin)l ‘J“ , 01 EF
R " BucH

Now (AVi,), =(&Vou),

AV ot R
AV, J“‘Rz .\ 01 D2
\ ch
and (Avout)g _ R
(avia), | 01 cf
R? +
\/ ch
“ (AVow), _  R? _ 1
(Avin)l , 01 of 01 f
R“ + 1+
cH HorcH

Rewrite the circuit in terms of impedance as shown in Fig. (b).

Find: AV =

AVab [1]

R AVin Zc ZRr AVout
+ ZC

Zcll (Zg +2Z¢)

From Figure (c), AV, = . Figure (a)
BT Ze+Z: 1 (zg+zc) " 7
a ‘—| I—I_O
_ ZR[ZC Il (Zr + Zc)]
So Eq. [1] becomes AV, = AV, AVa  Zr| | AVout
(Zr+ ZC)[ZR *+Zcl(Zg + Zc)] b
, 01 1 D—l Figure (b)
or AVout = Rg Zr +ZCE —Z|
Avin (Z +7 )Elz |:|1 Dlg R a
R CHR "Bt ZR+ZCH g AVin @ ZCD
Zell S B AV

A\/Out — ZRZC — ZR !
AV Zo(Zo +Z5)+Zn(Zr +22:)  37. +7- +(2.)2 /7

in C( C R) R( R C) R C ( R) / C Figure(c)
Now, Zg =R and Z. =—— where j =+/-1

R T J =

AA\\//OUt = 01 El where we used ,}= .

N 3R- g+ R?wCj

C

AVoyt _ R R - 100 x10° = [0.317
AV,

3R—Dl -R%wC
Hoc

2 2
+B«Tc RiwCh

f \;““(3.00 x10°)" + (1592 - 628)’
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33.54 The equation for Av(t) during the first period (using 1%

y=mx+h) is:

t
2(Avmax)t _ Avmax 'Vmax! l/ V L

T

Av(t) =

(Avmax)2

[(Av)ZLNe = % IOT [Av(t)]zdt = IOT é%t - 1gdt

[(AV)Z] = (AvmaX)2 DIE[Zt/T _1] i ‘tzT - (Avrgax)2 [(+1)3 —(—1)3] = A(AvmaX)z

ave T 20 3 3
t=0
| 2
“‘ 2 (AVmaX) AV max
AV = A = = ‘
rms \/[( V) ]ave \/ 3 V3
33.55 Wy = /1 = 1 =2000s7t y
VLC  1/(0.0500 H)(5.00 x 1076 F)
so the operating frequency of the circuitis w= % =1000s7!

w, rad/s

800 1900 2000 2100 2200

(Q=12.5)

—_

(AV s ) Re?

7
R2w? + Lz(w2 - wg)

Using Equation 33.35, P=

Figure for Goal
Solution

2 2
o (400)*(8.00)(1000) =

) (8.00)?(1000)2 + (0.0500)2[(1. 00 - 4.00) x 106]

Goal Solution

A series RLC circuit consists of an 8.00-Q resistor, a 5.00-u F capacitor, and a 50.0-mH inductor. A variable
frequency source applies an emf of 400 V (rms) across the combination. Determine the power delivered
to the circuit when the frequency is equal to one half the resonance frequency.

G:

Maximum power is delivered at the resonance frequency, and the power delivered at other
frequencies depends on the quality factor, Q. For the relatively small resistance in this circuit, we
could expect a high Q=wyL/R. So at half the resonant frequency, the power should be a small

fraction of the maximum power, P, may = AVZ /R =(400 V)* /8 Q =20 kW.

We must first calculate the resonance frequency in order to find half this frequency. Then the power
delivered by the source must equal the power taken out by the resistor. This power can be found

from P,, =12..R where Iy, = AV, e 7 Z.

© 2000 by Harcourt, Inc. All rights reserved.
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1

1
= C =318 Hz
2m/LC 271, (0.0500 H)(5.00 x 10 F)

A: The resonance frequency is fy =

The operating frequency is f =f;/2 =159 Hz. We can calculate the impedance at this frequency:

1 1

X, =2mfL = 2m(159 HZ)(0.0500 H)=50.0 Q  and X = =
- ( ) €T 2mfC 2m159 Hz)(5.00><10‘6 F

=200 Q
)

Z = R%+ (X~ Xc)? =8.002 +(50.0 - 200)> Q =150 Q

_ AV, _ 400 V

So, lyms = =2.66 A

z 150 Q

The power delivered by the source is the power dissipated by the resistor:

Pa = Iims?R =(2.66 A)?(8.00 Q) =56.7 W

L: This power is only about 0.3% of the 20 kW peak power delivered at the resonance frequency. The
significant reduction in power for frequencies away from resonance is a consequence of the relatively
high Q-factor of about 12.5 for this circuit. A high Q is beneficial if, for example, you want to listen
to your favorite radio station that broadcasts at 101.5 MHz, and you do not want to receive the signal
from another local station that broadcasts at 101.9 MHz.

. . _Av 120V
33.56 The resistance of the circuitis R = I 0630A - 19.0Q

The impedance of the circuitis Z = AVims _ 240V _ 42.1Q
lims  0.570 A

72 = R2 4+ 0?2

1 0 2_ 1 | 2 2
L=—+vZ°-R° =—+/(42.1)° —(19.0)° =199.6 mH
Llzrt = Lo -0

3357 (a) When wlL is very large, the bottom branch carries negligible current. Also, 1/wC will be
negligible compared to 200 Q and 45.0 V/200 Q = [225 mA| flows in the power supply and the
top branch.

(b) Now 1/wC - o and wL - 0 so the generator and bottom branch carry ({450 mA



33.58

(@)

(b)

©

(d)

©

®

(@)

(h)

With both switches closed,

the current

generator and resistor.

i(t) = 2Vmax oo oot
i(t) = R
P= EM
2 R
i) = SVmax cos[wt + Arctan(wL / R)|
VR? + L2
For
. 1 1
We require wyl = , SO C=—
@y C wo” L

At this resonance frequency,

2=

0

0 O

0= @=Arctan —2—]
0

0
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goes only through ’—OS/B—‘
1
LIk

L

=R C=+ 5,
1
&

0(t) = AVpay cOs wt

O

ol %

g R
U

U=1c(ave)’ =1ci2xc?
2
max — 2~ 'max/*C 2 R2 Ozcz 2R2
2
AV
- 2 _
Umax_%l-lmax_ %L( F\r)nzax)
Now w=2wy = —
VLC
O 10 O /L 1/L0
wL—-—— = —-= = ‘
0 " wc O V¢ 2\cO 03 /LO
So ¢ = Arctan ———— = Arctan —————=[F | Arctan g\g—g
O R O O R O RIC
O O O O
Now ouL-—i w= 51 =&
y2LC V2

© 2000 by Harcourt, Inc. All rights reserved.
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3359 (a) Asshown in part (b), |circuit (a) is a high-pass filter| ‘
and |circuit (b) is a low-pass filter| . r tr" “1:
I L
AVin E i AVout
AV R? + X2 s“JRE+(wL)2 =
(b) For circuit (), et = 2\‘ v 2\‘ - ]
in Rf + (X - X /R +(wL -1/wC
\/ L ( L C) VL ( / ) Circuit (a)

As w- 0, M=a)RLC=O

in
As @ - o, %:1 (high-pass filter)

in

For circuit (b) AVour Xc = Yo

BVin  RE+(X -Xc)?  |\R+(wL-YwC)? Cireuit (b)
As w - 0, % =1

in
As @ - o, AVour z% =0 (low-pass filter)

AV, w’LC

AV 100 V
860 (@) lgms=—gm =g =[125A

(b) The total current will the applied voltage as seen in the I
phasor diagram at the right.

N\ 100 V

1L rms == =133A
L

27(60.057%)(0.200 H)

Ol ms O .33 A0
Thus, the phase angle is: =tan g =tan s o= -46.7°
P 9 ¢ DIR,rmsE (h.25 A

*33.61 Suppose each of the 20 000 people uses an average power of 500 W. (This means 12 kWh per
day, or $36 per 30 days at 10¢ per kWh). Suppose the transmission line is at 20 kV. Then

P _(20000)(500 W)

lims = ~10% A
M AV e 20 000 V

If the transmission line had been at 200 kV, the current would be only ~10% A|.
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33.62 L=2.00H, C=10.0x10"®F, R =10.0Q, Av(t) = (100 sin wt)

(@ The resonant frequency wy produces the maximum current and thus the maximum power
dissipation in the resistor.

1 1

\(2.00)(10.0 x 107°)

(AVinax)” _ (100)?

by P= =[500 W
®) 2R 2(10.0)
AV AV AV
©) lyms = mes =— rms 5 and (Frms) e :$
R+l -1
\ Efu wCE
2 2
12.sR =1(|2 ) or (BV i) - L (AVims) R
rms 2 rms | ax 22 2 Rz
0 of
This occurs where Z% = 2R?: R2 + EfoL _ 1 o =oR2
wCE
w*L’C? - 2Lw’C -R%2w?C% +1=0 or L°C?w* - (2LC +R?C?)w? +1=0

(2.00)2(10.0 x 10'6)2]w4 - [2(2.00)(10.0 x 1076 +(10.0)2(10.0 x 10'6)2]w2 +1=0

Solving this quadratic equation, we find that w? =51130, 48894

w; =+/48894 = (221rad/s and w, =51130 = (226 rad/s
33.63 R=200Q, L=663mH, C=26.5uF, w=377 s AV . =50.0V

wL =250 Q, 50%5:1009’ Z=\/R2+(XL—XC)2=ZSOQ

AV 50.0V
a) g = —& = =(0.200 A
( ) max Z 250 Q -

(p:tan'ng'-%Rxcg: (AV leads 1)

(0) AV max = Imax R = [40.0 V] at|@=0°

|
c) AV =_MaX = 150.0 V| at |@=-90.0°| (I leads AV
( ) C,max wC ® ( )

(d)  AV[ max = Imax@L = |50.0 V| at [@=+90.0°| (AV leads I)

© 2000 by Harcourt, Inc. All rights reserved.
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*33.64 P=17sR= E‘AVZ"“SEZR, so 250 W = M(40 0Q) ZzZ= \/RZ +(wL - Yac)?
2 2
. (120)*(40.0) 576 000 f

and 250=

1
27f (65.0x10‘6)H

O

, % 16002 + (1.1624f 2 2448.5)2
(40.0)" + 277 (0.185) -

_ 2304 f2
1600f 2 +1.3511f % —5692.3f 2 +5 995 300

) 1.3511F* -6396.3f2 +5995300 = 0

(o 63963+ \/(6396.3)2 - 4(1.3511)(5 995 300)
- 2(1.3511)

= 3446.5 or 1287.4

f=|58.7Hz or 35.9 Hz|

33.65 (a) From Equation 33.39, Ny _ AV,
2 AV,
Let output impedance ~ Z; = % and the input impedance Z, = AV,
1 2
so that Ny o4l But from Eq. 33.40, LAV, Ny
2 4y l, AV; N;
- . . N, _ [z
So, combining with the previous result we have _\?
2 2
0 Neo 2o B0 [
N, Vz, V800
33.66 = &ms .y = BVms .2 AVims [
R “ (@)™ AV ER €L =C
01 O, 1 f
(@) Irms:\‘/llg"'(IC_IL)2 = AV rmS\DRZD Efuc_aTH
Ic L, AV
N\ /
01 1 1
b) tang= C I = AV
B tang= B " v 70
Iy
01 10

tang=R -—
Xe X




Chapter 33 Solutions 293

) [
3367 (@ Iyms= rmS\ R2 + %“)C _UE AV %ER I ==C
1
AVyms - (AVyms) . when wC =T
Iey| 7 AV
f=_ 1L >
“2m/LC
f ! 919 H hh
= = Z
271/200x 1073 H)(0.150 x 1076 F)
0 1= LVims 120V 120V _ =5
R 800
AV 120 V
|| ==orms = =[160A
LTl T (374 575(0.200 H) 160 A
lc = AV, (wC) = (120 V)(374 s 1)(0.150 x107® F) = [6.73 mA
©  Trms =413 +(Ic = 1,)2 = (1.50)2 +(0.00673 - 1.60)% = [2.19 A
Oc-1,0 . _100.00673-1.600]_
d =tan~ L tan? —46.7°
@ =g e e
The [current is lagging the voltage| .
3368 (a) tang@= av, _I(wL) -k
' AV, IR R i
( ) AVin R EE AVout
-1
oL (200s7)(0.500 H)
Thus, R= = =[1730
tan ¢ tan(30.0°)
AV AV
b) ——out=—"R —¢os
( ) AVin AVm (p AVL: |X|_

AV = BV, )cos ¢ = (10.0 V) cos 30.0°=

© 2000 by Harcourt, Inc. All rights reserved.
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3369 (a)

33.70

XL =Xc =1884 Q when f =2000 Hz
L= o 18049 g6 and S S : =42.2 nF
2mf 40007t rad/s (2mf)Xc (40007 rad/s)(1884 Q)
1 [ 2 2
X, =2mf(0.150 H) X, = Z =+/(40.0 Q)" +(X; = X
- ( ) Xe (27t)(4.22x107° F) il JrxXe)
(b) Impedence, Q
f (Hz) XL Q)  Xc (@ Z(Q 12 k -
300 283 12600 12300 s
600 565 6280 5720 8k
800 754 4710 3960
1000 942 3770 2830 Z\ Y
1500 1410 2510 1100 ik N / i
2000 1880 1880 40 \Z\ .
3000 2830 1260 1570 X ™~ ¥
4000 3770 942 2830 I <
6000 5650 628 5020 v s 9
10000 9420 377 9040 Inf
W= =1.00x10° rad/s L (9
o7 JLc T w/ wy wL (Q) | wC Z(Q) | P=I?R (W)
0.9990 999.0 1001.0 2.24 0.19984
For each angular 'ﬁ"equencyl we 0.9991 999.1 1000.9 2.06 0.23569
find 0.9993 999.3 1000.7 1.72 0.33768
0.9995 999.5 1000.5 1.41 0.49987
0.9997 999.7 1000.3 1.17 0.73524
7= /Rz +(wL- 1/wC)2 0.9999 999.9 1000.1 1.02 0.96153
\ 1.0000 1000 1000.0 1.00 1.00000
1.0001 1000.1 999.9 1.02 0.96154
then 1=(100V)/Z 1.0003 1000.3 999.7 117 0.73535
1.0005 1000.5 999.5 1.41 0.50012
o 1.0007 1000.7 999.3 1.72 0.33799
and P =1%(100 Q) 1.0009 1000.9 999.1 2.06 0.23601
1.0010 1001 999.0 2.24 0.20016
The full width at half maximum is:
1.00000 -
Af = D _ (1.0005 - 0.9995)wy 0.80000 -
2m 2m 0.60000 1
3571 IR 0.40000
ar=100x107S 7 159 1y, (W) BEE0 -
2m 0.20000 -
while 0.00000 : : : ;
R 100 O . 099 0998 1 1.002  1.004
= 3 =159 Hz w/wg
2n 27{1.00x107 H|
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33.71 BVout R —=— R a -
AVin R?+(1wC)? | R?+ (127 C) I °
AVin R AVout
(a) BVout =1 \hen L =Ry3 o °
AV, 2 wC
w 1
Hence, f=—=——"——=11.84 kHz
2m  2mRCY/3
(b) Log Gain versus Log Frequency
0 -
-1 A
LogAV oy/AV i -2 T
- 3 -
-4 T T T T T 1
0 1 2 3 4 5 6
Log f

© 2000 by Harcourt, Inc. All rights reserved.



34.1

34.2

34.3

344

345

34.6

(@)

(b)

(©

Chapter 34 Solutions

Since the light from this star travels at 3.00 x 108 m/s, the last bit of light will hit the Earth in
6.44 x10'® m
3.00x108 m/s

1999 + 680 = [2.68 x 10° A.D.

=2.15 x 101% s = 680 years. Therefore, it will disappear from the sky in the year

v=— Lt =%c =0.750c = |2.25 x 108 m/s
v1.78

+KkHoeg

E _ 220 8. _ 7

B =C or T—S.OOXlO, o] B=733x10"T=1|733nT
Emax _ . . . .

B v is the generalized version of Equation 34.13.

E 7.60x10°V/m ONOnTCOnO_ 1
By = —TEX = =380 %101 T=[380pT
M v (2/3)(3.00x108 m/s)Ovic M N O

fA=c or £(50.0 m) = 3.00 x 10° m/s so | £=6.00x 10° Hz = 6.00 MH
E 22.0 g
7 =¢C or 57— =3.00x10 S0 Bmax = [(73.3 nT)(-k)
B Bmax

2m _ 2m -1 6 o1 7
k:T =550 =0.126 m and w=2mrf = 2m(6.00 x 10° s7) = 3.77 x 10
rad/s

B = Binax Cos(kx — @t) =(73.3 nT) c0s(0.126x — 3.7 x 10 t)(-K)|

w=2mf=6.00rx 10° st = 1.88 x 1010 51

E 300 V/m

2m _w _6.00mx 1091 20,072 62.8 L s _E_
o M7 c T 3.00 x 108 m/s

k==

g =1.00 uT
A C  3.00x108m/s H

E =500 Y os(62.8x - 1.88 x 1010t B = (1.00 uT) cos(62.8x — 1.88 x 1020t
mO

© 2000 by Harcourt, Inc. All rights reserved.
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E __ 100V/m
C

34.7 Q) B=— =————— =333x107T=[0.333 uT
@ 3.00 x 108 m/s

2m 2mn

®) A=K =Toox107 mt - 12028 Hm
¢ 3.00x10%m/s

© f=7 =———=— =477 x10%Hz
A 6.28x 107" m

34.8 E = Emax c0os(kx — ct)
oE . .
d_x = —Emax sin(kx — awt)(k) E = —Emax sin(kx — wt)(-w)
9°E ) 9°E )
dx_z = —Emax cos(kx — wt)(k ©) F = —Emax €0s(kx — wt)(-w)
_ 0E _ 9°%E
We must show: pvi Ho€g Y
That is, —(kZ)EmaX cos(kx — wt) = —geo(~®)? Emax c0s(kx — wt)
. k2 010 1
But this is true, because — = == = Ug€
o HaH Tz H®

The proof for the wave of magnetic field is precisely similar.

*34.9 In the fundamental mode, there is a single loop in the standing wave between the plates.
Therefore, the distance between the plates is equal to half a wavelength.

A=2L=2(2.00 m) = 4.00 m

¢ _3.00x10°m/s

= oY s 7 _
Thus, f—)\ = 200m =750x10" Hz=|75.0 MHz

*34.10 datoa =6 CM + 5% :%

A=12cm = 5%

© 2000 by Harcourt, Inc. All rights reserved.
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V=Af=(0.02m + 5%)2.45x10° 57! =

2.9x10% m/s + 5%

34.11 S—I—U _Je
' SIFAt TV TUe
Energy I

1000 W/ m?

__Energy 1 _ 1000 W/m® .
Unit Volume ~Y7¢ T300x108 m/s 3.33uJ/m

= 4.00 x 10% W )
34.12 Sav=—— = > =7.68pW/m
4mr?  47(4.00 x 1609 m)

Emax =+ 2HoCSay =0.0761V/m

AVinax = Emax + L = (76.1 mV/m)(0.650 m) = [49.5 mV (amplitude)|

or 35.0 mV (rms)

34.13 r =(5.00 mi)(1609 m/mi)=8.04 x10% m

5= P 250 x 10° W

= = =1307 pW/m?
4mr? 47(8.04 x 10° m)?
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Goal Solution

What is the average magnitude of the Poynting vector 5.00 miles from a radio transmitter broadcasting
isotropically with an average power of 250 kW?

G: As the distance from the source is increased, the power per unit area will decrease, so at a distance of
5 miles from the source, the power per unit area will be a small fraction of the Poynting vector near
the source.

O: The Poynting vector is the power per unit area, where A is the surface area of a sphere with a 5-mile

radius.
A: The Poynting vector is Sy = L7
' ynting YA dpr?
In meters, r =(5.00 mi)(1609 m/ mi) = 8045 m
3
and the magnitude is S = M =3.07x10™ W/ m?
(4m)(8045)

L: The magnitude of the Poynting vector ten meters from the source is 199 W/m? on the order of a
million times larger than it is 5 miles away! It is surprising to realize how little power is actually
received by a radio (at the 5-mile distance, the signal would only be about 30 nW, assuming a
receiving area of about 1 cm?).

100 W

_ _ 2
= oo m? - 196 W/m

34.14

' -8 3 3
u=zc =2.65x10"° J/m°>=26.5n)/m
u=|[13.3 ni/m?
u=|[13.3 ni/m?

© 1=[7.96 w/m?]

(@ ue=

N| =

N

(b) ug=

34.15 Power output = (power input)(efficiency)

h . powerout _1.00x10°W
Thus, Power input = off = 0300

3.33x10° W
and A== 3 > =(3.33 x 10° m?
| 1.00x10° W/m

=3.33x10°W

© 2000 by Harcourt, Inc. All rights reserved.
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Brznaxc - P
2py A’

N P TR ) e W e
Bmax = \/WE{] c 0 “‘ =516 x107 T

| 411(5.00 x 103)2(3.00 x 108)

*34.16 I =

[

Since the magnetic field of the Earth is approximately 5 x 107> T, the Earth's field is some
100,000 times stronger.

3417 (@) P=1?R=150 W; A =2mrL = 271(0.900 x 103 m)(0.0800 m) = 4.52 x 10™* m?

P AP .
S= — =|332 kW/m oints radially inward
A =332 kw/m?| (p y inward)
| Ho(1.00)
b) B=Ws—= = —————— =222 uT
®) Ho oy 271(0.900 x 10—3)
AV IR 150 V
E=ax ©T ~oosoom - [L88KV/m

EB 2
Note: S = H_o =332 kW/m
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3418 (a) E-B=(80.0i +32.0j — 64.0k)(N/C) - (0.200i + 0.0800]j + 0.290K)uT

E - B=(16.0 + 2.56 — 18.56)N?-s/C% . m = @

©) s- 1 £ xBe (80.0i + 32.0j — 64.0K)(N/C) x (0.200i + 0.0800j + 0.290k)puT
" Mo - 4mx 107" T - m/A

. (6.40k — 23.2j — 6.40k + 9.28i — 12.8j + 5.12i)10"® W/m?
N 4% 1077

S= |(1l.5i - 28.6j) W/m2| =30.9 W/m? at —68.2° from the +x axis

34.19 We call the current I, and the intensity |. The power radiated at this frequency is

0.0100(AVms)?
—é m” 31w

P =(0.0100)(AVims)lrms =

If it is isotropic, the intensity one meter away is

P 131W c

= - == = 2: = — 2
1= & 000 )2 0104 W/m? = Say =57~ B

2ot 24107 Trin/A)0.104 W/ m?)
Brmax =\/ |

¢ | 3.00x108 m/s :

- useful power output 0700 W O
*34.20 (a) efficiency = x100% = x 100% = | 50.0%
@) Y= T otal power input °~ Ca00 WO ’ n

P_ 700 W
A~ (0.0683 m)(0.0381 m)

(b) S, = =2.69x10° W/m?

S,y = [269 kW/m2 toward the oven chamber

E2
c) S, =-—
© S

_ /.0 7 TOn SE% 5 WO_ sV _
Emax—\/2D47T><1O 0 73.00%10 S 269%20° o o=142x10* = [142 kv/m

© 2000 by Harcourt, Inc. All rights reserved.
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Emax _ 7.00 x 10°N/C

= = -2.33 mT
c 3.00 x 108 m/s -
2 5\2
E 7.00 x 10
b) 1=z = ( — ) = =650 MW/m?
HoC 2(471rx 1077)(3.00 x 10°)

_P . o_a_ 8 o T 3,12 _
(© 1= P =1A=(650>x10° W/m?) 7 (100 x10~° m) = [510 W]

3421 (@) Bmax=

2 : i
34.22 Power = SA = m(471r2); solving forr, r= | EHOC - | (100 Wjpge > =[5.16 m
24C E2_2m  \2m(15.0 V/m)

-3
3423 (a) 1= GOOOOW W /m?
71(0.800 x 10~° m)
| 4.97x10% 0/ m? 3 3
b Ua, = — = =1(16.6 pJ/m
®) Uav c  3.00x10®m/s

3424 (a) E=cB=(3.00x10° m/s)(1.80 x10° T) = [540 V/m
B2 _(180x107%)2 3
b =2 == ) o os8u/
®) sy 47T%x 10”7

Ho

(©) S, =CUy, =(3.00x10%)(2.58 x 107%) =

(d) This is |77.3% of the flux in Example 34.5| . It may be cloudy, or the Sun may be setting.

S 25.0
34.25 For complete absorption, P= — = ——= =(83.3 nPa
p p c = Tooxigp "~ [633nPa]

%3426 (a) P =(Sy)(A)=(6.00W/m?)(40.0x10™ m?)=2.40x107 )/

In one second, the total energy U impinging on the mirror is 2.40 x 1072 J. The momentum p
transferred each second for total reflection is

2U  2(2.40 x 1072 ) 10 Kg-m
— === =|160x1070 ——
c 3.00 x 108 m/s s

dp  1.60x107°kg - m/s 0
) F=gr = e =1.60x 10 N

(each second)
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(2)(1340 W/ m?)

e 5 =8.93x107° N/m?
3.00x10° m/s

34.27 (a) The radiation pressure is

Multiplying by the total area, A =6.00 x 10° m? gives: F =

F 5.36 N

L _F _ 53N _ 2 >
(b) The acceleration is: a= o = 5000 kg - |8.93><10 m/s |
. . 1
(c) It will take a time t where: d= 3 at?
7| 2(3'84x108 m) 9.27 x10° s = [10.7 days]
or t=—=1 — =90.27 x s = [10.7 days
Va |(893x107 m/s?)
. . _2S,,
34.28 The pressure P upon the mirror is p=—%
c
where A is the cross-sectional area of the beam and Sav :2
The force on the mirror is then F=PA= %@;QA :ZTP

-3
Therefore, F :2(1007xl{(3)) =16.67 x101° N
(3x10°%)

P _ Efnax

34.29 l=—
e 2UgC

® En = "o4) - ]

Tr
15 x 1072 J/s
b) ————————— (1.00m) ={50.0 pJ
(b) 3.00><108m/s( )
_E_ﬂ_|167><10_19k /|
© P2 F00x10p Lk SRR
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3430 (a)

(b)

©

(d)

3431 (a)

(b)

34.32

If Pg is the total power radiated by the Sun, and rg andry, are the radii of the orbits of the
planets Earth and Mars, then the intensities of the solar radiation at these planets are:

_ Ps
4k

and Im =P752
A1y

Org O [1.496 x 10 mCF
Thus, Im =l 0 =(1340 W/m? =577 W/m?
M EHMH ( / )EZ.Z8><10“mE
Mars intercepts the power falling on its circular face:

Py = Iw(mR% ) = (577 W/m?)n(3.37 x10° m)2 =

. |
If Mars behaves as a perfect absorber, it feels pressure P = Sm - Im
c c

16
and force F:PA:I—M(HR,%A):P—:M: 6.87 x 10’ N
c c 3.00x10° m/s

The attractive gravitational force exerted on Mars by the Sun is

Ie

oMMy, _ (6:67 %10 Nin?/kg?)(1.98Lx 10 kg)(6.42 x 107 kg)

g 2

" v (2.28 x 101 m)2

=164x10% N

which is [~10% times stronger | than the repulsive force of (c).

The total energy absorbed by the surface is

u=(41)at= %E]so %%o.soomoo m?)(60.05) =

The total energy incident on the surface in this time is 2U =22.5 kJ, with U =11.3 kJ being
absorbed and U =11.3 kJ being reflected. The total momentum transferred to the surface is

p= (momentum from absorption ) + (momentum from reflection)

3(11.3x10%
DiDﬂ@D—&—g— 113x107* kg /s

P=0c0"0c 07 ¢ " 3.00x10° m/s

2 =7\ 12 8
5, = Hodmac or 570 (41T 107) 37, (3.00 x 10°)

o) Jmax = 3.48 A/m?
8 8 max
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(tpd2 el
3433 (a) P=S,A= HMOJg]aXCETA

(477 1077 (10.0)2(3.00 x 108) 0
P= 1.20 x 0.400) = [2.26 kW
. 5 )

2 -7 2 8
b) S, = HOJg]aXC _ (4mx10 (10.;)) (3.00 x10°) _
2
*34.34 p=Y) o p 04 V)?

W, eceiving

ntenna

AV =(-)E, Dy =E, [ cos @
AV Ocos® so P Ocos’6

(@) 6=15.0° P =Py, c0s2(15.0°) = 0.933P ,,,=[93.3%

(b) 6=45.0° P =P, c0os*(45.0°) = 0.500P 1., =[50.0%]

(© 6=90.0° P =Pp,cos’(90.0°9) = [0]

34.35 (a) Constructive interference occurs when d cos 8 = nA for
some integer n.

cosQ:nizn%/\—sz n=0, £1, 2, ...
d /2

0 |str0ng signal @ 6= cos™* 0 = 90°, 270°

(b) Destructive interference occurs when

U= pliasa J180° phiase

en+10; .

dcos@ = . [f\ : cos 6=2n+1 B waves add || waves cancel

O |weak signal @ 6= cos™ (+1) = 0°, 180°

© 2000 by Harcourt, Inc. All rights reserved.
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Goal Solution
Two radio-transmitting antennas are separated by half the broadcast wavelength and are driven in phase
with each other. In which directions are (a) the strongest and (b) the weakest signals radiated?

G: The strength of the radiated signal will be a function of the location around the two antennas and
will depend on the interference of the waves.

O: A diagram helps to visualize this situation. The two antennas are driven in phase, which means
that they both create maximum electric field strength at the same time, as shown in the diagram. The
radio EM waves travel radially outwards from the antennas, and the received signal will be the vector
sum of the two waves.

A: (a) Along the perpendicular bisector of the line joining the antennas, the distance is the same to
both transmitting antennas. The transmitters oscillate in phase, so along this line the two signals will
be received in phase, constructively interfering to produce a maximum signal strength that is twice
the amplitude of one transmitter.

(b) Along the extended line joining the sources, the wave from the more distant antenna must
travel one-half wavelength farther, so the waves are received 180° out of phase. They interfere
destructively to produce the weakest signal with zero amplitude.

L: Radio stations may use an antenna array to direct the radiated signal toward a highly-populated
region and reduce the signal strength delivered to a sparsely-populated area.

_c_ A
34.36 A==8%m  so  h=7=[134m
A=Y -188m SO h:i:46.9m
f 4
34.37 For the proton: >F=ma O qvBsin90.0°= mvz/R

The period and frequency of the proton’s circular motion are therefore:

_2mR _2mm _ 2n(1.67 x 1072 kg)

— =187x107" s f =5.34x10° Hz.
v g8 (160x107 C(0.350 T)

T

. : . . ¢ _ 3.00x10® m/s
The charge will radiate at this same frequency, with A=—=—"—"—-'-=156.2m
g quency f  5.34x10% Hz

2

34.38 For the proton, ZF = ma yields qvB sin 90.0° = —ml;/
The period of the proton’s circular motion is therefore: T :LHR = Zéer
v
The frequency of the proton's motion is f=1/T
2mmce

The charge will radiate electromagnetic waves at this frequency, with A = % =cT =

gB
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From the electromagnetic spectrum chart and accompanying text discussion, the following

identifications are made:

Frequency Wavelength, Classification
f A=c/f
2Hz=2x10° Hz 150 Mm Radio
2 kHz =2x10°% Hz 150 km Radio
2 MHz =2 x10° Hz 150 m Radio
2 GHz =2x10° Hz 15 cm Microwave
2 THz =2 x10* Hz 150 um Infrared
2 PHz=2x10" Hz 150 nm Ultraviolet
2 EHz =2x10*® Hz 150 pm x-ray
2 ZHz =2x10% Hz 150 fm Gamma ray
2 YHz=2x10* Hz 150 am Gamma Ray
Wavelength, Frequency Classification
A f=c/A
2km=2x10°m 1.5x10° Hz Radio
2m=2x10"m 15x108 Hz Radio
2mm=2x10"m 15x 10 Hz Microwave
2um=2x10"°m 15x10% Hz Infrared
2nm=2x10"°m 15x10Y Hz Ultraviolet/x-ray
2pm=2x10""?m 1.5x%x10%° Hz x-ray/Gamma ray
2fm=2x10"m 1.5%10% Hz Gamma ray
2am=2x10"% m 15x10% Hz Gamma ray

¢ 3x108m/s
*34.40 (a) f= X T TiTm ~ 108 Hz| [radio wave

(b) 1000 pages, 500 sheets, is about 3 cm thick so one sheet is about 6 x 107°

_3x10°m/s
= ox105m = 10" Hz| [infrared

m thick

_ ¢ 3.00x108m/s

*34.41 f= — — = (5.45 x 10'* Hz
550%x 107" m
3442 (@) A=t = 300x10°m/s 261 m 50 UL |0.690 wavelengths|
' - f T 1150x10%/s 261m — L= ]
by A= ¢ _ 200x10°m/s =3.06 m so 180m _ 58.9 wavelengths|
T Togix105/s 306m ~ L% g

© 2000 by Harcourt, Inc. All rights reserved.
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3443 (a) fA=c gives (5.00 x 10'° Hz)A = 3.00 x 108 m/s: |A =6.00 x 1072 m = 6.00 pm
(b)) fi=c gives (4.00 x 10° Hz)A = 3.00 x 10® m/s: |/\ =0.075m =7.50 cm
*34.44 Time to reach object = %(total time of flight) = %(4.00 x107%s) =2.00x107*s

Thus, d = vt = (3.00 x 108 m/s)(2.00 x 10*s) = 6.00 x 10* m = [60.0 km

100 x10° m

34.45 The time for the radio signal to travel 100 km is: tr= ———————=333x 107%s
3.00x10° m/s
. 3.00 m 3
The sound wave to travel 3.00 m across the room in: ts= 33 m/s - 8.75x107°s

Therefore, |listeners 100 km away| will receive the news before the people in the newsroom
by a total time difference of

At=875x10"35s-3.33x10*s=841x10"3s

¢ _3.00x10% m/s

*34.46 The wavelength of an ELF wave of frequency 75.0 Hz is A = R r— =4.00x10° m
.0 Hz
The length of a quarter-wavelength antenna would be L =100 x10% m = [1.00 x 10° km
[0.621miQ -
or L =(1000 km)=————"-= (621 mi
( )Dl.OO km O -

Thus, while the project may be theoretically possible, it is not very practical.

¢ _3.00x10°m/s _
fmin  540x10°% Hz

3447 (a) Forthe AM band, Aq = 56 m

)‘min -

c _3.00x108m/s _

3 87 m
fmax 1600 x10° Hz

c _ 3.00x108 m/s _

b) For the FM band, A =
) M fmin 88.0x10° Hz

¢ _3.00x108m/s _
fax 108 x10% Hz

Amin -

.78 m

SN
Ui
3
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34.48 CHy: fmin = 66 MHz AmaX:
fmax = 72 MHz Amin =

CHg : fmin =82 MHz Amax:
fmax = 88 MHz A min=[3.41 m]

CHg: fmin=180 MHz A= [1.67 m]
frmax = 186 MHz )\min:

3449 (a) P =SA = (1340 W/m?)47m(1.496 x 101t m)? = |3.77 x 10?5 W

cB2 /2u S [2(4mx107 N/ A?)(1340 W/ m?)
b) S= -—max o) Bmax = 02 = =[3.35uT
®) 210 mETY e T 3.00x108 m/s

2 e
s=Emax o Eqmax = 1/2H00S = 2(471x1077)(3.00 x 10°)(1340) =

2U,C

*34.50 Suppose you cover a 1.7 m-by-0.3 m section of beach blanket. Suppose the elevation angle of
the Sun is 60°. Then the target area you fill in the Sun's field of view is

(1.7m )( 0.3 m)( cos 30° ) = 0.4 m?

_P_E,. — (A= w 2 6
Now I=—-=_=: E=IAt=1340 —7 (0.6)(0.5)(0-4 m?) 3600s
_ dog _ d _ d _ .
3451 (a) €= e _E(BA cos 0) = -A a(BIrnaX cos wt cos 8) = AB,,,, w(sSin wt cos 6)

E(t) = 271f By, A Sin 27Tt cOS 6 = 271%r £ B, 5 COS 6 Sin 277ft

Thus, | Emax = 27T°r2fB, COs 8| , where 6 is the angle between the magnetic field and the
normal to the loop.

(b) If E is vertical, then B is horizontal, so the |plane of the loop should be vertical| and the

|p|ane should contain the line of sight to the transmitter|.

© 2000 by Harcourt, Inc. All rights reserved.
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34.52

34.53

*34.54

(@)

(b)

(@)

(b)

©

(d)

(@)

(b)

©

GM¢m _ [GM,O
Fgrav R2 _D R2 SDD(4/3)

where Mg = mass of Sun, r = radius of particle and R = distance from Sun to particle.

Smr? Frag _CICH 3SR? 01

c Foraw  F HACGM, E

Since Frag =

3SR?
4cGMg p

) 3(214 W/ m?)(3.75x 10" m)2 )
" 4(6.67 x10™ N n?/kg?)(1.991x 10% kg}(1500 kg/m*)(3.00x10° mys) = — T

From the result found in part (a), when Fgray = Frad, We have r=

Bmax = % =16.67x10716 T PP W

2
S, = Cmec — =531 x 10 w/m?|
20,0

P=S, A=|167x101"W
— _EsavD — —23 ~ H
F=PA= D—ETA =[5.56 x 107°° N| (= weight of 3000 H atoms!)
c

The electric field between the plates is E=AV/l, directed
downward in the figure. The magnetic field between the plate's
edges is B = 1yi/2mr counterclockwise.

The Poynting vector is: S= iE xB= % (radially outward)
m

Ho |

The lateral surface area surrounding the electric field volume is

A =2mrl, so the power output is P=SA = E(%r)llﬁz mrrl ) =

As the capacitor charges, the polarity of the plates and hence the direction of the electric field
is unchanged. Reversing the current reverses the direction of the magnetic field, and
therefore the Poynting vector.

| The Poynting vector is now directed radially inward.




*34.55 (a)

(b)

(©

*34.56 (a)

(b)

(©
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The magnetic field in the enclosed volume is directed upward,
di
dt’
The changing magnetic field induces an electric field around any
circle of radius r, according to Faraday’s Law:

with magnitude B = y,ni and increasing at the rate (:TB—uO

E(27tr) = —pon —gnr ) E= 02nr EE;D
or E= ,u(;nr ESI ) (clockwise)
Then, S=iE><B—iEpOnr & %Nonl ) inward,
Ho H2 Ot
or the Poynting vector is S= “022” ES—E (radially inward)

The power flowing into the volume is P =SA;; where A, is the lateral area perpendicular to
S. Therefore,

P= On ri Eglgahrrl Uornr?l 'ESID

Taking A t0 be the cross-sectional area perpendicular to B, the induced voltage between
the ends of the inductor, which has N =nl turns, is

= g|= NBO = 73 2 i
AV =|E|= N 54 Peross =11 nl Duon mr ) UoTm?r?l CgtC
and it is observed that P=(AV)i
The power incident on the mirror is: P=1A= 51340 ﬂzan(loo m)Z] =4.21x10" W
m

The power reflected through the atmosphere is Pg = 0.746(4.21>< 10’ W) =(3.14x10" W
7
s=Pr_ 310 W 15695 w/m?
A n{4.00x10% m)

Noon sunshine in Saint Petersburg produces this power-per-area on a horizontal surface:

Py =0.746(1340 W/ m?Jsin 7.00°=122 W/ m?
The radiation intensity received from the mirror is

[0.625 W/m? [

00% = |0.513%| of that from the noon Sun in Januar
5122 W/ El 0 Y-

© 2000 by Harcourt, Inc. All rights reserved.
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3457
*34.58
@
(b)
3459 (a)

(b)

©

(d)

1 .
U=5 eFmax (Equation 34.21)

Ernax :\/‘23“ =[95.1 mv/m
0

The area over which we model the antenna as radiating is the lateral surface of a cylinder,

A=27r! =27(4.00x107% m)(0.100 m) = 2.51x107% m?

0.600 W

The intensity is then: S= P — > 5 =239 W/m2
A 251x10° m

-3 4 20

The standard is: 0.570 ™MW _ g 5700 MWELLO0X 10" W -1.00x107 em™_ g 7 W
cm Oem?tH 100mw HH 1oom? H m
2
While it is on, the telephone is over the standard by M = [4.19 times
570 W/m

B = 22 = 2 M o107 T
Mo T 300x108m/s =

2m 21T
k=— =

N (0.0150m) ~

w= ke =|1.26 x 10%* rad/s|

Since S is along x, and E is along y, B must be in . (ThatisSOE xB.)
_ Emameax _ 2

Sav = oo 40.6 W/m

P, =§ =[2.71 x 107 N/m?|

-7 2 2
a:E:%:(Z'“xlO N /m?)(0.750 m ):|4.06x10‘7m/52
m m 0.500 kg
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*34.60 (a) Atsteady-state, P;, = P, and the power radiated out is P, =ecAT*.

Thus, 0.900 3000 %Eﬁ = (0.700) .67 x 1078 mZWEIK4 AT
or r-0o 900 W'm? D4: = 115°C
.700(5.67 x 10 W/m? k*){

(b) The box of horizontal area A, presents projected area Asin50.0° perpendicular to the
sunlight. Then by the same reasoning,

W O : o _ - w O
0.90051000 I ASInG0.0 _(0.700)5%.67x10 Al
4
0 (900 W;m?)sin 50.0° ny
or T=0 / 0 =[363K| =900°C
[0.700(5.67 x 10 W/m?K*)
Food
461 (@) P=x =
F:E:E:L{{S:msxmq N = (110 kg)a
c ¢ 300x10°m/s
and X= % at?

a=3.03x10° m/s?

_ 2% _ 4 _
t—\/a =8.12x10 s—

(b) 0=(107 kg)v - (3.00 kg)(12.0 m/s —v) = (107 kg)v — 36.0 kg - m/s + (3.00 kg)v

_36.0
V=119 = 0.327 m/s

© 2000 by Harcourt, Inc. All rights reserved.
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G

oal Solution

An astronaut, stranded in space 10.0 m from his spacecraft and at rest relative to it, has a mass (including
equipment) of 110 kg. Since he has a 100-W light source that forms a directed beam, he decides to use the
beam as a photon rocket to propel himself continuously toward the spacecraft. (a) Calculate how long it
takes him to reach the spacecraft by this method. (b) Suppose, instead, he decides to throw the light
source away in a direction opposite the spacecraft. If the mass of the light source has a mass of 3.00 kg and,
after being thrown, moves at 12.0 m/s relative to the recoiling astronaut, how long does it take for the
astronaut to reach the spacecraft?

G:

Based on our everyday experience, the force exerted by photons is too small to feel, so it may take a
very long time (maybe days!) for the astronaut to travel 10 m with his “photon rocket.” Using the
momentum of the thrown light seems like a better solution, but it will still take a while (maybe a few
minutes) for the astronaut to reach the spacecraft because his mass is so much larger than the mass of
the light source.

In part (a), the radiation pressure can be used to find the force that accelerates the astronaut toward
the spacecraft. In part (b), the principle of conservation of momentum can be applied to find the time
required to travel the 10 m.

(a) Light exerts on the astronaut a pressure P=F/A=S/c, and a force of
FeSAP_ 1000/S 5454107 N
c ¢ 3.00x10°m/s
-7
By Newton’s 2nd law, a= F_333x10 N_ 3.03x107° m/s?

m 110 kg

This acceleration is constant, so the distance traveled is x = %atz, and the amount of time it travels is

t:\/zl:* 2100m) g 15y10% s=226h

a 13.03x107° m/s?

