ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Ciencias de la Tierra

Análisis de la contaminación hídrica, atmosférica y acústica producidas durante las actividades hidrocarburíferas de la región Latam.

PROYECTO INTEGRADOR

Previo a la obtención del Título de:

INGENIERO EN PETRÓLEO

Presentado por:

Maylin Elizabeth Ordoñez Obando Oliver Javier Rodas López

> GUAYAQUIL - ECUADOR Año: 2021

DEDICATORIA

A Dios, quien ha guiado mis pasos para completar esta meta.

A mis padres, Carlos y Paola quienes han sido pilar fundamental en esta travesía, brindando apoyo incondicional y su voto de confianza en este viaje.

A mis hermanas, abuelos y tambien a aquellos quienes han partido a causa de esta pandemia.

A mis amigos, ustedes saben quienes son, por ser el complemento a la vida caótica de la universidad, a mis compañeros y SPE que hicieron de mis años universitarios una grata experiencia.

Oliver Rodas López

DEDICATORIA

El presente proyecto lo dedico a Dios, quien me dio la gracia de estar aquí compartiendo un logro más junto con mi familia, que aunque mi padre y mis abuelos no se encuentren presentes, sé que están orgullosos de todo lo que hemos logrado gracias a nuestro esfuerzo.

A mis amigos, mis compañeros, a paleta y profesores quienes fueron muchas veces los que me dieron ánimos para continuar a pesar de pasar por situaciones difíciles.

Maylin Ordoñez Obando

AGRADECIMIENTO

Nuestro más sincero agradecimiento a los profesores M.Sc. Danilo Arcentales, M.Sc Fernando Sagnay, y especialmente al M.Sc. Kenny Escobar que gracias a su constante apoyo hemos logrado la finalización de esta meta soñada.

DECLARACIÓN EXPRESA

"Los derechos de titularidad y explotación, nos corresponde conforme al reglamento de propiedad intelectual de la institución; *Maylin Elizabeth Ordoñez Obando y Oliver Javier Rodas López*, damos nuestro consentimiento para que la ESPOL realice la comunicación pública de la obra por cualquier medio con el fin de promover la consulta, difusión y uso público de la producción intelectual"

M. Ordonez

Maylin Elizabeth Ordoñez Obando

Oliver Javier Rodas López

EVALUADORES

Kenny Essola Sejonia

MSc. Danilo Arcentales

PROFESOR DE LA MATERIA

MSc. Kenny Escobar

PROFESOR TUTOR

RESUMEN

El presente proyecto de titulación se realizó con información validada relacionada a los tipos de contaminación generados por la industria hidrocarburífera a lo largo de los años, perjudicando directa e indirectamente al ecosistema en el que vivimos. La información dispersa y con poca rigurosidad científica referente a incidentes y accidentes en la industria fue la desencadenante del desarrollo de tablas memoria con data de eventos contaminantes, según la etapa en la que se produjo, en la región de Latinoamérica (Latam) durante las actividades hidrocarburíferas; a través de motores de búsqueda de artículos científicos.

Mediante la recopilación de información de datos históricos tanto cualitativo como cuantitativo a partir de la década de los 70 hasta la actualidad, que mencionen las contaminaciones: hídricas, atmosféricas y acústicas pertenecientes a artículos científicos publicados por los sitios web como Scopus y Web of Science; adoptando la metodología PRISMA para su desarrollo.

De una muestra de 208 artículos científicos, en el presente trabajo se encuentran los países como: Brasil y México con una presencia mayoritaria de publicaciones del 66.7% y 14% respectivamente. Adicionalmente los factores; hídricos, atmosféricos y acústicos representan un 75.5%, 23.1% y 1.4% correspondiente de las publicaciones relacionados con los tipos de contaminación mencionados según estos factores en la región Latinoamericana.

Palabras Claves: Contaminaciones, Hídricas, Atmosféricas, Acústicas, Industria hidrocarburífera.

ABSTRACT

This capstone project was carried out with validated information related to the types of contamination generated by the hydrocarbon industry over the years, directly and indirectly damaging the ecosystem in which we live. The dispersed information and with little scientific rigor concerning incidents and accidents in the industry was the trigger for the development of memory tables with data of polluting events, according to the stage in which they occurred, in the Latin American (Latam) region during hydrocarbon activities, through search engines of scientific articles.

Through the compilation of historical qualitative and quantitative data from the 70's to the present, which mention water, atmospheric and acoustic pollution from scientific articles published by websites such as Scopus and Web of Science, adopting the PRISMA methodology for its development.

From a sample of 208 scientific articles, in the present work we find countries such as Brazil and Mexico with a majority presence of publications of 66.7% and 14% respectively. Additionally, water, atmospheric and acoustic factors represent 75.5%, 23.1% and 1.4%, respectively, of the publications related to the types of contamination mentioned according to these factors in the Latin American region.

Key words: Contaminations, Water, Atmospheric, Acoustic, Hydrocarbon industry.

ÍNDICE GENERAL

RESUMEN	l	I
ABSTRAC	T	II
ÍNDICE GE	NERAL	III
ABREVIAT	URAS	V
SIMBOLOG	GÍA	VI
ÍNDICE DE	FIGURAS	VII
ÍNDICE DE	TABLAS	VIII
CAPÍTULO	0.1	1
1. Introd	ducción	1
1.1 De	scripción del problema	2
1.2 Jus	stificación del problema	2
1.3 Ob	jetivos	3
1.3.1	Objetivo General	3
1.3.2	Objetivos Específicos	3
1.4 Ma	arco teórico	3
1.4.1	Antecedentes	3
1.4.2	Definiciones	4
1.4.3	Hídrico	6
1.4.4	Atmosférico	7
1.4.5	Acústico	10
1.4.6	Tipos de Contaminantes	11
1.4.7	Estudios previos relacionados con la contaminación provo	cada por
la indust	ria hidrocarburífera	17
1.4.8	Motores de Búsqueda y Revistas Científicas	19

CAPÍTULO 2	21
2. Metodología	21
2.1 Descripción General	21
2.2 Metodología PRISMA	22
2.3 Criterios de Selección	29
2.4 Keywords	30
2.5 Fases Preliminares	31
Capitulo 3	35
3. RESULTADOS Y ANALISIS	35
3.1 Análisis de la tabla memoria mediante el software dataste	udio35
3.1.1 Estudio de incidencia de artículos científicos en Latin	ıoamérica 35
3.1.2 Tabla memoria de artículos científicos relaciona contaminaciones hídricas, atmosféricas y acústicas según la e	
3.1.2 Ubicación geográfica de los incidentes y accidentes a la Región Latam	
3.1.3 Aportaciones según el factor de contaminación o hidrocarburífera	
3.1.4 Posibles remediaciones a las problemáticas medio a relación a las contaminaciones hídricas, atmosféricas y acústic	
CAPITULO 4	48
4. Conclusiones y recomendaciones	48
4.1 Conclusiones	48
4.2 Recomendaciones	49
Bibliografía	50
APÉNDICES	54

ABREVIATURAS

Cas Chemical Abstract Service

Co2 Dióxido de Carbono

Espol Escuela Superior Politécnica del Litoral

Ha Hectárea(S)

Latam Latinoamérica

NpsEp Nivel de Presión Sonora Equivalente

Rp Registro de Producto

WOS Web of Science

SIMBOLOGÍA

% Porcentaje

μg Microgramo

dB Decibel

L Litro

AR Argentina

BR Brasil

MX México

CO Colombia

EC Ecuador

VN Venezuela

CU Cuba

CR Costa Rica

PR Puerto Rico

CL Chile

PE Perú

ÍNDICE DE FIGURAS

Figura 1.1 Contaminación en el Oriente Ecuatoriano.	7
Figura 1.2 Deforestación	9
Figura 1.3 Mechero	10
Figura 2.1. Esquematización de fases del proyecto	22
Figura 2.2 Flujograma Prisma	24
Figura 3.1 Incidencia de artículos científicos en la región Latam	35
Figura 3.2 Ubicación gráfica de índices, accidentes y estudios de contam	inación
en la región Latam	38
Figura 3.3 Ubicación geográfica de las ciudades al Noreste de Méxic	co que
participan con publicaciones de artículos científicos	39
Figura 3.4 Ubicación geográfica de las ciudades al suroeste de Méxic	co que
participan con publicaciones de artículos científicos	39
Figura 3.5 Ubicación geográfica de ciudades de Brasil que participan o	con las
publicaciones de artículos científicos	40
Figura 3.6 Publicaciones de tipos de contaminación por país	41
Figura 3.7 Aportación porcentuales de publicaciones pertenecientes a Bra	asil con
respecto a contaminaciones hídricas, atmosféricas y acústica	42
Figura 3.8 Aportación porcentuales de publicaciones pertenecientes a E	cuador
con respecto a contaminaciones hídricas, atmosféricas y acústica	43
Figura 3.9 Aportaciones porcentuales de publicaciones pertenecie	ntes a
Colombia con respecto a contaminaciones hídricas, atmosféricas y acúst	icas 44
Figura 3.10 Aportaciones porcentuales de publicaciones pertenecie	ntes a
México con respecto a contaminaciones hídricas y atmosféricas	45
Figura 3.11 Aportaciones porcentuales de publicaciones pertenecientes	a Chile
con respecto a contaminaciones hídricas y atmosférica	45
Figura 3.12 Código QR de acceso a resultados en Google Data Studio	47

ÍNDICE DE TABLAS

Tabla 1.1 Sustancias Químicas Prohibidas	11
Tabla 1.2 Contaminantes Químicos de Toxicidad Aguda*	12
Tabla 1.3 Contaminantes Químicos de Toxicidad Crónica*	13
Tabla 1.4 Contaminantes Químicos Peligrosos Según Fuente Especifica	14
Tabla 1.5 Contaminantes Químicos Peligrosas Según No Especifica	15
Tabla 2.1 Checklist Prisma edición 2009	26
Tabla 2.2 Keywords	30
Tabla 2.3 Etiquetas de campo	31
Tabla 2.4 Fase I	31
Tabla 2.5 Fase II	32
Tabla 2.6 Fase III	32
Tabla 2.7 Fase IV	33
Tabla 2.8 Fase V	33
Tabla 2.9 Fase VI	33
Tabla 3.1 Muestra de la <i>tabla memoria</i>	37
Tabla 3.2 Muestra de remediaciones viables desarrolladas en los arti	culos
científicos analizados	46

CAPÍTULO 1

1. INTRODUCCIÓN

Las actividades realizadas en cualquier tipo de industria tienen como consecuencia un impacto sobre el medio ambiente; y la metodología para remediar el mismo, dependerá de la escala que este genere sobre el área afectada. En la industria hidrocarburífera se encuentran operaciones en diferentes etapas del desarrollo de un campo con potencial para extraer sus recursos no renovables; estas etapas son ejecutadas secuencialmente como se detalla a continuación: exploración, perforación, producción, refinación y comercialización. Además de las etapas previamente mencionadas, existen actividades imprescindibles que se realizan para llevar a cabo las operaciones; tales como: construcción de vías de acceso, wellpad, plantas de tratamientos, entre otros. Además, se debe considerar la exposición prolongada a residuos de hidrocarburos en zonas de alto tráfico marítimo, aéreo y terrestre. (Bravo, 2007)

La temática del presente proyecto tiene como fecha base de estudio, aquellos incidentes, accidentes, o eventos relacionados a los contaminantes hidrocarburíferas a partir de la década de los 70, con el fin de segmentar el estudio a hechos relativamente recientes y que cuyos planes de acción se asemejen lo más posible a la actualidad; y así evitar problemas debido a tecnologías, procesos o legislaciones ambientales obsoletas.

Se han registrado un sin número de acontecimientos en la región, tan variados como los mencionados por Valencia & Trejos de Suescum (1986) en su estudio, recopilando información de las aguas de puertos pesqueros ecuatorianos en Playas - Posorja con concentraciones máximas de hidrocarburos disueltos y dispersos de 130 µg/l, a fecha de corte de estudio de abril 1986; que podría ser considerado un evento minúsculo. Aunque las actividades hidrocarburíferas y sus consecuencias contaminantes propias del desarrollo o debido a negligencias pueden ser escalables hasta los niveles observados en el campo Macondo – Golfo de México donde se

derramaron entre 73 - 126 millones de galones de petróleo (Calderón & Martínez, 2019).

Lo mencionado es una muestra de cuan necesario es tener acceso a información clasificada, consolidada y validada por organismos pertinentes, con la finalidad de poseer un conglomerado de datos como fuente robusta de información, que sirva como posible lineamiento de soluciones a problemáticas del lector.

1.1 Descripción del problema

La cuantificación de los problemas de contaminación que derivan de las actividades hidrocarburíferas a partir de la década de los 70 en sus diferentes etapas, no suelen ser desarrollados y documentados a fondo. En caso de existir la información esta suele ser dispersa y no presenta gran utilidad, como método de apoyo y respaldo con el fin de generar planes preventivos, correctivos para la remediación de las consecuencias de un posible evento que presente un riesgo contaminante.

Es común que este tipo de eventos se muestren en la región latinoamericana, debido a diferentes factores, tales como: políticos, culturales, falta de procesos tecnificados, entre otros. La poca cultura científica en la región da paso a que los accidentes sucedan y sean remediados; sin embargo, la divulgación es solo mediática y tiene un reducido alcance científico para cuantificar los daños y generar un *feedback* con data verídica de los hechos; los cuales podrían mostrar una futura solución a problemas similares.

1.2 Justificación del problema

Al momento de requerir información histórica para desarrollar e implementar un plan de manejo ambiental enfocado a la industria hidrocarburífera acorde a la locación, al tipo de operación a ejecutar y en la etapa que este se encuentre en caso de posibles incidentes; éste presenta un gran reto ya que los hechos históricos en la región no suelen mostrarse de manera abierta al público.

Este proyecto de titulación tiene como objetivo presentar data en forma de tablas memoria, cuyo contenido sean los sucesos de impacto ambiental según locación, tipo (hídrico, atmosférico y acústico) y fuente de contaminantes (Apéndice A) generados en las etapas de la industria petrolera: etapa inicial/acondicionamiento, upstream, midstream, downstream, y actividades relacionadas al uso de los derivados de hidrocarburos. Con la finalidad de tener información visualmente simple de comprender, que muestre con eficacia acciones que fueron tomadas con anterioridad por otras entidades al momento de que sucedieron los eventos; y que conlleven tomar decisiones críticas con un lapso de tiempos de respuesta oportuno.

1.3 Objetivos

1.3.1 Objetivo General

Realizar tablas memoria con data de eventos contaminantes, según la etapa en la que se produjo, en la región Latam durante las actividades hidrocarburíferas; a través de motores de búsqueda de artículos científicos.

1.3.2 Objetivos Específicos

- Generar gráficas de doble anillos mostrando el aporte de artículos de manera porcentual según el tipo de contaminación: hídrico, atmosférico y acústicos en la región Latam.
- 2. Mostrar mapa de calor de incidentes/accidentes ambientes relacionados con operaciones hidrocarburíferas en la Latinoamérica.
- Presentar posibles soluciones a las problemáticas ambientales en caso de ser viable.

1.4 Marco teórico

1.4.1 Antecedentes

Los accidentes medio ambientales a lo largo de los años han sido producto de varios factores donde se incluye principalmente a las industrias que generan gran impacto, una de ellas es la industria hidrocarburífera con los derrames de petróleo

que contaminan directamente el suelo, fuentes hídricas, ocasionando perturbaciones en los ecosistemas al afectar su estructura, biogeoquímicos y bioprocesos; es decir, no permitiendo que los seres vivos (animales, plantas, organismos, microorganismos) mantenga su equilibrio. "Muchos casos de contaminación por hidrocarburos se producen en zonas de alto valor ecológico y al mismo tiempo de difícil acceso como por ejemplo en el Oriente Ecuatoriano". (Pelaez et al., 2016)

Según datos de Cancillería ecuatoriana empresas como Texaco, con inicio de operaciones en el país desde 1964 hasta 1992, fue responsable de accidentes ambientales implicando el derrame de 64 millones de litros de petróleo bruto con afectación a cerca de 2 millones de hectáreas en la Amazonía durante cerca de 30 años de operaciones; afectando por generaciones a los pobladores del sector. (Ministerio de Relaciones Exteriores y Movilidad Humana, 2013)

Por otra parte, Paz, (2021) presenta un artículo periodístico donde menciona que:

El alto número de casos de cáncer en la Amazonía ecuatoriana es causado por la quema de gas de alrededor de 427 mecheros que realizan esta actividad por décadas [...] y que La Corte Provincial de Justicia de Sucumbíos declaró que el estado ecuatoriano desconoció el derecho de nueve niñas de vivir en un ambiente sano y que violó su derecho a la salud al no proveer tecnologías limpias que evitaran la contaminación.

Esto ante la demanda presentada por nueve niñas pertenecientes a la provincia de Sucumbíos con el fin de se apaguen 447 mecheros que queman gas a temperaturas promedio de 400 C por actividades de la industria hidrocarburífera en las provincias de Sucumbíos y Orellana desde hace más de 50 años.

1.4.2 Definiciones

Contaminación

Intrusión de sustancias, ruido, vibraciones o agentes externos al ambiente por acciones antropogénicas directas o indirectas sobre el suelo, agua o atmosfera; generando un perjuicio a la salud de flora, fauna, ecosistema y seres humanos que habiten el sector.(RAE, 2020d)

Contaminación Hídrica

Acción y posterior consecuencia de introducir substancias o tipos de energía, generando un cambio perjudicial en la calidad y en como esta también afecta a los otros factores a su alrededor. (RAE, 2020)

Contaminación Atmosférica

Cualquier tipo de materia o energía que presente un riesgo, daño o molestia para seres humanos, medioambiente o cualquier bien de otra índole. (RAE, 2020)

Contaminación Acústica

Ruido o vibración, independiente de la fuente que los emita que genere riesgo, daño o molestia al ser humano y naturaleza. Los niveles acústicos para ser considerado ruido perjudicial serán determinados por la legislación de cada organismo gubernamental. (RAE, 2020)

Mecheros

Los mecheros o tea es un término usado para designar a un dispositivo usado para disponer de manera segura gases de alivio de una manera ambientalmente correcta por medio del uso de la combustión. (Mondragón, 2015)

Deforestación

La deforestación se entiendo como la remoción total de la vegetación boscosa y sus consecuencias pueden ser irreversibles en muchos casos, especialmente en zonas donde la deforestación es masiva sin posibilidades de regeneración. (World Wildlife Fund, 2017)

Google Data Studio

Es una herramienta de acceso libre que facilita la conversión de datos en paneles e informes, permitiendo personalizar por medio de gráficos, texto, imágenes, tablas, filtros, entre otros. Se pueden conectarse a conjuntos de datos como: productos de Google Marketing Platform (Google Ads, Analytics, Search Ads 360), productos de consumo de Google (Hojas de cálculos, Search Console), bases de datos (BigQuery, MySQL), archivos sin formato (Google Cloud Storage), plataformas de redes sociales (Facebook, Twitter).(*Le damos la bienvenida a Data Studio - Ayuda de Data Studio*, 2021)

Dashboard

Es una herramienta de business intelligence que tiene la habilidad de representar de manera visual el análisis de datos y divisar los probables inconvenientes, de la misma manera ayuda a detectar las posibles estrategias de soluciones. Prácticamente un Dashboard es un resumen de los datos estudiados. (Abellan, 2020)

1.4.3 Hídrico

A nivel mundial la industria hidrocarburífera participa como uno de los sectores que trabaja con grandes volúmenes de agua. La misma que se usa en las etapas de exploración, producción, transporte y refinación; en donde la fase de producción (reinyección para recobro mejorado, inyección como destino final, aguas de producción, vertimientos) consume el 91,72% del total. Cerca de 210 millones de barriles al día se consumían para la producción de 75 millones de barriles por día de petróleo en el año 2000. (Mesa et al., 2018)

Los riegos asociados al medioambiente son debido a las dificultades para tratar el agua producto de las actividades hidrocarburífera. Las cuales pueden contienen sólidos diferentes como: metales pesados (bario, cadmio, cromo, plomo, mercurio), grasas, gases (oxígeno, cloro, ácido sulfhídrico), aniones (sulfatos, carbonatos), cationes (magnesio, sodio, hierro) y microorganismos (bacterias sulforreductoras). (Mesa et al., 2018)

La presencia de hidrocarburos disueltos y esparcidos en la columna de agua tanto en el mar como ríos, así como la bioacumulación de estos residuos en sedimentos de la plataforma y organismos marinos. Producen un impacto variable en el mar ante un derrame de petróleo debido a las actividades marítimas. La evaluación de los accidentes y continuo monitoreo y en base a eso puede medirse la magnitud real de los accidentes, las consecuencias a corto y largo plazo.(Garay et al., 1992).

