
Endogeneity in the Linear-In-Means Model

A thesis presented for the degree of
Magíster en Ciencias Económicas

by
Pablo Andrés Estrada Cedeño

Guayaquil - Ecuador
September 18, 2021



Dedication

This thesis work is dedicated to my parents,

they have inspired me to always give the best that I have.

Pablo Estrada

1



Acknowledgements

Special thanks to Leonardo Sánchez, David Jacho, and Juan Estrada

for their invaluable contributions and comments.

Pablo Estrada

2



EVALUATION COMMITTEE

David Jacho Chávez, Ph.D.

Reviewer 1

Daniel Lemus, Ph.D.

Reviewer 2

Leonardo Sánchez Aragón, Ph.D.

Thesis Supervisor

3



DECLARACIÓN EXPRESA

“La responsabilidad del contenido de este Trabajo de Titulación, corresponde

exclusivamente al autor, y al patrimonio intelectual de la misma ESCUELA

SUPERIOR POLITECNICA DEL LITORAL”

Pablo Estrada

4



Contents

1 Introduction 9

2 Sources of Endogeneity 11

3 The G3SLSX Procedure 14

4 Monte Carlo 16

4.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Conclusion 18

Tables 20

Figures 26

5



Abstract

Linear-in-means models are widely used in different contexts to estimate peer effects.

In these models, there are two potential sources of endogeneity: in the interaction net-

work and the individual’s characteristics. This paper proposes a General Three-Stage

Least Square estimation modified to account for the endogeneity of the network and

covariates in the linear-in-means model. The new procedure, called G3SLSX, modi-

fies the G3SLS (Estrada et al., 2021) to recover the social and direct effects using a

predetermined network and an exogenous variable as instrument. The Monte Carlo ex-

periments show that G3SLSX has similar performance as G3SLS for the social effects.

For the direct effects, G3SLSX outperforms G3SLS in the case of over-identification.

Keywords: Instrumental Variables; Linear-in-Means Models; Multiplex Networks
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1 Introduction

The last two decades have witnessed a huge growth in the study of peer effects. In his

seminal paper, Manski (1993) argues that peers may influence others because of three reasons:

correlated effects, exogenous effects, and endogenous effects. Correlated effects refer to

unobserved characteristics that are related to group selection. Exogenous effects point out

to characteristics that relate to the background of the social group. On the other hand, the

endogenous effects are related to the same outcome of their peers.

A common approach to estimate peer effects is to use the so called linear-in-means model

(Equation 1). In Equation 1, the parameter β is a scalar that represents the peer effects, δ

is a k × 1 vector that indicates the contextual effects, and γ is a k × 1 vector for the direct

effects.

y = αι+ βWy + WXδ + Xγ + v (1)

Empirical applications of peer effects estimations are found in studies of criminal ac-

tivities, student achievement, health, the workplace and the house market. For instance,

Szumilo (2020) uses the linear-in-means model to find neighborhood price spillovers in the

housing market. He analyzes how prices of buildings change when their own fundamental

characteristics remain constant, but average prices of their neighborhoods change. Mas and

Moretti (2009) study the productivity of a worker and how it is affected by his peers. Tu-

men and Zeydanli (2016) investigate spillovers in job satisfaction in UK. They estimate the

correlation between the group-level and individual-level job satisfaction scores. Also, Advani

and Malde (2018) provides a comprehensive survey of peer effects.

Researchers face two problems when dealing with the consistent estimation of peer effects.

First, the problem of correlated effects, and second, the reflection problem associated with

the endogenous effects. Depending on the context, the researcher can separate social effects

from correlated effects when the agents do not have control over group selection. On the

other hand, the challenge of the reflection problem consists of separating the effect of peers’
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outcomes from the peers’ background characteristics.

In the linear-in-means model, Bramoullé et al. (2009) provide the network’s characteristics

to identify endogenous and exogenous effects. They start by assuming that there is no

problem of correlated effects, in other words, the network in which agents interact is not

related to unobserved characteristics. Then, they show that under intransitivity, peer effects

and contextual effects are identified. They propose that the friends of my friends’ outcomes

and backgrounds provide an instrument to identify peer effects (Sacerdote, 2014).