(b) Because there are no external forces, the momentum of the astronaut before throwing the light
is the same as afterwards when the now 107-kg astronaut is moving at speed v towards the spacecraft
and the light is moving away from the spacecraft at (12.0 m/s—v). Thus, p; =ps gives

107 kg)v - (3.00 kg)(12.0 m/s - V)

0=(
0= (107 kg)v —(36.0 kg [in /'s) +(3.00 kg)v

v:@:0.327 mZs
110
t:f:ngo_as
v 0.327m/Z/s

Throwing the light away is certainly a more expedient way to reach the spacecraft, but there is not
much chance of retrieving the lamp unless it has a very long cord. How long would the cord need to
be, and does its length depend on how hard the astronaut throws the lamp? (You should verify that
the minimum cord length is 367 m, independent of the speed that the lamp is thrown.)
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34.62 The 38.0% of the intensity S =1340 ﬂz that is reflected exerts a pressure P; = fo = 2(03(:%)5
m
The absorbed light exerts pressure P, = % - (0.6C20)S

Altogether the pressure at the subsolar point on Earth is

(@) Po =P +p 138 1.38(1340 W/m?) 16 %10 Pa
TR e T 300x108m/s

5 2
(b) Pa = 101x 10_6N/m 5 :|1.64 x 10° times smaller than atmospheric pressure
Ptot 6.16 x 10 N/m
34.63 Think of light going up and being absorbed by the bead which presents a face area n’rﬁ .

S |
The light pressure is P = T o

2

3
by 43 _apgensmd”® : 2
(@ F=— =mg=pzmpg and = B = [832 x 107 w/m

(b) P=1A=(832x10" W/m?)m(2.00 x 103 m)? =

34.64 Think of light going up and being absorbed by the bead which presents face area nrﬁ .
If we take the bead to be perfectly absorbing, the light pressure is P = S% = % = Z—'
F,C
(@ F =Fg SO I:m: g :mgtz:
A A
/3
From the definition of density, p= m_ 7 m SO L = (i np/m)
\V/ 3 rrrb3 3

/3 /3 3 3
A Oam O
Substituting for r,, 1 =19 Aot = chipDZ o’ _ | 4pgc i 3m

m O3m O 030 OnD 3 Bampd

mr?4pge (Bm /3

3 %NPDD

b) P=IA=

© 2000 by Harcourt, Inc. All rights reserved.
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34.65

34.66

(@)

(b)

©

(@)

(b)

©

(d)

(®)

The mirror intercepts power

P = 13A; = (1.00 x 10° W/m?)(0.500 m)? = 785 W

In the image,

P
|2 ==
A

Emax

27 2uoc

Emax

Bmax = C

785 W
71{0.0200 m)?

SO

- [

Emax = (2HoC 1,)12 = [2(41rx 1077)(3.00 x 10%)(6.25 x 10%)]*/?= [21.7 kN/C

- [f24uT

0.400Pt = mc AT

- J o - o
0.400(785 W)t = (1.00 kg) %1186 —Dkg —5o0(100°C - 20.0°C)

3.35x10°)
TT3l4W

_C_ 3.00x 108 m/s

T f 0 20.0x10°% s

3 ) )
U = P(At =%5.0 108 751.00 10 s)=25.0x107® J=[25.01)
(0= 35010° 1004107 2505

_U_
uav‘V‘

Uy =7.37x107% J/m3 =

U

=1.07x10%s =

- [ P

U

12.0 cm
AT
S/ ’\_/\/k/‘\_/\_l

25.0x107% )

(r2)r (rr2)o(ast) ~ 70.0600 m)*(3.00x10° m/s)(1.00x10° s]

7.37 mi/m?

7 37x1073 J, m3)

o

- /8 85x107%? C?/Nn

5 =4.08x10" V m = [40.8 kV/m|

4
_ 40810 VIM _y 561074 T = [136 T

B :Emax

™ ¢ 3.00x10% mys
_pa =50y _[Fuay O
FePASR 0. O

= Up A = 737 x107 %gn(o 0600 m)? =8.33x107° N =
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c?(m's?)’ Nn? 22 3% NOn _J
34.67 (a) On the right side of the equation, - 7= 4 —3 = =—=W
(c?/Nm?)(mys) c?*on s s
1.60x107%° c|(100 N,C
(b) F=ma=qE or a=£=( _)3(1 ' )=|1.76><1013 m/sz|
m 9.11x107% kg
2 2
2 (160x107) (176 x10%)
The radiated power is then: P= 3= 5= |L75x107" W
67e0¢”  6rfs.85x107%2)(3.00 x 10°)
020 gBr
(& F=ma, =m =qvB so V=—
© r BTE q m
v g (L60x 10‘19)2(0.350)2(0.500) “
The proton accelerates at a=—=—5—= 5 =5.62x10 m/s
room (167x10%)
2 2
_ 2> (160x107°)(5.62x 10%) —
The proton then radiates P= 3= 5= 180x107" W
67e0t”  67(8.85x 10?)(3.00x 107
34.68 p=>-Power__P 00.0 W =[6.37 x 107 Pa
' c Ac 2mrlc 2n(0.0500 m)(1.00 m)(3.00x10% m\s) =
34.69 Fopa=SA-(P/ZAA_P OO Py roke
c c c DZD 2c
Pl (3.00x10%)(0.0600) :
Therefore, 6= = 3 oo 3.00 x 10™“ deg
2ck ~ 2(3.00x10%)(1.00x 10
*34.70 We take R to be the planet’s distance from its star. The planet, of radius r, presents a

projected area nr? perpendicular to the starlight. | It radiates over area 42,

At steady-state, P, =P,y € Iin(nrz) = ea(4nr2)T4

23
ew 7T2)=ea(47rr2)T4 so that 6.00x10%2 W=16m0oR?T*
7T

c‘ 23 | 23
_ 6.00x107 W _ | 6.00x107 W +=14.77x10° m=4.77 Gm

| 16moTt | 167(5.67x10° W/m? IK*)(310 K)
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34.71 The light intensity is
The light pressure is
For the asteroid,
34.72 f=90.0 MHz,

@ A=7=[333m]

2
I:SaV:L
2 UqgC
2
P:§: E ZZ%GOEZ
C  2U,C
2
PA =ma and a= €E"A
2m

Ernax = 2.00x1073 V/m = 200 mV/m

T:%:1.11><1O_8 s=

_ Emax _ 12— _
B =~ = 6.67 x 107 T = [6.67 pT

t O

33m 111nsD

O x t 0O X
b) |E=(2.00 mV/m)cos 2 —— Y 5| |B=(6.67 pT)k cos27=
(b) ( ) %.SSm 11.1nsE}| ( P ) B
2 -3\2
(© 1=Emaco  (200x1077) ~=(5.31x10° W/ m?
2UC  2(471x 1077)(3.00 x 10°)
(d) 1=cuy, S0 Uay = [177 %1071 J/m3

_21 _(2)(5.31x107°) _

e) P
© c 3.00 x 108

3.54x107Y Pa




35.1

35.2

35.3

354  (a)
(b)

355

Chapter 35 Solutons

The Moon's radius is 1.74 x 10® m and the Earth's radius is 6.37 x 105 m. The total distance
traveled by the light is:

d=2(3.84x108m-1.74 x 10° m - 6.37 x 10° m) = 7.52 x 108 m

752 x 108 m

This takes 2.51's,s0 v = —%EB1ls - 2.995 x 108 m/s = [299.5 Mm/s

Ax  2(1.50 x 10% km)(1000 m/km)

— . - " — 8 —
Ax =ct; c=+ = (22.0 min)(60.0 s/min) =2.27x10°m/s =227 Mm/s

The experiment is most convincing if the wheel turns fast enough to pass outgoing light
through one notch and returning light through the next: t=2l/c

2 O cO _ (2.998 x108)[271/ (720)]
O=wt=w— o) w=— = = (114 rad/s
Oc O 2l 2(11.45x10%)

The returning light would be blocked by a tooth at one-half the angular speed, giving another
data point.

For the light beam to make it through both slots, the time for the light to travel the distance d
must equal the time for the disk to rotate through the angle 8, if ¢ is the speed of light,

d.

, SO |c=—
6

glo

We are given that

S100°0mradl_; 91 51074 rad,  w=5565 Y0271 O 3 4910 rad)s

d=2.50 m, =—
60.0 0180° O s .00 revU

dow (2:50 m)(3.49 x10* rad, s)

C=—r= =3.00x10% m/s = [300 Mm/s
] 2.91x107* rad /

. , . n .

Using Snell's law, sin8, = —Lsin g,
ny

anr iy =1

A

© 2000 by Harcourt, Inc. All rights reserved.
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8
36 (@) f=o=30010°MS o 0k,
A 6.328x107' m

Aair  632.8 nm
(b) AQ“"SS = % = 1.50 =

. 8
©  Vglass = Caf = %gom/s =2.00 x108 m/s = [200 Mm/s

35.7 n, sin 6, =n, sin 6, 0; | m=1.00
sin 6, = 1.333sin 45.0° 0
2 .
_133 &
sin 6, = (1.33)(0.707) = 0.943 M= 199 A

Figure for Goal Solution

6= 70.5° — [19.5° above the horizon

Goal Solution
An underwater scuba diver sees the Sun at an apparent angle of 45.0° from the vertical. What is the
actual direction of the Sun?

G: The sunlight refracts as it enters the water from the air. Because the water has a higher index of
refraction, the light slows down and bends toward the vertical line that is normal to the interface.

Therefore, the elevation angle of the Sun above the water will be less than 45° as shown in the
diagram to the right, even though it appears to the diver that the sun is 45° above the horizon.

O: We can use Snell’s law of refraction to find the precise angle of incidence.

A: Snell’s law is: n;sin@; =n,sin6,
which gives sin 6; =1.333 sin 45.0°
sin 8, =(1.333)(0.707) = 0.943
The sunlight is at 6; =70.5° to the vertical, so the Sun is 19.5° above the horizon.
L: The calculated result agrees with our prediction. When applying Snell’s law, it is easy to mix up the

index values and to confuse angles-with-the-normal and angles-with-the-surface. Making a sketch
and a prediction as we did here helps avoid careless mistakes.
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*35.8

35.9

35.10

35.11

(@)

©

(d)

(b)

(@)

(b)

©

Chapter 35 Solutions

ny sin 6, =n, sin 6,

1.00 sin 30.0° = n sin 19.24°

8
f=C = M = |4.74 x 10* Hz| in air and in syrup.
A 6.328x10 ' m
¢ _ 3.00x10% m/s 8
v — = ————— =198x10°" m/s= (198 Mm/s
. 5
v _ 1.98x10% m/s
=L =227 VS - 417 nm
. ¢ _ 3.00x10° m/s 8
Flint Glass: v=—=———"——/"-=1.81x10" m/s =|181 Mm/s
o6 /

¢ _3.00x10° mys

Water: v=— =227 72 =225x10% m/s = [225 Mm/s
. 333 /

¢ _3.00x10% m/s

Cubic Zirconia: v=— =" 772 =136x10% m/s =[136 Mm/s
. 520 /

Ny sin 6, =n, sin 6,;  1.333 sin 37.0° = nysin 25.0°

c c
- - = . - - 8 -
n=190=; Vv= 755 =158x10°m/s=|158 Mm/s

; 0,=30.0°
sin 6,0 1
n;sin@, =n,sin6,; 6, =sin"! Huilm . i water
o nz2 0O air ’
glass i ! 0,= 19.5°
. _1[11.00)(sin 30°) Pl The B
6, =sin lﬁiﬁ: 9.5° 6,=19.5"x
2 150 : \
alr ¥ =30.0°
68, and 63 are alternate interior angles formed by the ray cutting

parallel normals. So, 63=6,= .

1.50 sin 83 = (1.00) sin 6,



35.12

*35.13

35.14

*35.15

(@)

(b)

(@)

(b)
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A 436 nm
Water A= 20 = =(327 nm
= a3 - 327nm|

A 436 nm
Glass A=20 = =(287 nm
=

sin 6, =n,, sin 6,

. 1 . 1
sin 6, = 1353 sin g, = 1333

sin(90.0° - 28.0°) =0.662
6, =sin* 0.662 = 41.5°

d 3.00 m
h= = =13.39m
tan 8, tan4l1.5° -

’«—3.0 m—>

Mirror 2

From geometry, 1.25 m = d sin 40.0°

|50.0° above horizontal| , or parallel to the

incident ray

The incident light reaches the left-hand mirror at Mirror Mirror
distance

(1.00 m)tan 5.00° = 0.0875 m

}
) ) _ 1.00 m i\eckee“oe
above its bottom edge. The reflected light first reaches 1

the right-hand mirror at height

2(0.0875m) =0.175 m 5.00°

It bounces between the mirrors with this distance
between points of contact with either.

Since =5.72, the light reflects

1.00 m
0.175m

five times from the right-hand mirror and six times from the left.
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*35.16

*35.17

*35.18

*35.19

Chapter 35 Solutions

Atentry, n;sin6, =n,sin 6, or  1.00sin 30.0° = 1.50 sin 6, \%
a
6, =19.5° 7{ -
The distance h the light travels in the medium is given by I
|
2.00cm b,
cosegz(h—) or hzwzz.lzcm -
cos 19.5°
The angle of deviation upon entry is a=6,-6,=30.0°-19.5°=105"

. N _ . o
The offset distance comes from sin a = r% d = (2.21 cm)sin 10.5° =]0.388 cm

The distance, h, traveled by the light is h - 200cm _ 2.12 cm
cos 19.5°
8
The speed of light in the material is \ :% :%ﬁom/s =2.00x10% m/s

h_ 212x107°m -10
Therefore, t=—=—————"———=1.06x10""" s= (106 ps
v 2.00x10% m/s

0
Applying Snell's law at the air-oil interface, \ia

N Linseed

Ngir SIN =Ny 5iN20.0°  yields |6=30.4° : 20.0° oil

Applying Snell's law at the oil-water interface 1\

"\  Water
ny sin @' =ng; sin 20.0°  vyields | @' =22.3° %\

|

|

N’

time difference = (time for light to travel 6.20 m in ice) — (time to travel 6.20 m in air)

_620m_620m

c
At —
Vice c n

At =(6.20 m)Eﬂ'iog —%g: (6'22 m)(o.sog) =6.39x107 s = [6.39 ns]
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*35.21

35.22
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(b)
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Consider glass with an index of refraction of 1.5, which is 3 mm thick The speed of light in
the glass is

3x10% m/s
15

. 3x10%m  3x107°%m =
The extra travel time is - ~107"s
2x108 m/s 3><108m/s

=2x10% m/s

For light of wavelength 600 nm in vacuum and wavelength 600 nm

=400 nm in glass,

3x107°m _3x107°m
4x107"m 6x107 m

the extra optical path, in wavelengths, is ~10° wavelengths

Refraction proceeds according to (1.00)sin 6, = (1.66)sin 6, 1)

For the normal component of velocity to be constant, V4 C0s 6; =V, cos 6,

or (c)cos 6, =(c/1.66)cos 6, )
We multiply Equations (1) and (2), obtaining: sin 6, cos 6, =sin 6, cos 6

or sin 26, =sin 26,

The solution 6, =6, =0 does not satisfy Equation (2) and must be rejected. The physical
solution is 26, =180°-26, or 6, =90.0°-6,. Then Equation (1) becomes:

sin 6, =1.66 cos 6;, or tan 6, =1.66

which yields 6, =

Light entering the glass slows down and makes a smaller angle with the normal. Both effects
reduce the velocity component parallel to the surface of the glass, so that component cannot

remain constant, or will remain constant only in the trivial case | 6, =6, =0

See the sketch showing the path of the light
ray. aand y are angles of incidence at
mirrors 1 and 2.

For triangle abca, 2a +2y + 3 =180°
or B =180°-2(ar +y) 1)
Now for triangle bcdb,

(90.0° - a) +(90.0° - y) + 6 =180°

or O=a+y 2
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35.23

35.24

(@)

(b)

(@)

(b)

Chapter 35 Solutions

Substituting Equation (2) into Equation (1) gives |[(3=180°-26

Note: From Equation (2), y=6-a. Thus, the ray will follow a path like that shown only if
a<6. For a>0, y is negative and multiple reflections from each mirror will occur before
the incident and reflected rays intersect.

Let n(x) be the index of refraction at distance x below the top of the atmosphere and
n(x =h) =n be its value at the planet surface. Then,

n(x) = 1.000 + En 1000%

h

The total time required to traverse the atmosphere is

HeH co 2 ©

hdx _ .hn m- 1000 0. _h, (n- 1ooo)EhZD h[n+1000D
g =gy o= g oo P e e

20.0x10° m [1.005+1.000(7_
= 66.8 pis
S 300x10° m/sD 2 o

The travel time in the absence of an atmosphere would be h/c. Thus, the time in the
presence of an atmosphere is

wg_ 1.0025 times larger or |0.250% longer| .

Let n(x) be the index of refraction at distance x below the top of the atmosphere and
n(x =h) =n be its value at the planet surface. Then,

() 1.000 + |:n :I.OOO%<

h

The total time required to traverse the atmosphere is

20
hdx _ -hn(x 7{ %ooo - 1000%% % n- 1000)Eh hn+1.0000]

t= fov Ii H2H |co 2 O

The travel time in the absence of an atmosphere would be h/c. Thus, the time in the
presence of an atmosphere is

+1.0000

DTDtlmes larger
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35.25 From Fig. 35.20 ny = 1.470 at 400 nm and n, = 1.458 at 700 nm
Then (1.00)sin 8 =1.470sin 6, and (1.00)sin 8 =1.458 sin 6,

~1sin 60 Sin_l[lsin 6o
(1.4580 4700

. 1[kin 30.0°O . _4kin 30.0°0O
AS=sin T2 “_gint 22 -= [0 171°
O 1458 0O O 1470 O

o, —6,=6,-6,=sin

1ty sin g 0

35.26 ny sin 6; =n, sin 6, so 6, =sin -
2

_ . —1[12.00)(sin 30.0°)0_ ~
6 =sin P
05 = ([(90.0° - 19.5°) +60.0°] ~ 180°) +90.0° =

. . . g sin 6,0 . _;(1.50)(sin 40.5°)
N, sin B3 =n, sin S0 6, =sin 12 3 5=sin 15(—@: 77.1°
R ¢ H o, H 100 7.1

4

35.27 Taking @ to be the apex angle and J,,,, to be the angle of minimum deviation, from
Equation 35.9, the index of refraction of the prism material is
i Dq:""csminE|
sin >0

sin(®/2)

: H e H q)D H H ) o — o
Solving for 8, Omin = 2sin 1%1 sin—-- ®=2sin ![(2.20) sin(25.0°)] - 50.0° =

35.28 n(700 nm) = 1.458
(@) (1.00)sin 75.0° = 1.458 sin 6, 6, =
(b) Let 6;+pB=90.0°, 6,+a=90.0° then a+p+60.0°=180°
So 60.0°-6,-6;=00 60.0°-41.5°= 6 =
(©) 1.458 sin 18.5° = 1.00 sin 64 6, =

d) y=(61-6,)+[B-(90.0°-6,)]

y =75.0° — 41.5° + (90.0° — 18.5°) — (90.0° — 27.6°) =
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_sing,

35.29 For the incoming ray, sin 6,

. . . . _1[Bin 50.0°0 o
Using the figure to the right, (67)violet =SIN 1DWD: 27.48

_ . —1[pin 50.0°_ o
(67)reg =SIN O 162 O 28.22

For the outgoing ray, 6; =60.0°-6, and sin@, =nsin6,

(B4)violer = SIN~*[1.66 sin 32.52°]=63.17°

(64);eq = SINH[1.62 sin 31.78°] = 58.56°

£64=(63)viotet — (64)req= 63.17° — 58.56° =

The dispersion is the difference

L OP+ 5min U
SIHDTD

35.30 n= W

+0min - .
CDTam'” is also a small angle.  Then, using the small angle

For small ®, J,,=® so
approximation (sin@=6 when 6<< 1rad), we have:

o +£72in)/2 =2 +quin or | Omin = (N-1)® | where @ is in radians.

35.31 At the first refraction, (1.00)sin 6, =nsin 6,

The critical angle at the second surface is given by

nsin 6, =100, or 6, :sin‘lg%gz 41.8°.

But, 6, =60.0°-8;. Thus, to avoid total internal reflection at the
second surface (i.e., have 6; <41.8°), it is necessary that 6, >18.2°.
Since sin 8, =nsin 6,, this requirement becomes

sin 6, >(1.50)sin(18.2°) =0.468, or 6; >
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35.32 At the first refraction, (1.00)sin 6, =nsin 6,. The critical angle at
the second surface is given by

nsin ; =100,  or 65 =sin™*(1.00/n)

But (90.0° - 6,) +(90.0° - 65) + ® =180°, which gives 6, = ® - 6.

Thus, to have 6; <sin™(100/n) and avoid total internal reflection at the second surface, it is
necessary that 6, > @ —sin'l(l.OO/n). Since sin 6; =nsin 6,, this requirement becomes

. . . .00 .0 . . 000
sin 6, >nsin® -sin 1 —— or 6, > |sin sinpth —sin™- ——
' éb On ' H ED On CFH
Through the application of trigonometric identities, 6, > sin_l%/n2 —1sin ® —cos d)%
35.33 n= M S0 1 544sin(3 (p) = sin(5°+1 (p) = cos(E (p)sin 5°+sin(E (p)cos 5°
sin(@/2) 2 2 2 2
tan(i <0) = Lso and Q=
2 1.544 - cos5° :
*35.34 Note for use in every part: ® +(90.0° - 6,) +(90.0° - 6;) = 180°
SO 93 =¢P- 92
At the first surface is a=6,-6,
At exit, the deviation is B=6,-6,

The total deviation is therefore 0=a+8=60,+6,-0,-6;,=6,+6,—-®
i -1[Bin 48.6°[

a) Atentry: n, sin 6; =n, sin @ or [e) ——— =30.0°
(@ y 1 1 =Ny 2 2 0 150 O
Thus, 6 =60.0°-30.0°=30.0°
At exit: 1.50'sin 30.0°=1.00sin 6, or 6, =sin"[1.50in(30.0°)] = 48.6°
so the path through the prism is symmetric when 6; = 48.6°.
(b) 6=48.6°+48.6°-60.0°=
© Atentry:  sin, =% 0 6 284 6, = 60.0° - 28.4° =31.6°
At exit: sin 6, =1.50sin(31.6°) 0 65 517 5=45.6° +51.7° ~60.0° =
(d) Atentry:  sin6, = % 0 6 315 6, = 60.0° - 31.5° =28.5°
Atexit: sin§, =150sin(28.5°) O 65 457 5=51.6°+45.7°-60.0° =
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35.35

35.36

35.37

*35.38

35.39

(@)

(b)

©

(@)

(b)

©
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nsin@=1. From Table 35.1,

_—0 1 O_ S
§=sin [p.4190"
_ . 101 0_ 5
Q_SIn Eu_66|:|_

. 4010
@=sint—— -=[408°
Lh.309U

. - O
sin 6, :%; 6, =sin léhn»zg
i i

Diamond: 6, = sin 13330

(4190

. L3330 ——
Flint glass: 6, =sin Oies -
Ice:  Since ny > ny, [there is no critical angle| .

. n, . 88.8°

=—<= (E A1
sin 6, 0, (Equation 35.10) CmP/
Hot

N2 = Ny sin 88.8° = (1.0003)(0.9998) = [1.000 08

Ngir _ 1.00

sing; = ——=0.735 0.=47.3°

Npipe

Geometry shows that the angle of refraction at the end is

6, =90.0° - 6, = 90.0° — 47.3° = 42.7°

Then, Snell's law at the end, 1.00 sin 8= 1.36 sin 42.7°

For total internal reflection, ny sin 6; = n, sin 90.0°

(1.50) sin 6; = (1.33)(1.00) or 0, =
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35.40 To avoid internal reflection and come out through the
vertical face, light inside the cube must have

6; <sin"1(1/n)

So  6,>90.0°-sin"t(1/n)

But 6,<90.0° and nsing, <1

In the critical case, sin~t(1/n)=90.0° —sin™}(1/n)

1/n =sin 45.0° n=141

35.41 From Snell's law, n;sin6, =n,sin 6,

Penn Dime
y ime A

(1.59)(sin 6;) = (1.00) - sin 90.0° |

At the extreme angle of viewing, 6, =90.0°

So  6,=39.0° |

Therefore, the depth of the air bubble is ol X e

r
Md <ge__P
tan 6; tan 6;

or 1.08cm<d<1.17cm

Sl_niez =Y2 and 6, =90.0° at the critical angle
sinf; vy

sin 90.0° _ 1850 m/s —
= so 6, =sin"~0.185={10.7°
sin@, 343 m/s ¢

*3542 (a)

(b) Sound can be totally reflected if it is traveling in the medium where it travels slower:

(© |Sound in air falling on the wall from most directions is 100% reflected|, so the wall is a good
mirror.
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*35.43

*35.44

*35.45

Chapter 35 Solutions

For plastic with index of refraction surrounded by air, the critical angle for total
internal reflection is given by
. qOlo_ . 010
0, =sint = -<sint=—_-=44.8°
¢ Ch [(h.420
In the gasoline gauge, skylight from above travels down the plastic. The rays close to the
vertical are totally reflected from both the sides of the slab and from facets at the lower end of
the plastic, where it is not immersed in gasoline. This light returns up inside the plastic and
makes it look bright. Where the plastic is immersed in gasoline, with index of refraction
about 1.50, total internal reflection should not happen. The light passes out of the lower end
of the plastic with little reflected, making this part of the gauge look dark. To frustrate total

internal reflection in the gasoline, the index of refraction of the plastic should be ,
since
6, = sin'l(@) =45.0°.
212

Assume the lifeguard’s path makes angle 6; with the north-
south normal to the shoreline, and angle 6, with this normal
in the water. By Fermat’s principle, his path should follow
the law of refraction:

_ . 1[N 6,0
5.00 or 6, =sin 05 O

sin6, _vy _7.00m/s _
sinf, v, 140 m/s

The lifeguard on land travels eastward a distance x =(16.0 m)tan ;. Then in the water, he
travels 26.0 m —x =(20.0 m)tan 6, further east. Thus, 26.0 m =(16.0 m)tan 6, +(20.0 m)tan 6,

— |:| —1|:B|n 91[:1]
or  26.0m=(16.0 m)tan 6, +(20.0 m)tan B0 5

We home in on the solution as follows:

6, (deg) 50.0 60.0 54.0 54.8 54.81
right-hand side (222 m |31.2m |253m [25.99 m |26.003 m

The lifeguard should start running at | 54.8° east of north| .

Let the air and glass be medium 1 and 2, respectively. By Snell's law, n, sin 8, =n; sin 6;

or 156 sin 6, =sin 6;
But the conditions of the problem are such that 6, =26,. 156 sin 6, =sin 26,
We now use the double-angle trig identity suggested. 1.56 sin 6, =2 sin 6, cos 6,
or cos 6, :1'—5620.780

Thus, 6,=38.7° and 6,=26,=
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*35.46 (a) ei = 61 = air \%{;{/ air 92
I
|

|

|
ny sin 6; =n, sin 6, e i e /<>\
(1.00) sin 30.0° = 1.55 sin6, '6; 0,16/

(b) 6 =6, =[300°]

. —40nh;sin@, 0 . _;[1.55sin 30.0°[]
6, =sin"l5L 1o =gin 22 o b -50.8°
2 n, H O 1 O

(c) and (d)  The other entries are computed similarly, and are shown in the table below.

(c) air into glass, angles in degrees (d) glass into air, angles in degrees
incidence reflection | refraction | incidence | reflection | refraction
0 0 0 0 0 0

10.0 10.0 6.43 10.0 10.0 15.6
20.0 20.0 12.7 20.0 20.0 32.0
30.0 30.0 18.8 30.0 30.0 50.8
40.0 40.0 245 40.0 40.0 85.1
50.0 50.0 29.6 50.0 50.0 none*
60.0 60.0 34.0 60.0 60.0 none*
70.0 70.0 37.3 70.0 70.0 none*
80.0 80.0 39.4 80.0 80.0 none*
90.0 90.0 40.2 90.0 90.0 none*

*total internal reflection

35.47 For water, sin g, = ! .3
4/3 4 .
Thus 6, =sin1(0.750) = 48.6° L0Dm -8,
T
and d = 2[(1.00 m)tan 6] -

Figure for Goal Solution

d =(2.00 m)tan 48.6° =
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Goal Solution
A small underwater pool light is 1.00 m below the surface. The light emerging from the water forms a
circle on the water's surface. What is the diameter of this circle?

G: Only the light that is directed upwards and hits the water’s surface at less than the critical angle will
be transmitted to the air so that someone outside can see it. The light that hits the surface farther
from the center at an angle greater than 6, will be totally reflected within the water, unable to be
seen from the outside. From the diagram above, the diameter of this circle of light appears to be
about 2 m.

O: We can apply Snell’s law to find the critical angle, and the diameter can then be found from the
geometry.

A: The critical angle is found when the refracted ray just grazes the surface (6, = 90°). The index of
refraction of water is n, = 1.33, and n; = 1.00 for air, so

. . . .01 O_ ..
n,siné, = n,sin 90° ives 6, =sin"t=———=sin"}(0.750) = 48.6°
1 c =M g c 13330 ( )
The radius then satisfies tan g, =
(100 m)
So the diameter is d=2r=2(100 m)tan48.6°=2.27 m

L:  Only the light rays within a 97.2° cone above the lamp escape the water and can be seen by an outside
observer (Note: this angle does not depend on the depth of the light source). The path of a light ray
is always reversible, so if a person were located beneath the water, they could see the whole
hemisphere above the water surface within this cone; this is a good experiment to try the next time
you go swimming!

*35.48 Call 6, the angle of incidence and of reflection
on the left face and 6, those angles on the right

face. Let o represent the complement of 6, and 8

be the complement of 8,. Now a =yand =290
because they are pairs of alternate interior
angles. We have

A=zy+d=a+f

and B=a+A+ﬁ=a+ﬁ+A=
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*35.49 (a) We see the Sun swinging around a circle in the extended plane of our parallel of latitude. Its

(b)

angular speed is

_ A6 _ 2rmrad

=—2="S""""=727x10" rad/s
At 86 400s

The direction of sunlight crossing the cell from the window changes at this rate, moving on
the opposite wall at speed

v=rw=(2.37 m)(7.27x107° rad/s)=172x107* m/s = [0.772 mmy/s
The mirror folds into the cell the motion that would occur in a room twice as wide:

v=rw=2(0.174 mm/s)=

(c) and (d)

*35.50

*3551 (a)

(b)

As the Sun moves southward and upward at 50.0°, we may regard the corner of the window
as fixed, and both patches of light move |northward and downward at 50.0°| .

By Snell's law, ny sin 6; =n, sin 6,
. c c . c . sin8; _sin @,
With v= =, —sin§, =—sin 6, or —l=_2
n Vi V2 Vi V2

sin12.0° _ sin 6,
340 m/s 1510 m/s

6, = arcsin (4.4 sin 12.0°) =

This is also true for sound. Here,

2.998 x10® m/s

— — — 7
n=—= =11.76 x 10
%1 15 KmHL00 h 171,00 x 10° m U
™ "hr OBe00 sHH 1.00 km H
nsin@ =n,sinf,  so (1.76x107)sin 6, = (1.00)sin 90.0°

6, = |3.25x107° degree

This problem is misleading. The speed of energy transport is slow, but the speed of the
wavefront advance is normally fast. The condensate's index of refraction is not far from
unity.
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*35.52

35.53
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(1.00)sin 25.0° =1.689sin 6, 0 67 14.490

yy =(5.00 cm)tan 6, = (5.00 cm)tan 14.490° = 1.2622 cm _x _____ _

v
Red Light: Y \\ik

< 5.00 {
(1.00)sin 25.0°=1.642sin6, O 65 14.915 cm w

yr =(5.00 cm)tan 14.915° = 1.3318 cm

The emergent beams are both at 25.0° from the normal. Thus,

w = Ay cos 25.0° where Ay =1.3318 cm —1.2622 cm = 0.0396 cm

w = (0.396 mm)cos 25.0° =

Horizontal light rays from the setting
Sun pass above the hiker. The light rays
are twice refracted and once reflected, as
in Figure (b) below, by just the certain
special raindrops at 40.0° to 42.0° from
the hiker's shadow, and reach the hiker
as the rainbow.

The hiker sees a greater percentage of the

violet inner edge, so we consider the red Figure (a)
outer edge. The radius R of the circle of
droplets is
R = (8.00 km)(sin 42.0°) = 5.35 km
Sunlight

Then the angle ¢, between the vertical and the radius where
the bow touches the ground, is given by

2.00 km _ 2.00 km
R 5.35km

cos @ = =0.374 or @=68.1°

The angle filled by the visible bow is 360° — (2 x 68.1°) = 224°,
so the visible bow is

Figure (b)

224°
360°

=162.2% of a circle




35.54

35.55

*3556 (a)

(b)

©
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From Snell’s law, (1.00)sin 6, = % sin 6, | v
3 eye

1
. 61
. R X
x=Rsin6, =rsin 6 N /

r_sing, 3 I Fish at depth d
SO — = == :
R sin 91 1 | Image at depth z
Fish 1
apparentdepth _z _rcos6, _3 cos6;
actual depth d Rcos8, 4 \/1_ sin? 6,
L2, _ B f _ 92
But sin“ 6, = 0 sin 91D " 16 (l cos 91)
So z_3 | cos 6; _3 | cos 6; or 2= s3dc0591
d 4 1-9,9 cos29, 4 7+9c0s’ 6 \7+9cos’ 6,
\" 16 16 \ 16

As the beam enters the slab, (1.00)sin 50.0° =(1.48)sin 6, giving 6, =31.2°. The beam then
strikes the top of the slab at x, =1.55 mm/tan(31.2°) from the left end. Thereafter, the beam
strikes a face each time it has traveled a distance of 2x, along the length of the slab. Since the
slab is 420 mm long, the beam has an additional 420 mm —x, to travel after the first reflection.
The number of additional reflections is

420 mm - x, _ 420 mm - 1.55 mm/tan(31.2°)

=815
2%, 3.10 mm/tan(31.2°) f——42.0 cem——
T 1 }3-10

mm

or 81 reflections since the answer must be an g
integer. The total number of reflections made in

the slab is then .

S, _Chy-n 0 _152-1.00(F _
= = = [0.0426
S, M,+n B52+1008

ithz-nlff _[1.00-1527%

= = 0.0426;
s, fh,+nH Hoo+1528

If medium 1 is glass and medium 2 is air,

There s

s _0L76x107 —1.005 _176x10° +1.oo—2.oogr
S, [L76x107+1000  L176x107+100 [

s; 2.00 f O 2.00 0 7
A-H400-— = =100-2-— - “=100-2.27x10 or [100%
S, % 1.76 x107 +1.00H (.76 x10” +1.0000

This suggests he appearance would be |very shiny, reflecting practically all incident Iight| :
See, however, the note concluding the solution to problem 35.51.
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s _m-idf

*35.57 (a) With n;=1and n, =n, the reflected fractional intensity is S “he1d’
1

The remaining intensity must be transmitted:

2: _Eh—l[f_(n+1)2—(n—1)2:n2+2n+1_n2+2n_1: 4n

S il (neay (n+1) (n+1)
(b) Atentry S - 1-= 1 = 4(2.419) =0.828
s T h+10 0 (2.419+1)°
. S; _
At exit, —=0.828
S2
Overall, ziz %%Ez (0.828)% =0.685 or [68.5%

*35.58 Define T= n+1)2 as the transmission coefficient for one %0 N . -
encounter with an -« T > >
interface. For diamond and air, it is 0.828, as in problem TA-T)

57. T201-T) | € | 12(1-T)2
. . . . - > >
As shown in the figure, the total amount transmitted is T(1-T)2
TQA-T)3
2, 12 2 -2 4 2 6 r21-1)% T2(1-T)*
TO+TA(1-T) +T(1-T) +T7(1-T) < > >
2 2n T(1-T)*
o+ T(-T)+ L
2¢1— 5 _ 5
We have 1-T=1-0828=0172 so the total (-1’ TA7T
transmission is

(0.828)2[1+ (0.172)% +(0.172)* +(0.172)° +... ]

To sum this series, define F=1+(0.172)* +(0.172)* +(0.172)° +... .
Note that (0.172)°F =(0.172)* +(0.172)* +(0.172)° +. .., and
1+(0.172)*F =1+(0.172)% +(0.172)* +(0.172)° +... = F.

1
Then, 1=F-(0.172)°F or F=———
(0172) 1-(0.172)?

o 0.828)?
The overall transmission is then (7:0.706 or |70.6%
1_(0'172)2 -
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incid

G:

0
35.59 nsin 42.0° =sin 90.0° o) n= ;o =1.49 !
sin 42.0 n; Surface 1
sin 6, =nsin 18.0° and sin g, = M
sin 42.0°
6=
Figure for Goal Solution
Goal Solution
The light beam shown in Figure P35.59 strikes surface 2 at the critical angle. Determine the angle of

ence 6.
From the diagram it appears that the angle of incidence is about 40°.

We can find 6, by applying Snell’s law at the first interface where the light is refracted. At surface 2,
knowing that the 42.0° angle of reflection is the critical angle, we can work backwards to find 6,.

Define n; to be the index of refraction of the surrounding medium and n, to be that for the prism
material. We can use the critical angle of 42.0° to find the ratio n,/n;:

n,sin 42.0°=n;sin 90.0°

n, _ 1

SO, - =
n; sin 42.0°

=149

Call the angle of refraction 6, at the surface 1. The ray inside the prism forms a triangle with
surfaces 1 and 2, so the sum of the interior angles of this triangle must be 180°. Thus,

(90.0°-6;,) +60.0°+(90.0°42.0°) = 180°
Therefore, 6, =18.0°
Applying Snell’s law at surface 1, n,;sin6; =n,sin 18.0°
sin 6y = (n,/ny)sin 6, = (1.49)sin 18.0°
6, = 27.5°

The result is a bit less than the 40.0° we expected, but this is probably because the figure is not drawn
to scale. This problem was a bit tricky because it required four key concepts (refraction, reflection,
critical angle, and geometry) in order to find the solution. One practical extension of this problem is
to consider what would happen to the exiting light if the angle of incidence were varied slightly.
Would all the light still be reflected off surface 2, or would some light be refracted and pass through
this second surface?
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35.60 Light passing the top of the pole makes an angle of /S
incidence ¢, =90.0°-6. It falls on the water surface at /|

distance
_(L-d)
1" tan @

from the pole,

and has an angle of refraction ¢, from (1.00)sin ¢, =nsin @,.
Then s, =dtan ¢, and the whole shadow length is

-d _1[s|n (p1%
+dtan in
% n

S +S, = _ Yo _ _ _L
e — 5 =
52

SR _:+dtan%in‘lmose - 200m +(2.00 m)tan%m -1 0r0s 40.0 % [3.79 m]

O n tan 40.0° 0 133

35.61 (a) For polystyrene surrounded by air, internal reflection requires |)91/

-1L000O

6; =sin” CLag0

15 (X
=42.2 92

Then from the geometry, 6,=90.0°- 65 =47.8°

From Snell's law, sin 6, =(1.49)sin 47.8°=110

This has no solution.  Therefore, total internal reflection |a|ways happens| .

-1 L.330

b) For polystyrene surrounded by water, 0, =sin - ———=63.2°
(b) polysty y 3 O 290

and 6, = 26.8°

From Snell's law, 6, =

(© |N0 internal refraction is possible| since the beam is initially traveling in a medium of lower
index of refraction.

*35.62 0=6-6 =10.0° and N, sin 6, =n, sin 6, with n; =1, n, :g

Thus, 6, =sin™}(n, sin 6,) = sin_l[n2 sin(6; —10.0°)]
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(You can use a calculator to home in on an approximate solution to this equation, testing
different values of 8, until you find that 6, = . Alternatively, you can solve for 6,
exactly, as shown below.)

We are given that sin 6, = % sin(6; —10.0°)

This is the sine of a difference, so %sin 6, =sin 6; cos 10.0° - cos 6, sin 10.0°
. . o _ o_ 30

Rearranging, sin 10.0° cos 6, = %os 10.0 4Dsm 6

sin 10.0° -1
—————————=tan@, and 6, =tan " 0.740 5 36.5]
cos 10.0° - 0.750 ! !

tan 6, = 4.00 cm and  tan6, = 2.0(:]cm
tan’ 6, = (2.00 tan 92)2 =4.00 tan® 6,
sin6,  _ sin? 6, O
(1-sin® 6y) (1-sin’ 6,) 12,00 cm -
Snell's law in this case is: n; sin 8; =n, sin 6,
sin 6; =1.333 sin 6,
Squaring both sides, sin2 6, =1.777 sin? 6, )
2 P02
Substituting (2) into (1), LTTTSINT 6,y o SIN" 8
1-1777 sin” 6, 1-sin“ G,
Defining x =sin% @, 0444 _ 1
(1-1777x) (1-X)
Solving for x, 0.444 -0.444x =1-1777x and x =0.417
From x we can solve for 6,: 6, =sin"1/0.417 = 40.2°
. . (2.00 cm) _ (2.00 cm)
Thus, the height is h= = =12.37cm
g tan 6, tan(40.2°)
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344 Chapter 35 Solutions

35.64 Observe in the sketch that the angle of incidence at point P is y, ﬁ p
and using triangle OPQ: siny=L/R. LN
I
IRz -2 1?‘% S_ _
Also, cos y=\/1—sin2 yz% Y /
\
L | R\ 0
Applying Snell’s law at point P, ~ (1.00)sin y =nsin ¢ I \
7
Thus sin (p_sin y_ L /
' n nR Q
- 2p2 _ 12
and cos(p=\/1—sin2¢:\/”i7RL

From triangle OPS, (o+(a+90.0°)+(90.0°— y)2180° or the angle of incidence at point S is
o =y-@. Then, applying Snell’s law at point S gives (1.00)sin f=nsina=n sin(y— (p), or

. . . Lovn?R2-12 YR2-12 0L
sin @ =n|sin y cos ¢—cos y sin ¢| = nlCt— - —
[sin y cos ¢ cos y sin ¢ %RD nR R [hR
. L O/ . 10L 0/ 202 2 _.p2_ 20
sin@=— 3/n?R2 -2 -\R? - 12U and 6= [sintg= Hn?R?-12 -\ R?-L
R2 U d FR2U [H

35.65 To derive the law of reflection, locate point O so that the time of
travel from point A to point B will be minimum.

<—&—>|

N%Dg/ﬂb_
| |v

The total light path is L =asec, +bsec6,
The time of travel is t= Dlga sec 6, +b sec 6,)
Ov
If point O is displaced by dx, then
mi
dt= D;%a sec 6, tan 6,d6, +b sec 6, tan 6,d6,) =0 (1)

(since for minimum time dt = 0).

Also, c+d=atan 6, +btan 6, = constant

so, asec? 6,d6, +bsec® 6,d6, =0 )

Divide equations (1) and (2) to find
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35.67

As shown in the sketch, the angle of incidence at point A is:

(@)

(b)
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0
6 =sin" g—g-m _130%5—300

If the emerging ray is to be parallel to the incident ray,
the path must be symmetric about the center line CB of
the cylinder . In the isosceles triangle ABC, y=a and
[B=180°-6. Therefore, a +f+y=180° becomes

2a +180° -6 =180° or a 22215.0°
Then, applying Snell’s law at point A, nsina =(1.00)sin 6

sin@ sin 30.0°
or n= = =11.93
sina sin15.0° -

At the boundary of the air and glass, the critical angle is given

; .V \J

d/4 or SN 6 _d d/4|<—

cos 0. 4t ‘ d >

Consider the critical ray PBB': tan 6, =

sin?6, _ sin?6, _pdrf

Squaring the last equation gives: = = —
a J a 9 cos? 6, 1-sin?g, 4tD

. . 1. 1 _pdrf 2
Since sin 8, ==, this becomes = or |n=4/1+(4t/d
©on n?-1 40 \/ (4y/d)
Solving for d, d=— 2t
yn? -1

Thus, if n=152and t=0.600cm, d=40:800m)_

J(152)° -1

(c) Since violet light has a larger index of refraction, it will lead to a smaller critical angle
and the inner edge of the white halo will be tinged with light.

© 2000 by Harcourt, Inc. All rights reserved.



346 Chapter 35 Solutions

35.68 From the sketch, observe that the angle of
incidence at point A is the same as the o/
i le 6 at int O. Gi that
prism angle at poin iven at o /\

/
6 =60.0°, application of Snell’s law at point R C
A gives AXB-
_ _ vy
1.50sin §=1.00sin60.0° or [B=353° | §
\
From triangle AOB , we calculate the angle g : 20.0°-6 é

of incidence (and reflection) at point B.