Un claro ejemplo describe lo siguiente: Según el estudio de investigación Lafuente et al. (2019) menciona que los derrames de petróleo constituyen como una fuente importante de perturbación de los macroinvertebrados bentónicos de aguas continentales. Se evaluaron los efectos de un derrame de 11700 barriles de petróleo en las comunidades de macroinvertebrados bentónicos en los ríos: Santa Rosa, Quijos y Coca en la amazonia ecuatoriana. Los resultados de la investigación demuestran que después de 31 meses de ocurrido el derrame de petróleo el ecosistema seguía afectada y que su remedición natural necesita de más tiempo aproximadamente 5 años.

Figura 1.1 Contaminación en el Oriente Ecuatoriano. [Garay et al., 1992]

1.4.4 Atmosférico

En el ámbito atmosférico, este está presente desde las etapas tempranas a partir de la tala de árboles que puede abarcar grandes extensiones de suelo dependiendo la magnitud del proyecto. Considerando que los árboles del sector son los mayores captadores de gases de efecto invernaderos como CO2, entre otros y que luego estos son liberados a la atmósfera. Hasta la contaminación generadas por los gases al momento de despachar gasolina.

Es común que durante toda la cadena en el proceso para obtener hidrocarburos se generen contaminantes del aire, principalmente óxidos de nitrógeno, componentes orgánicos volátiles, óxidos de azufre y otros gases producto de la combustión como dióxido y monóxido de carbono. (Reis, 1996)

1.4.4.1 Emisión de gases por deforestación

Las consecuencias del impacto generado por las diferentes industrias a nivel mundial son preocupantes debido al aumento del deterioro ambiental lo que se conoce como calentamiento global. El mismo que desarrolla el efecto invernadero, el cual es un fenómeno natural que desata un aumento de temperatura.

La respiración vegetal y la descomposición de materia orgánica del mundo libera más de 10 veces el CO2 del que inducen las actividades humanas [...]absorbidos por la vegetación terrestre y por los océanos.

La concentración de CO2 medidos en el Polo norte es el mayor de los últimos 130,000 años y según el IPCC proyecta que para el año 2100 serán los más altos en la historia del planeta hace 30 millones de años. Sandoval & Vargas (2004)

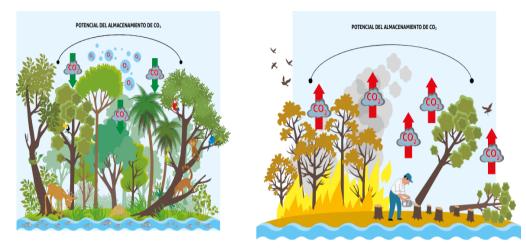


Figura 1.2 Deforestación. [World Wildlife Fund, 2017]

La deforestación especialmente en los trópicos miles y miles de hectáreas de bosque son talados por obra humana. Por otro lado, un concepto importante es la degradación de los bosques lo cual no implica la eliminación completa del volumen boscoso sino los cambios generados en los bosques que afectan el equilibrio del ecosistema.

Se ha disminuido a la mitad el volumen boscoso en los últimos 50 años, las estimaciones determinan que las emisiones del CO2 derivadas de la degradación y deforestación representan aproximadamente entre el 12% al 20% de las emisiones totales de CO2. (World Wildlife Fund, 2017)

1.4.4.2 Emisiones de gases por combustión

La exposición prolongada a un ambiente con contaminación atmosférica crónica puede verse reflejada en la naturaleza que rodean a la fuente contaminante de tal manera que cambia la cantidad de clorofila y un quebranto en los procesos fotosintéticos de la vegetación que la rodea. El daño causado en animales y seres humanos va desde irritaciones hasta daños severos en el sistema respiratorio. (Reis, 1996)

A nivel mundial las diferentes fases de la industria petrolera generan un gran impacto ambiental, uno de los más constantes que ha sido desde más de 5 décadas son los mecheros o teas; encargados de quemar los gases que se

producen como subproducto de la explotación petrolera a pesar del avance tecnológico. De esta manera está actividad contribuye con el cambio climático. Según estimaciones en el 2017 se quemaron aproximadamente 140.6 mil millones de metros cúbicos de gases asociados al petróleo, los cuales producen alrededor de entre 270 a 400 millones de toneladas de C02 en emisiones al año. (Almeida et al., 2020)

Figura 1.3 Mechero. [Mainville, 2021]

1.4.5 Acústico

Las operaciones asociadas a las etapas de perforación y producción son causantes de niveles elevados de ruido; siendo las más importantes las operaciones de sísmica en la etapa exploratoria. (Ruiz, 1991)

Las operaciones hidrocarburíferas no solo son realizadas en zonas continentales, las actividades costa afuera u *offshore* también son generadoras de contaminantes. En el ámbito acústico, está presente en la sísmica con detonaciones de cañones de aire o con explosivos, entre otras actividades.(Reis, 1996)

Según investigaciones independientes realizadas en Ecuador, durante las operaciones de sísmica de la empresa ARCO en el bloque 10 fueron deforestadas

1046 ha, generando grandes niveles de contaminación sonora debido a la tala y posterior actividad de perforación. Sumado a esto fueron registradas cerca 2170 horas de ruido proveniente de vuelos de helicópteros en la región. (Bravo, 2007)

Basándose en la Norma Técnica para los Niveles Permisibles de Ruido en el Ecuador y la Norma ISO1996, entenderemos como ruido a aquellas fuentes de sonido que trabajen a 55 dB entre las 20h00 a 06h00 y los 75 dB entre las 06h00 a 20h00. Estos parámetros presentan valores similares para el resto de la región de estudio. (Ministerio de Ambiente, 2003)

1.4.6 Tipos de Contaminantes

1.4.6.1 Contaminantes según su Composición Química.

A continuación, se muestra un extracto de los contaminantes químicos considerados peligrosos prohibidos.

Tabla 1.1 Sustancias Químicas Prohibidas. [Ministerio de Ambiente, 2012]

Nº CAS	Descripción
126-72-7	Fosfato de tris (2,3-dibromopropil)
78-00-2	Tetraetilo de plomo
75-74-1	Tetrametilo de plomo

La tabla 1.1, que fue desarrollada con base al Acuerdo Ministerial 142 del año 2012 (APÉNDICE A), y adaptado por autores.

Posteriormente, se muestra un extracto de los contaminantes químicos considerados peligrosos de toxicidad aguda.

Tabla 1.2 Contaminantes Químicos de Toxicidad Aguda*. [Ministerio de Ambiente, 2012]

Nº RP	Nº CAS	Descripción
P056	7782-41-4	Flúor
P081	55-63-0	Nitroglicerina (R)
P120	1314-62-1	Oxido de Vanadio V2O5
P009	131-74-8	Picrato de amonio (R)
P110	78-00-2	Tetraetilo de plomo
P087	20816-12-0	Tetraóxido de osmio

(*) Intoxicación aguda consiste en la aparición de un cuadro clínico patológico después de exposición única o múltiple, en un período inferior a 24 horas

Nota: Esta lista de sustancias químicas peligrosas se la elaboró en base a las sustancias comúnmente comercializadas y referenciadas en la Sección 313, Lista de Químicos Tóxicos EPA260-B-01-001, marzo de 2001 y el Reglamento (CE) Nº 1907/2006 del Parlamento Europeo y del Consejo del 18 de diciembre de 2006.

Nº RP: Código de registro de producto, EPA.

Nº CAS: Identificación numérica única asignada en la base de datos del Chemical Abstract Service (CAS) de la Sociedad Americana de Química. Identificación única de producto.

A continuación, se muestra un extracto de los contaminantes químicos considerados peligrosos de toxicidad crónica.

Tabla 1.3 Contaminantes Químicos de Toxicidad Crónica*. [Ministerio de Ambiente, 2012]

Nº RP	Nº CAS	Descripción
U227	79-00-5	1,1,2-Tricloroetano
U024	111-91-1	1,1'-[metilen bis (oxi)] bis 2-cloro-etano
U076	75-34-3	1,1-Dicloro-etano
U098	57-14-7	1,1-Dimetilhidracina
U207	95-94-3	1,2,4,5-Tetraclorobenceno
U085	1464-53-5	1,2:3,4-Diepoxibutano (I,T)
U066	96-12-8	1,2-Dibromo-3-cloropropano
U067	106-93-4	1,2-Dibromo-etano
U077	107-06-2	1,2-Dicloroetano
U079	156-60-5	1,2-Dicloroetileno

(*) Intoxicación crónica (a largo plazo) consiste en la aparición de un cuadro patológico como consecuencia de exposiciones frecuentes o repetidas (generalmente bajas dosis) después de un largo período de tiempo (años)

Nota. Esta lista de sustancias químicas peligrosas se la elaboró en base a las sustancias comúnmente comercializadas y referenciadas en la Sección 313, Lista de Químicos Tóxicos EPA260-B-01-001, marzo de 2001 y el Reglamento (CE) Nº 1907/2006 del Parlamento Europeo y del Consejo del 18 de diciembre de 2006.

1.4.6.2 Contaminantes según su Fuente.

A continuación, se muestra un extracto de los contaminantes químicos considerados peligrosos según su fuente específica.

Las tablas 1.4 y 1.5, presentan a continuación son con base al Acuerdo Ministerial 142 del año 2012 (APÉNDICE A), y adaptado por autores.

Tabla 1.4 Contaminantes Químicos Peligrosos Según Fuente Especifica.

[Ministerio de Ambiente, 2012]

CIIU	Descripción de categorías	CRITB	Cod.	Cod. Basilea
	Lodos de tanques de almacenamiento de aceites agrícolas	Т, І	A.01.0 5	Y8
6	Extracción de petróleo crudo y gas natural			
	Recorte de perforación de pozos petroleros en los cuales se usen lodos base aceite	Т	B.06.0 1	Y9
	Lodos, ripios y desechos de perforación en superficie que contienen, hidrocarburos, HAP's, Cadmio, Cromo (VI), Vanadio, Bario, Mercurio, Níquel	Т	B.06.0 2	Y9/Y21/Y2 6/Y29 (*)
	Lodos de la separación primaria (aceite/agua/sólidos)	T, I	B.06.0 3	Y9
	Aguas de fracturación hidráulica / Aguas de formación.	Т	B.06.0 4	Y9
	Mezclas y emulsiones de desechos de aceite y agua o de hidrocarburos y agua	Т	B.06.0 5	Y9
	Fluidos con pH 12,5	С	B.06.0 6	Y34 o Y35
7	Extracción de minerales metalíferos: Extracción y beneficio de metales.			

A continuación, se muestra un extracto de los contaminantes químicos considerados peligrosos según su fuente no específica.

Tabla 1.5 Contaminantes Químicos Peligrosas Según No Especifica.

[Ministerio de Ambiente, 2012]

DESECHO PELIGROSO	CRTIB	Cod.	Cod. Basilea
Aceites minerales usados o gastados	Т, І	NE-03	Y8
Aguas residuales industriales que cuyas concentraciones de Cr (VI), As, Cd, Se, Sb, Te, Hg, Tl, Pb, cianuros, fenoles u otras sustancias peligrosas excedan los límites máximos permitidos (Anexo 1 del Libro VI del TULSMA)	Т	NE-06	Y18
Chatarra contaminada con materiales peligrosos	Т	NE-09	Y18
Desechos de asfalto con contenido de alquitrán resultante de la construcción y el mantenimiento de carreteras	Т	NE-14	A3200
Desechos de soluciones ácidas con pH < 2	С	NE-18	Y34
Desechos de soluciones alcalinas con pH>12.5	С	NE-19	Y35
Desechos químicos de laboratorio de análisis y control de calidad	Т	NE-23	Y18

Desechos sólidos o lodos/sedimentos de sistemas de tratamiento de las aguas residuales industriales que contengan materiales peligrosos: Cr (VI), As, Cd, Se, Sb, Te, Hg, Tl, Pb, cianuros, fenoles o metales pesados	Т	NE-24	Y18
Emulsiones bituminosas	Т	NE-26	Y9
Envases contaminados con materiales peligrosos	Т	NE-27	A4130
Envases y contenedores vacíos de materiales tóxicos sin previo tratamiento	Т	NE-29	A4130
Filtros usados de aceite mineral	Т	NE-32	Y8
Hidrocarburos sucios o contaminados con otras sustancias	Т, І	NE-35	Y 9
Lodos de aceite	Т	NE-36	Y8
Lodos de sistema de tratamiento de las aguas residuales domésticas que contengan materiales peligrosos	Т	NE-37	Y18
Lodos de tanques de almacenamiento de hidrocarburos	Т, І	NE-38	Y 9
Lodos del tratamiento de lavado de gases, que contengan materiales peligrosos	Т	NE-39	Y18

Mezclas oleosas, emulsiones			
de hidrocarburos- agua,	Т	NE-45	Y9
desechos de taladrina			

1.4.7 Estudios previos relacionados con la contaminación provocada por la industria hidrocarburífera

La mayoría de los estudios relacionados con el impacto ambiental generado por la industria hidrocarburífera tiene una dirección hacia el análisis del suceso que afectó a cierto ecosistema, más no una recopilación de sucesos que pasaron. Sin embargo, el siguiente estudio "Los Macroprocesos de la Industria Petrolera y sus Consecuencias Ambientales" presenta las afectaciones por etapas (exploración, perforación, producción, refinación, almacenamiento y transporte, distribución y comercialización). Los mismos macroprocesos o etapas generan consecuencias negativas hacia el medio ambiente, por ello, la sociedad se ha enfocado en desarrollar soluciones que sean fiables en periodos tanto como a largo, mediano y corto plazo. (Galván et al., 2007)

Según el estudio desarrollado por Galván et al., (2007):

- En la Exploración se encuentran 6 fases que son: adquisición de datos, procesamiento e interpretación de datos adquiridos, generación y jerarquización de proyectos, perforación exploratoria, análisis de resultados y delineación. Esta etapa se la considera una de las más peligrosas de debido a que tiene el fin de identificar los yacimientos de petróleos, la viabilidad técnica y económica de producir el crudo. Un ejemplo claro que provoca este proceso es la deforestación debido a la necesidad de generar un espacio libre para asentamientos como campamentos, sin tomar en cuenta la estimulación de erosión de la tierra, destruye hábitats, perturbación de la fauna, entre otros.
- La etapa de perforación tiene como principal objetivo generar una vía de conexión entre el yacimiento y la superficie; es decir, conlleva un proceso y un plan de perforación que se complementa determinando la geología del territorio donde se pretende perforar. Este proceso también permite ratificar la

presencia de hidrocarburos en fondo del pozo, información de los tipos de rocas estratificadas y sedimentadas, contenido de agua y gas, etc. Está conformado por diferentes fases como: sistema de izaje, sistema rotatorio, sistema de circulación de fluidos, sistema de potencia, sistema de control superficial. Un ejemplo de contaminación aportado por esta etapa es la producción de desechos sólidos como los lodos pétreos, fluidos de perforación, ripios que contaminan el suelo y aguas debido a la filtración.

- La etapa de producción se encarga de llevar a cabo las operaciones necesarias para que el crudo llegue a superficie usando el método más eficaz ya sea recuperación primaria, recuperación secundaria, recuperación terciaria. Se lo considera como un sistema de transporte, de procesamiento de los fluidos del yacimiento, y los prepara para posteriormente ser almacenado y transferidos a refinería. Los elementos básicos del sistema de producción incluyen: yacimiento, pozo, tuberías, equipos asociados, cabezal de pozo de superficie, líneas de flujo, facilidades de superficie. Un ejemplo de contaminación producido por esta etapa es la de las aguas de separación que contienen una salinidad alta, restos de hidrocarburo, metales pesados, entre otros; esto se genera en las facilidades de superficie donde diferentes métodos se encargan de separar el agua, petróleo y gas del hidrocarburo.
- La refinación implica una serie de procesos como: separación de fluidos, transformación de estados, purificación de sustancias; con el objetivo de que el petróleo crudo sea convertido en diferentes productos derivados para posteriormente ser almacenados, transportados y comercializados. Un ejemplo de aportación de contaminación por esta etapa es el uso de plomo como aditivo en la gasolina, lo cual al combustionarse se transfiere a la atmosfera perjudicando directamente a la salud ya que se acumula en los pulmones y otros órganos.
- En las etapas de almacenamiento y transporte, se evidencia el uso de tanqueros, oleoductos, gasoductos, poliductos, embarcaciones, entre otros, con el objetivo de distribuir los diferentes tipos de fluidos obtenidos ya sea de

la etapa de producción como la de refinación hacia otros destinos. Existen muchos sucesos que muestran las afectaciones de esta etapa, como lo son los derrames de crudo ya se en medios terrestres o marinos; alterando los ecosistemas afectados.

Todos los macroprocesos descritos anteriormente generan graves daños medioambientales entre estos esta: la deforestación, perturbación de paisajes, peligrosas emisiones atmosféricas, producción de desechos tóxicos que terminan en fuentes hídricas y suelo, desequilibrio biótico, ruido fuerte.(Galván et al., 2007)

1.4.8 Motores de Búsqueda y Revistas Científicas

1.4.8.1 Motor de búsqueda

Mecanismo mediante el cual la información es recopilada de diferentes servidores en internet empleando palabras clave para llevar información al usuario final según sus especificaciones. (Giraldo, 2017). Algunos motores de búsquedas reconocidos son:

- Academia.edu
 - Dialnet
- EDTE Web

Energy Base

- Itopf
- inredh
- Jstor
- Google
- Google Scholar
- Oceandocs.org
 - Redalyc.org

- ResearchGate
- Repositorios

Academicos

- Scielo
- Sciencedirect
 - Scopus
 - Worldwide

Science

- World of
 - Science
- Latindex

1.4.8.2 Revista Científica

La revista científica se define como: "Publicación periódica que presenta especialmente artículos científicos, escritos por autores diferentes, e información de actualidad sobre investigación y desarrollo de cualquier área de la ciencia". (Mendoza & Paravic, 2006)

Según Mendoza & Paravic (2006) los artículos científicos se clasifican en tres dependiendo del ente que las publica:

- Primer nivel: se caracterizan al ser publicadas y editadas por una organización científica internacional.
- Segundo nivel: se caracteriza al ser publicadas, editadas y comercializadas por asociaciones transnacionales.
- Tercer nivel: se caracterizan al ser publicadas por entidades públicas como instituciones educativas, hospitales, organizaciones sin fines de lucro.

Las revistas científicas más reconocidas y usadas por personas naturales son:

- Onepetro
- Pubmed
- Redalyc.org
- Scielo
- Spe.org

CAPÍTULO 2

2. METODOLOGÍA

2.1 Descripción General

La metodología empleada fue basada en métodos históricos, descriptivos y principalmente "Prisma", considerando parámetros tanto cualitativos como cuantitativos, los cuales facilitaron el desarrollo del presente proyecto.

Se inició con la recopilación de artículos científicos a partir de la década de los 70, relacionados con el impacto ambiental a nivel Latam en la industria hidrocarburífera, tomando en cuenta las etapas de desarrollo de la industria como: inicial, acondicionamiento, *upstream*, *midstream*, *downstream*, y actividades relacionadas al uso de los derivados de hidrocarburos; y los tipos de contaminación en estudio: atmosférica, hídrica y acústica. Estos son los principales criterios de selección proporcionando una base fundamental con el fin de procesar de manera correcta la data histórica.

Etapa 1: Inicialización.

- Establecer región de estudio.
- Determinar los tipos de contaminantes.
- Establecer las etapas involucradas en los accidentes ambientales.
- Delimitar una fecha base para la recopilacion del historial de artículos que estuvieron involucrados en la revisión bibliográfica.

Etapa 2: Recopilación.

- Fijar los motores de búsqueda a emplear a lo largo del presente trabajo.
- Precisar los campos de búsqueda dentro de las publicaciones.
- Generar la base de datos preliminares de información previamente validada.

Etapa 3: Análisis

- Analizar los datos obtenidos de la etapa 2.
- Emplear metodología Prisma con la data validada anteriormente.

Etapa 4: Procesamiento

- Generar un mapa de calor con base en la data obtenida, usando un software Google Data studio) que muestre las locaciones donde existe la zona de interés de los articulos cienticos encontrados y validados.
- Diseñar gráficas de doble anillos mostrando de manera porcentual los tipos de contaminantes según la etapa de desarrollo en Latam usando la data de la etapa 3 y software (excel).
- Presentar posibles soluciones a las problemáticas ambientales en caso de ser viable, fundamentandose en la data historica validada.

