CARACTERIZACION DE UNA BACTERIA "PROBIOTICA" EN Penaeus vannamei Y ESTUDIO in vivo DE LA INTERACCION CON UNA BACTERIA PATOGENA"

TESIS DE GRADO

Previa obtención del Título de: ACUICULTOR

Presentada por: LORENA DEL ROCIO SAN MIGUEL FIGUEROA

GUAYAQUIL - ECUADOR
DEDICATORIA

A MIS PADRES:
Victor y Judith

A MIS HERMANOS:
Adela, Nathalie y Victor Hugo

A VICTOR

A LA MEMORIA DE MI ABUELITA:
Della Judith de Figueroa
AGRADECIMIENTO

A Dios, por el don de la vida y por permitirme alcanzar mis ideales.

A mis padres, mis guías, quienes han sabido conducirme durante todos estos años y a quienes debo mi desarrollo personal y profesional. Gracias por el amor, por la confianza depositada en mí y el apoyo que me han brindado.

Al CENAIM, lugar en el cual se desarrolló esta tesis, y al Dr. Jorge Calderón, por la oportunidad dada para culminar mis estudios universitarios.

Al Dr. Eric Mialhe, director de tesis, por sus valiosas y sabias enseñanzas, y por la dedicación y generosidad hacia nosotros.

A la Dra. Lucía Carrera, ejemplo de lucha y solidaridad, por enseñarme que cualquier meta planteada por difícil que sea se consigue si uno está verdaderamente dispuesto a luchar. Mi gratitud por sus sabias enseñanzas, su ayuda en la redacción del documento y el apoyo brindado.

A Víctor Vargas, mi gran apoyo, a quien agradezco su cooperación y paciencia en largas jornadas de trabajo. Mis más sinceros agradecimientos por tu gran ayuda en el desarrollo de esta tesis, tu dosis de buen humor y comprensión en todo momento....

GRACIAS por estar siempre presente.
A Mara Zherdmant, mi compañera de tesis y actual compañera de trabajo, por su inmensa ayuda en las experimentaciones, por habérme dado la oportunidad de conocerla, por permitirme contar con ella en todo momento y sobre todo por brindarme su amistad.

A Lourice Ramírez y Antonio Ocaña, a quienes conocí durante más años de estudio en la universidad y a quienes considero verdaderos amigos.

A Paola Calle, porque cinco años y más de conocernos no pasan en vano y, a Lilia Prieto por ser como es. Gracias a ustedes por su amistad.

A mis compañeros: Ricardo, Xavier A., Marcelo, César, Rubén, y Edward, por los momentos compartidos durante estos meses y por habérme permitido conocerlos verdaderamente.

A Rafaela Ruiz, siempre dispuesta a escucharme en todo momento, gracias por tu valiosa amistad y tu ayuda en una parte de mi tesis.

A Marcelo Muñoz por ser un buen amigo y por su ayuda incondicional.

A Xavier R., Javier S., Xavier A., Chabi, Fernando, José M., Arturo, Ernesto y Mario por los momentos compartidos.

A Emerik Motte, por su ayuda en las técnicas de Biología Molecular y, sus opiniones y sugerencias en el desarrollo de la tesis y en la corrección del manuscrito.
A Gabriel Rivera por las enseñanzas de las técnicas de bacteriología y Philippe Audiot por el conocimiento impartido acerca de los inmunoensayos de colony y dot blot.

A todos quienes conforman el equipo de bacteriología, inmunología y genética por las opiniones dadas.

A Peter Robertson, por la información y la ayuda brindada en esta tesis.

Finalmente, deseo agradecer a Julio Macías, de ACUATEC S.A., a David Garríques y Gorky Arévalo, de GRANJAS MARINAS, a Alberto Cotrina y Víctor Vargas, de VANALARVA y a Jorge Salvatierra de CONTEPISA por haberme facilitado los animales para la realización de las infecciones experimentales.
Jorge Calderón V., Ph. D.
Presidente del Tribunal

Eric Mialhe, Ph.D.
Director de Tesis

Henry Alvarez, Ac.
Primer suplente
DECLARACION EXPRESA

"La responsabilidad por los hechos, ideas y doctrinas expuestos en esta tesis, me corresponden exclusivamente; y el patrimonio intelectual de la misma, a la ESCUELA SUPERIOR POLITECNICA DEL LITORAL".

(Reglamento de Exámenes y Títulos profesionales de la ESPO).
asociadas con las larvas. Consecuentemente, no fue observado el síndrome de "bolitas".

En larvas expuestas a concentraciones de 10^6, 10^7 y 10^8 UFC E22/ml durante 4 horas de contacto se observó la presencia de esta bacteria y enfermedad. Finalmente, al introducir 10^7 UFC E22/ml sin cambio posterior de agua, se observó colonización en las larvas así como síntomas de "bolitas".

En lo que respecta a la cepa III, con la introducción de 10^7 UFC/ml sin recambio de agua se observa colonización en la larva pero, 48 horas después de la infección se dan altas mortalidades atribuidas a la excesiva proliferación de esta bacteria lo cual dañaría la calidad del agua. Subsecuentemente, la cepa III fue introducida sólo durante 4 horas a concentraciones de 10^6, 10^7 y 10^8 UFC/ml.

A fin de explorar el efecto de probiosis de la cepa III, se realizaron pruebas en las cuales la bacteria probiótica fue puesta en contacto con las larvas 24 horas antes que la bacteria patógena E22. Diferentes tiempos de contacto y diferentes concentraciones bacterianas fueron experimentadas.

La puesta en contacto de zoa 1 con la cepa III a concentraciones de 10^8 y 10^7 UFC/ml durante 24 o 4 horas de contacto, y posteriormente con la cepa E22 en 10^6 y 10^7 UFC/ml durante 4 horas de exposición, condujo únicamente a la observación de colonias de tipo amarillo en las larvas. Sin embargo, con E22 a
una concentración 100 veces mayor a ILI, sólo colonizas E22 en la
flora de la larva fueron observadas, lo que indica una limitación
en la capacidad probiótica de ILI.

La presencia de las dos bacterias en proporciones más o menos
equivalentes en la flora bacteriana de las larvas se dio cuando
E22 fue puesta en contacto en concentraciones 10 veces mayor o
igual a ILI.

Sobre la base de estos resultados se puede considerar que ILI
tiene una capacidad probiótica frente a E22 con el proceso de
colonización del tubo digestivo, que es de tipo no exclusivo y
dinámico en función de las condiciones experimentales.
INDICE GENERAL

RESUMEN..1
INDICE GENERAL..iv
INDICE DE TABLAS..viii
INDICE DE FIGURAS...x
INTRODUCCION..xi

CAPITULO I

ANTECEDENTES..21

1.1 LARVICULTURA DEL CAMARON EN EL ECUADOR...21

1.2 ENFERMEDADES BACTERIANAS QUE SE HAN PRESENTADO EN LA LARVICULTURA DE Penaeus vannamei..23

1.3 CARACTERISTICAS DE LOS VIBRIOS...27

1.3.1 Caracterización bioquímica...29

1.3.2 Caracterización genética..30

1.3.2.1 Plasmidos...30

1.3.2.2 Perfil de restricción de ADN plasmídico o genómico.....................................33

1.3.2.3 Sondas nucleicas..34

1.3.2.4 Polimorfismo por patrón de amplificación (RAPD)......................................35

1.3.3 Caracterización antigénica...37
1.4 BACTERIAS PROBIÓTICAS

CAPITULO II
MATERIALES Y MÉTODOS

2.1 MATERIAL BIOLOGICO
2.1.1 Animales
2.1.2 Cepas bacterianas
2.1.3 Anticuerpos

2.2 METODOLOGIA
2.2.1 Mantenimiento y siembra de animales
2.2.2 Técnicas de bacteriología
2.2.2.1 Preparación de bacterias para infecciones experimentales
2.2.2.2 Siembra de bacterias para realizar colony blot
2.2.3 Técnicas de pruebas bioquímicas
2.2.3.1 Siembra de bacterias para pruebas bioquímicas
2.2.4 Técnicas inmunológicas
2.2.4.1 Colony-blot
CAPITULO III
RESULTADOS Y DISCUSION

3.1 CARACTERIZACIONES

3.1.1 Caracterización bioquímica

3.1.2 Caracterización genética

3.1.3 Caracterización e identificación antígenicas

3.2 ANALISIS DE LAS INTERACCIONES in vivo ENTRE
BACTERIAS "PROBIOTICAS" Y PATOGENAS.........................83
3.2.1 Experimentación 1..85
3.2.2 Experimentación 2..88
3.2.3 Experimentación 3..92
3.2.4 Experimentación 4.......................................96
3.2.5 Experimentación 5.......................................99
3.2.6 Experimentación 6......................................101
CONCLUSIONES..104
RECOMENDACIONES...109
ANEXOS..111
REFERENCIAS BIBLIOGRAFICAS...............................120
INDICE DE TABLAS

TABLA No I. Cepas bacterianas utilizadas en las infecciones experimentales..45

TABLA No II. Principios de los caracteres bioquímicos analizados..52

TABLA No III. Caracteres morfológicos y bioquímicos de dos cepas de Vibrio alginolyticus comparadas con los caracteres de Vibrio alginolyticus según el Manual de Bergey...75