6+(90.0° - B) +(90.0° - y) =180° 50 y=6-[B=60.0°-353°=24.7°

Now, using triangle BCQ : (90.0° - y) +(90.0° - &) +(90.0° - 6) =180°
Thus the angle of incidence at point C is o= (90.0° - 9) -y=30.0°-24.7°=5.30°
Finally, Snell’s law applied at point C gives 1.00 sin ¢=1.50sin 5.30°

or @=sin"*(1.50 sin 5.30°) = [7.96°

3569 (a) Given that 6, =45.0°and 6, =76.0°, Snell’s law at
the first surface gives

nsin a =(1.00)sin 45.0° ()

Observe that the angle of incidence at the second
surface is $=90.0°-a. Thus, Snell’s law at the
second surface yields

nsin B =nsin(90.0° - a) = (1.00)sin 76.0°, or

ncos a =sin 76.0° 2
s . . sin 45.0°
Dividing Equation (1) by Equation (2), tana=—=0.729 or a=36.1°
sin 76.0°
. sin 45.0° _ sin 45.0°
Then, from Equation (1), n=— =— =(1.20
a @) sina sin 36.1° -

(b) From the sketch, observe that the distance the light travels in the plastic is d=L/sina. Also,
the speed of light in the plastic is v =c/n, so the time required to travel through the plastic is

d  nL (1.20)(0.500 m) S
=4 - =3.40x107 s = [3.40 ns]
v csina (3.00 x10% m s)sin 36.1°



35.70

sin 6; sin@, sin6,/sin 6,
0.174 0.131 1.3304
0.342 0.261 1.3129
0.500 0.379 1.3177
0.643 0.480 1.3385
0.766 0.576 1.3289
0.866 0.647 1.3390
0.940 0.711 1.3220
0.985 0.740 1.3315

The straightness of the graph line
demonstrates Snell's proportionality.
The  slope

n=1.3276+0.01

and n=]1.328 £ 0.8%

of

the line

sin @ 4,

Chapter 35 Solutions

s ewater
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*36.1

*36.2

36.3

Chapter 36 Solutions

| stand 40 cm from my bathroom mirror. | scatter light which travels to the mirror and back
to me in time

0.8 m
————|~107%s
3 x 108 m/s-

showing me a view of myself as | was at that look-back time. I'm no Dorian Gray!

The virtual image is as far behind the mirror as the choir View Looking Down

is in front of the mirror. Thus, the image is 5.30 m behind South ,
the mirror. image of choir
. .. mirror \
The image of the choir is 0.800 m+5.30 m=6.10 m from A 3
the organist. Using similar triangles: h’
h _ 6.10 m or h= (0.600 m)DG.lO m 0_ 758 m Organist : L
0.600 m 0.800 m [0.800 mO r€—re— 5.30 M
0.800 m '
The flatness of the mirror is described by R = oo, " — 1 B N
f=cw,and 1/ f =0. By our general mirror equation, T i
h Y W
p q f Al T Y
- P Ty ] -
Thus, the image is as far behind the mirror as the
person is in front. The magnification is then Figure for Goal Solution
m==2 =1=0 h'=h =70.0"
=35 =1=7 S0 =h =70.

The required height of the mirror is defined by the triangle from the person's eyes to the top
and bottom of his image, as shown. From the geometry of the triangle, we see that the mirror
height must be:

hl
=h' Po_1 Thus, the mirror must be [at least 35.0" high| .

© 2000 by Harcourt, Inc. All rights reserved.
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Goal Solution
Determine the minimum height of a vertical flat mirror in which a person 5'10" in height can see his or
her full image. (A ray diagram would be helpful.)

G: A diagram with the optical rays that create the image of the person is shown above. From this
diagram, it appears that the mirror only needs to be about half the height of the person.
O: The required height of the mirror can be found from the mirror equation, where this flat mirror is
described by
R=c, f=w,and 1/f =0.
. L 1 1 1 .
A: The general mirror equation is B+a T sowith f=cw, q=-p
Thus, the image is as far behind the mirror as the person is in front. The magnification is then
= ;q =1= E
p h
SO h'=h=70.0in.
The required height of the mirror is defined by the triangle from the person's eyes to the top and
bottom of the image, as shown. From the geometry of the similar triangles, we see that the length of
the mirror must be:
O O OpO h
=hP H: hEgH h— 70.0in O in =35.0in. Thus, the mirror must be at least 35.0 in high.
%—q pO 2
L: Our result agrees with our prediction from the ray diagram. Evidently, a full-length mirror only
needs to be a half-height mirror! On a practical note, the vertical positioning of such a mirror is also
important for the person to be able to view his or her full image. To allow for some variation in
positioning and viewing by persons of different heights, most full-length mirrors are about 5’ in
length.
36.4 A graphical construction produces 5 images, with images I;

and I, directly into the mirrors from the object O, L;z\\[iil‘l //
I
\ /
and (O, I3, I4) and (I3, Iy, Is) forming the vertices of equilateral N/ ,
triangles. \/ I, M
/ o2
/
I3/‘> //
[4 / [i/ I 1
M]
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352 Chapter 36 Solutions

*36.5

*36.6

*36.7

@)

@

®)

(@)

(b)

©

The first image in the left mirror is 5.00 ft behind the mirror, or [10.0 ft| from the position of
the person.

The first image in the right mirror is located 10.0 ft behind the right mirror, but this location is
25.0 ft from the left mirror. Thus, the second image in the left mirror is 25.0 ft behind the

mirror, or |30.0 ft| from the person.

The first image in the left mirror forms an image in the right mirror. This first image is 20.0 ft
from the right mirror, and, thus, an image 20.0 ft behind the right mirror is formed. This
image in the right mirror also forms an image in the left mirror. The distance from this
image in the right mirror to the left mirror is 35.0 ft. The third image in the left mirror is,

thus, 35.0 ft behind the mirror, or {40.0 ft| from the person.

R
For a concave mirror, both R and f are positive. We also know that f= 7= 10.0cm

1 1 1 1 1 3

9 =F " p ~100cm ~400cm - 400cm @ and |a=133cm
13.3cm

M = d

b = ~200em =033

The image is 13.3 cm in front of the mirror, is |rea|, and inverted| .

101 1 1 1 1
9 =F "p ~100cm ~200cm - 200cm @ and |4=200cm
20.0cm

R b LL i
I\/I_p ~ 720.0cm _

The image is 20.0 cm in front of the mirror, is [real, and inverted]| .

1 1 1 1

g - f " p T100cm ~ 10.0cm

=0Thus, g = infinity.

|No image is formed.| The rays are reflected parallel to each other.

1 1 1 1

=f -5 ="0z;5m ~100m gives | =-0.267 m

Thus, the image is .

-0.267

—q
M= = - Toom =[0.0267]
Thus, the image is (+M) and ((\ M\<1)
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*36.8 With radius 2.50 m, the cylindrical wall is a highly efficient mirror for sound, with focal
length
=R i,
=73 =125m

In a vertical plane the sound disperses as usual, but that radiated in a horizontal plane is
concentrated in a sound image at distance g from the back of the niche, where

1 1 1 1 1 1
p Tg 7T S0 200m *g - Tzsm 9=[333m|
1.,1_2 _ 1 1
%9 @ T *5 =R gives S
2
(- 40.0 cm)
1.2 1 4 )
g = "@.0cm) ~ (30.0cm) - ~00838cem s0 q=
_ -9 _ (-12.0 cm) _
M=2%" = ~@ocm) - [040
1 .1_2 _ 1 1
b 53 =R gIves G0ocm) T g "~ ~
2
(40.0 cm)
1. 2 1 4 )
q = “(@o0cm) ~ (600cm) - 00666 cm s0 q=[-15.0 cm]
_ 4 _ (-150cm) _
M= -5 = ~®0.0cm =020

(c) Since M > 0, the images are .

36.10 (@ M= —%. For a real image, q>0 so in this case M =-4.00

g = —pM =120 cm and from ~+ =2
p q R

_ 2pg _ 2(30.0 cm)(120 cm) _
R= = = (48.0

(p+0)
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(b)

36.11  (a) 14.1:3 becomes 1. 2 - !
p g R g (60.0cm) (90.0 cm)
q=[450cm] and M=_9-_(450cm) _ —5ees @
: P (90.0 cm) :
(b) 1.1 2 becomes 1. 2 - L :
p g R g (60.0cm) (20.0cm)
a=[800em] and m=-1=-CEE - o)
' P (20.0cm) ®)
C »F 0] !
(¢) The image in (a) is real, inverted and diminished. That of Z
(b) is virtual, upright, and enlarged. The ray diagrams are

similar to Figures 36.15(a) and 36.15(b), respectively. Figures for Goal Solution
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Goal

Goal Solution

A co

an object placed in front of the mirror (a) at a distance of 90.0 cm and (b) at a distance of 20.0 cm. (¢) In

each

G:

ncave mirror has a radius of curvature of 60.0 cm. Calculate the image position and magnification of
case, draw ray diagrams to obtain the image characteristics.

It is always a good idea to first draw a ray diagram for any optics problem. This gives a qualitative
sense of how the image appears relative to the object. From the ray diagrams above, we see that
when the object is 90 cm from the mirror, the image will be real, inverted, diminished, and located
about 45 cm in front of the mirror, midway between the center of curvature and the focal point.
When the object is 20 cm from the mirror, the image is be virtual, upright, magnified, and located
about 50 cm behind the mirror.

The mirror equation can be used to find precise quantitative values.

(@) The mirror equation is applied using the sign conventions listed in the text.

1 1 2
+

£+1 :3 or = SO q = 45.0 cm (real, in front of the mirror)
p g R 90.0cm g 60.0cm

_Tq_ _45.0cm
p 90.0 cm

=-0.500 (inverted)

(b) 7+1=£ or 1 +1= 2 o) g =-60.0 cm (virtual, behind the mirror)
g R 2000cm g 60.0cm

_M =3.00 (upnght)

p 20.0 cm

The calculated image characteristics agree well with our predictions. It is easy to miss a minus sign
or to make a computational mistake when using the mirror-lens equation, so the qualitative values
obtained from the ray diagrams are useful for a check on the reasonableness of the calculated values.

36.12

36.13

For a concave mirror, R and f are positive. Also, for an erect image, M is positive. Therefore,
M=—ﬂ=4 and q = - 4p.
p

1 1

1 3 .
becomes  z5Gom = D ap T from which, p =

1
T +

o+
O

(@ g=(p+5.00 m)and, since the image must be real, M = —g— =-5
or q =5p. Therefore,p+5.00=5porp=125mandq=6.25m.

cC_Tr
2 2pq _ 2(1.25)(6.25)

AN |
From £+1=—, R 1 ‘
P q

R R=@+p - 625 +125 -[208m (concave)| . -

14—4—,

(b) From part (a), p =1.25 m; the mirror should be in front
of the object.
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36.14 (a) The image is the trapezoid a'b’d’e’ as shown in the ray diagram.

T 0r - 4L
— -
h .
Y !
y ve b
e d . {_ ..M
: | o S : 3l
: - A v :
! : !
1
X - pRr = 40.0 cm r
1 1
-< pL =60.0cm >

(b) To find the area of the trapezoid, the image distances, gz and q;, along with the heights hg
and h{, must be determined. The mirror equation,

1,.1_2 1 1_ 2 _
—+==— becomes +—= or gr =13.3cm
g R 40.0cm gg 20.0cm
O-gr O [+13.3cmQ
hg =hMg =hg—"=(10.0 cm)5—————=-3.33 cm
R R HpR H ( )D40.0 cm O
Also ! + 1-_2 or q.=12.0cm

60.0cm (¢ 20.0cm

+12.0cm_

=-2.00cm
060.0cm O

h. =hM_ =(10.0 cm)
The area of the trapezoid is the sum of the area of a square plus the area of a triangle:

A=A HA = (QR _qL)hL +§(QR ‘qL)(hR - hL) =

36.15 Assume that the object distance is the same in both cases (i.e., her face is the same distance
from the hubcap regardless of which way it is turned). Also realize that the near image
(g = - 10.0 cm) occurs when using the convex side of the hubcap. Applying the mirror
equation to both cases gives:

2 2 _300cm-p

(concave side: R=|R|, q=-30.0cm) 1_1 =< o £-= 1]
p 300 [R IR|  (30.0 cm)p
(convex side: R=-|R|, q=-10.0 cm) it __2 , 2_p-100cm 7
p 100 [R IRl (10.0cm)p
i i : 30.0cm-p
(a) Equating Equations (1) and (2) gives: o0 =p-10.0cmor p=15.0cm Thus,

her face is from the hubcap.

(b) Using the above result (p =15.0 cm) in Equation [1] gives:

2 _30.0cm-15.0cm or 2 _ 1
IR|  (30.0 cm)(15.0 cm) IRl 30.0cm

, and |R|=60.0 cm



36.16

36.17

36.18

(@)

(b)
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The radius of the hubcap is .

1,11 f= > = -1.50cm
p q f 2

_ 150 hind mi o= _[1
g=-179 M (behind mirror) M = b = |TTo

The image starts from a point whose height above the mirror vertex is given by

1. 1_1_2 1 1
—_t = = + —
R

0 q f 3.00m g 0.500m

Therefore, q=0.600 m

As the ball falls, p decreases and g increases. Ball and image pass when g, =p;. When this is
true,

1.1 1 2
+

pp P 0500m p;

or p; =1.00 m.

As the ball passes the focal point, the image switches from infinitely far above the mirror to
infinitely far below the mirror. As the ball approaches the mirror from above, the virtual
image approaches the mirror from below, reaching it together when p, =g, =0.

The falling ball passes its real image when it has fallen

3.00 m-1.00 m =2.00 m =1 gt or when t:\m = [0.6395] .

The ball reaches its virtual image when it has traversed

12(3.00 m)

3.00m-0=3.00m=2%gt? orat t= | 2>~/ = .
29 \/9.80 m/s? 0.782s

When R - o, Equation 36.8 for a spherical surface becomes q= —p(nz/nl). We use this to

locate the final images of the two surfaces of the glass plate. First, find the image the glass
forms of the bottom of the plate:

o1 = - (o 8.0 om) = -6.41 cm

© 2000 by Harcourt, Inc. All rights reserved.
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36.19

*36.20

This virtual image is 6.41 cm below the top surface of the glass or 18.41 cm below the water
surface. Next, use this image as an object and locate the image the water forms of the bottom
of the plate.

Op2 = —%%18.41 cm)=-13.84cm  or 13.84 cm below the water surface.

Now find image the water forms of the top surface of the glass.

01l
=-——-7912.0 cm) = -9.02 cm, or 9.02 cm below the water surface.

Therefore, the apparent thickness of the glass is At =13.84 cm —9.02 cm =

nq Np _Np—Ng

5 te TR =0 and R~ o
no 1

q= “n, P ~1309 (50.0 cm) =-38.2 cm

Thus, the virtual image of the dust speck is |38.2 cm below the top surface| of the ice.

i Nz _Nz—n 1.00 1.40 1.40 - 1.00

7 79 TR S0 % *t2T.0mm - 6.00mm and 00667 =

p
0.0667

They agree. The image is inverted, real and diminished.
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ny Ny _ (np-nyg)

36.21 From Equation 36.8, 3 +q— R
Solve for q to find q= nzRp
p(nz —n3) -ny R
In this case, ny =150, n;=1.00, R=-150cm, and p=10.0cm,
So q= (1.00)(-15.0 cm)(10.0 cm) 857 em
(210.0 cm)(1.00 — 1.50) — (1.50)(-15.0 cm)

Therefore, the [apparent depth is 8.57 cm| .

36.22 p=c and q=+2R
100 n, ny—1.00 —
_— = J—
p q R —\
ny=1
np _ Np-— 1.00 —
0+ g5 = s0
36.23 N, N _ (n, —ny) because 100 + 150 _ 150-100 _ 100
p q R p q 6.00cm 12.0cm
1 150 100 150
a + = or = =145.0cm
@) 2000cm g 12.0cm d g 100 100 O
H2.0cm  20.0 cmp]
1.00 150 100 150
b + = or = =1-90.0cm
®) 100cm g 12.0cm | g 100 100 O
Elz.o cm 10.0 cm%
100 150 100 150
c + = or = =1-6.00cm
© 3.00cm g 12.0cm d g 100 100 O
H2.0cm  3.00 cmp]
36.24 For a plane surface, My - M ™M pecomes q= _NaP

P q R n

Thus, the magnitudes of the rate of change in the image and object positions are related by

=nila
dt dt

Ny
ny

If the fish swims toward the wall with a speed of 2.00 cm/s, the speed of the image is given by

d 1.00
Vimage :d('j :E(ZOO cm/s) =
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36.25 %+%:% n=133 n,=100 p=+00cm R=-15.0cm

q=-9.01cm, or the fish appears to be [ 9.01 cm inside the bowl

*36.26 Let Ry = outer radius and R, = inner radius
1 ol 1. o1 1 [ 0.0500 ~
FO-DR - mRn~A0-D 260m-250emn - cm S0 f=[20.0 cm|
T
1 0l 1. o 1 1 . !
8621 @ §=0-1 &k -0~ @40 q@zoem) ~ C80emo - e |

s

1 Figure for Goal Solution

1 _ n 1 0. _
® § =0440) F8ocm) - C1Z0cm)T f=[16.4 cm]

Goal Solution
The left face of a biconvex lens has a radius of curvature of magnitude 12.0 cm, and the right face has a
radius of curvature of magnitude 18.0 cm. The index of refraction of the glass is 1.44. (a) Calculate the
focal length of the lens. (b) Calculate the focal length if the radii of curvature of the two faces are
interchanged.

G: Since this is a biconvex lens, the center is thicker than the edges, and the lens will tend to converge
incident light rays. Therefore it has a positive focal length. Exchanging the radii of curvature
amounts to turning the lens around so the light enters the opposite side first. However, this does
not change the fact that the center of the lens is still thicker than the edges, so we should not expect
the focal length of the lens to be different (assuming the thin-lens approximation is valid).

The lens makers’ equation can be used to find the focal length of this lens.

A: The centers of curvature of the lens surfaces are on opposite sides, so the second surface has a
negative radius:

1 01 10 o 1 1 0
a —-=(n-1 -—r=(1.44-100 - SO f=16.4 cm
@ = )HRl R, 0 ( Ji2.0om 180 om0

1 o 1 1 O
b) ==(0.440 - SO f=16.4 cm
(b) f ( )518.0 cm  -12.0cmU

L: As expected, reversing the orientation of the lens does not change what it does to the light, as long as
the lens is relatively thin (variations may be noticed with a thick lens). The fact that light rays can be
traced forward or backward through an optical system is sometimes referred to as the principle of
reversibility. We can see that the focal length of this biconvex lens is about the same magnitude as
the average radius of curvature. A few approximations, useful as checks, are that a symmetric
biconvex lens with radii of magnitude R will have focal length f =R; a plano-convex lens with
radius R will have f=R/2; and a symmetric biconcave lens has f=-R. These approximations
apply when the lens has n=15, which is typical of many types of clear glass and plastic.

1 1

1
*36.28 For a converging lens, fis positive. We use ) + q =7
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1 1 1 1 1 1
@ §=Ff - p ~200cm ~300cm ~ 400cm q=40.0cm

40.0

_ 9 _ _
M= -3 =-250 =[-L00]
The image is , and located 40.0 cm past the lens.
1

o L1 1 _ L o
®) g~ f " p T 20.0cm ~ 20.0cm =0[q = infinity

is formed. The rays emerging from the lens are parallel to each other.

1.1 1 __1 1 1 —
© q " f " p ~200cm ~ 100cm ~ ~20.0cm

_-q _ -200 _

M= = -Tog =[200

The image is |upright, virtual| , and 20.0 cm in front of the lens.

1 1 1 1

*36.29 (@) ¢ =F -5 ~2o0em ~ 260om  97[650cm)

The image is |real, inverted, and enlarged| .

1 1 1 1

1
® §=F " p =2B0ocm ~ 240cm q=|-600 cm|

The image is |virtual, upright, and enlarged| .

1 1 1 1 1 1
36.30 (a) ] + q =7 O (32.0 cm) + (8.00 cm) =7 S0 f=6.40cm
b _ -9 _-(8.00cm) _
® M=1"=B200cm) ~ 122250

(c) Since f >0, the lens is .
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36.31 We are looking at an enlarged, upright, virtual image:
L | _ 9 _ -284cm _
M—h -2-—p o] p=-5 =-—% = +1.42cm
1,11 i 1 1 _1
p Tq 7T gives T42cm T -28kcm T
f=
*36.32 To use the lens as a magnifying glass, we form an upright, virtual image:
M = +2.00 = — or Tyt
ST poaqa f
We elimi — —2.000: 1 11 -200+100 1
e eliminate g = -2.00p:: p "7200p “50cm  ©°F ~2.00p _150cm
Solving, p=
36.33 (a) Note that =129cm - Object
@) q p j A fo244cm
1,11 I\ F
s0 p "120-p T 244 AN
[
/
- - - - . _ 2 —
which yields a quadratic in p: pc+12.9p =315 Tmage
p i q '
which has solutions p=9.63cmorp=3.27 cm| }«—p +9=129 cm —>‘

Both solutions are valid.
Virtual f=2.44cm
(b) For a virtual image, -g=p+129cm Imageﬁ <P

t

r 1t _ 1 !

p ~129+p ~ 244 Object }

2 —!12.9 cm < \
or pc+129p =31.8 q [
from which or p = -15.0
cm.

We must have a real object so the —15.0 cm solution must be
rejected.



1
%34 (@ T+

*36.35

36.36

36.37

(b)

(b)

(@)

(@)
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11 1,1 1 S (R
g7 b T T300cm - 125cm ﬁ NN \\
_ _ 4 (300) _ : EAININ
p=28.82cm M = p T 882 3.40, upright i 0 '\
|
See the figure to the right. b

r,1_1 Ay gl
0 +q_f‘ p— +(q " = constant
: . : 2 _, dg
We may differentiate through with respect to p: -1p™ -1q ap =0
d 2
—g = _q—2 = _|\/|2

A L . _ i _ -1.80m _ _ —_q _
The image is inverted: M = h = 00240m - -75.0 = 0 q=75.0p
q+p=300m=750p+p p=(39.5 mmj

_ r_tr,t__1 1

q=296m f=p *q ~003%Bm T296m
f=

1_1 1 1 1
— 4 = + - =

q f (200cm) q (-32.0cm)
. -G,

9= "Ho.0 " 32.0H :
The image is 12.3 cm to the left of the lens.
q (-12.3 cm)
M=-=-= =10.615
p (20.0 cm) -
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(c) See the ray diagram above.
1 S

.01 10 N 1 g —
3638 (@ <=(n 1)$l RZH—(l.SO 1)55.0Cm (_12.0Cm)5 or

(b) Ray Diagram:

»
>

\
h=10.0cm

C: 1 d E
& 10.0 cm mre— pr = 20.0 cmM

«—— . =30.0cm

(c) To find the area, first find gz and q; , along with the heights hg and h], using the thin lens

equation.
i + i = 1 becomes: 1 + i = 1 or gr =40.0 cm
PR Or f 20.0cm gz 13.3cm
0- g O
ht = hMg = hi— R = (10.0 cm)(~2.00) = ~20.0 cm
Pr
! + : : q. =24.0cm

30.0cm g 133cm
h{ =hM_ =(10.0 cm)(—0.800) = -8.00 cm

- [

Thus, the area of the image is: Area = |0 —q, | hi | +3|ar — oy ||k —hi

36.39 (a) The distance from the object to the lens is p, so the image distance is q=5.00 m—p.

1 1. 1 . 1 1 1
Thus, —+==- becomes: =+ =

p q f p 500m-p 0.800m
This reduces to a quadratic equation: p? = (5.00 m)p +(4.00 m) =0
which yields | p=4.00m, or p=1.00m | .

Thus, there are two possible object distances, both corresponding to real objects.

100 m
b) For p=4.00m: g=5.00m-4.00m=100m: M=- =|-0.250] .
(6 For p g aoom - 20250
4.00 m
For p=1.00m: g=5.00 m-100m=4.00 m: M=~ = [-4.00|.

1.00m
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Both images are |rea| and inverted| , but the magnifications are different, with one being
larger than the object and the other smaller.

36.40 (a) The image distance is: q=d-p. Thus, % + é :% becomes

This reduces to a quadratic equation: p2 +(—d)p +(fd) =0

£\ d? - 4f g2
_dxy\d°-4fd d—DdD+\/‘l—fd

hich yields: ="+
which yields p 5 B0\ 2

Since f<d/4, both solutions are meaningful and the two solutions are not equal to each
other. Thus, there are two distinct lens positions that form an image on the screen.

(b) The smaller solution for p gives a larger value for ¢, with a | real, enlarged, inverted image | .

The larger solution for p describes a | real, diminished, inverted image| .

*36.41 To properly focus the image of a distant object, the lens must be at a distance equal to the focal
length from the film (g; =65.0 mm). For the closer object:
Lot pecomes -t +l= 1 and g, =(65.0 mm)DﬂD
p, 0 f 2000 mm g, 65.0 mm (2000 - 65.00
The lens must be moved |away from the film| by a distance
D =g, -q; = (65.0 mm) 2220650 mm =

2 T (2000-65.00 :

*36.42 (a) The focal length of the lens is given by
1 g1 1 o 1 1 O R
~=(n-1)=—-=—p=(153-100 - R,
f ( )ERT R, ( )E—BZ.S cm 42.5 cmE
f=-34.7cm

Note that R; is negative because the center of curvature of the first
surface is on the virtual image side.
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When p =, the thin lens equation gives q=f. Thus, the violet

image of a very distant object is formed at [q=-34.7cm| . The

image is | virtual, upright, and diminished| . '

(b) The same ray diagram and image characteristics apply for red light. F L
Again, g=f, and now

— | =

O 1 1 0O ..
:(1.51—1.00)E_32 Som 725 omp 9Ving f= .

36.43 Ray hi is undeviated at the plane surface and strikes the second surface at angle of incidence
given by
hyO_ . -1[0.500 cmO_

—_—=s5ln  ———— ~=143°
OrRO 020.0 cm O

6, =sin
0 0.500 O

Then, (1.00)sin 6, =(1.60)sin G, = (1.60)|:Q0 0 omU

SO 0, =2.29°

The angle this emerging ray makes with the horizontal is

6, - 6, = 0.860° v ¥ |

It crosses the axis at a point farther out by f; where

(= hq _ 0500 cm 333 ¢m
'“tan(e,- @) tan(0.860°) "

The point of exit for this ray is distant axially from the lens vertex by

20.0 cm — 4/(20.0 cm)? - (0.500 cm)? = 0.00625 cm

so ray h; crosses the axis at this distance from the vertex:

X1 =33.3cm - 0.00625 cm = 33.3cm

. . . 1[M2.0cmQ
Now we repeat this calculation for ray h,: 6, =sint =36.9°
P ¥ h ! [(20.0 cmO
. . 112.0007
1.00)sin 6, = (1.60)sin 6, = (1.60) —— 0, =73.7°
(L00)sin 8, = (1.60)sin 6; = (1.60) 7= 2
h, 12.0cm
=16.0cm

fr = = S
2 tan(0, - 6y) tan(36.8°)

X, = (16.0 cm)[20.0 cm ~~/(20.0 cm)? - (12.0 cm)? H=12.0cm

Now Ax=33.3cm-12.0cm =
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36.44 For starlight going through Nick's glasses, ﬁ + ﬁ :%
1 + — 1 -1 —-1.25 diopters
o (-0.800m) f
. 1 1 1
For a nearby object, —+———=-125m", so p=|23.2cm
Yy 0] p (—0.180 m) P
36.45 p=t-t it 1 400 diopters = | -4.00 diopters, a diverging lens |
f p g o 0250m
36.46 Consider an object at infinity, imaged at the person's far point:
l+1:1 £+1:—4.00m'1 q=-25.0cm
pa f e« q

The person's far point is 25.0 cm +2.00 cm =27.0 cm from his eyes. For the contact lenses we
want

11 Ll T370diopters
o (-0.270m) f

36. 47 First, we use the thin lens equation to find the object distance: E+ 1 -1
p (-25.0cm) 10.0 cm
—25.0cm
Then, p=7.14 cm and Then, M:—g:—gz
p 7.14 cm
36.48 (a) From the thin lens equation: L + L = L or p=1417cm
' " p (-25.0cm) 5.00cm :

q 25.0 cm 25.0 cm
by M=—-—-=1+ =1+ =
®) f 5.00 cm

p
. . OL OP5.0cmO_ [023.0cm 1125.0 cmU
36.49 Using Equation 36.20, M=- =- = -— 575
9= H B ¢, H 0.400 cmCH2.50 cmH
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36.50 M = Mym, = Mlé%'i)ﬂgm f, = B%E(zs.o cm) = g'_llié) 525.0 cm) =
e

36.51 f, =20.0m f,=0.0250 m
(@) The angular magnification produced by this telescope is: m = —:—0
e

(b) Since m<0, the image is .

=|-800



*36.52 (a)

(b)

©

*36.53  (b)

(@)

©
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The lensmaker's equation % + 1 :%
. 1 1 fp
gives q= = =
Lf-1p -fO0 p-f
fp
Then, M:E:—g:_ f
h p p-f
. hf
ives h' =
g —p
hf
For p>>f, f-p=-p. Then, h' = _F )

Suppose the telescope observes the space station at the zenith:

,__hf _(108.6 m)(4.00 m)

Call the focal length of the objective f, and that of the eyepiece —\ fe\. The distance between
the lenses is f, —|f,|. The objective forms a real diminished inverted image of a very distant

object at q; = f,. This image is a virtual object for the eyepiece at p, = | f,|.

For it 1+lzé becomes L +1: L , i:0
p f _‘ fe‘ q _‘ fe 0z

and g =

The user views the image as . Letting h’

represent the height of the first image, 6, =h'/f, and \/\
=h' fe\- The angular magnification is \ \90 H >JL ¢h
|f \ _fo

Here, f, —|f,/=10.0 cm and ];0 =3.00. \W
[ Fe
and %f,=10.0 cm. g :
3. OO

f,=
|fo|=5.00 cm and fo=[-5.00cm]

m=2 -
6,

Thus, |fe| =
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*36.54

36.55

36.56

Let I, represent the intensity of the light from the nebula and 6, its angular diameter. With
the first telescope, the image diameter h' on the film is given by 6,=-h'/f, as
h' = -6,(2000 mm).

The light power captured by the telescope aperture is P; = 15A; = Io[n(ZOO mm)2/4], and the
light energy focused on the film during the exposure is E; = P;t; = Io[n(ZOO mm)2/4](1.50 min).
Likewise, the light power captured by the aperture of the second telescope is
P, = 1A, = Io[rr(G0.0 mm)2/4] and the light energy is E, = Io[rr(G0.0 mm)2/4] t,. Therefore, to
have the same light energy per unit area, it is necessary that

1o 7(60.0 mm)* 4]t, 1] (200 mm)* 4(1.50 min)

nleo(goo mm)? /4] ) nleo(zooo mm)? /4J

The required exposure time with the second telescope is

2 2
t, = (L0 GO0 My g i) -

(60.0 mm)?(2000 mm)

Only a diverging lens gives an upright diminished image. The image is virtual and

d=p-of=p+aq: M= -3 so gq=-Mp and d=p-Mp

p
_d 11 1 _ 1 1 -M+1  (1-M)?
P=T-™m - p Tq T TP "IMp T —Mp T —™d
-Md _ —(0.500)(20.0 cm)

=aom? © T a-05002 = [z 40.0cm|

If M < 1, the lens is diverging and the image is virtual.  d=p-g=p+q

M:—% SO = -Mp and d=p-Mp
_d 11 1 1 1 _-M+1 _@-M? | -Md
P=T-M " p+q_f_p+—Mp_—Mp - —-Md T (1-M)?

If M > 1, the lens is converging and the image is still virtual.

Md

Now d=-g-p. We obtain in this case f= (M — 1)2




*36.57

*36.58 (a)

(b)
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Start with the first pass through the lens. Lens Mirror

\
1 1 1 |

_ . \
w - f 800cm ~ 100cm g1 = 400 cm to right of lens \‘

For the mirror, p2 =-300 cm |

. L 1 | 1.00 m |
@ % ~ ps _ “B00cm ~ —300cm %= ~60.0cm
For the second pass through the lens, pz = 160 cm

1 1 1

93 fH ~ps _80.0cm ~ 160cm

gz = [160 cm to left of lens

Mq = q—l = 400 cm — 4.00 Mo = q_2 _ -60.0cm _ 1
to P 100em T 27 7p, T T-300cm T 75
_ 93 _ 160cm _ ~ B

Ms = “ps ~ ~160cm -1 M = M1M;Mj3 = |-0.800

Since M < 0 the final image is .

1 0
— = =(166-1 -
“e5.00m )B50.0 em R, 0
w0 I o Ry=[zim]
R, 50.0cm 42.9cm

The distance along the axis from B to A is

Ry - Jm = 50.0 cm - | (50.0 cm)? — (2.00 cm)? = 0.0400 cm

Similarly, the axial distance from C to D is

23.1cm —\f(23.1 cm)? —(2.00 cm)? =0.0868 cm

Then, AD =0.100 cm —0.0400 cm +0.0868 cm = {0.147 cm| .
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1 1 1
~ 5, ~T00cm " 125cm SO g1 = 50.0 cm (to left of mirror)

*36.59 i = i
' g  f

This serves as an object for the lens (a virtual object), so

1 1 1 1

9 f ~p2 -16.7cm ~ —-25.0cm

g2 = —50.3 cm (to right of lens)

Thus, the final image is located [25.3 cm to right of mirror| .

M. = q _ 50.0cm 4.00
1= 7p; T T125cm T ™
_ 92 _ -50.3cm

M, = o, T -~ 350cm = -201

M=M1M2=m

Thus, the final image is |virtual, upright] , 8.05 times the size of object, and 25.3 cm to right of

the mirror.
36.60 We first find the focal length of the mirror.
11,1 1 1 _ 0 ; o
f=p *q ~ 100cm * 800cm - 400cm an =4.44.cm
H €0 = 20,0 1 1 1 _ 1 1 1556
ence, irp=2s0Ucm. 4 =F “p “%44cm ~ 200cm _ 888cm

Thus, q= , real

36.61 A hemisphere is too thick to be described as a thin lens. aijr |
The light is undeviated on entry into the flat face. We
next consider the light's exit from the second surface, for
which R =-6.00 cm

The incident rays are parallel, so p = o.

ng Ny _np—ng 1 _ (1.00 -1.56) —
Then, b + T TR becomes 0+ q = —600cm and |q=10.7cm
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*36.62 (a) 1=— = OW 140 kw/m?

amr? 4n(1.60 x 1072 m)2

P 4.50 W

b) |= == =16.91 mw/m?
®) amr®  47(7.20 m)? /
(©) 1,11 0 LR S so q=0.368 m and
p q f 7.20m g 0.350m
h' q 0.368 m
= =-1=- h' = -0.164 cm
3.20 cm p 7.20 m

(d) The lens intercepts power given by P =IA= (6.91><10_3 W/mz)[% 7{0.150 m)z]

6.91x107 W/m? [ 15.0 cm) 4]
( / )n( [58.1 w/m’]
1(0.164 cm)®

>\v

and puts it all onto the image where | =

fip1 (=6.00 cm)(12.0 cm)

36.63 From the thin lens equation, q; = b, —f ~12.0cm—(-6.00cm) — —-4.00 cm
When we require that g, - o, the thin lens
equation becomes p, = fy; Ffi
In this case, p> =d - (-4.00 cm) ’v/ “’r\
—
Therefore, ~ d+4.00 cm = f, = 12.0 cm E /
and d=
*36.64 (a) For the light the mirror intercepts, P=1,A= IonRg
350 W = (1000 W/mz)nR§ and R, = [0.334 m or larger
1 . 1_1_2 R
b) In=+====— we have -0 S0 (=—.
(b) o1 f R p— e s0q=3
h__q RO Orradf1_ (R
M=—=-= S0 h'=-qg(h/p) = - == %.533° =---"19.30 mrad
h™ p o) O2 D@ O180° CH ng( )

where h/p is the angle the Sun subtends. The intensity at the image is then

__P 4I07TR2 41,R?
mh?4 ' (Rj) (9.3o><10‘3 rad)2
16(1000 W/m?|RZ
120x10° W/m? = ( m) 2 S0 Ra ~ 0.0255 or larger
R2(9.30x107° rad) R

© 2000 by Harcourt, Inc. All rights reserved.
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36.65

36.66

For the mirror, f =R/2 =+1.50 m. In addition, because the distance to the Sun is so much

larger than any other figures, we can take p = . The mirror equation,

1 1 1 .
D + T =7 then gives q=f={1.50 m]|.

. q h’ e . h
Now, in M = ) =T the magnification is nearly zero, but we can be more precise: 3

the angular diameter of the object. Thus, the image diameter is

. hg _ o HTT g _ B
h'= -5~ =(-0533°) gg rad/deg{J(150 m) = -0.140m =

. 1 01 10
a) The lens makers' equation, = =(n-1 - — becomes:
€Y q : ( )a Rzg

! :(n—l)D L L B ivin n=|(199
5.00 cm .00cm (110 cm)g grving —

(b) As the light passes through the lens for the first time, the thin lens equation

1.1_1 . 1 1_ 1
—+ === becomes: +—=
pr g f 8.00cm qg; 5.00cm
or g;=13.3cm, and Mlz—ﬂ:—l‘g'scm:— .67
p; 8.00 cm
This image becomes the object for the concave mirror with:
Pm =20.0cm-g; =20.0cm -13.3cm =6.67 cm, and f = % =+4.00 cm.
. . 1 1 1
The mirror equation becomes: +—=
6.67cm ¢, 4.00cm
giving 0, =10.0cm  and M, = O __10.0cm _ -150
Pm 6.67 cm

is

The image formed by the mirror serves as a real object for the lens on the second pass of the

light through the lens with:
p3 =20.0 cm —q,, = +10.0 cm

1 1 1
+

10.0cm gy 5.00 cm

The thin lens equation yields:

or g; =10.0cm, and M3:—q—3:—10'0 ‘M _ _1.00.
P3 10.0cm
The final image is a real image located [10.0 cm to the left of the lens] .

The overall magnification is Miotar = M{M, Mg = .

(c) Since the total magnification is negative, this final image is .



36.67

36.68

(@)

(b)

©

In the original situation,
In the final situation,

and

Our lens equation is

Substituting, we have

Adding the fractions,

Simplified, this becomes

Chapter 36 Solutions 375

p1+0:=150m

p2 =p1 +0.900 m

g2 =Q; — 0.900 m.

P1 J1

p1 TT50m-p; p;+0.900 T0.600-p;

1.50 m-p1 +p1 _ 0.600 — p1 + p1 + 0.900
p1(1.50 m —p;) ~ (p1 + 0.900)(0.600 - p1)

p1(1.50 m — p;) = (p1 + 0.900)(0.600 — py)

P2 =py +0.900 = [1.20 m]
1 1 1

T S0300m T1.50m-0.300m

) ) - — ) 92 _
The second image is [real, inverted, and d|m|n|shed| , with M = o, Lo 0.250

As the light passes through, the lens attempts to form an image at distance g; where

1.1 1 or g = P
@ fop pr—f

This image serves as a virtual object for the mirror with p, =-qg;. The plane mirror then
forms an image located at g, = —p, = +q; above the mirror and lens.

This second image serves as a virtual object (p; = —q, =—q;) for the lens as the light makes a
return passage through the lens. The final image formed by the lens is located at distance g3
above the lens where

1.1 1_1,1_1 p-f_2p~f =P

g3 f p3 f oo f fp fp 2p - f

If the final image coincides with the object, it is necessary to require g3 =p;, or 2; P1 ; =py.
.-

This yields the solution or |the object must be located at the focal point of the lens | .

© 2000 by Harcourt, Inc. All rights reserved.
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36.69

36.70

36.71

(@)

(b)

©

(@)

(b)

For the objective: 1 + 1.1 becomes _ +E -1 so q=25.5mm
p q 3.40mm q 3.00 mm
The objective produces magnification M;=-q/p= _25.5mm _ -7.50
3.40 mm

m. = 25.0cm _ 25.0cm -10
¢ f 2.50 cm

and overall M =Mm, =

For the eyepiece as a simple magnifier,

Start with the second lens: This lens must form a virtual image located 19.0 cm to the left of it
(i.e., g, =-19.0 cm). The required object distance for this lens is then

0= G2fe _ (~19.0 cm)(20.0 cm) _ 380 cm
27 q,-f, -19.0cm-20.0cm  39.0

The image formed by the first lens serves as the object for the second lens. Therefore, the
image distance for the first lens is

380 cm _1570 cm

=50.0cm-p, =50.0cm —
. P2 39.0 39.0

The distance the original object must be located to the left of the first lens is then given by

= = = or ——— =|13.3cm
pp f; g 100cm 1570cm  1570cm 1570 cm PL="118 [13.3 om|

- _0 q0 g, 0_01570 cmr) 118 ~19.0 cm)(39.0)0_ —
M= MM =50 H 5, BB 300 DﬂS?Ocm%( 380cm o

O
Since M <0, the final image is .

1 1 1 1 390 _157-39.0_ 118 _ 1570 cm _

p=t 1yt 1 Ll 26 diopters
q (0.0224m) o

f p

p:E:E+1:;+i: 3.03 diopters
f p q (0.330m) o



36.72

36.73

(@)

(b)

©

The object is located at the focal point of the upper mirror.
Thus, the upper mirror creates an image at infinity (i.e.,
parallel rays leave this mirror).

The lower mirror focuses these parallel rays at its focal point,
located at the hole in the upper mirror. Thus, the

image is real, inverted, and actual size| .

For the upper mirror:

1 1 1 1 1 1 S
+==— 0 t—= P Q=
p q f 7.50cm ¢ 7.50cm
For the lower mirror:
1 + 1 ! g, =7.50 cm

w g, 7.50cm’

Light directed into the hole in the upper mirror reflects as
shown, to behave as if it were reflecting from the hole.

Lens one:

1, 1_ 1
40.0cm g, 30.0cm’

g; =120 cm

Chapter 36 Solutions

377

Mlz—i=—120 cm - 300

Py 40.0 cm
This real image is a virtual object for the second lens, at
p, =110 cm -120 cm = -10.0 cm
1 1 1

— - +==—= =[20.0 cm
-100cm g, -20.0cm 2

M % __ 20.0 cm — 4200
" p,  (-10.0cm)

Ivloverall = MlMZ =
Moveran <0, so final image is .

S S
-100cm g, 20.0cm

= +0.667

Lens two converging:

_ 6.67cm
(-10.0 cm)

Moverann = MM, =
Again, Mgyera <0 and the final image is .

2:

© 2000 by Harcourt, Inc. All rights reserved.
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37.1

372

373
@)
(b)

374
(@)
(b)
©

Chapter 37 Solutions

AL (632.8 x 1079)(5.00)

i = = e IORD) -
AL yd _(340x107 m)(5.00x107* m)
yb,ight:Fm Form =1, A:T: 330

Note, with the conditions given, the small angle

approximation does not work well. That is, sin 6, tan 6, and 6
are significantly different. The approach to be used is
outlined below.

h _ . _400m
At the m = 2 maximum, tan 6= T000m - 0.400

_dsin@ (300 m)sin 21.8°

& 2L T

The next minimum encountered is the m = 2 minimum; and at that point,

6=21.8°so A

dsin 6= %n +%A which becomes dsin 6= %/\

g 5A _ 5657 m)
or  SINE= 24 = 2(300m)

S0 y = (1000 m) tan 27.7° =524 m

=0.464 and 6=27.7°

Therefore, the car must travel an additional .

Az M m

f 2000/s
dsin 8=mA S0 (0.300 m) sin 8= 1(0.177 m) and
dsin 6=mA SO d sin 36.2° = 1(0.0300 m) and
(1.00 x 10" m) sin 36.2° = 1A SO A =590 nm

¢ _ 3.00x10°m/s

f= — = ——— =|508 THz
N T sooxioTm " (208 THZ

© 2000 by Harcourt, Inc. All rights reserved.
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o~

06
+
=)

For the tenth minimum, m = 9. Using Equation 37.3, sin 8=

Also, tan 9:% . For small 6, sin 8= tan 6. Thus,

950  95AL _ 9.5(589 x 10° m)(2.00 m)

— -3 —
sing ~ Y 7.26x10° m = 154> 107 m =154 mm

Goal Solution

Young's double-slit experiment is performed with 589-nm light and a slit-to-screen distance of 2.00 m.

The

tenth interference minimum is observed 7.26 mm from the central maximum. Determine the

spacing of the slits.