Figura 2.1. Esquematización de fases del proyecto

(Autores, 2021)

2.2 Metodología PRISMA

Se puede redefinir la metodología Prisma como una revisión sistemática, la cual permite afianzar el conocimiento adquirido a lo largo de las publicaciones

validadas que serán tomadas en cuenta en este trabajo o sentar bases para futuros trabajos de investigación o experimentación.

La metodología permite revisar literatura existente acerca de algún tema en particular y basándose en aquellas literaturas generar conclusiones, hallar vacíos de información a ser llenados en el trabajo actual o en futuros. Además de ser un gran método para generar preguntas de investigación que podrían ser resueltas con experimentación o aplicación de proyectos a posteriori. (Moher et al., 2009)

Una metodología de revisión sistemática como Prisma busca que un lector que puede ser ajeno al campo de experiencia del que presenta el trabajo, siguiendo paso a paso los realizados en la investigación; sea capaz de llegar a los mismos resultados obtenidos por el autor del trabajo.

Detallando términos de búsqueda utilizados, "buscadores", los cuales han sido incluidos o excluidos según ciertos criterios. Así como también, poder expresar esta sucesión de pasos en un flujograma sencillo de asimilar para el lector.

Prisma se distingue de otras metodologías al ser pieza fundamental para la toma de decisiones, de acuerdo con el área de aplicación. Ya que su recopilación de información presenta una gran eficiencia en la obtención de respuestas válidas y con un bajo porcentaje de incertidumbre. (Urrútia & Bonfill, 2013)

La presencia de un protocolo con acciones a realizar disminuye el sesgo que pueda generar el autor sobre la revisión que está llevando a cabo. Adicionalmente, la naturaleza iterativa del método permite una autocorrección a lo largo del proceso.

Además, si se parte de la premisa que la obtención de la información vendrá solo de fuentes acreditadas se reduce al mínimo el riesgo de sesgos de interés que podría imprimir el autor de la revisión en la documentación de esta. (Urrútia & Bonfill, 2013)

A continuación, se muestra un esquema simplificado de la metodología a emplearse:

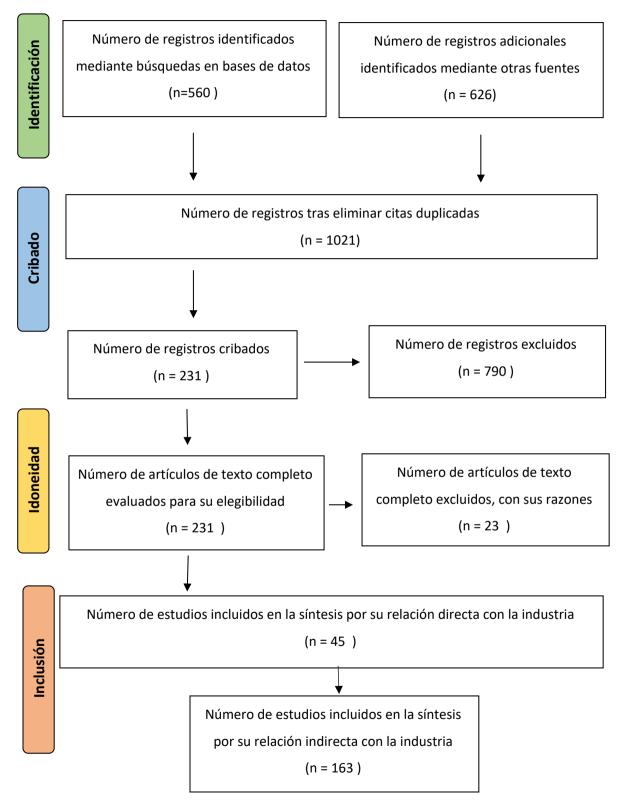


Figura 2.2 Flujograma Prisma (Moher et al., 2009)

Prisma presenta una ventaja frente a otras metodologías al mostrar mediante un *checklist* las acciones a realizar paso a paso, con la finalidad de que se cumpla a cabalidad los lineamientos del método. Este recurso permite repasar las acciones hechas con el fin de corregir pasos previos o agregar aquello que haya sido pasado por alto.

La revisión sistemática desde la metodología Prisma presenta gran utilidad en actividades investigativas, así como aquellos de metaanálisis. Debido a que el presente trabajo tiene un enfoque investigativo, se deberán omitir ciertos pasos del *checklist*. Ya que el enfoque del trabajo es meramente académico, los puntos que hagan referencia a la financiación o comercialización que sean mencionados en la metodología serán omitidos de igual manera.(Moher et al., 2009)

A continuación, se presenta el checklist PRISMA en su versión en español:

Tabla 2.1 Checklist Prisma edición 2009. [Moher et al., 2009]

Sección/tema	#	Ítem			
	TÍTULO				
Título	Título 1 Identificar la publicación como revisión sistemática, metaanálisis o ambos.				
		RESUMEN			
Resumen estructurado Facilitar un resumen estructurado que incluya, según corresponda: antecedentes; objetivos; fuente de los datos; criterios elegibilidad de los estudios, participantes e intervenciones; evaluación de los estudios y métodos de síntesis; resultados limitaciones; conclusiones e implicaciones de los hallazgos principales; número de registro de la revisión sistemática.					
		INTRODUCCIÓN			
Justificación	3	Describir la justificación de la revisión en el contexto de lo que ya se conoce sobre el tema.			
Objetivos 4		Plantear de forma explícita las preguntas que se desea contestar en relación con los participantes, las intervenciones, las comparaciones, los resultados y el diseño de los estudios (PICOS).			
		MÉTODOS			
Protocolo y registro	5	Indicar si existe un protocolo de revisión al se pueda acceder (por ejemplo, dirección web) y, si está disponible, la información sobre el registro, incluyendo su número de registro.			
Criterios de elegibilidad	6	Especificar las características de los estudios (por ejemplo, PICOS, duración del seguimiento) y de las características (por ejemplo, años abarcados, idiomas o estatus de publicación) utilizadas como criterios de elegibilidad y su justificación.			
Fuentes de información	7	Describir todas las fuentes de información (por ejemplo, bases de datos y períodos de búsqueda, contacto con los autores para identificar estudios adicionales, etc.) en la búsqueda y la fecha de la última búsqueda realizada.			
Búsqueda 8 Presentar la estrategia completa de búsqueda electrónica en, al menos, una base de datos, incluyendo los límites utilizados o forma que pueda ser reproducible.					

Selección de los estudios	9	Especificar el proceso de selección de los estudios (por ejemplo, el cribado y la elegibilidad incluidos en la revisión sistemática y, cuando sea pertinente, incluidos en el metaanálisis).		
Proceso de recopilación de datos	10	Describir los métodos para la extracción de datos de las publicaciones (por ejemplo, formularios dirigidos, por duplicado y de forma independiente) y cualquier proceso para obtener y confirmar datos por parte de los investigadores.		
Lista de datos	11	Listar y definir todas las variables para las que se buscaron datos (por ejemplo, PICOS fuente de financiación) y cualquier asunción y simplificación que se hayan hecho.		
Riesgo de sesgo en los estudios individuales	12	Describir los métodos utilizados para evaluar el riesgo de sesgo en los estudios individuales (especificar si se realizó al nivel de los estudios o de los resultados) y cómo esta información se ha utilizado en la síntesis de datos.		
Medidas de resumen	13	Especificar las principales medidas de resumen (por ejemplo, razón de riesgos o diferencia de medias).		
Síntesis de resultados	14	Describir los métodos para manejar los datos y combinar resultados de los estudios, si se hiciera, incluyendo medidas de consistencia (por ejemplo, I²) para cada metaanálisis.		
Riesgo de sesgo entre los estudios	15	Especificar cualquier evaluación del riesgo de sesgo que pueda afectar la evidencia acumulativa (por ejemplo, sesgo de publicación o comunicación selectiva).		
Análisis adicionales	16	Describir los métodos adicionales de análisis (por ejemplo, análisis de sensibilidad o de subgrupos, metarregresión), si se hiciera, indicar cuáles fueron preespecificados.		
RESULTADOS				
Selección de estudios	17	Facilitar el número de estudios cribados, evaluados para su elegibilidad e incluidos en la revisión, y detallar las razones para su exclusión en cada etapa, idealmente mediante un diagrama de flujo.		
Características de los estudios	18	Para cada estudio presentar las características para las que se extrajeron los datos (por ejemplo, tamaño, PICOS y duración del seguimiento) y proporcionar las citas bibliográficas.		

Riesgo de sesgo en los estudios	19	Presentar datos sobre el riesgo de sesgo en cada estudio y, si está disponible, cualquier evaluación del sesgo en los resultados (ver ítem 12).	
		Para cada resultado considerado para cada estudio (beneficios o daños), presentar: a) el dato resumen para cada grupo de intervención y b) la estimación del efecto con su intervalo de confianza, idealmente de forma gráfica mediante un diagrama de bosque (forest plot).	
Síntesis de los resultados	21 Presentar resultados de todos los metaanálisis realizados, incluyendo los intervalos de confianza y las medidas de consistenci		
Riesgo de sesgo entre los estudios	22	Presentar los resultados de cualquier evaluación del riesgo de sesgo entre los estudios (ver ítem 15).	
Análisis adicionales	23	Facilitar los resultados de cualquier análisis adicional, en el caso de que se hayan realizado (por ejemplo, análisis de sensibilidad o de subgrupos, meta regresión [ver ítem 16])	
		DISCUSIÓN	
Resumen de la evidencia	24	Resumir los hallazgos principales, incluyendo la fortaleza de las evidencias para cada resultado principal; considerar su relevancia para grupos clave (por ejemplo, proveedores de cuidados, usuarios y decisores en salud).	
Limitaciones	25	Discutir las limitaciones de los estudios y de los resultados (por ejemplo, riesgo de sesgo) y de la revisión (por ejemplo, obtención incompleta de los estudios identificados o comunicación selectiva).	
Conclusiones	26	Proporcionar una interpretación general de los resultados en el contexto de otras evidencias, así como las implicaciones para la futura investigación.	
FINANCIACIÓN			
Financiación	27	Describir las fuentes de financiación de la revisión sistemática y otro tipo de apoyos (por ejemplo, aporte de los datos), así como el rol de los financiadores en la revisión sistemática.	

2.3 Criterios de Selección

Dentro los criterios de selección o limitaciones que se definieron para agilizar el proceso de la aplicación de la metodología están:

- La información con la cual se va a desarrollar el proyecto será a partir de artículos científicos obtenidos de fuentes confiables. Una fuente confiable que es dominada por trabajos publicados utiliza términos en inglés como: credibility, believability, trustworthiness y plausability; lo cual conlleva un listado de requisitos que se deben cumplir para que su información sea valedera. Por ejemplo: propiedades vinculadas con la fuente emisora, el receptor, el objetivo, características de la fuente, formato, presentación, actualidad, precisión de información, identificar a la editorial, autores, argumento, redacción, seguridad del sitio web, país, entre otros. (Kriscautzky & Ferreiro, 2014)
- Se usaron las bases de datos: Scopus y Web of Science (WOS) debido al prestigio de sus artículos científicos. Según Pérez,(2017) las bases de datos más relevantes no solo en el ámbito de la investigación sino en la difusión de la investigación están: Web of Science provee herramientas de análisis que permiten determinar la calidad de las publicaciones científicas siendo una plataforma de información científica. Consta de 4 bases de datos: Science Citation Index Expanded (SCIE), Social Science Citation Index (SCCI), Arts&Humanities Citation Index (AHCI) y Emerging Source Citation Index (ESCI). Mientras que Scopus se considera como una de las bases de datos más grande con lo que respecta a referencias bibliográficas de literatura científica, cerca de 21.900 publicaciones de revistas, más de 5.000 editores internaciones y publicaciones de diferentes disciplinas.
- La búsqueda de los artículos se basará desde los años 70 hasta la actualidad, ya que al inicio de ese periodo se presentó abundantes actividades hidrocarburíferas.
- La región escogida para aplicar el proyecto es Latinoamérica, debido a la falta de información acerca de los accidentes e incidentes ambientales relacionadas con las etapas de la industria hidrocarburífera; así como los tipos de contaminaciones como: acústica, hídrica y atmosférica.

2.4 Keywords

Las palabras claves usadas en la búsqueda de artículos científicos tanto en Scopus como WOS fueron:

Tabla 2.2 Keywords

KEYWORDS
"atmospheric contamination" AND petroleum
"atmospheric pollution" AND hydrocarbons
"noise pollution" AND hydrocarbons
"noise pollution" AND petroleum
"noise pollution" AND petroleum ttb & und
"water contamination" AND hydrocarbons
"water contamination" AND petroleum
"water contamination" AND hydrocarbons AND drilling
"water contamination" AND hydrocarbons AND exploration

Fuente: (Autores, 2021)

Las palabras claves seleccionadas se clasificaron en tres tipos: atmosférico, acústico e hídrico, debido a los tipos de contaminación escogidos para el desarrollo del proyecto. Sin embargo, para la búsqueda avanzada en las bases de datos se recomienda aplicar keywords en el idioma inglés debido a que la mayoría de las publicaciones de artículos científicos son en ese idioma.

Por otro lado, se consideró las etapas de industria hidrocarburífera para la búsqueda avanzada debido a que esta función permite que el algoritmo de búsqueda se centre especialmente en los keywords aplicado por el autor de cada artículo científico que se relaciona con nuestro tema estudio.

La misma búsqueda avanzada tiene una formulación específica para cada base de datos como se muestra posteriormente:

SCOPUS: formulación de la búsqueda avanzada. Ejemplo: (TITLE-ABS-KEY ("atmospheric contamination") AND TITLE-ABS-KEY (petroleum))
 AND (LIMIT-TO (AFFILCOUNTRY, "Brazil") OR LIMIT-TO (AFFILCOUNTRY, "Chile") OR LIMIT-TO (AFFILCOUNTRY, "Colombia") OR LIMIT-TO (AFFILCOUNTRY, "Venezuela")) AND (LIMIT-TO (LANGUAGE, "English") OR LIMIT-TO (LANGUAGE, "Spanish"))

Web Of Science: formulación de la búsqueda avanzada. Ejemplo: TS=
 (nanotub* AND carbon) NOT AU=Smalley RE

Tabla 2.3 Etiquetas de campo

Booleanos: AND, OR, NOT, SAME, NEAR				
A= Dirección postal I= Ciudad S= Provincia/Estado U= País/Región P= Código postal O= Entidad financiadora G= Número de concesión T= Texto de financiación U= Área de investigación IC= Categoría de Web of Science S= ISSN/ISBN T= Número de acceso MID= ID de PubMed LL= Todos los campos				
A I S I I				

Fuente: (Web of Science [v.5.35] - Colección principal de Web of Science-Búsqueda avanzada, 2021)

2.5 Fases Preliminares

La búsqueda de artículos científicos por medio de los keywords tanto en SCOPUS como Web Of Science arrojaron los siguientes resultados en las siguientes fases preliminares.

Tabla 2.4 Fase I. [Autores, 2021]

KEYWORDS	SCOPUS	WEB OF SCIENCE	SIN DUPLICADOS
"atmospheric contamination" AND petroleum	5	10	15
"atmospheric pollution" AND hydrocarbons	216	147	312
"noise pollution" AND hydrocarbons	1	3	4
"noise pollution" AND petroleum	5	0	5
"noise pollution" AND petroleum ttb & und	21	0	21
"water contamination" AND hydrocarbons	186	322	432
"water contamination" AND petroleum	101	135	198
"water contamination" AND hydrocarbons AND drilling	6	2	8
"water contamination" AND hydrocarbons AND exploration	19	7	26

En la tabla de la Fase I, muestra los artículos científicos obtenidos de las dos bases de datos, usando los keywords de la tabla 5. Se los denominaron artículos científicos crudos, ya que son los arrojados sin seleccionar lo óptimos para el estudio.

Tabla 2.5 Fase II. [Autores, 2021]

TIPO DE CONTAMINACIÓN	ARTICULOS CRUDO	ARTICULOS IDONEOS
Atmospheric	327	51
Noise	30	13
Water	664	167
Total	1021	231

La tabla de la Fase II, presenta los artículos tanto crudos como idóneos. Los artículos científicos idóneo son los que han sido analizados con el criterio de selección según el contenido relacionado con la industria hidrocarburífera. De esa manera, se reduce la cantidad de artículos científicos.

Tabla 2.6 Fase III. [Autores, 2021]

TIPO DE CONTAMINACIÓN	RELACIÓN DIRECTA CON LA INDUSTRIA	RELACIÓN INDIRECTA CON LA INDUSTRIA
Atmospheric	6	45
Noise	9	4
Water	43	124
Total	58	173

La tabla de la Fase III, muestra los artículos científicos relacionados directamente con las etapas de industria hidrocarburífera (exploración, perforación, producción, almacenamiento y transporte, refinación), mientras que los que no se relacionan directamente son los artículos que menciona posibles remediaciones a accidentes ambientales que han sucedido o estudios de impacto ambiental.

Tabla 2.7 Fase IV. [Autores, 2021]

TIPO DE CONTAMINACIÓN	RELACIÓN DIRECTA	RELACIÓN INDIRECTA
TIFO DE CONTAMINACION	CON LA INDUSTRIA	CON LA INDUSTRIA
Atmospheric	6	4
Noise	6	3
Water	7	4
Total	19	11

La tabla de la fase IV, presenta los artículos científicos que no aportan al estudio debido a la carencia de información para el análisis que se pretende desarrollar. Como, por ejemplo: la ausencia del nombre del país de origen latinoamericano perteneciente al artículo.

Tabla 2.8 Fase V. [Autores, 2021]

TIPO DE CONTAMINACIÓN	RELACIÓN DIRECTA CON LA INDUSTRIA	RELACIÓN INDIRECTA CON LA INDUSTRIA
Atmospheric	6	41
Noise	3	2
Water	36	120
Total	45	163

La tabla de la fase V, muestra los artículos que fueron aprobados para la realización del presente estudio al contar con la información necesaria para los posteriores análisis.

Tabla 2.9 Fase VI. [Autores, 2021]

TIPO DE CONTAMINACIÓN	ARTICULOS APROBADOS
Atmospheric	47
Noise	5
Water	156
Total	208

La tabla de la Fase VI, muestra el total pertinente de los artículos científicos aprobados para los análisis que se realizarán en el presente estudio debido a que cuenta con la suficiente información.

CAPITULO 3

3. RESULTADOS Y ANALISIS

3.1 Análisis de la tabla memoria mediante el software datastudio

El proceso inició con el ingreso de datos de la tabla memoria (APÉNDICE A) en el software de acceso libre datastudio, reconociendo información necesaria para mostrar la incidencia de artículos científicos relacionados a los tipos de contaminación hídrica, atmosférica y acústica provocados por la industria hidrocarburífera en la región Latam, presentados por diferentes autores en dos sitios web especializados en recopilar datos validados como revistas científicas reconocidas a nivel mundial.

3.1.1 Estudio de incidencia de artículos científicos en Latinoamérica

La figura 3.1, muestra los resultados del estudio acerca de la incidencia de artículos científicos colgados en sitios web de mayor alcance como Scopus y Web Of Science. Los mismos artículos que fueron desarrollados por autores pertenecientes a diferentes países de Latinoamérica donde se mencione una relación directa e indirecta con casos de contaminación ambiental provocado por la industria hidrocarburífera.

Figura 3.1 Incidencia de artículos científicos en la región Latam (Autores, 2021)

Se aprecia la cantidad de artículos científicos, en donde claramente el país con mayores publicaciones es Brasil, seguido por una diferencia grande continúa con México, Argentina, Ecuador, Colombia, Chile, Perú, Venezuela, Puerto Rico, Cuba y Costa Rica. Por otro lado, también se identifica que uno de los sitios web con un porcentaje alto de aportación significante de artículos científicos es Scopus con un 65.1% mientras que WOS con 34.9%.

3.1.2 Tabla memoria de artículos científicos relacionados con las contaminaciones hídricas, atmosféricas y acústicas según la etapa.

Las tablas memoria (APÉNDICE A) que se presenta posteriormente han sido desarrolladas con un total de 208 artículos científicos que pertenecen a los motores de búsqueda Scopus y WOS, que tratan eventos contaminantes durante las etapas de la industria hidrocarburífera; tomando en cuenta la región de estudio del proyecto, es decir, Latinoamérica. Así también como los análisis de posibles contaminaciones acústicas, hídricas y atmosféricas.