The problem of correlated effects arises with the presence of endogenous networks or

common shocks. Bramoullé et al. (2020) mentions four strategies to deal with this problem:

random peers, random shocks, structural endogeneity and panel data. Natural experiments,

where peers are randomly allocated, allow for the identification of the social causal effects.

However, if peers are not random, researchers can use different sources of exogenous variation.

For instance, they can combine randomized interventions and econometric methods for peer

effects.

In some situations, natural experiment strategies are not feasible to obtain an exoge-

nous network. Instead, we can use predetermined networks to recover social and contextual

effects. In a recent work, Estrada et al. (2021) assumes that the adjacency matrix W is

endogenous, and that there is a predetermined adjacency matrix W0. Instead of assuming

that E[v|X,W] = 0 as Bramoullé et al. (2009), they assume that E[v|X,W0] = 0. Using a

linear projection of W0 on W, they recover the peer effect β and contextual effects δ.

This paper aims to consistently estimate social and direct effects in the linear-in-means

model with the most general case of endogeneity, when the network W and the background

characteristics X are endogenous. Despite the interest in the estimation of peer effects,

no one as far as we know has studied this problem. We show that by using an exogenous

network W0 and variable Z2 as instruments for the endogenous network W and covariate

X2, we can recover the parameters of the linear-in-means model.

We propose the G3SLSX procedure as a solution for the general case of endogeneity in
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the linear-in-means model. This procedure is based on the G3SLS from Estrada et al. (2021)

and modifies the first step with a double linear projection of WS on W0Siv and X on Xiv.

Then, under two different Monte Carlo experiments, we showed that the proposed estimator

performs as good as the G3SLS procedure and in some cases outperforms it.

This paper begins by examining the sources of endogeneity in the linear-in-means model

(Section 2). Then, it describes the G3SLSX procedure (Section 3). Section 4 describes the

Monte Carlo experiments and results. Finally, Section 5 show the conclusion.

2 Sources of Endogeneity

In the linear-in-means model, there are two possible sources of endogeneity: the interaction

network W and the agent’s characteristics X. This leads to identify four cases.

• Case 1: W and X are both exogenous. In this case, Bramoullé et al. (2009) use a

G2SLS procedure to estimate the social effects.

• Case 2: W is endogenous and X is exogenous. If a predetermined exogenous network

W0 is available, we can use the G3SLS procedure proposed by Estrada et al. (2021).

• Case 3: W is exogenous and X is endogenous. Including an instrument Z for the

endogenous regressor X in the G2SLS procedure will estimate consistently the direct

effects.

• Case 4: W and X are both endogenous. Using an exogenous network W0 and instru-

ment Z, a modified G3SLS estimation can recover the social and direct effects.

In case 1, the network W and regressor X are both exogenous. Therefore, E[v|X,W] = 0,

i.e., there are no correlated effects. Bramoullé et al. (2009) assume that the network shows

intransitivity to identify social effects, meaning that I,W, and W2 are linearly independent.

Then, they estimate the model via a G2SLS procedure. First, equation 1 is estimated using
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2SLS with the instrument set Z = [ι,W2X,WX,X]. Second, with the social parameters

obtained, they calculate the optimal instrument matrix Z∗ = [ι, E[Wy|X,W],WX,X], and

estimate a 2SLS procedure in the linear-in-means model.

Estrada et al. (2021) propose a G3SLS procedure that estimates social effects in the

second case, when W is endogenous and X is exogenous. The first step consists of estimating

by OLS: WS = W0SΠ + U , where S = [y,X]. In the second step, they estimate by

2SLS: y = D0ψ
∗ + e, where D0 = [ι,X,WS], ψ∗ = (α, γ, θ∗), and θ∗ = (β∗, δ∗). In

this step, the instrument matrix is defined as Z = [ι,X,W2
0X,W0X]. Finally, in the

third step, they estimate by 2SLS: y = Dψ∗ + e, using the optimal instrument matrix

Z∗ = [ι, E[W0y|X,W0],W0X,X]Γ̂, where Γ̂ = [Ik+1, Π̂].

