ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Ciencias de la Tierra

"EVALUACIÓN DEL RIESGO SÍSMICO DEL SECTOR 15 DE SEPTIEMBRE UBICADO EN LA PLANICIE ALUVIAL DEL RIO MANTA, CIUDAD DE MANTA"

TRABAJO DE TITULACIÓN

Previo a la obtención del Título de: Magister en Geotecnia

Presentado por:

Bermeo Tigrero Israel Santiago

José Washington Hualpa Muñoz

GUAYAQUIL - ECUADOR

Año – 2021

DEDICATORIAS

Dedicatoria I

La presente tesis está dedicada a mis queridos padres, quienes con amor y esmero han contribuido en mi formación como ser humano y profesional. Con su ejemplo han sembrado en mí altos valores éticos y morales. A ellos mi agradecimiento eterno. En este punto espero estar retribuyendo en algo su dedicación y entrega.

A mi novia Amanda por su apoyo incondicional, su comprensión e inspiración que me ha acompañado siempre.

Israel Santiago Bermeo Tigrero

Dedicatoria II

Este trabajo está dedicado a mi amada familia; en especial, a mi madre, Matilde Aurora, y a mis hijos, Washington Andrés y Thiago Washington. Ustedes son la mayor bendición que me ha concedido Dios, mi más grande orgullo y la razón por la que día a día trato de ser una mejor persona.

José Washington Hualpa Muñoz

AGRADECIMIENTO

Agradecemos a Dios, por bendecirnos con la vida y por guiarnos a lo largo de nuestra existencia.

A nuestras familias, por ser nuestro apoyo y fortaleza en aquellos momentos de dificultad y de debilidad.

A nuestro tutor, Mg. David Stay Coello, quien con su experiencia, conocimiento y motivación nos orientó muy acertadamente en el desarrollo de la presente investigación.

Resulta importante reconocer también las valiosas colaboraciones de los siguientes profesionales:

El Mg. Javier Moreira Roca, con su contingente técnico y humano para la realización de los ensayos de suelos;

Los Mgs. Hugo Bonifaz García y Javier Baque Solís, en los ensayos de geofísica y en la fotogrametría aérea, en ese orden; y,

El Mg. Marcelo Landívar Taborga, con su asesoría en sistemas de información geográfica SIG, complemento importante de nuestra tesis.

Israel Santiago Bermeo Tigrero

José Washington Hualpa Muñoz

DECLARACIÓN EXPRESA

"Los derechos de titularidad y explotación, nos corresponde conforme al reglamento de propiedad intelectual de la institución; Estudiante 1 y Estudiante 2 y damos nuestro consentimiento para que la ESPOL realice la comunicación pública de la obra por cualquier medio con el fin de promover la consulta, difusión y uso público de la producción intelectual"

Israel Santiago Bermeo Tigrero

José Washington Hualpa Muñoz

EVALUADORES

Nombre profesor del curso PROFESOR DE LA MATERIA Nombre Profesor tutor **PROFESOR TUTOR**

RESUMEN

El Ecuador está ubicado en una zona con alta peligrosidad sísmica. En los últimos 25 años hemos experimentado dos terremotos que causaron pérdidas de centenares de vidas y graves consecuencias sociales y económicas. La posibilidad de que ocurran otros sismos, de iguales o mayores magnitudes, es real y depende solo del tiempo.

La evaluación del riesgo sísmico es un tema muy poco aplicado en el país. La Norma Ecuatoriana de Construcción NEC-2015, indica lineamientos, pero no ofrecen metodologías de análisis del riesgo sísmico para planicies aluviales específicamente. En este contexto, el presente trabajo de investigación propone una metodología para la evaluación del riesgo sísmico en planicies aluviales, considerando sus características particulares y con un enfoque integral, a través de la integración de varios criterios de análisis que se han definido para otros entornos geotécnicos y geomorfológicos.

La metodología es aplicada en el sector 15 de Septiembre, clasifica la vulnerabilidad sísmica, mediante el análisis cuantitativo de potencial de licuación y los efectos post licuación, determina mayores riesgos en las zonas más cercanas al centro del paleocauce, y menor efecto a medida que se aproximan a los márgenes. La zona central, bajo los criterios de Índice de Potencial de Licuación (LPI), tiene mayor riesgo de ocurrencia de este fenómeno, mientras que el Análisis de Número de Severidad de Licuación (LSN) la categoriza como una zona de "Licuación Moderada". En esta área de estudio se pudo determinar que el daño que sufren las edificaciones está en función principal del número de pisos (altura) y, en segundo orden, de sus dimensiones, debido a que presentan mayor periodo de vibración lo que amplifica su aceleración inicial. Las viviendas tipo C son las más afectadas. Estos comportamientos son mostrados en mapas que aplican conceptos SIG.

Palabras Clave: Sistema de información geográfico SIG, riesgos sísmicos, vulnerabilidad, espectros sísmicos, terremoto.

ABSTRACT

Ecuador is located in an area with high seismic hazard. In the last 25 years we have experienced two earthquakes that caused losses of hundreds of lives and serious social and economic consequences. The possibility of other seismics occurring, of equal or greater magnitudes, is real and depends only on time.

Seismic risk assessment is a very little-applied issue in the country. The Ecuadorian Construction Standard NEC-2015, indicates guidelines, but does not offer seismic risk analysis methodologies for alluvial plains specifically. In this context, this research work proposes a methodology for seismic risk assessment in alluvial plains, considering its particular characteristics and with a holistic approach, through the integration of several analysis criteria that have been defined for other geotechnical and geomorphological environments.

The methodology is applied in the sector 15 de Septiembre, classifies seismic vulnerability, by quantitative analysis of liquefaction potential and post-liquefaction effects, determines greater risks in the areas closest to the center of paleocauce, and less effect as they approach the margins. The central area, under the Liquefaction Potential Index (LPI) criteria, has an increased risk of occurrence of this phenomenon, while the Liquefaction Severity Number Analysis (LSN) categorizes it as a "Moderate Liquefaction" zone. In this study area it was possible to determine that the damage suffered by the buildings is mainly based on the number of floors (height) and, in the second order, their dimensions, because they have a longer vibration period which amplifies their initial acceleration. Type C housing is the hardest hit. These behaviors are displayed on maps that apply GIS concepts.

Keywords: Geographic information system, seismic risks, vulnerability, seismic spectra, earthquake.

ÍNDICE GENERAL

RESUMEN	II
ABSTRAC	Τ
ÍNDICE GE	ENERALIII
SIMBOLO	GÍAV
ÍNDICE DE	E FIGURAS
ÍNDICE DE	E TABLAS VIII
INDICE DE	E ANEXOS IX
CAPÍTULC) 1
1. Intro	oducción1
1.1 An	tecedentes 1
1.2 De	escripción del problema 2
1.3 Ju	stificación del problema2
1.4 Ob	ojetivos
1.4.1	Objetivo General
1.4.2	Objetivos Específicos 3
1.5 Ub	icación del proyecto4
1.6 Fu	ndamentación teórica5
1.6.1	Geodinámica Interna5
1.6.2	Métodos de zonificación Geotécnica9
1.6.3	Análisis de Riesgo Sísmico10
1.6.4	Riesgos naturales y Sistemas de Información Geográfica (SIG) 12
1.6.5	Depósitos aluviales en llanuras13
CAPÍTULC	9 2
2. Met	odología15

2.1 Fa	se 1: Análisis de Peligrosidad sísmica mediante Zonificación Geotécnica16		
2.1.1	Geología Regional16		
2.1.2	Geología Local17		
2.1.3	Geomorfología		
2.1.4	Zonificación Sísmica Regional 18		
2.1.5	Ensayos Geomecánicos		
2.1.6	Ensayos Geofísicos		
2.1.7	Análisis de respuesta de sitio 30		
2.2 Fa	se 2: Vulnerabilidad sísmica		
2.2.1	Análisis del potencial de licuación 35		
2.2.2	Vulnerabilidad de Edificaciones 42		
CAPÍTULO	351		
3. Res	ultados51		
3.1 Fa	se 1: Análisis de Peligrosidad sísmica mediante Zonificación Geotécnica51		
3.1.1	Clasificación de suelos según la NEC-15 para perfiles Vs 51		
3.1.2	Perfiles Estratigráficos 52		
3.1.3	Análisis de respuesta de sitio54		
3.2 Fa	se 2: Análisis de vulnerabilidad sísmica60		
3.2.1	Análisis del Potencial de Licuación 60		
3.2.2	Respuesta estructural de edificaciones 66		
CONCLUS	IONES71		
4. CON	ICLUSIONES Y RECOMENDACIONES71		
4.1 Co	nclusiones71		
4.2 Recomendaciones			
BIBLIOGRA	FÍA74		
ANEXOS	77		

SIMBOLOGÍA

Símbolo	Descripción	Unidad
W	Humedad del suelo	(%)
LI	Limite Liquido del suelo	adimensional
IP	Índice de Plasticidad	adimensional
Cu	Coeficiente de uniformidad	adimensional
D50	Diámetro mediano de las partículas	mm
FC	Contenido de finos	(%)
С	Cohesión	kPa
φ	Ángulo de fricción	(°)
γ	Peso específico	kN/m³
σ	Esfuerzo normal	kPa
σ'	Esfuerzo efectivo	kPa
τ	Esfuerzo de resistencia al corte	kPa
٤v	Deformación volumétrica	(%)
g	gravedad	m/s ²
Mw	Magnitud sismo	adimensional
PGA	Aceleración pico del suelo	g
Rrup	Distancia de ruptura de falla	km
SPT	Ensayo de penetración estándar	Ν
CRR	Razón de resistencia cíclica	adimensional
CSR	Razón de esfuerzo cíclico	adimensional
FSliq	Factor contra la licuación	adimensional
LPI	Índice de potencial de licuación	adimensional
LSN	Número de severidad de licuación	adimensional
LDI	Índice de deformación lateral	adimensional
ARS	Área de refracción sísmica	adimensional
T ₀	Periodo fundamental natural	segundos
F0	Frecuencia fundamental natural	Hz

ÍNDICE DE FIGURAS

Figura 1.1 Ubicación del proyecto4
Figura 1.2 Sector 15 de Septiembre, ciudad de Manta4
Figura 1.3 Detalle tectónico del centro de expansión entre la cresta Carnegie y la cresta
Cocos
Figura 1.4 Sismicidad de subducción de América del Sur para eventos Mw> 67
Figura 1.5 Catálogo de terremotos y zonificación de peligro sísmico en Parra (2016) (a).
Mw> 6 eventos del catálogo y el tipo sismogénico tectónico asociado (b) (NB: interfaz y
dentro de la losa son dos tipos de terremotos de subducción)8
Figura 1.6 Mapa de fallas activas (Franco, et al., 2018)9
Figura 2.1 Hoja Geológica de Manta (Instituto Nacional de Investigación Geológica
Minero Metalúrgico, 1970)17
Figura 2.2 Mapa de elevaciones alrededor del área de estudio18
Figura 2.3 Mapa de pendientes simplificado e isolíneas de PGA-h en el área del
inventario de deslizamientos cosísmicos de 2016. La posición de la estrella indica el
epicentro del terremoto de Pedernales (Mw 7.8) del 16 de abril de 201619
Figura 2.4 Ubicación de ensayos SPT21
Figura 2.5 Toma de muestra para ensayo SPT-221
Figura 2.6 Resumen registro estratigráfico SPT-122
Figura 2.7 Registro de perforación SPT-123
Figura 2.8 Ensayo sísmico de refracción24
Figura 2.9 Perfiles de velocidades de onda de corte obtenidas27
Figura 2.10 Ensayo de refracción sísmica LS7-LS827
Figura 2.11 Ensayo método de Nakamura28
Figura 2.12 Valores obtenidos de frecuencias fundamentales de vibración29
Figura 2.13 Distribución espacial de ensayos Geofísicos
Figura 2.14 Espectro en roca tipo B para un periodo de retorno de 475 años
Figura 2.15 Espectros seleccionados
Figura 2.16 Registros de tiempo historia de uno de los sismos considerados para el
análisis
Figura 2.17 Ubicación de perfiles geotécnicos para análisis de respuesta de sitio34
Figura 2.18 Clasificación de susceptibilidad de suelos finos a la licuación

Figura 2.19 Características de vuelo dron ortofotos	43
Figura 2.20 Equipo usado para fotogrametría	44
Figura 2.21 Levantamiento de la zona de estudio	44
Figura 2.22 Ubicación espacial del conjunto de edificaciones	46
Figura 2.23 Vista en 3D de las tipologías de edificaciones	46
Figura 2.24 Ubicación espacial edificación tipo C	47
Figura 2.25 Ficha de edificación tipo C	48
Figura 2.26 Nivel de daño en función del drift o deriva máxima de piso	50
Figura 3.1 Ilustración de las direcciones de los perfiles estratigráficos	52
Figura 3.2 Perfil estratigráfico A- A' transversal al cauce del río	53
Figura 3.3 Perfil estratigráfico B-B' dirección paralela al cauce del río	53
Figura 3.4 Valores máximos obtenidos para el modelo ARS-1	56
Figura 3.5 Valores máximos obtenidos para el modelo ARS-2	57
Figura 3.6 Valores máximos obtenidos para el modelo ARS-3	58
Figura 3.7 Valores máximos obtenidos para el modelo ARS-4	59
Figura 3.8 Espectros de respuesta esperados para los ARS	60
Figura 3.9 Ubicación espacial del conjunto de ensayos SPT disponibles y realizados	s .61
Figura 3.10 Resultado de LPI	63
Figura 3.11 Resultado de LSN	63
Figura 3.12 Resultado de LDI	64
Figura 3.13 Resultado de asentamiento post licuación en campo libre	64
Figura 3.14 Distribución espacial LPI	65
Figura 3.15 Distribución espacial LSN	65
Figura 3.16 Espectro de diseño para análisis estructural	66
Figura 3.17 Distribución espacial desempeño estructural	70
Figura 3.18 Vista en 3D de las edificaciones según el desempeño estructural	70
FIGURA 0.1: ENSAYO SÍSMICA DE REFRACCIÓN	89

ÍNDICE DE TABLAS

Tabla 1.1 Dinámica de placas tectónicas del sistema caribeño	5
Tabla 1.2 Unidades geomorfológicas que se tienen en cuenta en la susceptibilida	ıd de
licuación (Iwasaki et al 1982)	14
Tabla 2.1 Ubicación de ensayos SPT	20
Tabla 2.2 Descripción del análisis de los distintos lugares a realizarse el estudio	25
Tabla 2.3 Ubicación y longitud de los sondeos sísmicos	25
Tabla 2.4 Clasificación de los perfiles de suelo NEC-15	26
Tabla 2.5 Ubicación ensayos Nakamura	28
Tabla 2.6 Correspondencia entre clases de sitio T_0 y rangos de velocidades Vs (Zh	ao et
al. 2006)	30
Tabla 2.7 Resumen de Sismos seleccionados	33
Tabla 2.8 Ubicación geográfica de los perfiles de análisis de respuesta de sitio (AR	S)35
Tabla 2.9 Clasificación de potencial de licuación en base a LPI	39
Tabla 2.10 Clasificación de potencial de licuación en base a LSN	40
Tabla 2.11 Clasificacion del tipo de edificaciones de la zona de estudio	45
Tabla 2.12 Niveles de daño propuesto por Ghobarah	49
Tabla 2.13 Criterios para la evaluación del desempeño estructural	50
Tabla 3.1 Resultados de velocidades de ondas de corte calculadas para las cuatro lí	neas
sísmicas levantadas en el área	51
Tabla 3.2 Parámetros considerados para el modelo ARS-1	54
Tabla 3.3 Parámetros considerados para el modelo ARS-2	54
Tabla 3.4 Parámetros considerados para el modelo ARS-3	55
Tabla 3.5 Parámetros considerados para el modelo ARS-4	55
Tabla 3.6 Resultado de análisis cuantitativo del potencial de licuación	62
Tabla 3.7 Parámetros estructurales	67
Tabla 3.8 Matriz de daño edificación tipo A	67
Tabla 3.9 Matriz de daño edificación tipo B	68
Tabla 3.10 Matriz de daño edificación tipo C	68
Tabla 3.11 Matriz de daño edificación tipo D	69
Tabla 3.12 Matriz de daño edificación tipo E	69

INDICE DE ANEXOS

Anexo 1 Ensayo de SPT – Muestra # 1	77
Anexo 2 Ensayo de SPT – Muestra # 2	79
Anexo 3 Ensayo de SPT – Muestra # 3	81
Anexo 4 Ensayo de SPT – Muestra # 4	83
Anexo 5 Ensayo de SPT – Muestra # 5	85
Anexo 6 Informe de resultados Análisis multicanal de ondas superficiales MASW	87
Anexo 7 Resultados método de NAKAMURA ARS - 1	115
Anexo 8 Resultados método de NAKAMURA ARS - 2	120
Anexo 9 Resultados método de NAKAMURA ARS - 3	125
Anexo 10 Resultados método de NAKAMURA ARS - 4	122
Anexo 11 Registros Sísmicos	127
Anexo 12 Perfiles Para Análisis de Respuesta de Sitio	135
Anexo 13 Clasificacion de las viviendas tipo del sector	137
Anexo 14 Evaluación de La Respuesta Estructural de las Edificaciones	142

CAPÍTULO 1

1. INTRODUCCIÓN.

1.1 Antecedentes

La posición del Ecuador en la costa oriental del Océano Pacifico lo hace parte del llamado "Cinturón de fuego del pacifico". Zona del planeta que se la denomina así debido a que es la región más susceptible de experimentar los efectos de terremotos y erupciones volcánicas. Esto se debe a que se presentan cambios continuos en la superficie del planeta como respuesta a la interacción de las llamadas placas técnicas. Para el caso de Ecuador, la interacción entre la placa Sudamericana y la placa de Nazca genera una zona de subducción frente a las costas y varias zonas tectónicamente activas al interior del territorio, en donde se originan la mayor parte de sismos que se registran en nuestro país (Rivadeneira, et al., 2007).

Aunque la frecuencia con la que se producen los terremotos destructores no es alta, cuando estos se presentan pueden tener efecto devastador en un país, en especial en los países en vías de desarrollo, ya que retrasan aún más su progreso al afectar la infraestructura y los sistemas económicos, sin contar con la pérdida de vidas cuyo precio es inestimable.

La gestión del riesgo sísmico puede considerarse como un proceso de dinámica compleja que implica las interacciones de muchos factores. Estos factores suelen incluir el entorno físico, las características sociales y demográficas de las comunidades que experimentan este riesgo, así como los edificios, infraestructuras y otras instalaciones que se sabe que son vulnerables en el medio ambiente (Simonovic, 2011).

Usando datos instrumentales y datos históricos se tratará de establecer, en base al estado actual de la información, diferentes escenarios que se podrían presentar en caso de producirse un sismo destructor en el futuro.

Finalmente, se hará una descripción general de las maneras en que nuestra sociedad y la infraestructura que tenemos, pueden disminuir el riesgo al que están expuestas por los sismos.

1.2 Descripción del problema

Existen varios métodos de análisis, como la Norma ASCE/SEI 7:2020, que sugieren evaluar el riesgo sísmico en edificaciones y obras consideradas con importancia significativa. Algunas lecciones de eventos sucedidos en los últimos años, con grandes consecuencias, en zonas donde existen depósitos de suelos con muy baja velocidad de propagación de ondas de corte (V_S), amplificación por efectos topográficos, licuación generalizada, deslizamientos en estabilidad de taludes, entre otras, han demandado la necesidad de establecer metodologías de análisis para eventos similares a fin de reducir los efectos post sismo.