Tabla 3.1 Muestra de la tabla memoria. [Autores, 2021]

	PAIS	CIUDAD	TITULO	ETAPA	
1.	VN	CARACAS	Aromatic Hydrocarbons at urba	COMBUSTIÓN DE	
2.	VN	CARACAS	Air POLLUTION IN Tropical areas	COMBUSTIÓN DE	
З.	PR	VEGA BAJA	MICROBIAL DIVERSITY AND BIOREMED	REMEDIACIÓN	
4.	PE	LORETO	water contamination from oil e	EXPLORACIÓN	
5.	PE	LORETO	FIRST EVIDENCES OF AMAZONIAN WI	COMBUSTIÓN DE	
6.	PE	LORETO	POLYCYCLIC AROMATIC HYDROCARB	REMEDIACIÓN	
7.	MX	TABASCO	TOLERANCE OF FOUR TROPICAL TREE	BIOMARCADORES	
8.	MX	MERIDA-YU	A SUCCESSION OF MARINE BACTERIA	BIOMARCADORES	
9.	MX	MEXICO CIT	A Predictive model to correlate	COMBUSTIÓN DE	
10.	MX	MERIDA-YU	CHaracterization and sources o	COMBUSTIÓN DE	
11.	MX	MEXICO CIT	COLD-START AND CHEMICAL CHARAC	COMBUSTIÓN DE	
12.	MX	SALINA CR	ENVIRONMENTAL ASSESSMENT OF A	COMBUSTIÓN DE	
13.	MX	COATZACO	COEXISTING Sea-Based and Land	BIOMARCADORES	
14.	MX	GUADALAJA	ATMOSPHERIC DISTRIBUTION OF PAH	COMBUSTIÓN DE	
15.	MX	TRANS-ME	Free-Product Plume distribution	MODELADO	
16.	MX	MEXICO CIT	Ventilation of LiqueFied Petrol	GLP	
17.	MX	MONTERREY	A TunneL STUDY TO CHaraCTerize	COMBUSTIÓN DE	
	1-100/208 〈 〉				

Los artículos científicos analizados de la tabla memoria arrojaron relaciones directas e indirectas con la industria hidrocarburífera, así mismo, como con los tipos de contaminación: acústica, atmosférica e hídrica. En este caso, se clasificaron los artículos científicos que se relacionan directamente con la industria, es decir, las publicaciones que mencionan las etapas como: exploración, perforación, producción, almacenamiento, transporte, refinación, otros procesos relacionados a la emisión de gases derivados del petróleo.

3.1.2 Ubicación geográfica de los incidentes y accidentes ambientales en la Región Latam

La localización geográfica de incidentes, accidentes y estudios de remediación hallados en cada uno de los artículos científicos

anteriormente analizados permiten identificar los países en donde se han desarrollado la mayor cantidad de publicaciones en los dos sitios web (Scopus, WOS) de mayor impacto a nivel mundial.

Figura 3.2 Ubicación gráfica de índices, accidentes y estudios de contaminación en la región Latam (Autores, 2021)

En la figura 3.2 se aprecia los países que participan en las publicaciones de artículos científicos relacionados, ya sea con estudios, análisis, incidentes y accidentes ocasionados por sucesos contaminantes de tipo: atmosférico, acústico e hídrico; según los criterios de selección anteriormente determinado. Se han proyectado en un rango de 1 a 24 artículos representados por tonalidades, siendo 1 el mínimo (rojo) de publicación y máximo (verde) 24 publicaciones.

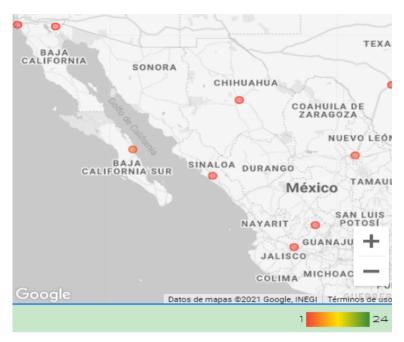


Figura 3.3 Ubicación geográfica de las ciudades al Noreste de México que participan con publicaciones de artículos científicos (Autores, 2021)

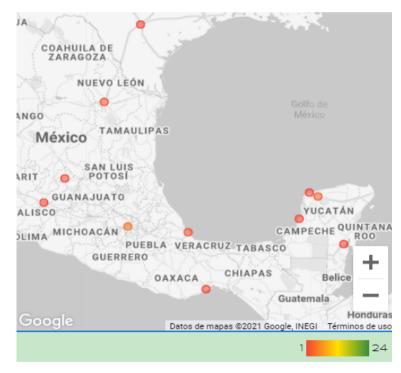


Figura 3.4 Ubicación geográfica de las ciudades al suroeste de México que participan con publicaciones de artículos científicos (Autores, 2021)

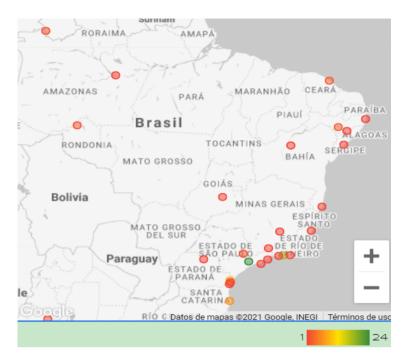


Figura 3.5 Ubicación geográfica de ciudades de Brasil que participan con las publicaciones de artículos científicos

(Autores, 2021)

3.1.3 Aportaciones según el factor de contaminación de la industria hidrocarburífera.

Los artículos científicos analizados de la tabla memoria arrojaron relaciones directas e indirectas con la industria hidrocarburífera, así mismo, como con los tipos de contaminación: acústica, atmosférica e hídrica. En este caso, se clasificaron los artículos científicos que se relacionan directamente con la industria, es decir, las publicaciones que mencionan las etapas como: exploración, perforación, producción, almacenamiento, transporte, refinación, otros procesos relacionados a la emisión de gases derivados del petróleo.

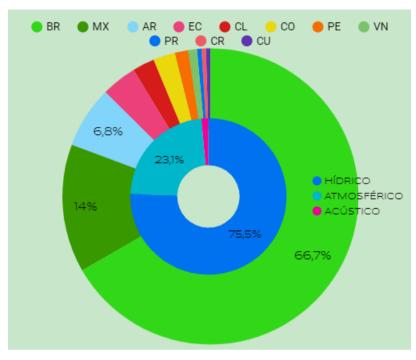


Figura 3.6 Publicaciones de tipos de contaminación por país (Autores, 2021)

Al generar las gráficas de doble anillo representadas en la Figura 3.6, se mostró de manera porcentual la contribución de los países a la muestra y el factor ambiental afectado. Siendo el factor hídrico el de mayor presencia con un 75.5%, atmosférico con el 23,1% como acústica con 1.4%; siendo el aspecto general (anillo interior) para luego enfocarse en las aportaciones por medio de las publicaciones por países a los cuales pertenecen (anillo exterior). Por lo tanto: Brasil con el 66.7% es el país con mayor número de aportes, seguido de México con el 14%, aporta con la contaminación hídrica y atmosférica. Posteriormente, Argentina con el 6.8%, Ecuador con 3.9%, Chile y Colombia con 2.4% cada uno, Perú con un 1.4%, Venezuela con 1%, Puerto Rico, Costa Rica y Cuba con un 0.5% cada uno.

A continuación, se presentan los 5 principales países que aportan con mayor cantidad de publicaciones de artículos científicos relacionados con el análisis realizado, es decir, los artículos científicos hallados en los motores de búsqueda (Scopus, WOS) tomando en cuenta la metodología

Prisma y los tipos de contaminación como: Hídrico, atmosférico y acústicos en la región latinoamericana.

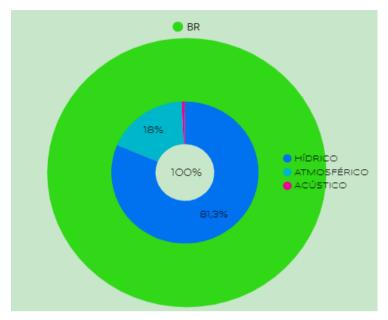


Figura 3.7 Aportación porcentuales de publicaciones pertenecientes a Brasil con respecto a contaminaciones hídricas, atmosféricas y acústica (Autores, 2021)

En la figura 3.7 se muestra los porcentajes de aportación de las publicaciones generadas por Brasil en los tres tipos de contaminación; con un 81.3% de hídrico, 18% de atmosférico, y 0.7% de acústico.

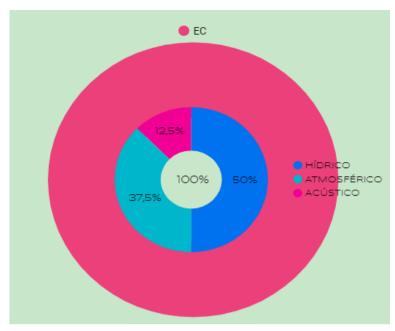


Figura 3.8 Aportación porcentuales de publicaciones pertenecientes a Ecuador con respecto a contaminaciones hídricas, atmosféricas y acústica

(Autores, 2021)

En la figura 3.8 se muestra los porcentajes de aportación de las publicaciones desarrolladas por Ecuador en los tres tipos de contaminación; con un 50% de hídrico, 37.5% de atmosférico y un 12.5 % de acústico.

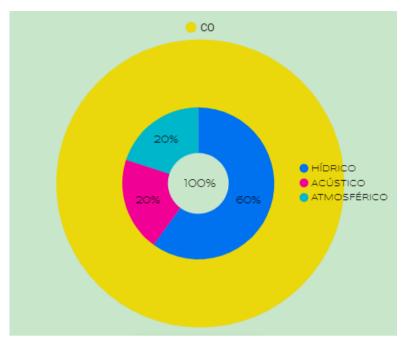


Figura 3.9 Aportaciones porcentuales de publicaciones pertenecientes a

Colombia con respecto a contaminaciones hídricas, atmosféricas y

acústicas

(Autores, 2021)

La figura 3.9 muestra los porcentajes de aportación de las publicaciones creadas por Colombia en los tres tipos de contaminaciones; con un 60% de hídrico, 20% de atmosférico y 20 % de acústico.

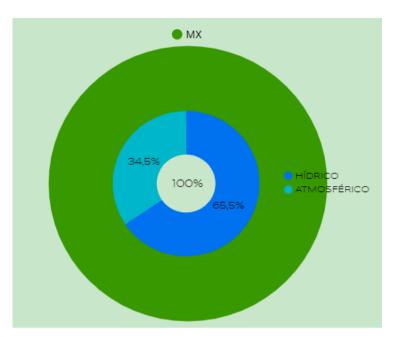


Figura 3.10 Aportaciones porcentuales de publicaciones pertenecientes a México con respecto a contaminaciones hídricas y atmosféricas (Autores, 2021)

La figura 3.10 muestra las aportaciones porcentuales generadas por México, en los dos tipos de contaminantes; con un 65.5% hídrico y 34.5% de atmosférico, esta vez sin presencia del factor acústico.

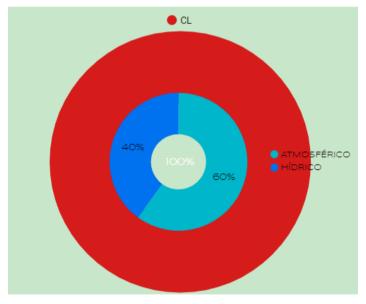


Figura 3.11 Aportaciones porcentuales de publicaciones pertenecientes a

Chile con respecto a contaminaciones hídricas y atmosférica

(Autores, 2021)

La figura 3.11 muestra las aportaciones porcentuales de publicaciones desarrolladas por Chile en los dos tipos de contaminantes; con un 60% atmosférico y 40% hídrico.

3.1.4 Posibles remediaciones a las problemáticas medio ambientales con relación a las contaminaciones hídricas, atmosféricas y acústicas

Las remediaciones más frecuentes halladas en los 208 artículos fueron: Biosurfactantes, bacterias oxigenadoras, ionización, residuo de caña de azúcar, corteza de sauce, fenton modificado, espuma de nanopartículas hidrofóbicas, diversidad microbiana, nano emulsiones, biorremediación probiota, fotofenton, mangle rhizophora, geotextiles, entre otros.

Tabla 3.2 Muestra de remediaciones viables desarrolladas en los artículos científicos analizados. [Autores, 2021]

	FACTOR	RECURSO	NO. Articulos
1.	HÍDRICO	-	131
2.	ATMOSFÉRICO	-	48
3.	ACÚSTICO	-	3
4.	HÍDRICO	BIOSURFACTANTES	3
5.	HÍDRICO	BACTERIAS	2
6.	HÍDRICO	RESIDUO CAÑA DE AZ	2
7.	HÍDRICO	S. ALTERNIFLORA	1
8.	HÍDRICO	CORTEZA DE SAUCES	1
		1 - 25 / 25	· · · >]

Figura 3.12 Código QR de acceso a resultados en Google Data Studio. (Autores, 2021)

CAPITULO 4

4. CONCLUSIONES Y RECOMENDACIONES

4.1 Conclusiones

- Después de aplicados los diferentes criterios de selección se obtuvieron 208 artículos científicos. De los cuales, Brasil con 139 publicaciones presentes, se pudo concluir que es el país de Latam que exhibe mayor recurrencia a desarrollar estudios rigorosos de los incidentes y accidentes ambientales relacionados a la industria hidrocarburífera; seguidos de países con una significante reducción de publicaciones como: México (29), Argentina (14), Ecuador (8), Colombia (5), Chile (5), Perú (3), Venezuela (2), Puerto Rico (1), Cuba (1), Costa Rica (1).
- El uso de un mapa de calor, como una herramienta de geolocalización de los puntos más reiterados, donde se presentaron los incidentes con un posterior seguimiento académico; presentó una gran utilidad como recurso interactivo, cuando se deseó observar lo ocurrido en una zona específica del continente.
- De igual manera, las gráficas de doble anillo permitieron visualizar los porcentajes de aportación de publicaciones pertenecientes a cada país, donde se evidenció que no todos los países participantes de este proyecto han publicado artículos científicos en las tres tipos de contaminantes; acústico, atmosférico e hídrico; y que las publicaciones más recurrentes son en el área de la contaminación hídrica (157), continuando con la contaminación atmosférica (48), finalizando con la contaminación acústica (3).
- La tabla de remediación presenta un compendio de soluciones o posibles soluciones a incidentes, accidentes de menor o mayor impacto y problemas de bioacumulación de hidrocarburos en general. Teniendo como punto de partida entre opciones que presentar gran factibilidad en implementaciones a grandes contaminantes. Biosurfactantes, bacterias,

nanopartículas, nanoespumas, cortezas de sauces, residuos de caña y mangle, fotofenton, membranas geotextiles; son las propuestas que fueron planteadas por diferentes autores como remediaciones a los diferentes tipos de contaminación.

4.2 Recomendaciones

- Reducir la rigurosidad de los datos que forman parte de la base de datos, incluyendo reporte de empresas, ministerios y secretarías encargadas de los distintos países. Así como también; incorporar data de investigadores independientes con la finalidad de obtener un espectro más amplio de información y poder abarcar casos de eventos de más países dentro de la región.
- Generar un aplicativo web y/o para dispositivos móviles donde se permita autorizar a usuarios, subir información a la base de datos, el detalle de eventos. En el cual pueda constar la locación (latitud y longitud), factor ambiental, extensión, etapa de desarrollo, perjuicio al estado en dólares, año, entre otros parámetros. Con la finalidad de crear una base de datos con una visualización interactiva mediante el uso de *dashboards* en Google Data Studio u otras herramientas nativas de los aplicativos.
- Extender el alcance del estudio a todo el continente americano o darle un enfoque global.
- Ampliar otro tipo de información validada ejemplo, artículos de conferencia, publicaciones en revistas digitales independientes, etc.

Bibliografía

- Abellan, E. (2020, enero 16). Qué es un dashboard de negocios y cuáles sus beneficios.

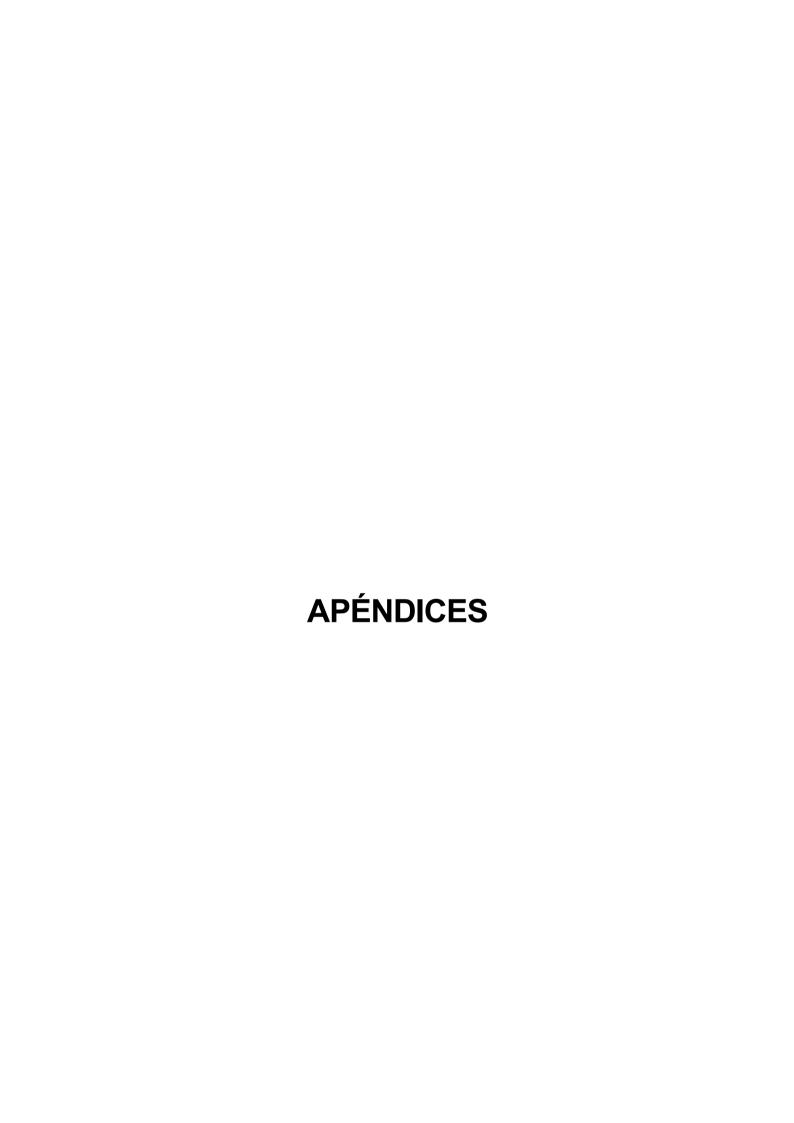
 https://www.wearemarketing.com/es/blog/que-es-un-dashboard-de-negocios-y-cuales-sus-beneficios.html
- Almeida, A., Fajardo, P., Maldonado, A., Orozco, D., Rodríguez, M., Marchi, M. D., & Fabris, G. (2020). *INFORME MECHEROS EN ECUADOR*. 46.
- Bravo, E. (2007). Los impactos de la explotación petrolera en ecosistemas tropicales.
- Calderón, J. C., & Martínez, A. F. (2019). *Análisis del influjo en el caso Macondo con el fin de generar recomendaciones para ser aplicadas en el caribe colombiano*. https://repository.uamerica.edu.co/handle/20.500.11839/7339
- Galván, L., Reyes, R., Guédez, C., & De Armas, D. (2007). Los macroprocesos de la industria petrolera y sus consecuencias ambientales. *Universidad, Ciencia y Tecnología*, 11(43), 091-097.
- Garay, J. A., Castro, L. Á., & Ospina, C. (1992). Contaminación por hidrocarburos derivados del petróleo en el litoral Caribe colombiano. Bahía Cispata hacia Riohacha. https://aquadocs.org/handle/1834/16884
- Giraldo, V. (2017, enero 25). ¿Sabes qué motores de búsqueda existen en internet?
 ¡Conócelos! Rock Content ES. https://rockcontent.com/es/blog/motores-de-busqueda/
- Kriscautzky, M., & Ferreiro, E. (2014). La confiabilidad de la información en Internet:

 Criterios declarados y utilizados por jóvenes estudiantes mexicanos. *Educação e Pesquisa*, 40, 913-934. https://doi.org/10.1590/s1517-97022014121511
- Lafuente, W., Soto, L. M., López, C., Domínguez, L., Lafuente, W., Soto, L. M., López,
 C., & Domínguez-Granda, L. (2019). Efectos de un derrame de petróleo crudo
 en la comunidad de macroinvertebrados bentónicos de un río amazónico

- ecuatoriano. Revista de Ciencias Ambientales, 53(1), 1-22. https://doi.org/10.15359/rca.53-1.1
- Le damos la bienvenida a Data Studio—Ayuda de Data Studio. (2021). https://support.google.com/datastudio/answer/6283323?hl=es
- Mainville, N. (2021, enero 14). Cinco datos sobre la quema de gas en la Amazonía de Ecuador. Noticias ambientales. https://es.mongabay.com/2021/01/mecherosen-la-amazonia-de-ecuador/
- Mendoza, S., & Paravic, T. (2006). Origen, clasificación y desafíos de las Revistas Científicas. *Investigación y Postgrado*, *21*(1), 49-75.
- Mesa, S. L., Orjuela, J. M., Ramírez, A. T., & Herrera, J. A. (2018). Revisión del panorama actual del manejo de agua de producción en la industria petrolera colombiana. Gestión y Ambiente, 21(1), 87-98.
- Ministerio de Ambiente. (2003). Decreto N° 3.516—Limites permisibles de niveles de ruido ambiente para fuentes fijas, fuentes móviles y para vibraciones (Anexo V, Libro VI: De la Calidad Ambiental, del Texto Unificado de la Legislación Secundaria del Ministerio del Ambiente).

 https://www.ecolex.org/details/legislation/decreto-no-3516-limites-permisibles-de-niveles-de-ruido-ambiente-para-fuentes-fijas-fuentes-moviles-y-para-vibraciones-anexo-v-libro-vi-de-la-calidad-ambiental-del-texto-unificado-de-la-legislacion-secundaria-del-ministerio-del-ambiente-lex-faoc112184/
- Ministerio de Ambiente. (2012). Listados nacionales de sustancias químicas peligrosas, desechos peligrosos y especiales (p. 48). https://www.gob.ec/sites/default/files/regulations/2018-09/Documento_Listadodesechos-sustancias-peligrosas-142.pdf
- Ministerio de Relaciones Exteriores y Movilidad Humana. (2013). *La Cruda Realidad del Caso CHEVRON TEXACO*. Ministerio de Relaciones Exteriores y Movilidad

- Humana. https://www.cancilleria.gob.ec/wp-content/uploads/2013/04/la-cruda-realidad-del-caso-chevron-texaco-esp.pdf
- Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Group, T. P. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. *PLOS Medicine*, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097
- Mondragón, J. (2015). Propuesta de guía ambiental para el quemado de gas en instalaciones de exploración y producción petrolera en Colombia. http://repository.unilibre.edu.co/handle/10901/10663
- Paz, A. (2021, febrero 9). Justicia ecuatoriana le dio la razón a nueve niñas y pidió eliminar la quema de gas de la industria petrolera. Noticias ambientales. https://es.mongabay.com/2021/02/ninas-ganan-demanda-mecheros-quema-degas-y-petroleo-ecuador/
- Pelaez, J. I., Vaccaro, G., Yanez, E. R., & Saqalli, M. (2016). Un Sistemas para Detección de Contaminación por Hidrocarburos: Aplicación al Oriente Ecuatoriano. RISCI: Revista Iberoamericana de Sistemas, Cibernética e Informática, 180-185.
- Perez, A. (2017, febrero 9). WOS Y SCOPUS: Los grandes aliados de todo investigador.