G:

For the situation described, the observed interference pattern is very narrow, (the minima are less
than 1 mm apart when the screen is 2 m away). In fact, the minima and maxima are so close
together that it would probably be difficult to resolve adjacent maxima, so the pattern might look
like a solid blur to the naked eye. Since the angular spacing of the pattern is inversely proportional to
the slit width, we should expect that for this narrow pattern, the space between the slits will be larger
than the typical fraction of a millimeter, and certainly much greater than the wavelength of the light

(d >> A =589 nm).

Since we are given the location of the tenth minimum for this interference pattern, we should use
the equation for destructive interference from a double slit. The figure for Problem 7 shows the
critical variables for this problem.

In the equation dsing= (m +%)A ,

The first minimum is described by m =0 and the tenth by m=9: sin@ = %(9 +%)

Also, tan@=y/L, but for small 8, sin@=tan8. Thus, d= 9_':;”; - 9.5L
si y

_ 9.5(5890- 10 *° m)(2.00 m)

726,103 =154-10"* m=154 mm =154 mm
.20 m

d

The spacing between the slits is relatively large, as we expected (about 3 000 times greater than the
wavelength of the light). In order to more clearly distinguish between maxima and minima, the
pattern could be expanded by increasing the distance to the screen. However, as L is increased, the
overall pattern would be less bright as the light expands over a larger area, so that beyond some
distance, the light would be too dim to see.




*37.6

37.7

(@)

(b)

)= 340 m/s
= 2000z - o0m
Maxima are at dsin 8=mA:
m=20 gives 6=0°
_ . . _A _0170m _ .
m=1 gives sin 6= d ~0350m 6=29.1
. . 2A
=2 gives sin 0= g = 09711 6=176.3°
=3 gives sin 8= 1.46 No solution.
Minima at d sin 6= fmn + %E/\:
. . A
m=20 gives sin 6= 2d =0.243 6=14.1°
. . 3A
m=1 gives sin 0= 5q =0.729 0=46.8°
m =2 gives No solution.

Chapter 37 Solutions 3

So we have maxima at 0°, 29.1°, and 76.3° and minima at 14.1° and 46.8°.

For the bright fringe,

_mAL
Ybright = a4

where

-9
y= (461X mA20M) _, oo 108 1y =

0.250x107° m

For the dark bands, Yy,

_y, Aty 100
Yo~ VY1 q 20

AL

+

10

d a““zm’

m=0,123,...

1M AL (1)= (546.1x107° m)(1.20 m)
20H d 0.250x10° m

© 2000 by Harcourt, Inc. All rights reserved.

J

L=120m
 d =0.250m
Source| ||
| —]
Fow Fow P
T e -
£TF T G
—=| I} |
I —-

Figures for Goal Solution



4 Chapter 37 Solutions

Goal Solution

A pair of narrow, parallel slits separated by 0.250 mm is illuminated by green light (A =546.1 nm). The
interference pattern is observed on a screen 1.20 m away from the plane of the slits. Calculate the distance
(a) from the central maximum to the first bright region on either side of the central maximum and (b)
between the first and second dark bands.

G: The spacing between adjacent maxima and minima should be fairly uniform across the pattern as
long as the width of the pattern is much less than the distance to the screen (so that the small angle
approximation is valid). The separation between fringes should be at least a millimeter if the pattern
can be easily observed with a naked eye.

O: The bright regions are areas of constructive interference and the dark bands are destructive
interference, so the corresponding double-slit equations will be used to find the y distances.

It can be confusing to keep track of four different symbols for distances. Three are shown in the
drawing to the right. Note that:

y is the unknown distance  from the  bright central maximum
(m = 0) to another maximum or minimum on either side of the center of the
interference pattern.

A is the wavelength of the light, determined by the source.
A (a) Forverysmall 6 sin f=tan 6 and tan 6=y/L
and the equation for constructive interference sin@=mA/d (Eq. 37.2)

becomes Ybright = (/\L/d)m (Eq. 37.5)

_ (546 x107° m)(1.20 m)

Substituting values, Ybright = 0.250 x 103
.250 x m

(1) =2.62 mm

(b) If you have trouble remembering whether Equation 37.5 or Eq. 37.6 applies to a given situation,
you can instead remember that the first bright band is in the center, and dark bands are halfway
between bright bands. Thus, Eq. 37.5 describes them all, with m=0, 1, 2. .. for bright bands, and
with m=0.5, 1.5, 2.5. .. for dark bands. The dark band version of Eq. 37.5 is simply Eq. 37.6:

ydark = %(m + %)

BY ok = (1+%)%—(0+%)%" = %" =2.62 mm

L: This spacing is large enough for easy resolution of adjacent fringes. The distance between minima is
the same as the distance between maxima. We expected this equality since the angles are small:

6 =(2.62 mm)/(1.20 m) =0.00218 rad = 0.125°

When the angular spacing exceeds about 3°, then sin 8 differs from tan 8 when written to three
significant figures.




37.8

37.9

37.10

37.11

(@)

(b)

Chapter 37 Solutions 5

Taking m =0 and y = 0.200 mm in Equation 37.6 gives

Cark
_3 -3 . { Dk

L= 20y _ 20400x107 m)(©200x207 m) _ ) bzmm | "I
A 442x107° m P— Bright

! [hark

L=136.2cm |~ L o Dhark:

Geometric optics incorrectly predicts bright regions opposite
the slits and darkness in between. But, as this example shows,
interference can produce just the opposite.

Location of A = central maximum,

Location of B = first minimum.

AL 10 1AL
So, AY =[Ymin _ymax]zTS)"'ED—O 257 =20.0m

AL (3.00 m)(150 m)
Thus, d= = = [11.3
1 2(20.0 m) 40.0 m

At 30.0°, dsin@=mA
(3.20 x10™* m) sin 30.0°= m(500 x 107° m) SO m = 320

There are 320 maxima to the right, 320 to the left, and one for m = 0 straight ahead.

2, . 2,y
=—dsin8=—d —
Q@ 3 sin 3 900

2 -4 . °
=— = _ (1.20x10"" m)sin{0.500 | = -13.2 rad
¢ (5.00x1077 m)( ) ( )

27

4 [5.00x1073 mO
= (120x10*m = -6.28 rad
?= oox1077 m)( A 120m H

© 2000 by Harcourt, Inc. All rights reserved.
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2mdsin 6 _1E(5 00x10~" m)(0.333 rad)%

c) If =0.333rad= , f=sin"
© Ife A E 0 2ml20x10°m)

6={1.27x1072 deg

O 7 O
(d) If dsinO:A, B:Sin_lmiD sm‘lBleo—T
4 Md0™ " #(120x107 m)

6={5.97x107? deg

37.12 The path difference between rays 1 and 2 is: o =dsin 6; —dsin 6,

For constructive interference, this path difference must be equal to an integral number of
wavelengths: dsin 8; —dsin 8, =mA, or

| d(sin 8, —sin 6,) =mA |

37.13 (a) The path difference é =dsin 8 and when L>>y

yd _(1.80x1072 m)(1.50 x10™* m) 6
o=2-= =1.93x107% m =[1.93 pm
3 20 m
5 1.93x107%m
by S—=="""=—" =300, or [60=3.00A
®) A 643x10"' m

(c) Point P will be a since the path difference is an integer multiple of the

wavelength.

|
3714 (@) — 20052%@ (Equation 37.11)

|max

| 172
Therefore, @=2cos™ a—g =2 cos™ (0.640)*/2 = [1.29 rad
max

(486 nm)(1.29 rad)

A
O o=52 = I
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, O sin 6
G——10

37.15 lay =1 coS
av max A |:|

For small 6, sin 6= % and Iz = 0.750 Imax

_ AL ilav 2
y= d Dmaxl]

6.00 x 1077)(1.20 m 1 19.750 I max 172
— 1

n(2.50><10‘3 m cos™ 3 I 0 = (48.0 pm

37.16 1= e coszg’%‘jg
Tr(6.00x 107 m)(1.80x 107 m) Ll
—— =cos?U - C=[0.987
I max q (6563x107° m)(0.800m) |

37.17 (a) From Equation 37.8,

(p:ZNdsin 9:27Td o y
A A \/y2+D2

_2myd _ 27(0.850x107 m)(2.50x107* m)
©AD  (600x107° m)(2.80m)

2 mrd . 2Q
- cos @Tsmeg ) CosE

T md " cos2
max cosz%sm 9max§ cos mrt

_ 2@ 2007.95rad_
—— =C0S 2—cos O 2 O 0.453

Imax

- [ro5rad

(b)

© 2000 by Harcourt, Inc. All rights reserved.
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Goal

Goal Solution

Two

narrow parallel slits separated by 0.850 mm are illuminated by 600-nm light, and the viewing screen

is 2.80 m away from the slits. (a) What is the phase difference between the two interfering waves on a
screen at a point 2.50 mm from the central bright fringe? (b) What is the ratio of the intensity at this point

to th

e intensity at the center of a bright fringe?

G: Itis difficult to accurately predict the relative intensity at the point of interest without actually doing
the calculation. The waves from each slit could meet in phase (¢=0) to produce a bright spot of
constructive interference, out of phase (¢ =180°) to produce a dark region of destructive interference,
or most likely the phase difference will be somewhere between these extremes, 0< ¢<180°, so that
the relative intensity will be 0<1/l,,, <1.

O: The phase angle depends on the path difference of the waves according to Equation 37.8. This phase
difference is used to find the average intensity at the point of interest. Then the relative intensity is
simply this intensity divided by the maximum intensity.

A: (@) Using the variables shown in the diagram for problem 7 we have,

0 O 2710.850- 10" m (0.00250

(p=2—ndsin9=2nd : y 2nyd: ( 5 nj( ) =7.95 rad =27+ 166 rad = 95.5

A A @WZ +|_2§ AL (600- 10°° m (2.80 )

oOmd . 20
cos %sm 9@ cos” =&

(b) - A =— 2 :COSZEIQB: cos? 225 _ (452

max coszgn—dsin 9max§ cos”(m) 2 t2

A

L: It appears that at this point, the waves show partial interference so that the combination is about half
the brightness found at the central maximum. We should remember that the equations used in this
solution do not account for the diffraction caused by the finite width of each slit. This diffraction
effect creates an “envelope” that diminishes in intensity away from the central maximum as shown
by the dotted line in Figures 37.13 and P37.60. Therefore, the relative intensity at
y = 2.50 mm will actually be slightly less than 0.452.

37.18 (a) The resultant amplitude is

E, =g sin wt +Ey sin(wt + @) + Ey sin(wt +2¢), where (p:ZA—ndsin 6.
E, =E (sin wt +sin wt cos @+ cos wt sin @+ sin wt cos 2@+ cos wt sin 2(p)
E, = Ey(sin wt)(1+ cos @ +2 cos? (p—l) +Ey(cos at)(sin ¢+ 2 sin ¢ cos ¢)

E, = Eg(1+2 cos @)(sin wt cos @+ cos wt sin @) =Ey(1+2cos @) sin (ak + @




(b)

*37.19 (a)

(b)

©
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2010

Then the intensity is 10 Er2 = Eg (1+2cos @) o0

where the time average of sinz(wt+ @) is 1/2.

From one slit alone we would get intensity |, O EZ 0L

so [1=1 +2005é!M
OEQD ~ 'max A

Look at the N = 3 graph in Figure 37.13. Minimum intensity is zero, attained where
cos ¢=-1/2. One relative maximum occurs at cos ¢ =-1.00, where | =1,,,.

The larger local maximum happens where cos ¢ = +1.00, giving | =9.00 I,.

The ratio of intensities at primary versus secondary maxima is .

We can use sin A+sinB=2sin(A/2+B/2)cos(A/2-B/2) to find the sum of the two sine
functions to be

E; +E, =(24.0 kN/C)sin(15x — 4.5t + 35.0°) cos 35.0°

E, +E, =(19.7 kN/C) sin(15x - 4.5t +35.0°)
Thus, the total wave has amplitude |19.7 KN/C| and has a constant phase difference of

from the first wave.

In units of KN/C, the resultant phasor is

y <\kx- wt
E2

Eg =E; +E,=(12.0i)+(12.0 cos 70.0°i +12.0 sin 70.0°) ) = 16.1i +11.3] Er
70.0°
Eg =+/(16.1)2 +(11.3)? at tan"(11.3/16.1) = [19.7 KN/C at 35.0° E: X
Er =12.0 cos 70.0°i +12.0 sin 70.0°j v
kx - at
+15.5¢0580.0°i —15.55in80.0°j A\ N
E2

E
+17.0 cos 160°i +17.0 sin 160°j .

=] Q X

Er =—-9.18i +1.83j = (9.36 KN/C at 169°

The wave function of the total wave is Ep =(9.36 kN/C)sin(15x - 4.5t +169°)

© 2000 by Harcourt, Inc. All rights reserved.
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37.21

37.22

Chapter 37 Solutions

(b)

©

(d)

Ep = 2.88E, sin(wt +0.349)

Er = Eo[i +(i cos 60.0° +j sin 60.09) +(i cos120°+j sin 120°)|

Er = Eo[100i +173j] =2.00E, at 60.0°= [2.00E, at 77/3 rad|

Ep =2.00E,sin(wt + 17/3)

Eg = Eo[i + (i cos 120° +j sin 120°) +(i cos 240° +j sin 240°)]

Eg = E[0i +0j] = [0]

Ep =0

Eg = Eo[i +(i cos 372 +j sin 3772) +(i cos 37r+j sin 371)]

Eg = Eo[0i —1.00]] = E, at 270° = [ E; at 377/2 rad

Ep = Egsin(wt +377/2)

Er = 6.00i +8.00j =/(6.00)% +(8.00)? at tan™(8.00/6.00)

Er =10.0 at 53.1°=10.0 at 0.927 rad

Ep =|10.0sin (100 71t +0.927)

If E; =Eyp sin wt and E, = Eyg sin(wt + ¢, then by phasor addition,

the amplitude of E is
_ | 2 Y
Eo = (Eso +Ep €05 @) +(Epo Sin @” =

and the phase angle is found from

E1 X

E1 X

m
&

Er E2

8.00
2
6.00 X

\555102 + 2E;oEyq COS @+ Egy®

sing = E20 SN

0




37.23

37.24

37.25

37.26

37.27

Chapter 37 Solutions 11
Eg =12.0i +(18.0 cos 60.0°i +18.0 sin 60.0°j ) .
Eg =21.0i +15.6j =26.2 at 36.6° :
Ep = | 26.2sin(wt +36.6°) BT, <
Constructive interference occurs where m=0, 1, 2, 3, ..., for
R 7TX, g [RTX, g 27(X1 —X,) , O 10
=-2mft+—_- =2nft+——_=2mm ———4~ 4+ ——-—"=271m
oA 60 O A s A Us 8O
(Xl _X2) 1 1 1 |:|
ML P/ - T =m Xy — Xy = -— m=0,123, ...
A 12 16 1o a“ 280l
See the figure to the right: \
o7
wt
E3 =E? +E2 - 2E,E, cos B, where =180 - g.
Since 1 OE?,
Ig =[ 13+ 1, +2y/I11, cos @
Take | ¢@=360°/N where N defines the 'y
number of coherent sources. Then,
The N =6 case
N
. 360° 360°
Er = ) Eysin(wt+me)=0 = = =60.0°
R mz:1 0 ( €0) N 5

In essence, the set of N electric field
components complete a full circle and return
to zero.

© 2000 by Harcourt, Inc. All rights reserved.



12 Chapter 37 Solutions

*37.28 Light reflecting from the first surface suffers phase reversal. Light reflecting from the second
surface does not, but passes twice through the thickness t of the film. So, for constructive
interference, we require

An
- t2t= An
. . . An A
where Ap = ol the wavelength in the material. Then 2t= T

A=dnt=4x133x115 nm = [612 nm|

3729 (a) The light reflected from the top of the oil ir \///

film undergoes phase reversal. Since 1.45 >
1.33, the light reflected from the bottom ail f
undergoes no reversal. For constructive -
interference of reflected light, we then have

water \
L |

1 2nt 2(1.45)(280 nm
Znt:%ﬂ+§]A or Am: — ( )( )
0 Lo h + 1n
&+ 70 2"
Substituting for m, we have m = 0:Ag = 1620 nm (infrared)
m=1: A1 =541 nm (green)

m = 2: A, = 325 nm (ultraviolet)

Both infrared and ultraviolet light are invisible to the human eye, so the dominant color in

the reflected light is .

(b) The dominant wavelengths in the transmitted light are those that produce destructive
interference in the reflected light. The condition for destructive interference upon reflection

is

2nt =mA or Am:@:812nm
m m

Substituting for m gives: m =1, A1=812 nm (near infrared)

m =2, A, =406 nm (violet)
m =3, A3=271nm (ultraviolet)

Of these. the only wavelength visible to the human eye (and hence the dominate wavelength
observed in the transmitted light) is 406 nm. Thus, the dominant color in the transmitted

light is .
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37.31
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Since 1 < 1.25 < 1.33, light reflected both from the top and from the bottom surface of the oil
suffers phase reversal.

L . _ MAcons
For constructive interference we require t=—p—
@ﬂ * 75\ des
and for destructive interference, 2t= -
Acons 1 640nm 3
Then Fy 1+5 E1onm -~ 125 and m =
2
2(640 nm
Therefore, t :ﬁ =
. . N . 1A
Treating the anti-reflectance coating like a camera-lens coating, 2t= %n oo
A 3.00 cm
Letm =0: t= =

m - m =10.500 cm

This anti-reflectance coating could be easily countered by changing the wavelength of the
radar—to 1.50 cm—now creating maximum reflection!

10 10A
2nt:a¢|+f o) :§n+77
2[(‘ 2002n

. (11(500 nm)
Minimum t= ——~—*=196.2 nm
pO 2(1_30) -

Since the light undergoes a 180° phase change at each surface of the film, the condition for
constructive interference is 2nt=mA, or A =2nt/m. The film thickness is

t=1.00%10"° cm =1.00 x10~" m =100 nm. Therefore, the wavelengths intensified in the
reflected light are

)= 2(1.38)(100 nm) _ 276 nm where m=1 2 3, ...
m m
or A=276 nm, A, =138 nm, . ... All reflection maxima are in the ultraviolet and beyond.

No visible wavelengths are intensified.

© 2000 by Harcourt, Inc. All rights reserved.
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*37.34 (a) For maximum transmission, we want destructive interference in the light reflected from the
front and back surfaces of the film.

If the surrounding glass has refractive index greater than 1.378, light reflected from the front
surface suffers no phase reversal and light reflected from the back does undergo phase
reversal. This effect by itself would produce destructive interference, so we want the distance
down and back to be one whole wavelength in the film: 2t=A/n.

A 656 3 nm
=—=—"——=1238nm
2n  2(1.378) = [238 nm|
(b) The filter will expand. As t increases in 2nt=A, so does |A increase|.

(c) Destructive interference for reflected light happens also for A in 2nt = 2A,

or A =1.378(238 nm) = (near ultraviolet) .

37.35 If the path length A = A, the transmitted light will be bright. Since A=2d = A,

37.36 The condition for bright fringes is
2t+%:m% m=123, ... o\ r
From the sketch, observe that I )A/I;t
1 cosG El ZEZZD?SZ R >

2
The condition for a bright fringe becomes LS gn —EDA.

R 20n
Thus, for fixed mand A, nr? = constant.
2 2 (150 Cl’ﬂ)2
Therefore, Njiguiaff = Nairfi and Njiquia = (1.00)———%5 = [1.31

(131cm)?



Chapter 37 Solutions 15

37.37 For destructive interference in the air, 2t = mA. :
|
For 30 dark fringes, including the one where the |:|_'y E— —"—-—I
plates meet,

29(600 nm) e
t= ———— =870x10°m

Therefore, the radius of the wire is

d _870um

r=7 == — =[435um]

Goal

Solution
An air wedge is formed between two glass plates separated at one edge by a very fine wire as shown in
Figure P37.37. When the wedge is illuminated from above by 600-nm light, 30 dark fringes are observed.
Calculate the radius of the wire.

G: The radius of the wire is probably less than 0.1 mm since it is described as a “very fine wire.”

O: Light reflecting from the bottom surface of the top plate undergoes no phase shift, while light
reflecting from the top surface of the bottom plate is shifted by 7, and also has to travel an extra
distance 2t, where t is the thickness of the air wedge.
For destructive interference, 2t=mA (m=0, 1, 2, 3, ...
The first dark fringe appears where m =0 at the line of contact between the plates. The 30th dark
fringe gives for the diameter of the wire 2t=29A, and t=14.5A.

RN _ 9 )\ _
A 1= =1.25) =7.25(600 %107 m) = 4.35 um
L: This wire is not only less than 0.1 mm; it is even thinner than a typical human hair (~ 50 um).
Lo Am
37.38 For destructive interference, 2t= S

At the position of the maximum thickness of the air film,

_5 Ii
_2tn _ 2(4.00x 10 T)(1.00) 165
A 5.461x107" m [ .

A

The greatest integer value is m = 146.

|

Therefore, including the dark band at zero thickness, there are  |147 dark fringes| .

© 2000 by Harcourt, Inc. All rights reserved.
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*37.39

37.40

37.41

37.42

37.43
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For total darkness, we want destructive interference for reflected light for both 400 nm and 600
nm. With phase reversal at just one reflecting surface, the condition for destructive
interference is

2n,;,t =mA m=0,1 2, ...

The least common multiple of these two wavelengths is 1200 nm, so we get no reflected light
at 2(1.00)t = 3(400 nm) = 2(600 nm) = 1200 nm, so t = 600 nm at this second dark fringe.

600 nm _ 0.0500 mm
X 10.0cm

By similar triangles,

or the distance from the contact point is X = (600 x107° m)%%=
.00 x m

-4
2t=mA 0O ngzz(l'%x—m_grm:|654darkfringes
A 550.5x10 ° m

When the mirror on one arm is displaced by Al , the path difference increases by 2Al . A shift
resulting in the formation of successive dark (or bright) fringes requires a path length change

of one-half wavelength. Therefore, 2Al = mA/2, where in this case, m = 250.

250)(6.328 x 107" m
Al :mi:( )( )

Distance =2(3.82 x 107 m) = 1700 A =4.49x 107" m =
The light is

Counting light going both directions, the number of wavelengths originally in the cylinder is

m :&. It changes to m :A:% as the cylinder is filled with gas. If N is the number of
17 270" A

/

bright fringes passing, N =m, -m, = %(n -1), or the index of refraction of the gas is

NA _, 35(633%10°° m)

=1+——=1 =[1.
ol T T 2(0.0300 m)




37.44

37.45

*37.46

37.47

(@)

(b)
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Counting light going both directions, the number of wavelengths originally in the cylinder is

m :&. It changes to m _2L _enk as the cylinder is filled with gas. If N is the number of
17 27N A

/

bright fringes passing, N =m, -m, = %(n -1), or the index of refraction of the gas is

n= 1+M
2L

8
The wavelength is A =¢ =%06”115 =5.00 m.
f  60.0x10°s

Along the line AB the two traveling waves going in opposite directions add to give a standing
wave. The two transmitters are exactly 2.00 wavelengths apart and the signal from B, when it
arrives at A, will always be in phase with transmitter B. Since B is 180° out of phase with A,
the two signals always interfere destructively at the position of A.

The first antinode (point of constructive interference) is located at distance

A_500m _
i _ from the node at A.

My middle finger has width d =2 cm.

Two adjacent directions of constructive interference for 600-nm light are described by

dsin 6=mA 6, =0 (2x1072m)sin B, =1(6x10"" m)
Thus, 6, =2 x 1073 degree

and 61 - 60|~ 1073 degree|

Choose 6; = 20° 2x1072msin20°=1A A =7mm

Millimeter waves are
¢ 3x108m/s

f== =————|~ 10" Hz
A 7x103m

If the center point on the screen is to be a dark spot rather than bright, passage through the
plastic must delay the light by one-half wavelength. Calling the thickness of the plastic t.

© 2000 by Harcourt, Inc. All rights reserved.
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t 1 t
— 4t —=

A2 (A/n)
plastic.

nt or t=
A

2(n-1)

where n is the index of refraction for the
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No phase shift upon reflection from the upper surface (glass to air) of the film, but there will
be a shift of A/2 due to the reflection at the lower surface of the film (air to metal). The total
phase difference in the two reflected beams is then J=2nt+A/2. For constructive
interference, d=mA, or 2(1.00)t+A/2 =mA. Thus, the film thickness for the mth order bright

fringe is:
_gy-1o4 Ao A
tm‘ﬁ“ EDE_mmzm 4’
, . L m_nAO_A
and the thickness for the m — 1 bright fringe is: th-1 =(M 1)DED T

Therefore, the change in thickness required to go from one bright fringe to the next is
At=t, -t,-, =A/2. To go through 200 bright fringes, the change in thickness of the air film

must be: 200(A/2) =100A. Thus, the increase in the length of the rod is

AL = 1002 = 100(5.00 x 1077 m) =5.00%107° m,

-5
From AL=L;a(AT), we have: a= AL _ _500x10 " m _ 20.0 x 1078 °c 1
L;(AT) (0.100 m)(25.0°C)

Since 1 < 1.25 < 1.34, light reflected from top and bottom surfaces of the oil undergoes phase
reversal. The path difference is then 2t, which must be equal to

mA
mAn="5"

for maximum reflection, with m = 1 for the given first-order condition and n = 1.25. So

mA  1(500 nm)

=50 =225 —200nm

The volume we assume to be constant: 1.00 m® = (200 nm)A

1.00 m? 6 2 5
A_200(10‘9 m) =5.00 x 10° m“ = [5.00 km

For destructive interference, the path length must differ by mA. We may treat this problem as

a double slit experiment if we remember the light undergoes a /2-phase shift at the mirror.
The second slit is the mirror image of the source, 1.00 cm below the mirror plane. Using
Equation 37.5,

mAL _ 1(5.00 x 10~" m)(100 m)

Ydark = 74 (2.00 x 1072 m) =

© 2000 by Harcourt, Inc. All rights reserved.
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37.51 One radio wave reaches the receiver R directly from the

distant source at an angle 6 above the horizontal. The
other wave undergoes phase reversal as it reflects from
the water at P.

Constructive interference first occurs for a path difference
of

A
2

d= @)

The angles 6 in the figure are equal because they each form part of a right triangle with a
shared angle at R".

It is equally far from P to R as from P to R, the mirror image of the telescope.

So the path difference is d =2(20.0 m) sin 8= (40.0 m) sin 8
_ ¢ 3.00x108m/s
The wavelength is A= F "o das - 5.00m
60.0 x 10° Hz
L . . . 5.00 m
Substituting for d and A in Equation (1), (40.0 m) sin 6= 5
5.00 m
Solving for the angle 6, sin 6= 80.0m and [6=3.58°
37.52 24/(15.0 km)% + h?> =30.175 km I
(15.0 km)? + h? = 227.63 h =[1.62 km
| d
37.53 From Equation 37.13, T =cos’ HYH
max OAL O
| |
Let A, equal the wavelength for which T IL =0.640
max max
_ nyd/L
Then A2 o5~ (127 1max) 2
d | 172
But IE ) cost LD 2 (600 nm) cos™* (0.900) = 271 nm
L Omaxd
Substituting this value into th jon for Ay, Ap= ——=e 0 21
ubstituting this value into the expression for Az, A, =———7 064073 =
10 | D1/2

Note that in this problem, cos a must be expressed in radians.

maxD
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For Young's experiment, use d =dsin 8=mA. Then, at the point where the two bright lines
coincide,
Ay 540 _m, _6

dsin 8 =m;A;=m,A SO L= = ==
Ve Ay, 450 m; 5

sin 9:‘3)‘72 _ 6(450 nm) =0.0180
d 0.150 mm

Since sin@=@and L=1.40 m, x = 6L =(0.0180)(1.40 m) =

For dark fringes, 2nt = mA

84(500 nm
and at the edge of the wedge, t= % .
When submerged in water, 2nt =mA

2(1.33)(42)(500 nm
m= ( ?S(OO)rEm ) so  m+1=|113 dark fringes|

At entrance, 1.00 sin 30.0° = 1.38 sin 6, 6, = 21.2°

6] b/\
Call t the unknown thickness. Then £/ 6,
. . N/
cos21.2°= — 4= 552150 ¢ 0, a
‘<-C->\
tan 21.2° = - c=ttan 21.2°
. b .
sin 6, = 2 b = 2t tan 21.2° sin 30.0°

The net shift for the second ray, including the phase reversal on reflection of the first, is

A
2an—b—2

where the factor n accounts for the shorter wavelength in the film. For constructive
interference, we require

2 b A A
an-b-z =m
- . . . A

The minimum thickness will be given by 2an —b - > =0.
A n o H o
7 = 2an-b =2 Coso12° ~ 2t(tan 21.2°) sin 30.0
590 nm (2 x1.38 . oD

> = s 2125~ 2 tan 21.2° sin 30.0°H t = 2.57t t=

© 2000 by Harcourt, Inc. All rights reserved.
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(@)

(b)

The shift between the two reflected waves s :
0=2na-b-A/2 where a and b are as shown in the ray : b
diagram, n is the index of refraction, and the factor of A/2 is o A

due to phase reversal at the top surface. For constructive
interference, d=mA where m has integer values. This
condition becomes n

2na—b:aﬂ+%%\ 0

tsin 6, , b=2csing :72::::962 sin
>

From the figure's geometry, a=
g g Yy 0s 6,

, Cc=asing, =

cos 6,

_2ntsin? 6,

Also, from Snell’s law, sin @ =nsin 6. Thus,
cos 6,

With these results, the condition for constructive interference given in Equation (1) becomes:

0 t O 2ntsin®6, _ 2nt (, . 5 ,)\_ 10 ~ 10
ZnEDOSGZE cos 6, _cosez(l sin 62)—an+2d\ or 2ntcos@2—an+2d\

Minimum: 2nt =mA, m=0, 1, 2,...
, : — O 4 10, . _
Maximum: 2nt—%n + 501 m'=0, 1, 2,...
g
for Ay > Ao, En'+2D<m o] m =m-1
1
Then 2nt:m)\2:%n—2m/\1
2mA, =2mA; - A SO m = Ay
2= 1= A1 S E—
2(A1-A2)
=20 =192 - 2 | h dto+
m—2(500_370) =1.92 - 2 (wavelengths measured to £ 5 nm)

[Minimum]: 2nt =mA, 2(1.40)t = 2(370 nm) t =264 nm

- 1g
[Maximum]: 2nt = %n ~1+55A =151 2(140)t = (15)500 nm = 268 nm

Film thickness =
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37.59 From the sketch, observe that <

f d >|
s aied T }
x:\;h2+(d/2)2:% "

Including the phase reversal due to reflection from ;
the ground, the total shift between the two waves -« d2 —
is d=2x—-d-A/2.

(a) For constructive interference, the total shift must be an integral number of wavelengths, or
0=mA wherem=0,1,23,....

1 4x -2d
Thus, 2x—d:a'n+§%\ or A= Tl
For the longest wavelength, m =0, giving A=4x-2d= 2\/4h2 +d% -2d
(b) For destructive interference, o= a'n —%Er\ wherem=1,2,3,....
Thus, 2x—d=mA or A :M.

m

For the longest wavelength, m =1 giving A=2x-d= \““““4h2 +d? -d

37.60 Call t the thickness of the sheet. The central maximum I =
corresponds to zero phase difference. Thus, the added I

Thim - ——
distance Ar traveled by the light from the lower slit must . e |
introduce a phase difference equal to that introduced by | » - -

ek T L

the plastic film. As light advances through distance tin ¥ %~ s \
air, the number of cycles it goes through is t/A,. e |'
1I|‘. Screen

The number of cycles in the sheet is ¢ nt

Y Aa/m) A

. . mt tQ
Thus, the sheet introduces phase difference Q=21 _A_H

a a

. . . . M0 2m A
The corresponding difference in path length is Ar = =—(mt-t)— =(n-1t
p g p g 40% Y ( ) Py ( )

Note that the wavelength of the light does not appear in this equation. In the figure, the two

rays from the slits are essentially parallel, so the angle 6 may be expressed as
tan6=Ar/d=y'/L.

Substituting for Ar and solving for y* gives

. kg _t(h—1)L _ (5.00 x 10~° m)(1.50 — 1)(1.00 m)
=Ar = = =0.0833 m=8.33cm
y O d (3.00 x 1074 m)

© 2000 by Harcourt, Inc. All rights reserved.
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corresponds to zero phase difference. Thus, the added

distance Ar traveled by the light from the lower slit must
introduce a phase difference equal to that introduced by

the plastic film. The phase difference @is

Ot Qg
=2 n-1
® guam( )

The corresponding difference in path length Aris Ar = (pmaD = 27'[Dt D(n -1) Haf _ t(ih-1)
EZ el Wa i+ s

Note that the wavelength of the light does not appear in this equation. In the figure, the two
rays from the slits are essentially parallel.

Ar '

Thus the angle 8 may be expressed as tan 6= qT° yr
' t(h-1 t(in-1)L
Eliminating Ar by substitution, yr = % gives |y' = (d—)

Goal Solution

Consider the double-slit arrangement shown in Figure P37.60, where the slit separation is d and the slit to
screen distance is L. A sheet of transparent plastic having an index of refraction n and thickness t is
placed over the upper slit. As a result, the central maximum of the interference pattern moves upward a
distance y'. Find y".

G:

O:

Since the film shifts the pattern upward, we should expect y’ to be proportional to n, t,and L.

The film increases the optical path length of the light passing through the upper slit, so the physical
distance of this path must be shorter for the waves to meet in phase (¢=0) to produce the central
maximum. Thus, the added distance Ar traveled by the light from the lower slit must introduce a
phase difference equal to that introduced by the plastic film.

First calculate the additional phase difference due to the plastic. Recall that the relation between
phase difference and path difference is ¢ =2/ A. The presence of plastic affects this by changing the
wavelength of the light, so that the phase change of the light in air and plastic, as it travels over the
thickness t is

(p . = Zﬂ and (0 . = 277-[1:
air /\air plastic /\air/n

(n-1)

Next, in order to interfere constructively, we must calculate the additional distance that the light
from the bottom slit must travel.

2mt

Thus, plastic causes an additional phase change of  A@=
air

- AP Agir
2m

Ar =t(n-1)

In the small angle approximation we can write Ar =y'd/L, so yt= %

As expected, y' is proportional to t and L. It increases with increasing n, being proportional to
(n-1). Itis also inversely proportional to the slit separation d, which makes sense since slits that are
closer together make a wider interference pattern.
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4 =C_300 x10% m/s

s =200 m
f 150x10° Hz

For destructive interference, the path difference is one-half wavelength.

2
Thus, %:100m=x+\/x2+(2.00x104 m) -2.00x10* m,

s 7
or 2.01x 10 m—x:\;‘x2+(2.oo><1o4 m)

Squaring and solving,

Constructive interference in the reflected light requires 2t=(m+%))\. The first bright ring

has m = 0 and the 55th has m = 54, so at the edge of the lens

_ 54.5(650 x10™°m)
2

=17.7 um

Now from the geometry in Figure 37.18, the distance from the center of curvature down to the
flat side of the lens is
JRZ2-r2=R-t or R2 —r2 = R? - 2Rt + 2

_r?2+t? _(5.00x1072 m)? +(L77 107> m)? _

R 70.6

2t 2(L77x107° m)
1_. .01 10 o1 1 O _
VR, TRE *PH " “70smd » f

Bright fringes occur when

and dark fringes occur when 2t= S%
The thickness of the film at x is t= gj

_ Al 10 _Alm
Therefore, | Xprignt _mgn +ED and | Xgark = o
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Eq =E; +E, +E5 = §05g+3.00 cos 77”+6.00 cos %’E +§in g +3.00 sin 77”+6.00 sin %E

Er =-2.13i -7.70j

40-7.700
Eg =/(-2.13)° +(-7.70)° at tan ‘o, pgh= 799 at 444 rad

Thus, Ep =|7.99sin(wt+4.44 rad)

For bright rings the gap t between surfaces is given by b
2t = (m +%)A The first bright ring has m = 0 and the hundredth N
has m = 99. } \\\ R
S0, t=4(99.5)(500x10° m) = 24.9 ym. 4 “
7 \
i
|
|

Call r, the ring radius. From the geometry of the figure at the .

right, [&‘z////l

t=r—\;““r2—r§ —%?—\;;Rz—rgg

Si << di ies: t 10 R+RD L J 1
INnce r, we can expand In series: t=r-r -7 - —=T=—
b P H 22 H2R2A2

0 %m o
0 a2 g2 Q 2(24.9%107° m) 0

“TH/r-1/rRH8 1/400m-1/120m -

The shift between the waves reflecting from the top and bottom
surfaces of the film at the point where the film has thickness t is

5 = 2tngyy, +(A/2), with the factor of A/2 being due to a phase )
reversal at one of the surfaces.

For the dark rings (destructive interference), the total shift
should be 5:(m+%))\ with m=0, 1, 2, 3,....
that t= mA/an“m .

| Yy

This requires [ . T A
<>

To find t in terms of r and R, R? =r? +(R-t)° so r? = 2Rt +t°

: : . .
Since t is much smaller than R, t? << 2Rt and (2 = 2Rt = 2R5.M o
%nfilm
Thus, where m is an integer, r= fmAR
\ i
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37.68 (a) Bright bands are observed when 2nt = 511 +%E{\

Hence, the first bright band (m = 0) corresponds to nt=A/4.

. X; _t t, O h, O (680 nmJ
Since “L=-1  we have Xo = X; [F2]= X4 [-21=(3.00 cm = [4.86 cm
™ 2 =GB B % ™ g ami
A 420 nm A 680 Nnm
by t,=-L= =78.9 nm t,=22=—""—"—_=[128 nm
© O=tang=l4=-789NM_ |2.63x10°° rad|
X, 3.00cm
37.69 ohsin@=n+ 15 bright
>rf
2.00 m)(606 x107° m
ZhE&D:l SO h= LA :( )( 3 ): 0.505 mm
(oLO™ 2 20y 2(1.2><10 m)
37.70 Superposing the two vectors, Eg =|E; +E,|
o E 7 . 2 E2 E2
Er :\E1+E2\:\/SEO +?OcosqoD +D?°sm o :\E§+§E§ cos (p+?°cosz(p+?05m2(0
10 _, 2,
Er =,/—Ej +=Ej cos
R g 0 "30 @

Since intensity is proportional to the square of the amplitude,

10 2
I _Elmax +§|max cos @

Using the trigonometric identity cos ¢=2 coszg—l, this becomes

_10 2 2@ _,0_4 4 2@
I_Elmax"'glmax%cos E_lm_glmax"'glmaxcos E’

_4 2 @0

or I—glmaXSHScos 50
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A 6.328x1077

38.1 sinf== = — =211x107°
a 3.00 x 10
100m - tan 6=sin 6= 6 (for small 6)
2y=
38.2 The positions of the first-order minima are y/L=sin8=xA/a. Thus, the spacing between

these two minima is Ay =2(A/a)L and the wavelength is

DAY a0 [4.10x1073 mID0.550 x 1073 mO
A= —_—"= =547 nm
D20 H 2 H 206m H 547 nm|

y : mA 3 AmAL
38.3 T =sin =— Ay =3.00x107° m Am=3-1=2 and a=
a Ay
2)(690 x 10~° m)(0.500 m
a= X _2( ) -[230%x10*m
3.00x107° m
*38.4 For destructive interference,

A A 5.00 cm

sin 6=m 22 “360cm =0.139 and 0=7.98°

d
i —tan 6 gives d=Ltan 8= (6.50 m)tan 7.98° =0.912 m

4= [FL2om|

© 2000 by Harcourt, Inc. All rights reserved.
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*38.5 If the speed of sound is 340 m/s,
P _340m/s 5
=T “Tes0/s - 0928m

Diffraction minima occur at angles described by asin 6=mA
1.10 m sin 61 = 1(0.523 m) 6 = 28.4°

1.10 m sin 8, = 2(0.523 m) 6, = 72.0°

1.10 m sin 03 = 3(0.523 m) 83 nonexistent

Maxima appear straight ahead at and left and right at an angle given approximately by

(110 m) sin B, = 1.5(0523 m) 0,

There is no solution to a sin 6 = 2.5\, so our answer is already complete, with sound
maxima.

386 (a) sing=Y="
L a

Therefore, for first minimum, m = 1 and

_ay _(750x107 m)(850x107¢ m)
“mA (1)s875x107° m)

-
(b) w=2y, yields y; =0.850 mm

w= 2(0.850 x 1073 m) =

-3
38.7 sing=Y = 410x10 °m
L~ 120m

- 4.00x10"* m -3 M0
B:nasmezn( )D4.10><1O mH:7.86 rad

2 A 5461x10 °m 0 120m

| Gin(g/72)f _min(7.86)f _ -
e e PP
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38.8 Bright fringes will be located approximately midway between adjacent dark fringes.
Therefore, for the second bright fringe, let m = 2.5 and use

sin@=mA/a=y/L .

. ay _ (0.800x107% m)(1.40x1073 m) 7
The wavelength will be A =—-= =5.60x10"" m= (560 nm
g mL 2.5(0.800 m)

38.9 Equation 38.1 states that sin 6 = mA/a, where m =1, £2, +3,.... 3
The requirement for m = 1 is from an analysis of the extra path distance \/3 0
traveled by ray 1 compared to ray 3 in Figure 38.5. This extra distance — P> 207
must be equal to A /2 for destructive interference. When the source /
rays approach the slit at an angle 3, there is a distance added to the path \L AN
difference (of ray 1 compared to ray 3) of (a/2)sinB  Then, for A

N > X Zsing
destructive interference, —sinﬂ‘ 2
Esinﬁ+gsin9:1 SO sinezi—sinﬁ.
2 2 2 a
Dividing the slit into 4 parts leads to the 2nd order minimum:; sin 8= % -sin B
Dividing the slit into 6 parts gives the third order minimum: sin = % -sin

. . .. . . mA .
Generalizing, we obtain the condition for the mth order minimum: sin 8= — —sin B
a

*38.10 (a) Double-slit interference maxima are at angles given by dsin 8 =mA.

For m=0, 60:

For m=1, (2.80 ym)sin 8=1(0.5015 ym): 6, =sin"}(0.179) =

Similarly, for m=2, 3, 4, 5and 6, 6, = .6, = [325°], 6, = [45.8°],

65 = ,and G5 =sin~1(1.07) = nonexistent.

Thus, there are 5+5+1= |11 directions for interference maxima| .

(b) We check for missing orders by looking for single-slit diffraction minima, at asin &=mA.

Form=1, (0.700 pm)sin 6 =1(0.5015 pm) and 6, =45.8°.

Thus, there is no bright fringe at this angle. There are only [nine bright fringes| , at
6=0° +10.3° +£21.0°, £32.5°, and +£63.6°




Chapter 38 Solutions 409

(&in(rrasin 6?/)\)D2

o I=1
© M5 masin 6, A E
At 6=0°, Sn6 1 and . [To0
6 ImaX
At 6=10.3° masin 6 _ 71(0.700 pm) sin 10.3° — 0,785 rad = 45.0°
o A 0.5015 um ' '
| [3in 45.0°(F
= - [0.811
lmax 0 0.785 H
Similarly, at 6=210°, 250 157 rad=00.0°  and | | _ 0405
max
At §=32.5°, 7asin @ _ , 36 rad = 135° and | [0.0901
A Imax
At 0=63.6°, 71asin 0 _ 5 g3 rad = 225° and | 00324

, A 500x107" m —
38.11 sin == =—————— =|1.00x10"°rad
a 5.00 x 10

y A y = radius of star-image
38.12 Omin={ =122 L = length of eye
(1.22)(5.00 x 10~7)(0.0300) A =500 nm
X
== : : ={2.61 um D = pupil diameter
7.00 x 1073 pup
6 = half angle
38.13 Following Equation 38.9 for diffraction from a circular opening, the beam spreads into a cone
of half-angle
A (632.8 x 107° m) 4
Omin=1.22 D =122 000500 m) - 1.54x 10 "rad

The radius of the beam ten kilometers away is, from the definition of radian measure,

I'veam = Omin (.00 X 10* m)=1544m

and its diameter is d peam = 2I beam =

© 2000 by Harcourt, Inc. All rights reserved.
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Goal

Goal Solution

A he

lium-neon laser emits light that has a wavelength of 632.8 nm. The circular aperture through which

the beam emerges has a diameter of 0.500 cm. Estimate the diameter of the beam 10.0 km from the laser.

G: A typical laser pointer makes a spot about 5 cm in diameter at 100 m, so the spot size at 10 km would
be about 100 times bigger, or about 5 m across. Assuming that this HeNe laser is similar, we could
expect a comparable beam diameter.