TABLA No IV. Listado de diecisésis híbridos, tres reconocen a las cepas III y 158 y trece reconocen sólo a la cepa III..81

TABLA No V. Patogenicidad o inocuidad de las cepas E22, 134 (Vibrio harveyi), 158, I11 (Vibrio alginolyticus) en larvas de Penaeus vannamei...87

TABLA No VI. Evaluación de diferentes concentraciones de la cepa E22 (1x10⁴, 1x10⁵, 1x10⁶ y 1x10⁷ UFC/ml) y tiempo de exposición de 1 hora en larvas zoea I...89
TABLA No VII. Evaluación de diferentes concentraciones de ILI y E22 en un tiempo de exposición de 4 horas en larvas de camarón, estadio zoea I...91

TABLA No VIII. Exploración del efecto probiótico de la cepa ILI frente a la cepa E22. Exposición de larvas a 1x10^7 UFC/ml durante 4 horas, con reinfección después de 24 horas...95

TABLA No IX. Interacción de ILI con E22. Concentraciones utilizadas: E22: 1x10^6 y 1x10^7, ILI 1x10^7 y 1x10^8 UFC/ml, con tiempos de exposición de 24 y 4 horas para ILI y E22 respectivamente ..98

TABLA No X. Interacción de ILI con E22. Concentraciones utilizadas: E22: 1x10^6 y 1x10^7, ILI: 1x10^7 y 1x10^8 UFC/ml, con un tiempo de exposición de 4 horas para ILI y E22...100

TABLA No XI. Interacción de ILI con E22. Concentraciones utilizadas: E22: 1x10^6 y 1x10^7, ILI 1x10^5 y 1x10^6 UFC/ml, con un tiempo de exposición de 4 horas para ambas bacterias...103
INDICE DE FIGURAS

FIG. No 1. Bacilos cortos Gram negativos..28
FIG. No 2. Corte de ADN por una enzima de restricción.....33
FIG. No 3. Sonda nucleica..34
FIG. No 4. Comparación de propiedades de anticuerpos policlonales y monoclonales...38
FIG. No 5. Colony-blot...42
FIG. No 6. Sistema utilizado para las infecciones experimentales...48
FIG. No 7. Pruebas bioquimicas...55
FIG. No 8. Colony blot. Incubación de membranas con solución bloqueadora..60
FIG. No 9. Electroforesis. Migración de ADN (carga negativa) hacia el ánodo o polo positivo67
FIG. No 10. Southern blot. Transferencia de ADN hacia una membrana de nylon...71
FIG No 11. ADN de las cepas III y 158.................................77
FIG. No 12. Patrón de restricción de la cepa 158.........79
INTRODUCCIÓN

La construcción de laboratorios para la producción de postlarvas de camarón en el Ecuador, se inició en 1979. El factor esencial que influyó en su creación fue la necesidad de liberarse de la dependencia de un suministro (de larvas) estacional variable.

A mediados de 1984 con la implementación de tecnología para la producción de larvas se inicia el "boom" de la construcción de laboratorios para abastecer la demanda de larvas del mercado. Pero algunos factores han limitado el desarrollo de la larvicultura, especialmente las enfermedades causadas por agentes infecciosos como las bacterias.

Tradicionalmente, para controlar estas enfermedades causadas por bacterias se han utilizado antibióticos en pequeñas dosis y sobre largos periodos de tiempo, lo que ha permitido un incremento de cepas bacterianas resistentes haciendo difícil efectivo un tratamiento efectivo.

Actualmente, algunos laboratorios intentan con la utilización de probióticos controlar a las bacterias patógenas. Sin embargo este enfoque es empírico, porque por una parte no existe conocimiento suficiente sobre las características de las bacterias asociadas con las larvas de camarón y, por otra parte, no se ha demostrado el efecto de probiosis de estas cepas contra aislados patógenos.
Esta carencia de información explica la necesidad preliminar de contar con sondas moleculares específicas de cepas posiblemente patógenas y prebióticas, que permitan analizar con precisión las interacciones entre bacterias in vitro o en la larva.

En el presente trabajo se efectuó la caracterización bioquímica, genética y antigénica de dos cepas de *Vibrio alginolyticus*, utilizadas como "probióticos" por un laboratorio de larvas de camarón. Posteriormente se realizaron una serie de infecciones experimentales en larvas con estas cepas bacterianas, consideradas "probióticos" (*Vibrio alginolyticus*) y otra patógena (*Vibrio harveyi*), siendo el objetivo establecer un modelo de estudios in vivo en sus interacciones.
CAPITULO I.

ANTECEDENTES

1.1 LARVICULTURA DEL CAMARON EN EL ECUADOR

El cultivo de camarón en el Ecuador se inicia a finales de los años sesenta y principio de los setenta, en la provincia de El Oro. Mediante ensayos iniciales se determinó que la especie más adecuada para el cultivo era el camarón blanco Penaeus vannamei, y que el P. stylirostris podría también ser cultivado aunque con resultados inferiores (Horna, 1987).

A fines de 1973 las camaroneras cubrían una superficie de 600 Ha, todas ellas en la provincia de El Oro. Hacia 1978 - 1979 se inició la construcción de camaroneras en las provincias de Guayas y Manabí. Posteriormente se construyeron estanques en la provincia de Esmeraldas. Es a partir del 1981 cuando se inicia la fiebre de la construcción de camaroneras en el Ecuador, que trajo como consecuencia el espectacular aumento de las exportaciones de camarón blanco a los Estados Unidos (Horna, 1987).

Para satisfacer la demanda de larvas de camarón, en 1979 se inició la construcción de laboratorios cuyo fin era el serio de aprovisionamiento de semilla. La liberación de la dependencia de un suministro
En 1988 la larva de laboratorio abastecía el 16 % de la demanda; a partir de 1989, como resultado de un ciclo de escasez de larva silvestre, los productores camaroneses estuvieron dispuestos a pagar por la larva de laboratorio un precio de sustentación. Como resultado, creció el número de laboratorios y su producción (Libro blanco del camarón, 1993) llegando a poseer esta industria en 1990. 150 laboratorios que produjeron casi 8.0 billones de postlarvas, para abastecer casi el 70 % de la provisión de larvas requerida por todas las piscinas ecuatorianas (Depto. de Comercio de los Estados Unidos, 1991).

En la actualidad, ha disminuido notablemente la dependencia de las piscinas camaronesas de la larva silvestre. Para 1992, ante una demanda anual estimada en 14 billones de larvas, los laboratorios cubrieron el 60 % de esta demanda, con una producción anual de 8.4 billones de larvas (Libro blanco del camarón, 1993).

1.2 ENFERMEDADES BACTERIANAS QUE SE HAN PRESENTADO EN LA LARVICULTURA DE P. vannamei.

El rápido crecimiento de la industria de cultivo de camarones penelos en América y Asia se ha visto frenado a causa de las enfermedades (Sindermann y Lightner, 1988). Varias enfermedades han afectado a la producción de los laboratorios ecuatorianos, especialmente a los de mayor tamaño. Los gérmenes pueden ser de naturaleza viral,
bacteriana, parasitaria o micótica (Depto. de Comercio de los Estados Unidos, 1991).

Las bacterias están implicadas en enfermedades y mortalidades de peneidos cultivados, especialmente en los estados de larva, postlarva y juvenil. Las infecciones bacterianas en camarones, pueden tomar tres formas generales: erosión de la cutícula cubriendo la superficie del cuerpo, branquias y apéndices (necrosis bacteriana y enfermedades cuticulares); lesiones localizadas dentro del cuerpo, y septicemias generalizadas (Lightner, 1992).

Sin duda, la enfermedad más común, conocida como "bolitas", ha provocado desde su aparición en 1987 elevados porcentajes de mortalidad en los laboratorios afectados. Los síntomas observados consisten en una descamación de las células de las paredes del hepatopáncreas e intestino de las larvas, que mueren en pocas horas, pudiendo perderse casi el 100 % de la población (Morales, 1992). Esta enfermedad, causada por una bacteria identificada mediante pruebas bioquímicas como *Vibrio harveyi*, se ve agravada por factores como los altos recuentos bacterianos en los tanques, las bajas temperaturas o nauplios débiles (Depto. de Comercio de los Estados Unidos, 1991).

Algunas de las enfermedades de los peneidos son consecuencia del sistema de cultivo empleado (intensivo, semi-intensivo y extensivo) (Sindermann y Lightner, 1988).
Por ejemplo, una de las posibles causas de la proliferación bacteriana en piscinas es la alta densidad de camarones (sistema intensivo), lo que permite la adaptación y selección de cepas virulentas de bacterias oportunistas asociadas al camarón y/o cepas patógenas que se encuentran normalmente en el medio acuático. Además, estas condiciones de cultivo pueden estresar a los animales y afectar su fisiología y su capacidad inmunológica, trayendo como consecuencia la sensibilidad de los animales a bacterias oportunistas y normalmente poco patógenas (Le Bitoux, 1988).

Algunos casos de septicemia se han presentado en piscinas que han tenido varios ciclos completos de producción seguidos, sin espacios de tiempo de secado, lo que provee el tiempo necesario para la selección de cepas bacterianas virulentas (Jiménez, 1992).

Dentro del ecosistema "artificial" que constituye el criadero, se instala una microflora diferente a la del medio marino natural. Las poblaciones bacterianas de tipo "primario" según Martín (1977), dan paso a una microflora de "regeneración", característica de los medios ricos en materia orgánica.