En el país, para el análisis de amenaza sísmica, la Norma Ecuatoriana de la Construcción NEC-15, en el capítulo 10.6, recomienda desarrollar una metodología especial de análisis de respuesta dinámica de sitio para suelos clasificados como tipo F. Esto sería previo a la obtención de los resultados de ensayos geotécnicos que clasifiquen a la zona con un suelo de tales características, recomendando de ser el caso un análisis de respuesta dinámica del sitio.

En la provincia de Manabí se han realizado estudios de susceptibilidad de licuación, como el desarrollado en la ciudad de Jama debido al sismo de Mw 7,8 ocurrido en el 2016 (Aviles-Campoverde, et al., 2021). Sin embargo, consideramos que los modelos existentes no abordan de manera particular, y con alcance integral, la perspectiva metodológica para llevar a cabo la gestión del riesgo sísmico para tipos de asentamientos en planicies aluviales.

Es necesario establecer metodologías para el análisis del riesgo sísmico que presentan los asentamientos en las planicies aluviales, considerando sus características geotécnicas, geomorfológicas y con un enfoque integral.

1.3 Justificación del problema

El presente trabajo de investigación pretende desarrollar una metodología de evaluación de riesgos estructurada y sistemática para planicies aluviales, integrando criterios definidos para otros entornos geotécnicos y geomorfológicos. Además, incluye una revisión exploratoria, identificando los factores críticos que representan los asentamientos en zonas no seguras, debido al crecimiento poblacional y circunstancias

extremas de sectores que migran para buscar nuevas oportunidades de desarrollo económico.

La poca información sobre estudios en las zonas de alto riesgo sísmico para el tipo de planicie aluvial en las costas del país, y por los daños causados por el ultimo terremoto ocasionado el 16 de abril de 2016, conlleva a la iniciativa de evaluar y socializar con la población del peligro de construir edificaciones con deficiencias estructurales en suelos blandos, colapsables y licuables.

La evaluación de riesgo sísmico es una herramienta valiosa para el público ya que brinda una mejor planificación frente a los desastres, la protección y la promoción de la seguridad mediante la reducción del riesgo sísmico. Mitigar los daños a la vida y a la economía de los habitantes de la zona de influencia ante la muy probable repetición de un evento telúrico, identificando los sectores de mayor peligrosidad con el propósito que oportunamente se tomen las medidas correctivas.

1.4 Objetivos

1.4.1 Objetivo General

Evaluar del riesgo sísmico del sector 15 de Septiembre ubicado en la planicie aluvial del rio Manta, en la ciudad de Manta, mediante el análisis de amenaza sísmica y vulnerabilidades de las edificaciones típicas del sector para minimizar los efectos producidos por los sismos.

1.4.2 Objetivos Específicos

- Determinar la microzonificación sísmica del área de estudio.
- Determinar la vulnerabilidad sísmica mediante el potencial de licuación y efectos post licuación.
- Evaluar la respuesta estructural de cinco (5) edificaciones típicas ante un sismo de diseño definido.
- Diseñar el mapa de comportamiento estructural de las edificaciones existentes aplicando el sismo de diseño.

1.5 Ubicación del proyecto

La ciudad de Manta se ubica en la parte occidental de la Provincia de Manabí, en la bahía de Manta, en la Costa Centro - Sur del Ecuador. Sus límites son: al norte y al oeste, con el océano Pacífico; al sur, con el cantón Montecristi; y, al este, con los cantones Montecristi y Jaramijó. El sector 15 de Septiembre está ubicado en la zona noroccidental de la ciudad, en la planicie aluvial del río Manta, aproximadamente a 2 kilómetros de su desembocadura en el océano Pacífico.

Figura 1.1 Ubicación del proyecto

El sector 15 de Septiembre es el resultado de la invasión de personas que habitaban en las zonas rurales de Manta, anteriormente dedicadas a la agricultura y ganadería.

Figura 1.2 Sector 15 de Septiembre, ciudad de Manta

1.6 Fundamentación teórica

1.6.1 Geodinámica Interna

Ecuador está situado en un entorno tectónico complejo y muy activo, en un cruce entre las placas de Nazca, Cocos, Caribe y América del Sur. Estas placas son predominantemente oceánicas y contienen una diversidad de características tectónicas interesantes. Los tres tipos típicos de límites de placa (convergente, divergente, transformada) se pueden encontrar en esta región, incluidas otras características como múltiples uniones triples, puntos calientes y subducción. Aunque la formación de la mayoría de las placas en la región del Caribe se remonta a eventos en el Cenozoico. (Attolico, 2019)

En particular, la placa de Nazca exhibe una de las tasas de convergencia más rápidas del mundo a lo largo de su límite oriental con América del Sur y la tasa de divergencia más rápida del mundo hacia su límite occidental. Las velocidades, la dirección y la rotación de las principales placas tectónicas regionales se describen con más detalle en la Tabla 1.1.

Placa	Velocidad (mm / año)	Dirección (grados) *	Rotación (grados / my)	
Nazca	77	46.8	0.695	
Caribe	32	35.2	0.286	
Andes del Norte	11	20.8	0.116	
Panamá	33	33,7	0,317	

Tabla 1.1 Dinámica de placas tectónicas del sistema caribeño.

*Las direcciones son grados desde el norte en el sentido de las agujas del reloj.

La geomorfología, la tectónica y los peligros geológicos de la región de Manabí se rigen en gran medida por el movimiento de las placas de la subducción de Nazca a una tasa aproximada de 60-80 mm / año. Como se muestra en la Figura 1.3, la placa de Nazca se hunde progresivamente con ángulos crecientes debajo de la Placa Andina Norte / Sudamericana con ángulos de 6 ° a 35 °.

Otra característica clave de la geodinámica local es Carnegie Ridge, vinculada a las Islas Galápagos. Carnegie Ridge tiene 1.350 km de largo y hasta 300 km de ancho. Se enfrenta a la cuenca de Manabí perpendicularmente al eje de subducción y se subduce junto con la placa de Nazca, debajo del bloque andino.

Figura 1.3 Detalle tectónico del centro de expansión entre la cresta Carnegie y la cresta Cocos.

La actividad tectónica regional y local da como resultado una concentración excepcional de peligros geológicos, como volcanes, tsunamis y terremotos. La subducción de la Placa de Nazca debajo de la Placa Sudamericana desencadenó el mayor terremoto registrado en el mundo (ver Figura 1.4), que ocurrió el 22 de mayo de 1960, en Chile, con una magnitud Mw 9,5 (USGS, 2016). El 31 de enero de 1906, el séptimo terremoto más grande ocurrió a lo largo de la costa de Ecuador, al norte del evento principal de 2016, con una magnitud de Mw 8,8 (USGS, 2016). La mayoría de estos grandes terremotos corresponden a eventos de interfaz de subducción, mientras que algunos corresponden a eventos intra losa más profundos, con epicentros mucho más hacia el interior.

La sismicidad registrada de Ecuador hasta finales de 2015 se muestra en la Figura 1.5. La zonificación de la fuente sismogénica del estudio nacional de peligrosidad más reciente realizado por (Parra, 2016) también se muestra en la figura mencionada anteriormente. Debido a la variabilidad en los ángulos de subducción y la distribución de eventos sísmicos, la sismicidad de la interfaz de subducción se modeló como tres zonas distintas, una en el norte, una en el centro y la última en el sur.

Figura 1.4 Sismicidad de subducción de América del Sur para eventos Mw> 6

Figura 1.5 Catálogo de terremotos y zonificación de peligro sísmico en Parra (2016) (a). Mw> 6 eventos del catálogo y el tipo sismogénico tectónico asociado (b) (NB: interfaz y dentro de la losa son dos tipos de terremotos de subducción).

Cada sistema de fallas consta de muchas fallas más pequeñas, formadas por geodinámicas similares. Por tanto, estas fallas tienen propiedades en común, como su dirección general (Ecuambiente, Consulting Group, 2017) ha interpretado que los sistemas de fallas Jama y Jipijapa están separados por una característica recientemente identificada en ese estudio: la falla Rocafuerte-Flavio Alfaro.

Los bloques más activos, según (Chacón, 2018), son el bloque Mache-Rioverde, el bloque Jipijapa, el Bahía-Jama y el Manta, en orden decreciente de levantamiento total. Un estudio dirigido por el USGS (Franco, et al., 2018) trazó un mapa de las fallas potencialmente activas en la región noroeste de Ecuador (Figura 1.6). Este sigue siendo uno de los estudios más recientes y completos de la región hasta la fecha.

Figura 1.6 Mapa de fallas activas (Franco, et al., 2018).

1.6.2 Métodos de zonificación Geotécnica

1.6.2.1 Zonificación General

Se conoce como el primer paso de zonificación que comprende la recopilación e información existente de documentos históricos, tales como mapas geológicos y geomorfológicos, bases de datos disponibles, con el fin de evaluar el potencial de falla del suelo de una manera general.

1.6.2.2 Zonificación Detallada

Consiste en ampliar la información obtenida en el paso anterior, para comprender la geología y geomorfología local con el uso de datos adicionales del sitio y ensayos de laboratorio, las fotografías aéreas suelen ser útiles, informes de ingeniería geotécnica gubernamentales o locales. Este proceso abarca más allá de la geología superficial abarcando perfiles obtenidos a partir de pruebas de penetración y prospección geofísicas.

1.6.2.3 Zonificación rigurosa

Se los realiza cuando se necesitan niveles muy altos y detallados de zonificación, para sectores donde se consideran potenciales de peligro elevado. Se requieren datos adicionales de investigación del sitio local, se incorpora a estos tipos de análisis métodos computarizados de respuesta de sitio, potencial de licuación, estabilidad de pendientes.

1.6.2.4 Protocolos de microzonificación urbana

El enfoque general adoptado por el Proyecto LIQUEFACT para la evaluación del peligro de licuación inducida por terremotos a escala urbana/suburbana (Lai, et al., 2020) se basa en la implementación de los siguientes pasos principales:

- Definición del ajuste geológico y sismo-tectónico asociado al estudio de caso;
- Colección de casos documentados de manifestaciones de licuación en terremotos históricos;
- Construcción de una base de datos georreferenciada (GIS) mediante la fusión de información de geología local, geomorfología, hidrogeología, geofísica y datos geotécnicos;
- Ejecución de una campaña complementaria de investigación geotécnica y geofísica para integrar los datos de suelo existentes. Esto incluyó la perforación de pozos, pruebas geotécnicas y geofísicas in situ y de laboratorio;
- Definición de un modelo de subsuelo para el territorio objeto de investigación utilizando los datos recopilados en los pasos anteriores;
- Definición de un mapa que describe la variabilidad espacial del movimiento del suelo esperado;
- Microzonificación del territorio para el riesgo de licuación.

1.6.3 Análisis de Riesgo Sísmico

De acuerdo con la norma ISO 31010, los riesgos son la combinación de las consecuencias de un evento o peligro y la probabilidad asociada de que ocurra. Las consecuencias son los efectos negativos de un desastre expresados en términos de impactos humanos, impactos económicos y ambientales e impactos políticos / sociales. Más específicamente, el riesgo sísmico se puede representar mediante la convolución de tres elementos:

- Peligro sísmico
- Vulnerabilidad
- Exposición

Según UNISDR (2016), se aplican las siguientes definiciones:

Peligro: Un proceso, fenómeno o actividad humana que puede causar la muerte, lesiones u otros impactos en la salud, daños a la propiedad, trastornos sociales y económicos o degradación ambiental. Los peligros pueden ser de origen natural, antropogénico o socionatural.

Los peligros naturales están asociados predominantemente con procesos y fenómenos naturales. Los peligros antropogénicos, o los peligros inducidos por el hombre, son inducidos total o predominantemente por actividades y elecciones humanas. Varios peligros son socionaturales, ya que están asociados con una combinación de factores naturales y antropogénicos, incluida la degradación ambiental y el cambio climático.

Exposición: La situación de las personas, la infraestructura, la vivienda, las capacidades de producción y otros activos humanos tangibles ubicados en áreas propensas a amenazas. Las medidas de exposición pueden incluir la cantidad de personas o tipos de activos en un área. Estos pueden combinarse con la vulnerabilidad y la capacidad específicas de los elementos expuestos a cualquier peligro en particular para estimar los riesgos cuantitativos asociados con ese peligro en el área de interés.

Vulnerabilidad: Las condiciones determinadas por factores o procesos físicos, sociales, económicos y ambientales que aumentan la susceptibilidad de un individuo, una comunidad, activos o sistemas a los impactos de las amenazas. Para conocer los factores positivos que aumentan la capacidad de las personas para hacer frente a los peligros, véanse también las definiciones de "Capacidad" y "Capacidad de afrontamiento".

Es fácil entender que los tres elementos son esenciales en una evaluación de riesgo sísmico: un fuerte terremoto en un desierto o en el fondo del océano no causaría daños (alto peligro, cero vulnerabilidades); el derrumbe de un edificio vacío no causaría víctimas y causaría pocos daños (alto riesgo, alta vulnerabilidad, baja exposición).

11

El análisis sísmico es una herramienta para la estimación de la respuesta estructural en el proceso de diseño de estructuras sismorresistentes y/o reacondicionamiento de estructuras vulnerables existentes. En principio, el problema es difícil porque la respuesta estructural a terremotos fuertes es dinámica, no lineal y aleatoria. Las tres características son inusuales en la ingeniería estructural, donde la gran mayoría de los problemas son (o al menos pueden aproximarse adecuadamente como) estáticos, lineales y deterministas.

Se debe encontrar un equilibrio entre la precisión requerida y la complejidad del análisis, dependiendo de la importancia de una estructura y del objetivo del análisis. No debe olvidarse que los detalles del movimiento del suelo durante futuros terremotos son impredecibles, mientras que los detalles de la respuesta estructural dinámica, especialmente en el rango inelástico, son muy inciertos (Fajfar, 2018).

Así pues, el análisis del riesgo sísmico sea cual sea su nivel de estudio, debe contener tres elementos esenciales:

1) La peligrosidad, entendida como probabilidad de ocurrencia de un sismo.

2) La vulnerabilidad, que para cada elemento expuesto cuantifica su capacidad resistente frente a las acciones sísmicas;

3) El costo, entendido como probabilidad de degradación o pérdida del elemento expuesto, que puede cuantificarse en niveles, clases, grados o índices de daño o en valor económico de su restauración o reposición.

1.6.4 Riesgos naturales y Sistemas de Información Geográfica (SIG)

El sistema de información geográfica (SIG) es un sistema informático que puede recopilar, almacenar, analizar y mostrar información georreferenciada.

Desde el mapeo por computadora hasta el análisis espacial y luego hasta la resolución de problemas geográficos, el SIG abarca ideas sobre cómo usar la cognición para comprender las configuraciones y percepciones espaciales. Por lo tanto, SIG se ha centrado en tres objetivos principales: adquirir información geográfica, estudiar objetos geográficos y sus relaciones y explorar reglas geográficas avanzadas que determinan el comportamiento espacio-temporal (Gitis & Derendyaev, 2019). Es muy eficiente aplicar SIG en el análisis dinámico espacial en algunas actividades relacionadas como la evaluación rápida de pérdidas posteriores al terremoto y la ayuda en casos de desastre. El SIG se ha utilizado para la prevención de desastres sísmicos durante más de 20 años.

Los SIG pueden encontrar su lugar en casi todos los campos de estudio. En la evaluación de peligros y riesgos sísmicos (y de todos los tipos), la necesidad de considerar la ubicación está incorporada en las definiciones mismas de los términos. Pero los SIG pueden hacer mucho más que proporcionar medidas de distancia y soluciones para la cartografía. El SIG tiene la capacidad de almacenar, ordenar, recuperar, clasificar, manipular, analizar y presentar enormes datos e información espacial de una manera sencilla.

Para desarrollar una zonificación sísmica razonable específica del sitio utilizando datos geoespaciales no correlacionados y distribuidos de manera irregular, el sistema de información geotécnica basado en SIG es esencial. El modelado espacial apropiado y la estimación empírica de la respuesta sísmica que considera la incertidumbre espacial de los conjuntos de datos geoespaciales debe realizarse antes del diseño sísmico o la evaluación del desempeño del área objetivo.

1.6.5 Depósitos aluviales en llanuras

Las llanuras y penillanuras son áreas adyacentes a ríos, la diferencia entre unas y otras son los tipos de morfología del terreno originados por la erosión hídrica. Esta erosión produce segregación, transporte, y sedimentación de partículas originando depósitos sedimentarios con perfiles estratigráficos muy heterogéneos y complejos, en direcciones horizontal y vertical.

Generalmente en estos sitos el subsuelo presenta grandes variaciones en el espesor de las capas, tipos de materiales, propiedades físicas y propiedades mecánicas, principalmente su resistencia al esfuerzo cortante y su compresibilidad (Cuanalo, et al., 2016).

13

Los suelos depositados por procesos fluviales se sedimentan fácilmente y sus granos tienen poca probabilidad de compactarse, de modo que se licuaran con facilidad (Ishihara, 1978).

Categorías	Topografía	Potencial de licuación
A	Cama actual del río, cama vieja del río, pantanos, tierras reclamadas, tierras bajas.	Licuable
В	Abanicos, dunas de arena, deluvio, playas y otras Ilanuras.	Probablemente licuable
С	Terrazas, colinas, montañas	No licuable

Tabla 1.2 Unidades geomorfológicas que se tienen en cuenta en la susceptibilidad de licuación (lwasaki et al 1982).

CAPÍTULO 2

2. METODOLOGÍA

Flujograma 2.1 Metodología de análisis de riesgo sísmico propuesto

El presente trabajo de investigación se encuentra dentro del ámbito No experimental, con enfoque cuantitativo y exploratorio, por lo cual la información obtenida in situ no alterará las condiciones existentes.

El estudio se desarrollará en dos fases:

La Fase 1 comprenderá la peligrosidad sísmica aplicando una zonificación geotécnica considerando la geología local, geomorfología, caracterización geotécnica, análisis de respuesta de sitio y microzonificación, evaluando el potencial de licuación del área bajo un escenario sísmico propuesto.

La Fase 2 abarcará la estimación de la vulnerabilidad evaluando el potencial de licuación del área de estudio y luego estimar el desempeño estructural post sismo relacionando a daños de derivas de entrepisos.

2.1 Fase 1: Análisis de Peligrosidad sísmica mediante Zonificación Geotécnica

2.1.1 Geología Regional

Con referencia en el mapa geológico (Figura 2.1), Manta se encuentra situada principalmente en la formación Tablazo desde la parte sur hasta el límite costero norte y desde la parte central con dirección al este; la formación San Mateo se ubica desde la parte central con dirección oeste; y, la formación Tosagua tiene un afloro en la parte noreste de la región.

2.1.1.1 Formación Tablazo

Es la formación más extensa dentro del área, su litología está compuesta por coquinas conglomeráticas, calcarenitas bioclásticas gruesas a finas y areniscas calcáreas mal clasificadas de color marrón claro, forma estratos sub-horizontales. Su edad geológica es del Cuaternario Pleistoceno.

2.1.1.2 Formación San Mateo

Su litología está compuesta por una sucesión de conglomerados en la parte inferior sucedida por conglomerados y areniscas finas a gruesas mal clasificadas, con vetas de lignito su edad geológica corresponde al Eoceno Medio Superior

2.1.1.3 Formación Tosagua

Esta formación yace entre las formaciones Tablazo y San Mateo, está compuesta de lutitas macizas a estratificadas, posee intercalaciones centimétricas y vetas delgadas de yeso. Su edad geológica corresponde al Oligoceno Inferior-Mioceno Inferior

Figura 2.1 Hoja Geológica de Manta (Instituto Nacional de Investigación Geológica Minero Metalúrgico, 1970)

2.1.2 Geología Local

La geología local del Área de estudio se encuentra en una formación de planicie aluvial que se originó sobre las formaciones Tablazo y Tosagua mediante el depósito de material sedimentario que son producto del arrastre aluvial por la acción de la corriente fluvial del Rio Manta. Una planicie aluvial se origina generalmente por la sedimentación y el movimiento del cauce del rio a lo largo del tiempo.