For case 3 and 4, the matrix X is endogenous. We will focus on case 4 that is the most

general case of endogeneity. We can solve the problem of endogeneity using instruments for

both W and X. First, we rewrite the linear-in-means model in matrix form using S = [y,X]

as follows:

y = αι+ WSθ + Xγ + v (2)

In equation 2, the n×n network W and n×k matrix X are endogenous so that E[v|X] 6= 0

and E[v|W] 6= 0. However, we can define an n×k1 exogenous regressor X1, n×k2 endogenous

regressor X2, and its n× l2 instrument Z2. So we construct the n× k matrix X = [X1,X2]

and the n× l matrix Xiv = [X1,Z2], where k = k1 + k2 and l = k1 + l2. Also, we define the

endogenous network W and the predetermined network W0. Assumptions 2, 2, and 2 allow

to recover the structural parameters of equation 2.

There exists an n×n network matrix W0 and an n× l instrument matrix Xiv such that

E[v|Xiv,W0] = 0

Let Λ be the l × k matrix of coefficients from the regression,

X = XivΛ + U2 (3)
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where the n × k matrix of errors U2 is such that E[U2|Xiv] = O, E[XT
ivXiv] is positive

definite, and rank(Λ) = k.

Let Π be the (l + 1)× (k + 1) matrix of coefficients from the regression,

WS = W0SivΠ + U1 (4)

where the n × (k + 1) matrix of errors U1 is such that E[U1|W0y,W0Xiv,Xiv] = O,

E[ST
ivW2

0Siv] is positive definite, and rank(Π) = k + 1.

Assumptions 2, 2 and 2 are a modified version of those in Estrada et al. (2021). Assump-

tion 2 includes not only the existence of an exogenous network, but also a variable that will

serve as instrument. Assumption 2 is added to provide the identification of the parameter γ.

Finally, assumption 2 provide the necessary conditions to recover the structural parameters

of equation 2 with the modification that matrix Siv is used instead of S. A necessary con-

dition for the identification of Λ is that l ≥ k. Under these assumptions, the reduced form

of the general case is:

y = αι+ W0Sivθ
∗ + Xivγ

∗ + e (5)

Equation 5 represents the reduced form of the fourth case described above, where we

use an exogenous network W0 and an exogenous regressor Z2 to instrument the endogenous

network W and regressor X2. In this equation, we know that e = U1θ + U2γ + v, θ∗ = Πθ,

and γ∗ = Λγ.

With assumption 2 we are assuming that Z2 is a good instrument of X2. Additionally,

assumption 2 implies that W0Z2 is a good instrument of WX2. Both implications allow

us to recover the direct effects and the contextual effects, respectively. Finally, the social

and direct effects in the linear-in-means model are estimated using a modified version of the

G3SLS procedure. This procedure is described in detail in section 3.
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3 The G3SLSX Procedure

In order to identify the social parameter θ, we need to modify the three-step estimation of

Estrada et al. (2021) so it accounts for the endogeneity of X2. In the first step, we estimate

the projection of WS on W0Siv and X on Xiv. In the second step, we estimate by 2SLS

the regression coefficients of y on D0 using as instruments Z. Finally, in the third step, we

calculate by 2SLS the regression coefficients of y on D using the optimal instrument matrix

Z∗.

Step 1

We calculate this step by OLS. Specifically, the estimator is:

Π̂ = (ST
ivW2

0Siv)−1ST
ivW0WS (6)

Also,

X = XivΛ + U2 (7)

We also calculate this step by OLS:

Λ̂ = (XT
ivXiv)−1XT

ivX (8)

The projection matrices Π̂ and Λ̂ will be used in step 2 and 3 to recover the structural

parameters. The projection matrix Π̂ differs from G3SLS since we project WX on W0Xiv

rather than W0X. This step relies on having consistent and strongly statistically significant

projection matrices. Otherwise, we run into the problem of weak instruments (Stock and

Yogo, 2005).