La utilización de antibióticos también altera la microflora de las piscinas, pues puede provocar una reducción de la diversidad bacteriana que puede ser en detrimento de
claras bacterias favorables y contribuir así al desarrollo de bacterias patógenas (Le Bitoux, 1988).

Finalmente, se puede observar un aumento de la patogenicidad en cepas bacterianas por cambios genéticos (conjugación, transformación, transducción) y selección (mejor adaptación a las condiciones de cultivo y al camarón). Por ejemplo, la transferencia de material genético entre bacterias, como plásmidos en los que se localizan genes responsables de alteraciones en la regulación osmótica a nivel del tubo digestivo.

En la acuicultura, se puede temer no solamente la aparición de numerosas cepas patógenas sino también su dispersión debido a la ausencia de medidas profilácticas y de diagnóstico. Otro riesgo está relacionado a las perturbaciones del medio ambiente y las contaminaciones porque los animales cultivados no se pueden adaptar tan rápidamente como los microorganismos (Le Bitoux, 1988).

La habilidad para limitar la aparición de bacterias patógenas en los cultivos larvarios intensivos de camarones penados es un aspecto primordial para la producción y calidad de la larva. En los laboratorios comerciales del Ecuador, la mayoría de las prácticas de manejo tieñen como objetivo controlar el desarrollo de bacterias patógenas mediante la desinfección del agua (tratamiento con UV, clorinación, filtración, etc.), utilización de stocks de algas estériles, limpieza de artemias,
y prácticas de higiene tales como desinfección del equipo, baños para ples, etc. (Garriques y Arévalo, 1995). Además, para prevenir o combatir las enfermedades provocadas por bacterias, se ha hecho uso de los antibióticos, los cuales utilizados en pequeñas dosis y sobre largos períodos de tiempo, han permitido un incremento del número de poblaciones bacterianas resistentes haciendo difícil un tratamiento efectivo, fenómeno que ha sido ampliamente descrito en medicina humana y animal (Smoragiewicz et al., 1993).

Al parecer la mayoría de las bacterias que afectan al camarón son patógenos oportunistas que forman parte de su microflora normal (Lightner, 1983). Los vibrios han sido identificados como el género dominante de la flora bacteriana normal de muchos crustáceos marinos (Vanderzant et al., 1971; Sizemore et al., 1975; Yasuda and Kitao, 1980; Dempsey and Kitting, 1987; Sugita et al., 1987; Dempsey et al., 1989; Suzuki et al., 1990; en Garriques y Arévalo, 1995) y también como las principales bacterias involucradas en las enfermedades del camarón.

1.3 CARACTERÍSTICAS DE LOS VIBRIOS

Las bacterias que más frecuentemente se asocian con las enfermedades del camarón son las del género Vibrio (Mohnley, Lightner, Bell, 1994). Se encuentran clasificadas
dentro del grupo V según el Manual de bacteriología determinativa de Bergey.

Pertenecen a la familia Vibrionaceae. Son microorganismos procariotas de tipo Gram negativo (Fig. No. 1), de estructura simple en su pared y anaerobios facultativos (Drlica, 1992; Lechevaller, 1977).

Fig. No. 1 Bacilos cortos Gram negativos.

Normalmente son bacilos curvos o rectos, de 0.5 - 0.8 μ de ancho y 1.4 - 2.6 μ de largo. Presentan motilidad gracias a uno o más flagelos que están encerrados en una envoltura continua con la membrana externa de la pared celular (Singleton, Sainsbury, 1993).

Algunos vibrios son patógenos para humanos y otros para vertebrados e invertebrados marinos. Los patógenos humanos más notables son V. cholerae, el agente causal del cólera; V. parahaemolyticus, causante de envenenamiento por ingestión de peces y moluscos contaminados; y V. vulnificus que provoca una septicemia en muchas ocasiones fatal. Estas y otras especies están asociadas con infecciones intestinales, diarreas y una variedad de infecciones extraintestinales (Holt, et al., 1994). Debido a que ciertos vibrios son patógenos para humanos, tal como V. cholerae, se han desarrollado reactivos y pruebas confiables y seguras para su caracterización y diagnóstico.

1.3.1 Caracterización bioquímica

Se basa en un patrón de caracteres comunes a todos los miembros de un mismo grupo (familia, género, especie, cepa) y que los diferencia por tanto de otros (Holt, et al., 1994).

Las pruebas bioquímicas consisten en la utilización de medios de cultivo específicos, para la identificación de una característica metabólica. La técnica empleada se refiere a la bacteriología clásica involucrando la siembra de bacterias, previamente purificadas, en los diferentes medios y la consiguiente lectura de la positividad o negatividad de cada reacción específica de un criterio bioquímico (Néier, 1989).
La utilización de estas pruebas bioquímicas es el fundamento de la caracterización y de la distinción de cepas o especies bacterianas mediante lecturas diferenciables entre los aislados bacterianos (Néder, 1989).

1.3.2. Caracterización genética

Hasta hace poco, la taxonomía de las bacterias estuvo basada en criterios tales como reacción de Gram, morfología, requerimiento de sustrato, presencia y posición de flagelos, etc; tales criterios servían para la elaboración de esquemas taxonómicos. Actualmente se da mayor énfasis a criterios moleculares que permiten el conocimiento más exacto de un microorganismo (Singleton, Sainsbury, 1993).

Entre los criterios para la caracterización genética de una bacteria se encuentran la presencia de plásmidos, tamaño del plásmido y el mapa de restricción (número y tamaño de fragmentos obtenidos tras la digestión del plásmido con una enzima de restricción) (Dritica, 1992). Nuevas metodologías están siendo evaluadas actualmente, tal como la técnica de RAPD.

1.3.2.1. Plásmidos

Los plásmidos son pequeñas moléculas de ADN circular, independientes del ADN
cromosómico y presentes en numerosas bacterias (también en algunas levaduras y hongos). Tienen sus propios orígenes de replicación, replicándose por tante de forma autónoma, y son heredados de manera estable (Prescott, 1993). Los plásmidos más pequeños tienen cerca de 5000 pares de nucleótidos en comparación con el genoma de *E. coli* que contiene ligeramente más de 4 millones de pares de nucleótidos (Drlica, 1992).

La información genética de los plásmidos no es esencial para el huésped y, bacterias que no lo presentan, funcionan normalmente. Su importancia radica en que estas moléculas de ADN extracromosómico les confieren ciertas ventajas como resistencia a los antibióticos, producción de proteínas letales para otras bacterias (bactericidas) o producción de enzimas que les permite degradar sustancias tales como pesticidas, compuestos aromáticos y azúcares (Prescott, 1993).

Algunas bacterias poseen la capacidad genética para sintetizar compuestos conocidos como bactericidas que son proteínas
bacterianas que destruyen otras bacterias. Las bactericidas actúan abriendo poros en la membrana plasmática aumentando así su permeabilidad, degradando ADN o ARN, o debilitando la pared celular (afectan al peptidoglucano) (García y Quintana, 1992; Prescott, 1993). Estas sustancias tóxicas pueden ser simples polipéptidos o macromoléculas muy complejas. La característica de ser una cepa "asesina" es codificada frequentemente por genes plasmídicos, aunque también puede ser codificada por genes cromosómicos (García y Quintana, 1992).

La bacteria *Escherichia coli* contiene bactericidas conocidas como colicinas, codificadas por dos genes. El gen *cma* codifica para la colicina M la cual va a permitir la fijación de la bacteria en el receptor de la superficie celular de otra, introducir la toxina a la bacteria y destruirla al bloquear la biosíntesis del peptidoglucano y del antigeno O. El gen *cml* codifica para otra proteína que le confiere inmunidad a la *E coli* mientras la colicina M actúa sobre otra bacteria (Harkness, 1991).
1.3.2.2. Perfil de restricción de ADN plasmídico o genómico

El ADN es cortado por enzimas conocidas como endonucleasas de restricción las cuales reconocen y cortan secuencias específicas de ADN (Fig No. 2). El corte de ADN con estas enzimas produce fragmentos de ADN. Por las diferencias en la composición de ADN se producen distintos tipos de corte por enzimas con la producción subsecuente de fragmentos de diferentes tamaños. Este tipo de análisis produce un perfil de fragmentos de un ADN plasmídico en un gel de electroforesis que es característico de cada plásmido tratado con una enzima de restricción particular (Drlica, 1992).

Fig. No. 2. Corte de ADN por una enzima de restricción.
1.3.2.3. Sondas nucleicas

Las sondas nucleicas representan una tecnología relativamente reciente para la caracterización y la identificación de cepas bacterianas que consiste en la detección de una perción específica de material genético del microorganismo.

Una sonda es un fragmento monocatenario marcado de un ácido nucleico (ADN o ARN), que tiene la propiedad de híbridarse por complementariedad de las bases nucleotídicas con el ADN o ARN complementario. Este fragmento es específico de la secuencia que complementa, de ahí su gran interés en el diagnóstico para detectar directamente la presencia de esa secuencia (Fig. No. 3).

![Diagrama de sonda nucleica](image)

Fig. No. 3. Sonda nucleica
RESUMEN

Desde hace algunos años, el uso de bacterias probióticas se ha desarrollado en la larvicultura del camarón *Penaeus vannamei*, pero con una carencia de información sobre las cepas y sin una demostración fiable de su efecto.