En el área de estudio se encuentran materiales como arena limosa principalmente, arenas mal graduadas, limos y arcillas.

2.1.3 Geomorfología

Dentro de la composición geomorfológica se identifica la amplitud del paleocauce en dirección paralela al cauce actual del rio con cotas entre los 5 y 7 msnm y elevaciones en sentido perpendicular que ascienden hasta los 80 msnm, originando un efecto de valle angosto como se muestra en la Figura 2.2 donde resalta el relieve característico del área de estudio.

Figura 2.2 Mapa de elevaciones alrededor del área de estudio

2.1.4 Zonificación Sísmica Regional

Tres principales estructuras sismogénicas pueden ser descritas para la trinchera de Ecuador (Ilamada así a la zona de subducción), desde el segmento meridional al septentrional: la costa sur – Golfo de Guayaquil, la costa central y la costa norte. En este último segmento de estructura sísmica, el 31 de enero de 1906 frente a la costa de Esmeraldas (Ecuador) y Tumaco (sur de Colombia) se reportó el séptimo terremoto más

fuerte del planeta, con magnitud Mw 8,8. Posteriores fuertes terremotos acontecieron en 1958 (Mw 7,7) y 1979 (Mw 8,2).

La estructura sismogénica de la costa central del Ecuador (referente al sitio de Jama) tiene registros históricos de fuertes terremotos acontecidos en los últimos 120 años, iniciando con el terremoto del 3 de mayo de 1896 (Mw 7,1), 1 de junio de 1907 (Mw 7,4), 14 de mayo de 1942 (Mw 7,9), 16 de enero de 1956 (Mw 7,4), 4 de agosto de 1998 (Mw 7,1) y 16 de abril de 2016 (Mw 7,8). La recurrencia sísmica para esta estructura sismogénica es cada 20 años aproximadamente. La estimación de la máxima magnitud considerando los 165 kilómetros de longitud estructural podría alcanzar terremotos en el orden de 8 a 8.3 grados de magnitud (Chunga, et al., 2019).

Figura 2.3 Mapa de pendientes simplificado e isolíneas de PGA-h en el área del inventario de deslizamientos cosísmicos de 2016. La posición de la estrella indica el epicentro del terremoto de Pedernales (Mw 7.8) del 16 de abril de 2016.

Fuente: Chunga et al., 2019

2.1.5 Ensayos Geomecánicos

2.1.5.1 Trabajos de Campo

Se realizaron 5 perforaciones en áreas estratégicas, las mismas que servirán para realizar un perfil estratigráfico transversal al cauce de la planicie aluvial y otro perfil de forma longitudinal para determinar la caracterización geotécnica del lugar.

En estas perforaciones se realizaron ensayos de penetración estándar (SPT), cada 1,5 metros de avance de profundidad, hasta los 6 metros. Luego cada 3 metros de avance de profundidad. El ensayo consiste en contar el número de golpes (N) que se requiere para penetrar el tubo 30 centímetros, con un peso de 140 libras y altura de caída libre de 75 centímetros.

Código	Coordenadas		Cota	Profundidad
courgo	Sur	Este	oota	Tiorunalaad
SPT-1	9893881	529768	8,1	18
SPT-2	9893800	529902	6,3	27
SPT-3	9893593	530221	6,7	16,5
SPT-4	9893479	529603	8,1	18
SPT-5	9893767	529983	6,2	18

Tabla 2.1 Ubicación de ensayos SPT

2.1.5.2 Trabajos de laboratorio

Empleando las recomendaciones de las normas ASTM, se obtienen las muestras para el laboratorio para los siguientes ensayos:

-	Contenido de Agua:	ASTM D-2216
-	Granulometría:	ASTM D-1140
-	Límites de Atterberg:	ASTM D-4318
-	Clasificación de suelos:	ASTM D-2487

Figura 2.4 Ubicación de ensayos SPT

Figura 2.5 Toma de muestra para ensayo SPT-2
	PROYECTO: TESIS MAESTRIA GEO LOCALIZACIÓN: Av. La Cultura - Barrio				DTECNI o 15 de	A - ESP Septie	OL mbre				
	ASUNTO:		ESTUD	IO DE S	SUELOS						
	FECHA:	2 de oc	tubre d	e 2020							
	RESUMEN	DEL REC	GISTRO	ESTR/	ATIGRÁF	ICO					
PERFORACIÓN :P-1 (529983E, 9893767N)COTA DE REFERENCIA :N =COTA DE LA BOCA DE LA PERFORACIÓN :N = 8.10 NIVEL FREATICO :N = 4.20											
MUESTRA	PROFUNDIDAD	G	RANULO	OMETR	AL	LIMIT	es de	CLASIFI		%	N =
#	m.	# 4	% QUE #10	PASA	#200	ATTE	RBERG	S.U.C.S.	Descripción	w	Golpes.,
											prot
P-1-1	SPT 1,50 m	68.17	55.41	39.55	18.87	-	NP	*SM	Arena limosa con grava	49.60	1,5m./ 13
P-1-2	SPT 3,00 m	88.98	70.23	58.60	42.21	-	NP	SM	Arena limosa	3.65	3m./ 3
P-1-3	SPT 4,50 m	100.00	99.44	98.59	90.97	76.17	44.09	СН	Arcilla alta plasticidad	60.97	4,5m./ 5
P-1-4	SPT 6,00 m	100.00	99.41	96.90	20.36	-	NP	SM	Arena limosa	37.51	6m./ 21
P-1-5	SPT 9,00 m	100.00	96.06	93.13	26.85	-	NP	SM	Arena limosa	31.71	9m./ 41
P-1-6	SPT 12,00 m	97.38	95.54	93.68	56.68	-	NP	ML	Limo baja plasticidad arenoso	34.03	12m./ 45
P-1-7	SPT 15,00m	98.62	95.14	84.45	11.45	-	NP	SP - SM	Arena mal graduada con limo	27.88	15m./ 50
P-1-8	SPT 18,00m	86.98	79.35	65.10	4.16	-	NP	SP	Arena mal graduada	26.50	18m./ 50

Figura 2.6 Resumen registro estratigráfico SPT-1

En la Figura 2.6 se ilustran los valores obtenidos según el ensayo de penetración estándar de una de las perforaciones (SPT-1) el número de golpes en función de su profundidad; se indican también los parámetros obtenidos en laboratorio, tales como contenido de humedad, granulometría, límites de Atterberg y clasificación de suelos según SUCS. La Figura 2.7 muestra gráficamente el número de golpes obtenidos respecto a la profundidad. Los parámetros obtenidos de forma similar de los ensayos restantes se muestran en la sección desde Anexo 1 hasta Anexo 5.

PROYECT LOCALIZ/ PERFORA FECHA: UBICACIÓ	"O: ACIÓN: ACIÓN : ĎN:	TESIS M Av. La C P-1 2 de oct (529983B	IAESTRIA (Cultura - Ba ubre de 20 E, 9893767N	GEOTECNIA - ESPOL rrio 15 de Septiembre 20 I)		
СОТА		ESTRATIO		DESCRIPCIÓN	SPT	ENSAYO DE PENETRACIÓN
	(m)	SUCS	FREÁTICO		Golpes./PIE	ESTÁNDAR (SPT)
						0 10 20 30 40 50
6.60	1.50	*SM		Arena limosa con grava	1,5m./ 13	
5.10	3.00	SM		Arena limosa	3m./ 3	1.50
3.60	4.50	СН		Arcilla alta plasticidad	4,5m./ 5	3.00
2.10	6.00	SM		Arena limosa	6m./ 21	6.00
- 0.90	9.00	SM	NF	Arena limosa	9m./ 41	7.50
		м		Limo baia plasticidad arenoso		10.50
- 3.90	12.00				12m./ 45	12.00
		SP - SM		Arena mal graduada con limo		13.50
- 6.90	15.00				15m./ 50	15.00
		SP		Arena mal graduada		16.50
- 9.90	18.00				18m./ 50	18.00

Figura 2.7 Registro de perforación SPT-1

2.1.6 Ensayos Geofísicos

2.1.6.1 Análisis multicanal de ondas superficiales MASW

La técnica de Análisis Multicanal de Ondas Superficiales "MASW" es un método que analiza las propiedades de propagación de las ondas sísmicas superficiales "Vs", principalmente las Ondas Rayleigh, las cuales se propagan horizontalmente desde la fuente emisora hasta los geófonos receptores. Midiendo los tiempos de retorno de las ondas generadas en superficie y reflejadas por las discontinuidades del terreno.

Debido a los requerimientos del presente estudio se calculan los perfiles que determinen la profundidad de cizalla hasta los 30 metros de seguridad V_{S30} . El procedimiento utilizado es el descrito por el método multicanal de ondas superficiales (MASW).

Figura 2.8 Ensayo sísmico de refracción

MASW es un método sísmico que se basa en la detección de un frente de ondas elásticas propagadas a través del subsuelo que se investiga y detectadas en superficie mediante geófonos con el fin de obtener una imagen 1D o 2D del subsuelo que se investiga en base a las propiedades elásticas de los materiales. En medios estratificados la velocidad de propagación depende de la frecuencia, que se calcula como una dispersión.

La fuente de ondas elásticas puede ser artificial producida por un martillo, explosivo, etc., (métodos directos) o también puede ser natural producida por el ruido ambiental (métodos indirectos).

Los registros de campo de la señal sísmica fueron analizados con ayuda de los programas computacionales "PICKWIN", para el análisis y ubicación de la geometría y disparos del estudio. Y "Wave-Eq (Surface Wave Analysis)" para la inversión "velocidad de fase frecuencia 2D", el "modelo de velocidad de onda Vs", el "perfil de cizalla", y el valor "V_{S30}".

En la Tabla 2.2 se presenta el tipo de análisis realizado para cada línea sísmica proyectada:

					AN	ÁLISIS
Sitio	Línea Sísmica	Config.	No. Canales	Longitud (M)	Vs	No. Registros
Terreno del	Ls1	Lineal	12,0	44,00	Activo	12
"Barrio 15 de Septiembre" Línea 1, SPT 3	Ls2	Lineal	12,0	44,00	Pasivo	20
Terreno del	Ls3	Lineal	12,0	55,00	Activo	12
"Barrio 15 de Septiembre" Línea 2, SPT 4	Ls4	Lineal	12,0	55,00	Pasivo	20
Terreno del	Ls5	Lineal	12,0	55,00	Activo	12
"Barrio 15 de Septiembre" Línea 3. SPT 1	Ls6	Lineal	12,0	55,00	Pasivo	20
Terreno del	Ls7	Lineal	12,0	110,00	Activo	11
"Barrio 15 de Septiembre" Línea 4, SPT 2	Ls8	Lineal	12,0	110,00	Pasivo	20

Tabla 2.2 Descripción del análisis de los distintos lugares a realizarse el estudio.

Se realizaron 4 sondeos de exploración geofísica por medio del análisis multicanal de ondas superficiales según lo recomendado en la norma ASTM D5777-00. El sitio, ubicación de los geófonos inicial y final, longitud de línea, coordenadas se reportan en la Tabla 2.3.

		UBICACION						
		ANÁ	LISIS VS	COORDENADAS				
SITIO	LÍNEA SÍSMICA	ÍNEA SÍSMICA GEÓFONO UBICACIÓN (m)		LATITUD	LONGITUD			
Terreno del "Barrio 15 de		G1	0	0°57'46.09"S	80°43'41.54"W			
Septiembre" Línea 1, SPT 3	LS1-LS2	G12	44,00	0°57'45.31"S	80°43'42.44"W			
Terreno del "Barrio 15 de		G1	0	0°57'48.86"S	80°44'0.97"W			
Septiembre" Línea 2, SPT 4	LS3-LS4	G12	55,00	0°57'48.71"S	80°44'19.92"W			
Terreno del "Barrio 15 de	LS5-LS6	G1	0	0°57'35.22"S	80°43'57.47"W			
Septiembre" Línea 3, SPT 1		G12	55,00	0°57'36.29"S	80°43'56.03"W			
Terreno del "Barrio 15 de		G1	0	0°57'40.49"S	80°43'50.62"W			
Septiembre" Línea 4, SPT 2	LS7-LS8	G12	110,00	0°57'38.12"S	80°43'53.44"W			

Tabla 2.3 Ubicación y longitud de los sondeos sísmicos.

Tipo de Perfil	Descripción	Definición				
Α	Perfil de roca competente.	$V_S \ge 1500 \ m/_S$				
В	Perfil de roca de rigidez media.	$1500 \ m_{s} > V_{s} > 760 \ m_{s}$				
с	Perfiles de suelos muy densos o roca blanda, que cumplan con el criterio de velocidad de la onda de cortante.	760 $m_{/S} > V_S > 360 m_{/S}$				
	Perfiles de suelos muy densos o roca blanda, que cumplan con cualquiera de los dos criterios.	$N \ge 50$ $S_u \ge 100 \ kPa$				
D	Perfiles de suelos rígidos que cumplan con el criterio de velocidad de la onda de cortante.	$360 \ m/_{S} > V_{S} > 180 \ m/_{S}$				
-	Perfiles de suelos rígidos que cumplan	50 > N > 15				
	cualquiera de las dos condiciones.	$100 \ kPa > S_u > 100 \ kPa$				
	Perfil que cumpla el criterio de velocidad de la onda de cortante.	$V_{S} < 180 \ m/_{S}$				
Е		IP > 20				
	Perfil que contiene un espesor total H	$w \ge 40\%$				
	mayor de 5 m de archias blandas.	$S_u > 50 \ kPa$				
	Los perfiles de suelo tipo F requier explícitamente en el sitio por un ingeniero siguientes subclases:	en una evaluación realizada geotecnista. Se contemplan las				
	F1—Suelos susceptibles a la falla o colapso causado por la excitación sísmica, tales como; suelos licuables, arcillas sensitivas, suelos dispersivos o débilmente cementados, etc.					
	F2—Turba y arcillas orgánicas y muy org arcillas orgánicas y muy orgánicas).	gánicas ($H > 3m$ para turba o				
F	F3—Arcillas de muy alta plasticidad ($H > 7.5 m$ con índice de Plasticidad $IP > 75$).					
	F4—Perfiles de gran espesor de arcillas de rigidez mediana a blandas $(H > 30m)$.					
	F5—Suelos con contrastes de impedancia α ocurriendo dentro de los primeros 30 m superiores del perfil de subsuelo, incluyendo contactos entre suelos blandos y roca, con variaciones bruscas de velocidades de					
	ondas de corte.					
	F6—Rellenos colocados sin control ingeni	eril.				

Tabla 2.4 Clasificación de los perfiles de suelo NEC-15

La Tabla 2.4 presenta la clasificación de tipos de perfiles según los rangos de velocidades de onda de corte (V_{S30}) según la Norma Ecuatoriana de la Construcción (NEC, 2015). La Figura 2.9 muestra los perfiles de onda de corte obtenidos para cada línea sísmica.

Figura 2.9 Perfiles de velocidades de onda de corte obtenidas

Figura 2.10 Ensayo de refracción sísmica LS7-LS8

2.1.6.2 Método de Nakamura o razón espectral

Este método consiste en grabar el ruido sísmico ambiental utilizando un sismómetro, conocido como velocímetro triaxial de banda ancha. Se considera a este procedimiento una prueba pasiva, al no necesitar de una fuente sísmica artificial, tal como explosivos. Se miden los componentes vertical y horizontal del ruido sísmico inducido por el viento.

Al relacionar las componentes horizontales y verticales produce una señal compuesta que es procesada. El análisis de las mediciones de este tipo permite identificar los modos de vibración del suelo además de identificar la frecuencia fundamental de esta vibración. Este método determina el periodo fundamental o predominante del suelo, a través del método de relación espectral H/V. El equipo utilizado fue: SARA GEOBOX, con sensores de 4.5 Hz de sensibilidad.

	COORD	ENADAS	TIEMPO GRABACIÓN		Frecuencia	Periodo natural	
CÓDIGO	SUR	ESTE			fundamental f₀ (Hz)	del sitio T₀ (s)	
NK-1	9893881	529768	10	minutos	1.710	0.585	
NK-2	9893800	529902	10	minutos	1.367	0.736	
NK-3	9893593	530221	10	minutos	1.587	0.630	
NK-4	9893499	529607	5,23	minutos	1.367	0.736	

Tabla 2.5 Ubicación ensayos Nakamura

Figura 2.11 Ensayo método de Nakamura

Figura 2.12 Valores obtenidos de frecuencias fundamentales de vibración

		uii 2000)	
Clases de sitio	Periodo natural del sitio T ₀ (s)	Promedio de las velocidades de onda cortante (m/s)	Equivalencia con la clasificación del NEHRP
S I (roca/suelo rígido)	$T_0 < 0,2$	Vs30 > 600	A+B
S II (suelo firme)	$0,2 = T_0 < 0,4$	300 < Vs30 = 600	С
S III (suelo medio)	$0,4 = T_0 < 0,6$	200 < Vs30 = 300	D
S IV (suelo blando)	$T_0 = 0,6$	Vs30 = 200	Е

Tabla 2.6 Correspondencia entre clases de sitio T₀ y rangos de velocidades Vs (Zhao et al. 2006)

Figura 2.13 Distribución espacial de ensayos Geofísicos

2.1.7 Análisis de respuesta de sitio

2.1.7.1 Espectro objetivo

Con base a la información obtenida en los ensayos geomecánicos y geofísicos se realizan los análisis de respuesta de sitio con el método lineal equivalente (EQL), seleccionando registros que sean compatibles con el espectro en roca tipo B de la Norma

Ecuatoriana de la Construcción (NEC-15) escalados a un periodo entre 0,1 a 2,5 segundos, considerando un escenario gobernante un sismo de diseño de magnitud entre 7,8 a 8,2 (Mw) y distancia del sitio la fuente de 40 a 80 kilómetros (R_{rup}).

La Figura 2.14 muestra el espectro de la norma NEC-15 para un periodo de retorno de 475 años correspondiente a un sismo raro con 10% de probabilidad de excedencia en 50 años y 5% de amortiguamiento.

Los sismos seleccionados se descargaron de la plataforma del Centro de Desarrollo de Ingeniería Sísmica del Pacífico (PEER) base de datos NGA-West2. Dicha plataforma posee gran conjunto de sismos corticales superficiales registrados en todo el mundo.

Figura 2.14 Espectro en roca tipo B para un periodo de retorno de 475 años

Figura 2.15 Espectros seleccionados

La Figura 2.15 ilustra los registros seleccionados luego de ser escalados al espectro de la norma NEC-15. La Tabla 2.7 muestra los sismos seleccionados de 8 registros con características similares. A manera de ejemplo se presenta los registros tiempo historia del sismo ocurrido en el Ecuador (Figura 2.16) considerado para el análisis, los resúmenes de los registros seleccionados y características se los presenta en Anexos.

Registro sismico Manta Ecuador 2016-04-16

Figura 2.16 Registros de tiempo historia de uno de los sismos considerados para el análisis.