 Comunicar. Escuela de Autores. https://www.revistacomunicar.com/wp/escuela-de-autores/wos-y-scopus-los-grandes-aliados-de-todo-investigador/
- RAE. (2020a). Definición de contaminación acústica—Diccionario panhispánico del español jurídico—RAE. Diccionario panhispánico del español jurídico Real Academia Española. https://dpej.rae.es/lema/contaminaci%C3%B3n-ac%C3%BAstica
- RAE. (2020b). Definición de contaminación atmosférica—Diccionario panhispánico del español jurídico—RAE. Diccionario panhispánico del español jurídico Real

- Academia Española. https://dpej.rae.es/lema/contaminaci%C3%B3n-atmosf%C3%A9rica
- RAE. (2020c). Definición de contaminación hídrica—Diccionario panhispánico del español jurídico—RAE. Diccionario panhispánico del español jurídico Real Academia Española. https://dpej.rae.es/lema/contaminaci%C3%B3n-h%C3%ADdrica
- RAE. (2020d). Definición de contaminación—Diccionario panhispánico del español jurídico—RAE. Diccionario panhispánico del español jurídico Real Academia Española. https://dpej.rae.es/lema/contaminaci%C3%B3n
- Reis, J. C. (1996). Environmental control in petroleum engineering. Gulf Publ.
- Ruiz, O. (1991, noviembre 11). Maturin East Seismic Program: Environmental Impact Assessment. SPE Health, Safety and Environment in Oil and Gas Exploration and Production Conference. https://doi.org/10.2118/23388-MS
- Sandoval, A., & Vargas, A. (2004). La captura de carbono en bosques: ¿una herramienta para la gestión ambiental? *Gaceta Ecológica*, 70, 6.
- Urrútia, G., & Bonfill, X. (2013). La declaración PRISMA: Un paso adelante en la mejora de las publicaciones de la Revista Española de Salud Pública. Revista Española de Salud Pública, 87(2), 99-102. https://doi.org/10.4321/S1135-57272013000200001
- Valencia, M., & Trejos de Suescum, R. (1986). Contaminación marina por petróleo en aguas costeras ecuatorianas. https://aquadocs.org/handle/1834/2117
- Web of Science [v.5.35]—Colección principal de Web of Science- Búsqueda avanzada.

 (2021). Web of Science.

 https://apps.webofknowledge.com/WOS_AdvancedSearch_input.do?SID=6EN

 UF7g2GtQTrv4ojVz&product=WOS&search_mode=AdvancedSearch
- World Wildlife Fund. (2017). El cambio climático, los bosques y las medidas para reducir las emisiones provenientes de la deforestación.

APÉNDICE A

LISTADO No.2: LISTADOS DE SUSTANCIAS QUÍMICAS PELIGROSAS DE TOXICIDAD AGUDA (*).

Nº RP	Nº CAS	Descripción	
P047	534-52-1 51-28-5	4,6-Dinitro-o-cresol y sus sales	
P008	504-24-5	4-Aminopiridina	
P007	2763-96-4	5-(Aminometil)-3(2H)-isoxazolona	
P092	62-38-4	Acetato de fenil mercurio	
P010	7778-394-4	Acido arsénico H3AsO4	
P058	62-74-8	Acido fluoroacético, sal de sodio	
P111	107-49-3	Acido tetraetil ester difosfórico	
P109	3689-24-5	Acido tiodifosfórico, tetraetil éster	
P003	107-02-8	Acroleína	
P070	116-06-3	Aldicarb	
P046	122-09-8	Alfa, alfa-dimetil-bencenoetanoamina	
P105	26628-22-8	Azida de sodio	
P054	151-56-4	Aziridina	
P015	7440-41-7	Berilio	
P018	357-57-3	Brucina	
P073	13463-39-3	Carbonil de niquel Ni(CO)4 (T,R)	
P013	542-62-1	Cianuro de bario	
P021	592-01-8	Cianuro de calcio Ca(CN)2	
P121	557-21-1	Cianuro de cinc Zn(CN)2	
P029	544-92-3	Cianuro de cobre CuCN	
P101	107-12-0	Cianuro de etilo	
P063	74-90-8	Cianuro de hidrógeno	
P074	557-19-7	Cianuro de niquel Ni(CN)2	
P104	506-64-9	Cianuro de plata Ag(CN)	
P099	506-61-6	Cianuro de plata y potasio	
P098	151-50-8	Cianuro de potasio K(CN)	
P106	143-33-9	Cianuro de sodio Na(CN)	
P023	107-20-0	Cloroacetaldehido	
P028	100-44-7	Cloruro de bencilo	

P033	506-77-4	Cloruro de cianógeno (CN)Cl		
P036	696-28-6	Diclorofenilarsina		
P016	542-88-1	Diclorometil éter		
P038	692-42-2	Dietil arsina		
P041	311-45-5	Dietil-p-nitrofenil fosfato		
P043	55-91-4	Diisopropilfluorofosfato (DFP)		
P044	60-51-5	Dimetoato		
P020	88-85-7	Dinoseb		
P078	10102-44-0	Dióxido de nitrógeno		
P039	298-04-4	Disulfotón		
P022	75-15-0	Disulfuro de carbono		
P049	541-53-7	Ditiobiuret		
P050	115-29-7	Endosulfan		
P088	145-73-3	Endotal		
P051	72-20-8	Endrin y metabolitos		
P042	51-43-4	Epinefrina		
P108	57-24-9	Estricnina y sales Estricnidin -10- ona y sales		
P031	460-19-5	Etanodinitrilo		
P097	52-85-7	Famfur		
P093	103-85-5	Feniltiourea		
P056	7782-41-4	Flúor		
P057	640-19-7	Fluoroacetamida		
P094	298-02-2	Forato		
P096	7803-51-2	Fosfina		
P006	20859-73-8	Fosfuro de aluminio (R, T)		
P122	1314-84-7	Fosfuro de cinc Zn3P2, cuando está presente		
1 122		en concentraciones mayores al 10% (R,T)		
P095	75-44-5	Fosgeno		
P065	628-86-4	Fulminato de mercurio (R,T)		
P062	757-58-4	Hexaetil tetrafosfato		
P064	624-83-9	Isocianato de metilo		
P060	465-73-6	Isodrín		
P071	298-00-0	Metil paratión		
P068	60-34-4	Metilhidrazina		
P066	16752-77-5	Metomyl		

P081	55-63-0	Nitroglicerina (R)
P084	4549-40-0	N-Metil -N-nitroso-vinilamina
P082	62-75-9	N-Nitrosodimetilamina
P085	152-16-9	Octametil difosforamida
P113	1314-32-5	Oxido de talio TL2O3
P120	1314-62-1	Oxido de Vanadio V2O5
P076	10102-43-9	Oxido nítrico
P089	56-38-2	Paratión
P024	106-47-8	p-Cloroanilina
P011	1303-28-2	Pentóxido de arsénico
P009	131-74-8	Picrato de amonio (R)
P077	100-01-6	p-Nitroanilina
P114	12039-52-0	Selenito de Talio (I)
P103	630-10-4	Selenoúrea
P115	7446-18-6	Sulfato de Talio (I)
P109	3689-24-5	Tetraetilditiopirofosfato
P110	78-00-2	Tetraetilo de plomo
P111	107-49- 3	Tetraetilo pirofosfato
P112	509-14-8	Tetranitrometano (R)
P087	20816-12-0	Tetraóxido de osmio
P045	39196-18-4	Tiofanox
P014	108-98-5	Tiofenol
P116	79-19-6	Tiosemicarbazida
P118	75-70-7	Triclorometanotiol
P012	1327-53-3	Trióxido de arsénico
P119	7803-55-6	Vanadato de amonio

(*) Intoxicación aguda consiste en la aparición de un cuadro clínico patológico después de exposición única o múltiple, en un período inferior a 24 horas

Nota. Esta lista de sustancias químicas peligrosas se la elaboró en base a las sustancias comúnmente comercializadas y referenciadas en la Sección 313, Lista de Químicos Tóxicos EPA260-B-01-001, marzo de 2001 y el Reglamento (CE) Nº 1907/2006 del Parlamento Europeo y del Consejo del 18 de diciembre de 2006

Nº RP: Código de registro de producto, EPA.

Nº CAS: Identificación numérica única asignada en la base de datos del Chemical Abstract Service (CAS) de la Sociedad Americana de Química. Identificación única de producto.

LISTADO No. 3: LISTADO NACIONAL DE SUSTANCIAS QUIMICAS PELIGROSOS DE TOXICIDAD CRONICA (*)

Nº RP	Nº CAS	Descripción
U095	119-93-7	[1,1'-Bifenil] -4,4'-diamina,3,3'- dimetil
U073	91-94-1	[1,1'-Bifenil]-4,4'-diamina, 3,3'- dicloro
U087	3288-58-2	0,0-Dietil -S-metil ditiofosfato
U060	72-54-8	1,1'-(2,2-dicloroetilideno) bis(4-clorobenceno)
U247	72-43-5	1,1'-(2,2,2-Tricloroetilideno) bis 4-metoxi-
0247	72-45-5	benceno
U208	630-20-6	1,1,1,2-Tetracloroetano
U226	71-55-6	1,1,1-Tricloroetano
U209	79-34-5	1,1,2,2-Tetracloroetano
U227	79-00-5	1,1,2-Tricloroetano
U024	111-91-1	1,1'-[metilen bis (oxi)] bis 2-cloro-etano
U076	75-34-3	1,1-Dicloro-etano
U078	725-35-4	1,1-Dicloroetileno
U098	57-14-7	1,1-Dimetilhidracina
U117	60-29-7	1,1'-oxibis-etano (I)
U109	122-66-7	1,2 -Difenilhidracina
U207	95-94-3	1,2,4,5-Tetraclorobenceno
U085	1464-53-5	1,2:3,4-Diepoxibutano (I,T)
U066	96-12-8	1,2-Dibromo-3-cloropropano
U067	106-93-4	1,2-Dibromo-etano
U077	107-06-2	1,2-Dicloroetano
U079	156-60-5	1,2-Dicloroetileno
U083	78-87-5	1,2-Dicloropropano
U066	96-12-8	1,2-Dietil-hidracina
U099	540-73-8	1,2-Dimetilhidracina
U234	99-35-4	1,3,5-Trinitrobenceno (R,T)
U084	542-75-6	1,3-Dicloropropeno
U186	504-60-9	1,3-Pentadieno (I)
U193	1120-71-4	1,3-Propanosulfona

U074	764-41-0	1,4-Dicloro-2-buteno (I,T)
U108	123-91-1	1,4-Dioxano
U166	130-15-4	1,4-Naftoquinona
U030	101-55-3	1-Bromo-4-fenoxi-benceno
U031	71-36-3	1-Butanol (I)
U096	80-15-9	1-Metil-1-feniletil-hidroperóxido (R)
U105	121-14-2	1-Metil-2,4-dinitrobenceno
U055	98-82-8	1-Metiletil-benceno (I)
U167	134-32-7	1- Naftalenamina
U173	1116-54-7	2,2'-(nitrosoimino) bis etanol
F027	58-90-2	2,3,4,6-Tetraclorofenol
F027	95-95-4	2,4,5-Triclorofenol
F027	88-06-2	2,4,6-Triclorofenol
U081	120-83-2	2,4- Diclorofenol
U101	105-67-9	2,4-Dimetilfenol
U105	121-14-2	2,4-Dinitrotolueno
U082	87-65-0	2,6-Diclorofenol
U106	606-20-2	2,6-Dinitrotolueno
U005	53-96-3	2-Acetilaminofluoreno
U159	78-93-3	2-Butanona (I,T)
U160	1338-23-4	2-Butanona, peroxido (R,T)
U053	4170-30-3	2-Butenal
U042	110-75-8	2-Cloroetil vinil éter
U047	91-58-7	2-Cloro-naftaleno
U106	606-20-2	2-Metil-1,3-dinitrobenceno
U140	78-83-1	2-Metil-1-propanol (I,T)
U222	636-21-5	2-metil-hidrocloruro de bencenamina

U168	91-59-8	2-Naftalenamina
U171	79-46-9	2-Nitropropano (I,T)
U191	109-06-8	2-Picolina
U007	79-06-1	2-Propenamida
U009	107-13-1	2-Propenonitrilo
U091	119-90-4	3,3'- Dimetoxibencidina
U073	91-94-1	3,3'-Diclorobencidina

U095	119-93-7	3,3'-Dimetilbencidina
U157	56-49-5	3-Metilclorantreno
U158	101-14-4	4,4'-Metilenbis (2-cloroanilina)
U158	101-14-4	4,4'-metileno bis (2-cloro)- bencenamina
U150	148-82-3	4-[bis(2-cloroetil) amino]-L-fenilalanina
U049	3165-93-3	4-Cloro-2-metil-hidrocloruro de bencenamina
U039	59-50-7	4-Cloro-3-metil-fenol
U049	3165-93-3	4-Cloro-o-toluidina, hidrocloruro
U161	108-10-1	4-Metil-2-pentanona (1)
U161	108-10-1	4-metil-pentanol
U237	66-75-1	5-[bis(2-cloroetil) amino]-2,4 - (1H, 3H)-
0237	00-73-1	pirimidindiona
U181	99-55-8	5-Nitro-o-toluidina
U094	57-97-6	7,12-Dimetilbenzo [a] antraceno
U001	75-07-0	Acetaldehído (I)
U112	141-78-6	Acetato de etilo (I)
U144	301-04-2	Acetato de plomo
U214	563-68-8	Acetato de talio (I)
U004	98-86-2	Acetofenona
U002	67-64-1	Acetona (I)
U003	75-05-8	Acetonitrilo (I,T)
U102	131-11-3	Acido 1,2-becenodicarboxílico, dimetil éster
U088	84-66-2	Acido 1,2-bencenodicarboxílico, dietil éster
F027	93-72-1	Acido 2-(2,4,5-triclorofenoxi) propanoico
U118	97-63-2	Acido 2-metil-2-propenoíco, etil éster
U008	79-10-7	Acido 2-propenoíco (I)
U113	140-88-5	Acido 2-propenoíco, etil éster
U008	79-10-7	Acido acrílico (I)
U038	510-15-6	Ácido bencenacético, 4 cloro-alfa-(4-clorofe-
0000	310-13-0	nil)- alfa-hidroxi-etil éster
U238	51-79-6	Acido carbámico, etil éster
U178	615-53-2	Ácido carbámico, metil nitroso-, etil éster
U062	2303-16-4	Ácido carbamotióco, bis (1-metiletil)-,S-(2,3-
0002	2505-10-4	dicloro-2-propenil) éster.
U156	79-22-1	Acido carbono clorhídrico, metil éster (I,T)

U020	98-0-9	Acido clorhídrico benzensulfónico (C,R)
U136	75-60-5	Acido dimetil arsínico
U114	111-54-6	Acido etilenbisditiocarbámico, sales y ésteres
U134	7664-39-3	Ácido fluorhídrico (C,T)
U123	64-18-6	Acido fórmico (C,T)
U145	7446-27-7	Acido fosfórico, plomo (2+) sal (2:3)
U103	77-78-1	Acido sulfúrico, dimetil éster
F027	93-76-5	Acido-(2,4,5-triclorofenoxi)-acético
U240	94-75-7	Acido-(2,4-diclorofenoxi)-acético, sales y
0240	34-13-1	ésteres
U007	79-06-1	Acrilamida
U113	140-88-5	Acrilato de etilo (I)
U009	107-13-1	Acrilonitrilo
U011	61-82-5	Amitrole
U190	85-44-9	Anhídrido ftálico
U147	108-31-6	Anhídrido maleíco
U012	62-53-3	Anilina (I,T)
U014	492-80-8	Auramina
U015	115-02-6	Azaserina

Nº RP	Nº CAS	Descripción
U012	62-53-3	Bencenamina (I,T)
U019	71-43-2	Benceno (I,T)
U021	92-87-5	Bencidina
U018	56-55-3	Benzo (a) antraceno
U248	81-81-2	Benzo [a] pireno
U064	189-55-9	Benzo [rst] pentafeno
U016	225-51-4	Benzo acridina
U022	50-32-8	Benzo[a]pireno
U023	98-07-7	Benzotricloruro (C,R,T)
U246	506-68-3	Bromuro de cianógeno (CN)Br.
U029	74-83-9	Bromuro de metilo
U215	6533-73-9	Carbonato de talio (I)
U058	50-18-0	Ciclofosfamida
U056	110-82-7	Ciclohexano (I)

U057	108-94-1	Ciclohexanona (I)
U034	75-87-6	Cloral
U035	305-03-3	Clorambucil
U026	494-03-1	Clornafazin
U037	108-90-7	Clorobenceno
U038	510-15-6	Clorobencilato
U156	79-22-1	Clorocarbonato de metilo (I,T)
U043	75-01-4	Cloroeteno
U044	67-66-3	Cloroformo
U045	74-87-3	Clorometano (I,T)
U046	107-30-2	Clorometil metil éter
U041	106-89-8	Clorometil-oxirano
U006	75-36-5	Cloruro de acetilo (C,R,T)
U020	98-0-9	Cloruro de bencensulfonilo (C,R)
U017	98-87-3	Cloruro de benzol
U080	75-09-2	Cloruro de metileno
U045	74-87-3	Cloruro de metilo (I,T)
U216	7791-12-0	Cloruro de talio (I)
U043	75-01-4	Cloruro de vinilo
U051		Creosota
U052	1319-77-3	Cresol (ácido cresílico)
U050	218-01-9	Criseno
U032	13765-19-0	Cromato de calcio
U059	20830-81-3	Daunomicin
U060	72-54-8	DDD
U062	2303-16-4	Dialato
U063	53-70-3	Dibenzo [a,h] antraceno
U064	189-55-9	Dibenzo [a,i] pireno
U068	74-95-3	Dibromometano
U067	106-93-4	Dibromuro de etileno
U069	84-74-2	Dibutil ftalato
U075	75-71-8	Diclorodifluorometano
U025	111-44-4	Dicloroetil éter
U027	108-60-1	Dicloroisopropil éter
U080	75-09-2	Diclorometano