Weak instruments emerge when the instruments are weakly correlated with the endoge-

nous variable. For the projection of X on Xiv, we can use the common rule of thumb to

avoid weak instruments. This rule of thumb verifies that the first-stage regression has an

F-statistic of at least 10. Stock and Yogo (2005) suggested that having at F-statistic that
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exceeds 10 allows for reliance on 2SLS estimations. On the other hand, we should be cautious

when using this rule on the regression of WX on W0Xiv.

Step 2

y = D0ψ
∗ + e (9)

where D0 = [ι,Xiv,W0Siv] and using Z = [ι,Xiv,W2
0Xiv,W0Xiv] as instrument. The vec-

tor ψ∗ contains [α, γ∗, θ∗]T .

ψ̂∗
2SLS = (DT

0 Z(ZTZ)−1ZTD0)−1DT
0 Z(ZTZ)−1ZTy (10)

Finally, we obtain the social parameter θ̂ = (Π̂TΠ̂)−1Π̂Tθ̂∗ and the direct effects γ̂ =

(Λ̂TΛ̂)−1Λ̂Tγ̂∗.

Step 3

y = Dψ + e (11)

where D = [ι,X,WS]. Define D̂ = [ι,XivΛ̂,W0SivΠ̂]. We calculate the optimal instru-

ment:

E[W0y|Xiv,W0] = W0[I− (π̂1θ̂)W0]−1Dxψ̂
∗
x (12)

where Dx = [ι,Xiv,W0Xiv], and ψ̂∗
x = [α̂, Λ̂γ̂, π̂2θ̂]. Also, π̂1 is the 1×(k+1) first row vector

of the matrix Π̂, and π̂2 is the l × (k + 1) partition of the matrix Π̂. Using the optimal in-

strument, we construct the matrix to estimate the G2SLS as Z∗ = [ι,Xiv,E[W0y],W0Xiv].

The main difference from Estrada et al. (2021) is the inclusion of Λ̂ to recover ψ̂∗
x. In the

case where Xiv = X, the matrix Λ̂ is the identity matrix and the estimation is equivalent to

the G3SLS.

Finally, to assess the performance of this procedure, we will evaluate it using two different

Monte Carlo experiments described in the next section.
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4 Monte Carlo

The Monte Carlo simulations follow two different data generating processes (DGPs). De-

sign 1 presents unobserved degree heterogeneity in the network formation process (Graham,

2017). On the other hand, in Design 2, outcome and network are jointly determined through

unobserved characteristics with homophily (Estrada et al., 2021).

For design 1, links are formed according to the rule wij(ψ) = I {xixj + ψ(ai + aj)− uij ≥ 0}

where ψ is a switch that activates the individual-level degree heterogeneity ai. The variable

uij comes from a logistic distribution with mean zero and scale parameter one. The exoge-

nous variable ai takes values of 1 or -1 with probability 0.5. Lastly, xi is the observable

exogenous characteristic.

For design 2, the links are formed based on the following rule. If ε∗
3;i > Φ−1(0.95), then

wij = I
[∣∣∣ε∗

3;i − ε∗
3;j

∣∣∣ < F̂−1
ε∗

3
(0.95)

]
× (1− w0;i,j) + w0;i,j. Instead, if ε∗

3;i < Φ−1(0.05), then

wij = I
[∣∣∣ε∗

3;i − ε∗
3;j

∣∣∣ < F̂−1
ε∗

3
(0.95)

]
× w0;i,j. Otherwise, wij = w0;i,j. The variable ε∗

3;i is the

idiosyncratic error related to homophily. The key idea is that agents with larger values of ε3

will be more likely to keep connections with similar agents that have larger values of ε3.