A fin de explorar este concepto de probiosis, dos cepas previamente utilizadas como probióticos, IL1 y 158, fueron estudiadas. Bioquímicamente, los dos aislados fueron reconocidos como *Vibrio alginolyticus*. Genéticamente se diferenciaron por la presencia de un plásmido de 7.4 Kb en la cepa 158. El análisis antigénico mediante un anticuerpo monoclonal específico de IL1 (2B6) permitió diferenciar estas cepas por la presencia de un antígeno particular para IL1.

Mediante infecciones experimentales de larvas de camarón en estadio zoea I (tiempo post-abertura de la boca) fueron progresivamente optimizadas las interacciones larvas de camarón- bacteria probiótica (IL1, *Vibrio alginolyticus*)- bacteria patógena (E22, *Vibrio harveyi*). Se utilizó la técnica de colony blot para el reconocimiento de bacterias introducidas, mediante anticuerpos monoclonales específicos de la cepa E22 (9H4 o 2C9) y de la cepa IL1 (2B6).

Mediante una hora de exposición, en concentraciones de 10^4, 10^5, 10^6 y 10^7 UFC/ml, la cepa E22 no fue capaz de colonizar el tubo digestivo que reveló contener sólo bacterias previamente
Para la taxonomía y la caracterización de cepas bacterianas se podrían preparar sondas nucleicas de aislados bacterianos de interés y utilizarlas para la identificación de aislados con las mismas características genéticas. También se pueden utilizar sondas nucleicas en la identificación de cepas patógenas, por ejemplo cuando se conoce un gen de una toxina y se pueden preparar sondas nucleicas para identificar la presencia de este gen en aislados problema.

1.3.2.4. POLIMORFISMO POR PATRON DE AMPLIFICACION.

RANDOM AMPLIFICATION OF POLYMORPHIC DNA (RAPD)

La técnica de RAPD, desarrollada por Williams et al., (1990) y Welsh y McClelland (1990); está basada en la reacción de la polimerasa en cadena (PCR).

La PCR es una de las técnicas más ampliamente utilizadas en Biología Molecular y fue desarrollada por Kary Mullis en 1985. Permite producir un gran número de fragmentos idénticos (copias) a partir de un solo fragmento de ADN del que se conocen las
secuencias que lo flanquean. Es un proceso cíclico que está dividido en 3 fases: la primera, en donde la cadena doble del ADN es separada por elevación de temperatura en 2 cadenas individuales y se conoce como desnaturización; la segunda fase, hibridación, donde los iniciadores o secuencias conocidas que flanquean el fragmento a ampliar híbriden con sus secuencias complementarias y "disparan" la siguiente fase o polimerización en la cual una ADN polimerasa, resistente a temperaturas elevadas, cataliza la producción de nuevas cadenas complementarias a las dos anteriores. La región amplificada está limitada lateralmente por cada iniciador al hibridarse con su correspondiente cadena. Este proceso se repite n veces y cada ciclo implica una duplicación del número de fragmentos presentes, consiguiendo al final 2^n copias (Ehrlich, 1992).

La técnica de RAPD involucra el uso de iniciadores (oligonucleótidos arbitrarios) de 10 nucleótidos que amplifican (coplan) segmentos aleatorios del genoma. Una electroforesis en agarosa de la muestra, nos
revelar distintos patrones de fragmentos de amplificación, en base a la diferente composición de los ADN de origen. Cuenta con la ventaja adicional de poder utilizar un número casi ilimitado de iniciadores para detectar más variación genética y marcadores específicos de familias o poblaciones (Salt et al., 1992; Woodward et al., 1992; Neto et al., 1993; Procunier et al., 1993 en García et al., 1994).

1.3.3. **Caracterización antigénica**

Los criterios inmunológicos corresponden a la formación del complejo antígeno-anticuerpo. Un antígeno es una sustancia que, cuando es inyectada en un vertebrado, es reconocida como extraña y provoca una respuesta inmunológica celular y/o humoral con la producción de anticuerpos. Los anticuerpos son proteínas inmunoglobulinas producidas por las células B en respuesta al antígeno. Cada célula B produce solamente un tipo de anticuerpo específico de un antígeno (Singleton/Sainsbury, 1993).

Aunque estos criterios tienen enormes valores para diagnóstico e identificación específica de cepas bacterianas, tienen valores limitados si se utilizan sólo en clasificación porque pueden ser no
suficientemente sensibles para reconocer especies bacterianas relacionadas.

Por tanto, la caracterización antigénica depende de la preparación de anticuerpos, que son de dos tipos, los anticuerpos polyclonales y los monoclonales que poseen características y ventajas diferentes en relación con su uso (Fig. No.4).

ANTICUERPOS POLYCLONALES

- Heterogeneidad de AC específicos.
- Poca cantidad de AC específicos.
- Variabilidad de AC entre cada grupo de suero.
- Producción limitada: se necesita de repetidas inmunizaciones.

ANTICUERPOS MONOCLONALES

- Homogeneidad de AC específicos.
- Gran cantidad de AC específico.
- Producción ilimitada (cultivo de hibridomas).

INMUNIZACIÓN

- linfocitos
- Mielomas

FUSION

- Clones de hibridomas

Fig. No. 4. Comparación de propiedades de anticuerpos monoclonales y polyclonales. Triángulo, cuadrado y círculo = determinantes inmunoglobulina específica para el determinante antigénico; triángulo, cuadrado y círculo dentro de circunferencia...
- Linfocitos secretores de inmunoglobulinas específicas para el determinante antígenico.

- Anticuerpos políclonales: ó inmunosuero, se obtienen a partir de un animal inmunizado y es por tanto una mezcla de inmunoglobulinas que tienen diversas especificidades. Esto reduce la especificidad del inmunosuero porque reaccionará contra otras bacterias que tengan ciertos antígenos idénticos (Singleton/Sainsbury, 1993). Los anticuerpos políclonales pueden presentar dificultades para desarrollar métodos de inmunodiagnóstico cuantitativos y reproducibles (Mialhe et al., 1988).

- Anticuerpos monoclonales: son poblaciones puras de anticuerpos idénticos que reconocen el mismo determinante específico (epiotope) en un antígeno simple o complejo. Se obtienen mediante la fusión de mielomas (células inmortales) con linfocitos B (células productoras de anticuerpos) formándose una célula híbrida que se caracteriza por permitir la multiplicación y producción de un tipo de anticuerpo (Singleton/Sainsbury, 1993). Después del clonaje del hibridoma, las células hijas producen solamente un tipo de anticuerpo, monoclonal, que son reactivos hiperespecíficos de
un epítope y por lo tanto permiten identificar con gran especificidad un tipo de microorganismo.

Debido a su especificidad, disponibilidad ilimitada y homogeneidad, los anticuerpos monoclonales pueden ser estandarizados para su uso en inmunoensayos altamente sensibles y específicos, especialmente para la detección de cantidades pequeñas de agentes infecciosos en especímenes clínicos. También pueden ser valiosos detectando la variación antigenica entre diferentes estados o especies de parásitos, lo cual podría ser un procedimiento más difícil de efectuarse con anticuerpos policlonales (Meahe et al., 1988).

Inmunoensayos

Diferentes inmunoensayos son empleados en salud humana y veterinaria, se basan en las reacciones específicas antígeno-anticuerpo con diferentes marcadores. Los inmunoensayos son adecuados especialmente para detectar antígenos en estudios epidemiológicos de enfermedades bacterianas, particularmente a través de las técnicas de Colony blot y Dot blot (Meahe et al., 1988).
Colony-blot

Esta técnica se utiliza para la identificación específica de colonias bacterianas de una misma cepa. Consiste en la siembra de bacterias en cajas Petri sobre un medio de cultivo adecuado. Después de 6 a 8 horas de cultivo, las colonias bacterianas que crecen en el agar a partir de una muestra son transferidas a una membrana de nitrocelulosa. Posteriormente son incubadas con una solución bloqueadora para reducir la capacidad de fijación no específica en la membrana. Los epitopos del antígeno reaccionarán con los anticuerpos monoclonales y se producirá el complejo antígeno-anticuerpo. Un segundo anticuerpo conjugado con una enzima va a reconocer al primer anticuerpo en este complejo. Al añadir el sustrato adecuado se activará la enzima originando un precipitado coloreado sobre las colonias positivas (Fig. No. 5).

Es un método sensible, específico y rápido que permite conocer el porcentaje de bacterias de la cepa que reaccionan con el anticuerpo específico para una determinada especie bacteriana.
Dot-blot

La técnica de dot-blot también se utiliza para diagnóstico por medio de la reacción antígeno-anticuerpo. El procedimiento a seguir es similar al colony-blot con la diferencia que la fijación del
antigén en la membrana se hace a partir de una suspensión bacteriana preparada en un tampón líquido.

1.4 BACTERIAS PROBIÓTICAS

Este término, probiótico, se define como: "preparaciones que contienen microorganismos cuyos metabolitos, cuando se utilizan como aditivos alimenticios benefician al huésped. En la mayoría de los casos, los probióticos incluyen microorganismos que son capaces de crecer y/o funcionar en el tracto digestivo del animal" (Smoragiewicz et al., 1993).