U017	98-87-3	Diclorometil-benceno
U024	111-91-1	Diclorometoxi etano
U077	107-06-2	Dicloruro de etileno
U076	75-34-3	Dicloruro de etilideno
U083	78-87-5	Dicloruro de propileno
U088	84-66-2	Dietil ftalato
U089	56-53-1	Dietilestilbesterol
U028	117-81-7	Dietilhexil ftalato

U033	353-50-4	Difluoruro carbónico
U090	94-58-6	Dihidrosafrole
U223	26471-62-5	Diisocianato de tolueno (R,T)
U097	79-44-7	Dimetil cloruro carbámico
U103	77-78-1	Dimetil sulfato
U092	124-40-3	Dimetilamina (I)
U102	131-11-3	Dimetilftalato
U107	117-84-0	Di-n- octil ftalato
U111	621-64-7	Di-n-propilnitrosamina
U204	7783-00-8	Dióxido de selenio
U110	142-84-7	Dipropilamina (I)
U041	106-89-8	Epiclorhidrina
U238	51-79-6	Etil carbamato (uretano)
U117	60-29-7	Etil éter (I)
U359	110-80-5	Etilenglicol monoetil
U116	96-45-7	Etilentiourea
U187	62-44-2	Fenacetín
U188	108-95-2	Fenol
U120	206-44-0	Fluoranteno
U122	50-00-0	Formaldehído
U235	126-72-7	Fosfato de 2,3-dibromo-1-propanol (3:1)
U145	7445-27-7	Fosfato de plomo
U189	1314-80-3	Fosfuro de azufre (R)
U125	98-01-1	Furfural (I)
U124	110-00-9	Furfurano (I)
U126	765-34-4	Glicidilaldehído

U128	87-68-3	Hexaclorobutadieno
U130	77-47-4	Hexaclorociclopentadieno
U131	67-72-1	Hexacloroetano
U132	70-30-4	Hexaclorofeno
U243	1888-71-7	Hexacloropropeno
U148	123-33-1	Hidracida maleíca
U133	302-01-2	Hidracina (R,T)
U137	193-39-5	Indeno[1,2,3-cd] pireno
U138	74-88-4	Iodometano
U138	74-88-4	loduro de metilo
U140	78-83-1	Isobutil alcohol (I,T)
U141	120-58-1	Isosafrole
U142	143-50-0	Kepone
U143	303-34-4	Lasiocarpine
U015	115-02-6	L-Serina, diazoacetato (ester)
U071	541-73-1	m-Diclorobenceno
U150	148-82-3	Melfalen
U151	7439-97-6	Mercurio
U118	97-63-2	Metacrilato de etilo
U162	80-62-6	Metacrilato de metilo (I,T)
U152	126-98-7	Metacrilonitrilo (I,T)
U154	67-56-1	Metanol (I)
U119	62-50-0	Metanosulfanato de etilo
U155	91-80-5	Metapirileno
U159	78-93-3	Metil etil cetona (I,T)
U160	1338-23-4	Metil etil cetona peróxido (R,T)
U153	74-93-1	Metilmercaptano (I,T)
U164	56-04-2	Metiltiouracil
U247	72-43-5	Metoxiclor
U010	50-07-7	Mitomicin C
U086	1615-80-1	N,N'-Dietilhidracina

Nº RP	Nº CAS	Descripción
U005	53-96-3	N-9H-fluoren-2 -il-acetamida
U165	91-20-3	Naftaleno
U172	924-16-3	N-butil -N-nitroso-1-butanamina
U217	10102-45-1	Nitrato de talio (I)
U169	98-95-3	Nitrobenceno (I,T)
U163	70-25-7	N-Metil-N'-nitro-N-nitroso-guanidina
U177	684-93-5	N-metil-N-Nitroso-urea
U173	1116-54-7	N-Nitrosodietanolamina
U174	55-18-5	N-Nitrosodietilamina
U172	924-16-3	N-Nitrosodi-n-butilamina
U176	759-73-9	N-Nitroso-N-etilurea
U178	615-53-2	N-Nitroso-N-metiluretano
U111	621-64-7	N-Nitroso-N-Propil-1-propanamina
U179	100-75-4	N-Nitrosopiperidina
U180	930-55-2	N-Nitrosopirrolidina
U194	107-10-8	n-Propilamina (I,T)
U048	95-57-8	o-Clorofenol
U070	95-50-1	o-Diclorobenceno
U328	95-53-4	o-Toluidina
U222	636-21-5	o-Toluidina hidrocloruro
U115	75-21-8	Oxido de etileno (I,T)
U136	75-60-5	Oxido de hidroxidimetilarsina
U033	353-50-4	Oxifluoruro de carbono (R,T)
U126	765-34-4	Oxirancarboxilaldehído
U115	75-21-8	Oxirano (I,T)
U182	123-63-7	Paraldehído
U197	106-51-4	p-Benzoquinona
U039	59-50-7	p-Cloro-m-cresol
U072	106-46-7	p-Diclorobenceno
U093	60-11-7	p-Dimetilaminoazobenceno
U184	76-01-7	Pentacloroetano
F027	87-86-5	Pentaclorofenol

U185	82-68-8	Pentacloronitrobenceno (PCNB)
U196	110-86-1	Piridina
U170	100-02-7	p-Nitrofenol
U192	23950-58-5	Pronamida
U149	109-77-3	Propanodinitrilo
U353	106-49-0	p-Toluidina
U200	50-55-5	Reserpina
U201	108-46-3	Resorcinol
U202	81-07-2	Sacarin y sus sales
U203	94-59-7	Safrole
F027	93-72-1	Silvex (2,4,5-TP)
U206	18883-66-4	Streptozotocin
U146	1335-32-6	Subacetato de plomo
U135	7783-06-4	Sulfuro de hidrógeno
U205	7488-56-4	Sulfuro de selenio (R,T)
U210	127-18-4	Tetracloroetileno
U211	56-23-5	Tetracloruro de carbono
U213	109-99-9	Tetrahidrofurano (I)
U244	137-26-8	Thiram
U218	62-55-5	Tioacetamida
U219	62-56-6	Tiurea
U221	25376-45-8	Toluendiamina
U220	108-88-3	Tolueno
U225	75-25-2	Tribromometano
U034	75-87-6	Tricloro-acetaldehído

Nº RP	Nº CAS	Descripción
U228	79-01-6	Tricloroetileno
U121	75-69-4	Triclorofluorometano
U023	98-07-7	Triclorometilbenceno
U236	72-57-1	Tripan azul
U235	126-72-7	Tris (2,3-dibromopropil) fosfato
U237	66-75-1	Uracilo Mustard
U239	1330-20-7	Xileno (I)
U028	117-81-7	Bis (2-Etilhexil) Ftalato

U249	1314-84-7	Fosfuro de cinc Zn3P2, cuando está presente			
0249	1314-04-7	en concentraciones de 10% o menor. Warfarina (2H-1-Benzopiran-2-ona, 4-hidroxi-3-			
		Warfarina (2H-1-Benzopiran-2-ona, 4-hidroxi-3-			
U248	04.04.0	(3-oxo-1-fenil-butil) y sales cuando están			
U240	81-81-2	presentes en concentraciones de 0,3% o			
		menores.			

(*) Intoxicación crónica (a largo plazo) consiste en la aparación de un cuadro patológico como consecuencia de exposiciones frecuentes o repetidas (generalmente bajas dosis) después de un largo período de tiempo (años)

Nota. Esta lista de sustancias químicas peligrosas se la elaboró en base a las sustancias comúnmente comercializadas y referenciadas en la Sección 313, Lista de Químicos Tóxicos EPA260-B-01-001, marzo de 2001 y el Reglamento (CE) Nº 1907/2006 del Parlamento Europeo y del Consejo del 18 de diciembre de 2006

LISTADOS NACIONALES DE DESECHOS PELIGROSOS

LISTADO No.1: DESECHOS PELIGROSOS POR FUENTE ESPECIFICA

CI IU	Descripción de categorías	CRIT B	Códig o	Código Basilea
	Lodos de tanques de almacenamiento de aceites agrícolas	T, I	A.01.0 5	Y8
В	EXPLOTACIÓN DE MINAS Y CANTERAS			
6	Extracción de petróleo crudo y gas natural			
	Recorte de perforación de pozos petroleros en los cuales se usen lodos base aceite	Т	B.06.0 1	Y 9
	Lodos, ripios y desechos de perforación en superficie que contienen, hidrocarburos, HAP's, Cadmio, Cromo (VI), Vanadio, Bario, Mercurio, Níquel	Т	B.06.0 2	Y9/Y21/Y 2 6/Y29 (*)
	Lodos de la separación primaria (aceite/agua/sólidos)	T, I	B.06.0 3	Y 9
	Aguas de fracturación hidráulica / Aguas de formación.	Т	B.06.0 4	Y 9
	Mezclas y emulsiones de desechos de aceite y agua o de hidrocarburos y agua	Т	B.06.0 5	Y 9
	Fluidos con pH 12,5	С	B.06.0 6	Y34 o Y35
7	Extracción de minerales metalíferos: Extracción y beneficio de metales.			

Desechos de la extracción y separación de minerales metálicos: Relaves y lixiviados que contengan cianuro, mercurio, arsénico o posean características corrosivas.	Т	B.07.0 1	Y33
Desechos de lavado y limpieza de minerales que contienen residuos de cianuro, mercurio, arsénico o posean características corrosivas.	Т	B.07.0 2	Y33

8	Material explosivo fuera de especificaciones utilizado en actividades a cielo abierto	R	B.08.0 2	Y15
9	Actividades de servicio de apoyo para la extracción de petróleo, gas natural, minas y canteras.			
	Material explosivo fuera de especificaciones	R	B.09.0 1	Y15
	Desechos líquidos de revelado (líquidos que contienen nitrato de plata) y grabado fotográfico de gammagrafía.	Т	B.09.0 2	Y16
19	Fabricación de productos de la refinación del petróleo y coque			
	Natas del sistema de flotación en la refinación del petróleo y almacenamiento de productos derivados	T, I (2)	C.19.0 1	Y 9
	Lodos, sedimentos del tratamiento de los efluentes que contienen sustancias peligrosas	T, I (2)	C.19.0 2	Y18
	Slops de petróleo	Т, І	C.19.0 3	Y9
	Lodos de fondos de tanques de hidrocarburos y de agua de formación	Т, І	C.19.0 4	Y 9
	Desechos alquitranados resultantes de la refinación, destilación o cualquier otro proceso pirolítico	Т, І	C.19.0 5	Y11
	Desechos de tetraetilo de plomo o impegnados con tetraetilo de plomo	Т	C.19.0 6	Y31
	Vegetación contaminada con hidrocarburos	Т	C.19.0 7	Y18
	Mezclas oleosas agua-hidrocarburos, emulsiones	Т	C.19.0 8	Y9
	Desechos generados en las hidrosulfuradoras.	Т	C.19.0 9	Y18
	Arcillas de filtración, carbón activado u otros materiales filtrantes usados contaminados con hidrocarburos	Т	C.19.1 0	Y18

Desechos de coque que no se reintegren al proceso.	Т	C.19.1 1	A3010
Catalizadores agotados que contienen alguno de los siguientes elementos: Ni, Pd, Pt, V, Mn, As, Se, Cd, Sb, Te, Hg, Tl, Pb, Sc, Co, Cu, Y, Nb, Hf, W, Ti, Cr, Ni, Zn, Mo, Zr, Ta, Re.	Т	C.19.1 2	A2030
Suelos contaminados con hidrocarburos generados por derrames	Т	C.19.1 3	Y18
Materiales adsorbentes contaminados utilizados en los derrames de hidrocarburos o de sustancias químicas peligrosas	Т	C.19.1 4	Y18
Productos químicos caducados o productos finales de refinación fuera de especificaciones	Т	C.19.1 5	A4140
Desechos de materiales aislantes, materiales refractarios o similares que contienen sustancias peligrosas	Т	C.19.1 6	Y18
Materiales plásticos contaminados con hidrocarburos o productos quñimicos peligrosos	Т	C.19.1 7	Y18
Lodos del tratamiento de efluentes que contienen sustancias peligrosas	Т	C.20.0 1	Y18
Catalizadores agotados que contienen alguno de los siguientes elementos: Ni, Pd, Pt, V, Mn, As, Se, Cd, Sb, Te, Hg, Tl, Pb, Sc, Co, Cu, Y, Nb, Hf, W, Ti, Cr, Ni, Zn, Mo, Zr, Ta, Re.	Т	C.20.0 2	A2030
Desechos de las reacciones químicas y conchos de destilación	Т	C.20.0 4	A4140
Solventes orgánicos contaminados, caducados o fuera de especificaciones	T,I	C.20.0 5	Y6
Desechos que contengan solventes orgánicos	I	C.20.1 2	Y6
Tortas de la filtración, carbón activado y materiales adsorbentes usados contaminados con materiales peligrosos	Т	C.20.1	Y18
Desechos de pigmentos base Cr, Pb, Ba, u otros metales pesados	Т	C.20.1 9	Y12

	Lodos de destilación de solventes o recuperación de solvents contaminados	T,I	C.20.2 0	Y18
22	Fabricación de productos de caucho y plástico			
	Desechos de materias primas e insumos con características de peligrosidad, butadieno-			
	estireno, polibutadieno, isobutenoisopropeno/ halogenado, resinas sintéticas, agentes antioxidantes, antiozonantes, antienvejecimiento o retradantes de llama	T, I, R (2)	C.22.0 1	Y13
	Lodos del tratamiento de aguas residuales que contienen materials peligrosos	Т	C.22.0 2	Y18
	Desechos de solventes contaminados	I	C.22.0 3	Y6
	Desechos de la destilación de solventes	I	C.22.0 4	Y6
	Productos químicos caducados o fuera de especificaciones, subproductos de reacción que contienen sustancias peligrosas	T, I, R (2)	C.22.0 5	A4140
33	Reparación e instalación de maquinarias y equipos. Metalmecánica.			
	Desechos de líquido de frenos agotados	T, I	C.33.0 1	A4140
	Aceites minerales o mezclas que contienen PCB o PCT	T, I	C.33.0 2	Y10
	Emulsiones aceites-agua	Т	C.33.0 3	Y9
Е	SUMINISTRO DE AGUA, EVACUACIÓN DE AGUAS RESIDUALES, GESTIÓN DE DESECHOS Y DESCONTAMINACIÓN			
36	Captación, tratamiento y distribución de agua			
	Productos químicos caducados o fuera de especificaciones	T, C (2)	E.36.0 1	A4140
	Carbón activado o material filtrante que contienen metales pesados u otras sustancias peligrosas	Т	E.36.0 2	Y18

27	Evacuación de aguas residuales domésticas.		
31	Sistemas de alcantarillado		

	Lodos que contienen sustancias peligrosas	Т	E.37.0 1	Y18
	Recolección, tratamiento y disposición final de			
20	desechos sólidos y recuperación de materiales			
38	(reciclaje, incineración, autoclavado,			
	coprocesamiento)			
	Cenizas volantes y otros residuos de tratamiento	Т	E.38.0	Y18 /
	de gases que contienen sustancias peligrosas	l l	4	A4100
	Lodos generados en el proceso de lavado de	Т	E.38.0	Y18 /
	gases	I	5	A4100
	Lodos de tratamiento de lixiviados	Т	E.38.0 6	Y18
F	Construcción			
41	Construcción de edificios			
42	Obras de ingeniería civil: carreteras, vías de			
42	ferrocarril, puentes, proyectos de servicio público.			
	Desechos de mezclas bituminosas fuera de	Т	F.42.0	Y8 /
	especificaciones	. I	1	A3200
	Suelos y materiales contaminados con	Т	F.42.0	Y18
	hidrocarburos u otras sustancias peligrosas	'	2	1 10
	Actividades especializadas de construcción:			
43	demolición y preparación del terreno,			
	instalaciones eléctricas y acabado de edificios.			
_	Desechos de metales mezclados o fracciones	Т	F.43.0	Y18
	separadas que contienen sustancias peligrosas.	' '	1	110
Н	Transporte y almacenamiento			
	Transporte por vía terrestre y tuberías:			
49	combustibles, productos químicos peligrosos,			
	desechos peligrosos.			
	Desechos líquidos de la limpieza de carros	Т, І	H.49.0	Y18
	cisternas (tanqueros) de transporte terrestre que	','	1	110

	contengan productos químicos peligrosos y desechos peligrosos			
	Desechos sólidos de la limpieza de carros cisternas (tanqueros) y el mantenimiento en general del transporte terrestre de materiales peligrosos	Т	H.49.0 2	Y18
	Tuberías con residual de materiales peligrosos	Т	H.49.0 3	Y18
	Tanques cisternas fuera de uso que contienen sustancias químicas peligrosas	Т	H.49.0 4	Y18
50	Transporte por vía marítima: combustibles, productos químicos peligrosos, desechos peligrosos.			
	Agua de sentina, mezclas oleosas	Т	H.50.0 1	Y 9
	Desechos de la limpieza de cisternas de transporte marítimo que contengan sustancias peligrosas y desechos peligrosos	Т	H.50.0 2	Y18
	Aceites usados marinos	T, I	H.50.0 3	Y8
	Desechos sólidos de la limpieza de la cisterna y el mantenimiento en general del transporte marítimo	Т	H.50.0 4	Y18
М	ACTIVIDADES PROFESIONALES, CIENTÍFICAS Y TÉCNICAS			
71	Actividades de arquitectura e ingeniería; ensayos y análisis técnicos y actividades de enseñanza			
	Aguas residuales sin tratamiento generadas en laboratorios de ensayos y análisis, que contienen sustancias peligrosas	Т	M.71. 01	Y14
72	Investigación científica y de desarrollo.			
S	OTRAS ACTIVIDADES DE SERVICIOS			

- (1) Algunos desechos, además de tóxicos pueden tener características inflamables
- (2) Depende de las características propias de cada sustancia/desecho. Revisar la correspondiente _SDN del principio activo
- (3) No hay evidencias científicas de su toxicidad, sin embargo, las investigaciones continúan

(*) Se debe analizar el origen o presencia de sustancias químicas para determinar la corriente predominante para el reporte.

A4140, A3010, A2030 y A1180, no poseen una corriente "Y" específica, por lo que se coloca su identificación tal como consta en el Anexo VIII del Texto del Convenio de Basilea.

LISTADO No.2: LISTADO DE DESECHOS PELIGROSOS POR FUENTE NO ESPECÍFICA

DESECHO PELIGROSO	CR TIB	CODI GO	Código Basilea
Aceites minerales usados o gastados	T, I	NE- 03	Y8
Aguas residuales industriales que cuyas concentraciones de Cr (VI), As, Cd, Se, Sb, Te, Hg, TI, Pb, cianuros, fenoles u otras sustancias peligrosas excedan los límites máximos permitidos (Anexo 1 del Libro VI del TULSMA)	Т	NE- 06	Y18
Chatarra contaminada con materiales peligrosos	Т	NE- 09	Y18
Desechos de asfalto con contenido de alquitrán resultante de la construcción y el mantenimiento de carreteras	Т	NE- 14	A3200
Desechos de soluciones ácidas con pH < 2	С	NE- 18	Y34
Desechos de soluciones alcalinas con pH>12.5	С	NE- 19	Y35
Desechos químicos de laboratorio de análisis y control de calidad	Т	NE- 23	Y18
Desechos sólidos o lodos/sedimentos de sistemas de tratamiento de las aguas residuals industriales que contengan materiales peligrosos: Cr (VI), As, Cd, Se, Sb, Te, Hg, TI, Pb, cianuros, fenoles o metales pesados	Т	NE- 24	Y18
Emulsiones bituminosas	Т	NE- 26	Y9
Envases contaminados con materiales peligrosos	Т	NE- 27	A4130
Envases y contenedores vacíos de materiales tóxicos sin previo tratamiento	Т	NE- 29	A4130
Filtros usados de aceite mineral	Т	NE- 32	Y8

Hidrocarburos sucios o contaminados con otras sustancias	T, I	NE- 35	Y 9
Lodos de aceite	Т	NE- 36	Y8
Lodos de sistema de tratamiento de las aguas residuales domésticas que contengan materiales peligrosos	Т	NE- 37	Y18
Lodos de tanques de almacenamiento de hidrocarburos	Т, І	NE- 38	Y 9
Lodos del tratamiento de lavado de gases, que contengan materiales peligrosos	Т	NE- 39	Y18
Mezclas oleosas, emulsiones de hidrocarburos- agua, desechos de taladrina	Т	NE- 45	Y 9

- (1) Algunos desechos, además de tóxicos pueden tener características inflamables
- (2) Depende de las características propias de cada sustancia/desecho. Revisar la correspondiente MSDS del principio activo A1180; A4120; A3200; A1010; A4110; A4130; A4030; A4140, no poseen una corriente "Y" específica, por lo que se coloca su identificación tal como consta en el Anexo VIII del Texto del Convenio de Basilea.
- (3) En lo relacionado a la gestión de los desechos peligrosos con contenidos de material radioactivo sea de origen natural o artificial serán regulados y controlados por la normativa específica emitida por el Ministerio de Electricidad y Energía Renovable a través de la Subsecretaría de Control, Investigación y Aplicaciones Nucleares o aquella que la reemplace, lo cual no exime al generador de proveer de la información sobre estos desechos a la Autoridad Ambiental Nacional.