The simulations generate 1,200 repetitions with n ∈ {50, 100, 200}. The number of

endogenous variables x is k = 1 and the number of instruments xiv is l ∈ {1, 2}. Thus, we

can evaluate the estimator on the cases of just-identification (l = 1) and over-identification

(l = 2). The exogenous variable xiv was generated from a normal distribution with mean

µ = 0 and variance σ = 3. The endogenous variable x is allowed to be correlated to xiv and

the error e.

The parameter m that measures the importance of degree heterogeneity and homophily

is set to m ∈ {10, 15} for design 1, and m ∈ {2, 5} for design 2. The higher the value of

m, the stronger the endogeneity of the network W. The density is set at d = 0.01 to allow

for sparse networks. And the structural parameters are set to β = 0.7, δ = 1, γ = 1, and

λl = 1/l.

16



4.1 Discussion

The G3SLSX procedure accounts for the endogeneity of the network W and the variable

X. This procedure modifies the G3SLS introducing an instrument Z2 for the endogenous

variables X2. In this section, we show that G3SLSX works as good as G3SLS and in some

cases outperforms it. Specifically, in the case of over-identification, when rank(Xiv) >

rank(X), the G3LSX consistently estimates the direct/background effects for the homophily

design. In the case of the heterogeneity design, we show that G3SLSX is more efficient since

it has a lower variance.

Figure 1 shows the Monte Carlo experiments for design 1. The box plots show the

simulations for a sample size of n ∈ {100, 200} and the parameter m = 15. When both

Xiv and X have one variable, i.e., it is just-identified, social effects (peer and contextual)

are consistent for G3SLS and G3SLSX, and both show a similar performance. For the

background or direct effects, G3SLSX does a slightly better work than G3SLS.

For the case of over-identification, G3SLS and G3SLSX again consistently estimate social

effects. In the case of the direct effects, even though both G3SLS and G3SLSX perform well,

the latter is more efficient because of its lower variance. Finally, when the variable X is

exogenous, both G3SLS and G3SLSX correctly estimate social effects, but G3SLS presents a

lower variance in this case. We also calculated descriptive statistics for all the combinations

of parameters in design 1. Tables 1, 2, and 3 in the Appendix show the mean, median, and

standard deviation for all the experiments with unobserved heterogeneity.

Figure 2 shows the results of the experiments for design 2. The box plots show the results

of the simulations with sample size of n ∈ {100, 200} and the parameter m = 5. Regardless

of the number of variables for Xiv, i.e., l = 1 or l = 2, G3SLS and G3SLSX show similar

performance. However, standard deviations are higher for G3SLSX than G3SLS when l = 1.

For the background effects, G3SLSX outperforms the other two estimators. In the case

of just-identification, even though G2SLS works better than G3SLS, the estimator proposed

(G3SLSX) outperforms the previous two. For the over-identification case, G3SLSX clearly
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better estimates the direct effects compared to G2SLS and G3SLS. When the variable X is

exogenous, as expected, G3SLSX has a higher variability due to the extra step that incurs.

In the Appendix, tables 4, 5, and 6 show the mean, median, and standard deviation for all

the experiments with homophily-related unobserved characteristics.

5 Conclusion

In this paper, we have presented a modification to the G3SLS procedure proposed by Estrada

et al. (2021). This modified procedure, called G3SLSX, allows for the estimation of social

and direct effects in the presence of endogenous networks and covariates in the linear-in-

means model. Previous methodologies have focused on the reflection problem (Bramoullé

et al., 2009) and correlated effects (Estrada et al., 2021). This paper goes a step forward,

proposing a procedure that accounts for the most general case of endogeneity.

We showed that G3SLSX performs well in two different Monte Carlo designs with indi-

vidual degree of heterogeneity and homophily. For both designs, we presented performance

under over-identification and just-identification. Background effects are consistently esti-

mated only with G3SLSX when the network presents homophily in the over-identification

case.

We are aware that the main limitation is the reliability of Z2 and W0Z2 as good in-

struments for X2 and WX2. In the case of weak instruments, the procedure could lead to

inconsistent estimations. Further work will look into tests to address weak instruments in

these contexts.
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Tables

Table 1: Peer effects (β = 0.7) for simulations with heterogeneity.