En agricultura, la utilización de Lactobacillus sp. fue reportada con resultados satisfactorios por Fuller & Turvey, 1971; Parker, 1974; Roach & Tannock, 1980; Fuller, 1978; Smoragiewicz et al., 1993 (Austin et al., 1995).

Comúnmente se utiliza Lactobacillus acidophilus para controlar y prevenir infecciones por Escherichia coli y otros microorganismos patógenos en el tracto digestivo de algunos animales terrestres (Morshita et al., 1971; Tortuero, 1973; Muralidhara et al., 1977; Ellinger et al., 1980, en Garriques y Arévalo, 1995).

En Aculculura, el uso de probióticos en laboratorios comerciales de P. vannamei en el Ecuador, ha sido reportado por Morales (1992), y Garriques y Arévalo (1995). Los probióticos surgen como una alternativa al uso de
antibióticos en las estrategias de control de enfermedades en larvas de camarón (Austin et al., 1995).

Los mecanismos de acción de las cepas probióticas son poco conocidas, existiendo diferentes características que pueden conferirle su capacidad probiótica:

- Producción de vitaminas o enzimas que ayuden a las larvas en sus procesos metabólicos.

- Competencia por sitios de fijación con la bacteria patógena.

- Competencia por nutrientes con el patógeno.

- Producción de sustancias que inhiben el crecimiento de patógenos oportunístas (Prescott, 1993).

Smorągiewicz et al. (1993), concluyen que los probióticos no matan otras bacterias pero compiten con ellas, inhibiendo su desarrollo, finalmente contribuyen a la restauración del balance biológico.

Las bacterias utilizadas como probióticos son cepas de la especie *V. alginolyticus* (Austin et al., 1995; Garrique y Arévalo, 1995). Trabajos efectuados por Garrique y Arévalo (1995), reportaron mayor sobrevivencia y peso húmedo en tanques a los cuales inocularon la bacteria probiótica.
CAPITULO II.
MATERIALES Y METODOS

2.1 MATERIAL BIOLOGICO

2.1.1 Animales

Las larvas de Penaeus vannamei, estadio zoea 1, fueron obtenidas de diferentes laboratorios localizados en la península de Santa Elena.

2.1.2 Cepas bacterianas

Tabla No I. Cepas bacterianas utilizadas en las infecciones experimentales.

<table>
<thead>
<tr>
<th>CEPA</th>
<th>PROCEDENCIA</th>
<th>UTILIZACION DE CEPA Y CARACTERISTICAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 2 2</td>
<td>Larvas de laboratorio con bolitas.</td>
<td>Utilizada como la cepa patógena en las infecciones experimentales. Colonia verde luminiscente.</td>
</tr>
<tr>
<td>I 1 1</td>
<td>Laboratorio de larv de canarón en el cual se utilizó como probiótico. Aislada del mar.</td>
<td>Cepa utilizada como probiótico en las infecciones experimentales. Colonia amarilla no luminiscente.</td>
</tr>
<tr>
<td>I 5 8</td>
<td>Cepa utilizada como probiótico en un laboratorio de larvas. Aislada del mar.</td>
<td>Utilizada en la evaluación de patogenicidad. Colonia amarilla no luminiscente.</td>
</tr>
<tr>
<td>1 3 4</td>
<td>Aislada de larvas de laboratorio con bolitas.</td>
<td>Utilizada en la evaluación de patogenicidad. Colonia verde luminiscente.</td>
</tr>
</tbody>
</table>
2.1.3 Anticuerpos

Los anticuerpos utilizados para la caracterización antígenica de las cepas de *V. alginolyticus* y en las infecciones experimentales, fueron obtenidos mediante inmunización de ratones balb-c y posterior hibridación linfocítica. Los anticuerpos 2C9 y 9H4 proceden de hibridomas obtenidos tras la inmunización con una cepa de *V. harveyi* (S2). El anticuerpo 2B6 procede de un hibridoma obtenido de ratones inmunizados con la cepa IIL de *V. alginolyticus*.

Los anticuerpos 2C9 y 9H4 provenían de líquido ascítico obtenido tras la inoculación intraperitoneal de ratones balb-c con el híbrido. Como estos anticuerpos se encuentran muy concentrados en el líquido ascítico, se utilizaron en diluciones de 1/10.000 y 1/1.000 respectivamente. El anticuerpo 2B6 procedía de cultivo celular del híbrido y se utilizó sin diluir.

2.2 METODOLOGIA

2.2.1 Mantenimiento y siembra de animales

A su recepción en CENAIM, las larvas fueron transferidas a un tanque con agua de mar a 35 UPS, filtrada (cartuchos de 5, 1 y 0.5 μ) y esterilizada
mediante tratamiento de UV (AQUANETICS SYSTEMS, INC). Después se procedió a la siembra de las larvas en botellas de 3.5 litros. Cuando los animales llegaron en estadio nauplio V fueron mantenidos en un tanque con algas hasta que mudaron a zoa I y fueron sembrados en cada botella a una densidad de 100 larvas/ litro.

Los materiales utilizados como botellas, mangueras, pipetas, etc., fueron lavados con jabón neutro y autoclavados (SIBATA SCIENTIFIC TECHNOLOGY LTD. modelo DS-300) a 121 °C, 15 libras de presión, durante 30 minutos. Antes de empezar las experimentaciones los filtros de cartucho fueron desinfectados con cloro.

Las botellas se colocaron en cajones de fibra de vidrio. Se utilizó el sistema de Baño María para el mantenimiento de la temperatura a 28 °C, siendo regulada por medio de calentadores o termostatos (Fig. No. 6).

La alreación fue suministrada a través de una tubería de PVC (con varios puntos de salida de aire), suspendida encima del cajón donde se colocaron las botellas. A la tubería le fueron colocadas mangueras para distribuir el aire hacia las botellas. Para prevenir una posible contaminación de las bacterias hacia las
tuberías y de una botella a otra, se colocaron tapones de algodón a las pipetas Pasteur que llevaban el aire a cada una de ellas.

Fig. No. 6. Sistema utilizado para las infecciones experimentales.

Las bacterias se inocularon un día después de la siembra con el fin de recuperar a las larvas del estrés causado por la transferencia.

Fue necesario reemplazar el agua de las botellas para eliminar las bacterias que no se fijaron a las larvas, a pesar de que en este estado la renovación de agua no
es realizada en los laboratorios comerciales debido a la fragilidad de los animales.

Se colocó en cada botella un pedazo de manguera de 4 cm de diámetro con malla de 100 micras en la parte inferior, en la que se introdujo una manguera de 4 mm de diámetro con la cual se succionaba el agua. Este sistema buscaba evitar un estrés excesivo de las larvas con el sifoneo.

Las larvas fueron alimentadas con algas (*Chaetoceros sp*) a una concentración de 100.000 cél/ml y microencapsulado (Fröppak CAR # 1, 0.1 g diluido en 100 ml de agua destilada) en tres tomas diarias (08:00, 14:00 y 20:00 horas).

2.2.2 TECNICAS DE BACTERIOLOGIA

2.2.2.1 Preparación de bacterias para infecciones experimentales

Después de su descongelación, las bacterias se sembraron en tubos con 50 ml de caldo LB (Luria Bertani Medium) y se incubaron durante toda la noche a 28 °C en baño María, con agitación constante con el fin de recuperar a las bacterias después de la congelación. De esta suspensión bacteriana se tomaron 5 ml para sembrar en 200 ml de medio LB.
enriquecido con 1 % de glucosa (SIGMA CHEMICAL CO., St. Louis, USA) y 2 % de Cl\textsubscript{Na} (WAKO PURE CHEMICAL INDUSTRIES, LTD. 191-01665). Se incubaron durante 8 horas a 28 °C en agitación constante.

Transcurrido este tiempo, se centrificó a 3000 RPM por 10 minutos (KOKUSAN ENSI\textsubscript{N}KI CO., LTD. modelo H-103 N) y se resuspendió el sedimento en 20 ml de solución salina al 2.5 % de NaCl, incubándolo por 1 hora a 28 °C con agitación constante para reactivar las bacterias. Se realizó la lectura al espectrofotómetro (SHIMADZU UV-2100) a 550 nm de longitud de onda para la cuantificación (1 DO = 1.2 x 109 bact/ml).

Después de ajustar para la concentración necesaria, se procedió a infectar a las larvas.

2.2.2 Siembra de bacterias para realizar colony-biot

Después de 24 horas de la Infección, se tomaron 10 larvas de cada botella, lavándolas con agua de mar estéril para eliminar bacterias superficiales y restos de materia que se encuentren en la cutícula del animal. Una vez
limpias, las larvas fueron maceradas en microtubos Eppendorf y resuspendidas en 100 µl de solución salina fisiológica (0.85% NaCl). Esta mezcla se sembró en agar TCBS (DIFCO 0650-01-2) incubando a 28 ºC por 8 horas. A continuación se efectuó la cuantificación y la observación de luminiscencia en las cajas Petri y se colocaron las membranas de nitrocelulosa para Colony-blot.

2.2.3 TECNICA DE PRUEBAS BIOQUIMICAS

Las cepas bacterianas a analizar (IL1 y 158) fueron sembradas para aislamiento en agar TSA (Acumedia Cat. No. 7100) y posteriormente fueron inoculadas en tubos con los respectivos medios para pruebas bioquímicas (Fig. No. 7). Las lecturas se realizaron a las 24, 48, 72 y 168 horas después de la siembra. Es importante mencionar que los cultivos bacterianos que se utilicen deben ser puros y frescos (no mayores de 24 horas).