TABLA MEMORIA

PAIS	CIUDAD	TITULO	ETAPA
AR	GOLFO SAN JORGE	Effects of a Chronic Oil Spill on the Planktonic System in San Jorge Gulf, Argentina A ONE-VERTICAL- DIMENSION MODELING APPROACH	EXPLORACIÓN - PRODUCCIÓN
BR	ABROLHOS	Mystery oil spill threatens marine sanctuary in Brazil	TRANSPORTE - ALMACENAMIENTO
MX	AGUASCALIENTES	Subsoil TPH and other petroleum fractions-contamination levels in an oil storage and distribution station in north-central Mexico	EXPLORACIÓN - PRODUCCIÓN
BR	ALAGOA	Aliphatic and polycyclic aromatic hydrocarbons and trace elements as indicators of contamination status near oil and gas platforms in the Sergipe-Alagoas Basin (Southwest Atlantic Ocean)	PRODUCCIÓN
BR	ALAGOAS	OIL PRODUCED WATER TREATMENT USING SUGARCANE SOLID RESIDUE AS BIOSORBENT	REMEDIACIÓN
BR	AMAZONAS	Identification and evaluation of cyp1a transcript expression in fish as molecular biomarker for petroleum contamination in tropical fresh water ecosystems	PRODUCCIÓN
BR	ARACUJU	Concentration, distribution and source apportionment of polycyclic aromatic hydrocarbons (PAH) in Poxim River sediments, Brazil	COMBUSTIÓN DE GASOLINA
BR	ВАНІА	Estimating the gasoline components and formulations toxicity to microalgae (Tetraselmis chuii) and oyster (Crassostrea rhizophorae) embryos: An approach to minimize environmental pollution risk	COMBUSTIÓN DE GASOLINA
BR	BELO HORIZONTE	Demulsification and Oil Removal from Metalworking Fluids by Polyurethane Foam as Sorbent	REMEDIACIÓN

BR	BELO HORIZONTE	Evaluation of the employment of eucalyptus bark in the bioadsorption of contaminant petroleum light hydrocarbons in simulated water bodies	REMEDIACIÓN
BR	BELO HORIZONTE	Evaluation of the mussel Perna perna as a biomonitor of polycyclic aromatic hydrocarbon (PAH) exposure and effects	COMBUSTIÓN DE GASOLINA
BR	BELO HORIZONTE	Metataxonomic analyses reveal differences in aquifer bacterial community as a function of creosote contamination and its potential for contaminant remediation	REMEDIACIÓN
СО	BOGOTA	The genomic study of an environmental isolate of Scedosporium apiospermum shows its metabolic potential to degrade hydrocarbons	REMEDIACIÓN
СО	BOGOTA	BIO-FUELS AND ENERGY SELF-SUFFICIENCY	PRODUCCIÓN - REFINACIÓN
СО	BOGOTA	Economic Costs of the Environmental Externalities of Fracking: a Meta-regression Analysis and Some Implications for Colombia	PERFORACIÓN
CO	BOGOTA	Hydraulic fracturing considerations: Insights from analogue models, and its viability in Colombia	PERFORACIÓN
BR	CAMAMU BAY	Integrated assessment of mangrove sediments in the Camamu Bay (Bahia, Brazil)	COMBUSTIÓN DE GASOLINA
MX	CAMPECHE	Air emissions assessment from offshore oil activities in Sonda de Campeche, Mexico	EXPLORACIÓN - PRODUCCIÓN
BR	CAMPOS BASIN	Oil leakage induces changes in microbiomes of deep-sea sediments of Campos Basin (Brazil)	BIOMARCADORES
BR	CAMPOS BASIN	Photocatalytic decomposition of seawater-soluble crude-oil fractions using high surface area colloid nanoparticles of TiO2	REMEDIACIÓN

BR	CAMPOS DO	Multivariate optimization of extraction variables of PAH in particulate matter (PM10) in Indoor/outdoor	COMBUSTIÓN DE
BK	GOYCATASEZ	air at campos dos goytacazes, Brazil	GASOLINA
BR	CAMPOS DO	Sources, distribution and variability of hydrocarbons in total atmospheric suspended particulates of two	COMBUSTIÓN DE
ы	GOYCATASEZ	Brazilian areas influenced by sugarcane burning	MATERIAL ORGÁNICO
BR	CAMPOS DO	Aliphatic and aromatic hydrocarbons in tropical recent sediments of Campos dos Goytacazes, RJ,	COMBUSTIÓN DE
ы	GOYCATASEZ	Brazil	GASOLINA
VN	CARACAS	Aromatic hydrocarbons at urban, sub-urban, rural (8°52′N; 67°19′W) and remote sites in Venezuela	COMBUSTIÓN DE
		, , , , , , , , , , , , , , , , , , , ,	GASOLINA
VN	CARACAS	Air pollution in tropical areas	COMBUSTIÓN DE
			GASOLINA
CO	CARTAGENA	Hearing loss from combined exposures among petroleum refinery workers	REFINACIÓN
EC	CAYAMBE	Active avoidance from a crude oil soluble fraction by an Andean paramo copepod	ALMACENAMIENTO -
			TRANSPORTE
MX	CHIHUAHUA	Characterization of a microbial consortium for the bioremoval of polycyclic aromatic hydrocarbons	REMEDIACIÓN
		(PAHs) in water	
CU	CIENFUEGOS BAY	Levels of Polycyclic Aromatic Hydrocarbons in Perna viridis, in Cienfuegos Bay, Cuba	BIOMARCADORES
MX	COATZACOALCOS	Coexisting sea-based and land-based sources of contamination by PAHs in the continental shelf	BIOMARCADORES
11/1/	RIVER	sediments of Coatzacoalcos River discharge area (Gulf of Mexico)	
CL	CONCEPCION	Stimulation of enzymatic defense mechanisms and appearance of liver damage in juvenile trout	BIOMARCADORES
		(Oncorhynchus mykiss) exposed to water-accommodated trace petroleum residues	= 1 3 1

AR	CORDOVA	Source characterization and seasonal variations of atmospheric polycyclic aromatic hydrocarbons at an	COMBUSTIÓN DE
AK	CORDOVA	industrial and semi-urban area through a local-scale biomonitoring network using T. capillaris	GASOLINA
CR	COSTA RICA	Polycyclic aromatic hydrocarbons in Costa Rican air and soil: A tropical/temperate comparison	COMBUSTIÓN DE
			GASOLINA
MX	ESTUARIO DE	Levels of PAHs in the Waters, Sediments, and Shrimps of Estero de Urias, an Estuary in Mexico, and	BIOMARCADORES
	URIAS	Their Toxicological Effects	
BR	FLORIANOPOLIS	Biodiesel presence in the source zone hinders aromatic hydrocarbons attenuation in a B20-	COMBUSTIÓN DE
Bit	1 2011, 11101 0210	contaminated groundwater	DIESEL
BR	FLORIANOPOLIS	Combined iron and sulfate reduction biostimulation as a novel approach to enhance BTEX and PAH	COMBUSTIÓN DE
		source-zone biodegradation in biodiesel blend-contaminated groundwater	DIESEL
BR	FLORIANOPOLIS	Comparison of Chemical and Biological Strategies for the Cleanup of Diesel/Biodiesel Blend-	REMEDIACIÓN
		Contaminated Groundwater	
BR	FLORIANOPOLIS	Cosolvency effect in subsurface systems contaminated with petroleum hydrocarbons and ethanol	COMBUSTIÓN DE
			GASOLINA
BR	FLORIANOPOLIS	Phytoremediation potential of willow trees for aquifers contaminated with ethanol-blended gasoline	REMEDIACIÓN
BR	FLORIANOPOLIS	The transport and fate of ethanol and BTEX in groundwater contaminated by gasohol	COMBUSTIÓN DE
		. , ,	GASOLINA
BR	FLORIANOPOLIS	Combination of electroflotation process and down-flow granular filtration to treat wastewater	PRODUCCIÓN
		contaminated with oil	

BR	FORTALEZA	Effects of harbor activities on sediment quality in a semi-arid region in Brazil	COMBUSTIÓN DE GASOLINA
BR	FORTALEZA	Utilization of solid-phase extraction (SPE) for the determination of polycyclic aromatic hydrocarbons in environmental aqueous matrices.	COMBUSTIÓN DE GASOLINA
BR	FORTALEZA	Degradation of petroleum hydrocarbons in seawater by ionizing radiation	PRODUCCIÓN
BR	GOIANIA	Sources and distribution of aromatic hydrocarbons in a tropical marine protected area estuary under influence of sugarcane cultivation	COMBUSTIÓN DE MATERIAL ORGÁNICO
MX	GUADALAJARA	Atmospheric distribution of PAHs and quinones in the gas and PM1 phases in the Guadalajara Metropolitan Area, Mexico: Sources and health risk	COMBUSTIÓN DE GASOLINA
BR	GUANABARA BAY	Accumulation of polycyclic aromatic hydrocarbon in Mussel Perna Perna after an oil spill and evaluation of cellular biomarkers for biomonitoring	BIOMARCADORES
BR	GUANABARA BAY	Biomarkers of PAHs exposure in crabs Ucides cordatus: Laboratory assay and field study	BIOMARCADORES
BR	GUANABARA BAY	Changes and variations of polycyclic aromatic hydrocarbon concentrations in fish, barnacles and crabs following an oil spill in a mangrove of Guanabara Bay, Southeast Brazil	BIOMARCADORES
BR	GUANABARA BAY	Characterization and Distribution of Polycyclic Aromatic Hydrocarbons in Sediments from Surui Mangrove, Guanabara Bay, Rio de Janeiro, Brazil	BIOMARCADORES
BR	GUANABARA BAY	Hydrocarbons in sediments of a chronically contaminated bay: The challenge of source assignment	BIOMARCADORES
BR	GUANABARA BAY	Marine sponges as bioindicators of oil and combustion derived PAH in coastal waters	BIOMARCADORES
BR	GUANABARA BAY	Polycyclic aromatic hydrocarbon in inter-tidal mussel Perna perna: Space-time observations, source investigation and genotoxicity	BIOMARCADORES

BR	GUANABARA BAY	Urban rivers as conveyors of hydrocarbons to sediments of estuarine areas: Source characterization,	COMBUSTIÓN DE
BK	GUANADANA DAT	flow rates and mass accumulation	GASOLINA
BR	GUANABARA BAY	Distribution of polycyclic aromatic hydrocarbons in surface sediments and waters from Guanabara Bay,	TRANSPORTE -
BIX	CC/ ((4/)E/ ((() E/ ()	Rio de Janeiro, Brazil	ALMACENAMIENTO
BR	GUANABARA BAY	Brazilian oil spills chemical characterization - Case studies	REFINACIÓN -
			TRANSPORTE
BR	GUARATIBA	Diagnosing the level of stress on a mangrove species (Laguncularia racemosa) contaminated with oil: A	BIOMARCADORES
		necessary step for monitoring mangrove ecosystems	
BR	GUARATUBA BAY	Biochemical and molecular responses in oysters Crassostrea brasiliana collected from estuarine	BIOMARCADORES
	00/110/1102/12/11	aquaculture areas in Southern Brazil	Brown a tor (Bortes
BR	IGUAPE-	Integrated assessment of sediment contaminant levels and biological responses in sentinel fish species	BIOMARCADORES
BIX	CANANEIA	Atherinella brasiliensis from a sub-tropical estuary in south Atlantic	BIOWN (NO ABORLE
BR	IGUAPE-	Sediment contamination and toxic effects on Violet Goby fish (Gobioides broussonnetii - Gobiidae) from	BIOMARCADORES
BIX	CANANEIA	a marine protected area in South Atlantic	BIOWN (INC) (BOINES
AR	LA RIOJA	Natural clinoptilolite-zeolite loaded with iron for aromatic hydrocarbons removal from aqueous solutions	COMBUSTIÓN DE
7 \	2 () () ()	Tratarar dimoparante Zoome readed mar non arematic hydrocarbone removal mem aqueeus conduction	GASOLINA
CL	LAJA RIVER BASIN	Persistent toxic substances in soils and waters along an altitudinal gradient in the Laja River Basin,	COMBUSTIÓN DE
OL	LAGATAVER DAGIN	Central Southern Chile	GASOLINA
BR	LONDRINA	Air pollutants emmissions in real conditions of asphalt paving: Particulate matter (PM), black carbon	COMBUSTIÓN DE
DIX	LONDININA	(BC) and polycyclic aromatic hydrocarbons (PAHS)	GASOLINA

PE	LORETO	First evidences of Amazonian wildlife feeding on petroleum-contaminated soils: A new exposure route to petrogenic compounds?	COMBUSTIÓN DE GASOLINA
PE	LORETO	Polycyclic aromatic hydrocarbon concentrations, mutagenicity, and Microtox® acute toxicity testing of Peruvian crude oil and oil-contaminated water and sediment	REMEDIACIÓN
PE	LORETO	Water contamination from oil extraction activities in Northern Peruvian Amazonian rivers	EXPLORACIÓN - PERFORACIÓN
BR	MANAUS	Biosurfactants produced by Microbacterium sp., isolated from aquatic macrophytes in hydrocarbon- contaminated area in the Rio Negro, Manaus, Amazonas [Biossurfactantes produzidos por Microbacterium sp., isolada de macrófita aquática em área impactada por hidrocarbonetos no Rio Negro, Manaus, Amazonas]	REFINACIÓN
AR	MAR DEL PLATA	Air quality in a tourist seashore city during vacation	COMBUSTIÓN DE GASOLINA
AR	MAR DEL PLATA	Assessment of toxicity and mutagenicity in air particulate matter from an urban industrial area in the coast of the Rio de la Plata	COMBUSTIÓN DE GASOLINA
AR	MAR DEL PLATA	Antioxidant response and oxidative stress levels in Macrobrachium borellii (Crustacea: Palaemonidae) exposed to the water-soluble fraction of petroleum	COMBUSTIÓN DE GASOLINA
AR	MAR DEL PLATA	Changes in phosphatidylcholine molecular species in the shrimp Macrobrachium borellii in response to a water-soluble fraction of petroleum	COMBUSTIÓN DE GASOLINA
AR	MAR DEL PLATA	First Characterization of PAH-degrading bacteria from Rio de la Plata and high-resolution melting: an encouraging step toward bioremediation	COMBUSTIÓN DE GASOLINA

AR	MENDOZA	Modelling the behavior of crude oil spills in shallow bodies of water	MODELADO
MX	MERIDA-YUCATAN	Characterization and sources of aromatic hydrocarbons (BTEX) in the atmosphere of two urban sites located in Yucatan Peninsula in Mexico	COMBUSTIÓN DE GASOLINA
MX	MERIDA-YUCATAN	A succession of marine bacterial communities in batch reactor experiments during the degradation of five different petroleum types	BIOMARCADORES
MX	MERIDA-YUCATAN	Effects of polycyclic aromatic hydrocarbons on biomarker responses in Gambusia yucatana, an endemic fish from Yucatan Peninsula, Mexico	BIOMARCADORES
MX	MEXICO CITY	A predictive model to correlate fuel specifications with on-road vehicles emissions in Mexico	COMBUSTIÓN DE GASOLINA
MX	MEXICO CITY	Cold-start and chemical characterization of emissions from mobile sources in Mexico	COMBUSTIÓN DE GASOLINA
MX	MEXICO CITY	Fuel-based motor vehicle emission inventory for the metropolitan area of Mexico city	COMBUSTIÓN DE GASOLINA
MX	MEXICO CITY	Ventilation of liquefied petroleum gas components from the valley of Mexico	GLP
MX	MEXICO CITY	An overview of the MILAGRO 2006 Campaign: Mexico City emissions and their transport and transformation	COMBUSTIÓN DE GASOLINA
MX	MICHOACAN	Soil and water contamination levels in an out-of-service oil distribution and storage station in Michoacan, Mexico	PRODUCCIÓN - ALMACENAMIENTO
BR	MINAS GERAIS	Hydrocarbonoclastic bacterial species growing on hexadecane: Implications for bioaugmentation in marine ecosystems	BIOMARCADORES

BR	MINAS GERAIS	Removal of petroleum hydrocarbons from aqueous solution using sugarcane bagasse as adsorbent	REMEDIACIÓN
BR	MINAS GERAIS	Responses of microbial community from tropical pristine coastal soil to crude oil contamination	REMEDIACIÓN
MX	MONTERREY	A tunnel study to characterize PM 2.5 emissions from gasoline-powered vehicles in Monterrey, Mexico	COMBUSTIÓN DE GASOLINA
MX	MONTERREY	Atmospheric pollution intensity indexes: An application for the Monterrey Metropolitan Area, Mexico [Índices de intensidad de contaminación atmosférica: Una aplicación para el área Metropolitana de Monterrey, Nuevo León, México]	COMBUSTIÓN DE GASOLINA
AR	NEUQUEN	Chemical characterization and toxicity of water-accommodated fraction of oil on the South American native species Hyalella curvispina	COMBUSTIÓN DE GASOLINA
AR	NEUQUEN	Effects of lake sediment contamination by PAHs on nutrients and phytoplankton in Vaca Muerta, Neuquen, Argentina	COMBUSTIÓN DE GASOLINA
AR	NEUQUEN	From biowaste to magnet-responsive materials for water remediation from polycyclic aromatic hydrocarbons	COMBUSTIÓN DE GASOLINA
MX	NUEVO LEON	Nanotechnology-based remediation of petroleum impurities from water	REFINACIÓN
EC	ORELLANA	Outcomes of pregnancy among women living in the proximity of oil fields in the Amazon basin of Ecuador	PRODUCCIÓN
BR	OURO PRETO	Polycyclic aromatic hydrocarbons in Tripui River, Ouro Preto, MG, Brazil	COMBUSTIÓN DE GASOLINA

BR	PARANA	Acute exposure to the water-soluble fraction of gasoline (WSFG) affects oxygen consumption, nitrogenous-waste and Mg excretion, and activates anaerobic metabolism in the goldfish Carassius auratus	BIOMARCADORES
BR	PARANA	Biochemical responses in freshwater fish after exposure to water-soluble fraction of gasoline	BIOMARCADORES
BR	PARANA	Diffuse sources of contamination in freshwater fish: Detecting effects through active biomonitoring and multi-biomarker approaches	BIOMARCADORES
BR	PARANA	Sedimentary hydrocarbons and sterols in a South Atlantic estuarine/shallow continental shelf transitional environment under oil terminal and grain port influences	COMBUSTIÓN DE GASOLINA
BR	PARANA	Are the damaging effects of oil refinery effluents on Corbicula fluminea (mollusca) reversible after its transfer to clean water?	REFINACIÓN
BR	PARANA	Ecological analysis of the ichthyofaunal community ten years after a diesel oil spill at Serra do Mar, Parana state, Brazil	TRANSPORTE - ALMACENAMIENTO
BR	PARANAGUA	A critical and comparative appraisal of polycyclic aromatic hydrocarbons in sediments and suspended particulate material from a large South American subtropical estuary	COMBUSTIÓN DE GASOLINA
BR	PARANAGUA	An assessment of acute biomarker responses in the demersal catfish Cathorops spixii after the Vicuña Oil Spill in a harbour estuarine area in Southern Brazil	BIOMARCADORES
BR	PARANAGUA	Baseline levels of oxidative stress biomarkers in species from a subtropical estuarine system (Paranaguá Bay, southern Brazil)	BIOMARCADORES
BR	PARANAGUA	PAHs in Water, Sediment and Biota in an Area with Port Activities	COMBUSTIÓN DE GASOLINA