Registro	Estación	Dirección	Mw	Rrup (km)	PGA (g)	PGV (m/s)	F. E.
Equador 2016 04 16		E-W	70	76	0.40	0.28	1.0
Ecuador 2016-04-16	AMINTO	N-S	1.0		0.52	0.22	
Chilo 2015 00 16	El Dodrogol	E-W	8.2	59	0.44	0.2	1 5
Chile 2015-09-16	El Fedlegal	N-S			0.52	0.24	1.5

Tabla 2.7 Resumen de Sismos seleccionados

Registro	Estación	Dirección	Mw	Rrup (km)	PGA (g)	PGV (m/s)	F. E.
IQUIQUE 2014-03-	Hosp. Regional	E-W	8.1	41	0.35	0.24	1.6
01	DR. E. IQQ	N-S			0.43	0.34	
IQUIQUE	HUMBERSTONE	E-W	81	49	0.51	0.41	2.0
Humb.2014-03-01		N-S	••••		0.48	0.42	1.0

2.1.7.2 Conformación de modelos de análisis de respuesta de sitio

Los perfiles de suelos empleados se los realiza con los resultados de los ensayos anteriores (SPT realizados, líneas sísmicas MASW y método Nakamura) los perfiles para ARS-1, ARS-2, ARS-3 se los ha realizado de manera transversal al cauce del rio, mientras que ARS-4 de manera longitudinal la Figura 2.17 ilustra en el área de estudio la ubicación de los perfiles geotécnicos.

Figura 2.17 Ubicación de perfiles geotécnicos para análisis de respuesta de sitio

CÓDIGO	OOORDEINADAG				
	SUR	ESTE			
ARS-1	9893881	529768			
ARS-2	9893800	529902			
ARS-3	9893593	530221			
ARS-4	9893479	529603			

 Tabla 2.8 Ubicación geográfica de los perfiles de análisis de respuesta de sitio (ARS)

 COORDENADAS

• Modelo GQ/H

Basados en curvas hiperbólicas para controlar la resistencia al corte el método lineal equivalente corresponde a modelos General Quadratic / Hyperbolic Model (GQ/H) que permite definir la resistencia al corte en la falla mientras que aún proporciona la flexibilidad que presenta el comportamiento del suelo a pequeñas deformaciones. Mediante la incorporación de un factor de reducción de amortiguamiento la rigidez descarga-recarga utiliza un criterio Non-Masing que se adapta a las curvas de amortiguamiento medidas en laboratorios.

Con la aplicación basado en modelo GQ/H el desarrollo de los análisis de respuesta de sitio con el método lineal equivalente (EQL) se lo realiza mediante el programa DEEPSOIL v7 (Groholski, et al., 2016), que evalúa la respuesta en sistemas discretizados, homogéneos, visco elástico de extensión infinita. Usando para cada capa discretizada parámetros geomecánicos de entrada tales como peso volumétrico, velocidad de onda, resistencia al corte, coeficiente de uniformidad, ángulo de fricción, etc. Ingresando los registros escalados previamente seleccionados con un dominio de frecuencia de 20 iteraciones se obtiene los valores máximos en superficie.

2.2 Fase 2: Vulnerabilidad sísmica

2.2.1 Análisis del potencial de licuación

Una de las causas de daño a las estructuras durante los terremotos es la ocurrencia de licuación en depósitos de arena saturados. La arena suelta tiende a contraerse bajo la carga cíclica impuesta por la sacudida sísmica, que puede transferir el esfuerzo normal de la matriz de arena al agua en los poros si el suelo está saturado y en gran medida no puede drenar durante la sacudida. El resultado es una reducción del esfuerzo de

confinamiento efectivo dentro del suelo y una pérdida asociada de resistencia y rigidez que contribuye a las deformaciones del depósito de suelo. (I. Idriss y R. Boulanger, 2012)

Realizadas las exploraciones en campo del subsuelo y los respectivos ensayos necesario de laboratorio finalmente se procede a realizar los análisis cuantitativos de potencial de licuación. Se descartan las capas donde el suelo no está saturado. Bajo la metodología propuesta por Seed & Idriss se considera los siguientes pasos para determinar el factor de seguridad contra la licuación:

- Razón de esfuerzo cíclico (CSR)
- Corrección de numero de golpes del ensayo SPT(NSPT)
- Corrección de número de golpes equivalente por presión de confinamiento
- Corrección por contenido de finos
- Razón de resistencia cíclica (CRR)
- Factor de seguridad contra la licuación (FSliq)

2.2.1.1 Factor de seguridad contra la licuación

Los factores de seguridad (FS_{liq}) evalúan a lo largo de la profundidad del perfil usando datos de aceleración máxima horizontal del terreno en superficie (PGA), magnitud del movimiento sísmico (Mw), el número de golpes (N_{SPT}), contenido de finos (FC), limite líquido (LL) y distribución granulométrica. (Seed & Idriss, 1971).

El factor de seguridad se lo determina mediante:

$$FS_{liq} = \frac{CRR_{M,\sigma'v}}{CSR_{M,\sigma'v}}$$
(2.1)

Donde:

*FS*_{lia} Factor de seguridad contra la licuación

 $CRR_{M,\sigma'v}$ Razón de resistencia cíclica corregido para magnitud y esfuerzo efectivo

 $CSR_{M,\sigma'_{v}}$ Razón de esfuerzo cíclico corregido para magnitud y esfuerzo efectivo

Una capa de suelo es licuable con $FS_{liq} < 1$ y no licuable con $FS_{liq} > 1$ incluso una capa de suelo puede ser licuable con $FS_{liq} > 1$ (Seed & Idriss, 1982) consideraron que un valor de FS_{liq} entre 1.25 y 1.5 para una capa de suelo es una capa no licuable.

La expresión para el cálculo de CSR de acuerdo con lo propuesto por (Seed & Idriss, 1971) es la siguiente:

$$CSR_{M,\sigma'v} = 0.65 \frac{\sigma_v}{\sigma'v} \frac{a_{max}}{g} r_d$$
(2.2)

Donde:

- CSR $_{M,\sigma'v}$ CSR para una magnitud M y esfuerzo de sobrecarga vertical efectivo $\sigma'v$
 - 0.65 Factor de ponderación, introducido por Seed, para calcular el número de ciclos de esfuerzo uniforme requerido para producir el mismo aumento de presión de poros de agua que un movimiento de terreno irregular de un sismo
 - σ_v Esfuerzo de sobrecarga vertical total
 - σ'_v Esfuerzo de sobrecarga vertical efectivo

α_{max} Aceleración horizontal pico en el terreno como coeficiente de la gravedad (PGA)

rd Coeficiente de reducción de esfuerzo calculado por la siguiente ecuación: $r_d = exp[\alpha(z) + \beta(z) \cdot M]$

$$\alpha(z) = -1.012 - 1.126 \sin\left(\frac{z}{11.73} + 5.133\right)$$

$$\beta(z) = 0.106 - 0.118 \sin\left(\frac{z}{11.28} + 5.142\right)$$

Donde:

- M Magnitud de momento del sismo
- z Profundidad desde el nivel de terreno

La expresión para el cálculo de CRR propuesta es la siguiente:

$$CRR_{M,\sigma'_{v}} = CRR_{M=7.5,\sigma'_{v}=1} \cdot MSF \cdot K_{\sigma}$$
(2.3)

Donde:

CRR $_{M, \sigma'v}$ CRR corregida para una magnitud M y esfuerzo de sobrecarga vertical efectivo $\sigma'v$

 $CRR_{M=7.5,\sigma'v=1}$ CRR normalizada a una magnitud M=7.5 y esfuerzo de sobrecarga vertical efectivo $\sigma'v=1$ *atm.* Se lo calcula por medio de la siguiente expresión:

$$CRR_{M=7.5,\sigma'v=1} = exp\left(\frac{(N_1)_{60CS}}{14.1} + \left(\frac{(N_1)_{60CS}}{126}\right)^2 - \left(\frac{(N_1)_{60CS}}{23.6}\right)^3 + \left(\frac{(N_1)_{60CS}}{25.4}\right)^4 - 2.80\right)$$

Donde:

(N1)60cs (N1)60 corregido por contenido de finos

MSF Factor de escala de magnitud (*MSF–Magnitud Scaling Factor*) utilizado para tener en cuenta los efectos de duración (es decir, el número y las amplitudes relativas de los ciclos de carga). Se lo calcula con la siguiente ecuación:

$$MSF = 1 + (MSF_{max} - 1) \left(8.64 exp \left(-\frac{M}{4} \right) - 1.325 \right)$$

Donde:

MSF_{max} Factor de escala de magnitud máximo, calculado por:

$$MSF_{max} = 1.09 + \left(\frac{(N_1)_{60cs}}{31.5}\right)^2 \le 2.2$$

 K_{σ}

Factor de corrección por esfuerzo de sobrecarga vertical efectivo

$$K_{\sigma} = 1 - C_{\sigma} ln \left(\frac{\sigma_{\nu}'}{P_a}\right) \le 1.1$$

Donde:

Pa Presión atmosférica de 1 atm. equivalente a 101 kPa

 C_{σ} Coeficiente calculado por medio de la siguiente expresión:

$$C_{\sigma} = \frac{1}{18.9 - 2.55\sqrt{(N_1)_{60CS}}} \le 0.3$$

2.2.1.2 Índice de potencial de licuación (LPI)

El factor de seguridad contra la licuación FS_{liq} muestra el potencial de licuación, no muestra el grado de severidad de licuación (Iwasaki, Tatsuko, & Yasuda, 1987) propusieron la siguiente expresión para determinar el potencial de licuación

$$LPI = \int_0^{20} F(z) \cdot w(z) dz \tag{2.4}$$

Donde:

 $\begin{array}{ll} LPI & \mbox{indice de potencial de licuación} \\ Z & \mbox{Profundidad hasta el punto medio de la capa de suelo} \\ F(z) & \mbox{Factor de severidad calculado de la siguiente manera} \\ F(z) = 1 - FS_{liq} \ para \ FS_{liq} < 1 \\ F(z) = 0 \ para \ FS_{liq} \geq 1 \\ w(z) & \mbox{Factor de ponderación} \\ w(z) = 10 - 0.5z \ para \ z \leq 20 \ m. \end{array}$

 $w(z) = 0 \ para \ z > 20 \ m.$ Incremento diferencial de la profundidad

Tabla 2.9 Clasificación de potencial de licuación en base a LPI

	Potencial de
LFI	licuación
0	Muy baja
0 <lpi<5< td=""><td>Moderada</td></lpi<5<>	Moderada
5 <lpi<15< td=""><td>Alta</td></lpi<15<>	Alta
LPI > 15	Severa

La Tabla 2.9 muestra la clasificación propuesta por (Sonmez, 2003).

2.2.1.3 Número de severidad de licuación

De forma similar al potencial de licuación, el número de severidad de licuación se estima utilizando un factor de ponderación con respecto a la profundidad (Van Ballegoy et al, 2014) proponen la siguiente expresión para el cálculo del LSN:

$$LSN = 1000 \int_0^{z_{max}} \frac{\varepsilon_v}{z} \cdot dz$$
(2.5)

Donde:

LSN	Número de severidad de licuación
Z	Profundidad hasta el punto medio de la capa de suelo
ε_v	Deformación volumétrica de re consolidación
dz	Incremento diferencial de la profundidad

LSN	Rendimiento típico
0- 10	Poca o nula
10 - 20	Baja
20 - 30	Moderada
30 - 40	Moderada a severa
40 - 50	Alta
>50	Daños severos

Tabla 2.10 Clasificación de potencial de licuación en base a LSN

La Tabla 2.10 presenta la clasificación propuesta por (Tonkin & Taylor, 2013).

2.2.1.4 Índice de desplazamiento lateral

Consiste en cuantificar el esparcimiento lateral que ocurre durante la licuación. Para el cálculo bajo el procedimiento de (Idriss & Boulanger, 2008) se tiene la siguiente expresión:

$$LDI = \int_0^{z_{max}} \gamma_{max} \cdot dz \tag{2.6}$$

Donde:

dz Incremento diferencial de la profundidad

 γ_{max} Deformación de cizallamiento máxima estimada por:

$$y_{max} = min\left(y_{lim}, 0.035(2 - FS_{liq})\left(\frac{1 - F_{\alpha}}{FS_{liq} - F_{\alpha}}\right)\right) para \ 2 > FS_{liq} > F_{\alpha}$$
$$y_{max} = y_{lim} para \ FS_{liq} \le F_{\alpha}$$

Donde:

FS_{liq} Factor de seguridad contra la licuación

ylim Deformación de cizallamiento limitante

$$y_{lim} = 1.859 \left(1.1 - \sqrt{\frac{(N_1)_{60cs}}{46}} \right)^3; 0 \le y_{lim} \le 0.5$$

Donde:

(N1)60 corregido por finos

$$F_{\alpha}$$
 Termino modificador de FS_{liq} calculado como:
 $F_{\alpha} = 0.032 + 0.69\sqrt{(N_1)_{60cs}} - 0.13(N_1)_{60cs}; (N_1)_{60cs} \ge 7$

2.2.1.5 Asentamiento Vertical post-licuación unidimensional (S_{V-1D})

Debido a los asentamientos verticales por reconsolidación del suelo ocurren los desplazamientos verticales. Para el cálculo bajo el procedimiento de (Idriss & Boulanger, 2008) se tiene la siguiente expresión:

$$S_{\nu-1D} = \int_0^{z_{max}} \varepsilon_\nu \cdot dz \tag{2.7}$$

Donde:

 $\begin{array}{ll} S_{v-1D} & \text{Asentamiento vertical de reconsolidación en una dimensión} \\ dz & \text{Incremento diferencial de la profundidad} \\ \varepsilon_v & \text{Deformación volumétrica de reconsolidación} \end{array}$

2.2.1.6 Susceptibilidad de suelos finos

A partir de los ensayos SPT previo al conteo de numero de golpes con respecto a su profundidad, el porcentaje de finos (FC) en las muestras determinadas en laboratorio sirven para identificar las capas no licuables, de existir suelos finos tales como limos o arcillas se realizan los ensayos adicionales de:

Límites de AtterbergASTM D 4318Contenido de HumedadASTM D 2216

Para la clasificación de susceptibilidad de licuación para suelos finos (Bray & Sancio, 2006) propusieron:

$$\begin{array}{l} PI \leq 12 \hspace{0.1cm} Y \hspace{0.1cm} \frac{w_c}{LL} > 0.85 \rightarrow Susceptible \\ 12 < PI \leq 18 \hspace{0.1cm} Y \hspace{0.1cm} \frac{w_c}{LL} > 0.8 \rightarrow Moderadamente \hspace{0.1cm} susceptible \\ PI > 18 \hspace{0.1cm} \rightarrow \hspace{0.1cm} No \hspace{0.1cm} susceptible \end{array}$$

Donde:

PI	Índice plástico
W _c	Contenido de humedad

Límite líquido LL

Figura 2.18 Clasificación de susceptibilidad de suelos finos a la licuación.

2.2.2 Vulnerabilidad de Edificaciones

2.2.2.1 Fotogrametría

La fotogrametría está definida como una técnica para obtener mapas y planos de grandes extensiones de terreno por medio de fotografías aéreas. Las buenas prácticas en estudios de riesgo sísmico demandan trabajar con información actualizada, con la finalidad de incrementar la confiabilidad de los resultados obtenidos.

La ortofoto del sector 15 de Septiembre fue obtenida a partir de una campaña de captura de fotografías aéreas, en un área aproximada de 40 hectáreas. El equipo utilizado fue un dron, marca DJI, modelo Mavic-2.

Inicialmente se efectuó la planificación del vuelo, donde se configuraron las rutas, el solapamiento de las imágenes y la altura de trabajo. En las rutas se consideraron la velocidad y dirección del viento, dada su incidencia por la geomorfología del sector. La altura de trabajo fue de 50 metros. Una vez capturadas las fotografías áreas procedimos con su integración en el software del equipo.

Figura 2.19 Características de vuelo dron ortofotos

Figura 2.20 Equipo usado para fotogrametría

Figura 2.21 Levantamiento de la zona de estudio

2.2.2.2 Clasificación de las edificaciones

El sector 15 de Septiembre es primordialmente residencial, aunque cuenta con locales comerciales ubicados a lo largo de la avenida de la Cultura.

Como primer paso se efectuó un censo de las edificaciones existentes para identificar los diseños típicos o predominantes en la zona. En términos generales, se observó que el 3,91% corresponden a viviendas con diseño homologado por el MIDUVI, el 54,03% a viviendas de un nivel y el 16,22% a viviendas de dos niveles. Existe un proyecto habitacional, llamado Villa María Colonial, que tiene casas de dos niveles con diseños homogéneos, las cuales corresponden al 24,83% de las edificaciones. Finalmente, el 1,01% son galpones o naves industriales de usos múltiples.

Por lo expuesto, consideramos para el estudio cinco (5) tipos de edificaciones, denominadas: A, B, C, D y E, lo que representa satisfactoriamente a las construcciones emplazadas en el área de estudio. Lo indicado se resume en la Tabla 2.11:

Tipo	Descripción						
A	Viviendas entregas por el gobierno a través del MIDUVI planta baja						
В	Viviendas de una planta baja realizada por el propietario del solar						
С	Vivienda de una planta alta realizada por el propietario del solar						
D	Vivienda realizada en planes habitacionales (urbanizacion	nes cerradas) de una	222				
	planta alta						
E	Galpones o naves industriales de usos múltiples		9				
		Total	894				

Tabla 2.11 Clasificacion del tipo de edificaciones de la zona de estudio

Figura 2.22 Ubicación espacial del conjunto de edificaciones

Figura 2.23 Vista en 3D de las tipologías de edificaciones

Figura 2.24 Ubicación espacial edificación tipo C

La Figura 2.24 ilustra a manera de ejemplo las ubicaciones espaciales de las edificaciones etiquetadas como Tipo C mientras que la Figura 2.25 muestra las características principales de las edificaciones. Los detalles de las demás edificaciones, así como su ubicación espacial se encuentra en anexo.

Figura 2.25 Ficha de edificación tipo C

2.2.2.3 Respuesta estructural de edificaciones

El diseño basado en comportamiento (Performance-Based Design, PBD) es una filosofía en la cual los criterios de diseño se expresan en términos de un cierto nivel de comportamiento esperado para un determinado nivel de amenaza o peligrosidad. Los niveles de comportamiento están definidos por límites en los esfuerzos, desplazamientos, u otro parámetro de respuesta de la estructura.

En función máxima de la deriva o distorsión máxima (Ghobarah A. N.-A., 1997) define cinco niveles de desempeño. La Tabla 2.12 indica en forma general para cada clasificación y desempeño el nivel de daño.

Distorsión de Piso	Daño	Descripción del daño	Desempeño
γ < 0.002	Sin daño	Sin daño	Sin daño
$0.002 < \gamma < 0.005$	Leve	Grietas ligeramente visibles	Agrietamiento
$0.005 < \gamma < 0.011$	Moderado	Grietas menores de 1 mm	Fluencia del acero
$0.011 < \gamma < 0.023$	Extensivo	Grietas entre 1 y 2 mm	Inicio de mecanismo
$\gamma > 0.023$	Completo	Grietas mayores a 2 mm.	Mecanismo global

Tabla 2.12 Niveles de daño propuesto por Ghobarah

Con el propósito de relacionar la deriva máxima de entrepiso con el cortante basal (Ghobarah A., 2004) presenta la curva de capacidad sísmica resistente de una estructura determinando tres puntos notables, que son el punto del agrietamiento del hormigón, la fluencia del acero y el de capacidad ultima. Con relación a estos tres puntos, en la parte superior de la Figura 2.26 se aprecia también el comportamiento estructural clasificado en: elástico, inelástico y colapso; y, en la parte intermedia el daño clasificado en: menor, reparable, irreparable, severo y extremo. Asimismo, de acuerdo con la recomendación del comité VISION 2000 se presenta también en la parte inferior de la Figura 2.26 el desempeño de la estructura definido como: inmediatamente ocupacional, operacional, seguridad de vida, prevención de colapso y cerca de colapso.

El desempeño esperado en una estructura está en función del sismo de análisis. La Tabla 2.13 presenta valores referenciales propuestos según las definiciones antes mencionadas con respecto a desempeño, descripción de los daños, índice de daños y cuantificación de desempeño.