Los medios de cultivo se prepararon de acuerdo a las instrucciones del comerciante. En la tabla No. II se indican los principios de los caracteres analizados.
Tabla No. II. Principios de los caracteres morfológicos y bioquímicos analizados en las pruebas bioquímicas.

<table>
<thead>
<tr>
<th>Característica</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morfología</td>
<td>Permite detectar la forma de la bacteria.</td>
</tr>
<tr>
<td>Motilidad</td>
<td>Indica la presencia o ausencia de flagelos, se determina con la técnica de la gota pendiente. Para observar la motilidad, el cultivo no debe ser mayor a 24 horas.</td>
</tr>
<tr>
<td>Gram</td>
<td>Indica si son Gram (-) o Gram (+) según la estructura de la pared celular y la habilidad de las mismas de retener el cristal de violeta cuando son decoloradas con un solvente orgánico como el etanol.</td>
</tr>
<tr>
<td>Catalasa</td>
<td>Indica la presencia de la enzima catalasa que destruye el peróxido de hidrógeno. H₂O₂ + catalasa → H₂O + 1/2 O₂</td>
</tr>
<tr>
<td>Oxidasa</td>
<td>Con esta prueba se detecta la presencia de la enzima citocromo- oxidasa, que es capaz de reducir el oxígeno.</td>
</tr>
<tr>
<td>O - F</td>
<td>Indica el tipo de metabolismo oxidativo o fermentativo al utilizar la glucosa como sustrato.</td>
</tr>
<tr>
<td>Urea</td>
<td>Se basa en la capacidad de ciertos microorganismos para degradar la urea por medio de la enzima ureasa y producir amoníaco.</td>
</tr>
<tr>
<td>Lisina y Ornitina</td>
<td>Los aminoácidos agregados al medio basal (Moeller decarboxilase broth base) sirven para detectar la producción de enzimas específicas para estos sustratos. Si el microorganismo produce la enzima apropiada, el aminoácido en el medio es degradado produciendo la amina correspondiente.</td>
</tr>
<tr>
<td>Descarboxilasa</td>
<td>Arginina Dehidrolasa</td>
</tr>
<tr>
<td>Prueba</td>
<td>Descripción</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>MR (rejo de metilo)</td>
<td>Este test mide la acidez producida por una bacteria en crecimiento en el caldo MR - VP.</td>
</tr>
<tr>
<td>VP (Voges Proskauer)</td>
<td>La prueba depende de la formación de acetilmetilcarbinol, el cual es oxidado en medio alcalino en presencia de aire para formar diacetil. Este compuesto reacciona con la creatinina para formar el compuesto de color rosado.</td>
</tr>
<tr>
<td>Citrato</td>
<td>Se basa en la utilización del citrato como única fuente de carbono.</td>
</tr>
<tr>
<td>Indol</td>
<td>Es utilizado como una herramienta de diferenciación en la fermentación de lactosa en cepas de E. coli.</td>
</tr>
<tr>
<td>TSI (Triple Sugar Iron)</td>
<td>Se utiliza para la identificación de bacilos entéricos gram - negativos, basándose en la fermentación de tres azúcares: dextrosa, lactosa y sucrosa, y por la producción de sulfuro de hidrógeno.</td>
</tr>
<tr>
<td>Nitrato</td>
<td>Indica la reducción de nitrato a nitrito por la bacteria.</td>
</tr>
<tr>
<td>Gelatina</td>
<td>Indica la capacidad de la bacteria de liquefacer la gelatina.</td>
</tr>
<tr>
<td>SIM (Sulfuro, Indol y Motilidad)</td>
<td>Se lo utiliza para la determinación de la producción de sulfuro de hidrógeno, la formación de indol y la motilidad.</td>
</tr>
<tr>
<td>TCBS (Thiosulfate citrate bile sucrose)</td>
<td>Es selectivo para vibrios. Su selectividad está dada por el pH alto y la presencia de sales biliares.</td>
</tr>
<tr>
<td>Prueba</td>
<td>Descripción</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Mac Conkey</td>
<td>Indica si la bacteria puede asimilar la lactosa. Por tratarse de un agar selectivo, indica que la bacteria puede ser de la familia de los Coliformes o de las Enterobacterias.</td>
</tr>
<tr>
<td>Cetrimide</td>
<td>Es un medio selectivo para el aislamiento e identificación de Pseudomonas aeruginosa.</td>
</tr>
<tr>
<td>Pruebas de fermentación de carbohidratos</td>
<td>Indican la capacidad de la bacteria de fermentar el carbohidrato presente en el medio (mantoI, míoinositol, dextrosa, manosa, sucrosa, sorbitol, glicerol, galactosa, xilosa, arabinosa, trehalosa, cellobiosa, lactosa, melibiosa, fructosa, adonitol, glicerol).</td>
</tr>
<tr>
<td>Acetato diferencial</td>
<td>El cambio de coloración del medio indica la utilización del acetato presente en el medio como única fuente de carbono.</td>
</tr>
<tr>
<td>Pruebas de halofilia</td>
<td>Salinidades de 0 %, 3 %, 6 %, 8 %, 10 %. La presencia de turbidez en el caldo incubado indica crecimiento bacteriano con tolerancia a la concentración de ClNa.</td>
</tr>
<tr>
<td>0/ 129</td>
<td>La sensibilidad a 0/ 129 es ampliamente reconocida como una propiedad de los vibrios y es extremadamente valorable en la diferenciación de vibrios de otros bacilos Gram - negativos, especialmente aeromonas.</td>
</tr>
</tbody>
</table>
2.2.3.1. Siembra de bacterias para pruebas bioquímicas

La siembra depende del medio de cultivo. Para las pruebas bioquímicas se utilizaron medios líquidos: lisina (Wako®), ornitina (Wako®), arginina (Wako®), indol (Difco®), nitrato (Difco®), caldo MR-VP (Difco®), agua de peptona (para pruebas de halofilia) (Difco®), semisólidos: OF (Difco®), gelatina (Difco®), dextrosa (Difco®), sacarosa (Difco®), manitol (Baker®), mielinositol (Difco®), sorbitol (SIGMA®), glicerol al 87 % (Merk®), sólidos: urea (DIFCO®), TSI (Nissui®), cltrato de Simmons (DIFCO®), cetrimide (DIFCO®), TCBS
(DIFCO®). Mac Conkey (DIFCO®), ACD (DIFCO®) y SIM (DIFCO®).

Para inocular en medios líquidos y semisólidos, se preparó una suspensión bacteriana en solución salina estéril al 0.85 % de NaCl. Se tomó una colona con un asa de platino a partir de la siembra en agar general (TSA, Nutrient agar, Beef Heart Infusion agar). No es recomendable tomar la bacteria a partir de un agar selectivo porque pueden obtenerse resultados falsos que interfieran con una correcta identificación bioquímica.

De la suspensión se tomaron 0.5 ml para inocular en los medios: líquidos y semisólidos. Para observar si existe crecimiento en condiciones anaerobias, se colocó aceite mineral en los tubos de OF, lisina, arginina y ornitina.

En los medios sólidos en pico de flauta tales como: urea, TSI, citrato de Simmons, TCBS, Mac Conkey, cetrimide y acetato diferencial, la siembra se efectuó con el asa de platino en punta. Sobre la superficie del medio se trazó una línea recta y, sobre ella un estriado. Para
la siembra en SIM, se introdujo el asa en punta en el centro del agar sin tocar el fondo ni las paredes del tubo.

Para la prueba de oxidasa, se tomó una colonia bacteriana con un asa de platino, frotándola en papel reactivo (Cytochrome-oxidase reagent "Nissui", Yaku Code 05180). En la prueba para catalasa, se adicionó una gota de peróxido de hidrógeno (H2O2) a un inóculo bacteriano. En esta prueba, se utilizó un palillo de madera estéril, porque el asa de platino puede inducir a falsos-positivos.

Para la lectura de resultados, es necesario adicionar reactivos para obtener una respuesta a los siguientes medios:

MR (rojo de metilo): Se colocan de 5-6 gotas de rojo de metilo por cada 5 ml de cultivo. La lectura del resultado se hace inmediatamente.

VP (Voges Proskauer): Se adicionan 600 µl de solución #1 (alpha naphtol, 5g; alcohol absoluto, 100 ml) y 200 µl de solución #2 (solución de KOH al 40%). La lecturas de los resultados se efectúan después de 4 horas de la adición del reactivo.
Indol: Después de 24-48 horas del inóculo bacteriano, se adicionan 200-300 µl del reactivo de Kovac. El resultado de la reacción es instantáneo.

Nitrito: Se agrega al medio el reactivo #1 (ácido sulfamilico 1g, ácido acético 5 N, 125 ml) y el reactivo #2 (N-(1-naphthyl) ethylenediamine) o el reactivo #3 (alpha-naphtol 1 g, y ácido acético 5 N). La lectura se hace inmediatamente.

Gelatina: Después de 24 horas de inocular la bacteria en el medio, se coloca el tubo en baño María a 22 ºC durante 10 minutos para observar la coagulación o no coagulación de la gelatina.