O: We assume that the light is parallel and not diverging as it passes through and fills the circular
aperture. However, as the light passes through the circular aperture, it will spread from diffraction
according to Equation 38.9.

, ) (632.8x107° m) Y
A: The beam spreads into a cone of half-angle Oin =122 —=1.22—————"=154%x10"" rad
D (0.00500 m)
The radius of the beam ten kilometers away is, from the definition of radian measure,
- 4 )
Fbeam = Omin(L00x10% m) =154 m
and its diameter is Apeam = 2lpeam = 3-09 M

L: The beam is several meters across as expected, and is about 600 times larger than the laser aperture.
Since most HeNe lasers are low power units in the mW range, the beam at this range would be so
spread out that it would be too dim to see on a screen.

LA d 580x10' mg _ d  glmi ~
38.14 Omin=12F =T 1.22 %.OO 103 m% =1.80 mi (1609 mOJ d=10.512 m
The shortening of the wavelength inside the patriot's eye does not change the answer.
38.15 By Rayleigh's criterion, two dots separated center-to-center by 2.00 mm would overlap when
d A
Opin =—=122—
min L D
o (2.00x107% m}(4.00x107% m)
Thus, L= = = =13.1m
1222 1.22(500x10™° nm|
A 1.22(5.00 x 10~ ")
38.16 D=1.22 =

1.00 x 10—5 m =

6 min




38.17

38.18

38.19

38.20

38.21

38.22
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_ O wavelength 0O _(distance between sources)
Bin =1.22 — =
Ebupll dlameterE L

1220 _w

o 1224 (vY)
d

Thus

1.22(650 x 10™° m}(20.0 m/s)(600 s)

Taillights are red. Take A=650nm: w= = =11.90m
5.00x107° m
t U i
6, =122 wgvel_ength _ (distance between sources) so 12224 _w
Ebupll dlameterH L d vt
1.22A(vt) : : -
w = —q where A =650 nm is the average wavelength radiated by the red taillights.
1.22A d c
—_— =T A=z =0.0200 m D=210m L =9000 m
D L f
_ (0.0200 m)(9000 m)
4=127"5T0om =
L, o X A
Apply Rayleigh's criterion, Brnin = D =1 22H
where Bin = half-angle of light cone, x = radius of spot, A =wavelength of light,

d = diameter of telescope, D = distance to Moon.

Then, the diameter of the spot on the Moon is

D0 2(122)(694.3x107° m)(3.84x 10° m)

= (241 m
d O 2.70 m

_,0
2X = 2D1.22

_ (3.00x107* m)
For 0.100° angular resolution, 1.22%——+

=(0.100

L=88.6x10°m, D=0.300m, A=590x10"°m

(@) 1.22% =6in = |2.40x107° rad

(b) d=6pinL =

© 2000 by Harcourt, Inc. All rights reserved.
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_1.00cm _1.00x107% m
2000 2000

38.23 d

=5.00 um

m 1(640 x107° m)

sin 6= S J=-0128 6=[7.35°
d 500x10%m

38.24 The principal maxima are defined by H — l
dsin @=mAm=0,1,2, ... :/6720.4#138
Form=1, A=dsin 8 : R T
where @ is the angle between the central (m = 0) and the first order HH 172 H‘li

(m = 1) maxima. The value of @ can be determined from the
information given about the distance between maxima and the
grating-to-screen distance. From the figure,

o= 0.488m o= . d ing=
tan 6= T7om =0.284 SO =15.8 an sin 6=0.273

The distance between grating "slits" equals the reciprocal of the number of grating lines per
centimeter

d T =1.88x107% cm = 1.88 x 10° nm

B 1
"~ 5310 cm™

The wavelength is A = d sin 6= (1.88 x 10 nm)(0.273) =

. . . (100 X 10_2 m) _6 Oirder m Bed ® Violet
38.25 The grating spacing is d= 500 - 222%x107° m 5

In the 1st-order spectrum, diffraction angles are given by

S D 30° 60° 90°
in o= i . in B = 656 x 107" m _ Angle
SIne=7q - Sin 61 = 6m 0.295 Figure for Goal Solution

so that for red 6, =17.17°

434 x107° m

————— =01
2.22x10°%m 0.195

and for violet sin 6, =

so that 6,=11.26°
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The angular separation is in first-order, AO=17.17°-11.26° =

A0 2,0

—ain-1 - - °

In the second-order spectrum, AO = sin %j—% —sin %E =
2.0 2,0

- - - _ - _1 - _1 _ o

Again, in the third order, AB = sin %E —sin é%—% =

Since the red line does not appear in the fourth-order spectrum, the answer is complete.

Goal Solution
The hydrogen spectrum has a red line at 656 hm and a violet line at 434 nm. What is the angular
separation between two spectral lines obtained with a diffraction grating that has 4500 lines/cm?

G: Most diffraction gratings yield several spectral orders within the 180° viewing range, which means

that the angle between red and violet lines is probably 10° to 30°.

The angular separation is the difference between the angles corresponding to the red and violet
wavelengths for each visible spectral order according to the diffraction grating equation, dsin6=mA.

The grating spacingis d= (1.00 x 1072 m)/4500 lines =2.22x107° m

In the first-order spectrum (m = 1), the angles of diffraction are given by  sin 6=A/d:

-9
sing,, = 02010 M _ 595 s0 6, =17.17°
2.22x10° m
: 434x107° m
sin@, =———=0.195 SO 6,, =11.26°
N 2.22%x10% m w
The angular separation is NG =06y, - 6,,=17.17 -11.26 =5.91
nd._ = =qj _1%D— 1 _1mAVD: o
In the 2nd-order (m =2) AB, =sin Og O sin™" 5 40 13.2
- _ —aintBA O o aBAVO_ o6 o
In the third order (m = 3), AB; =sin Og O S 0 26.5
In the fourth order, the red line is not visible: 6, =sin"}(4A, 7 d) =sin"'(118) does not exist

The full spectrum is visible in the first 3 orders with this diffraction grating, and the fourth is
partially visible.  We can also see that the pattern is dispersed more for higher spectral orders so
that the angular separation between the red and blue lines increases as m increases. It is also worth
noting that the spectral orders can overlap (as is the case for the second and third order spectra
above), which makes the pattern look confusing if you do not know what you are looking for.

© 2000 by Harcourt, Inc. All rights reserved.




414 Chapter 38 Solutions

A _632.8nm

_ _ 3
d_sin 5 = 0350 =1.81 % 10° nm

38.26 sin 8= 0.350:

Line spacing =

1
*38.27 () d=3gsgTines/om = 2732 %107 cm =2.732 x 107° m = 2732 nm
_dsin 6 _ . _
= m : At 6=10.09 A=1478.7 nm
At 6=13.71°, A=|647.6 nm
At 6=14.77°, A=(696.6 nm
by d= A and A=dsin @ SO sine-ﬂ A =2sin @
_sinel - 2 27 d oA O !
5in 610
Therefore, if 81 = 10.09° then sin 8, = 2 sin (10.09°) gives 8, = [20.51°
Similarly, for 8, = 13.71°, 8, = (28.30°| and for 8, = 14.77°, 8,= |30.66°
0= grgm— = -0
38.28 = 8007/mm —125x107° m
The blue light goes off at angles sin 6 _nA 0, =sin! El X500 x 10”7 m% =23.6°
a9 9 mTd Lo 0125x10°m o0

0, = sin~! (2 x 0.400) = 53.1°
03 = sin"! (3 x 0.400) = nonexistent

x7.00 x 107" m
The red end of the spectrum is at 6, =sin"! El o % =34.1°
0125x100°m [J

6, =sin"! (2 x 0.560) = nonexistent

So only the first-order spectrum is complete, and |it does not 0ver|ap| the second-order
spectrum.
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38.29 (a) From Equation 38.12, R =Nm where N = (3000 lines/cm)(4.00 cm) =120 x10" lines.
In the 1%t order, R = (1)(1.20 x 10* lines) =
In the 2"9 order, R =(2)(1.20 x 10* lines) = | 2.40 x 10*
In the 3™ order, R = (3)(1.20 x10* lines) =
(b) From Equation 38.11, R :AL/\:

A 400 nm
In the 3 order, M =2="""_ =0.0111 nm = [11.1 pm
R 3.60 x104

38.30 sin 6= %

Therefore, taking the ends of the visible spectrum to be A, =400 nm and A, =750 nm, the
ends the different order spectra are:

2A m
End of second order: sin 6,, = q L= %
2A
Start of third order: sin 0y, = TV = %"

Thus, it is seen that | 8,, > 65, and these orders must overlap| regardless of the value of the

grating spacing d.

A 531.7 nm
3831 (a) Nm= 5 N(1) =019 nm - [2800
1.32x107% m

(b) %800 - 4.72 um

38.32 dsin8=mA and, differentiating, d(cos 8)d0 =mdA or d\;““l—sin2 OA8=mAA
d\1-m2A2/d? AG=mAA so no~—— M
yd2/m? - A?

© 2000 by Harcourt, Inc. All rights reserved.
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38.33

38.34

38.35

38.36

(@)

(b)

-3
g= 10010 " mmm _ ;454106 m = 4000 nm
250 lines/mm

_dsin @

dsin6=mA O
A

The number of times a complete order is seen is the same as the number of orders in which
the long wavelength limit is visible.

_ dsin B, _ (4000 nm)sin 90.0°

Mmax = =571 or |5 orders is the maximum].
A 700 nm

The highest order in which the violet end of the spectrum can be seen is:

_ dsin B, _ (4000 nm)sin 90.0°

m = =10.0 or 10 orders in the short - wavelength region
max A 400 nm grh re9
d=— L -238x107% m =2380 nm
4200/cm
dsin 6 =mA or 6?:sin'1Em—}\D and y =Ltan Q:Ltanmln'lm}\ as
Od O B
0. _,0mA, 0 0. _,0mA,TH
Thus, Ay=L%an§in ! tansin~t
55 Bdfg g Hd b
0. _1[589. 0. _1|:J589 mal
For m=1, Ay =(2.00 m)tansin ansinT T —— =0.554 mm
y=( )é BN a0t BB 380 HH
O 0. _;1(589.6)] D _1[2 (589)
For m=2, Ay =(2.00 m)tanrsin 1.54 mm
y=( )5‘ BN "H 380 1 " stso HE
0. _18(5 D _1[3(589)[1:D
For m=3, 2.00 m)fanrsin =5.04 mm
by = )U BN H 2380 %_ H2380 H

Thus, the observed order must be .

o _2dsin@  2(0.353x107° m) sin (7.60°) L
2d sin 6 = mA: A= m = @) =0.34x 107" m =|0.0934 nm

mA (1)(0.129 nm)

2dsin 6=mA 0O d= Y =Zsin B.15) =10.455 nm
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38.38

38.39

*38.40

*38.41
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. _ mA  1(0.140 x 10-° m)
2dsin 6 =mA SO sin 6=—7 = =0.249 and -6: 14.45
2d 2(0.281 x 1079 m) -
. mA . 1A
sin By =54 - sin 12.6° = 2q = 0.218
. 2A
sin 6, = 2d - 2(0.218) o) 6,=25.9°
other orders appear: 05 =sin™ (3 x 0.218) = 40.9°

0,=sin"t (4 x 0.218) = 60.8°

05 =sin"! (5 x 0.218) = nonexistent

. L IMAC. . 1P x0.166[]
2dsin 6 =mA 0 =sin"! =sin"le—————=31.9°
' N HdE " Bxo0314E

Figure 38.25 of the text shows the situation. 2dsin 6 =mA or A= 2dsn|1n 0
2(2.80 m)sin 80.0°

m=1 0 if pRET -
2(2.80 m)sin 80.0°

m=2 0 iz s -
2(2.80 m)sin 80.0°

m=3 0 Az ={1.84m

3

The average value of the cosine-squared function is

the light.

N| —

one-half, so the first polarizer transmits

The second transmits cos? 30.0° = 7

© 2000 by Harcourt, Inc. All rights reserved.
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3842 (a)
(b)

38.43
(@)
(b)
(©

38.44

38.45

38.46

61=20.0°, 6,=40.0°, 65=60.0°
"hn

It = I; cos?(8; — 0°) cos?(0, — 1) cos’(B3— 65)

lf = (10.0 units) cos?(20.0°) cos?(20.0°) c0s%(20.0°) = 6 89 units @N—

6:=0°, 6,=30.0°, O5=60.0°

It = (10.0 units) cos?(0°) cos?(30.0°) cos?(30.0°) =

| 172
0= COS_l 0
DmaXD

_ _ -1+ 0 _ o
=300 U 0=cosTmoen =

I —_ 1 —lD_D — o
I~ =500 [  0=C0sT moan

| = Imay COS? 6 O

_ 1

1 D —_ o
I~ 100 0  @=cos uoom

By Brewster's law, n=tan 6, = tan(48.0°) =
sin(i?c21 or n= _1 =— L =1.77
n sinB, sin 34.4°

Also, tan 6, =n. Thus, 6, =tan"}(n)=tan"*(L77)=

sin 6, =1 and tan 6, =n
n

tan 6,




38.47

38.48

38.49
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Complete polarization occurs at Brewster's angle  tan §,=133 6, =53.1°

Thus, the Moon is above the horizon.

For incident unpolarized light of intensity |,,: 0,
0
i e 2 0
After transmitting 1% disk: = 5 max L; 3
After transmitting 2"9 disk: I = %%max cos? @ I;
_m

After transmitting 3" disk: I max £0s? 85cos?(90°-6)

)
where the angle between the first and second disk is 8 = wt.

Using trigonometric identities cos® @ = %(1+ cos 26) and cos®(90 - 6) =sin® @ = %(1— cos 26)

we have | :%Imax é(“cgs 29)%1"0‘235 29)§=%Imax(1—c05226) =%Imax%gl—cos 46)
Since 6= wt, the intensity of the emerging beam is given by I = % | max (1= cos 4wt)

Let the first sheet have its axis at angle 6 to the original plane of polarization, and let each
further sheet have its axis turned by the same angle.

The first sheet passes intensity | max OS2 6.

The second sheet passes | max €OS* 6,

nd the nth sheet lets through | max €051 620901,  Where 6 =45°/n
[45°01 25°0

Try different integers to find cos? "5 E}B—E =0.885, cos?*8 %6_5 =0.902,

(@ So n:@

(b)

© 2000 by Harcourt, Inc. All rights reserved.
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*38.50

38.51

38.52

38.53

(@)

(b)

©

Consider vocal sound moving at 340 m/s and of frequency 3000 Hz. Its wavelength is

A=Y =380 6005
f ~ 3000 Hz

If your mouth, for horizontal dispersion, behaves similarly to a slit 6.00 cm wide, then
asin 8 =mA predicts no diffraction minima. You are a nearly isotropic source of this sound. It
spreads out from you nearly equally in all directions. On the other hand, if you use a
megaphone with width 60.0 cm at its wide end, then asin 8 =mA predicts the first diffraction
minimum at

M0, GO MO_ g 6o

6 =sin —
Oa O [0.600 mO
This suggests that the sound is radiated mostly toward the front into a diverging beam of
angular diameter only about 20°. With less sound energy wasted in other directions, more is
available for your intended auditors. We could check that a distant observer to the side or
behind you receives less sound when a megaphone is used.

The first minimum is at asin 8=1A.
. L. A
This has no solution if T >1

or if a<}\:

oA 5.00x107" m 3\ D =250 x 103 m
x=120D =122 " T{250x10 m) = [30.5 m) e etox10T

d=5.00x%10"°m

1

_ _ -6
=200/mm - 250x107° m

d

_, 2x541x10°° mQ

dsin 8=mA 6, =sin =125.6°
@ H250x10°m H
jo54x100m .
= 133 =407x100" m
. [@x4.07x107" mQ
6, =sin™! =[19.0°

3 0 =
0250x10%m O

2A
dsin 6, = 2A dsinGD:n— nsin 6,=1sin 6,



*38.54 (a)
(b)
(©
(d)

38.55

38.56

3857 (a)
(b)
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8
A=Y 23000 S g o4 m
f 140x10%s

oA . oo0 0214m [O_ _ (1180 x 60 x 60 S[_
Omin =1225 =122 = = [726 prad] =7.26 prad ——

Ormin = %: d = 6pyinl = (7.26 x107° rad))(26 000 ly) =

oA . 0500x107 0 mO_
Omin =122 =122 Troxo"mb (10.5 seconds of arc)
d = 6pyinl = (50.8x107° rad)(30.0 m) =152x10* m =

A (2.00m)

Omin =122 = 1.22m =[0.244 rad = 14.0°

With a grazing angle of 36.0°, the angle of incidence is 54.0°

tan Gp =n=tan 54.0°=1.38

In the liquid, A,=A/n=750nm/138=

3(500 x10™° m
dsin@=mA, or d= mA ( )

= — = - =2.83 um
sin 8 sin 32.0°

Therefore, lines per unit length = L :;_6
d 2.83x10°m

or lines per unit length =3.53x10%/m =|3.53x10%/cm|.

m(500x107° m
sing="4 = ( — ) =m(0.177)
d 2.83x10 ° m

For sin #<1.00, we must have m(0.177)<1.00 or m<5.65

Therefore, the highest order observed is m=5

Total number primary maxima observed is 2m+1=

© 2000 by Harcourt, Inc. All rights reserved.
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Goal

Goal Solution

Light of wavelength 500 nm is incident normally on a diffraction grating. If the third-order maximum of
the diffraction pattern is observed at 32.0°, (a) what is the number of rulings per centimeter for the
grating? (b) Determine the total number of primary maxima that can be observed in this situation.

G: The diffraction pattern described in this problem seems to be similar to previous problems that have
diffraction gratings with 2000 to 5000 lines/mm. With the third-order maximum at 32°, there are
probably 5 or 6 maxima on each side of the central bright fringe, for a total of 11 or 13 primary
maxima.

O: The diffraction grating equation can be used to find the grating spacing and the angles of the other
maxima that should be visible within the 180° viewing range.

A: (a) Use Equation 38.10, dsin@=mA

-7
_ mA _ (3)(5._00 x107" m) _ 283x10-° m
sin@ sin(32.0°)
Thus, the grating gauge is %: 3.534x10° lines/ m = 3530 lines/cm ¢
. A O_m(5.00x107" m)
b sin@=m_-—_= =m(0.177
®) OdO  2.83x10° m ©.177)
For sin 6<1, we require that m(L77)<1 or m<5.65. Since m must be an integer, its maximum
value is really 5. Therefore, the total number of maxima is 2m+1=11

L: The results agree with our predictions, and apparently there are 5 maxima on either side of the
central maximum. If more maxima were desired, a grating with fewer lines/cm would be required;
however, this would reduce the ability to resolve the difference between lines that appear close
together.

38.58 For the air-to-water interface, ,

!
[
e
tan @, = Mwater ~ 133 53 0 2
N, 100 ! Air
\‘\lQ\ Water
and  (1.00)sin 6, =(1.33)sin 6, =
. _1[®in 53.1°O
6, =sint "= —=36.9°
2 0 133 O
. _ _ Nglass _ 1.50 _ o
For the water-to-glass interface, tan 6, =tan 6; = ——=—— SO 6;,=484
nwater 133

The angle between surfaces is 0=06,-6, =
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o _ _ A (550 %107 m) y
38.59 The limiting resolution between lines 8, =1.22—=1.22 = =1.34x10"" rad
D iS.OO x10 mi

Assuming a picture screen with vertical dimension |, the minimum viewing distance for no
visible lines is found from 68, :(I /485)/L. The desired ratio is then

L 1 1

= = - = 1154
| 4856y, 485(1.34x10 rad)

38.60 (a) Applying Snell's law gives n,sin @=n;sin 8. From the sketch, we 6 16 g
also see that: W n
0+g+B=m, or @=m-(0+P) N/z &

Using the given identity: sin @ =sin rrcos(6 + ) —cos rrsin(8 + ),

which reduces to: sin@=sin(8 + B).
Applying the identity again: sin ¢=sin 8cos 3+ cos 8sin 3
Snell's law then becomes: nz(sin 6 cos 3 +cos 8sin [3) =n;sin 6

or (after dividing by cos 8): n,(tan 8cos 3 +sin §) =n,tan 6.

n,sin g

Solving for tan @ gives: tanf=———"——
n, —n,cos 3

(b) If B=90.0°, n; =100, and n, =n, the above result becomes:

tan 6 = n(.00) , or n=tan 8, which is Brewster's law.
1.00-0
3861 (a) From Equation 38.1, 6= sin‘lg%}‘g

8
In this case m = 1 and )\=E=3'00L09m/s=4.00><1O'2 m
f 7.50x10° Hz

. _/4.00x1072 mO
Thus, g =sin! = [41.8°
Hs5.00x102 mH

Gin(B/2) '
(b) From Equation 38.4, L 3 m(,B/ )D where = 2masin 6
I max O ﬁ/Z O A
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271(0.0600 m)sin 15.0°
0.0400 m

| (5in 1 22 rad
and B 1 22 rad H = [0593]

max

When 6=15.0°, B= =2.44 rad

(c) sin 6=i so 6=418°: " J
a
0} -
This is the minimum angle subtended by the two sources at the slit. Let a
a be the half angle between the sources, each a distance 1= 0.100m e

from the center line and a distance L from the slit plane. Then, ~L—

L=1 cota =(0.100 m) cot(41.8 /2 =

_ 1 2, 2 1 Aoy — | &
38.62 —E(cos 45.0°)(cos“ 45.0°) = g

Imax

38.63 (a) The E and O rays, in phase at the surface of the plate, will have a phase difference

0=(2mm/ A)5

after traveling distance d through the plate. Here ¢ is the difference in the optical path lengths
of these rays. The optical path length between two points is the product of the actual path
length d and the index of refraction. Therefore,

5:‘dno _dnE‘

The absolute value is used since ng/ng may be more or less than unity. Therefore,

(R (R
6= DTad no - dnE‘ = DT%‘nO - nE

-9
Ao (550x107° m)(m2) .
b) d= = =153x10 ° m = (15.3 um
®© 2mng -ng| 271544 - 1.553|
*38.64 For a diffraction grating, the locations of the principal maxima for wavelength A are given by

sin@=mA/d=y/L. The grating spacing may be expressed as d =a/N where a is the width of
the grating and N is the number of slits. Thus, the screen locations of the maxima become
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y=NLmA Za. If two nearly equal wavelengths are present, the difference in the screen
locations of corresponding maxima is

_ NLm(AA)
- a

Ay

For a single slit of width a, the location of the first diffraction minimum is sin@=A/a=y/L,

ory :(L/a)}\. If the two wavelengths are to be just resolved by Rayleigh’s criterion, y = Ay
from above. Therefore,

rLo, _ NLm(AA) . o A
— A =——" or the resolving power of the grating is R” —=Nm|.
Nk " gp grating o
38.65 The first minimum in the single-slit 1%
diffraction pattern occurs at 0.8 N
sin @ = A»m I/Imax 0.6 é‘\
a L 0.4 .
Thus, the slit width is given by 0.2 .
0 NS NN D7 RN

az AL 0 5 10 15 20

Ymin Distance from center of pattern (mm)

+ Experimental —— Theoretical

For a minimum located at Yy, =6.36 mm =0.08 mm,

632.8- 10" ° m (1.00
( n)s( ) =(99.5um £1%
6.36-10°° m

the width is a=

: [ Etin(ﬁ/Z)D2
38.66 (a) From Equation 38.4, =G50
I max g (B/Z) g
- . | 08in (pD2
If we define ¢@=p(/2 this becomes =
lnax 0 @ O
I _1 sing _ 1 /)
Therefore, when == we must have =—, or [singp=—
lmax 2 @ 2 N2

© 2000 by Harcourt, Inc. All rights reserved.
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38.67

©

(b) Let i d d 1.2
et y; =sin g an =—. =
Y1 ganday, 2 1.1
1.0 —
[o— o
A plot of y; andy, in the range 1.00< @< /2 is shown to 0.9 = ]
the right. 0.8 e
0.7
The solution to the transcendental equation is found to 0.6 1 11 12 13 14 15 16
be|p=139rad]|. ¢ (radians)
2rasin 6
ﬁ = f = 2(p
gives sing= 2 i—0.4431.
tmta a

If % is small, then 6=0.443%.

This gives the half-width, measured away from the maximum at 6=0. The pattern is
symmetric, so the full width is given by

70 =0.443" — 00 4432 0= | 08864
a O al a

Q J2sing
1 119 bigger than @
2 1.29 smaller than ¢
15 141 smaller
1.4 1.394
1.39 1.391 bigger
1.395 1.392
1.392 1.3917 smaller
1.3915 1.39154 bigger
1.39152 1.39155 bigger
1.3916 1.391568 smaller
1.39158 1.391563
1.39157 1.391560
1.39156 1.391558
1.391559 1.3915578
1.391558 1.3915575
1.391557 1.3915573
1.3915574 1.3915574

We get the answer to seven digits after 17 steps. Clever guessing, like using the value of 2 sin ¢

as the next guess for ¢ could reduce this to around 13 steps.



*38.68

(@)

(b)
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i Gineag o Cesin(B/2)CHp/2)cos(B 2)(L2) -sin(B/2)(12)
R S Il I (17 % (62 q

and require that it be zero. The possibility sin(B/Z)zO locates all of the minima and the
central maximum, according to

B/2=0, m 2m, .. .; B=2naf3ine=0, 2m, 4m, ..., asinf8=0,A, 2A,....
The side maxima are found from Ecos B . sin B 0, or tan B = ﬁ
2 k2t L2t L2+ 2
This has solutions gz 4.4934 |, gz 7.7253|, and others, giving
masin 6= 4.4934 A | asin 6=14303) |
masin 6=7.7253A | asin 6=2.45901 |

A _ radius of diffraction disk _ D

*38.69 (a) We require 9min:1-225— —.

L ToL

Then |D?=2.44AL

b) D= \f2.44(500 x107° m)(0.150 m) =

© 2000 by Harcourt, Inc. All rights reserved.



39.1

39.2

39.3

(@)

(b)

©

Chapter 39 Solutions

In the rest frame,
Pi = MqVaj + Mavyi = (2000 kg)(20.0 m/s) + (1500 kg)(0 m/s) = 4.00 x 10* kg - m/s
ps = (M1 + my)vs = (2000 kg + 1500 kg)vs

_ ) 4,00 x 10* kg - m/s
Since p;j = pr, V= 3000 kg + 1500 kg

=11.429 m/s

In the moving frame, these velocities are all reduced by +10.0 m/s.
Vij = Vg — V' =20.0 m/s - (+10.0 m/s) = 10.0 m/s

Vhi =V, —V' =0 m/s—(+10.0 m/s) =-10.0 m/s

Vi =11.429 m/s - (+10.0 m/s) = 1.429 m/s

Our initial momentum is then
pi = myvy; + myvy; = (2000 kg)(10.0 m/s) + (1500 kg)(-10.0 m/s) = 5000 kg - m/s
and our final momentum is

p; = (2000 kg + 1500 kg) vi = (3500 kg)(1.429 m/s) = 5000 kg - m/s

v=|VZ +v} =202 +40? =

The first observer watches some object accelerate under applied forces. Call the instantaneous
velocity of the object v;. The second observer has constant velocity v,; relative to the first,
and measures the object to have velocity v, =v; —v,,.

The second observer measures an acceleration of 2= gt <4t

This is the same as that measured by the first observer. In this nonrelativistic case, they
measure the same forces as well. Thus, the second observer also confirms that >F = ma.

© 2000 by Harcourt, Inc. All rights reserved.
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39.4

*39.5

39.6

*39.7

Chapter 39 Solutions

(@)

(b)

The laboratory observer notes Newton's second law to hold: Fi1=ma;

(where the subscript 1 implies the measurement was made in the laboratory frame of
reference). The observer in the accelerating frame measures the acceleration of the mass as
ap=a—a

(where the subscript 2 implies the measurement was made in the accelerating frame of
reference, and the primed acceleration term is the acceleration of the accelerated frame with
respect to the laboratory frame of reference). If Newton's second law held for the accelerating
frame, that observer would then find valid the relation

F, = may or F1=may

(since F; = F, and the mass is unchanged in each). But, instead, the accelerating frame
observer will find that F; =ma, - ma’ which is not Newton's second law.

L=L,1-v3/c2 O v :c\;‘sl—(L/Lp)z

/ o, /20f 1
1- 2 = /1—7: 0.866
o0 =e1g

Taking L=L,7/2 where L, =100 m gives v:c\‘ A H \
‘ P

At 0 At DzDW
Atzip2 so v:cﬂ—ﬁp 0
[1—(v 0)2]]/ H At E H

2
0 opy, (O 2
= = - P -0 = 1 —

For At=2At, O v c% AtpEE c% E 0.866¢

y: 1 = 1 :i
J1-(vef* \1-(0.5002 3

The time interval between pulses as measured by the Earth observer is

a2 [B0.0S[_
LA NEIsr N

60.0 s/min -
Thus, the Earth observer records a pulse rate of ————— =164.9/min
P 0924 5

0.924 s

At a relative speed v=0.990c, the relativistic factor y increases to 7.09 and the pulse rate
recorded by the Earth observer decreases to | 10.6/min| . That is, the life span of the astronaut

(reckoned by the total number of his heartbeats) is much longer as measured by an Earth clock
than by a clock aboard the space vehicle.



39.8
*39.9
39.10
@)
(b)
39.11

Chapter 39 Solutions 3

The observed length of an object moving at speed v is L = Lp\s“sl—vzlc2 with L, as the proper
length. For the two ships, we know L, =L;, L,,=3L;,, and v;=0.350c

Thus, L2=2 and 9Ly, g 2 E_ Llpz[l—(0.350)2]

L vy _
giving 9—9C—2—0.878, or v, =10.950¢c

At s O 2O Ov2 O
M=yA,=—P—  so A, =g1-v2 /P pt=d-—5rAt and  At-At, = t
y T1-v2 72 p EV Eﬁ El 202? p %cz?
6
If v=1000 km/h = 200X M _ 500 6 s, then V=9.26x1077
3600 s c

and (at-at,) = (4.28x107%)(3600 5) =154 x 10" 5 =

-1 _ | v2 _ 2 _
_\/1—?_\31—(0.950) =0.312

astronauts' time: At, = y ' At=(0.312)(4.42 yr) = [1.38 yr

astronauts' distance: L=y 'AL, =(0.312)(4.20 ly) = [1.31 1y

The spaceship appears length-contracted to the Earth observer as given by
_ “ 2/.2 2 _ 2/.2
L=lpy1-v?/c?  or  P=L2(1-v?/c?)

Also, the contracted length is related to the time required to pass overhead by:

2
L =vt or L2=v%= V—z(ct)2
c
2 2 V 2 V2 2 2V
Equating these two expressions gives L," -L, =(ct)"— or [Lp +(ct) ]—2 =
c? c? c
Using the given values: L, =300 m and t=750x10""s
2
. 5 oV _ 4 02
this becomes (1.41 x 10° m )C—2 =9.00 x 10° m

giving v =(0.800c

© 2000 by Harcourt, Inc. All rights reserved.
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Goal Solution

A spaceship with a proper length of 300 m takes 0.750 us seconds to pass an Earth observer. Determine its
speed as measured by the Earth observer.

G: We should first determine if the spaceship is traveling at a relativistic speed: classically,

v = (300m)/(0.750 us) = 4.00 x 10° m/s, which is faster than the speed of light (impossible)! Quite
clearly, the relativistic correction must be used to find the correct speed of the spaceship, which we
can guess will be close to the speed of light.

O: We can use the contracted length equation to find the speed of the spaceship in terms of the proper
length and the time. The time of 0.750 us is the proper time measured by the Earth observer, because
it is the time interval between two events that she sees as happening at the same point in space. The

two events are the passage of the front end of the spaceship over her stopwatch, and the passage of the
back end of the ship.

) s, 2\/2
A L=L,7/y, with L=vAt: vAt:Lp(l—v /c )
Squaring both sides, v2At? = Lpz(l—vzlcz)

vZc? = L,%c? / AP - VL2 / At

) ) ch/At
Solving for the velocity, Ve ———
Je2 + L2/ At
3.00 x 10%)(300 m)/(0.750 x 107 s
So V= ( )( )/( ) =2.40%x108 m/s

N/ (3.00x108)" + (300 m)? / (0.750x 107 s’

L: The spaceship is traveling at 0.8c. We can also verify that the general equation for the speed reduces
to the classical relation v =L, /At when the time is relatively large.

39.12 The spaceship appears to be of length L to Earth observers,
here L=L e DVZ and L=vt
w = -— =v
pgl ¢2H
0 20’2 o o0 V20

vt:Lpgl—CTH SO va© = ngl—c—zg

0 0 ~1/2
: 22 P —_, 2 vV _ 242 0
Solving for v, v Et +—2%- Ly . Lp£2t2 + 1,27




*39.13

(@)

(b)

39.14

(@)

(b)

39.15

*39.16

Chapter 39 Solutions

For %:0.990, y=7.09

The muon’s lifetime as measured in the Earth’s rest frame is At :%

and the lifetime measured in the muon’s rest frame is

g 0

At_ 1 4.60x10° m
Aty ==t=__O O=[2.18
"=y T 709 .990(3.00x10° mys) ]

L

L= va‘i—(v/c)2 =7p =

4.60x10% m
e = [649 m
=09 649 m|

GMm _ mv?
r? r

We find Carpenter's speed:

2

,-0GM % _06.67 x10711)(5.98 x1024)g/
HR+h)H ~ §(6.37 x10° +0.160 x 10°)

_2m(R+h) _ 27(6.53 x 10°)
v 7.82x10°

=7.82km/s

Then the time period of one orbit, T =525x10%s

. . - . _ _ 2/.2 -2
The time difference for 22 orbits is At-At, =(y-1)At, = gl—v /c ) —1@ 22T)

0. 1v? O _1D7.82><103’m/sEF 3\

39.2 us

For one orbit, At-At, = =178 us. The press report is |accurate to one digit| .

-9
For pion to travel 10.0 m in At in our frame, 10.0m :vAt:v(yAtp):M

\v1-v2/¢?
Solving for the velocity, (3.85x% 108 m/s.)z(l—v2 /02) =v?

1.48 x 10 m? /s? = v?(1+1.64)

v=2.37 x10°8 m/s:

© 2000 by Harcourt, Inc. All rights reserved.
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*39.17

*39.18

*39.19

Chapter 39 Solutions

(@)

(b)
©

@)

(b)
©

(d)

Since your ship is identical to his, and you are at rest with respect to your own ship, its length

His ship is in motion relative to you, so you see its length contracted to .
-1 2/.2
We have L=Lpyl-v /c

19.0 m

| 2
\%
=0.950=,/1-— and _v =0.312¢

from which Lz 5
c

p

At

At:yAtp: ‘ p - 15.0 yr :

J1-(ve)f  y1-(0.700)

d = v(at) =[0.700¢](22.0 yr) =[(0.700)(2.00 ly/yr)](21.0 yr) =

The astronauts see Earth flying out the back window at 0.700c:

d = v(at,) =[0.700¢](15.0 yr) =[(0.700)(L.00 Iy /yr)](15.0 yr) =

Mission control gets signals for 21.0 yr while the battery is operating, and then for 14.7 years
after the battery stops powering the transmitter, 14.7 ly away: 21.0yr + 14.7 yr =(35.7 yr

2
Gmsmg _ mgv
r2 r

The orbital speed of the Earth is as described by *F =ma:

_ feoms _ (667 x10™ N2 /kg?)(1.99 %10 kg

_ 4
Ve o 1496 x 10 m =2.98x10"ms

The maximum frequency received by the extraterrestrials is

1+(2.98x10% m/s)/(3.00x10° m/s)
\1- (2.98 x 10 m/s)/(B.OO x 108 m/s)

1+vjc _
1-v/c

(57.0 x 106 Hz) = 57.005 66 x 10° Hz

fobs = fsource \/

The minimum frequency received is

) 1-vic 1-(2.98x10* m/s)/(3.00x10° m/s)
fons = fsource\/rv/c =(57.0x10° Hz) 1298107 s (300107 ms) 56.994 34 x 10° Hz

The difference, which lets them figure out the speed of our planet, is

(57.005 66 - 56.994 34) x 10° Hz =|1.13x10" Hz



Chapter 39 Solutions

39.20 (a) Let f; be the frequency as seen by the car. Thus, fe = fsource \T—V
c-Vv
I lc+v
and, if f is the frequency of the reflected wave, f= fc\gc—
c-Vv
L (c+v)
Combining gives f=f —
gg source (c-V)
(b) Using the above result, f(c = V) = fsource (C +V)
which gives (f- fsource)C =(f+ fsource)V = 2fsourcev
The beat frequency is then fo = = fsource = 21‘30%6\/ %

© f = (2)(30.0 m/s)(10.0 x 10° Hz) _ (2)(30.0 m/s) _ 2000 Hz =

3.00x10% m/s (0.0300 m)
_ ¢ _300x10® m/s _
A5 S l00x100 pz _ooem
source .
d v :% so  Av= Af;}‘ (5 HZ)(020300 m) _ |o 0750 m/s=0.2mi/h

39.21 (a) When the source moves away from an observer, the observed frequency is

2
o )
fobs = fsourceE H where Vs = Vsource

When v, <<c, the binomial expansion gives

% D\lsljff/é vy Y ~gl_£|] V00 V0
%+VE Oc CH 20 2¢O c O

O
So, fobs = fsourcegl ?SD

The observed wavelength is found from ¢ = A s fops = A foource:

Aope = A fsource = A fsource - A
obs f f 1- 1
obs source( Vs/C) Vs /C
DA =Agps —A =2 -109=A 4= s
o G-vee B Bove B Hm v e
Since 1-vg/c=1, AA _ Vsource
A c

_ A [20.0 nm
(b) Vsource = CQAT CDWD 0.050 4¢

© 2000 by Harcourt, Inc. All rights reserved.
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39.22

39.23

*39.24

39.25

Chapter 39 Solutions

(@)

(b)

uy -V 0.950¢—0.750¢
uy, = = = [0.696¢
X 1-unv/c? 1-0.950x0.750 0.696¢

Uy -V —0.750¢c - 0.750¢
u;, = = =1-0.960c
*1-ugv/c?  1-(-0.750)(0.750)

y=10.0 We are also given: L; =2.00 m, and 6; = 30.0° (both S, (Earth fixed ref. frame)
measured in a reference frame moving relative to the rod). S, (rod's rest frame)

Thus, Ly =L;cos 6 =(2.00 m)(0.867) =173 m

and Ly, =Lysin 6, =(2.00 m)(0.500) = 1.00 m

L,, =a "proper length" is related to L,
by le = LZX/y
Therefore, L,, =10.0L;, =17.3 m and Lyy =Lgy =100 m

(Lengths perpendicular to the motion are unchanged).

Lo = \;(LZX)Z +(L2y)2 gives L,=174m
gives 6, =3.30°

1 L2y
2X

6, =tan”

u, = Enterprise velocity

v = Klingon velocity

From Equation 39.16,

u, = Uy —v _ 0.900c-0.800c _

1YV~ 1-(0.900)(0.800)
2
C
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*39.26 (a) From Equation 39.13, Ax' = y(Ax - vAt),

0= y[2.00 m - v(8.00x107° s)]

v=—200m 5 50x10° ms
8.00x107° s

y= : =181
\/1—(2.50x108 mys)/ (3.00x10° mys)’

(b) From Equation 3911,  x' = y(x-vt)= 1.81[3.00 m - (2.50x10% m/s)(1.00x 10 s)] -

u 8 a
2.50%x 10" m/s
© t=y3-YxI=1814 00x10° s - ( / ) (3.00 m)2
270 8 2 O
c a (3.00x10° mys) g
t'=|-133x10"%s
39.27 p=ymu
(a) For an electron moving at 0.0100c, y= L > = ! > =1.00005=1.00
Ji-(wef  V1-(0.0100)
Thus, p= 1.00(9.11 x 1073 kg)(o.0100)(3.oo x 108 m/s) =2.73x107% kg/s
(b) Following the same steps as used in part (a), we find at 0.500¢
y =115 and p=[158%x10"% kgln/s
(c) At0.900c, y=2.29 and p=|5.64x10"%* kglin/s
. R mu
*39.28 Using the relativistic form, p= = ymu,
V1 (we)
we find the difference Ap from the classical momentum, mu: Ap=ymu-mu=(y-1)mu

(@ The difference is 1.00% when (y —1)mu =0.0100 ymu:

= Ty O 1o =oss0f  or  u=[H
990 1-(we)

(b) The difference is 10.0% when (y —1)mu =0.100 ymu:

0 1-(u/c)* =(0.900) or u=

_ 1 -1
0.900 \/1_(u/c)2

y

© 2000 by Harcourt, Inc. All rights reserved.
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p-mu _ ymu-mu _

*39.29 y-1
mu mu
I TP 1 V] A U Vnt
yols e = o T e
\/1—(u/c) 20 2lc
p-mu_10 90.0 m/s f =y
== =14.50x10
mu 2FB.00x10° m/sH
2 2,2
39.30 P :Lz becomes 1—u—2 =M ;J
\/1—(u/c) ¢ P
hich ai . ,m? L
which gives: =u =
g Hp? ~ ¢2H
Om?c? O c
2_ .2
or c“=u +1 and u=
Hp? H m?c?
> +1
Vop
*39.31 Relativistic momentum must be conserved:

For total momentum to be zero after as it was before, we must have, with subscript 2 referring
to the heavier fragment, and subscript 1 to the lighter, p, =p;

2.50x107%8 kg

: % (0.893¢)
\1-(0.893)?

or yompuy = ymuy =

(167 x107% kg)u,
/ 2
1= (w2 )

and u, =0.285¢

=(4.960 x 1028 kg)c
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Goal Solution

An unstable particle at rest breaks into two fragments of unequal mass. The rest mass of the lighter

fragment is 2.50 x 10728 kg, and that of the heavier fragment is 1.67 x 1077 kg. If the lighter fragment has
a speed of 0.893c after the breakup, what is the speed of the heavier fragment?

G:

The heavier fragment should have a speed less than that of the lighter piece since the momentum of
the system must be conserved. However, due to the relativistic factor, the ratio of the speeds will not
equal the simple ratio of the particle masses, which would give a speed of 0.134c for the heavier
particle.

Relativistic momentum of the system must be conserved. For the total momentum to be zero after

the fission, as it was before, p; + p, =0, where we will refer to the lighter particle with the subscript
'1", and to the heavier particle with the subscript ‘2.’

(.50 %1072 kgl

VoMoV, +y;miv; =0 SO Yomyv, + %O 893c)=0
H V1-0.803

D167 10?7 kg,

el

Rearranging, =-4.96x107%8 kg

2
2.46 x10 55)51 \/0225 and v, = -0.285¢c

Squaring both sides, (2.79 x 10'54)
We choose the negative sign only to mean that the two particles must move in opposite directions.
The speed, then, is |v, |=0.285c

The speed of the heavier particle is less than the lighter particle, as expected. We can also see that for
this situation, the relativistic speed of the heavier particle is about twice as great as was predicted by a
simple non-relativistic calculation.

39.32 AE =(y; - yz)mcz. For an electron, mc? = 0.511 MeV.

O |

IS S R S S
@ AE=Q1T0810) \@-0250)0™

1

_D;‘ _ 1 O 5_
®) AE=H T 0.000)2 \/1—0.81OHnC

39.33 E=ymc? =2mc?, or y=2

\3 c\3

u_ |
Thus, E:\;1—(1/y)2 ==

O 20
The momentum is then p=ymu= ZmHﬁH Eﬁg\ DMSVI%— 16

© 2000 by Harcourt, Inc. All rights reserved.
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O O
*39.34 The relativistic kinetic energy of an object of mass m and speed uis K, = D% —=1mc
h1-u“/c O

For u = 0.100c, Ke=Hp 010100 —@mz =0.005038 mc?

Lmu? gives K. =2m(0.100¢)* =0.005000 mc?

2

The classical equation K, =

0.005038 — 0.005000
0.005038

different by =0.751%

For still smaller speeds the agreement will be still better.