La norma NEC-15 recomienda que las derivas máximas entre pisos para el diseño no deben exceder de 0.02 para elementos de hormigón armado, estructuras metálicas y de madera y para elementos de mampostería no debe exceder de 0.01.

Figura 2.26 Nivel de daño en función del drift o deriva máxima de piso

Daño	Menor	Reparable	Irreparable	Severo	Extremo
Desempeño	Agrietamiento	Fluencia de acero	Inicio de Mecanismo	Mecanismo Global	Degradación notable de resistencia
Descripción de los daños	Grietas ligeramente visibles	Grietas	Grietas abiertas y pérdida de recubrimiento	Grietas anchas y mayor pérdida de recubrimiento	Deformaciones permanentes visibles
índice de daño	0.05	0.14	0.40	0.60	Mayor de 0.60
Cuantificación de desempeño	Grietas menore de 0.3 mm.	Grietas menores de 1 mm.	Grietas entre 1 y 2 mm	Grietas mayore de 2 mm.	Grietas anchas y profundas. Dilatación de los elementos
Deriva entrepiso	0.005	0.011	0.023	0.046	> 0.060
Deriva global	0.003	0.008	0.018	0.040	> 0.049

Tabla 2.13 Criterios para la evaluación del desempeño estructural

CAPÍTULO 3

3. RESULTADOS

3.1 Fase 1: Análisis de Peligrosidad sísmica mediante Zonificación Geotécnica

3.1.1 Clasificación de suelos según la NEC-15 para perfiles Vs

En la siguiente tabla se indican los resultados de velocidades de ondas de corte calculadas para las cuatro líneas sísmicas levantadas en el área correspondiente al sector 15 de Septiembre, ubicado en el cantón Manta. Se reportan también la clasificación del perfil sísmico del subsuelo según NEC-2015, en donde se puede constatar un perfil tipo E y tres perfiles tipo D.

SITIO	LINEA SISMICA	METODO	VS (m/s)	CLASIFICACIÓN DE PERFIL SÍSMICO DE SUELO
Terreno del		ACTIVO	121.1	
"Barrio 15 de	Ls1	PASIVO	171.0	E
Línea 1, SPT 3		COMBINADO	167.1	
Terreno del		ACTIVO	132.8	
"Barrio 15 de Septiembre"	Ls2	PASIVO	190.0	D
Línea 2, SPT 4		COMBINADO	189.8	
Terreno del		ACTIVO	144.0	
"Barrio 15 de	Ls3	PASIVO	207.6	D
Septiembre [#] Línea 3, SPT 1		COMBINADO	206.3	_
Terreno del		ACTIVO	192.1	
"Barrio 15 de	Ls4	PASIVO	240.8	D
Línea 4, SPT 2		COMBINADO	234.9	

Tabla 3.1 Resultados de velocidades de ondas de corte calculadas para las cuatro líneas sísmicas levantadas en el área

3.1.2 Perfiles Estratigráficos

Se ha considerado evaluar la zona de estudio en dirección transversal al cauce del rio y de manera longitudinal como lo muestra en la Figura 3.1.

Figura 3.1 Ilustración de las direcciones de los perfiles estratigráficos

El perfil estratigráfico de la Figura 3.2 abarca la sección transversal al cauce del rio comprendida aproximadamente de 800 metros de longitud generado a partir de las perforaciones SPT-1, SPT-2, SPT-5 Y SPT-3 y con la contribución de la geofísica LRS-1, LRS-2 Y LRS-3. La resistencia de los suelos estará definida por el número de golpes del ensayo SPT (N₆₀), los parámetros geofísicos definirán la velocidad de corte.

Figura 3.2 Perfil estratigráfico A- A' transversal al cauce del río

Figura 3.3 Perfil estratigráfico B-B' dirección paralela al cauce del río

El perfil estratigráfico de la Figura 3.3 abarca la sección transversal al cauce del rio comprendida aproximadamente de 800 metros de longitud generado a partir de las perforaciones SPT-4, SPT-2, y SPT-P y con la contribución de la geofísica LRS-4 y, LRS-2.

3.1.3 Análisis de respuesta de sitio

Se conformaron los perfiles de suelo en base a las velocidades de onda de corte (Vs) para cada sitio y la caracterización obtenida de los ensayos de penetración estándar (SPT). Los perfiles para este análisis se describen en las Tabla 3.2 a Tabla 3.5.

Material	Profundidad (m)	Espesor (m)	Peso volumétrico (kN/m3)	Vs (m/s)	т (kPa)	Cu	D50 (mm)	Φ(°)	IP
SM	1.50	1.50	15	130	13.26	36.0	0.6	31	-
SM	3.00	1.50	15	130	15.99	55.0	0.2	25	-
СН	4.50	1.50	15	130	20.99	-	-	27	44
SM	6.00	1.50	16	181	35.15	2.4	0.1	35	-
SM	9.00	3.00	16	181	60.05	4.0	0.1	42	-
ML	12.00	3.00	16	181	79.53	9.0	0.1	43	-
SP - SM	15.00	3.00	18	310	107.59	3.1	0.2	44	-
SP	18.00	3.00	18	310	132.71	3.9	0.3	45	-
SM	24.00	6.00	18	310	183.16	4.1	0.3	47	-
SM	27.00	3.00	18	310	208.41	-	-	47	-
SM	30.00	3.00	18	312	233.73	-	-	45	-
SM	33.80	3.80	18	312	265.77	-	-	45	-

Tabla 3.2 Parámetros considerados para el modelo ARS-1

Tabla 3.3 Parámetros considerados para el modelo ARS-2

Material	Profundidad (m)	Espesor (m)	Peso volumétrico (kN/m3)	Vs (m/s)	т (kPa)	Cu	D50 (mm)	Φ(º)	IP
CL	1.50	1.50	17	222	15	-	-	25	8.55
SM	3.00	1.50	17	222	22.91	20	0.25	29	-
SM	6.00	3.00	17	219	35.4	650	5.20	30	-
SM	9.30	3.30	17	219	73.08	3	0.12	41	-
SM	10.50	1.20	17	231	69.81	3	0.12	37	-
SM	12.00	1.50	17	231	73.13	4	0.12	36	5.06
SM	15.00	3.00	17	231	120.35	3	0.14	44	-
SM	18.00	3.00	17	231	141.79	-	-	45	-
SM	24.00	6.00	17	253	100.41	3	0.14	41	19.3
СН	27.00	3.00	17	253	161.06	-	-	33	32.6

Material	Profundidad (m)	Espesor (m)	Peso volumétrico (kN/m3)	Vs (m/s)	т (kPa)	Cu	D50 (mm)	Φ(°)	IP
SM	30.00	3.00	17	253	134.15	4	0.15	45	-
SM	35.60	5.60	17	263	232.16	-	-	45	-

 Tabla 3.4 Parámetros considerados para el modelo ARS-3

Material	Profundidad (m)	Espesor (m)	Peso volumétrico (kN/m3)	Vs (m/s)	т (kPa)	Cu	D50 (mm)	Φ(°)	IP
CL	1.50	1.50	14	105	10.75	-	-	28	14.9
SM	3.00	1.50	14	105	15.45	11	0.2	26	-
SM	4.50	1.50	14	105	26	65	5.2	35	-
CL	6.00	1.50	16	176	36.41	-	-	38	21.8
SM	7.50	1.50	16	176	50.82	3	0.1	43	-
СН	10.50	3.00	16	215	53.85	-	-	36	32.2
ML	13.50	3.00	16	215	88.27	-	-	44	5.57
SM	16.50	3.00	16	215	92.78	4	0.1	40	-
SM	18.00	1.50	17	242	107.1	-	-	41	-
SM	24.00	6.00	17	242	163.39	3	0.14	45	-
SM	27.00	3.00	17	242	184.81	3	0.14	45	-
SM	30.00	3.00	17	242	206.2	-	-	45	-

Tabla 3.5 Parámetros considerados para el modelo ARS-4

Material	Profundidad (m)	Espesor (m)	Peso volumétrico (kN/m3)	Vs (m/s)	т (kPa)	Cu	D50 (mm)	Ф(°)	IP
СН	2.30	2.30	14	128	12.51	200.0	0.0	31	36.3
SC	4.00	1.70	14	128	17.11	42.0	0.1	25	71.6
*SM	5.50	1.50	15	134	22.2	120.0	0.8	27	-
SM	7.00	1.50	15	134	30.51	3.3	0.1	35	-
SM	9.00	2.00	15	134	40	2.9	0.2	42	-
SM	12.00	3.00	16	213	63.79	3.6	0.2	43	-
SM	15.00	3.00	16	213	101.39	3.1	0.2	44	-
SP	18.00	3.00	16	213	122.29			45	-
SM	21.00	3.00	17	272	138.44	4.0	0.1	47	-
SM	24.00	3.00	17	272	161.87			47	-
SM	27.00	3.00	17	272	223.16	3.3	0.1	45	-
SM	37.60	10.60	18	272	273.61	-	-	45	-

Una vez determinados los datos de entrada para la conformación de los perfiles ARS se realizaron los cálculos en Deepsoil para estimar la respuesta dinámica ante la ocurrencia de los sismos seleccionados.

Los valores máximos de PGA, desplazamiento máximo, esfuerzo cortante máximo, relación de esfuerzo cortante máximo-esfuerzo efectivo se muestran desde la Figura 3.4 hasta Figura 3.7 con respecto a la profundidad.

Figura 3.4 Valores máximos obtenidos para el modelo ARS-1

Figura 3.5 Valores máximos obtenidos para el modelo ARS-2

Figura 3.6 Valores máximos obtenidos para el modelo ARS-3

Figura 3.7 Valores máximos obtenidos para el modelo ARS-4

La respuesta del perfil de suelo se ha obtenido en términos de espectros elásticos de aceleración y desplazamiento para un 5% de amortiguamiento estructural. La media geométrica de los espectros de aceleración de respuesta elásticos obtenidos para las componentes horizontales para cada sitio evaluado (ARS) se presentan en la Figura 3.8.

Figura 3.8 Espectros de respuesta esperados para los ARS

En la Figura 3.8 se observa que los espectros de ARS-1 y ARS-3 son equivalentes puesto que se encuentran en los extremos del paleocauce y sufren amplificación espectral o también llamado "efecto de valle angosto", donde las ondas de atenuación sísmicas se amplifican incrementando la aceleración sísmica en los extremos ante la ocurrencia de un sismo.

3.2 Fase 2: Análisis de vulnerabilidad sísmica

3.2.1 Análisis del Potencial de Licuación

Para el análisis del potencial de licuación se usaron los ensayos SPT realizados para este estudio, así como ensayos SPT históricos en el área de interés proporcionados por su autor, Mg. Javier Moreira Roca. La Figura 3.9 muestra el conjunto de ensayos disponibles para el análisis de licuación del área de estudio.

Figura 3.9 Ubicación espacial del conjunto de ensayos SPT disponibles y realizados

El resumen del análisis cuantitativo del potencial de licuación, calculado según el procedimiento (Boulanger & Idriss, 2014) con respecto a las perforaciones SPT del sector 15 de Septiembre, se muestra en la Tabla 3.6.

CDT	Magnitud	PGA	Elevación	Nivel	Licuación	гы		וחו	S (m)	٤V
JEI	Mw	FGA	suelo	freático	Licuación	LFI	LON	LDI	5 (III)	(%)
P1	8.2	0.45	5.50	2.5	SI	16.59	28.09	1.19	0.111	6.42
P2	8.2	0.45	5.60	3.0	SI	14.59	26.016	1.33	0.108	7.19
P3	8.2	0.45	5.65	1.8	SI	15.73	35.626	1.24	0.120	11.28
P4	8.2	0.45	5.70	3.0	SI	12.17	15.887	0.97	0.088	6.42
P5	8.2	0.45	6.80	2.7	SI	16.75	30.848	1.53	0.122	11.03
P6	8.2	0.45	6.70	2.7	SI	16.74	30.24	1.61	0.125	7.58
P7	8.2	0.60	7.15	3.0	SI	15.95	22.818	1.06	0.096	13.19
P8	8.2	0.60	7.30	3.0	SI	12.43	18.023	1.10	0.087	7.89
P9	8.2	0.60	8.15	2.6	SI	13.99	25.780	1.09	0.088	7.31
P10	8.2	0.45	6.60	2.0	SI	10.76	24.343	0.86	0.071	7.10
P11	8.2	0.60	9.60	4.0	NO	0.00	0.000	0.00	0.000	0.00
P12	8.2	0.45	8.00	2.5	SI	12.6	25.269	1.01	0.086	6.91
P13	8.2	0.60	6.20	2.7	SI	13.63	24.597	1.13	0.090	11.84
P14	8.2	0.60	7.00	2.6	SI	6.683	11.121	0.40	0.038	3.15
P15	8.2	0.60	7.05	2.6	SI	8.473	16.795	0.61	0.051	7.04
P16	8.2	0.60	6.50	2.6	SI	14.38	27.143	1.13	0.090	7.35
P17	8.2	0.60	6.50	2.6	SI	8.804	18.663	0.71	0.057	7.76
P18	8.2	0.60	6.90	2.6	SI	8.944	21.103	0.73	0.059	8.29
P19	8.2	0.60	6.80	2.6	SI	8.816	19.423	0.72	0.058	7.74
P20	8.2	0.60	6.75	2.6	SI	8.677	18.226	0.70	0.055	3.77
P21	8.2	0.60	6.70	2.6	SI	7.832	13.736	0.44	0.044	10.12
P22	8.2	0.60	8.10	2.0	SI	10.22	20.659	0.58	0.057	5.07
P23	8.2	0.45	6.30	3.0	SI	18.50	25.422	1.24	0.145	6.96
P24	8.2	0.60	6.70	2.0	SI	7.71	20.499	0.65	0.073	5.39
P25	8.2	0.45	8.10	2.0	SI	19.5	20.822	0.99	0.123	7.56
P26	8.25	0.45	6.20	2.6	SI	19.84	24.643	1.32	0.140	8.27

Tabla 3.6 Resultado de análisis cuantitativo del potencial de licuación

Una vez definidos los resultados de índice de potencial de licuación (LPI), Figura 3.10, Número de severidad de licuación (LSN), Figura 3.11, índice de desplazamiento lateral (LDI), Figura 3.12, y el asentamiento vertical post-licuación unidimensional (S_{V-1D}), Figura 3.13, se trazaron mapas de contorno distribuidos espacialmente. Estos mapas se presentan en las Figura 3.14 y Figura 3.15

Figura 3.10 Resultado de LPI

Figura 3.11 Resultado de LSN

Figura 3.12 Resultado de LDI.

Figura 3.13 Resultado de asentamiento post licuación en campo libre

Figura 3.15 Distribución espacial LSN

3.2.2 Respuesta estructural de edificaciones

Una vez configurados los modelos estructurales para cada tipo de edificación se procede mediante un software de análisis estructural ingresando el espectro de sismo de diseño estimado en el análisis de respuesta de sitio.

El sismo de diseño se lo ha realizado en función de la media global de los 4 espectros de respuesta obtenidos de las diferentes zonas.

Figura 3.16 Espectro de diseño para análisis estructural

La Tabla 3.7 muestra el periodo principal de vibración estructural, y derivas máximas post análisis, para cada tipo de edificación definidos para el conjunto de edificaciones del sector 15 de Septiembre.

Tino	N.	Poriodo(s)	Frecuencia	Deriva	Deriva Máxima
про	Pisos	renodo(s)	(cyc/sec)	máxima	(%)
A	1	0.101	9.895	0.0027	0.27
В	1	0.14	7.046	0.0053	0.53
С	2	0.44	2.25	0.0337	3.37
D	2	0.363	2.755	0.023	2.3
E	1	0.179	5.575	0.004	0.4

Tabla 3.7 Parámetros estructurales

En la Tabla 3.8 se presenta la estimación de daños para la edificación tipo A: vivienda de un nivel con diseño homologado por el MIDUVI.

Daño	Menor	Reparable	Irreparable	Severo	Extremo
Desempeño Agrietamient		Fluencia de acero	Inicio de Mecanismo	Mecanismo Global	Degradación notable de resistencia
Descripción de los daños Grietas visibles Grietas Grietas recut		Grietas abiertas y pérdida de recubrimiento	Grietas anchas y mayor pérdida de recubrimiento	Deformaciones permanentes visibles	
índice de daño	0.05	0.14	0.40	0.60	Mayor de 0.60
Cuantificación de menore d desempeño 0.3 mm.		Grietas menores de 1 mm.	Grietas entre 1 y 2 mm	Grietas mayore de 2 mm.	Grietas anchas y profundas. Dilatación de los elementos
Deriva entrepiso	0.005	0.011	0.023	0.046	> 0.060
Deriva global	0.003	0.008	0.018	0.040	> 0.049

Tabla 3.8 Matriz de daño edificación tipo A

En la Tabla 3.9 se presenta la estimación de daños para la edificación tipo B: vivienda de un nivel unifamiliar.

Daño	Daño Menor		Irreparable	Severo	Extremo
Desempeño	Desempeño Agrietamiento		Inicio de Mecanismo	Mecanismo Global	Degradación notable de resistencia
Descripción de los daños visibles		Grietas	Grietas abiertas y pérdida de recubrimiento	Grietas anchas y mayor pérdida de recubrimiento	Deformaciones permanentes visibles
índice de daño	0.05	0.14	0.40	0.60	Mayor de 0.60
Cuantificación de desempeño	Grietas menore de 0.3 mm.	Grietas menores de 1 mm.	Grietas entre 1 y 2 mm	Grietas mayore de 2 mm.	Grietas anchas y profundas. Dilatación de los elementos
Deriva entrepiso	0.005	0.011	0.023	0.046	> 0.060
Deriva global	0.003	0.008	0.018	0.040	> 0.049

Tabla 3.9 Matr	iz de daño	edificación tipo B	5
----------------	------------	--------------------	---

En la Tabla 3.10 se muestra la estimación de daños para la edificación tipo B: vivienda de dos niveles.

Daño	Daño Menor I		Irreparable	Severo	Extremo				
Desempeño Agrietamien		Fluencia de acero	Inicio de Mecanismo	Mecanismo Global	Degradación notable de resistencia				
Descripción de los daños	Grietas ligeramente visibles	Grietas	Grietas abiertas y pérdida de recubrimiento	Grietas anchas y mayor pérdida de recubrimiento	Deformaciones permanentes visibles				
índice de daño	0.05	0.14	0.40	0.60	Mayor de 0.60				
Cuantificación de desempeño	Grietas menore de 0.3 mm.	Grietas menores de 1 mm.	Grietas entre 1 y 2 mm	Grietas mayore de 2 mm.	Grietas anchas y profundas. Dilatación de los elementos				
Deriva entrepiso	0.005	0.011	0.023	0.046	> 0.060				
Deriva global	0.003	0.008	0.018	0.040	> 0.049				

Tabla 3.10 Matriz de daño edificación tipo C

En la Tabla 3.11 se muestra la estimación de daños para la edificación tipo D: vivienda de dos niveles homologado en el conjunto habitacional Villa Marial Colonial

Daño	Daño Menor Reparat		Irreparable Severo		Extremo
Desempeño	Agrietamiento	Fluencia de acero	Inicio de Mecanismo	Mecanismo Global	Degradación notable de resistencia
Descripción de los daños	Descripción de los daños Grietas visibles Grietas		Grietas abiertas y pérdida de recubrimiento	Grietas anchas y mayor pérdida de recubrimiento	Deformaciones permanentes visibles
índice de daño	0.05	0.14	0.14 0.40 0.60		Mayor de 0.60
Cuantificación deGrietas menore dedemenore derdesempeño0.3 mm.d		Grietas menores de 1 mm.	Grietas entre 1 y 2 mm	Grietas mayore de 2 mm.	Grietas anchas y profundas. Dilatación de los elementos
Deriva entrepiso 0.005 (0.011	0.023	0.046	> 0.060
Deriva global 0.003 0.008		0.018	0.040	> 0.049	

Tabla 3.11 Matriz de daño edificación tipo D

En la Tabla 3.12 se muestra la estimación de daños para la edificación tipo E: Galpón industrial.