2.2.4 TECNICAS INMUNOLOGICAS

Técnica de Colony blot (Protocolo según Evelyne Bachère (1992), con modificaciones a la técnica descrita en la tesis de Edward Donoso - Espol).

2.2.4.1 COLONY BLOT

Se realizó un cultivo bacteriano de 6 - 8 horas en cajas Petri con agar TCBS. Se colocaron las membranas de nitrocelulosa (S&S NCTM de 82.5
mm de diámetro, con poros de 0.45 micras) en la superficie del agar sobre las colonias durante 15 minutos a temperatura ambiente. A continuación se dejaron secar por 30 minutos y se conservaron en refrigeración hasta su utilización.

Las membranas con las bacterias fueron incubadas con PBS - leche descremada al 5% agitando suavemente por 45 minutos a temperatura ambiente para bioquitar la membrana. Después se realizaron 2 lavados de 3 minutos cada uno, con PBS - Tween 20 al 1% (Fig. No. 8).

Las membranas fueron incubadas con los anticuerpos monoclonales (2C9, 9H4 ó 2B6) por 2 horas a temperatura ambiente, diluidos en una solución de PBS - leche descremada al 0.5% - Tween 20 al 1%, después de lo cual se efectuaron 3 lavados de 3 minutos cada uno, con PBS - Tween 20 al 1%. A continuación se incubaron con un segundo anticuerpo anti-ig G de ratón (conjugado a la enzima fosfatasa alcalina) por 30 minutos a una dilución de 1/10.000 en PBS - leche descremada al 0.5% - Tween 20 al 0.1%. Se efectuaron 3 lavados de
3 minutos cada uno, con PBS - Tween 20 al 1% para eliminar segundos anticuerpos no fijados que pudieran dar resultados falsos positivos.

Fig. No. 8. Colony blot. Incubación de membranas con solución bloqueadora.

Finalmente, las membranas fueron incubadas en oscuridad con la solución sustrato preparada al momento:

BCIP .. 33µl
(Bromo - 4 Cloro - 3 Indolil fosfato)

NBT .. 66µl
(Nitroblue Tetrazolium)
Tampón de fosfatasa alcalina: 10 ml

Una vez que las manchas alcanzaron la intensidad deseada, la reacción enzimática fue detenida lavando la membrana con EDTA 2 mM (100 μl de EDTA 0.5 M diluido en 25 ml de PBS).

2.2.4.2 DOT BLOT

Al igual que el colony-blot, consiste en el reconocimiento de un antígeno específico por un anticuerpo monoclonal a partir de una colonia bacteriana resuspendida en 100 μl de tampón PBS. Se realiza el depósito de cada muestra (1 μl de la dilución bacteriana) en la membrana de nitrocelulosa. Los siguientes pasos son iguales a los descritos en la técnica de colony-blot.

2.2.5 TECNICAS DE BIOLOGIA MOLECULAR

Las técnicas descritas a continuación son de acuerdo a los protocolos del manual: "Molecular Cloning" (Sambrook et al., 1989).

Estas técnicas fueron utilizadas para extraer el ADN de la bacteria y analizar mediante electroforesis en gel.
de agarosa la presencia de plásmidos. Las cepas caracterizadas fueron "ILI" y "158".

2.2.5.1 EXTRACCION DE ADN PLASMIDICO

Se realizó un cultivo bacteriano de las cepas I11 y 158 hasta la saturación, en 50 ml de medio LB estéril (enriquecido con 2% de CINa y 1% de glucosa, ver anexo 1) a 28 °C. Se centrífugó el cultivo bacteriano a 3200 RPM por 5 minutos y se resuspendió el sedimento en 2 ml del sobrenadante (para concentrar a las bacterias en un volumen menor). Se tomaron 1.5 ml de cada suspensión bacteriana para microcentrifugar 2 veces por 25 segundos (microcentrifuga HERAEUS Sepatech Blofuge 13). El sedimento fue resuspendido en 100 μl de solución GTE (anexo 1) y se incubó durante 5 minutos a temperatura ambiente para permitir la ruptura de la pared celular, quedando el protoplasto compacto.

El protoplasto fue lisado añadiendo 200 μl de solución NaOH/ SDS (anexo 1) que se
mezclaron invirtiendo el tubo 10 veces e incubando sobre hielo (5 minutos).

Para neutralizar la lisis bacteriana, se adicionaron 150 μl de solución de acetato de potasio, pH 4.8, 5 M, (anexo 1), mezclando inmediatamente e incubando 5 minutos sobre hielo. Se microcentrifugó por 3 minutos para sedimentar a las proteínas y los restos de bacterias, quedando en el sobrenadante sólo los ácidos nucleicos que fueron transferidos a un tubo nuevo. Se añadieron 800 μl de etanol al 100 % para precipitar ácidos nucleicos y 1 μl de glicógeno (para ayudar al alcohol a precipitar los ácidos nucleicos), dejando a temperatura ambiente por 2 minutos.

Se microcentrifugó durante 3 minutos para extraer el etanol. El sedimento fue lavado con 1 ml de etanol al 70 %, microcentrifugado, secado al vacío, y resuspendido en TE (anexo 1).

Para eliminar ARN se utilizó la enzima ARNasa. Esta enzima debe ser almacenada a -20 ºC.
En cada tubo que contenía ácido nucleico se añadió 1 µl de ARNasa a una concentración de 10 mg/ml, incubando a 37°C por 1 hora.

- Cuantificación de ADN

La concentración de ADN obtenida, se determinó mediante espectrofotometría (Pharmacia, 80-2103-98) utilizando la propiedad de las bases púricas y pirimidicas de absorber las radiaciones ultravioletas a 260 nm.

Una unidad óptica a 260 nm corresponde a una solución de ADN bicatenario de 50 µg/ml.

Como las proteínas presentan el pico de absorbancia a 280 nm, para determinar si existe una contaminación proteica se efectúa un control de densidad óptica comparando la razón D260/D280 que debe ser que se ubique entre 1.8 y 2.0 para tener un ADN puro.

- Digestión con enzimas de restricción

El ADN plasmídico fue objeto a digestiones con enzimas de restricción para establecer un perfil de restricción.
Para la digestión se diluyó el ADN en un volumen final de 30 µl con 1 µl de enzima y 3 µl de tampón 10X, dejando en incubación por 2 horas a 37 ºC.

- Electroforesis en gel de Agarosa

Efectuadas las digestiones con las diferentes enzimas: Alu, BsmI, EcoRI y Hha, se realizó una electroforesis en gel de agarosa con el fin de separar los distintos fragmentos obtenidos en función de su tamaño.

Se preparó un gel de agarosa (GIBCOBRL Life Technologies, No. EM 3202) al 1% en TAE 1X disolviendo la agarosa por ebullición. La solución se enfrío hasta 60 ºC y se añadió Bromuro de etidio a una concentración de 0.5 µg/ ml para la visualización de ADN en la mesa de UV.

En el molde se colocó inmediatamente la solución agarosa dejándola enfriar al ambiente unos minutos. Se insertó el peine en el gel para crear los pozos donde se colocan las muestras de ADN (La peinilla no debe tocar el fondo de la cubeta) y, se puso en refrigeración hasta su completo endurecimiento.
El gel fue colocado en la cubeta de electroforesis y cubierto completamente con el tampón TAE 1X (anexo 1). Se prepararon las muestras de ADN con una apropiada cantidad de tampón de depósito 10X y se depositaron en los pozos con una micropipeta (GILSON L11595G). Para poder determinar los tamaños de los fragmentos obtenidos, se corrió simultáneamente una muestra de marcadores que contiene 8 fragmentos (ADN del bacteriófago lambda digerido con Hind III) con los siguientes números de pares de bases: 23130, 9416, 6557, 4361, 2322, 2027, 564 y 125.

En la electroforesis, se produce la migración del ADN (cargado negativamente) hacia el ánodo o polo positivo, a 1 - 10 V/ cm del gel (Fig. No. 9). Para la electroforesis el tinte azul de bromofenol del buffer de depósito (ver anexo 1) debe migrar lo suficiente para que los fragmentos de ADN estén bien separados. Una vez que el ADN ha migrado, la observación se efectúa en la mesa de UV.
Fig. No. 9. Electoforesis. Migración de ADN (carga negativa) hacia el ánodo o polo positivo.

2.2.5.2 Purificación de fragmentos de ADN a partir de un gel de electoforesis (kit Geneclean)

Los fragmentos a purificar son recuperados cortando el gel de agarosa bajo iluminación en la mesa de UV. Se colocaron en microtubos eppendorf para ser pesados (balanza METTLER AE 240). Se toma en cuenta la siguiente relación para calcular el volumen de muestra que hay: 1 g = 1 ml.
Se incubó a 45 °C durante 5 minutos con una solución de NaCl (para eliminar la agarosa) en conjunto con polvo de vidrio (GlassmilK) con gran fuerza iónica permitiendo así la absorción de ADN (se añaden 5 µl de GlassmilK/µg de ADN). Se centrifugó a 13000 RPM por 25 segundos dos veces para precipitar el glassmilK. El sobrenadante se desechó y se tomó el sedimento que debe estar completamente seco.