OLS G2SLS G3SLS G3SLSX
n l m
50 1 10 mean 1.056 1.324 0.836 0.807

median 1.051 1.374 0.858 0.883
std 0.054 0.630 1.351 1.456

15 mean 1.062 1.451 0.901 0.876
median 1.057 1.426 0.929 0.916
std 0.058 0.531 1.523 1.562

2 10 mean 1.060 1.345 0.877 0.770
median 1.056 1.395 0.866 0.837
std 0.060 0.674 1.393 1.353

15 mean 1.064 1.429 0.870 0.898
median 1.060 1.441 0.919 0.879
std 0.063 0.662 1.572 1.324

100 1 10 mean 1.048 1.337 0.738 0.737
median 1.047 1.413 0.800 0.815
std 0.036 0.675 1.057 1.119

15 mean 1.053 1.500 0.924 0.825
median 1.051 1.490 0.941 0.919
std 0.039 0.452 1.245 1.187

2 10 mean 1.052 1.438 0.690 0.748
median 1.049 1.459 0.746 0.767
std 0.038 0.606 1.082 1.167

15 mean 1.056 1.597 0.743 0.773
median 1.052 1.517 0.821 0.793
std 0.039 0.501 1.199 1.331

200 1 10 mean 1.045 1.381 0.651 0.729
median 1.044 1.445 0.692 0.708
std 0.025 0.827 0.731 0.746

15 mean 1.049 1.605 0.750 0.802
median 1.048 1.529 0.793 0.819
std 0.026 0.426 0.864 0.850

2 10 mean 1.048 1.515 0.680 0.683
median 1.046 1.503 0.693 0.725
std 0.025 0.527 0.805 0.874

15 mean 1.051 1.591 0.810 0.753
median 1.049 1.553 0.813 0.781
std 0.026 0.303 0.891 0.969
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Table 2: Contextual effects (δ = 1) for simulations with heterogeneity.

OLS G2SLS G3SLS G3SLSX
n l m
50 1 10 mean -0.263 -0.915 1.577 1.660

median -0.263 -0.912 0.943 0.946
std 0.918 3.464 8.756 10.213

15 mean -0.298 -1.334 1.788 1.290
median -0.308 -1.186 0.745 0.952
std 1.344 4.015 13.315 15.585

2 10 mean -0.491 -1.297 0.157 0.860
median -0.500 -1.424 0.471 0.738
std 1.468 4.716 15.808 12.531

15 mean -0.523 -1.523 -0.284 1.075
median -0.489 -1.432 0.042 0.897
std 2.187 6.430 24.199 18.590

100 1 10 mean -0.269 -1.138 1.370 1.053
median -0.268 -1.167 0.889 0.684
std 0.620 3.193 5.104 5.790

15 mean -0.301 -1.707 0.891 0.882
median -0.310 -1.551 0.589 0.493
std 0.912 3.106 7.851 8.682

2 10 mean -0.476 -1.973 1.782 1.150
median -0.506 -1.634 0.860 0.672
std 0.961 3.990 7.983 7.750

15 mean -0.488 -2.617 2.519 0.838
median -0.527 -1.962 1.204 0.596
std 1.430 4.670 11.904 12.416

200 1 10 mean -0.235 -1.466 1.270 1.207
median -0.251 -1.409 1.034 1.054
std 0.431 3.682 3.009 3.408

15 mean -0.246 -2.317 0.943 1.154
median -0.247 -1.853 0.851 0.858
std 0.632 2.676 4.269 4.787

2 10 mean -0.473 -2.464 1.158 1.299
median -0.469 -2.251 0.844 0.835
std 0.633 2.915 4.432 4.598

15 mean -0.495 -2.716 0.928 1.023
median -0.505 -2.447 0.472 0.848
std 0.937 2.818 6.282 6.970
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Table 3: Direct effects (γ = 1) for simulations with heterogeneity.