Daño	Daño Menor		Irreparable	Severo	Extremo				
Desempeño Agrietamiento		Fluencia de acero	Inicio de Mecanismo	Mecanismo Global	Degradación notable de resistencia				
Descripción de los daños Grietas visibles Grietas de recu		Grietas abiertas y pérdida de recubrimiento	Grietas anchas y mayor pérdida de recubrimiento	Deformaciones permanentes visibles					
índice de daño	0.05	0.14	0.40	0.60	Mayor de 0.60				
Cuantificación de desempeño	Grietas menore de 0.3 mm.	Grietas menores de 1 mm.	Grietas entre 1 y 2 mm	Grietas mayore de 2 mm.	Grietas anchas y profundas. Dilatación de los elementos				
Deriva entrepiso	0.005	0.011	0.023	0.046	> 0.060				
Deriva global	0.003	0.008	0.018	0.040	> 0.049				

Tabla 3.12 Matriz de daño edificación tipo E

Figura 3.17 Distribución espacial desempeño estructural

Figura 3.18 Vista en 3D de las edificaciones según el desempeño estructural

CONCLUSIONES

4. CONCLUSIONES Y RECOMENDACIONES

4.1 Conclusiones

- La planicie aluvial del río Manta se caracteriza por tener depósitos de suelos con bajas velocidades de onda de corte (Vs), donde ocurren amplificaciones por efectos topográficos y licuación generalizada.
- Los ensayos geofísicos realizados, por el método de Nakamura y las mediciones de las velocidades de onda de corte (Vs), en concordancia con lo establecido en la Norma Ecuatoriana de la Construcción NEC-15, clasifican los perfiles de suelos en tipos D y E, menores a 360 m/s y 180 m/s respectivamente. Sin embargo, según el análisis de la información recabada en los ensayos de penetración estándar (SPT), en estos suelos predomina la clasificación tipo F.
- Los perfiles geotécnicos, realizados de forma transversal al paleocauce, a partir de los ensayos de penetración estándar (SPT) y refracción sísmica (LRS), muestran alternabilidad de los suelos en los márgenes, variando entre capas de arenas, limos y arcillas; mientras que en la parte central hay mayor uniformidad, prevaleciendo las arenas. Los perfiles de velocidades de ondas de corte (Vs) en los márgenes presentan valores inferiores a los obtenidos en el centro.
- La zonificación sísmica del área de estudio da como resultado espectros mayores comparados con la NEC-15, en términos de aceleración espectral (PGA) y periodos (Tn). Estos espectros muestran comportamientos similares en ambos márgenes del paleocauce, amplificados con respecto a los espectros obtenidos para la zona central.
- Los periodos naturales del suelo, característicos del lugar, según los ensayos geofísicos por el Método de Nakamura, oscilan entre 0,58 y 0,73 segundos. Los periodos de los márgenes del paleocauce son concordantes entre sí, al igual que los periodos del centro.

- El análisis de la vulnerabilidad sísmica, efectuado mediante el análisis cuantitativo de potencial de licuación y los efectos post licuación, determina mayores riesgos en las zonas más cercanas al centro del paleocauce, y menor efecto a medida que se aproximan a los márgenes. La zona central, bajo los criterios de Índice de Potencial de Licuación (LPI), tiene mayor riesgo de ocurrencia de este fenómeno, mientras que el Análisis de Número de Severidad de Licuación (LSN) la categoriza como una zona de "Licuación Moderada".
- La respuesta estructural de las cinco (5) edificaciones típicas ante la ocurrencia del sismo de diseño es: Tipo A, presentaría daños menores con agrietamientos ligeramente visibles; Tipo B, experimentaría daños reparables considerando que existe la fluencia del acero estructural, y podría mostrar grietas menores a 1 milímetro; Tipo C, padecería de daños severos, considerado un mecanismo global en su desempeño, con grietas anchas mayores a 2 milímetros y pérdida de recubrimientos; Tipo D, sufriría daños irreparables, con una fluencia considerable del acero, y grietas entre 1 y 2 milímetros; y, Tipo E, estaría afectada con daños menores y agrietamientos ligeramente visibles.
- En el área de estudio, y bajo las condiciones asumidas, el daño que sufren las edificaciones está en función principal del número de pisos (altura) y, en segundo orden, de sus dimensiones, debido a que presentan mayor periodo de vibración que amplifica su aceleración inicial. Las viviendas tipo C son las más afectadas.

4.2 Recomendaciones

- La metodología establecida en el presente trabajo de investigación debe ser considerada cuando se analice el riesgo sísmico en zonas o poblaciones asentadas en planicies aluviales.
- Los habitantes de nuestro caso de estudio, esto es del sector 15 de Septiembre ubicado en la planicie aluvial del río Manta, en la ciudad de Manta, deben hacer conciencia sobre los peligros a los que están expuestos en la zona donde residen con la finalidad de emprender planes de mitigación de riesgos, en coordinación de las autoridades competentes.

BIBLIOGRAFÍA

Ecuambiente, Consulting Group. (2017). Evaluación ambiental y social estratégica (EASE); y planes, programas, herramientas de gestión para los proyectos de reconstrucción a ejecutarse por ecuador estratégico EP-EEEP bajo financiamiento del Banco Europeo De Inversiones- Bei, ubicados en la prov. *Ecuambiente Consulting* https://www.ecuadorestrategicoep.gob.ec/PublicacionDeProcesos/EASE/EASE.p

df.

Attolico. (2019).

- Aviles-Campoverde, D., Chunga, K., Ortiz-Hernández, E., Vivas-Espinoza, E., Toulkeridis, T., Morales-Delgado, A., & Delgado-Toala, D. (2021). "Seismically Induced Soil Liquefaction and Geological Conditions in the City of Jama due to the M7.8 Pedernales Earthquake in 2016, NW Ecuador". *Geosciences 11, no. 1: 20.*, https://doi.org/10.3390/geosciences11010020.
- Boulanger, & Idriss. (2014). CPT and SPT based liquefaction triggering procedures. Universidad de California, Departmento de Ingeniería Civil y Medio Ambiente, Davis.
- Bray & Sancio. (2006). Assessment of the liquefaction suceptibility of fine-grained soils. *Journal of Geotechnical and Geonvironmental Engineering*, 1165-1177.
- Chacón, D. (2018). Geología del Cuaternario de la ciudad de Portoviejo y su zona de influencia (Escala 1:20000). Universidad Central del Ecuador., http://www.dspace.uce.edu.ec/bitstream/25000/15499/1/T-UCE-0012-FIG-005.pdf.
- Chunga, K., Livio, F., Martillo, C., Lara-Saavedra, H., Ferrario, M., Zeballos, I., & Michetti,
 A. M. (2019). Landslides Triggered by the 2016 Mw 7.8 Pedernales, Ecuador
 Earthquake: Correlations with ESI-07. *Geosciences*,
 https://doi.org/10.3390/geosciences9090371.
- Cuanalo, O., Gallardo, R., Polanco, G., Quintero, L., ., & . (2016). PROBLEMAS GEOTÉCNICOS EN EDIFICACIONES DESPLANTADAS SOBRE DEPÓSITOS ALUVIALES EN LLANURAS Y PENILLANURAS DE INUNDACIÓn. *REVISTA INGENIO UFPSO*, 25.

- Fajfar, P. (2018). Analysis in seismic provisions for buildings: past, present and future: The fifth Prof. Nicholas Ambraseys lecture. Bulletin of Earthquake Engineering (Vol. 16, Número 7). Springer Netherlands., http://www3.inogs.it/gngts/files/2019/GNGTS_2.2.pdf.
- Franco, G., Stone, H., Ahmed, B., Chang, S. C., Hughes, F., Jirouskova, N., . . . van y Hutt, C. M. (2018). The Muisne, Ecuador Earthquake of 16 April 2016. *En EEFIT. EEFIT.*, http://www3.inogs.it/gngts/files/2019/GNGTS_2.2.pdf.
- Ghobarah, A. (2004). "On drift limits associated with different damage levels". International workshop on perfomance based seismic design. Department of Civil Engineering, Mc. Master University.
- Ghobarah, A. N.-A. (1997). "Perfomance level criteria and evaluation a critical review of poposed guidelines" Seismic design methodology for the next generation of codes.
 Balkema, Slovenia: Fajar and Krawinkler.
- Gitis, V. G., & Derendyaev, A. B. (2019). Machine learning methods for seismic hazards forecast. *Geosciences (Switzerland), 9(7), 1-15.*, https://doi.org/10.3390/geosciences9070308.
- Groholski, D., Hashash, Y., Kim, B., Musgrove, M., Harmon, J., & Stewart, J. (2016). Simplified Model for Small-Strain Nonlinearity and Strength in 1D Seismic Site Response Analysis. J. Geotech. Geoenviron. Eng., 10.1061/(ASCE)GT.1943-5606.0001496, 04016042.
- I. Idriss y R. Boulanger. (2012). Soil Liquefaction During Earhquakes. Oakland California, USA: Douglas Becker.
- Idriss & Boulanger. (2008). Soil liquefaction during earthquakes. Oakland CA: Earthquake Engineering Research Institute (EERI).
- Idriss, B.H. Seed & I. M. (1982). Ground motion and soil Liquefaction during earthquakes. *Earthquake Engineering Research Institute*.
- Ishihara, K. (1978). "Evaluation of liquefactin potential and consequent deformations in sand fills". *Proceedings of the workshop on seismic issues. Port of Los Angeles, ca. 1990.*
- Iwasaki, T., K., Tatsuko, F., & Yasuda, S. (1987). A practical method for assessing soil liquefaction potential based on case studies at various sites in Japan. *Proceeding* of 2nd International Conference on Microzonation, 1978.

- Iwasaki, Tatsuko, & Yasuda. (1987). A practical method for assessing soil liquefaction potential based on case studies at various sites in Japan. *Proceeding of 2nd International Conference on Microzonation*, 1978.
- Lai, C. G., Bozzoni, F., Conca, D., Famà, A., Özcebe, A. G., Zuccolo, E., . . . Molina-Gomez, F. (2020). Technical guidelines for the assessment of earthquake. *Bulletin* of *Earthquake Engineering*, https://doi.org/10.1007/s10518-020-00951-8.
- Parra, H. (2016). Desarrollos metodológicos y aplicaciones hacia el cálculo de la peligrosidad sísmica en el Ecuador continental y estudio de riesgo sísmico en la ciudad de Quito. Universidad Politécnica de Madrid, http://oa.upm.es/39353/1/HUMBERTO_PARRA_CARDENAS_V-2.pdf.
- Rivadeneira, F., Segovia, M., Alvarado, A., Egred, J., Troncoso, L., & ., .. (2007). Los *terremotos en el Ecuador.* Quito, Ecuador: Corporacion editora nacional.
- Seed & Idriss. (1982). Ground motion and soil Liquefaction during earthquakes. *Earthquake Engineering Research Institute*.
- Seed, H. B., & Idriss, I. M. (1971). Simplified Procedure for Evaluating Soil Liquefaction Potential. *Journal of the Soil Mechanics and Foundations Division*, 97, 1249-1273.
 Simonovic. (2007).

Simonovic. (2011).

- Sonmez. (2003). Modification of the liquefaction potential index and liquefaction susceptibility mapping for a liquefaction-prone area. *Environmental Geology*, 862-871.
- Tonkin, & Taylor. (2013). Canterbury earthquakes 2010 and 2011. Land Report as at 29 February 2012. *Earthquake Com-mission*, http://www.tonkin.co.nz/canterburyland-information/docs/downloads2592013/T&T-Stage-3-Re-port.pdf).
- USGS. (2016). Hazard and risk assessment. Fundamentals of Toxicology. Obtenido de https://doi.org/10.1016/b978-0-12-805426-0.00006-8.
- Van Ballegoy et al. (2014). Assessmet of Liquefaction-Induced lans damage for residential Christchurch. *Earthquake Spectra*, 31-35.

ANEXOS

Anexo 1 Ensayo de SPT - Muestra #1

PROYECTO:	TESIS MAESTRIA GEOTECNIA - ESPOL
LOCALIZACIÓN:	Av. La Cultura - Barrio 15 de Septiembre

ASUNTO: ESTUDIO DE SUELOS

FECHA: 2 de octubre de 2020

RESUMEN DEL REGISTRO ESTRATIGRÁFICO

PERFORACIÓN :P-1COTA DE REFERENCIA :N =COTA DE LA BOCA DE LA PERFORACIÓN :N = 8.10NIVEL FREATICO :N = 4.20

P-1 (529983E, 9893767N)

MUESTRA	PROFUNDIDAD	G	GRANULOMETRIA		AIA	LIMIT	es de	CLASIFI		%	N =
#	m.		% QUE	E PASA		ATTE	RBERG	S.U.C.S.	Descripción	w	Golpes.
		# 4	#10	#40	#200	LL	I.P				pie.
P-1-1	SPT 1,50 m	68.17	55.41	39.55	18.87	-	NP	*SM	Arena limosa con grava	49.60	1,5m./ 13
P-1-2	SPT 3,00 m	88.98	70.23	58.60	42.21	-	NP	SM	Arena limosa	3.65	3m./ 3
P-1-3	SPT 4,50 m	100.00	99.44	98.59	90.97	76.17	44.09	СН	Arcilla alta plasticidad	60.97	4,5m./ 5
P-1-4	SPT 6,00 m	100.00	99.41	96.90	20.36	-	NP	SM	Arena limosa	37.51	6m./ 21
P-1-5	SPT 9,00 m	100.00	96.06	93.13	26.85	-	NP	SM	Arena limosa	31.71	9m./ 41
P-1-6	SPT 12,00 m	97.38	95.54	93.68	56.68	-	NP	ML	Limo baja plasticidad arenoso	34.03	12m./ 45
P-1-7	SPT 15,00m	98.62	95.14	84.45	11.45	-	NP	SP - SM	Arena mal graduada con limo	27.88	15m./ 50
P-1-8	SPT 18,00m	86.98	79.35	65.10	4.16	-	NP	SP	Arena mal graduada	26.50	18m./ 50

PROYECTO:	TESIS MAESTRIA GEOTECNIA - ESPOL
LOCALIZACIÓN:	Av. La Cultura - Barrio 15 de Septiembre
PERFORACIÓN :	P-1
FECHA:	2 de octubre de 2020
UBICACIÓN:	(529983E, 9893767N)

		ESTRATIO	GRAFÍA		SPT	ENSAVO DE DENETRACIÓN
COTA	PROFUNDIDAD (m)	SUCS	NIVEL FREÁTICO	DESCRIPCION	Golpes./PIE	ESTÁNDAR (SPT)
						0 10 20 30 40 50
6.60	1.50	*SM		Arena limosa con grava	1,5m./ 13	0.00
5.10	3.00	SM		Arena limosa	3m./ 3	1.50
3.60	4.50	сн		Arcilla alta plasticidad	4,5m./ 5	3.00
2.10	6.00	SM		Arena limosa	6m./ 21	6.00
- 0.90	9.00	SM		Arena limosa	9m./ 41	7.50
- 3.90	12.00	ML		Limo baja plasticidad arenoso	12m./ 45	10.50
- 6.90	15.00	SP - SM		Arena mal graduada con limo	15m./ 50	13.50
		SP		Arena mal graduada		16.50
- 9.90	18.00	1		1	18m./ 50	18.00

Anexo 2 Ensayo de SPT – Muestra # 2

FECHA: 7 de octubre de 2020

RESUMEN DEL REGISTRO ESTRATIGRÁFICO

 PERFORACIÓN :
 P-2
 (529902E, 9893800N)

 COTA DE REFERENCIA :
 N =

 COTA DE LA BOCA DE LA PERFORACIÓN :
 N =
 6.30

 NIVEL FREATICO :
 N = + 3,80

MUESTRA GRANULOMETRIA LIMITES DE CLASIFI N = P ROFUNDIDAD % ATTERBERG # m. % QUE PASA S.U.C.S. Descripción w Golpes./ #4 #10 #40 #200 LL I.P pie. 99.50 94.86 91.52 68.81 39.40 16.00 CL Arcilla media plasticidad arenosa CL P-2-1 1.5 97.25 96.05 94.87 73.90 31.90 8.55 ML Limo baja plasticidad con arena ML 44.35 1,5m./ 3 P-2-2 3 88.78 80.76 61.31 25.98 NP SM Arena limosa SM 26.80 3m./ 8 -P-2-3 6 37.43 26.28 23.72 22.70 -NP GM Grava limosa GM 38.13 4,5m./ 9 NP 6m./ 39 P-2-4 9.3 100.00 99.17 98.80 23.17 -SM Arena limosa SM 25.33 P-2-5 10.5 99.57 98.21 97.74 20.66 NP SM Arena limosa SM 46.22 9,3m./ 25 -P-2-6 12 99.88 98.64 97.35 28.54 32.66 5.06 SM Arena limosa SM 41.73 12m./ 20 P-2-7 15 100.00 98.60 96.98 14.05 -NP SM Arena limosa SM 27.31 15m./ 50 P-2-8 *SM 18m./ 50 18 Arena con grava P-2-9 21m./ 10 21 P-2-10 24 100.00 98.60 96.98 14.12 38.05 19.31 SC 27.31 24m./ 33 Arena arcillosa SC 27m./ 12 P-2-11 27 100.00 100.00 99.53 93.20 52.70 32.59 CH Arcilla alta plasticidad CH 40.75

TESIS MAESTRIA GEOTECNIA - ESPOL
Av. La Cultura - Barrio 15 de Septiembre
P-2
7 de octubre de 2020
(529902E, 9893800N)

		ESTRATIGRAFÍA			SPT		ENSAVO DE PENETRACIÓN					
СОТА	PROFUNDIDAD (m)	SUCS	NIVEL FREÁTICO	DESCRIPCION	Golpes./PIE		EST	ÁNDAR	(SPT)			
						0	10	20	30	40	50	
4.80	1.50	ML	I	imo baja plasticidad con arena ML	1,5m./ 3	0.00						
3.30	3.00	SM		Arena limosa SM	3m./ 8	3.00	\mathbf{n}					
0.30	6.00	GM		Grava limosa GM	4,5m./ 9	4.50						
- 3.00	9.30	SM		Arena limosa SM	6m./ 39	6.00	~					
		SM		Arena limosa SM		9.00 10.50			>	>		
- 4.20	10.50				9,3m./ 25	12.00						
- 5.70	12.00	SM		Arena limosa SM	12m./ 20	13.50 15.00						
- 8.70	15.00	SM		Arena limosa SM	15m./ 50	16.50 - 18.00 - 19.50 -						
- 11.70	18.00	*SM		Arena con grava	18m./ 50	21.00 - 22.50 -	<	$\overline{\langle}$				
- 14.70	21.00	0		0	21m./ 10	2.4.00						
- 17.70	24.00	SC		Arena arcillosa SC	24m./ 33	25.50						
- 20.70	27.00	СН		Arcilla alta plasticidad CH	27m./ 12	27.00	/					

Anexo 3 Ensayo de SPT – Muestra # 3

PROYECTO:TESIS MAESTRÍA GEOTECNIA - ESPOLLOCALIZACIÓN:Av. La Cultura - Barrio 15 de Septiembre