BR	PARANAGUA	Petroleum biomarkers as tracers of low-level chronic oil contamination of coastal environments: A systematic approach in a subtropical mangrove	BIOMARCADORES
BR	PARANAGUA	Is the cutting of oil contaminated marshes an efficient clean-up technique in a subtropical estuary?	REMEDIACIÓN
BR	PARANAGUA	Effects of an in situ diesel oil spill on oxidative stress in the clam Anomalocardia flexuosa	ALMACENACMIENTO
BR	PARANAGUA	Effects of an experimental in situ diesel oil spill on the benthic community of unvegetated tidal flats in a subtropical estuary (Paranagua Bay, Brazil)	REFINACIÓN
BR	PARANAGUA	Formulation of a Commercial Biosurfactant for Application as a Dispersant of Petroleum and By- Products Spilled in Oceans	TRANSPORTE - ALMACENAMIENTO
EC	PARQUE NACIONAL EL CAJAS	A 150-year record of polycyclic aromatic compound (PAC) deposition from high Andean Cajas National Park, southern Ecuador	COMBUSTIÓN DE GASOLINA
BR	PAULINIA	Dynamics of hydrocarbon mineralization characterized by isotopic analysis at a jet-fuel-contaminated site in subtropical climate	COMBUSTIÓN DE GASOLINA
BR	PAULINIA	Field data and numerical simulation of btex concentration trends under water table fluctuations: Example of a jet fuel-contaminated site in Brazil	COMBUSTIÓN DE GASOLINA
BR	PERNAMBUCO	Effect of plasticizers on a PVC sensing phase for evaluation of water contamination by aromatic hydrocarbons and fuels using infrared spectroscopy	COMBUSTIÓN DE GASOLINA
BR	PERNAMBUCO	Production and formulation of a new low-cost biosurfactant to remediate oil-contaminated seawater	REMEDIACIÓN
BR	PERNAMBUCO	Recovery of contaminated marine environments by biosurfactant-enhanced bioremediation	REMEDIACIÓN

BR	PONTAL DO	A systematic evaluation of polycyclic aromatic hydrocarbons in South Atlantic subtropical mangrove	COMBUSTIÓN DE
DK	PARANA	wetlands under a coastal zone development scenario	GASOLINA
BR	PORTO ALEGRE	Atherosclerotic process in taxi drivers occupationally exposed to air pollution and co-morbidities	COMBUSTIÓN DE
DIX	TORTO ALLORE	Autorosolorono processi in taxi anvers eccupationally exposed to all pollution and so merbidities	GASOLINA
BR	PORTO ALEGRE	Biomarkers of occupational exposure to air pollution, inflammation and oxidative damage in taxi drivers	COMBUSTIÓN DE
_,,			GASOLINA
BR	PORTO ALEGRE	A compact remediation system for the treatment of groundwater contaminated with BTEX and TPH	REMEDIACIÓN
BR	PORTO ALEGRE	Comparative temporal ecotoxicological study in a river basin influenced by petrochemical industries	COMBUSTIÓN DE
		, parameter services and services are services are services and services are services are services and services are services are services and services are servic	GASOLINA
BR	PORTO VELHO	Biomass burning in the Amazon region: Aerosol source apportionment and associated health risk	COMBUSTIÓN DE
		assessment	GASOLINA
BR	PORTO VELHO	Hydrocarbon contamination in groundwater: The case of Tupi village, Porto Velho-Ro.	ALMACENAMIENTO
MX	QUINTANA ROO	Contaminants in the coastal karst aquifer system along the Caribbean coast of the Yucatan Peninsula,	COMBUSTIÓN DE
		Mexico	GASOLINA
EC	QUITO	Spatial and temporal variations and mobile source emissions of polycyclic aromatic hydrocarbons in	COMBUSTIÓN DE
		Quito, Ecuador	GASOLINA
BR	RECIFE	Production of a biosurfactant from Bacillus methylotrophicus UCP1616 for use in the bioremediation of	REMEDIACIÓN
		oil-contaminated environments	
BR	RIO DE JANEIRO	Alkyl polycyclic aromatic hydrocarbons emissions in diesel/biodiesel exhaust	COMBUSTIÓN DE
			DIESEL

BR	RIO DE JANEIRO	Aromatic hydrocarbons emissions in diesel and biodiesel exhaust	COMBUSTIÓN DE DIESEL
BR	RIO DE JANEIRO	NEIRO Biomonitoring of genotoxic risk of workers exposed to heavy air pollution	
BR	RIO DE JANEIRO	Biomonitoring of tunnel workers exposed to heavy air pollution in Rio de Janeiro, Brazil	COMBUSTIÓN DE GASOLINA
BR	RIO DE JANEIRO	Spatial distribution of polycyclic aromatic hydrocarbons in Terminalia catappa L. (Combretaceae) bark from a selected heavy road traffic area of Rio de Janeiro City, Brazil	COMBUSTIÓN DE GASOLINA
BR	RIO DE JANEIRO	A case study of in situ oil contamination in a mangrove swamp (Rio De Janeiro, Brazil)	BIOMARCADORES
BR	RIO DE JANEIRO	A new procedure for treatment of oily slurry using geotextile filters	REMEDIACIÓN
BR	RIO DE JANEIRO	Assessment of brazilian mangroves hydrocarbon contamination from a latitudinal perspective	BIOMARCADORES
BR	RIO DE JANEIRO	Bacterial Community Response to Petroleum Hydrocarbon Amendments in Freshwater, Marine, and Hypersaline Water-Containing Microcosms	BIOMARCADORES
BR	RIO DE JANEIRO	Evaluation of bioventing on a gasoline-ethanol contaminated undisturbed residual soil	COMBUSTIÓN DE GASOLINA
BR	RIO DE JANEIRO	Impact of oil spills on coral reefs can be reduced by bioremediation using probiotic microbiota	REMEDIACIÓN
BR	RIO DE JANEIRO	PAHs and BTEX in groundwater of gasoline stations from Rio de Janeiro City, Brazil	COMBUSTIÓN DE GASOLINA
BR	RIO DE JANEIRO	Polycyclic aromatic hydrocarbons in sediments from Rodrigo de Freitas Lagoon in the urban area of Rio de Janeiro, Brasil	COMBUSTIÓN DE GASOLINA

BR	RIO DE JANEIRO	Response of the bacterial community in oil-contaminated marine water to the addition of chemical and biological dispersants	COMBUSTIÓN DE GASOLINA
BR	RIO DE JANEIRO	RIO DE JANEIRO The Application of Nanoemulsions with Different Orange Oil Concentrations to Remediate Crude Oil- Contaminated Soil	
BR	RIO DE JANEIRO	The effect of hydrophobic fine particles on the foam flushing remediation process	REMEDIACIÓN
BR	RIO DE JANEIRO	Environmental impact studies of barium and radium discharges by produced waters from the 'Bacia de Campos' oil-field offshore platforms, Brazil	PRODUCCIÓN
BR	RIO DE JANEIRO	18S rDNA Sequences from Microeukaryotes Reveal Oil Indicators in Mangrove Sediment	REFINACIÓN
BR	RIO GRANDE DO SUL	Reproductive outcomes in an area adjacent to a petrochemical plant in southern Brazil	COMBUSTIÓN DE GASOLINA
AR	RIO NEGRO	Gills CYP1A of Oncorhynchus mykiss as a sensitive biomarker of crude oil pollution in freshwater environments	COMBUSTIÓN DE GASOLINA
BR	RIO NEGRO	Influence of the natural Rio Negro water on the toxicological effects of a crude oil and its chemical dispersion to the Amazonian fish Colossoma macropomum	BIOMARCADORES
MX	SALAMANCA	Biodegradation of high concentrations of benzene and diesel in a fixed-film reactor	COMBUSTIÓN DE DIESEL
MX	SALAMANCA	Impact of hydrocarbons, PCBs and heavy metals on bacterial communities in Lerma River, Salamanca, Mexico: Investigation of hydrocarbon degradation potential	BIOMARCADORES
MX	SALINA CRUZ	Environmental assessment of aromatic hydrocarbons-contaminated sediments of the Mexican Salina Cruz Bay	COMBUSTIÓN DE GASOLINA

BR	SALVADOR	Major ions in PM2.5 and PM10 released from buses: The use of diesel/biodiesel fuels under real conditions	COMBUSTIÓN DE DIESEL
AR	SAN ANTONIO Chronic oil pollution harms Magellanic penguins in the Southwest Atlantic		COMBUSTIÓN DE GASOLINA
CL	SANTIAGO DE CHILE	Influence of atmospheric air pollution on indoor air quality: Comparison of chemical pollutants and mutagenicity levels in Santiago (Chile)	COMBUSTIÓN DE GASOLINA
CL	SANTIAGO DE CHILE	Methodology for the extraction, clean-up and quantification of polycyclic aromatic hydrocarbons in urban particulate matter.	COMBUSTIÓN DE GASOLINA
CL	SANTIAGO DE CHILE	Occupational and environmental levels of mutagenic PAHs and respirable particulate matter associated with diesel exhaust in Santiago, Chile	COMBUSTIÓN DE DIESEL
BR	SANTOS	A Critical Comparison of Different Approaches to Sediment-Quality Assessments in the Santos Estuarine System in Brazil	COMBUSTIÓN DE GASOLINA
BR	SANTOS	Blue rayon-anchored technique/Salmonella microsome microsuspension assay as a tool to monitor for genotoxic polycyclic compounds in Santos estuary	BIOMARCADORES
BR	SANTOS	Effects of dredging operations on sediment quality: contaminant mobilization in dredged sediments from the Port of Santos, SP, Brazil	
BR	SANTOS	Effects of water-accommodated fraction of diesel fuel on seahorse (Hippocampus reidi) biomarkers	BIOMARCADORES
BR	SAO PAULO	Association between vehicular emissions and cardiorespiratory disease risk in Brazil and its variation by spatial clustering of socio-economic factors	COMBUSTIÓN DE GASOLINA

BR	SAO PAULO	Atmospheric particulate polycyclic aromatic hydrocarbons from road transport in southeast Brazil	COMBUSTIÓN DE
ых	SAOTAGEO	Authospheric particulate polycyclic aromatic flydrocarbons from foad transport in southeast brazil	GASOLINA
BR	SAO PAULO	BTEX concentrations in the atmosphere of the metropolitan area of Campinas (São Paulo, Brazil)	COMBUSTIÓN DE
	0,101,1020	(GASOLINA
BR	SAO PAULO	Chemical composition of aerosol in São Paulo, Brazil: influence of the transport of pollutants	COMBUSTIÓN DE
			GASOLINA
BR	SAO PAULO	Diesel emissions significantly influence composition and mutagenicity of ambient particles: A case study	COMBUSTIÓN DE
	0,101,1020	in São Paulo, Brazil	DIESEL
BR	SAO PAULO	Emission of polycyclic aromatic hydrocarbons from gasohol and ethanol vehicles	COMBUSTIÓN DE
2.1	0,101,1020		GASOLINA
BR	SAO PAULO	One decade of VOCs measurements in São Paulo megacity: Composition, variability, and emission	COMBUSTIÓN DE
	0,10.1,1020	evaluation in a biofuel usage context	GASOLINA
BR	SAO PAULO	One-year of NMHCs hourly observations in São Paulo megacity: meteorological and traffic emissions	COMBUSTIÓN DE
5.1	0,101,1020	effects in a large ethanol burning context	GASOLINA
BR	SAO PAULO	Questions about Real Driving Emissions in Brazil	COMBUSTIÓN DE
2.,	3, 13 1 7 1323	Quoditone about 110a. 21111119 211110010110 III 21a2.	GASOLINA
BR	SAO PAULO	A comparative chemical study of PM10 in three Latin American cities: Lima, Medellin, and Sao Paulo	COMBUSTIÓN DE
DIX	0,101,71010	7. comparative offermour dady of 1 Wife in these Eath 7 Wife indicate offerma, wiedening, and odo't dute	GASOLINA
BR	SAO PAULO	A Screening Model to Predict Entrapped LNAPL Depletion	MODELADO
BR	SAO PAULO	Bioavailability of polycyclic aromatic hydrocarbons to penguins on the coast of southeastern Brazil	BIOMARCADORES

BR	SAO PAULO	Cytotoxicity of water-soluble fraction from biodiesel and its diesel blends to human cell lines	COMBUSTIÓN DE DIESEL
BR	SAO PAULO	EVALUATION OF CONTAMINATION BY POTENTIALLY TOXIC ELEMENTS (PTE) OF SEDIMENTS AROUND THE PETROLEUM TERMINAL PIPELINE DUTOS E TERMINAIS DO CENTRO SUL (DTCS), SP, BRAZIL	COMBUSTIÓN DE GASOLINA
BR	SAO PAULO	Geophysical investigation using resistivity and GPR methods: a case study of a lubricant oil waste disposal area in the city of Ribeiro Preto, So Paulo, Brazil	
BR	SAO PAULO	Morphological and histopathological changes in seahorse (Hippocampus reidi) gills after exposure to the water-accommodated fraction of diesel oil	BIOMARCADORES
BR	SAO PAULO	SAO PAULO Treatment of Saline Wastewater Contaminated with Hydrocarbons by the Photo-Fenton Process	
BR	SAO PAULO	SAO PAULO Will technological modernization for power generation at an oil refinery diminish the risks from air pollution to the Atlantic Rainforest in Cubatão, SE Brazil?	
BR	SAO PAULO	Variation of the Distribution of Atmosphericn-Alkanes Emitted by Different Fuels' Combustion	COMBUSTIÓN DE GASOLINA
BR	SAO PAULO	BTEX biodegradation by bacteria from effluents of petroleum refinery	REFINACIÓN
BR	SAO PAULO	Contamination levels and preliminary assessment of the technical feasibility of employing natural attenuation in 5 priority areas of presidente Bernardes Refinery in Cubatão, São Paulo, Brazil	REFINACIÓN
BR	SAO PAULO	Dissolved/dispersed petroleum aromatic hydrocarbons in the Sao Sebastiao Channel, Sao Paulo, Brazil	ALMACENAMIENTO
BR	SAO PAULO	Gasoline hydrocarbons: Groundwater pollution potential in metropolitan Sao Paulo	ALMACENAMIENTO - TRANSPORTE

BR	SAO PAULO	Micronucleus and chromosome aberrations induced in onion (Allium cepa) by a petroleum refinery effluent and by river water that receives this effluent	REFINACIÓN
BR	SAO SEBASTIAO	Chromosome aberration and micronucleus frequencies in Allium cepa cells exposed to petroleum polluted water - A case study (*)	BIOMARCADORES
BR	SAQUAREMA	Response of the archaeal community to simulated petroleum hydrocarbon contamination in marine and hypersaline ecosystems	BIOMARCADORES
BR	SINOS RIVER	Monitoring the Genotoxic and Cytotoxic Potential and the Presence of Pesticides and Hydrocarbons in Water of the Sinos River Basin, Southern Brazil	
MX	SISAL	Inexpensive metagenomic DNA extraction protocol with high quality from marine sediments contaminated by petroleum hydrocarbons	REMEDIACIÓN
BR	SUAPE BAY	Petroleum hydrocarbons in water from a Brazilian tropical estuary facing industrial and port development	COMBUSTIÓN DE GASOLINA
BR	SUAPE BAY	Petroleum hydrocarbons in water from a Brazilian tropical estuary facing industrial and port development	PRODUCCIÓN - REFINACIÓN
EC	SUCUMBIOS	Contrasts in chemical composition and oxidative potential in PM10 near flares in oil extraction and refining areas in Ecuador	REFINACIÓN
EC	SUCUMBIOS	Drinking water quality in areas impacted by oil activities in Ecuador: Associated health risks and social perception of human exposure	REFINACIÓN

EC	The health of women who live near oil wells and oil production stations in the Amazon region of SUCUMBIOS Ecuador [La salud de mujeres que viven cerca de pozos y estaciones de petróleo en la Amazonía ecuatoriana]		PERFORACIÓN - PRODUCCIÓN
EC	SUCUMBIOS	Hearing Loss: A case study on the burden of the oil industry	PERFORACIÓN
MX	TABASCO	Tolerance of Four Tropical Tree Species to Heavy Petroleum Contamination	BIOMARCADORES
MX	TABASCO	TABASCO Toxicity of the crude oil water-soluble fraction and kaolin-adsorbed crude oil on Daphnia magna (Crustacea: Anomopoda)	
MX	TABASCO	Effects of oil spill related chemical pollution on helminth parasites in Mexican flounder Cyclopsetta chittendeni from the Campeche Sound, Gulf of Mexico	PRODUCCIÓN
BR	TODOS OS SANTOS BAY	Chronology of anthropogenic impacts reconstructed from sediment records of trace metals and Pb isotopes in Todos os Santos Bay (NE Brazil) (*)	BIOMARCADORES
BR	TODOS OS SANTOS BAY	Distribution and sources of polycyclic aromatic hydrocarbons in the aquatic environment: a multivariate analysis	BIOMARCADORES
BR	TODOS OS SANTOS BAY	Evaluation of accelerated biodegradation of oil-SPM aggregates (OSAs)	BIOMARCADORES
BR	TODOS OS SANTOS BAY	Phytoremediation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments using Rhizophora mangle	REMEDIACIÓN
BR	TODOS OS SANTOS BAY	Concentration and distribution of polycyclic aromatic hydrocarbons in oysters from Todos os Santos Bay (Bahia, Brazil)	REFINACIÓN

BR	TODOS OS SANTOS BAY	An underwater acoustic modelling framework for Santos Basin, Brazil	PRODUCCIÓN
MX	TRANS-MEXICAN VOLCANIC BELT	Free-product plume distribution and recovery modeling prediction in a diesel-contaminated volcanic aquifer	MODELADO
BR	TRINDADE	Bioremediation strategies of hydrocarbons and microbial diversity in the Trindade Island shoreline - Brazil	PRODUCCIÓN
BR	VALE DO ITAJAI	A simple methodology to evaluate influence of H2O2 and Fe2+ concentrations on the mineralization and biodegradability of organic compounds in water and soil contaminated with crude petroleum	COMBUSTIÓN DE GASOLINA
BR	VALE DO ITAJAI	Influence of desorption process and pH adjustement on the efficiency of O3, O3/H2O2 and O3/UV treatment of water and soil samples contaminated by crude petroleum	REMEDIACIÓN
PR	VEGA BAJA	Microbial diversity and bioremediation of a hydrocarbon-contaminated aquifer (Vega Baja, Puerto Rico)	REMEDIACIÓN
MX	VERACRUZ	A First Comprehensive Baseline of Hydrocarbon Pollution in Gulf of Mexico Fishes	PRODUCCIÓN - TRANSPORTE
MX	VERACRUZ	Human health risks from fish consumption following a catastrophic gas oil spill in the Chiquito River, Veracruz, Mexico	TRANSPORTE - ALMACENAMIENTO
BR	VITORIA	Detection of water, oil and oil contamination in water using chirped fiber Bragg gratings inscribed in CYTOP fibers	BIOMARCADORES

REMEDIACIONES VIABLES DESARROLLADAS EN LOS ARTÍCULOS CIENTÍFICOS ANALIZADOS

	FACTOR	RECURSO	Articulos
1.	HÍDRICO	-	131
2.	ATMOSFÉRICO	-	48
3.	ACÚSTICO	-	3
4.	HÍDRICO	BIOSURFACTANTES	3
5.	HÍDRICO	BACTERIAS	2
6.	HÍDRICO	RESIDUO CAÑA DE AZUCAR	2
7.	HÍDRICO	S. ALTERNIFLORA	1
8.	HÍDRICO	CORTEZA DE SAUCES	1
9.	HÍDRICO	SCEDOSPORIUM APIOSPERMUM	1
10.	HÍDRICO	O3- O3/H2O2	1
11.	HÍDRICO	S. TYPHIMURIUM	1
12.	HÍDRICO	FENTON MODIFICADO	1
13.	HÍDRICO	ESPUMA DE NANOPARTICULAS HIL	1
14.	HÍDRICO	CONSORCIO MICROBIANO	1
15.	HÍDRICO	NANOEMULSIONES	1
16.	HÍDRICO	BIOREMEDIACION PROBIOTA	1
17.	HÍDRICO	FOTOFENTON	1
18.	HÍDRICO	EXTREACCIÓN ADN METAGENÓMI	1
19.	HÍDRICO	MANGLE RHIZOPHORA	1
20.	HÍDRICO	DIVERSIDAD MICROBIANA	1
21.	HÍDRICO	GEOTEXTILES	1
22.	HÍDRICO	SISTEMA DE REMEDIACION COMP	1
23.	HÍDRICO	NANOPARTICULAS COLOIDALES TI	1
24.	HÍDRICO	RESIDUO DE CORTEZA EUCALIPTO	1
25.	HÍDRICO	ESPUMA DE POLIURETANO	1
		1 - 25 / 2	5 < >