OLS G2SLS G3SLS G3SLSX
n l m
50 1 10 mean 0.770 0.566 1.910 1.558

median 0.741 0.563 1.734 1.423
std 0.645 1.528 1.755 1.980

15 mean 0.761 0.374 1.968 1.517
median 0.756 0.403 1.783 1.391
std 0.961 1.963 2.599 3.035

2 10 mean 0.171 0.347 0.337 1.535
median 0.162 0.311 0.234 1.428
std 1.278 3.429 14.331 2.816

15 mean 0.163 0.269 0.144 1.483
median 0.158 0.291 0.349 1.428
std 1.924 5.418 21.803 4.040

100 1 10 mean 0.770 0.516 1.837 1.557
median 0.743 0.484 1.809 1.569
std 0.435 1.338 1.177 1.349

15 mean 0.771 0.294 1.809 1.521
median 0.748 0.324 1.806 1.526
std 0.648 1.413 1.766 1.948

2 10 mean 0.169 0.301 0.152 1.522
median 0.146 0.229 -0.078 1.366
std 0.863 2.521 6.361 1.909

15 mean 0.162 0.436 -0.933 1.549
median 0.133 0.257 -0.826 1.349
std 1.294 3.591 10.031 2.997

200 1 10 mean 0.751 0.307 1.860 1.539
median 0.749 0.372 1.864 1.494
std 0.299 1.568 0.769 0.883

15 mean 0.744 -0.079 1.817 1.548
median 0.738 0.121 1.815 1.481
std 0.447 1.248 1.124 1.252

2 10 mean 0.203 0.430 -0.058 1.524
median 0.199 0.344 -0.088 1.514
std 0.570 1.584 3.463 1.233

15 mean 0.212 0.427 -0.260 1.462
median 0.213 0.413 -0.110 1.439
std 0.855 2.105 5.127 1.866
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Table 4: Peer effects (β = 0.7) for simulations with homophily.

OLS G2SLS G3SLS G3SLSX
n l m
50 1 2 mean 0.786 0.743 0.670 0.557

median 0.788 0.748 0.682 0.607
std 0.039 0.045 0.076 0.217

5 mean 0.851 0.791 0.652 0.570
median 0.852 0.798 0.687 0.626
std 0.054 0.076 0.153 0.278

2 2 mean 0.801 0.759 0.671 0.595
median 0.802 0.763 0.683 0.640
std 0.040 0.045 0.084 0.309

5 mean 0.871 0.811 0.647 0.653
median 0.868 0.816 0.684 0.701
std 0.056 0.097 0.177 0.448

100 1 2 mean 0.787 0.743 0.672 0.586
median 0.788 0.744 0.677 0.603
std 0.027 0.030 0.051 0.130

5 mean 0.856 0.798 0.664 0.588
median 0.856 0.801 0.674 0.616
std 0.037 0.047 0.091 0.175

2 2 mean 0.803 0.759 0.672 0.551
median 0.802 0.761 0.678 0.597
std 0.027 0.031 0.059 0.213

5 mean 0.875 0.827 0.656 0.585
median 0.873 0.831 0.675 0.640
std 0.038 0.052 0.116 0.294

200 1 2 mean 0.817 0.766 0.668 0.576
median 0.817 0.767 0.671 0.591
std 0.023 0.025 0.047 0.111

5 mean 0.900 0.851 0.656 0.583
median 0.899 0.852 0.666 0.609
std 0.031 0.038 0.090 0.158

2 2 mean 0.836 0.789 0.669 0.563
median 0.836 0.789 0.673 0.596
std 0.025 0.025 0.050 0.167

5 mean 0.918 0.897 0.652 0.577
median 0.916 0.891 0.667 0.627
std 0.035 0.048 0.099 0.235
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Table 5: Contextual effects (δ = 1) for simulations with homophily.