3935 (a) Er=mc®=(167%x10%"kg)(2.998x108m/s)?> =150x1070 )=

(0) E=yme? = 1.50x107%0

= e bso T =4.81x107° )= 3.00x10° MeV/|
—(U.9oC7¢C

© K=E-mc2=4.81x10"0J-150x10"07=3.31x107"20) =207 x 10° MeV

*39.36 (a) KE = E - Er =5ER
E =6E; =6(9.11x 107! kg)(3.00 x 108 m /s)?> =4.92x 10723 J =

(b) E=ymc?=yEg

E 1 . .
Thus, y:EZGZW which yields

r

39.37 The relativistic density is

2
Faas =\n;:( . QY el ELE T

Lp)(Lp)gkp\;‘sl - (u/e)? E (.00 cm)? /1~ (0.900)?

3

<
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We must conserve both mass-energy and relativistic momentum. With subscript 1 referring
to the 0.868c particle and subscript 2 to the 0.987c particle,

1 1

yp=—=2.01 and Yo =—————=6.22
\1-(0.868)° y1-(0.987)°
Conservation of mass-energy gives  Ej;+Ey=Egra ~ Whichis  yymc? + yomyc? = mygyc?
or 2.01m; +6.22m, = 3.34x107%" kg
This reduces to: m, +3.09m, =1.66 x 1072’ kg [1]
Since the momentum after must equal zero, p; =p, gives yimug = yomyu,
or (2.01)(0.868c)m; =(6.22)(0.987c)m,
which becomes m; =3.52m, [2

Solving [1] and [2] simultaneously, m; = 8.84x107%8 kg| and m, = 2.51x107%8 kg

E=ymc?, p=ymu; E?=(ymc)?% p?=(ymu)?

2_ .22 2,2 2.2 2 2\2 2,20 2320 u* UzD_l 2\2
E® —p°c® =(ymc®)” - (ymu)®c® = y*Hmc*) —(mc)“u“5=(mc*) éﬂ—?%l—c—z% =(mc®)* Q.E.D.
K = 50.0 GeV.
me? = (167 107 kg}(2.998 x 10° m/s)2D L =0.938 GeV
' ' Heox10 jGevH

E =K +mc? =50.0 GeV +0.938 GeV = 50.938 GeV

| 2
2 'E? —(mc? / 50.938 GeV)? — (0.938 GeV)>
E2:p202+(mcz) 0 p:V EZ ) :\( )02( )

Gev 0 50.9Gev [1.60x1071 j0 =r
=50.9 = =12.72x10 kgn/s
P ¢  MB.00x10®° msHH 1Gev H gt/

2

E=yme? =——MC 0O u=c\s“‘l—(mc2/E)2

| PAY ‘

y1-(u’c)
. g . 10.938 GeV f _ 5
v=(3.00x10 m/s)\/l o i = [2.9995 x10° mys

g(av) =K = (y - 1)m.c®

© 2000 by Harcourt, Inc. All rights reserved.
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39.42

39.43

*39.44

Chapter 39 Solutions

(b)

(@)

(b)

©

1

Thus, y=— =1+ q(A\Q from which

\51—(u/c)2 MeC

K= (y - 1)mye? = q(av) = (160 107 ¢)(2.50 x10* J/C) =

9
E = ymc? =20.0 GeV with mc? =0.511 MeV for electrons. Thus, y = % =|3.91x10*
.511x10% e

1

y=F—

V1= (we)

o g2 L 3.00x10° m _ o
L=Lyy1-(u/c) == om0t - 6710 m = [7.67 cm|

=3.91x10* from which [u=0.999 999 999 7¢ |

Conserving total momentum, Pgefore decay = Pafter decay =0° Py = Py = ym,u = y(206m )u
Conservation of mass-energy gives: E,+E, =E;

ym,c? +p,c = m,c?

y(206m,) + % =270m,

Substituting from the momentum equation above, y(206me)+ y(206me)% =270m,
ug_ 270 u
or +—-=——=131 0O —=0.264
yEll cl 206 c

U 1 U

Then, K, =(y - 1)m,c? = (y - 1)206{m,c?| = - 17206(0.511 MeV) = [3.88 MeV]
g g (m?) @/1-(0.264)2 éz
Also, E,=E,-E, =m,c® - ym,c® =(270 - 206y )m,c?

g 0

E, = gm —(2%)2%0.511 MeV) =
\1-(0.264

Let a 0.3-kg flag be run up a flagpole 7 m high.
We put into it energy mgh = 0.3 kg(9.8 m/s%) 7m =201



*39.45

39.46

39.47

39.48

39.49

(@)

(b)

Chapter 39 Solutions

E 20 16
Am = — = —————— =2x10""kg
c (3%x10°m/s)

) . 2 x 10'% kg =
for a fractional increase of W

So we put into it extra mass

E =286 x10°J. Also, the mass-energy relation says that E = mc?.

5
Therefore, m :Ez - 28 ><81O ! -~ = [3.18 x 102 kg
¢ (3.00x10° m/s)

No, a mass loss of this magnitude (out of a total of 9.00 g) |cou|d not be detected| .

0 0
K =(y-1)mc? = W—lgﬂcz =0.25mc? = [2.25 x 10?2 ]
fL—U

22
E = Myyer ¢ SO Miyel = % =2.50 x 10° kg

e _pt_0.800(100x10° J/s)(3.00 yr)(3.16 107 s/yr)

Am:?z:c*— :

(3.00x10° m/s)2

Since the total momentum is zero before decay, it is necessary that after the decay

_Ey _140kev
C C

Pnucleus = Pphoton =

2
Also, for the recoiling nucleus, E2= p202 +(mcz) with  mc?=8.60x107° 1 =53.8 GeV

K if _c4.0kevif

2, )= 2 2\?

Thus, (me? +K)” = (14.0 keV)? +(me?) or EIHmCZD i
K _ | . r140kevif . 1(4.0keVil . .

So 1+m7(:2_\31+|3m7<:2|3 ~1+EDTC2D (Binomial Theorem)

2
2 (14.0x10% eV
wa  xolsoke) | ) o]

2mc2 2(53.8 x 10° ev)

d(mc?
_oe_d )=c2d—m=3.77><1026W
dt dt dt

P

© 2000 by Harcourt, Inc. All rights reserved.
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16 Chapter 39 Solutions

2
Thus, M= 377x107 TS Fgs109 kg/s

dt (3.00 x 108 m 5)2

39.50 2mec2 =102 MeV: E, 2 |1.02 MeV
39.51 The moving observer sees the charge as stationary, so she says it feels no magnetic force.

q(E+vxB)=q(E'+0)  and

%3052 (@) When K=K,  myc3(y, -1) =myc?(y, - 1)

In thi 2 _ 2 _ _[1_ 2|7V2 _
n this case, mec” =0.511 MeV, myc” =938 MeV and y, =[1-(0.750) =15119
Substituting, Vp =1+ (ye D, (O5LIMEV)(L5119-1) _ ) 5050
mpc 938 MeV
_ 1 _
but y, —m. Therefore, Uy —c\/l yp =10.0236¢
5 /%0 g
meu
(b) When p, =p,, YpMpUy = VMU OF YUy :%.
P
(15119)(0.511 MeV/c?)(0.750¢) y
Thus, Yolp = — =6.1772x10
938 MeV:c
and P =6.1772x107 1 13 D which yields u, = [6.18x107*c| =185 km/s
c V7B H ;
3953 (a) 10 MeV = (y- 1)myc? so y=10%° Vp=c

®) d=ct
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Goal Solution

The cosmic rays of highest energy are protons, which have kinetic energy on the order of 1013 MeV.
(a) How long would it take a proton of this energy to travel across the Milky Way galaxy, having a
diameter on the order of ~105 light-years, as measured in the proton's frame? (b) From the point of view
of the proton, how many kilometers across is the galaxy?

G:

We can guess that the energetic cosmic rays will be traveling close to the speed of light, so the time it
takes a proton to traverse the Milky Way will be much less in the proton’s frame than 105 years. The
galaxy will also appear smaller to the high-speed protons than the galaxy’s proper diameter of 10°
light-years.

The kinetic energy of the protons can be used to determine the relativistic y-factor, which can then be
applied to the time dilation and length contraction equations to find the time and distance in the
proton’s frame of reference.

The relativistic kinetic energy of a proton is K =(y -1)mc? = 10" MeV

. _ leVv

Its rest energy is 167x107% k 998 x 108 M o0 938 MeV
i il 9 s OHL60x 10 kg DmZ/SZH

So 10" MeV = (y-1)(938 MeV), and therefore y =107 x10'°

The proton's speed in the galaxy’s reference frame can be found from y = 1/\““““1—v2/c2 :
1-v?/c2=8.80x102  and v=c\1-8.80x107% =(1-4.40x10%)c=3.00x10° m /s

The proton’s speed is nearly as large as the speed of light. In the galaxy frame, the traversal time is
At=x/v=10° light - years/c =10° years

(@) This is dilated from the proper time measured in the proton's frame. The proper time is found
from At = yAt,:

At, = At/ y =10° yr/1.07 x10'® =9.38 x 10® years = 296 s ~ a few hundred seconds

(b) The proton sees the galaxy moving by at a speed nearly equal to c, passing in 296 s:
AL, = vAt, = (3.00x10°)(296 5) = 8.88 x 107 km ~10° km

AL, = (8.88 x 1010 m)(9.46 x10% m/ |y) =9.39x10° Iy ~10% Iy

The results agree with our predictions, although we may not have guessed that the protons would be
traveling so close to the speed of light! The calculated results should be rounded to zero significant
figures since we were given order of magnitude data. We should also note that the relative speed of

motion v and the value of y are the same in both the proton and galaxy reference frames.

© 2000 by Harcourt, Inc. All rights reserved.
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39.54 Take the primed frame as:

. Uy +V V+v 2v 2(0.500¢)
a) The mother ship: u, =—=* = = = =10.800c
@ e BTy uev/c?  1+v%/c?  1+v?/c?  1+(0.500)2

2v
Vit ———— 3.2 3/.2
1+v2/7¢2  _3v+vi/c? _3(0.500c) +(0.500¢)% /c
b) The shuttle: u, = = = (0.929c¢
®) X 1+lD v O 1+3v2/c2 1+3(0.500)?
Ei+v /c? E
Amc? _ 4(938.78 MeV) - 3728.4 MeV
39.55 = x 100% = -0.7120/
mc? 4(938.78 MeV) ’ ”
39.56 dearth = Vtearth = Vytastro SO 2 00 X 106 yr E V¥ 30.0 yl"
\1- v2 /¢c?
2 2
V1-v2/¢% =(v/c)(150 x1075) 1-Y =Y (2.25x107)
C C
2
\% - \% _10\~V2 _
=7 (1+2.25x10 10 $0 E:(1+2'25x10 10) =1-1(2.25x10710)

%:1—1.12 x 10710

*39.57 (a) Take the spaceship as the primed frame, moving toward the right at v=+0.600c. Then
uy, = +0.800c, and

__ Wetv _ 0.800c+0.600¢ _ rmon
- 1+(ugv)/c2  1+(0.800)(0.600)

L

b L=-"
y

=(0.200 ly)y/1-(0.600)” = [0.160 Iy

(c) The aliens observe the 0.160-ly distance closing because the probe nibbles into it from one end
at 0.800c and the Earth reduces it at the other end at 0.600c. Thus,

. 0.160 ly
time=———-2 _ =[0114yr
08006 +0.6006

U 1 O 2_l:l 1 g

2
(d K= -1me? = —1@(4.00x105 kg)(3.00 x 108 m/s)” =|7.50 x10% )
2 B B (0.946)? I |




39.58

39.59

(@)

(b)

Chapter 39 Solutions 19
In this case, the proper time is T (the time measured by the students on a clock at rest relative
to them). The dilated time measured by the professor is: At=yTy

where At =T + t. Here T is the time she waits before sending a signal and t is the time
required for the signal to reach the students.

Thus, we have: T+t=yTy 1)

To determine the travel time t, realize that the distance the students will have moved beyond
the professor before the signal reaches them is: d=v(T +1)

The time required for the signal to travel this distance is: t:%: E%ST +1)

Solving for t gives: t= 1(\_//(2/);)

Substituting this into equation (1) yields: T+ 1(‘_’/(‘;);) = VTo
or T =(1-v/e) " = yT,
S o U WS 72 N e

\fl—(vz/ c2) “To i+ (vze)[i-(v/c)] B TO\J‘J].‘F(V/C)

Look at the situation from the instructor's viewpoint since they are at rest relative to the
clock, and hence measure the proper time. The Earth moves with velocity v = —-0.280c
relative to the instructors while the students move with a velocity u’ = -0.600c relative to
Earth. Using the velocity addition equation, the velocity of the students relative to the
instructors (and hence the clock) is:

4o VU (-0.280c)-(0.600c)
1+vu'/c?  1+(-0.280c)(-0.600c)/c?

=-0.753c¢ (students relative to clock)

With a proper time interval of Aty,=50.0 min, the time interval measured by the students is:

At = yAt, with y= 1 =152

J1-(0.753¢)2 /¢2

Thus, the students measure the exam to last T = 1.52(50.0 min) = [76.0 minutes

The duration of the exam as measured by observers on Earth is:

At=yAt,  with y= L so T =1.04(50.0 min) =

\1-(0.280c)? /c?

© 2000 by Harcourt, Inc. All rights reserved.
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*39.60

*39.61

*39.62

3963 ()

(b)

©

The energy which arrives in one year is E=Pt= (1.79 x 107 J/s)(3.16 x 10’ S) =5.66x10%* )

24
Thus, m= £ = 200107 ) f6oe107kg
C

3.00x10% m/s
( )

The observer sees the proper length of the tunnel, 50.0 m, but sees the train contracted to
length

L=L,1-v?/c? =100 my1-(0.950)° =312 m

shorter than the tunnel by 50.0 -31.2 = so it is completely within the tunnel.

If the energy required to remove a mass m from the surface is equal to its mass energy mc?,
then

GMsm me?
Ry
_GM, _ (6.67 %107 N? /kg?)(1.99 x10% kg) _ s
and Ry = 2 S = (3.00% 10° m/s)z =1.47 x10° m = [1.47 km

mu

(1= (we)’

At any speed, the momentum of the particle is given by p=ymu=

Since F:qE:% qEzignu(l—uz/cz)_wE
_ (1_,2/2\¥Y2du 1 2/.2\73/2 2\du
qE—m(l u?/c ) a+2mu(l u?/c ) (2u/c )E
gE _du El—uz/cz+u2/czg du _gEQ w207
m dtd 2/.2\3/2 p and Ta T m s
g (-] g
As U - C, a-0
. Gu  _ ot oGk - OQEet
Io Y 2D3/2 t=0 m at  so u_\/m2c2+q2E2t2
L tdt _|c 22, 2022 - []
X—IO udt—chjom_ qTE%\/m ¢’ +q°E*t* - meg
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39.65

(@)

(b)

(@)

(b)

Chapter 39 Solutions 21

i e EEYE implies c___¢ [l+vje
observed — source\“cl_v/c p A+ A _A\C‘l—VC,

/1—v/c A+
or =
V1+v/c A

and 1+ 84 - [Lovje
A 1+v/c

, 550 Nm-650 nm _ |1-v/c
650 nm 1+v/c

1 =0.846

1-

o<

_ 20, VO_ VO
= (0.846)° .+ I=0716+0.716, -

v=0.166¢ = [ 4.97 x10" m/s

An observer at rest relative to the mirror sees the light travel a distance
D = 2d - x = 2(1.80 x10' m) - (0.800¢)t

where x=(0.800c)t is the distance the ship moves toward the mirror in time t. Since this
observer agrees that the speed of light is c, the time for it to travel distance D is:

12
t=D _2080x10°m) ,anoi =[667x10° s

¢ 3.00x108 m/s

The observer in the rocket sees a length-contracted initial distance to the mirror of:

2 ;‘ 2
L=dy1-; =(180x10 m) 1 O8000) _ g 1012 m,
e \ c

and the mirror moving toward the ship at speed v=0.800c. Thus, he measures the distance
the light travels as:

D= 2(1.08 x10'2 m - y)

where y =(0.800c)(t/2) is the distance the mirror moves toward the ship before the light
reflects off it. This observer also measures the speed of light to be ¢, so the time for it to travel
distance D is:

t:%=%§.08xmlz m —(0.8000)%5 which gives t =

© 2000 by Harcourt, Inc. All rights reserved.
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39.66

39.67

Chapter 39 Solutions

(@)

(b)

(@)

(b)

©

(d)

An observer at rest relative to the mirror sees the light travel a distance D =2d-x, where
x =vt is the distance the ship moves toward the mirror in time t. Since this observer agrees
that the speed of light is ¢, the time for it to travel distance D is

_D_2d-vt _| 2d
c c c+v

t

The observer in the rocket sees a length-contracted initial distance to the mirror of

2
L=d /1—"—
Ve

and the mirror moving toward the ship at speed v. Thus, he measures the distance the light
travels as

D=2(L-y)

where y =vt/2 is the distance the mirror moves toward the ship before the light reflects off it.
This observer also measures the speed of light to be ¢, so the time for it to travel distance D is:

D_20 v b 2d | 2d [c-v

Since Mary is in the same reference frame, S', as Ted, she observes the ball to have the same

speed Ted observes, namely = .
-

Uy

, Ly 180x10% m
A= = :
U] 0.800(3.00x 10° mys

[ 2 f

2
L= Lp\/l—v— = (180x 10 m)\fl—w = [144x10% m
‘ C

C

Since v =0.600c and u, =-0.800c, the velocity Jim measures for the ball is

_ (~0.800¢) +(0.600¢) _

1+(-0.800)(0.600)

U = uy +v
= =
1+u,v/c?

Jim observes the ball and Mary to be initially separated by 1.44x10% m. Mary's motion at
0.600c and the ball's motion at 0.385¢ nibble into thi distance from both ends. The gap closes
at the rate 0.600c + 0.385c = 0.985c¢, so the ball and catcher meet after a time

):

_ 1.44%x10% m
0.985(3.00 x10® m/s
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30.68 (@) L§=Ljx+L5, and L?=LZ+LJ
The motion is in the x direction: L, =Ly, =Lg sin 6,

L = LOX\fl—(v/c) = (L cos o)1 1- ~(v/e)®

Thus, L2 = Ly2cos? 6, g—
g

172
or L= Lo[l—(v/c)2 cos? 60]

() tanB—LX 2

39.69 (a) First, we find the velocity of the stick relative to S' using L= Lp\;“‘l—(u;()z/c2

| 2
Thus Uy =+ oy 1-(L/L,)
Selecting the negative sign because the stick moves in the negative x direction in S' gives:

[0500ma2

—0.866¢ so the speed is

- o551

Now determine the velocity of the stick relative to S, using the measured velocity of the stick
relative to S' and the velocity of S’ relative to S. From the velocity addition equation, we
have:

u, +v _ (-0.866c)+(0.600c)

Uy = Lrv, /2 = 1+(0.6000)(~0.566¢) = -0.554¢ and the speed is  |u,|=

(b) Therefore, the contracted length of the stick as measured in S is:

L= Lp\/l—(ux/c)z =(1.00 m)/1-(0.554)" =

© 2000 by Harcourt, Inc. All rights reserved.
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39.70 (b) Consider a hermit who lives on an asteroid halfway between the Sun and Tau Ceti, stationary
with respect to both. Just as our spaceship is passing him, he also sees the blast waves from
both explosions. Judging both stars to be stationary, this observer concludes

that| the two stars blew up simultaneously| .

(@ We in the spaceship moving past the hermit do not calculate the explosions to be
simultaneous. We see the distance we have traveled from the Sun as

L =1Ly1-(v/c)? =(6.00 ly)y 1~ (0.800) =3.60 ly

We see the Sun flying away from us at 0.800c while the light from the Sun approaches at
1.00c. Thus, the gap between the Sun and its blast wave has opened at 1.80c, and the time we
calculate to have elapsed since the Sun exploded is

3.60 ly/1.80c =2.00 yr.

We see Tau Ceti as moving toward us at 0.800c, while its light approaches at 1.00c, only
0.200c faster. We see the gap between that star and its blast wave as 3.60 ly and growing at
0.200c. We calculate that it must have been opening for

3.60 ly/0.200¢ =18.0 yr

and conclude that | Tau Ceti exploded 16.0 years before the Sun | .

¢ _3.00x10® m/s

*39.71 The unshifted frequency is f =—= =7.61x10" H
u | quency 1 source = 394x10° m z
8
We observe frequency f= M =6.32 x 10" Hz
475%x10 " m
1+v/c
Then f = fsource\/l—v?c
gives: 6.32=7.61 /1VC
V1-v/c
or 1+V/C _ (0.820)2
l1-v/c

Solving for v yields: v=-0.185c = | 0.185¢c (away)




39.72

39.73

Take m = 1.00 kg.

The classical kinetic energy is

and the actual kinetic energy is

u/c K. (9) Ky (3)
0.000 0.000 0.000
0.100 0.045 x 10'®  0.0453 x 1016
0.200 0.180 x 10'®  0.186 x 10%°
0.300 0.405 x 10'®  0.435 x 10%°
0.400 0.720 x 10*®  0.820 x 10'°
0.500 1.13 x 10'6 1.39 x 1016
0.600 1.62 x 1016 2.25 x 1016
0.700 2.21 x 1016 3.60 x 1016
0.800 2.88 x 106 6.00 x 1016
0.900 3.65x10®  11.6x10%
0.990 4.41x10® 548 x10%

K, =0.990K, when (u/c)* =0.990

O
g

O

Similarly, K;=0.950K, when u=]0.257c

and K, =0.500K, when u=]0.786¢

=

2DJD2

OcO

Chapter 39 Solutions

= (4. 50 x 1016 J)

00 02 04 06 08 10
1e
+(lassical = Relativistic

1(1/)2—1% yielding u:
Al-(ue

oucf

e O

me(aT) _ pve(aT) _ (1030 kg /m?)(1.40x10°)(10° m)*(4186 1/ kgriC)(10.0 °C)

Am=E = =
-2 2 2 - 2
c c c (3.oo><108 m/s)
Am = |6.71x 108 kg

© 2000 by Harcourt, Inc. All rights reserved.
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-3
401 7228%8x10 "mK _ I 0% K

560 x10™° m

-3 -3

10* K
2.898x107° mK =
O) Ama~ = [~2070m].
403 (a) Using AmaxT = 2.898 x 1073 m K

-3
we getA max = % =999x10"'m=

(b) The |peak wavelength is in the infrared| region of the electromagnetic spectrum, which is
much wider than the visible region of the spectrum.

40.4 Planck's radiation law gives intensity-per-wavelength. Taking E to be the photon energy and
n to be the number of photons emitted each second, we multiply by area and wavelength
range to have energy-per-time leaving the hole:

21the® (A, — A ;) (d / 2)?
P= ( 2D 1)271 ) D:En:nhf where E hf:/\zrc/\
[M1+A2|:F|;L(/\l+/\2)kBT_1D 172

HzHH ]

p 872cd2(A, - A ) _ 87(3.00x 10° mys)(5.00x 10 m)2(1.00><10‘9 m)
“E 4 [ 2hc/(A1+A )keT _ ) O 2[6.626 x107% Jrs) (3.00x10° mys) O
A+ A2) (e ' —g _\*H (1001x107° m)(1.38x10"2 y/K)(7.50x10°K) _ U
(1001x107° m)"Ce - 1@

16
n=5'903:410 /s _[130x105/5
g

e
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2 Chapter 40 Solutions

*405 (a) P=eAoT*=1(20.0x10"* m?)(5.67x107® w/m? K*)(5000 K)* =
(0)  AmaxT =Amax(5000 K)=2.898 x103 mK 0 A a7

9 w L ho (6.626 x107* y3)(3.00x 10° ms)
C e compute: ——=

=2.88x10° m
keT (1381072 /K](5000 K)

. . _ _ 27hc®A
The power per wavelength interval is P(A)=AI1(A)= )\5[ (o) AkgT) 1]’ and
exp(hc/AkgT) -

271hc2A = 271(6.626 x 10‘34)(3.00 x 108)2(20.0 x 10‘4) =7.50x107% m:f‘

7.50x1071 Jm*/s _115x108 y/m3 _
(580x107° m)’ &P T
m [exp(2.88 pm, 0.580 um) 1]

7.99 x10% W/m

P(580 nm) =

(d) - (i) The other values are computed similarly:

2 hc/kgT hc/AksT _q 2mhc?’A/ZA° P(A), W/m
(d) 1.00 nm 2882.6 7.96 x 10*2°1 [ 7,50 x 1028 9.42 x 1071226
(e) 5.00 nm 576.5 2.40 x 10?50 | 2.40 x 10% 1.00 x 10727
) 400 nm 7.21 1347 7.32 x 105 5.44 x 10%°
c 580 nm 4.97 143.5 1.15 x 10'3 7.99 x 1010
©
(@) 700 nm 4.12 60.4 4.46 x 10*? 7.38 x 10%°
g
(h) 1.00 mm 0.00288 0.00289 7.50 x 10~* 0.260
(i) 10.0 cm 2.88x10™° | 2.88x10° | 7.50x 1071 2.60 x 107°

(j) We approximate the area under the P(}\) versus A curve, between 400 nm and 700 nm, as two
trapezoids:

@5. 44 +7.99) x 10%° %a(sso -400) x10™° m| @7.99 +7.38) x 100 %a(mo ~580)x10™° m|
P= +

2 2

P=2.13x10* W  so the power radiated as visible light is lapproximately 20 kw/| .




40.6

40.7

40.8

40.9

(@)

(b)

(@)

(b)

©

(d)

0
T—@bfp @M—E
“CeAcO 8 \? -5 W [
Elgln(&%xm m) %.6%&0

Chapter 40 Solutions

P =eAdT? so
d/4
26 0
3.77x10% w 0 - [s7mx10° K

m? K* 05

2.898x107 ¥ mIK _2.898x107% m K -
A = = =5.04%x10"" m ={504 nm
max T 5.75x 103 K

—hf = -34 12 -1\d 100ev 0O_
E = hf =(6.626 107 113)(620 x 10*2 5 )WE_

0 1.00eV O

E =hf =(6.626 x10™>* J 8(3.10 x10° s* =[1.28x107° eV
( * )( s )Heono‘lgﬁ x ©
E = hf = (6.626 x 1073 J13)(46.0 x 10° S-l)glwievﬂ

60x1020 JH

8
A =%=%812T|/5 =4.84x10"" m = [484 nm, visible light (blue)]
X z

¢ _3.00x10% m/s
f  3.10x10° Hz

=0.68x1072 m= [9.68 cm, radio wave]

8
A :E:w: [6.52 m, radio wave]
f  46.0x10° Hz

-34 8
E:hf:E:(G.GZGXlO JB)(s’_.SOxlo ms)
A 589.3x10™° m

=3.37x107"° J/photon

10_'?9 s =12.96 x10"° photons/s
3.37 x10 J/photon

P
n=—=
E

Each photon has an energy E = hf = (6.626 x 10734)(99.7 x 10°) = 6.61 x 1026 )

150 x 10° J/s
6.61 x 1025 J/photons

This implies that there are = |2.27 x 10%° photons/s

© 2000 by Harcourt, Inc. All rights reserved.
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Chapter 40 Solutions

Energy of a single 500-nm photon:

hc  (6.626 x 10734 - 5)(3.00 x 108 m/s)
E,=hf=— = =5
A 500 x 107° m

=398x10719]
The energy entering the eye each second

— Di— _ —11 T 3.2 _ -15
E= Pt= (IA)t = (400 x 107 W/m?) 7 (8.50 x10~° m) (1.00s) = 2.27 x 10715}

The number of photons required to yield this energy

E 2.27x10715
n=g = —5 = |5.71 x 103 photons|
y 3.98x107" J/photon

We take 6 = 0.0300 radians. Then the pendulum's total energy is \\\\\\\\\\\\\\\

E =mgh =mg(L - L cos 6)

E = (1.00 kg)(9.80 m/s%)(1.00 — 0.9995) = 4.41 x 103

The frequency of oscillation is f= @ =i\/ﬂ =0.498 Hz
2 2m
The energy is quantized, E = nhf

E 4.41 x 1073
Therefore, n=rs = ={1.34 x 1031
hf = (6.626 x 10 J - 5)(0.498 s

The radiation wavelength of A'=500 nm that is observed by observers on Earth is not the true
wavelength, A, emitted by the star because of the Doppler effect. The true wavelength is
related to the observed wavelength using:

¢ [1=(ve)
A A\ 1+(vic)
f1-(vie) _ 1-(0.280) _
A=A \1+EV/C; = (500 nm)\l-kEO.ZSO; =375 nm

The temperature of the star is given by AT =2.898 x 1073 mK:

-3 -3
722898107 mIK _2.898x10 " mIK _ [7755705 ¢
Amax 375X10



40.13
*40.14
4015 (a)

(b)
40.16

@)

(b)

Chapter 40 Solutions 5

This follows from the fact that at low T or long A, the exponential factor in the denominator
of Planck’s radiation law is large compared to 1, so the factor of 1 in the denominator can be
neglected. In this approximation, one arrives at Wien's radiation law.

2
Planck’s radiation law is (A, T)= 2 1the
P |
2 3
Using the series expansion e* :1+x+?+§+
21thc? 2 thc? _ 2mckgT

Planck’s law reduces to (A, T)= )\5[(1+ e AT+ . ) _1] = 2 (he /AgT) Y

which is the Rayleigh-Jeans law, for very long wavelengths.

hc  (6.626 x107% 7 .5)(3.00 x 108 m/s)

Ae=— = =1296 nm
‘o (4.20 eV)(1.60 x 107° J/eV) 296 nm|

¢ 3.00x10°m/s B
fo=— =————75— =|1.01x10%% Hz
Ac 296 x 107° m

(6.626 x 10~34)(3.00 x 108)
180 x 107°

Therefore, AVg=271V

= (4.20 eV)(1.60 x 1071° J/eV) + (1.60 x 1071%)(AVy)

hc
5y =@+ e(AVs):

1
Kmax = 3MVinax = 5 (9.11 x 107%%)(4.60 x 10°) 2= 9.64 x 10720 ) = 0.602 eV

1240 eV - nm

0=E-Kmax = —goemym— 06026V =[138 eV
) 1.38 eV %60 X 10—19 JD —
~h < M= __
fC h 6.626 x 10_34J s 1eV 0 3.34 x 10 Hz

© 2000 by Harcourt, Inc. All rights reserved.



6 Chapter 40 Solutions

L _he ) . _(6:626x107 313)(3.00x10° m/s)
4017 (@) Ac= p Li: Y ev)(1.60 Y 10- J/eV) =540 nm
. . (6.626 107 J(3)(3.00 x10° m/s) s
© © (390ev)(160x107y/ev) "
6.626 x 10734 J[3)(3.00x 108 m /s
Hag: A= =276 nm

4.50eV)(160x107° J/eVv
(4.50 eV

A <A, for photo current. |Thus, only lithium will exhibit the photoelectric effect.

(b) For lithium,

hc
7 = @+ Kmax

(6.626 x107% B)(3.00 x10% m /s)
400x107° m

Kmax =1.29x107%° 1= [0.808 eV

= (2.30 eV)(l.GO x 10‘19) + Kmax

40.18 From condition (i),hf = e(AVs1) + @ and hf = e(AVs2) + @
(AVs1) = (AVs)) + 1.48 V
Then ®—-@ =148¢eV
From condition (ii), hf.1 = ¢ = 0.600hf., = 0.600¢

@ —-0.600¢ = 1.48 eV

lm=370ev] [m=222ev

4019 (a) e(AVS):%—q) . go:%—o.s?eev: 1.90 eV

() e(AVS):%—(p:%—LQOeV L AVg=[0216V



Chapter 40 Solutions 7

Goal Solution

Two light sources are used in a photoelectric experiment to determine the work function for a particular
metal surface. When green light from a mercury lamp (A = 546.1 nm) is used, a retarding potential of
0.376 V reduces the photocurrent to zero. (a) Based on this measurement, what is the work function for
this metal? (b) What stopping potential would be observed when using the yellow light from a helium

discharge tube (A = 587.5 nm)?

G:

According to Table 40.1, the work function for most metals is on the order of a few eV, so this metal
is probably similar. We can expect the stopping potential for the yellow light to be slightly lower
than 0.376 V since the yellow light has a longer wavelength (lower frequency) and therefore less
energy than the green light.

In this photoelectric experiment, the green light has sufficient energy hf to overcome the work

function of the metal @so that the ejected electrons have a maximum Kinetic energy of 0.376 eV.
With this information, we can use the photoelectric effect equation to find the work function, which
can then be used to find the stopping potential for the less energetic yellow light.

(a) Einstein’s photoelectric effect equation is K5 =hf — @, and the energy required to raise an
electron through a 1 V potential is 1 eV, so that K, =eV, =0.376 eV.

he _ (4.14x107 eV 3)(3.00x10° mys)
A photon from the mercury lamp has energy: hf=—= s
A 546.1x107° m

E=hf=227eV

Therefore, the work function for this metal is: @ =hf = K, =2.27 eV —(0.376 eV) =1.90 eV

hf = "¢ = (414107 eV [3)(3.00 x 10° m /)

(b) For the yellow light, A =587.5 nm, and s
A 587.5x107° m

E=211leV

Therefore, Ko =hf —@=2.11eV -190 eV =0.216 eV, S0 V,=0.216 V

The work function for this metal is lower than we expected, and does not correspond with any of the
values in Table 40.1. Further examination in the CRC Handbook of Chemistry and Physics reveals
that all of the metal elements have work functions between 2 and 6 eV. However, a single metal’s
work function may vary by about 1 eV depending on impurities in the metal, so it is just barely
possible that a metal might have a work function of 1.90 eV.

The stopping potential for the yellow light is indeed lower than for the green light as we expected.
An interesting calculation is to find the wavelength for the lowest energy light that will eject
electrons from this metal. That threshold wavelength for K.« = 0 is 658 nm, which is red light in the
visible portion of the electromagnetic spectrum.)

© 2000 by Harcourt, Inc. All rights reserved.
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*40.22

Chapter 40 Solutions

From the photoelectric equation, we have:  ¢(AVg))=E,;-¢ and e(AVg,)=E,, ~ ¢

Since AVg, =0.700(AVg, ), then ¢(AVs,) =0.700(E,, = 9) =E,, — @
or (1-0.700)p=E, - 0.700E
o E,, —0.700E,
and the work function is: p=—"———"
0.300
The photon energies are: E he - 1240 nm eV _ 3.03 eV

TN, T 410ev

and Eyzzm:M:2.79 eV
A,  445ev

_2.79 eV -0.700(3.03 eV)
0.300

Thus, the work function is =2.23 eV

and we recognize this as characteristic of potassium] .

The energy needed is E=1.00eV=160x101%)

The energy absorbed in time tis E =Pt = (IA)t

E 1.60 x 10719 ]
) t=—r = =1.28 x 10" s = [148 days
IA (500 1/s - m?)[m(2.82 x 10> m)?]

The gross failure of the classical theory of the photoelectric effect contrasts with the success of
guantum mechanics.

Ultraviolet photons will be absorbed to knock electrons out of the sphere with maximum
kinetic energy K. =hf — @, or

6.626 x 10™>* J3)(3.00 x 10® m/s| 0
i )(_9 /)E& LOOeYV [-4.70 6V =151 eV
200%107° m 60x1071°

Kmax -

The sphere is left with positive charge and so with positive potential relative to V =0 at r = .
As its potential approaches 1.51 V, no further electrons will be able to escape, but will fall back
onto the sphere. Its charge is then given by

5.00%102 m|(1.51 Nm'C
VL T VN LA ). Garw=d]

Ke 8.99x10° N ?/C?




4023 (a)
(b)
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4025 (a)
(b)
(©
40.26

Chapter 40 Solutions

By having the photon source move toward the metal, the incident photons are Doppler

shifted to higher frequencies, and hence, higher energy.

If v=0.280c, frof, LtV/c =(7.00x10%) 128 93310 Hz
1-v/c \0.720
Therefore, ¢=(6.626x10‘34 JB)(9.33><1014 Hz) =6.18x107° J=[3.87 eV
At v=0.900c, f =3.05x10% Hz
) 0 1.00 eV
—hf_ e 34 15
and Ky = hf - 9= (6.626 x107* J(3)(3.05 x 10'° Hz) PR

£ hc (6626 x 103 J - 5)(3.00 x 10° m/s)
A 700 x 10°° m

h 6626x10%)-s —
p =y T T 0x10°m |9.47>< 107“° kg m/s|

6.626 x 10~34
AA :L(l—cos ) = T g
m,C (9.11 x 10~%1)(3.00 x 10%)

EO = hC/AO:
Ao=4.14x10"2 m and

he (6.626 %10 113)(3.00x10° m /)

1

K, = Ey —E' = 300 keV - 268.5 keV = [31.5 keV

This is Compton scattering through 180°:

_hc _(6.626 x 107 ] - 5)(3.00 x 10° m/s)
" Ao (0.110 x 107° m)(1.60 x 1071° J/eV)

0 = 11.3 keV

A = %(1— cos 6) = (2.43 x 1072 m)(1 — cos 180°) = 4.86 x 10”1 m

(3

hc

A'=Ag+AA=0.115nm so E':F:10.8 keV

h

Momentum conservation: i:T(—i) + pe (i) and

h
Ao

=284x101)=

E'=—-= =4.30x10" J = [268 keV
Al 4.63x1072% m

E— 3.87 eV =

@-cos 3707 =[Es8x 0]

(300x10° ev)(1.60x 107 3 7eV) = (6.626 x 107)(3.00 x 10° m /) /A,

A'=Ag+M =4.63x107? m

Ineident
FPhoton

= '

oot limgs
Electrom

Scatlered

Phictom

01 1

=h _ 0
Pe = NEy, " H

3.00x10° m/s) /¢ 1 n .
=(6.626 x107%* 13 + 22.1 keV/c
Pe ( )@ 160x107% J/eVv %b.llo x1070 m 0.115x107° mO

© 2000 by Harcourt, Inc. All rights reserved.



10

40.27

40.28

Chapter 40 Solutions

Energy conservation: 11.3 keV = 10.8 keV + K, so that |K,=478¢eV
Check: E2=p?c? + mZ* or (mec? + Ky )? = (pc)? +(myc?)?
(511 keV + 0.478 keV)? = (22.1 keV)? + (511 keV)?

2.62 x 1011 = 2.62 x 1011

Ko =Eg- E'
) Eo
With K, = E', E' =Eg- E": E=>
hc  he hc
Al =E 1 =2E— =2Ap A" =Ag+ Ac (1 -cos 6)
~E 0
0
2
Ao 0.00160 .
2A0—A0+/\c(1—0083) 1—COSQ—E —m —»9—

We may write down four equations, not independent, in the three unknowns Ay, A’, andv
using the conservation laws:

:7‘: - % +ym,c? -m,c?  (Energy conservation)
0

/\L = ym,Vv cos 20.0°(momentum in x-direction)
0

0= )\1 - ymgv sin 20.0° (momentum in y-direction)
and Compton's equation A'-A, = L(l—cos 90.0°).
c
e
It is easiest to ignore the energy equation and, using the two momentum equations, write

h/A o
0 oYMV COS20.0° ) " 3 tan 20.0°
h7A" ymgvsin 20.0°

Then, the Compton equation becomes A'—A'tan 20.0°=0.00243 nm,

0.00243 nm
or A'=———————=0.00382 nm = |3.82 pm
T—tan 20.0°



40.29

(@)

(b)

©

Chapter 40 Solutions 11

Conservation of momentum in the x direction gives: p, =p) cos 6+ p, cOs ¢

. _ h _ hD
or since =g, R—Epeﬁ}vmcose [1]

Conservation of momentum in the y direction gives: 0=p) sin 6 -p, sin 6,

which (neglecting the trivial solution 6 =0) gives: Pe =Py = : 2
N . . h _2h
Substituting [2] into [1] gives: 1 = T cos 8, or A'=2Aqcos 8 [3]
0
Then the Compton equation is A'=Ag =%(1—cos 0)
e
. h
giving 2Agcos 8-Ay=——(1-cos )
m.C
or 2 cos 9—1:E%(1—cos 6)
AO meC
Since E h this may be written as 2cos0-1 oEy D1 cos 9)
i =—, thi wri : -1= -
T 2o y E;eczg
hich reduces to D v b 0sf=1+ Ey
whi u : =
%2 m,c? B m,c?

2
mec” +E

or cosf=———" = 0.511MeV +0.880 MeV _, 755 o6 that 0=q=143.0°
2m.c” + Ey 1.02 MeV +0.880 MeV

. . hc hc E, 0.880 MeV
Using Equation (3): E|, = — = = = =0.602 MeV = |602 keV
9= BB =5 =3 o(2cos6) 2cos® 2cos43.0°
Ey -22
Then, Py 27:0.602 MeV/c=|[3.21x10"“ kglOm/s
From Equation (2), P =P}, =0.602 MeV/c = {3.21x10"% kg [in/s
From energy conservation: Ke =E, —E}, =0.880 MeV -0.602 MeV =0.278 MeV = | 278 keV

© 2000 by Harcourt, Inc. All rights reserved.



12

40.30

Chapter 40 Solutions

(@)

(b)

©

The energy of the incident photon is E; =p,c = hc/)to.

Conserving momentum in the x direction gives

By _

P, =P, COS @ + p|, cos B, orsince p=6, — (p +py)c050

C

Conserving momentum in the y direction (with ¢ = 0) yields

0=p), sin@-p,sin@, or p,=p)=

]

Substituting Equation [2] into Equation [1] gives

E:D£+£Dcose, or /\':z—hccose
c h AU Eo

By the Compton equation, A’ - A, = L(1—cos 6),

meC
which reduces to
Thus,
From Equation [3],
hc

]

2hc
—c
0

0s 6 -

[
A
&
2he _ L(1 - cos 6)
E;, mgc

(2mec2 + Eo)cos 6 =m,c? +E,

@=6=cos

1Om,c?+E, O
mc? +E, E

a=2
Eo

hc

2hc
C

2hc Om,c? +Ey U

0s 0=—

EO meC2 + EO E

Ep (2myc® +E, O

Therefore, E,=—=

Y (2hc/E0)(mec2 +E0) /(Zmecz +E0) 2 Hm,c? +E, 0

y _ | Eg E2myc? +E O

and p'y:T Bimc +EOE

Eq (2m,c? +Ey U

From conservation of energy, K,=E,—-E|, =E,——
ay T T Hme? +E, H
or K _ Ep L2m, c? +2Ey - 2myc® - E, O_ ES
e 2 2
2 E m.Cc” +Ey E Z(mec +E0)

Finally, from Equation (2),

Eo (2m,c? +E U

Pe =Py = 2cHm,c? +E, 0




40.31 (a) Thanks to Compton we have four equations in the unknowns ¢, v, and A":

(b)

Chapter 40 Solutions

E:hc+ymcz—m c?
Ag A ¢ ¢

(energy conservation)

h h
— =-—C0S 2¢+ ym,V COS @

- (momentum in x direction)
Ag A

0 :% sin2¢@—ymyvsin @ (momentum in y direction)

Al=Ag= %(1—003 2¢) (Compton equation)

€
. . . . . . 2h
Using sin 2¢ =2 sin @cos ¢ in Equation [3] gives ym,v = T oS .

Substituting this into Equation [2] and using cos 2¢ = 2 cos? ¢—1 yields

- = h
Ao A

(2 cos’p-1) +§Tr,] cos’p= %(4 cos’p-1),

or  A'=4A,cos’p-A,

Substituting the last result into the Compton equation gives

h hc
4),cos’p-2A :—[1— 2 cos® —1] =2 1-cos® ).
0 ¢ 0 mC ( ¢ ) meCZ ( §0)

With the substitution A =hc/Ey, this reduces to

2 | Lm e 5 |.
cos? g = 2mec 2+F;EO = ;:X where x = iz. oton
m.c” +E, X meC
0.700 MeV o o 1+x
For x=—————=1.37, this gives ¢=cos ~,/—— =|33.0°
0.511 MeV g ¢ V2+x 33.0°

; ' = 2.4\ _ Mm+x0_,0_, 2+3x0
From Equation [5], A —A0(4 cos @ 1)—)\0 o+ xO 15— Oy O
Then, Equation [1] becomes

he _heg2+x o
Ag Ap2+3xU

2 2 Bo _ B 02+x[0
+ymec? -mec®  or -
Ve ? mec?  mgc? [2+3xD

+1=y.

O2+x 0
[P +3x0

vV_| -2 _ |
Therefore, —=+/1- =+1-0.384 =0.785 or v =(0.785¢c| .
gy

Thus, y=1+x-X , and with x =1.37 we get y=1.614.