ASUNTO: ESTUDIO DE SUELOS

FECHA: 4 de octubre de 2020

RESUMEN DEL REGISTRO ESTRATIGRÁFICO

PERFORACIÓN :

P-3 (530221E, 9893593N)

MUESTRA	PROFUNDIDAD	G	GRANULO		IA	LIMITES DE		LIMITES DE		CLASIFI		%	N =
#	m.		% QUE	PASA		ATTE	RBERG	S.U.C.S.	Descripción	w	Golpes./		
		# 4	#10	#40	#200	LL	I.P				pie.		
	1.2	54.84	40.95	29.72	24.50	58.48	20.85	GM	Grava limosa con arena GM	37.09			
P-4-1	1.5	100.00	100.00	99.47	96.61	37.33	14.90	CL	Arcilla media plasticidad CL	70.27	1,5m./ 6		
P-4-2	3	86.57	83.53	73.85	32.01	-	NP	SM	Arena limosa SM	35.51	3m./ 4		
P-4-3	4.5	100.00	100.00	99.81	27.65	-	NP	SM	Arena limosa SM	28.64	4,5m./ 21		
P-4-4	6	100.00	99.59	99.17	72.35	45.48	21.80	CL	Arcilla media plasticidad con arena CL	61.47	6m./ 31		
P-4-5	7.5	100.00	99.74	99.56	28.21	-	NP	SM	Arena limosa SM	28.76	7,5m./ 48		
P-4-6	10.5	99.05	96.72	95.33	90.49	56.68	32.18	СН	Arcilla alta plasticidad CH	113.79	10m./ 22		
P-4-7	13.5	100.00	99.38	98.57	62.37	29.76	5.57	ML	Limo baja plasticidad arenoso ML	31.91	13,5m./ 47		
P-4-8	16.5	100.00	100.00	99.31	26.45	-	NP	SM	Arena limosa SM	30.57	16,5m./ 31		

PROYECTO:	TESIS MAESTRÍA GEOTECNIA - ESPOL
LOCALIZACIÓN:	Av. La Cultura - Barrio 15 de Septiembre
PERFORACIÓN :	P-3
FECHA:	4 de octubre de 2020
UBICACIÓN:	(530221E, 9893593N)

		ESTRATIGRAFÍA			SPT	
СОТА	PROFUNDIDAD (m)	sucs	NIVEL FREÁTICO	DESCRIPCION	Golpes./PIE	ESTÁNDAR (SPT)
						0 10 20 30 40 50
5.20	1.50	CL		Arcilla media plasticidad CL	1,5m./ 6	0.00
3.70	3.00	SM	NF	Arena limosa SM	3m./ 4	- 2.00
2.20	4.50	SM		Arena limosa SM	4,5m./ 21	4.50
0.70	6.00	CL		Arcilla media plasticidad con arena CL	6m./ 31	6.00
- 0.80	7.50	SM		Arena limosa SM	7,5m./ 48	7.50
2.80	10.50	СН		Arcilla alta plasticidad CH	10m / 22	9.00
- 3.80	10.50				10m./ 22	10.50
		ML		Limo baja plasticidad arenoso ML		12.00
- 6.80	13.50				13,5m./ 47	13.50
		SM		Arena limosa SM		15.00
- 9.80	16.50				16,5m./ 31	16.50

Anexo 4 Ensayo de SPT – Muestra # 4

PROYECTO: TESIS MAESTRÍA GEOTECNIA - ESPOL LOCALIZACIÓN: Av. La Cultura - Barrio 15 de Septiembre

ASUNTO: ESTUDIO DE SUELOS

FECHA: 4 de octubre de 2020

RESUMEN DEL REGISTRO ESTRATIGRÁFICO

 PERFORACIÓN :
 P-4
 (529603E, 9893479N)

 COTA DE REFERENCIA :
 N =

 COTA DE LA BOCA DE LA PERFORACIÓN :
 N = 8.10

 NIVEL FREATICO :
 N = +5.20

MUESTRA	PROFUNDIDAD	GRANULOMETRIA			IA	LIMITES DE		LIMITES DE		LIMITES DE		CLASIFI		%	N =
#	m .		% QUE	PASA		ATTE	RBERG	S.U.C.S.	.S. Descripción		Golpes./				
		# 4	#10	#40	#200	LL	I.P				pie.				
P-4-1	2.3	74.83	72.09	64.10	57.16	68.76	36.33	СН	Arcilla alta plasticidad gravosa CH	39.40	1,5m./ 4				
P-4-2	4	94.36	82.75	70.63	45.87	98.13	71.63	SC	Arena arcillosa SC	40.54	3m./ 5				
P-4-3	5.5	78.64	52.81	28.89	18.37	-	NP	*SM	Arena limosa con grava SM	36.38	5,5m./ 7				
P-4-4	7	95.57	92.82	90.96	19.05	-	NP	SM	Arena limosa SM	34.18	7m./ 14				
P-4-5	9	100.00	98.76	92.61	13.67	-	NP	SM	Arena limosa SM	31.47	9m./ 19				
P-4-6	12	97.89	95.97	95.06	24.31	-	NP	SM	Arena limosa SM	29.96	12m./ 32				
P-4-7	15	93.04	75.42	70.05	5.12	-	NP	SP - SM	Arena mal graduada con limo	20.01	15m./ 50				
P-4-8	18	87.85	82.36	80.88	4.99	-	NP	SP	Arena mal graduada SP	27.95	18m./ 50				

PROYECTO:TESIS MAESTRÍA GEOTECNIA - ESPOLLOCALIZACIÓN:Av. La Cultura - Barrio 15 de SeptiembrePERFORACIÓN :P-4FECHA:4 de octubre de 2020UBICACIÓN:(529603E, 9893479N)

		ESTRATIG	RAFÍA		SPT					ETDAC		
COTA	PROFUNDIDAD (m)	sucs	NIVEL FREÁTICO	DESCRIPCION	Golpes./PIE		LINGA	ESTÁN		(SPT)		
						o	1	0	20	30	40	50
5.80	2.30	СН	NF	Arcilla alta plasticidad gravosa CH	1,5m./ 4	0.00						
4.10	4.00	SC		Arena arcillosa SC	3m./ 5	3.00						
2.60	5.50	*SM		Arena limosa con grava SM	5,5m./ 7	4.50						
1.10	7.00	SM		Arena limosa SM	7m./ 14	6.00						
		SM		Arena limosa SM		7.50						
- 0.90	9.00				9m./ 19	9.00			\setminus			
		SM		Arena limosa SM		10.50						
- 3.90	12.00				12m./ 32	12.00						
		SP - SM		Arena mal graduada con limo		13.50						
- 6.90	15.00				15m./ 50	15.00						
		SP		Arena mal graduada SP		16.50						
- 9.90	18.00				18m./ 50	18.00						

Anexo 5 Ensayo de SPT – Muestra # 5

PROYECTO:TESIS MAESTRÍA GEOTECNIA - ESPOLLOCALIZACIÓN:Av. La Cultura - Barrio 15 de Septiembre

ASUNTO: ESTUDIO DE SUELOS

FECHA: 5 de octubre de 2020

RESUMEN DEL REGISTRO ESTRATIGRÁFICO

MUESTRA	PROFUNDIDAD	G	RANUL	OMETR	IA	LIMITES DE		LIMITES DE		CLASIFI		%	N =
#	m .		% QUE	PASA		ATTE	RBERG	S.U.C.S.	S.U.C.S. Descripción		Golpes./		
		# 4	#10	#40	#200	LL	I.P				pie.		
P 5-1	1.5	100.00	98.39	95.95	80.94	47.54	19.18	ML	Limo baja plasticidad con arena ML	89.42	1,5m./ 2		
P 5-2	3	99.47	98.20	96.95	56.79	-	NP	ML	Limo baja plasticidad arenoso ML	27.99	3m./ 8		
P 5-3	4.5					-	-				4,5m./ 2		
P 5-4	6	99.68	98.29	97.79	53.83	30.87	5.60	ML	Limo baja plasticidad arenoso ML	39.83	6m./ 16		
P-5-5	9	100.00	100.00	99.51	48.25	33.15	2.43	SM	Arena limosa SM	56.76	9m./ 9		
P 5-6	12	74.19	72.37	71.59	25.23	-	NP	SM	Arena limosa con grava SM	29.86	12m./ 50		
P 5-7	15	99.80	99.26	57.17	27.86	-	NP	SM	Arena limosa SM	1.90	15m./ 50		
P 5-8	18	99.92	99.08	98.43	28.01	-	NP	SM	Arena limosa SM	27.10	18m./ 50		

P-5 (529983E, 9893767N)

PROYECTO:	TESIS MAESTRÍA GEOTECNIA - ESPOL
LOCALIZACIÓN:	Av. La Cultura - Barrio 15 de Septiembre
PERFORACIÓN :	P-5
FECHA:	5 de octubre de 2020
UBICACIÓN:	(529983E, 9893767N)

		ESTRATIGRAFÍA			SPT	ΕΝΙSAVO DE DENETRACIÓN
СОТА	PROFUNDIDAD (m)	sucs	NIVEL FREÁTICO	DESCRIPCION	Golpes./PIE	ESTÁNDAR (SPT)
						0 10 20 30 40 50
4.72	1.50	ML		Limo baja plasticidad con arena ML	1,5m./ 2	0.00
3.22	3.00	ML		Limo baja plasticidad arenoso ML	3m./ 8	1.50
1.72	4.50	0			4,5m./ 2	3.00
0.22	6.00	ML		Limo baja plasticidad arenoso ML	6m./ 16	4.50
0.70	0.00	SM		Arena limosa SM	0m / 0	7.50
- 2.76	9.00	SM		Arena limosa con grava SM	911.7 9	9.00 10.50
- 5.78	12.00				12m./ 50	12.00
		SM		Arena limosa SM		13.50
- 8.78	15.00				15m./ 50	15.00
		SM		Arena limosa SM		16.50
- 11.78	18.00				18m./ 50	18.00

Anexo 6 Informe de resultados Análisis multicanal de ondas superficiales MASW

ESTUDIO GEOFÍSICO

RESUMEN

1.1 ANTECEDENTES

En el presente informe se reporta una descripción del trabajo de campo y gabinete de ensayos geofísicos en el Barrio 15 de Septiembre, en la ciudad de Manta.

Se realizaron 4 líneas sísmicas con 12 geófonos para registro de señales con longitudes de 44 m, 55 m, 55 m y 110 m respectivamente.

Con los registros de las cuatro líneas sísmicas se determinas las velocidades de ondas de corte Vs30 que presenta el subsuelo estudiado

La utilidad primaria de las pruebas geofísicas sísmicas en el campo de la geotecnia es la determinación de variaciones en la velocidad de onda de corte (Vs) a profundidad para lo cual se sigue la Norma ASTM D5777-00.

LÍNEAS SÍSMICAS:

• TERRENO DEL "BARRIO 15 DE SEPTIEMBRE" LÍNEA 1, SPT 3

Fotografías sitios levantamiento de línea sísmica

Figura 1.1 Ubicación de las líneas sísmicas en la" Línea 1, SPT 3

Ubicación: PARROQUIA MANTA - CANTÓN MANTA - PROVINCIA DE MANABÍ – ECUADOR

Punto del geófono 1	Punto del geófono 12
Norte: 9893580,1	Norte: 9893604
Este: 530239,8	Este: 530212
Zona: 17 S	Zona: 17 S
Sistema de coordenadas: UTM	Sistema de coordenadas: UTM

• TERRENO DEL "BARRIO 15 DE SEPTIEMBRE" LÍNEA 2, SPT 4

Fotografías sitios levantamiento de línea sísmica

Figura 1.2 Ubicación de las líneas sísmicas en la "" Línea 2, SPT 4

Ubicación: PARROQUIA MANTA - CANTÓN MANTA - PROVINCIA DE MANABÍ – ECUADOR

Punto del geófono 1	Punto del geófono 12
Norte: 9893495,1	Norte: 9893499,7
Este: 529639,3	Este: 529053,6
Zona: 17 S	Zona: 17 S
Sistema de coordenadas: UTM	Sistema de coordenadas: UTM

• TERRENO DEL "BARRIO 15 DE SEPTIEMBRE" LÍNEA 3, SPT 1

Fotografías sitios levantamiento de línea sísmica

Figura 1.3 Ubicación de las líneas sísmicas en la "" Línea 3, SPT 1

Ubicación: PARROQUIA MANTA - CANTÓN MANTA - PROVINCIA DE MANABÍ – ECUADOR

Punto del geófono 1	Punto del geófono 12
Norte: 9893913,8	Norte: 9893881
Este: 529747,5	Este: 529792
Zona: 17 S	Zona: 17 S
Sistema de coordenadas: UTM	Sistema de coordenadas: UTM

• TERRENO DEL "BARRIO 15 DE SEPTIEMBRE" LÍNEA 4, SPT 2

Fotografías sitios levantamiento de línea sísmica

Figura 1.1 Ubicación de las líneas sísmicas en la "" Línea 4,

Ubicación: PARROQUIA MANTA - CANTÓN MANTA - PROVINCIA DE MANABÍ – ECUADOR

Punto del geófono 1	Punto del geófono 12
Norte: 9893752	Norte: 9893824,8
Este: 529959,2	Este: 529872
Zona: 17 S	Zona: 17 S
Sistema de coordenadas: UTM	Sistema de coordenadas: UTM

1.2 Objetivos

Este estudio tiene como objetivo realizar el levantamiento con refracción sísmica para determinar el tipo de perfil geofísico del subsuelo, según la Normativa Ecuatoriana de Construcción NEC-15.

2 MARCO TEÓRICO

2.1 Sísmica de Refracción

El método sísmico de prospección del subsuelo se basa en la medida de los tiempos de llegada de las ondas tipo P y S generadas en el terreno por una fuente de energía mecánica adecuada (martillo manual, generador de impactos, etc.), que se transmiten desde un punto determinado, hasta otro distante en el que se instalan los sensores correspondientes (geófonos) conectados al sismógrafo registrador.

Debido a que la velocidad de propagación de las ondas sísmicas en el terreno es distinta para cada tipo de material, la técnica de prospección por refracción permite determinar la profundidad e inclinación de las distintas capas que se superponen.

Asimismo, los Sismógrafos de Ingeniería, así denominados los sismógrafos utilizados para estas técnicas, permiten realizar la medida de la velocidad de propagación de las ondas en el terreno, de cuyo valor se pueden deducir una serie de características tales como el módulo de elasticidad de la formación, la escarificabilidad (en inglés ripability) de las rocas, el grado de compactación o asentamiento de los terrenos, así como otras varias propiedades de interés para la Ingeniería Civil.

Mediante las técnicas de Refracción es posible también determinar las características del subsuelo, midiendo los tiempos de retorno de las ondas generadas en superficie y reflejadas por las discontinuidades del terreno.

FIGURA 0.1: ENSAYO SÍSMICA DE REFRACCIÓN

Debido a los requerimientos presentados en el presente estudio se calculan los perfiles que determinen la profundidad de cizalla hasta los 30 m. de seguridad Vs30. El procedimiento utilizado es el descrito por el método multicanal de ondas superficiales (MASW).

MASW (Multichannel Analysisi of Surface Waves) método sísmico que se basa en la detección de un frente de ondas elásticas propagadas a través del subsuelo que se investiga y detectadas en superficie mediante geófonos con el fin de obtener una imagen 1D o 2D del subsuelo que se investiga en base a las propiedades elásticas de los materiales. En medios estratificados la velocidad de propagación depende de la frecuencia, que se calcula como una dispersión.

La fuente de ondas elásticas puede ser artificial producida por un martillo, explosivo, etc (métodos directos) o también puede ser natural producida por el ruido ambiental (métodos indirectos).

Los registros de campo de la señal sísmica fueron analizados con ayuda de los programas computacionales "PICKWIN", para el análisis y ubicación de la geometría y disparos del estudio. Y "WaveEq (Surface Wave Analysis)" para la inversión "velocidad de fase frecuencia 2d", el "modelo de velocidad de onda Vs", el "perfil de sizalla", y el valor "Vs30".

En la Tabla 1 se presenta el tipo de análisis realizado para cada línea sísmica proyectada:

					AN	LISIS		
Sitio	Línea Sísmica	Config.	No. Canales	Longitud (M)	Vs	No. Registros		
Terreno del "Barrio 15 de Septiembre" Línea 1, SPT 3	Ls1	Lineal	12,0	44,00	Activo	12		
	Ls2	Lineal	12,0	44,00	Pasivo	20		
Terreno del	Ls3	Lineal	12,0	55,00	Activo	12		
"Barrio 15 de Septiembre" Línea 2, SPT 4	Ls4	Lineal	12,0	55,00	Pasivo	20		
Terreno del	Ls5	Lineal	12,0	55,00	Activo	12		
"Barrio 15 de Septiembre" Línea 3, SPT 1	Ls6	Lineal	12,0	55,00	Pasivo	20		
Terreno del	Ls7	Lineal	12,0	110,00	Activo	11		
"Barrio 15 de Septiembre" Línea 4, SPT 2	Ls8	Lineal	12,0	110,00	Pasivo	20		

 Tabla 1
 Descripción del análisis de los distintos lugares a realizarse el estudio.

3 TRABAJO REALIZADO

3.1 Trabajo de Campo

Se realizó sondeos de exploración geofísica por medio de Sísmica de Refracción según lo recomendado en la norma ASTM D5777-00. El sitio, ubicación de los geófonos inicial y final, longitud de línea, coordenadas se reportan enla Tabla 2.

		UBICACIÓN									
		ANÁI	LISIS VS	COORDENADAS							
SITIO	LÍNEA SÍSMICA	GEÓFONO	UBICACIÓN (m)	LATITUD	LONGITUD						
Terreno del "Barrio 15 de		G1	0	0°57'46.09"S	80°43'41.54"W						
Septiembre" Línea 1, SPT 3	LS1-LS2	G12	44,00	0°57'45.31"S	80°43'42.44"W						
Terreno del "Barrio 15 de		G1	0	0°57'48.86"S	80°44'0.97"W						
Septiembre" Línea 2, SPT 4	LS3-LS4	G12	55,00	0°57'48.71"S	80°44'19.92"W						
Terreno del "Barrio 15 de	LS5-LS6	G1	0	0°57'35.22"S	80°43'57.47"W						
Septiembre" Línea 3, SPT 1		G12	55,00	0°57'36.29"S	80°43'56.03"W						
Terreno del "Barrio 15 de		G1	0	0°57'40.49"S	80°43'50.62"W						
Septiembre" Línea 4, SPT 2	LS7-LS8	G12	110,00	0°57'38.12"S	80°43'53.44"W						

TABLA 2, Ubicación y longitud de los sondeos sísmicos.

Se procedió a realizar el análisis de las ondas de corte Vs con los métodos Activo y Pasivo para cada línea sísmica se detalla los resultados de estratigrafía y el perfil de cizalla respectivamente mismos que se presentan a continuación.