OLS G2SLS G3SLS G3SLSX
n l m
50 1 2 mean 0.746 0.872 1.079 1.316

median 0.745 0.879 1.074 1.252
std 0.153 0.160 0.238 0.522

5 mean 0.556 0.736 1.104 1.249
median 0.541 0.728 1.091 1.189
std 0.245 0.292 0.448 0.722

2 2 mean 0.654 0.799 1.099 1.240
median 0.652 0.800 1.086 1.169
std 0.198 0.207 0.329 0.808

5 mean 0.423 0.641 1.166 1.105
median 0.413 0.634 1.167 1.051
std 0.339 0.463 0.700 1.158

100 1 2 mean 0.741 0.874 1.085 1.290
median 0.744 0.872 1.078 1.262
std 0.104 0.108 0.167 0.352

5 mean 0.541 0.719 1.114 1.276
median 0.542 0.715 1.106 1.248
std 0.161 0.191 0.311 0.474

2 2 mean 0.646 0.798 1.094 1.330
median 0.653 0.802 1.081 1.280
std 0.127 0.135 0.224 0.536

5 mean 0.398 0.569 1.125 1.234
median 0.395 0.567 1.115 1.193
std 0.226 0.259 0.444 0.771

200 1 2 mean 0.701 0.833 1.077 1.259
median 0.701 0.830 1.076 1.238
std 0.072 0.077 0.136 0.257

5 mean 0.487 0.618 1.102 1.234
median 0.482 0.616 1.097 1.200
std 0.116 0.130 0.253 0.372

2 2 mean 0.586 0.730 1.087 1.273
median 0.588 0.733 1.081 1.244
std 0.097 0.095 0.170 0.357

5 mean 0.332 0.404 1.129 1.226
median 0.337 0.410 1.109 1.215
std 0.164 0.204 0.337 0.529
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Table 6: Direct effects (γ = 1) for simulations with homophily.

OLS G2SLS G3SLS G3SLSX
n l m
50 1 2 mean 1.120 1.186 1.271 1.042

median 1.125 1.185 1.264 1.034
std 0.117 0.124 0.153 0.263

5 mean 1.025 1.115 1.296 1.054
median 1.032 1.103 1.284 1.049
std 0.226 0.251 0.278 0.386

2 2 mean 0.046 0.026 -0.011 0.994
median 0.047 0.035 -0.014 0.981
std 0.117 0.117 0.167 0.380

5 mean 0.075 0.049 -0.021 0.983
median 0.076 0.049 -0.021 0.974
std 0.238 0.262 0.393 0.588

100 1 2 mean 1.115 1.185 1.264 1.031
median 1.117 1.181 1.261 1.019
std 0.084 0.088 0.116 0.177

5 mean 1.005 1.099 1.284 1.055
median 1.000 1.083 1.274 1.049
std 0.157 0.175 0.205 0.269

2 2 mean 0.046 0.026 -0.011 1.042
median 0.048 0.025 -0.016 1.031
std 0.073 0.073 0.109 0.267

5 mean 0.077 0.060 -0.014 1.043
median 0.081 0.065 -0.012 1.020
std 0.148 0.152 0.247 0.424

200 1 2 mean 1.122 1.179 1.261 1.024
median 1.123 1.178 1.258 1.020
std 0.051 0.055 0.077 0.117

5 mean 1.032 1.087 1.273 1.037
median 1.034 1.082 1.265 1.033
std 0.100 0.105 0.143 0.192

2 2 mean 0.059 0.039 -0.009 1.025
median 0.058 0.038 -0.004 1.006
std 0.056 0.054 0.083 0.162

5 mean 0.098 0.088 -0.013 1.033
median 0.090 0.085 -0.008 1.003
std 0.111 0.113 0.193 0.264
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Figures

Figure 1: Design 1 - Unobserved Heterogeneity.

Note: G2SLS corresponds to the estimation of Bramoullé et al. (2009), G3SLS refers to the estimation
proposed by Estrada et al. (2021), and G3SLSX is the modified version of G3SLS that includes covariates
X as instruments.
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Figure 2: Design 2 - Homophily.

Note: G2SLS corresponds to the estimation of Bramoullé et al. (2009), G3SLS refers to the estimation
proposed by Estrada et al. (2021), and G3SLSX is the modified version of G3SLS that includes covariates
X as instruments.
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