© 2000 by Harcourt, Inc. All rights reserved.
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h —y
40.32 A=A =——(1-cos ) S @ Electron 1
e A A
FAVA SN = e
§ A b Llectron 2
A" —A':L[l_cos(n_ 9)] A _ @ :I :. n
meC :.:i.ll:.".::.ll [ A
A=A =L—Lcos(n— 6)+L—Lcose
MeC  MeC MeC  MeC

h
Now cos(rr— 6) = -cos 8, so A" — A =2—=]0.00486 nm
(- 6) o

€

2
4033 (a) K=imy?= %(9.11 x 1073 kg)(l. 40 x 10° m/s) =8.93x1079 J=558 eV

Ey = he _ 1240 eV [hm — 1550 eV
Ao 0.800 nm

hc _ 1240 eV [hm
E' 1550 eV -5.58 eV

AA =A"=2A,=0.00288 nm = |2.88 pm

() M =Ac(l-cos6)O cosg=1-A =, 000288nm __, 04
Ac ~ 0.00243 nm

E'=E,-K, and A'= =0.803 nm

*40.34 Maximum energy loss appears as maximum increase in wavelength, which occurs for
scattering angle 180°. Then AA :(1—cos 180°)(h/mc):2h/mc where m is the mass of the
target particle. The fractional energy loss is

Eo—E' _Nc/Aog—ht/A" A=A ar  _  2h/mc
Eo he/Ag A Ag+DA Ay +2h/me
EO_E': 2h/mC _ 2EO

Further, Ay =hc/Ey, so

E,  hc/Ey+2h/mc mc2 +2E,

(a) For scattering from a free electron, mc? =0.511 MeV, so

Eq -F' 2(0.511 MeV)
= = {0.667]
E,  0.511 MeV +2(0.511 MeV)

(b) For scattering from a free proton, mc? =938 MeV, and

By —F' 2(0.511 MeV)
= = {0.00109|
E, 938 MeV +2(0.511 MeV) [0.00109]
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(b)
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. , . 1 01 1@ (4n2 / Ry)
Start with Balmer's equation, =R — or A=-——5—727.
a A H;RZ g (n2-4)
Substituting Ry, =1.0973732 x 10’ m™%, we obtain
(3.645x 10" "m)n? _ 364.5n°
A= 3 =— nm, wheren=3,4,5,...
n° -4 n° -4
1 B 10 _ _
Using —=RyG5 -—0 forng=2,andn; = 3, we get:
A M N O
. 4n? 4n? _ (200.0)n?
R,_,(n2 - 4) (2.00 x 107 m‘l)(n2 - 4) n? -
This says that 200 nm < A <360 nm, which is [ultraviolet] .
2 2
Using n=3, A = 42 = ;m V3 (8000)n
Ru(n?-4) (0.500x10" m™*)n?-4)  n’-4

This says that 800 nm < A <1440 nm, which is in the .

s LogQ_1D

Lyman series: 3 Rgl 20

1 1 7 10

—=——— - =(1.097 x10 gl——

A 94.96x107° ( ) n?0
. 1_,01_10

Paschen series: 1 REtgz 70

n=4,56,...

The shortest wavelength for this series corresponds to n = « for ionization

1_ 7|:|l 10
S =1097x107 - 5

For n = o, this gives A = 820 nm

This is larger than 94.96 nm, so this wave Iengtl11

cannot be associated with the Paschen series

s Lo_gOl_1D
Brackett series: 3 RD42 70
1 701 10
—=1097 x10' =—— - =
A (e n?0

Once again this wavelength

n=5267...

n = oo for ionization Amjn = 1458 nm

cannot be associated with the Brackett serie}s

© 2000 by Harcourt, Inc. All rights reserved.
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4038 () Agp =S
EmaX
Lyman (n; = 1): A min = he _1240eVihm _ (Ultraviolet)

\E \ 13.6 eV
hc _ 1240 eV hm _
Balmer (n; = 2): Amin = — 65 nm| (UV)
Es| ( j13 6 eV

Paschen (Nf=3):  Apin= ... =3%(91.2 nm)= (Infrared)

Bracket (Nf=4):  Apin = ... =4%(9L.2 nm)= (IR)

Lyman: Emax = (=)
Balmer: Emax = [3.40 eV] (=[E)
Paschen: Emax = (=1E)

Brackett: Emax = (: ‘E4D

40.39 Liquid Op  Aaps = 1269 nm

-6
E= he 1239810 ° _ 0.977 eV for each molecule.

A 1269x10°8
hc
For two molecules, A :E = (634 nm, red

By absorbing the red photons, the liquid O, appears to be blue.

kee?
mery

*40.40 (a) where r; =(1)?a, =0.00529 nm =5.29 x 107! m

=12.19x10° m/s

(8 99 x10° Nm?/C?)(160x 10" C)
e \/ 9.11x1073% kg)(5.29 x 1071 m)

() Ky=imy? %(9 11x1073L kg)(z 19x10° m/s) =2.18x1078 )=

=-435x10"18 )= _27.2 eV
5.290x1071 m

() Up=-

ry



40.41

40.42

40.43

(@)

(b)

©

(d)

(€)

®

(A)
(B)
©)
(D)

(@)

(b)
©

(b)

(@)

©

Chapter 40 Solutions 17

r =(0.0529 nm)(2)* =

mekee? _ 3“‘(9'11" 10" kof8.9910° N ?, 2160107 ] 9.95x107% kg [in/

w

MeVy =

Vor \ 0.212x107° m

Ly =myVyry =(9.95x107% kg in/s)(0.212x107 m) =|2.11x10™* kglm?/s

(mev,)? _(0.95%10°% kgt s)’

K, =1m,3 = = =5.43x1071 J=[3.40 eV

2772MeV2 2m, 2(9_11><10‘31 kg)
2
9 2 2 -19
ke? _ (8.99x10° Nm? c?)(160x107% C) "

U,=--¢ =- =-1.09x10718 J= [~6.80 eV

27, 0.212x107% m
E, =K, +U, =3.40 eV -6.80 eV = [~3.40 eV

O O
AE =(13.6 eV)@%z - 12@
i DNy

Where for AE >0 we have absorption and for AE <0 we have emission.
for nj= 2 and n; = 5AE = 2.86 eV (absorption)

for nj =5 and ns = 3AE = - 0.967 eV (emission)

for nj= 7 and ns = 4AE = - 0.572 eV (emission)

for nj = 4 and n¢ = 7 AE = 0.572 eV (absorption)

E -E so the shortest wavelength is emitted in transition
A g '

The atom gains most energy in transition .

The atom loses energy in transitions .

O O
1_ 1 1 - 7 101 10 _
f i

hc _ (6.626 x1073* J[3)(3.00 X108 m/s) 19
E=—= =4.85x107"° J=[3.03 eV]
A 410x107° m -

8
= C o 3000 75101 1y
A 410x10

© 2000 by Harcourt, Inc. All rights reserved.



18 Chapter 40 Solutions

-13.6 eV

*40.44 We use E, =T

To ionize the atom when the electron is in the n' level, it is necessary to add an amount of
energy given by

13.6 eV
E=-E, 2
(@) Thus, in the ground state where n = 1, we have [E = 13.6 eV

13.6 eV
(b) Inthen=3level, E= 9 =[1.51eV

*40.4 Starting with £ mo? =55 | we have v2 =X
45 tarting with 5 mev® =——, we have v =
. n’h?
and using r, = 5
m.k.e
. k.e? kee?
2 _ -
gives v,° = - (:12h2 or v,= rih
® mek,e?
2mr 27(3.84 x 108 m
*40.46 (a) The velocity of the moon in its orbit is V=g = o 5 ) =1.02 x10° m/s
2.36 x10°s
So, L = mvr = (7.36 x 10%? kg)(1.02 x 10° m/s)(3.84 x 108 m) = |2.89 x 10%* kg - m?/s

(b) We have L =nh

L 2.89x10%kg-m?/s
or n=p = =[2.74 x 10%8
h 1.055x10734] . s

() Wehave nh=L=mvr=m(GM,/n)/2r,

h? 2 2
SO r=——— n“=Rn and
m2 GM, r ) n

2
i ; — -69
which is approximately equal to o 7.30 x 10

Ar  (n+1)?R-n’R 2n+1
-_— = = 2




40.47

40.48

40.49

(@)

(b)
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The batch of excited atoms must make these six transitions to get back to state one: 2 - 1, and
also 3 -2 and 31, andalso 4 - 3 and4 - 2 and 4 - 1. Thus, the incoming light must

have just enough energy to produce the 1 - 4 transition. It must be the third line of the
Lyman series in the absorption spectrum of hydrogen. The absorbing atom changes from
energy

1366V _

o =-136eV 1o g =-120eV

2 = -0.850eV,

Ei =
so the incoming photons have wavelength

Che (6.626x10‘34 JB)(B.OOXIOB m/s)D L00ev O

— 8 _
A= E-E -0.850 eV —(-13.6 &V) Hisox10-2 3H 9.75x10 " m=

Each atom gives up its kinetic energy in emitting a photon, so

my2 = Ne _ (6626 107347 - 5)(3.00 x 108 m/s)
oA (1.216 x 107 m)

v = |4.42 x 10* m/s

= 1.63x 10718}

N| =

The energy levels of a hydrogen-like ion whose charge number "
is Z are given by wod ot

22 I ] el HE
E,=(-13.6 eV)n—2 s —
Thus for He lium(Z = 2), the energy levels are e Sk eV
E,=-228 o123 .
n

For He*, Z=2, so we see that the ionization energy (the energy
required to take the electron from the n=1 to the n = » state is

_ 2
E-E, - —0-130eV)2) _

© 2000 by Harcourt, Inc. All rights reserved.
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n’h? n’0 h? O

40.50 r=—— _=__ - n=1
Zmeke?  Z Omkee?H

10 (L055x1073* J[3)? 0 529x10'm

r==— =
z E(g.nx 1073 kg)(8.99 x10° N m? 7/ C?)(1.602 x 10720 C)? E z

-11
(@ ForHe', z=2 r= w =2.65x 107" m = [0.0265 nm

-11
(b) ForLi®*, z=3 r= w =177x10" " m = [0.0177 nm

-11
(c) ForBe®, z=4 r= w =1.32x10™" m=[0.0132 nm

mv2

40.51 Since F=qvB= e we have grB =mv,

or qr’B =mvr =nh SO r, =

40,52 (a) The time for one complete orbitis: T=—

N nh
From Bohr's quantization postulate, L =m,vr =nh, we see that v=—
mer

Thus, the orbital period becomes:

_2mm,r? _ 2mm,(agn?)® _ 2mm,ad I

T or T=tyn® where
nh nh h
2 -31 -9 \2
t = 2rmgay _ 2m(9.11x 10 kg)(O_.S4529 x107" m)” _ 152 %1016
h (L055x10 " J3)

(b) With n =2 we have T=8t,=8(152x10"5)=121x10""s

Thus, if the electrons stay in the n = 2 state for 10 ps, it will make

10.0x107% s
1.21x10 ¥ s/rev

= |8.23 x 10° revolutions| of the nucleus

(c) |Yes, for 8.23 x 10° "electron years"|




*40.53

4054 (a)

(b)

*40.55 (a)

(b)

A—E _h 6.626 x 1034 J - s
P MV (1,67 x 1077 kg)(1.00 x 10° m/s)

2
T = (50.0)(1.60 x 1079 1)

p=381x10%kg-m/s

h
A=p =[0a7anm

2
Zp_m = (50.0 x 10%)(1.60 x 10719 J)

p=120x10"%kg - m/s

h
A =5 = 5.49 x 10712 m

The relativistic answer is slightly more precise:

=13.97x10 % m

PR he 7 =5.37x10"% m
P [(mc2 +K)% - m2c4]
2,2 2
Electron: A= — and K =%mev2 _Mmev- _ P
P 2m,  2m,
so p=+2m.K
and h 6.626 x10734 J[3

A=7.09%10"0 m=

Photon: A=c/f and E=hf so f=E/hand

. hc  (6.626 x 107**] - §)(3.00 x 10° m/s)

2mK ,2(0.11x 10" kg)(3.00)(1.60 x 10 1]

© 2000 by Harcourt, Inc. All rights reserved.
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hc =4.14x 107" m =414 nm|
E (3.00)(1.60 x 10719 ) -

21
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40.56

*40.57 (a)

(b)

From the Bragg condition (Eq. 38.13),

mA = 2d sin 6 = 2d cos(¢/2)
lectrons

But, d=asin(¢/2) where a is the lattice spacing.
Thus, with m=1,

A=2a sin(go/Z) cos((p/Z) =asin ¢

h_  h 6.626 107 13

=— = =167x10"" m
P y2mK \“““2(9.11><10‘31 kg)(54.0 x1.60 x1072° J)

Therefore, the lattice spacing is

-10
A _167x10 m =2.18x107% m=10.218 nm

" sin Q@ "~ sin50.0°

A ~10"* m or less.

h 6.6x107%* )3

p=--

g TRy =107" kgm/s or more.
m

The energy of the electron is
22 24 -19\? 8)2 -31)2 s\’ 11 8
E = p%? +méc ~§10 J"(3x20°)" +(9x20) (3 x10?) 5 ~10710-10° eV or more,

so that K =E -m,c? ~10% eV - (0.5 x10° eV) ~10% eV| or more.

The electric potential energy of the electron would be

kg, (9%10° Nm?/c?)(10™° ¢)(-e)

~-10° eV
r 107" m

Ue

With its kinetic energy much larger than its negative potential energy,
the electron would immediately escape the nucleus|.
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Goal Solution

The nucleus of an atom is on the order of 1074

m in diameter. For an electron to be confined to a

nucleus, its de Broglie wavelength would have to be of this order of magnitude or smaller. (a) What
would be the kinetic energy of an electron confined to this region? (b) On the basis of this result, would

you expect to find an electron in a nucleus? Explain.

The de Broglie wavelength of a normal ground-state orbiting electron is on the order 107 m (the
diameter of a hydrogen atom), so with a shorter wavelength, the electron would have more kinetic
energy if confined inside the nucleus. If the kinetic energy is much greater than the potential energy
from its attraction with the positive nucleus, then the electron will escape from its electrostatic
potential well.

If we try to calculate the velocity of the electron from the de Broglie wavelength, we find that

-34
v=_" - 6'63:110 Ji =7.27x10° m/s
med ~ (9.11x 10 kg)(107 m)

which is not possible since it exceeds the speed of light. Therefore, we must use the relativistic
energy expression to find the kinetic energy of this fast-moving electron.

2
(a) The relativistic kinetic energy of a particle is K =E-mc?, where E2 :(pc)2 +(mcz) , and the
momentum is p=h/A:

_6.63x107 J[s

Ty =6.63x10° N3
m

E= N/(1.99 x 1071 J)2 + (8.19 x 10714 J)2 =199x1071

-1, -14
K =E-mc2=-29%10 J_li'lgxlo I~ 124 MeV ~ 100 MeV
160x107 J/eV

(b) The electrostatic potential energy of the electron 10 m away from a positive proton is :

0 2 2
8.9 x10° Nm ﬁl. 60x107° |
C

U=-ke?/r=- =-2.30x107* )~ -0.1 MeV

107% m
Since the Kkinetic energy is nearly 1000 times greater than the potential energy, the electron would
immediately escape the proton’s attraction and would not be confined to the nucleus.

It is also interesting to notice in the above calculations that the rest energy of the electron is
negligible compared to the momentum contribution to the total energy.

© 2000 by Harcourt, Inc. All rights reserved.
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40.58

40.59

40.60

(@)

(b)

©

(@)

(b)

(@)

(b)

©

20.0 x 10° MeV
From E = yme c? Y ="0511MevV _ - 3.91 x 10*

E 2
P=7< (for mg ¢ << pc)

0= (2.00 x 10* MeV)(1.60 x 10713 J/MeV)

3.00 x 108 m/s :|1.07x10-17 kg - m/s

h  6626x103) s -
A=— = 17 =16.22 x 10 m
P 1.07x10" kg -m/s

Since the size of a nucleus is on the order of 10™* m, the 20-GeV electrons would be small
enough to go through the nucleus.

E2=p2c? + m2c*

h h
with E = hf, p=—, and me¢ = —
A Ac
h?c?  hc? off 1,1
so h2f2 =—— + —— and gl . Eq. 1
For a photon f/c=1/A.

The third term 1/Ac in Equation 1 for electrons and other massive particles shows that

| they will always have a different frequency from photons of the same wavelength

The wavelength of the student is A =h/p=h/mv. If w is the width of the diffraction aperture,
then we need w<10.0A =10.0(h/mv), so that

0 5 0
v<100- " =100 :026x10 © IS -
mw

. =[110x107%* m/s
H80.0 kg)(0.750 m)H

Using t=% we get:  t= 0.150 m =[136x10% s

T110%x107** m/s

. The minimum time to pass through the door is over 10¥® times the age of the
Universe.



40.61

40.62
@)
(b)
©

40.63
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The de Broglie wavelength is: A = h
ymev
The Compton wavelength is: Ac = L
myC
Therefore, we see that to have A =A, it is necessary that yVvV =c.
L v vt ovif c
This gives: —=¢, Oor =~ =1-—", yielding v=|—
9 \/1_\/2/02 Oc O OO y 9 A2

th ®
JAVARSIELIE B
ST e e
From two points on the graph 0= Izllg4.1><1014 Hz)—Q
Ue e
_h W\ @ L0 T a0 T Tl T 10
and 3.3V = {12x10% He) - £ £ (TH)

Combining these two expressions we find:
o=

ho. 42x1071V . s
e

_hpec

hc
At the cutoff wavelength — = ¢=
g A @ Ce ),

C

3.0 x 108 m/s)
Ae=(42x107PV.5)(1.6 x1071°C ( =[730 nm
0= ( X ) (1.7 eV)(1.6 x 10~ J/eV)

Koo q°B%R? _ (1.60 x 10~*° C)?(2.00 x 10~° T)(0.200 m)?
meT 2me - 2(9.11 x 1073 kg)

=225x1071°)=140eV=hf-¢

~ _ he _(4.14x 107 eV - 5)(3.00 x 10° m/s) ~
®= = Kiax = ==~ Kmax= 0105 m ~1.40eV = [1.36 eV

© 2000 by Harcourt, Inc. All rights reserved.
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40.64

40.65

40.66

Chapter 40 Solutions

(@)

(b)

(©

(@)

(b)

From the path the electrons follow in the magnetic field, the maximum Kinetic energy is seen
to be:

_ e’B°R?
Kmax - Tme
From the photoelectric equation, Kmax =hf —¢@= % -@
2n252
Thus, the work function is (pzm— Kmax = he ¢8R
A A 2m,
We want an Einstein plot of Kax versus f
A, nmf 10 Hz  Kpax eV K
588 5.10 0.67 ev] | /
505 5.94 0.98 /
445 6.74 1.35 IF s
399 7.52 1.63 7
ope = 22028V oo ) -f
slope =~oma - +8% ——|7«“-|—|
T4
!
e(AVs)=hf-¢ /
-1k J..-‘
h_0402M_|64xloi34J +8(y 'IIIII
= (0402) 101 L= SO J 2 400 600 B
f(THz)
Kmax=0 at f=344x10'% Hz

@=hf=232x101)=

(0.234) =3.09x 1076 m

-34
w = cos s (08I0,
myC (1.67 x10™“" kg)(3.00x10° m/s)

_hc _ (6.626x107** J[3)(3.00x10° m/s) _
"7 E, T (200 MeV)(160x10"3 1/ MeV)

6.20x107° m
A'=Ag+M =6.51x107° m
_he _
EV—F— 191 MeV
Kp = [9.20 MeV
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40.67 M is the mass of the positron which equals me, the mass of the electron.
So U = reduced mass = meM__ me
m+M 2
2.2 2.2 2.2
n“h n“h 2n‘h -10 2
Mos = = = or Myos = 2 3 |L06x10 " m|n
PO Zpke®  Z(me /2)ke?  Zmek,e? pos = =" Hyd ( )

This is the separation of the two particles.

_ _ukeze4 1 _ _mek92e4 Oo1Qg

Enya [ -6.80eV
n=123,... or Epos: 2y = v,

s T T o W T T a2 0

Goal Solution

Positronium is a hydrogen-like atom consisting of a positron (a positively charged electron) and an
electron revolving around each other. Using the Bohr model, find the allowed radii (relative to the
center of mass of the two particles) and the allowed energies of the system.

G:

Since we are told that positronium is like hydrogen, we might expect the allowed radii and energy
levels to be about the same as for hydrogen: r =agn® = (5.29 x107H m)n2 and E,=(-13.6 eV)/n?.

Similar to the textbook calculations for hydrogen, we can use the quantization of angular
momentum of positronium to find the allowed radii and energy levels.

Let r represent the distance between the electron and the positron. The two move in a circle of
radius r/2 around their center of mass with opposite velocities. The total angular momentum is
quantized according to

Ln:m+w:nh, where n=123,...
2 2

2 2

For each particle, 2F =ma expands to keg =mv_
r r/2

2 2

We can eliminate U:Lh to find kLZZmz_nzh
mr r m-r
S 2n°h? ;

So the separation distances are r= > = 2agn” = (1.06 x 10710 m) n*

mk e

The orbital radii are r/2 = agn®, the same as for the electron in hydrogen.

2
The energy can be calculated from E=K+U-= %mvz +%mv2 _kee
r
2 2 2 2 _p a2
Since mv? = K&~ ek’ ke’ ke? e’ 6.80eV
2r 2r r 2r  4agn n

It appears that the allowed radii for positronium are twice as large as for hydrogen, while the energy
levels are half as big. One way to explain this is that in a hydrogen atom, the proton is much more
massive than the electron, so the proton remains nearly stationary with essentially no Kkinetic
energy. However, in positronium, the positron and electron have the same mass and therefore both
have kinetic energy that separates them from each other and reduces their total energy compared
with hydrogen.
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40.68 Isolate the terms involving 0
@ in Equations 40.12 and  h’O5 +— ,
40.13. Square and add to Ho A A"

eliminate ¢.
2 2 [ 0
Solve for V—Z: b b:hi2|}]é+ 12_20059D
¢ (b+c?) = AT IN:
Lo OhH1 10U / b
Substitute into Eq. 40.11:; 1+ -~ [=y=.1-
| 5 eC% A'g A
g D 20 DZ On2 [ 0
Square each side: c2+ 2th¢ 1 h 1 1 0 =c2+ %:7 1 1 _2COS’9D
me o Aamea’\o Ag AW T

From this we get Eq. 40.10: A" =Aq =(h/mec)[1~cos 6]

2,4 2.4
40,69 hf=AE=4n2megkee 01 %@ o ‘= 2n2m3k e’ 2n zlzg
2h h n-1)°n
2,4
As n approaches infinity, we have f approaching 27'12r|:1§k623
n
2.2
The classical frequency is f =V - 1 k % where r :%
2m  2m \ e T 47m,k.e
2,4
Using this equation to eliminate r from the expression for f, f= 2712r:§k =
n
40.70 Show that if all of the energy of a photon is transmitted to an electron, momentum will not
be conserved.
hc _ hc hc
Energy: —=—+K, —mc -1 if —= 1
h .
Momentum: — = eV = ymy if A = o 2
Ag A
h
From (1), y= +1 ©)
AgmeC
O Agmee f

\ “HhagmeH )

Substitute (3) and (4) into (2) and show the inconsistency:

h 0. n D / 0 Agme O Agmge+h (h(h+24eme)  h [h+24gmge
Ao El Aom, cD \ “HheagmeH T A, \ (h+Agm,c)? AO\“
This is impossible, so all of the energy of a photon cannot be transmitted to an electron.

g

40.71 Begin with momentum expressions: p :Aﬁ' and p=ymv= ymCDEEI



Equating these expressions,
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O Omcbar A

Us (v/c)2 :DACDZ

Thus, 1—(V/C)2 HTE

or DlDZ:D/\CDZ_[V\CEFDlEF: (AC//\)2 - 1
G0 "HaH HaHeo 1+(2e/A) (AAe) +1

giving Y ¢

i 1+ 7Ac)

. hc 1240 eV [hm
40.72 (a) The energy of the ground state is: E,=- =- = -—8.16 eV
@ ¥ J ' Aserieslimit 152.0 nm -
From the wavelength of the L, line, we see: E,-E; _he_1240nmiev 6.12 eV
A 202.6 nm
E,=E, +6.12eV = (-2.04 eV
Using the wavelength of the Lz line gives: E;-F 1240 nm eV _ 7.26 eV
170.9 nm
SO E; =(-0.902 eV
Next, using the L, line gives: E,-E = 1240 nm BV _ 7.65 eV
162.1 nm
and E, =|-0.508 eV
From the Ly line, E,—E, =220 NM BV _J 836y
158.3 nm
SO E; =(-0.325 eV
(b) For the Balmer series, he _ E,—E,, or A= 1240 nm [8V

For the o line, E; =E; and so

_ 1240 nm [&V _
Aa = (-0.902 eV) - (-2.04 eV)

Similarly, the wavelengths of the g line, y line, and the short wavelength limit are found to
be: [811 nm|, 724 nm|, and [609 nm|.
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40.73

Chapter 40 Solutions

©

(d)

(@)

(b)

Computing 60.0% of the wavelengths of the spectral lines shown on the energy-level diagram
gives:

0.600(202.6 nm) = , 0.600(170.9 nm) = , 0.600(162.1 nm) = ,
0.600(158.3 nm) = , and 0.600(152.0 nm) = .

These are seen to be the wavelengths of the a, B, ¥, and & lines as well as the short
wavelength limit for the Lyman series in Hydrogen.

The observed wavelengths could be the result of Doppler shift when the source moves away
from the Earth. The required speed of the source is found from

oA i=(ve) _ L —
Y _\ 1+(v c) =0.600 yielding

o 1 _ 2mhc?
Starting with Planck’s law, 1(A,T)= W

2 7thc?

the total power radiated per unitarea [ 1(A,T)dA =, /\—s[ehwk—BT_lIdA :

hc

Change variables by lettin X =
g Y 1eting AkgT
and dx = - hch2
kgTA

Note that as A varies from 0 - o, x varies from « - 0.

_2mkgT* O O

® __27T|(éT4 o x3
A
o0 0 40
Therefore, Io |(,\ ,T)d)\ = B%Hﬂ =oT?
c
4 28 (138 x10 k)
From part (a), o= 210 kg = ( )

~15h%? 15(6.626 x 10 J 3)3(3.00 x 108 m/s)2

0=567%x10"% w/m?K*
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2 7thc?

28] ehe AkeT _ ]

-1
*40.74 Planck’s law states 1(A,T) = = 27Thc2)\‘5[ehC AkeT _ 1]

To find the wavelength at which this distribution has a maximum, compute

dr_ 2 “6[he/AkeT _ 4] L 3-5[.hc AkeT _ 4] 2heakeTD he CH_
a2 55)\ [e ’ 1] A [e i 1] e EUZI(BT%_O
dl omhc  H he  eMAkeT H

0

a A6Ieh°/"kBT —1] E_5+ AkgT lehC//\kBT —1J E:

X

=5.

Letting x = he , the condition for a maximum becomes
AkgT eX-1

We zero in on the solution to this transcendental equation by iterations as shown in the table
below. The solution is found to be

X xe* / (ex - l)
4.00000 4,0746294
4,50000 4,5505521
5.00000 5.0339183
4,90000 4,9367620
4.95000 49853130
4,97500 5.0096090
4.96300 4,9979452
4.96900 5.0037767
4,96600 5.0008609
4,96450 4,9994030
4,96550 5.0003749
4,96500 4,9998890
4.96525 5.0001320
4,96513 5.0000153
4,96507 4.9999570
4,96510 4.9999862
4,965115 5.0000008

x=_ M _ 4965115 and he

AmaxT = ————
A max ke T Ma&X" " 4.965115kg

(6.626075 x 107 3(3)(2.997925 x 10° mys)

Thus, ApmaxT = =|2.897755x 1073 m K
mex 4.965115(1.380658 x 102 J/K)

This result is very close to Wien’s experimental value of A ., T =2.898 x107% m K

for this constant.

© 2000 by Harcourt, Inc. All rights reserved.
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40.75

40.76

40.77
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h
A =——(1-cosO=A"-A
mc( ) 0

(3

—1

hc _
E'= =hc +— 1-cos @
O o+N\ %‘o mec ( )D
-1
0
goheq, he (1- cos 6)0
A H mgc )0 g
_l _1
g 0 d
gfeq, he (1-cos )0 = Egl+—2(1-cos B)
Aog mg o B 0 mec 0
(1)*h? h? 3 0.0529 nm
ry= = = =— =13.12fm

" Zpke?  (82)(207m, )ke?  (82)(207)  (82)(207)

_ —13.6 eV (207 1B2(f _
ST ormio”

This is a case of Compton scattering with a scattering angle of 180°. I'Luhr’ﬂ"
NoEnn
AA:A'—Aozl(l—cos180°)=2—h M-‘"—h
mec mec ':-L.'I:.:':.".‘ll- Fecoaling:
Phicitaom Electron
0
Eo :E, S0 Ay - e and A'=Ag+AM :E+27h:EE1 2E0
A = E, mec E m, c?

The kinetic energy of the recoiling electron is then

hc E, 1+ 2Ey/m,c? —10_  2EZ /m,c?

K=Ey - =F,- =E,
CA T (1+2E, me?) H1+2e,/mc? H 1+2E0/mc

Defining a= Eo/mecz, the kinetic energy can be written as

_ 2Ega _ 2(hf)a

=|2hfa(1+2a)™
T 1+2a 1+2a

where f is the frequency of the incident photon.
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40.78 (a) Planck's radiation law predicts maximum intensity at a wavelength A, we find from

dr 0 =iH2 hc? /\—S[e(hc//\ ksT) _1] 'ﬂ
dA dA

0=2mhc2A 5(—1)[e(“°“ kaT) _ 1] 2 glhe/AkgT) (~he 7 A%gT) +2 he?(-5)A~° [e(hCM keT) _ 1] .

—hee(ne/AksT) 5
or 7+ =0
A kBT[e(hc//\ keT) _ 1] 26 [e(hc//\ keT) _ 1]
which reduces to 5(A kBT/hc)[e(hC/" keT) — 1] = g(ne/AkeT)
Define x =hc /A kgT. Then we require 5e* —5=xe*.

Numerical solution of this transcendental equation gives x=4.965 to four digits. So
A max =Nc /4.965kgT, in agreement with Wien's law.

2 1the? dA
e(nc/AkgT) _ 1J

The intensity radiated over all wavelengths is L:o I(A,T)dA =A+B :I: Asl

Again, define x =hc /AkgT so A =hc/xkgT and dA = —(hc/xszT)dx

- 21mhe? x*kT® he dx _ 27tkgT* (o x3dx
h%c5x? kg T (eX - 1) h3c? Jo (eX - 1)

0
Then, A+B :IX_

44
The integral is tabulated as m* /15, so (in agreement with Stefan's law) A+B :217;:(3512-
c

The intensity radiated over wavelengths shorter than A . is

2 rthe? dA
25 le(hc//\ kgT) _ 1J

[im™ g mdr =A==

. _ L _27'rk§T4 o x3dx
With x =hc/AkgT, this similarly becomes A= 32 J’4.%5 x_1

So the fraction of power or of intensity radiated at wavelengths shorter than A, is

2mkgT* On* 4965 x* dx U
A hdc2 His .[0 X —1H 15 4.965 X3 dx
= o =1-— X
A+B 2 kgT o X1
15h3¢?

© 2000 by Harcourt, Inc. All rights reserved.
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(b) Here are some sample values of the integrand, along with a sketch of the curve;:

X x3(ex - 1)_1
0.000 | 0.00
0.100 |9.51 x 1073
0.200 | 3.61x1072| (%)

1.00 |0.582
2.00 1.25
3.00 1.42
4.00 1.19
490 |0.883
4.965 | 0.860 © &
. . . . . A 15
Approximating the integral by trapezoids gives B 1-—7(4.870) = |0.2501
A
40.79 Ao = h and A= C:M:L,
mC p A h7p mgc
2_ 22 2\2. E 2
E®=cp +(mec) : p:\““ciz_(mec)
Aiczi g—(mc)zz | I%EF (mC)D “DE lﬁ_
A mgelc? UF \/( e)2 0 \%GCZH
40.80 p=mv=~2mE = \/2(1. 67 x107 kg)(o.04oo eV)(l. 60 x 1072 J/eV)

h
A:m_143x10-1° =(0.143 nm

This is of the same order of magnitude as the spacing between atoms in a crystal so diffraction
should appear.

-1/2

40.81 Let u' represent the final speed of the electron and let y':(l—u'z/cz) . We must
eliminate B and u' from the three conservation equations:
hc 2 _hc , 2 Scattered
TEryme? =y mge i P;i)ts;l\(
0 Incident , A
h h Photon  Electron i
—+ymu-—cosf=y'myucosf [J i, > . 8 Scattered
TR N0~ Ol g

N in 6= B & =
—_— Sln m u’ Sln
X 4 (a) (b)
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Square Equations [2] and [3] and add:

2

+2hymeu_2h2 cos 6 2hymeucost9_y,2 2 2

h 2 22, h?
A A Ay AgA A
2 2 2 2,42
%+L2+y2m§u2+2hymeu_2hymeucose_2h 0059: mel; i
AO Al AO Al Ao/\' 1-u“/c
)2 2
Call the left-hand side b. Then b—bu2 :mezu'z and u'? = 5 b > = 202b
c mg +b/cc  mgce+b

Now square Equation [1] and substitute to eliminate y':

L+y2mzcg+£+2hymec_ 2h® _2hymec _ mic? = m2e? +b
/\2 e /\,2 AO AOAI 2 1_u,2/02 e
So we have
2 2 2
hT+L2+ yzmezcz + ZhymeC _ 2hy[:neC _ 2h :
Ay A Ao A Ao A
2 2 2
:mecz+%+%+ygmguz+2hymeu_2hymetljcose_2h co'se
A2 A Ao A Ao
i ] 2.2
Multiply through by oA’ /mZc
A A,y2+2h}\'y _2hAgy 2h? - ) A,+A0A’y2u2 +2h}\'uy_2hy)\0ucose_2h2 cos 6
0 mC me  mic2 ° c2 meC? m,C? mZc?

2y20 ' 2hy A 2
2_q_Yu L 2hyA EL_ED_ y oEll_ucosem+ 2h

2 H mge ¢ mgec c O mech(l_COSQ)

A /\'E/
0

- -1
The first term is zero. Then A=Ay EL (;J_C(l)JsCQ)/c E+ hr:c E{l—lu/cﬁl_ cos 9)
/ €

Since yt= 1= (u/e) = /(1-we)(1+urc)

M—(ucosB)/cd h [1+u/c

1-u/c H+mTc 1-u C(l—cos 0)

this result may be written as A'=Ag

© 2000 by Harcourt, Inc. All rights reserved.
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-34
411 (@ A= h 6'622;( 10706 =19.92x107" m|
mv  (1.67 %10 kg)(0.400 m/s)
(b) For destructlve interference in a multiple-slit experiment,

dsin@ = a-n

with m = 0 for the first minimum. Then,

4040
——=0.0284°
(a0

y_ _ _ o) =
[=tand  so y =Ltan6 =(10.0 m)(tan 0.0284°) = 4.96 mm |

We cannot say the neutron passed through one slit. We can only say it passed through the slits.

6 =sin

41.2 Consider the first bright band away from the center: dsin@=mA
(6.00x10°® m)sin%an 2. 400% 1 =1.20 1070 m
H200
h h
A= so myVv =— and
meV A
2,,2 2
K=lmy? =TV = 1T —gav)

2m,  2m,A°

2 (6.626 x 10 y13)°

" 2em 2(1.60 x 10719 C)(9.11 x 1073 kg)(l.zo x 10710 m)2 =V

The wavelength of a non-relativistic particle of mass M is givenby A =h/p = h/«/ZmK where the
kinetic energy K isin joules. If the neutron kinetic energy Kn is given in electron volts, its kinetic

energy in joules is K = (1.60 x1071° J/eV)Kn and the equation for the wavelength becomes

__h 6.626 x107%* I3 _|2.87x 1074 0
V2mK 12167 %1077 kg)(1.60x107° asev)k, | VKn

where K, is expressed in electron volts.

If K, =1.00 keV =1000 eV, then
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2
11.4 )\:D:L’ S0 K:h_2
p v2mK 2mA

0—10

If the particles are electronsand A ~0.1 nm =1 M, the kinetic energy in electron volts is

6.626 x10°* 1 8)°
K = ( X ) O leVv D=

2(9.11 x 107! kg)(lo‘lo m)2 Hi.602 x 1009 3H

-34
s A=l p=0 2 0626X10 “ B _ 663102 kg mn/s
p A 1.00x107 m
2
o2 _(663x10% 113)
(a) electrons: Ke = = 1 J=[15.1 keV
2m,  2(9.11x107%)
The relativistic answer is more precisely correct:
2.2 2.4\1/2 2
Ke :(p ¢ +my“c ) -m. =14/.9 keV
&)  photons  E, =pc =(6.63 x10"2%)(3.00 x 10°) <124 keV
11.6 The theoretical limit of the electron microscope is the wavelength of the electrons. If

K, =40.0 keV, then E = K, +m,c? =551 keV and

1o oy (551keV)? (511 keV)? CL60 x 1026 300
p:_\/Ez_mezczl:\( ) 8( ) - -
c 3.00x10° m/s 1.00 keV

1.10 x10722 kg /s

The electron wavelength, and hence the theoretical limit of the microscope, is then

h_ 6.626x107403 12
A=—= =6.03 x10 " m =/6.03 pm
p  1.10x107% kg [In/s

a7 E =K +m,c? =1.00 MeV +0.511 MeV =1.51 MeV

p%c? = [E2 -m,2c* = (151 MeV)? - (0511 MeV)?  so
p =142 MeV/c

=874x10¥ m

Lohoohe (6.626 x 10 113)(3.00 x 10 m/s
TpLa2MeV T (142x10°)160x107 )]

Suppose the array is like a flat diffraction grating with openings 0.250 hm apart:
dsing=mA

—— - — -1 —

495
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418  (a) ApAX = mAvAX =h/2 )
h 2T )8
Av > = =/0.250 m/s|
4tmAx  471(2.00 kg)(1.00 m)

(b)  The duck might move by (0.25 m/s)(5 S) =1.25 m. Wwith original position uncertainty of
1.00 m, we can think of AX growingto 1.00 m+1.25 m =

11.9 For the electron,

Ap = m,Av = (9.11 x 10731 kg)(soo m/s)(l.OO x 10‘4) = 4.56 x 10 kg [In/s

h _ 6.626x107°* )08

AX = = =
4mhp  47{4.56 %107 kg (/s

)=

For the bullet, Ap = mAv =(0.0200 kg)(500 m/s)(l.OO x 10‘4) =1.00 x103 kg [M/s

=" [528x10%2 m
4rtAp

496

Goal Solution

An electron (M, =9.11 x 1073 kg) and a bullet (m =0.0200 kg) each have a speed of

500 m/s, accurate to within 0.0100%. Within what limits could we determine the position of the
objects?

G: It seems reasonable that a tiny particle like an electron could be located within a more narrow region
than a bigger object like a bullet, but we often find that the realm of the very small does not obey
common sense.

O: Heisenberg’s uncertainty principle can be used to find the uncertainty in position from the
uncertainty in the momentum.

A: The uncertainty principle states: AXAp, =2h/2 where Ap, = mAv and h =h/2.

Both the electron and bullet have a velocity uncertainty,

Av =(0.000100)(500 m/s) = 0.0500 m/s

For the electron, the minimum uncertainty in position is

_h 6.63x10734 )3 _
AX = = a1 =1.16 mm
4mmAvV  471(9.11x 107 kg)(0.0500 m/s)
For the bullet,
-34
Ax = h 6.63 x10 J3 = 5.8 x 10_32 m

T ammAv 4700200 ka0 0500 m /<)
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11.10

11.11

11.12

11.13

(@)
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A
&y _ Sy and  dApy, 2h/4m

Eliminate Ap,, and solve for X.
X Px

(2.00 x1073 m) )
(6.626 x10734 B) B

X = 4an(Ay)% =4 n(l.oo x1073 kg)(100 m/s)(l.OO x 1072 m)

3.79 x 10?8 m|

This is 190 times greater than the diameter of the Universe!

h
APAX = — Ap =m,Av =
P 2 50 P=Me ATTAX
h 6.626 x1072 J[3 6
Av > = = oy =L16x10° m/s
4mm.Ax  471(9.11x 107 kg)(5.00 x 107 m)

With AX =2 x107 m, the uncertainty principle requires Ap, = % =2.6x107% kg /s
X

The average momentum of the particle bound in a stationary nucleus is zero. The uncertainty in
momentum measures the root-mean-square momentum, so we take Pyps = 3 X 10720 kg Mn/s .

For an electron, the non-relativistic approximation p = M,V would predict V = 3 X 1010 m/s,
while Vcannot be greater than C.

2\? 2012 2
Thus, a better solution would be E= @mec ) + (pC) g =56 MeV =ymy
y =110= % so
\/1—v2 /c?
v =0.99996¢

For a proton, V = p/m gives V = 1.8 x 107 m / s, less than one-tenth the speed of light.

At the top of the ladder, the woman holds a pellet inside a small region AXi. Thus, the uncertainty
principle requires her to release it with typical horizontal momentum Ap, = mAv, =h/2Ax;. It

falls to the floor in time given by H =0 +%gt2 as t= \2 H/g , so the total width of the impact
points is

O O
AXf = AXi +(AVX)t = AXi + EQIT]% Z?H = AXi +§, where
| |

A:L ‘2_H

498



so AX; = xK and the minimum width of the impact points is

A

(Axf)min - Eﬂxi s

= 2\/> =
X %Axi:\A

en’? _eno”

OmO Hg H

o (ax)

_ (L0546 %107 1 ) glz (2(2.00 m) 3”*
min H 5.00x107* kg H 59.80 m/sZB

=5.19x107%% m|

Chapter 41 Solutions
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_[a EEﬂDt —1X

- ! 2 _ -4 a
11.14 Probability P—J'_a|¢l(x)| —I_a (x2+a2) T OO 3
—[tan l1-tan~ 1] = n% [E

—a

RIXO_ p o 10
nis @  @(x)= Ast/\ O Asm(5.00 x10 x)

21T 10 2m 10
- =500 x10 A= =11.26 x 10
A (5 00><101°j

~34
b p= h _6626x10 ° JI8 507, qp2 kg [n/s

A 1.26x1070 m

© m=9.11x10"3kg

2
2 (5.27x107%* kg /s 17
K:p_:( ) =152x1071 3= 152)(1919 J =/95.5 eV
2m (2 x9.11x 1073 kg) 1.602 1072 )/ev
11.16 For an electron to “fit” into an infinitely deep potential well, an
integral number of half-wavelengths must equal the width of the
well.
% =1.00 x10™° m ) <><
-9
4= 200x107 _h
n p

IG5 I 7 =(0377n2) ev

(@ Since K = P
2m, 2m, 2m, (2 N 10—9)

For K=6eV, n=4

(b) Wwith n=4, K=6.03 eV

11.17 (@) We can draw a diagram that parallels our treatment of
standing mechanical waves. In each state, we measure the
distance d from one node to another (N to N), and base our M AN AN A
solution upon that:

Since dNtoN :% and M oA M. A




(b)

Next,
-34 20
P :iHG.GZGXm 18 g
2m, 8m.d 20 -3l O
. 8md d E8(9.11>< 10 kg) =
_ _ 6.02x107°8 ymn?
Evaluating, K= 5
d
_3.77x107% eV [n?
K= 2
d
In state 1, d=1.00x10" m
K, =377 eV
In state 2, d=5.00x10""'m
K, =151eV
In state 3, d=333x10""'m
K; =339 eV
In state 4, d=250x10""'m
K, =603 eV
When the electron falls from state 2 to state 1, it puts out
energy
hc
E=151eV -37.7 eV =113 eV =hf :7
into emitting a photon of
hc _ (6626 %107 113)(3.00 x10° m/s)
- = 19 =11.0 nm
E (113 eV)(1.60 1079 J/eV)

The wavelengths of the other spectral lines we find similarly:
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M Ko
+ 603 - &l
3 339 : 4
2 151 1€
| 3.7 :

{

wavelength

T
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0
n
E

(ev)

A(nm)




11.18

(@)

(b)

11.19

11.20

11.21

E; =2.00 eV =3.20 107

h2
8m,L2

For the ground-state, E =

L= M —434x10° m =0.434 nm

+/8M.Eq
OKR: O 0K O
AE=E, -E. =4 - =(6.00 eV]
2R T P B tH

0 h2 2
AE = hc h Ezz _12] — 3h

HBm, L2 8m,L2

L= 3" _793x10° m <0.793 nm
\ 8mgc

A Bm,2 - 8m,L?
so L= J‘CBhA
| 8mgc
n’h?
" gmL?
3h? _ 3(hc)’
) AE=E, —-E, = =
2 17 gmL2 T 8me2L2
and AE = hf IE
A

smc?L2 _ 8(938 x 10° ev)(1.00 x 107 nm)2

Hence, A =

3hc 3(1240 eV [hm)

A=202x10"* nm (gamma ray)

E:%IGJS MeV
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Goal Solution

The nuclear potential energy that binds protons and neutrons in a nucleus is often approximated by a
square well. Imagine a proton confined in an infinitely high square well of width 10.0 fm, a typical
nuclear diameter. Calculate the wavelength and energy associated with the photon emitted when the
proton moves from the N =2 state to the ground state. In what region of the electromagnetic
spectrum does this wavelength belong?