4 **RESULTADOS**

4.1 Ensayos de sísmica de refracción en Terreno del "Barrio 15 de Septiembre" Línea Sísmica 1, SPT 3

Aquí se describe todo lo que concerniente al estudio:

Velocidad de ondas de corte VS

Método activo

Localización de geófonos en tendido de línea sísmica

		-2.0								Dis	tanc	:e (n	n)											44	44.0	
	1	 •	0		0		0		0		0		0		۰		0		0		0		0		•	
			0	0	0		0		0		0		0		٥		0		0		0		0		0	
			0		0	0	0		0		0		0		٥		0		0		0		0		•	
			0		0		0	0	0		0		0		٥		0		0		0		0		0	
			0		0		0		0	0	0		0		٥		0		0		0		0		0	
÷			•		•		۰		•		•	٥	۰		•		۰		•		۰		۰		•	
t No			0		•		0		0		0		0	0	0		0		0		0		0		•	
Sho			0		0		0		0		0		0		٥	0	0		0		0		0		0	
			0		0		0		0		0		0		٥		0	0	0		0		0		0	
			0		0		0		0		0		0		٥		0		0	0	0		0		0	
			•		•		0		0		0		•		٥		•		•		•	0	•		•	
	12	 I	0		•		0		0		0		0		٥		0		0		0		0	۰	0	

Frecuencia vs velocidad de ondas de fase

Perfil de cizalla activa

Tomografía sísmica del subsuelo

S-wave velocity cross-section : Line ID=ACTIVO_LÍNEA_2

Método Pasivo

Velocidad de fase vs frecuencia

Curva de dispersión

Frequency (Hz)

Dispersion curve : 1.dat-20.dat

Perfil de cizalla

Método Combinado

Curva de dispersión combinada activo más pasivo

Perfil de ondas de corte combinado activo más pasivo

4.2 Ensayos de sísmica de refracción en Terreno del "Barrio 15 de Septiembre" Línea Sísmica 2, SPT 4

Método activo

Localización de geófonos, tendido de líneas sísmica

		-2.5									Dista	ince ((m)											5	5.0
	1	 •	0		0		0		•		0		•		•		0		•		0		0		•
			•	0	0		•		•		•		•		•		۰		•		0		0		0
			•		0	•	•		•		•		•		•		۰		•		0		0		0
			•		0		•	0	•		•		•		•		۰		•		0		0		0
			•		•		•		•	•	•		•		•		۰		•		0		•		0
			•		•		•		•		•	۰	•		•		•		•		•		•		•
f No			•		•		0		0		•		•	•	0		۰		0		0		0		0
sho			•		0		0		0		0		0		0	0	۰		•		0		0		0
			0		0		•		•		0		•		•		۰	0	0		0		0		0
			•		0		•		•		•		•		•		۰		•	0	0		0		0
			•		•		0		•		•		•		•		۰		•		0	0	0		0
	12	 I	•		•		•		•		۰		•		•		٥		۰		•		•	۰	0

Frecuencia vs velocidad de ondas de fase

Perfil de cizalla activo

Average Vs 30m = 132.8 m/sec

Tomografía sísmica del subsuelo

Método Pasivo

Velocidad de fase vs frecuencia

Perfil de cizalla pasivo

Método Combinado

Curva de dispersión combinada

4.3 Ensayos de sísmica de refracción en Terreno del "Barrio 15 de Septiembre" Línea Sísmica 3, SPT 1

Método activo

Localización de geófonos, tendido de líneas sísmica

Frecuencia vs velocidad de ondas de fase

Perfil de cizalla activo

104

Tomografía sísmica del subsuelo

Método Pasivo

Velocidad de fase vs frecuencia

Curva de dispersión

Perfil de cizalla pasivo

Método Combinado

Curva de dispersión combinada

107

Perfil de ondas de corte combinadas activo más pasivo

4.4 Ensayos de sísmica de refracción en Terreno del "Barrio 15 de Septiembre" Línea Sísmica 4, SPT 2

Método activo

Localización de geófonos, tendido de líneas sísmica

Frecuencia vs velocidad de ondas de fase

Perfil de cizalla activo

S-wave velocity (m/s)

Tomografía sísmica del subsuelo

Método Pasivo

Velocidad de fase vs frecuencia

111

Perfil de cizalla pasivo

Método Combinado

Perfil de ondas de corte combinadas activo más pasivo

Average Vs 30m = 234.9 m/sec

5. RESUMEN DE RESULTADOS

En la siguiente tabla se indican los resultados de velocidades de ondas de corte calculadas para las cuatro líneas sísmicas levantadas en el área correspondiente al Barrio 15 de Septiembre, ubicada en el Cantón Manta. Se reportan también la clasificación del perfil sísmico del subsuelo según NEC-2015, en donde se puede constatar un perfil tipo E y tres perfiles tipo D.

SITIO	LINEA SISMICA	METODO	VS (m/s)	CLASIFICACIÓN DE PERFIL SÍSMICO DE SUELO
Terreno del "Barrio		ACTIVO	121.1	
15 de Septiembre"	Ls1	PASIVO	171.0	E
Línea 1, SPT 3		COMBINADO	167.1	
Terreno del "Barrio		ACTIVO	132.8	
15 de Septiembre"	Ls2	PASIVO	190.0	D
Línea 2, SPT 4		COMBINADO	189.8	
Terreno del "Barrio		ACTIVO	144.0	
15 de Septiembre"	Ls3	PASIVO	207.6	D
Línea 3, SPT 1		COMBINADO	206.3	
Terreno del "Barrio		ACTIVO	192.1	
15 de Septiembre"	Ls4	PASIVO	240.8	D
Línea 4, SPT 2		COMBINADO	234.9	

Ing Hugo Bonifaz García Mgs

Anexo 7 Resultados método de NAKAMURA ARS - 1

ESTUDIO DE SUELOS - BARRIO 15 DE SEPTIEMBRE Page 1/5

SARA electronic instruments srl - GeoExplorer HVSR 2.2.3 www.sara.pg.it

STATION INFORMATION

Station code: SPT1 Model: SARA GEOBOX Sensor: SARA SS45 (external 4.5 Hz sensors) Notes: -

PLACE INFORMATION

Place ID: MANTA Address: BARRIO 15 DE SEPTIEMBRE UTM X: 529754,9 UTM Y: 9893908 Coordinate system: UTM - ZONA 17 S Elevation: 0 MASL Weather: -Notes: -

300 Hz

SIGNAL AND WINDOWING

Sampling frequency:	
Recording start time:	2020/09/24 16:46:08
Recording length:	10 min
Windows count:	28
Average windows	20
length:	
Signal coverage:	93.33%

-47366 Counts

-40817 Counts

-42261 Counts

HVSR ANALYSIS

Tapering: Enabled (Bandwidth = 5%) Smoothing: Konno-Ohmachi (Bandwidth coefficient = 40) Instrumental correction: Disabled **HVSR**

SESAME CRITERIA

Selected fo frequency 1.710 Hz

A₀ amplitude = 3.535 Average fo = 1.736 ± 0.165

HVSR curve reliability criteria							
f ₀ > 10 / L _w	28 valid windows (length > 5.85 s) out of 28	OK					
n₀(f₀) > 200	957.59 > 200	ОК					
$\sigma_A(f) \le 2$ for $0.5f_0 \le f \le 2f_0$	Exceeded 0 times in 37	ОК					
HVS	HVSR peak clarity criteria						
∃ f in [f ₀ /4, f ₀] $A_{HV}(f) < A_0/2$	1.17806 Hz	ОК					
$\exists f^{+} in [f_{0}, 4f_{0}] \mid A_{HVV}(f^{+}) \leq A_{0}/2$	2.48207 Hz	ок					
A ₀ > 2	3.54 > 2	ок					
$f_{peak}[A_{HV}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	3.8% <= 5%	ок					
$\sigma_f \leq \epsilon(f_0)$	0.16505 < 0.171	ок					
$\sigma_A(f_0) \le \Theta(f_0)$	1.58408 < 1.78	ОК					
Overall criteria fulfillment							

Anexo 8 Resultados método de NAKAMURA ARS - 2

STATION INFORMATION

Station code: SPT2 Model: SARA GEOBOX Sensor: SARA SS45 (external 4.5 Hz sensors) Notes: -

PLACE INFORMATION Place ID: BARRIO 15 DE SEPTIEMBRE Address: MANTA - MANABÍ

UTM X: 530150,5 UTM Y: 9893997 Coordinate system: UTM - ZONA 17 S Elevation: 0 MASL Weather: -Notes: -

SIGNAL AND WINDOWING

300 Hz

Sampling frequency:	
Recording start time:	2020/09/24 18:20:45
Recording length:	10 min
Windows count:	23
Average windows	20
length:	
Signal coverage:	76.67%

-41624 Counts

-55367 Counts

E0000 Counto

HVSR ANALYSIS

Frequency (Hz)

HVSR average

HVSR time-frequency analysis (6 seconds windows)

HVSR directional analysis

SESAME CRITERIA

Selected fo frequency

1.367 Hz

A₀ amplitude = 4.649 Average f₀ = 1.377 ± 0.125

f ₀ > 10 / L _w	23 valid windows (length > 7.31 s) out of 23	OK
n _c (f ₀) > 200	629 > 200	OK
$\sigma_A(f) \le 2 \text{ for } 0.5f_0 \le f \le 2f_0$	Exceeded 0 times in 37	OK
∃ f in [f₀/4, f₀] A _{HV} (f) < A₀/2	1.05346 Hz	OK
$\exists f in [f_{0}/4, f_{0}] \mid A_{vin}/f) \leq A_{vin}/2$	1 05346 Hz	ОК
$\exists f^* \text{ in } [f_0, 4f_0] \mid A_{HVV}(f^*) < A_0/2$	2.30382 Hz	OK
A ₀ > 2	4.65 > 2	OK
$f_{\text{peak}}[A_{\text{HV}}(f)\pm_{\sigma_A}(f)]=f_0\pm5\%$	3.66% <= 5%	OK
$\sigma_f \leq \epsilon(f_0)$	0.12477 < 0.13674	OK
$\sigma_A(f_0) \le \hat{\theta}(f_0)$	1.25218 < 1.78	OK
QV(10) < Q(10)	1.20210 < 1.70	0

Anexo 9 Resultados método de NAKAMURA ARS - 3

STATION INFORMATION

Station code: SPT3 Model: SARA GEOBOX Sensor: SARA SS45 (external 4.5 Hz sensors) Notes: -

PLACE INFORMATION Place ID: BARRIO 15 DE SEPTIEMBRE Address: MANTA - MANABÍ

UTM X: 530221,2 UTM Y: 9893599,4 Coordinate system: UTM - ZONA 17 S Elevation: 0 MASL Weather: -Notes: -

300 Hz

SIGNAL AND WINDOWING

Sampling frequency:	
Recording start time:	2020/09/24 13:43:03
Recording length:	10 min
Windows count:	25
Average windows	20
length:	
Signal coverage:	83.33%

-62731 Counts

-33153 Counts

-37436 Counts

HVSR ANALYSIS

127

Frequency [Hz]

10

N-S E-107

٥

·10

D.5

1

HVSR time-frequency analysis (6 seconds windows)

SESAME CRITERIA

HVSR curve reliability criteria					
f ₀ > 10 / L _w	25 valid windows (length > 6.3 s) out of 25	ОК			
n₀(f₀) > 200	793.59 > 200	ок			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0$	Exceeded 0 times in 37	ок			
HVS	R peak clarity criteria				
∃ f in [f ₀ /4, f ₀] $A_{H/V}(f) < A_0/2$	0.87439 Hz	ок			
∃ f^{+} in $[f_{0}, 4f_{0}] A_{H/V}(f^{+}) < A_{0}/2$	2.30382 Hz	ок			
A ₀ > 2	3.27 > 2	ок			
$f_{peak}[A_{HVV}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	3.66% <= 5%	ок			
$\sigma_{\rm f} < \epsilon(f_0)$	0.15183 < 0.15872	ок			
$\sigma_A(f_0) \le \Theta(f_0)$	1.32868 < 1.78	ОК			
Overall criteria fulfillment					
Anexo 10 Resultados método de NAKAMURA ARS - 4

STATION INFORMATION

Station code: SPT4 Model: SARA GEOBOX Sensor: SARA SS45 (external 4.5 Hz sensors) Notes: -

PLACE INFORMATION Place ID: BARRIO 15 DE SEPTIEMBRE Address: MANTA - MANABÍ

UTM X: 529607,8 UTM Y: 9893499,7 Coordinate system: UTM - ZONA 17 S Elevation: 0 MASL Weather: -Notes: -

SIGNAL AND WINDOWING

300 Hz

Sampling frequency:	
Recording start time:	2020/09/24 15:54:51
Recording length:	5.23 min
Windows count:	16
Average windows	19.63
length:	
Signal coverage:	100%

50576	0576 Counts CHANNEL #1 [V]													
u, shutha tu	Maria	durante	المراجع المراجع	No fell	.µ#11,	II. Haranta	الأدار أخييهم	lleryla	and proved in	hula	In the second	ll. Anto	Muha	Janua
a Million	anter The	(v.)) mum	iliseeda ta	Hillion A			alang ng pa	, 1982 - 1994 1985 - 1994	and freedom		ika s ^{ulen} ika N			jen po

-48601 Counts

31913	Counts	;	CHANNEL #2 [N]											
n, Afrika ya Manang tabut	a an Ann	la terretari periodia	.111/0		li i i jenite Aprilacije	nininin Alahan	n ferfang fer Gentlik an fe	an line di n Giri di kale di	n ji ji shi ka s	upperer (^{1,100,4} 10)	ll ¹ 1. 1. ₁ 1. Ly dep ^{ute} le	alanya ya Yanga ya	•↓↓ ↓↓•↓↓↓	
25455	Count	_												

-25455 Counts

33241	Counts	;				CH	ANNE	L #3 [E]						
ul da kand	an a	a an		, Anna	الديبان	mphul	lon dag	, dhallan	mi, di	a de la della	Allanda	d'al pu	the proof	pl	Ulipar
A CAPITAL	and the	and stat	A Dep	¹ 11) 111 (111)		a ser ala p	17) M	alle politik i			al tirth	ley (state	reliait.	u II au	ap u lui T

-32833 Counts

HVSR ANALYSIS

HVSR average

HVSR time-frequency analysis (6 seconds windows)

HVSR directional analysis

SESAME CRITERIA

HVSR curve reliability criteria								
$f_0 > 10 / L_w$	16 valid windows (length > 7.31 s) out of 16	ОК						
n₀(f₀) > 200	429.36 > 200	ОК						
$\sigma_A(f) \le 2 \text{ for } 0.5 f_0 \le f \le 2 f_0$	Exceeded 0 times in 37	ОК						
HVSR peak clarity criteria								
$\exists f in [f_0/4, f_0] \mid A_{HV}(f) < A_0/2$	0.72576 Hz	ОК						
$\exists f^{+} in [f_{0}, 4f_{0}] \mid A_{HVV}(f^{+}) < A_{0}/2$	1.98481 Hz	OK						
A ₀ > 2	2.77 > 2	ОК						
$f_{peak}[A_{HV}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	3.8% <= 5%	OK						
$\sigma_f \leq \epsilon(f_0)$	0.12117 < 0.13674	ОК						
$\sigma_A(f_0) \le \Theta(f_0)$	1.40819 < 1.78	ОК						
Overall criteria fulfillment								

Anexo 11 Registros Sísmicos PROYECTO MICROZONIFICACIÓN BARRIO 15 DE SEPTIEMBRE

Registro	Estación	Dirección	Mw	Rrup (km)	PGA (g)	PGV (m/s)	F. E.
Ecuador 2016-04-16	AMNTO	E-W	7,8	76	0.4	0.28	1,0

Registro	Estación	Dirección	Mw	Rrup (km)	PGA (g)	PGV (m/s)	F. E.
Ecuador 2016-04-16	AMNTO	N-S	7,8	76	0.52	0.22	1,0

Registro	Estación	Dirección	Mw	Rrup (km)	PGA (g)	PGV (m/s)	F. E.
Chile 2015-09-16	El Pedregal	E-W	8.2	59	0.44	0.2	1.5

Registro	Estación	Dirección	Mw	Rrup (km)	PGA (g)	PGV (m/s)	F. E.
Chile 2015-09-16	El Pedregal	N-S	8.2	59	0.52	0.24	1.5

Registro	Estación	Dirección	Mw	Rrup (km)	PGA (g)	PGV (m/s)	F. E.
IQUIQUE 2014-03- 01	Hosp. Regional DR. E. IQQ	N-S	8.1	41	0.43	0.34	1.6

Registro	Estación	Dirección	Mw	Rrup (km)	PGA (g)	PGV (m/s)	F. E.
IQUIQUE 2014-03-01	Hosp. Regional DR. E. IQQ	N-S	8.1	41	0.43	0.34	1.6

Registro	Estación	Dirección	Mw	Rrup (km)	PGA (g)	PGV (m/s)	F. E.
IQUIQUE Humb.2014-03-01	HUMBERSTONE	E-W	8.1	49	0.51	0.41	2.0

Registro	Estación	Dirección	Mw	Rrup (km)	PGA (g)	PGV (m/s)	F. E.
IQUIQUE Humb.2014-03-01	HUMBERSTON E	N-S	8.1	49	0.48	0.42	2.0

ARS-1

ARS-2

ARS-3

ARS-4

Edificación Tipo	А		Modelo Estructural			
Reseña	MIDUVI					
Estructura	H. Armado					
Paredes	Mampostería					
R. a la compresión del H.	210	Kg/cm2				
Dimensiones básicas			200.00			
Ancho	6,00	metros				
Longitud	7,10	metros				
Área	42,6	m2	50 10			
# Pisos	1		6			
Altura Edificación	2,60	metros	2			
Columnas	Sección	# Columnas				
	0,20x0,20 m	12				
Vigas	Sección					
	0,20x0,20 m					
# Edificaciones	35	Unidades				
Modelo fotográfico			Modelo Arquitectónico			

Anexo 13 Clasificacion de las viviendas tipo del sector

Edificación Tipo	В		Modelo Estructural
Reseña	Casa planta baja		29 (m) 29 (m) (¢)
Estructura	H. Armado		
Paredes	Mampostería		
R. a la compresión			22 (m)
del H.	210	Kg/cm2	
Dimensiones básicas			
Ancho	6,00	metros	
Longitud	10,00	metros	् (1)
Área	60	m2	
# Pisos	1		
Altura Edificación	2,80	metros	
		#	100 100
Columnas	Sección	Columnas	
	0,20x0,20 m	14	
Vigas	Sección		-
	0,20x0,12 m		5 5
# Edificaciones	483	Unidades	
Modelo fotográfico			Modelo Arquitectónico
	9-1- 1- 1- 1-		

Edificación Tipo	С		Modelo Estructural
Reseña	Casa 2 plantas		
Estructura	H. Armado		
Paredes	Mampostería		3,65 HH 355 HH 0 355 HH 6
R. a la compresión del	· ·		E C C C C C C C C C C C C C C C C C C C
H.	210 Kg/cm2		
Dimensiones básicas			14 95
Ancho	10,00	metros	·
Longitud	14,00	metros	
Área	140	m2	10 000 10 000
# Pisos	2		
Altura Edificación	5,60	metros	
		#	
Columnas	Sección	Columnas	
Planta baja	0,30x0,30 m	16	High X
Planta alta	0,20x0,20 m	16	
Vigas	Sección		
Losa	0,25x0,25 m		
Planta alta	0,20x0,12 m		
# Edificaciones	145	Unidades	
Modelo fotografico		Modelo Arquitectonico	

Edificación Tipo	E		Modelo Estructural
Reseña	Galpón		88 m
Estructura	Metálica		
Paredes	no		3.45 tri
Dimensiones básicas			
Ancho	9,00	metros	26
Longitud	14,00	metros	3
área	126	m²	
# Pisos	1		3.00 EM
Altura Edificación	5,50	metros	
Columnas	Socción	# Columnas	3.4
Columnas	0.20x0.20 m	10	
Vigas tipo cercha	Sección		
0	0,40x0,10 m		
# Edificaciones	9	Unidades	
Modelo fotográfico			Modelo Arquitectónico

Anexo 14 Evaluación de La Respuesta Estructural de las Edificaciones Límites permisibles de las derivas de los pisos (NEC-SE-DS) CAP 5.1

Modelación de vivienda TIPO A – Programa ETAPS

Modelación de vivienda TIPO B – Programa ETAPS

Modelación de vivienda TIPO C – Programa ETAPS

Modelación de vivienda TIPO D – Programa ETAPS