G:  Nuclear radiation from nucleon transitions is usually in the form of high energy gamma rays with
short wavelengths.

O: The energy of the particle can be obtained from the wavelengths of the standing waves
corresponding to each level. The transition between energy levels will result in the emission of a
photon with this energy difference.

0—14

A: At level 1, the node-to-node distance of the standing wave is 1.00 X 1 Mm, so the wavelength is

twice this distance: h/p = 2.00 x 107 m. The proton’s kinetic energy is

2
_34 —
o (6.63x10° J13) _ 320x107%

=2.06 MeV

In the first excited state, level 2, the node-to-node distance is two times smaller than in state 1. The
momentum is two times larger and the energy is four times larger: K =8.23 MeV.

The proton has mass, has charge, moves slowly compared to light in a standing-wave state, and stays
inside the nucleus. When it falls from level 2 to level 1, its energy change is

2.06 MeV —-8.23 MeV = -6.17 MeV

Therefore, we know that a photon (a traveling wave with no mass and no charge) is emitted at the speed
of light, and that it has an energy of +6.17 MeV.

(6.17 x 10° ev)(1.60 x 10719 J/eV)

. E 21
Its frequency is f=—= =1.49 x10°" Hz
aHeney h 6.63 %107 J[3
8
and its wavelength is A= c- 3.00x10 21m{18 =2.02x10 " m
f  1.49x10% s

This is a gamma ray, according to Figure 34.17.

L:The radiated photons are energetic gamma rays as we expected for a nuclear transition. In the above
calculations, we assumed that the proton was not relativistic (V < 0.1¢), but we should check this
assumption for the highest energy state we examined (N = 2):

=3.97 x10’ m/s =0.133¢c

) /ﬁ _12(8.23x10° ev)(L60x 107 1/eV)
Um Y 167x10% kg

This appears to be a borderline case where we should probably use relativistic equations, but our
classical treatment should give reasonable results, within (0.133)? = 1% accuracy.
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A=2D for the lowest energy state

P’ _ N h2 (6.626 x 10734 ) [3)?

- 2
2m  2mA2  8mD 8[4 (1.66 1077 kg)](l 00x10™ m)
0.517 MeV

~34
=N _6620x10 7 IE i3 31%10% kg /s

2D 2(100><10 ~14 )

K= > =827x107 )=

p:

h
)

34 2
(6.626 10 J13) _14
E, = > =821x107

8(1.67 x 1072 kg)(z.oo x 1074 m)

E; =/0.513 MeV E, =4E; =[2.05 MeV E; =9E; =4.62 MeV

L 2 . 4 11X
<X >= £ = T cos 2
X onLsm LIO cos C Ddx

12 12 B4rrx 4 11X 4 %]
i +cos =/L/2
L2| Lie?BL L B

.510L
5101

Probability = J’ zsinZEQﬂDx:[ﬂx—lLsinArﬂﬁf

os0L L OL O H” Lam L Bl

Probability = 0.20 —4i(sin 2.0471-sin1.96 7) =/5.26 x 10
T

x 1 . 4mx ﬂ'ZGOL >
Probability = a: —ESIHT% =3.99x 10
.240L

In the N = 2 graph in Figure 41.11 (b), it is more probable to find the particle either near

L

3L
X=— or X=— than at the center, where the probability density is zero.

4
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2 NTTX[] 200 _ 2
x:OA sin 0L Ddx A Sl =1 or A_\““L
. o x=L/4 2[27'[
The desired probability is P= J' I |l,U| dx ——J'O Sln O DdX
where sin29:1 c0s26
2
Thus,
L/4
X 1 . 4mx m 0
P="-_—"5sin—= = —-0-0+0-=/0.250
. 4m L ao [l O

In 0 < X <L, the argument 277X/ L of the sine function ranges from O to 27T. The probability
density (2/L)Sin2(27TX/L) reaches maximaat Sin@=1 and sin@=-1 at

27TX T 2rrx 3
—=— and — =
L 2 L 2
. . L 3L
U The most probable positions of the particle are at| X = Z and x = T
L L732 . megd 2 73 1 21x[
Th babil — — —d
e probability is J' IO I_Sln aL X = o o 2COS C DX
>x 1 2mxd”_m 1 2mp_ O 430
P= sin=—/—= = — - sin=- N2 2=[0.196]
O 2 L ao B 27 30 B and
The probability density is symmetric about X =L/2. Thus, | s |2

the probability of finding the particle between X = 2L/ 3 and
X = L isthe same 0.196. Therefore, the probability of finding
itintherange L/3<x<2L/3is

P =1.00 - 2(0.196) = 0.609. 0

Classically, the electron moves back and forth with constant
speed between the walls, and the probability of finding the
electron is the same for all points between the walls. Thus, the
classical probability of finding the electron in any range equal

to one-third of the available space is Pgjassical :.
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11.29
(@)
(b)
(©
11.30 @)
11.31

The ground state energy of a particle (mass M) in a 1-dimensional box of width L is E; =

For a proton (m =1.67 x107%/ kg) ina 0.200 - nm wide box:

Chapter 41 Solutions

2

smL?’

(6.626 x 10734 J B)Z

E, = > =822x107% ) =513x107

eV

8(1.67 x 1072 kg)(z.oo x 10710 m)

For an electron (m =9.11x107% kg) in the same size box:

(6.626 x1073% ) B)Z

E = > =151x107% ] =9.41 eV

8(9.11 x 1073 kg)(z.oo x 10710 m)

The electron has a much higher energy because it is much less massive.

—

_ 2 0OmxQ
wl(x)_VLCOSD_L 0
_ |2 . [R2rxO
w2(¥)= | singo
_ 2 BrxQ
L/J3(x)—\“_cosD T O

h

Y
_L/2 T
. 2
We have Y= Ae'(kx_wt) and é’_(,lzl =
ax
2
Schrodinger’s equation: (9_(,[21 = —kZL,U =2—r2n(E —U)L,U
ax h
2 22
2
Since k? = (27‘[) = ( 7Tp) =P and
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11.33

(@)

(b)

(©

Chapter 41 Solutions

(x) = Acoskx +Bsinkx Z—L’U: ~kAsinkx +kBcoskx
2
g Y = k2Acoskx —k?Bsinkx —im (E-U)y = 2mE(Acoskx +Bsinkx)
X
Therefore the Schrédinger equation is satisfied if
2
J l’U D 2m gE U or
Ix?
0 2mE
—k?(Acoskx +Bsin kx) = 5 3Acoskx+Bsm kx)
h2k?
This is true as an identity (functional equality) for all X if [E = W

Problem 45 in Ch. 16 helps students to understand how to draw conclusions from an identity.

dy _ 2Ax oy 2A
=Arl—— - = - =
H~12H T oxz L2
- . 624/ _2m
Schrodinger’s equation F = __Z(E —U)L,U
X

becomes
2 (_hzxz)AD s
_2A _2m AD _x_D+2_m
12 n? %1 LZE h? mLZ(LZ—XZ)

o . 1 _mE mE 1 _
This will be true for all X if both - = and Y
L h h“L® L
h2
Both of these conditions are satisfied for a particle of energy E = _L2 .
m
For normalization,
Lo L0 x2D2 oLt %2 x40
CRAETE A L T
u 3 5] 15
1=A%1—2%+3Eﬂ :Agg gL+£+L_gL LO_ Asz A= 15
o 3L 50, 3 5 T5E \ 161
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P =—=[0.580



11.34

11.35

11.37

(@)

(@)
(b)

Chapter 41 Solutions 509

Setting the total energy E equal to zero and rearranging the Schrédinger equation to isolate the

potential energy function gives

Ch2 01 d%yp

V)= By

or

d2y (4x?-602)

dX2 = L4 l’U(X)
and

h? [4x?

N ]
V= omz Bz ~°H

See figure to the right].

See figure to the right].

The wavelength of the transmitted wave
traveling to the left is the same as the original

wavelength, which equals .

v ()
0 L o L

T =¢2Ct (Use Equation 41.17)

ol - 2,2(9.11x10)(8.00x 107

2 A ..an—34

2 -x2/12
Then 9% - (4Ax3 - 6Ax|_2) ¢
dx? N
L(x)
} f.
[3
- = L
Y2z
N_an?
ml
I i ] '*
0
.q_
Electron
(0,200 nr

(2.00x1071°) = 4.58
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)

SoOo="Cc =0 W=—®O0(
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Goal Solution
An electron with kinetic energy E =5.00 eV is incident on a barrier with thickness L =0.100 nm

and height U =10.0 eV (Fig. P41.37). What is the probability that the electron (a) will tunnel
through the barrier and (b) will be reflected?

G:  Since the barrier energy is higher than the kinetic energy of the electron, transmission is not likely,
but should be possible since the barrier is not infinitely high or thick.

The probability of transmission is found from the transmission coefficient equation 41.18.

The transmission coefficient is

Jom(U-E) _2(9.11%107% kg)(10.0 eV ~5.00 eV)(1.60 x 107 1/eV)
~h - 6.63x107* J[3/2m

=1.14 x101° m!

(a) The probability of transmission is

otk 2190 Yoo ) _ s g 010

(b) If the electron does not tunnel, it is reflected, with probability 1-0.0103 =0.990

L:Our expectation was correct: there is only a 1% chance that the electron will penetrate the barrier. This
tunneling probability would be greater if the barrier were thinner, shorter, or if the kinetic energy of
the electron were greater.

Jz(g.n x107**)(5.00 - 4.50)(1.60 x 107%?) kg /s Energy
11.38 C= - Elec
1.055x10% J [3 | Fee
f.
0

T=e?CL = exp[ -2(3.62 x10° m™)(950 x 102 m)] = exp(-6.88)
T =1.03x1077

1.39 From problem 38, C = 3.62 x 109 m™

1070 = exp[—2(3.62 x10° m‘l)L]
Taking logarithms, -13.816 = —2(3.62 x10° m'l)L

New L =1.91 nm



41.40

41.41

11.42

11.43

(@)

(b)

(©

Chapter 41 Solutions

With the wave function proportional to e_CL, the transmission coefficient and the tunneling current

2 -
are proportional to |l,U| ,to € cL

1(0.500 nm) 2(10.0 /nm)(0.500 nm)

e
|(0 515 nm) ¢~2(10.0 /nm)(0.515 nm)

= ¢200(0015) /1 3g]

Then,

With transmission coefficient e_CL, the fractional change in transmission is

-2(10.0 /nm)L _ ,~2(10.0 /nm)(L+0.00200 nm)

€ —€

e—2(10.0 /nm)L

= 1-220(000200) _ 1397 =[3.92%%

W= Be—(maw/2h)x? %‘l’ and  OY_ Em_gz LO0Mmw

dX dx2 H D h

Substituting into Equation 41.19 gives

ot 2y + D_M :mmEEr" ot <2
Oh O h 0 K2 Oh 0%

L . hw
which is satisfied provided that E = T

Problem 45 in Chapter 16 helps students to understand how to draw conclusions from an identity.

W = Axe ™ s0 Z_ll’ = Ae™™ — 2bx2me ™’
X

and

dzw —bx? —bx? 203 A . —bx? 2,,2
v —2bxAe ™" —4bxAe ™" +4b*x*Ae ™ = Bby +4b XY
X

Substituting into Equation 41.19, —6by + 4b2X2l,U =

_E%E{wmwtf 2

U h DhD('U

For this to be true as an identity, it must be true for all values of X.

2mE w
So we must have both —6b = — and 4p? = [m—DZ
h Onph O
mao
Therefore = —
2h
3bh? [3
and E= =—hw
m 2
The wave function is that of the first excited state.
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41.45

11.46

(@)

(b)

(@)

(b)

Chapter 41 Solutions

The longest wavelength corresponds to minimum photon energy, which must be equal to the spacing
between energy levels of the oscillator:

hc k

—=hw=h |— SO
A m
. /2
m g [0.11x 1073 ng1
A =2mc |— =2m3.00 x10° m/s =[600 nm|
J k g )E 899 N/m 0
With Y= Be—(mw/Zh)x2 , the normalization condition Ia”|L/J |2dx =1
becomes 1= J'oo B2e2(Mmew/ 2 gy ZBZJ'OO e 2ma/2n)C gy = o2 1 7T
—00 0 2\ mw/h

where Table B.6 in Appendix B was used to evaluate the integral.

, [mh meod”

Vmw and 5 =HmH

For small O, the probability of finding the particle in the range —0/2 <X <0/2 is

Thus, 1=B

/2
o/2 2. _ 2 _ 2.0 _ Tt
J’_6/2|(,U| dx = 8| (0)|" = B“e _5%5

with <X >=0 and <p, >=0, the average value of x2 is (AX)2 and the average value of px2 is

(Apx)z. Then AX =h/2Ap, requires

2 2 2 in2
E > pX + K h - pX + kh
2m  24p2 |2m  8p,?

2
To minimize this as a function of pxz, we require d—Ez =0= i +&(—1)i4
dpy 2m 8 Px
kh® _ 1
Then —F =
8p,t  2m
/2 —
Ioz_EkahZD1 _ hmk
“"H s H 2
2 e
o Jhmk | kb3 _h Liﬁ_
2(2m) shvymk 4\Vm 4\m
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“41.47 Suppose the marble has mass 20 g. Suppose the wall of the box is 12 cm high and 2 mm thick.
While it is inside the wall,

U =mgy =(0.02 kg)(9.8 m/sz)(0.12 m) =0.0235 J

and  E=K=_mv? =2(0.02 kg)(0.8 m/s)" =0.0064 J

- 12(0.02 kg)(0.0171J
Then C= 2mU-E) _« ( g)(_34 ) - 25x10%2 m™
h 1.055x107>* J 3

and the transmission coefficient is

o~2CL _ e—2(2.5x1032)(2x10‘3) _ ¢-10x10% =e—2.3o(4.3x1029) _1043x10% | _ ;107
4148 (a) A=2L=200%x107"0 m|
h _6.626x10* 113 =T
b =—= =13.31x 10" kg In/s
O P T 2 00%x10 P m J
02
(¢ E=—=0.172eV
2m
11.49 (@)  [See the first figure to the right . i
(b) [See the second figure to the right]. A

() Y iscontinuousand { — 0 as X — *oo

(d) Since ¥ is symmetric,

fw|‘l’|2d><:2j':|w|2dx:1 1/ 0
i} 2
ZAZI:E_ZaXdX _ %ae_w _ eo) .
This gives A=a
|

- I ] 1



11.51

(@)

(b)

Use Schrodinger’s equation

Y _ 2m
X2 - _h_Z(E —U)lll
with solutions Wy = Aelkix 4 geikix
[region 1]
wz - Ce|k2X
[region 1]
Where ky = ' 2mE
h
and S
k :M
2

h

Then, matching functions and derivatives at X =0:

Chapter 41 Solutions

Incorming

(Wi),=(w,), O A B C

and
My 0 _ Dy, 0
= O kA B)=k,C
DdX [&) 0 dx q) l( ) 2
Then = MA
1+ky /Ky
C= #A
1+ky /Ky
- » 2 (1-kyZk))® (K k)
Incident wave Ae™ reflects Be |kx’ with probability R = B—2 = ( 2 1)2 = ( L 2)2
AT (1+ky /)" (ke ko)
With E =7.00 eV and U =5.00 eV, koo EZU 1200535
kk V. E  \7.00
_ 2
The reflection probability is R= % =/0.0920
(1+0.535)
The probability of transmission is T=1-R =0.908
. (kl _ k2)2 _ (1 _ k2/k1)2 Incoming part
(ke +Ko)*  (L+kyp/ky)? ‘
21,2
ﬁ =E —U for constant U
2m
21, 2
h“ky =E since U =0 o)

2m

515

I .
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Dividing (2) by (1) ﬁ‘1—2—1—1 —1 o)
I k2  E 2 2
ko 1
ky 2
and therefore,
2 2
1-1/+2 2 -1
=( ) = (” ) =[0.0294

(1+17v2)" (V2 +1)f
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}11.53

(@)

(b)

(©

(d)

(@)

(b)

(©
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The wave functions and probability densities are the same as those shown in the two lower curves in
Figure 41.11 of the textbook.

o _0'35}”m|w Pax - 2 5035}“ ,0 7IX gdx_ 2000x _100nm . 0 21X o nm
1= 1 -
0450 nm Dl 00 nm Do o [1.00 nm nm E 41T (1.00 nm E% 150 nm

In the above result we used Isinz axdx = (X/Z) - (1/4a)sin(2ax)

1000 1.00nm . O 2mx o™
P = - sin
nm 21 [1.00 nm

.150 nm

P _ﬂﬁyssonm ~0.150 nm 100nrn[ sin(0.70077) - sin 030071)]@ 0.200

0350 571X X _1.00 D4nngf35°
P, = f —Sﬁ =200 - =20
1.00J0150>" Ti1.00 % e OLO0CH .,

.350
P, =1.005% - %0 sin 27X 1.00Et0.350 -0.150) - = 2]sin(1.407) - sin(0.600 7 ﬁ:
%( 4 OL00CH ., 4

T
0.351

212

Using E,, = g—hLZ we find that E; =[0.377 eV| and E, =[1.51eV
m

mgy; = %mvf2 =\20y; = (9 80 m/s )(50.0 m) =31.3 m/s

-34
h —_6.626x10 ™ J3 :‘2.82 x 10737 m\ (not observable)
mv  (75.0 kg)(31.3 m/s)

-34
AEAt>h/2 s0 AE » 5626 %10 _3J S _106%x107%2 )
47{5.00x107% s

AE _ 1.06 x 107 ]
E (750 ka)a a0 m/z<2\(500 m)

A=

=2.87 107 %
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.54 From the uncertainty principle AEAt—h/2 or A(mCZ)At =h/2. Therefore,

Am h h 6.626 x 1074 J [3 O 1Mev O

m  4mc?(At)m ) Am(At)ER 4n(8.70 x 1077 s)(135 MeV) Heox107 35
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434 x10% Hz|

nss (@ f=c=_ 180€V (1,60 x 10729 )0
| h 6626102 jsH 100ev H

¢ _3.00x108 m/s _ o
) A =t T a3 x 10 1y =6.91x10"" m =691 nm|

(c0 AEAt> % )

h h _6.626x1024J08

_ _ S =264%107%) =41.65x107 eV
oAt ATTA 4n(2.00 x 10 s)

AE 2

11.56 @ f -E
' h
c |hc
b A=—=—
©) f |E
© MEAxD o aEx =N
2 20t AT
1157 <x2> :f x2|y |2dx

2 . InmTXO
For a one-dimensional box of width L, = [—SIn ——
Un = SN

L 2 2
Thus, <X2> = %IO x2 sin? En—fxgix = L? - ﬁ (from integral tables)

11.58 (a) I:JL/J |2dx =1 becomes

/4
L/4 an L
AZJ' cos? 2¥ 0y - a20L X+EsinD4_”XDﬁ _ a20L tmo_
- 0L O orHL 47 0L H,,, = ConleO
or A2 = i and A= i
L VL

(b)  The probability of finding the particle between O and L/8 is

L/8, 2 5 L/8  L[RmXx[0 1.1
= X gx = = + = =0.409
J’O | dx=A J’O cos® G X =gt -
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|

11.59 For a particle with wave function ¢I(X) = \%e—x/a for x>0 and 0 for x<O
@ [wx)[=0, x<0 and [y2(x)|= ée-zm, x>0 ol
2
1=
()  Prob(x <0) :fw|¢l(x) 7 dx :J’in(o)dx =[0) J\
= e ol ———
(c) Normalization o'

[ lwb)fox=° Jufoceufox =1
ﬁ)ooOdX +I;o(2/a)e_2X/adX =0 _e—2x/a‘: — _(e—oo _1) -1

Prob(0 < x <a) :J’;|L/J |2 dx :J’;(Z/a)e‘z"/adx = e‘ZX/a: =1-e2 =
0.865

11.60 @ A h he =— he

KN VE? ~m;’ct \(mecz + K)2 —(mecz)2

(6.626 x107 113)(3.00x10° m/s) g 1 e
(576 keV)? - (511 keV)? HL60x107% 5

5:4.68 x 10712 m

0) 50.0A=2.34x1070 m|

1161 (@) AxAp=2h/2 soif Ax=r, Ap=2h/2r

2 A 2 2
) Choosing ap=". k=P (&) _ h 2
r 2me 2me 2mer

2 2
ke€” @ E=K+U = N

U=-
r

() Tominimize E,

dF h k_p2 h?2
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h? Omk,e? f Cmeke?d_ Ok, 2e* O

_ ka2 __ _[
men =Bt B “Hn B Ham B

) nA
11.62 (@  The requirement that 7 =L so p=

nh =~
=— isstill valid.
2L

A

mher? | (me2)

2
E:\“s(pc)2+(mcz) 0 Ex \O2L 0

_ . _ 5 _ herf 2\2 _ 2
Kn =E, —mc _VDZLD +(mc ) mc
(b) Taking L=1.00x1072 m, m=9.11x10" kg,and n=1, wefind K; =/4.69x107* ]
2
h2 (6.626 x 107 113 M
Nonrelativistic, E; = = =6.02x10 )

smL2 8(9.11 x 10731 kg)(l.OO x 10712 m)

Comparing this to K, we see that this value is too large by |28.6% .

2 2 2
e 0O,.1 1.0, .10 O_(-7/3)e 7k.e
11.63 U= 14= —= +—1 +=—+(-1)= =K
@ ame,dd 2 3 O 20 (g 4 1Ry d 3d
2h? h?

(b)  From Equation 41.9, K=2E = =

2 2
(0 E=U+K and d—E:O for a minimum: 7ke(; __h 7 =0
dd 302 18m.d

P R (6.626 x 10‘34)2 )
- ()[18ke’m, ) 42mekee” - (42)(9.11%107%)(8.99 x 10°)(1.602 x 1072 c:)2 )

(d)  Since the lithium spacing is a, where Na3 =V, and the density is Nm/ZV , where m is the mass of
one atom, we get:

/3 /3

wvmd? 0 m 0% Deex10? kgx70 10

= — = = =2.80x10 =/0.280 nm|
a CNm U %ensity% E 530 kg E m 8 m

(5.62 times larger than C).



‘4164 (a)

(b)

(©)

(d)

()
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W= Bxe ~(M@/2h)x®

dy - Be—(mw/Zh)x2 _I_B)(D_mOl)%xe—(ma)/Zh)x2 — Be—(mw/Zh)x2 _BDM 2(_)—(mou/2h)x2
dx U 2h Oh

dzw _ py LMWL ~(mw/2h)x? _ oMW -(maw/2h)x* _ gM 2Lm ~(may2h)x?
o2 0 h O° 0 o 80h 00 h ‘ﬁ(e

dx? Uh

dz(,U _ 3BDM e—(moo/Zh)x2 +BDM§<3€—(mw/2h)x2
Uh

Substituting into the Schrédinger Equation (41.19), we have

-3B——

Emhw e—(moo/Zh)x2 + Bg%)%:%e—(m w/2h)x? _ _2mE Bye (M w/2n)x? M UﬁXZBxe—(m o’ 2h)x?

§hou
2

2E
This is true if —3w = —T; itistrueif |E =

We never find the particle at because = 0 there.

Y is maximized if ?j—l;l(, =0=1-x° g%)g which is true at |X = i\ mlw

We require I:JL/J |2dx =1

2 /21,372
1 :J'oo BZXZe—(mw/h)xde = ZBZIOO X2e—(m0.)/h)x2dx - 282 1 L?) = B——nl h3/2
oo 0 4\ (mw/sh)’ 2 (mw)

M2 (et mde? 174

S0h 0 Hme B

At X =2h/mw, the potential energy is %mwzxz = %m w2(4h/m o.) =2h w Thisis larger
than the total energy 3h w/ 2, so there is classical probability of finding the particle here.

Then B

Probability = |(p |2dx = EBXe_(mw/Zh)XZ %FC; - 5_3)2)(26—(moo/h)x2

Probability =0

2 mwF’’04h %—(mw/h)4(h/mw) — 85DMDUZG-4
20h O COne

UnO

522



11.65 ()

(b)

41.66

L2
J'0|l/J| dx =1

AZJ’O gl

ELD L0

A2E17L+16J' sin2 X Lo BT Ly
OL o oL E q 2
A2

a 2 .
I_a|¢l| dx = 1:

a
I%M cosZDﬂXD+|B| sin2B™0
-a |:|2

Oa O

+165sin?

2 X
%]2D+16D2D+8I stL Dsm Efj E
O a2t

X= LD
+&sin3mxa

= 70 so the normalization constant is| A = \2/17L

+2|A||B|cos —Dsm

Chapter 41 Solutions

ﬂXD U7 . K]

+8sin —Ds E%:ix=1

=1

3 UL k=0

OO, 07X

EHszl

2 2
The first two terms are |A| a and | B| a. The third term is:

X Omx0 OO, ;
2|A||B|Icos %smﬂzaﬂ Ooa EEFX_4|A”B|J&COS

so that a(|A|2 +|B|2) =1, giving “A|2 +|B|2 = 1/a‘.

With one slit open
_ 2
P, = |l.U2 |

With both slits open,

At a maximum, the wave functions are in phase

At a minimum, the wave functions are out of phase

ﬂ:Wf

Now —= > =25.0, so

|n
DS Dza 37T [12a

Pl :|w1|2 or

P=|y, "“.Uz|2
max = (|(l11| +|L.U2|)
mln - (|‘p1| _|w2|)

lel =5.00

523
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(@)
(b)
(©
(d)

()

Chapter 41 Solutions

The light is unpolarized. It contains both horizontal and vertical field oscillations.
The interference pattern appears, but with diminished overall intensity.
The results are the same in each case.

The interference pattern appears and disappears as the polarizer turns, with alternately increasing
and decreasing contrast between the bright and dark fringes. The intensity on the screen is precisely
zero at the center of a dark fringe four times in each revolution, when the filter axis has turned by 45°,
135°, 225°, and 315° from the vertical.

Looking at the overall light energy arriving at the screen, we see a low-contrast interference pattern.
After we sort out the individual photon runs into those for trial 1, those for trial 2, and those for trial
3, we have the original results replicated: The runs for trials 1 and 2 form the two blue graphs in
Figure 41.3, and the runs for trial 3 build up the red graph.
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421 (a) The point of closest approach is found when

ke (2€)(79¢)

Mmin =

E=K+U =0+ elafau o
r

4.00 MeV)(160x10712 J/MeV
/

Fmin
(b) The maximum force exerted on the alpha particle is

(8.99x10° N2 C?)158(1.60 x 1072 c)2

Frax = kquun = 5 =|11.3 N| away from the nucleus
Fmin (5.68x120™ m)

42.2 (8) The point of closest approach is found when

o (2)(2e)

2
E=K+U=O+keqf"’qT R 2Zkqe

E

(b) The maximum force exerted on the alpha particle is

ke lr 0 e O _[ €
E =_eadT — 927K e = away from the target nucleus
MRy 2 © Hzke?H | 2zke? Y g

min

42.3 (a8) The photon has energy 2.28 eV.

And (13.6 eV)/22 =3.40 eV is required to ionize a hydrogen atom from state n = 2. So while
the photon cannot ionize a hydrogen atom pre-excited to n = 2, it can ionize a hydrogen atom

inthen = state, with energy

13.6 eV
32

= -151eV

(b) The electron thus freed can have kinetic energy K, =2.28 eV — 1.51 eV = 0.769 eV = %mev2

2(0.769)(1.60 x 1072°)J
V= =520 km/s
\ (9.11 x 10—31)kg

© 2000 by Harcourt, Inc. All rights reserved.
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*42.4 (a) Longest wavelength implies lowest frequency and smallest g E (eV)
energy: the electron falls from n =3ton = 2, losing energy 0 0.00
1366V 136eV _ e — | _oars
T T T TLL8eV 5 ———|-| -0544
4 ——|—1-|- -0.850
The photon frequency is f = AE/h and its wavelength is S I 151
8 -34
A :%:ﬁ:(&oomo m /s)(6.626 x 10>" J3) U eV O ) 1 YVYVYY a4

AE 189 eV H.60x 109 3H
Balmer

A= Series

(b) The biggest energy loss is for an electron to fall from ionization, n = o, to the n = 2 state.

13.6 eV N 13.6 eV

2L B Eme

_he_(3.00x10° m/s(6.626 x 107 y13)
CAE 3.40eVv(160x107° 3/eV)

It loses energy

to emit light of wavelength A

- [BeB ]

m
42,5 (&) For positronium, p = Te , SO A3y = (656 nm)2 = 1312 nm =|1.31 um| (infrared region) .

(b) For He*, p=me, gy =e, and g = 2e, s0 Az = (656/4) nm = (ultraviolet region) .

Goal Solution
A general expression for the energy levels of one-electron atoms and ions is

£ = _hke’g,° 0
" 2h?n?

where k. is the Coulomb constant, g, and g, are the charges of the two particles, and u is the reduced mass,
given by u=mm, /(ml + mz). In Problem 4 we found that the wavelength for the n = 3 to n = 2 transition
of the hydrogen atom is 656.3 nm (visible red light). What are the wavelengths for this same transition
in (a) positronium, which consists of an electron and a positron, and (b) singly ionized helium? (Note: A
positron is a positively charged electron.)

G: The reduced mass of positronium is less than hydrogen, so the photon energy will be less for
positronium than for hydrogen. This means that the wavelength of the emitted photon will be
longer than 656.3 nm. On the other hand, helium has about the same reduced mass but more charge
than hydrogen, so its transition energy will be larger, corresponding to a wavelength shorter than
656.3 nm.

O: All the factors in the above equation are constant for this problem except for the reduced mass and
the nuclear charge. Therefore, the wavelength corresponding to the energy difference for the
transition can be found simply from the ratio of mass and charge variables.
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For hyd MpMMe
or rogen, =—P® =m
yares H me+m,  °
The photon energy is AE=E;-E,
. ¢ _ he
Its wavelength is A =656.3 nm, where A=—=—
f AE
(@) For positronium, p=MeMe _ Me
me+m, 2

(b)

so the energy of each level is one half as large as in hydrogen, which we could call "protonium.”
The photon energy is inversely proportional to its wavelength, so for positronium,

Az =2(656.3 nm)=1313 nm (in the infrared region)

For He*, U=my, g;=e, and g, = 2e,
so the transition energy is 22 =4 times larger than hydrogen. Then,

_ 6560

04 Dnm =164 nm (in the ultraviolet region)

A32

L: As expected, the wavelengths for positronium and helium are respectively larger and smaller than
for hydrogen. Other energy transitions should have wavelength shifts consistent with this pattern. It
is important to remember that the reduced mass is not the total mass, but is generally close in
magnitude to the smaller mass of the system (hence the name reduced mass).

*42.6

_queze“Dl 1 D_ hc

(a) For a particular transition from n; to n¢, AEy, = S Oy~ —0=—
2h® [t g An
2,4 [ 0
and AEp = -“Dkeze 12 _%Dzﬁ
2h® i nig Ao
m,m
where fpy = ——— and pp = —TeMD
mg +mj m, +mp
A O
By division, OBy _Hn _ 7D or Ap = %H\H
AEp  pp Ay D
0 uyd
Then, Ay-Ap=f-HH
H~ 4D 9 HDE)\H

=0.999728

pyy _ B memy COm, +mp O_ (1.007 276 u)(0.000 549 u +2.013 553 u)
by == p 0 e D ——
tp  Hm, +myH memp 0 (0.000 549 u+1.007 276 u)(2.013 553 u)

An —Ap =(1-0.999 728)(656.3 nm) =

© 2000 by Harcourt, Inc. All rights reserved.
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42.7 (@) Inthe 3d subshell, n =3 and | =2, we have

n 3 3 3 3 3 3 3 3 3 3
| 2 2 2 2 2 2 2 2 2 2
m, +2 +2 +1 +1 0 0 -1 -1 -2 -2
ms +1/2  -1/2  +1/2  -1/2  +1/2  -1/2  +1/2  -1/2  +1/2 172

(A total of 10 states)

(b) Inthe 3p subshell, n=3 and | =1, we have

n 3 3 3 3 3 3
| 1 1 1 1 1 1
m +1 +1 +0 +0 -1 -1
me | +1/2 /2 4172 1/2 4172 172

(A total of 6 states)

P
42.8 Wis(r) = %e‘f/ao (Eq. 42.3) A
\/”ao | i

wls(r) !

2 I

Piy(r) = 2722 (Eq. 42.7) i

dp [

|

r I

’
ag = 0.0529 nm

e g 0
429 (a) ﬂw‘zdvﬂ'"fo LMZerr:Aanniag “r 6=21/2 g

0 0
Using integral tables, ﬂlp\z dVv = —% e 2% HZ +agr +
a g

so the wave function as given is normalized.

_ 3a9/2, 19 o 1 U3ag2 5 5
(b) Pao/2ﬂ3'clo/2_4nj.ao/2 ‘M J dr—4”%%[ao 2 reem o dr

Again, using integral tables,

O O

-2rjag =2
® +anr +
g o

_ 2
I:’ao/2 - 3ag/2 ~ _g
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42.10 w=é%L 1123 S0 P, —4m2‘w2‘ 4mr? ——e™%
V3 (2ay) ag 24aO
O O
Set dj n::) |ﬂ_r.3e—r/ao +r4|:| i%—r/ag D:O
dr 24 a5 [ E_ao 0

Solving for r, this is a maximum at

1211 P S 24y . 2 v 2, Y1 ey,
' f / 2 ‘ 2
\ T8 rdrrmg rag ar® . /maj Ch

2me% raOHP 4ne0rw o

2 2
But 2= 720 5o S E E:'kze:o
mee 0

This is true, so the Schrédinger equation is satisfied.

4212 The hydrogen ground-state radial probability density is

r2 0O 2r0
P(r):471'r2\1,uls\2 = eXpHa:E

The number of observations at 2ag is, by proportion

—4ay/a,

P(22) (23)° e’ _ 3 - 797G
N = 1000P( 72~ 1000 7275 = 1000(16)e™ =

(372)

4213 (a) For the d state, | =2, L=|V6h| =258x10°3*7J s

b) For the f state, | =3, L=1( +1)h=|+12h| =3.65x107%J s
( \

© 2000 by Harcourt, Inc. All rights reserved.



6

*42.14

42.15

42.16

42.17

Chapter 42 Solutions

(@)

(b)

L=+1( +1)h o)

(4724 10‘3“)2(271)2

4.714%1073 =1 (| +1)

6.626 x 10734
2

I +1)= 5 =1.998 x 101 = 20 = 4(4 +1) SO | =4
(6.626 x107)
. -13.6 eV
The 5th excited state has n = 6, energy —35 - -0.378 eV
6.626 x 1072*J - 5)(3.00 x 10® m/s
The atom loses this much energy: he = ( =5 X T ) =1.14eV
A (1090 x 107° m)(1.60 x 10~ J/eV)
to end up with energy -0.378eV -1.14eV =-152 eV
L . 13.6 eV
which is the energy in state 3: -7 33 = -151eV
While n =3, | can be as large as 2, giving angular momentum A +Dh=|+6h

For a 3d state, n =3and | = 2. Therefore, L=+1( +1)h=+2(2+1)h=

m, can have the values -2,-1,0, 1, and 2, so

Veh| =258x107% s

| L, can have the values-2h, - h, 0, and 2h

Using the relation cos 6= L, /L, we find that the possible values of 8 are equal to

145°, 114°,90.0°, 65.9°, and 35.3°| .

n=1: Forn=11=0,m =0, mg=*=, - 2sets

1
2
2n% =1(1)% =

For n=2, we have

NN N NS
= = -
|
N

+1/2
+1/2
+1/2
+1/2

n I m, ms
0 0 -172
0 0 +1/2

yields 8 sets; 2n? =2(2)* =
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Note that the number is twice the number of m; values. Also, for each | there are (2| +1)
different m; values. Finally, | can take on values ranging from 0 to n—-1. So the general
expression is

n-1
s= 3 2(2 +1)

0

The series is an arithmetic progression: 2 + 6 + 10 + 14, the sum of which is

522[2a+(n—1)d] where a=2, d=4: s:g[4+(n—1)4] =2n?
© n=3: 21)+2(3)+2(5)=2+6+10=18 2n? = 2(3)" = [18]
(d) n=4: 2(1)+2(3)+2(5)+2(7) =32 2n% =2(4)? =
(e) n=5: 32+2(9)=32+18=50 2n? = 2(5)° = [50]
42.18 Ug = N - 160x10°9C  h=1085x10%J.s m, =9.11 x 1073 kg

2m,

Ug =|9.27 x 10724 1/T =579 x 107° eV/T

-27
4219 (a) Density of a proton: p= m_ 167x10 " kg

V  (4/3)m(1.00x107 m

3 3
03m 0’ -8 g3’
(b) Size of model electron: r= 3m _ [8x9.11x10 I1<79 =18.17 %107 m
5471,05 5 4mx3.99%x10°" kg H

N 13.99 x 10" kg/m?|

(c) Moment of inertia: | = Zmr? = g(9.11 x 1073 kg)(8.17 x 1071 m)? = 2.43x 107 kg [in?
5 5

Chr_ (6:626x107)(8)8.17 107 m

Therefore, ==
2l 27(2)(2.43 %107 kg (m?)

)
= (177 x 102 m/s

(d) Thisis |5.91 x 10° times Iarger| than the speed of light.

© 2000 by Harcourt, Inc. All rights reserved.
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4220 (a) L:mvr:mz?mr:\/l(l+1)h:\/(I2+I)h=Ih

2m(1.496 x 10* m)? 2.66 x 100
24 - - — 74
(5.98 x 10" kg) 3156 x 107 S =lh o) T | =]2.52 %10

1 1mr? 1 L2 _11( +)h% 11212
O =V K== ™ T a2 T2 w2 me?

1 o rf
X X
, %(5.98X1024 kg)D27T 1.496 170 m 1
dE_121h%1 __E E H 3156x10’s H
— == 2722—50 dE=2—dl =2 -2
dl 2 mre | | | 2.52x10

33
AE = >30x10™ ) 74J = [2.10 x 10741 J
252 %10

*42.21 Hp = % e=160x10°C h=1055x10"*J.s m,=167x10"% kg
p
(8 Mn=[5.05x10723/T| =[3L6neV/T
B 1 _om,

® g =183 my

Apparently it is harder to "spin up" a nucleus than a electron, because of its greater mass.

42.22 In the N shell, n=4. For n=4,1 can take on values of 0, 1, 2, and 3. For each value of |, m,
can be -l to | in integral steps. Thus, the maximum value for m, is 3. Since L, =mh, the

maximum value for L, is L, = .

42.23 The 3d subshell has | =2, and n=3. Also, we have s = 1.
Therefore, we can have [n=3;1 =2, m =-2,-1,0,1,2; s =1;and mg =-1,0, 1], leading to the

following table:

n 3 313313133313 ((3]3]|3(3]3]3
| 2 2222|2222 |2|2|2]|2]|2]|2
m (-2|-2|-2|-1|-1|{-1fO0|O0]|JO| 1| 1|1f2|2]2
s 1 1111111111111 (1]1
m (-1 0)1}|-1j0f1f-1f0|]21|-1]0|1(|-1({0]1




1s22s22p*

(b) For the 1s electrons,
For the two 2s electrons,

4224 (a)
42.25
*42.26 (a)
(b)
42.27
(@)
(b)
42.28

For the four 2p electrons, n=2;1 =1; m =-1,0,0r 1;and mg = +1/2 or -1/2

The |4s subshell fills first| , for potassium and calcium, before the 3d subshell starts to fill for

scandium through zinc. Thus, we would first suppose that [Ar]3d44s2 would have lower
energy than [Ar]3d54sl. But the latter has more unpaired spins, six instead of four, and

Chapter 42 Solutions

n=11=0m =0, mg=+1/2 and -1/2
n=21=0m =0, mg=+1/2 and -1/2

9

Hund'’s rule suggests that this could give the latter configuration lower energy. In fact it must,

for [Ar]3d°®4s! is the ground state for chromium.

For electron one and also for electron two, n =3 and | =1. The possible states are listed here
in columns giving the other quantum numbers:
electron |m | 111111111 f({1]0j0f0]|0O]O
one mg| 1|1 (1|11 _Lf_2j_1j_Lif_1f 11|21 (11
22|21 22| 2| 2| 2| 2 2|2|2|2]2]2
electron |m |1 (0| 0|-1(-1]21(0|0O|-1f-1]21|1|0]|-1(-1
two mg|_1| 1 (_1f 1 ]_1) 1 (1 (_1) L1 )_1f21(_1j_1) 1 (_1
2l 21 2122|212 2| 2| 22| 2| 2|2] 2
electron |m | 0fO0|O|O0O|0O|-1(-1|-1]-1(-21|-1|-1(-1]|-1(-1
one mg|_1|_L1f(_1f_1j_1) 1 (1 (1] 1| L1 (_1f_1j_1)_1(_1
2l 2| 2| 22| 2| 22| 2| 2| 2| 2| 2| 2|2
electron |m | 1|(1]0|-1(-1]1(1|0]0f-1|1|1|(0]|0(-1
two mg| 1 |_L1f 1|1 )_L1) 1 (_1} L1 |_Lif_1f1)_1}) 1 (_1f1
22| 212|222l 2|2 22| 2[2] 2]2

There are thirty allowed states, since electron one can

of the other five states.

have any of three possible values for m,
for both spin up and spin down, amounting to six states, and the second electron can have any

Were it not for the exclusion principle, there would be possible states, six for each
electron independently.
Shell [K L M N
n 1 2 3 4
| 0 0 1 0 1 2 0
m 0 0 1 |0 [-1 |O 1 10 |-1 2 (1 |0 |-1(|-2 |0
ms Tl Tl Tl Tl [ 14 T T 1 Tiri Tl Tl l 14
count 12 34 10 12 18 21 30 20

He Be Ne Mg Ar Zn Ca
152252 2p®3s23p®4523d°| or |1s%2s?2p®3s?3p® 45130

Listing subshells in the order of filling, we have for element 110,

© 2000 by Harcourt, Inc. All rights reserved.
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42.29

42.30

Chapter 42 Solutions

152 252 2p® 352 3p® 452 3d*° 4p® 552 4410 5p® 652 414 5410 6p® 752 5114 6d®

In order of increasing principal quantum number, this is

152 252 2p® 352 3p® 3010 452 4p® 4d° 414 552 5pb 50 5114 652 6p° 6d® 752

@ ([n+1 2 |3 4 5 6 7
subshell |1s [2s |2p,3s|3p,4s|3d,4p,5s |4d,5p, 6s |4f,5d, 6p, 7s
(b) z=15: Filled subshells: 1s, 2s, 2p, 3s
(12 electrons)
Valence subshell: 3 electrons in 3p subshell
Prediction: Valance = +3 or -5
Element is phosphorus Valence +3 or -5 (Prediction correct)
Z=A4T: Filled subshells: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s
(38 electrons)
Outer subshell: 9 electrons in 4d subshell
Prediction: Valence = -1
Element is silver, (Prediction fails)  Valence is +1
Z = 86: Filled subshells: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p,

Prediction
Element is radon, inert

(86 electrons)
Outer subshell is full:
(Prediction correct)

Electronic configuration: Sodium to Argon

[1s%2s%2p®] +3st

[1s?2522p®3s23pBlast

o Nal!
+352 . Mg12
+3s23pt o A
+3s23p2 o sit4
+352 3p3 . P15
+3s?3p* - sl
+3s%3p°> - cIV
+3s23p8 o Ar