El polvo de vidrio fue lavado 3 veces con una solución de lavado (New Wash) para eliminar restos de agarosa e impurezas, centrifugando después de cada lavado, 2 veces a 13000 RPM por 25 segundos. Después de la última centrifugación, el ADN es recuperado a baja fuerza iónica en tampón TE (Tris-EDTA) (anexo 1), posteriormente se incubó durante 2-3 minutos en baño María a 52 °C y se centrifugó durante 30 segundos a 13000 RPM para separar el ADN del glassmilK. Se tomó la suspensión con ADN y se almacenó a -20 °C hasta su utilización.

Con el ADN purificado (Geneclean), fueron creadas dos sondas (III y IV) por el
departamento de Genética para el reconocimiento de ADN plasmídico de la cepa 158 mediante la técnica de Southern blot.

2.2.5.3 Southern Blot

Consiste en la transferencia de ADN desde un gel de agarosa hacia una membrana de nylon o nitrocelulosa, lo cual permite analizar los patrones electroforéticos con sondas nucleicas específicas.

- Digestión del gel

Se cortó la parte del gel que se iba a hibridar sobre la membrana y se sumergió en solución desnaturalizadora (anexo 2) durante 45 minutos a temperatura ambiente agitando suavemente. La incubación desnaturaliza el ADN (separas las cadenas) antes de la transferencia. Se lavó el gel en agua desionizada.

- Neutralización

Se incubó durante 30 minutos en solución neutralizadora (anexo 2) con agitación suave a temperatura ambiente (esta solución elimina las sales presentes en el gel).
• **Preparación del sistema de transferencia**

Durante la neutralización se cortó un pedazo de membrana del tamaño del gel.

En una cubeta se puso la solución de transferencia 10X SSC (apéndice 2). Se mojó una banda de papel Whatman, que sirve en la transferencia de la solución a través de la membrana, y se la depositó sobre el soporte dejando las extremidades en la solución. Se colocó el gel y sobre éste la membrana cubriéndola con dos pedazos de papel Whatman del tamaño del gel después de haberlos mojado en una solución de 2X SSC. Una serie de papeles absorbentes y un peso (para comprimir) fueron colocados encima. La operación de transferencia tomó 6.5 horas. (Fig No.10).

La membrana se lavó en buffer 5X SSC por 5 minutos a temperatura ambiente para remover los restos del gel y contaminantes particulares que fueron introducidos como resultado del proceso de transferencia.
Fig. No. 10 Southern blot. Transferencia de ADN hacia una membrana de nylon.

- Fijación del ADN sobre la membrana

 Se colocó la membrana húmeda sobre pieza de papel toalla y se fijó el ADN a la membrana mediante radiación UV, en horno U.V. crosslinker (SPECTROLINKER XL-1000).

- Prehibridación

 Antes de realizar la hibridación, la membrana se introdujo en una funda plástica que contenía 20 ml de solución de prehibridación (anexo 2) por 100 cm² de área de membrana. Se selló la funda y se prehibridizó a la temperatura de hibridación, 65 °C, por 2 horas.
• Hibridación

Se incubó la membrana en una funda plástica con el tampón de hibridación (anexo 2) más la sonda marcada con digoxigenina durante 3 horas. (El tiempo de hibridación depende de la sonda y su concentración). La sonda utilizada fue ADN de doble cadena por lo cual se desnaturalizó calentándola en agua hirviendo por 10 minutos previo a la hibridación y fue enfríada rápidamente a -20 °C para evitar que las cadenas se unan nuevamente.

Antes del revelado, se efectuaron 2 lavados. El primer lavado se hizo con una solución 2X SSC; SDS 0.1% (anexo 2) a temperatura ambiente durante 5 minutos, repitiéndolo una vez más. El segundo lavado, se efectuó 2 veces de 15 minutos cada uno en una solución de 0.1X SSC; SDS 0.1% (anexo 2) a 68 °C.

• Revelado

Se lavó la membrana 1 minuto en el tampón 1 (anexo 2) y se incubó durante 30 minutos con el tampón 2 (anexo 2).
Se removió el tampón 2 y se incubó la membrana 30 minutos con la solución de anticuerpo conjugado diluida: diluir Ac conjugado 150 mU/ml (solución madre 200µl a la concentración de 750 U/ml a 4°C) en el tampón 2 (estable 12h a 4°C).

Para remover los anticuerpos se lavó la membrana 2 veces con tampón 1 durante 15 minutos.

Se equilibró la membrana durante 2 minutos con tampón 3 (anexo 2). Para el revelado de la señal, se incubó la membrana en una funda plástica con la solución de coloración (anexo 2) manteniéndola en un lugar obscuro.

Para parar la reacción se lavó la membrana durante 5 minutos con el tampón 4 (anexo 2).
CAPITULO III.
RESULTADOS Y DISCUSION

3.1 CARACTERIZACIONES

3.1.1 CARACTERIZACION BIOQUIMICA

La caracterización bioquímica corresponde a la metodología de referencia para describir y reconocer aislados de bacterias. La taxonomía bacteriana descansa esencialmente en estos tipos de criterios que son absolutamente necesarios para iniciar cualquier trabajo de investigación en bacteriología. Teniendo en cuenta los criterios de caracterización de vibrios para las especies actualmente descritas, una serie de pruebas bioquímicas fue realizada paralelamente para las cepas ILJ y 158.

La interpretación de las pruebas bioquímicas (Tabla No. III) de las cepas ILJ y 158 de acuerdo al manual de Bergey indicaron que estas bacterias pertenecen al género Vibrio, especie V. alginolyticus.
TABLA No. III. Caracteres morfológicos y bioquímicos de dos cepas de *V. alginolyticus* comparadas con los caracteres de *V. alginolyticus*, según el Manual de Bergey (Hoit et al, 1994).

<table>
<thead>
<tr>
<th>CARACTERES</th>
<th>V. alginolyticus</th>
<th>Cepa II</th>
<th>Cepa 158</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Manual de Bergey)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. MORFOLOGICOS

<table>
<thead>
<tr>
<th>Forma</th>
<th>bacilo</th>
<th>bacilo</th>
<th>bacilo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mo. Validad</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

C. BIOQUIMICOS

Catalasa	+	+	+
Oxidasa	+	+	+
O-F	+	+	+
Urea	-	-	-
Lisina	+	+	+
Arginina	-	-	-
Ornitina	d	-	-
M²	d	-	+
VP	+	+	-
Citrato	-	-	-
Indol	(+)	+	-
TSI	ácido	ácido	ácido
Nitrito	+	+	+
Gelatina	+	+	+
SIM	-	-	-
TCBS	+	+	+
MacConkey	+/−	+	+/−
Citromíde	-	-	-
Aquático	-	-	-
diferencial Dextrosa	+	+	+
Manitol	+	+	+
Molinositol	-	-	+
Sucreosa	+	+	+
Sorbitol	-	-	-
Glicerol	(+)	+	+
Salinidad 0 %	-	-	-
Salinidad 3 %	+	+	+
Salinidad 6 %	+	+	+
Salinidad 8 % + + +
Salinidad 10 % + + +

*: 90 - 100 % de las cepas, son positivas.
<: 0 - 10 % de las cepas, son positivas.
(+) : 76 - 89 % de las cepas, son positivas.
(-): 11 - 25 % de las cepas, son negativas.
d: 26 - 75 % de las cepas son positivas.
D: Diferentes reacciones pueden darse en diferentes clasificaciones
(especies de un género o género de una familia).

3.1.2 CARACTERIZACION GENETICA

La caracterización genética de cepas bacterianas puede consistir en diferentes ensayos como los descritos en el capítulo Antecedentes. Debido a la facilidad tecnológica y a la posible significación biológica, el análisis genético estuvo enfocado a la puesta en evidencia y la caracterización de plásmidos.

Mediante la extracción del ADN total de la cepa I11, se demostró que esta bacteria carece de plásmidos y solamente se visualizó ADN cromosómico en el gel de agarosa (Fig. No. 11).
Fig. No. 11 ADN de las cepas II y 158. En II se observa ADN cromosómico mientras que en la cepa 158 se visualiza la presencia de un plásmido en tres formas aparentes (concatenado, linear y circular).

Al contrario, la cepa “158” mostró un patrón electroforético de 3 bandas (I, II y III, con tamaños aparentes de 23.13 Kb, 7.4 Kb y 4.9 Kb respectivamente), mientras que una última banda en posición cuatro (2.2 Kb) aparece ocasionalmente en las distintas extracciones. Para comprender las relaciones entre estas bandas, en un primer tiempo fueron purificados las bandas III y IV, que estaban en mayor cantidad. La purificación de la banda III condujo después de electroforesis, a reidentificar las cuatro bandas. Por el contrario, la purificación de la banda IV nunca permitió la observación de bandas suplementarias después de electroforesis. A la vista de estos resultados, dos hipótesis podrían ser
consideradas. La primera, que existen dos plásmidos, uno presente en sus diferentes formas I, II, III y el otro en una forma IV. La segunda hipótesis, más probable sería la existencia de un único plásmido, en las formas I, II, III, y IV. La forma IV del plásmido sería un producto de la extracción a partir del cual no se pueden obtener las formas restantes. Para estudiar estas hipótesis, dos sondas nucleolcas fueron preparadas a partir de la bandas III y de la banda IV. Las pruebas de hibridación mostraron la presencia de reacciones cruzadas entre las sondas y las distintas bandas, indicando que la cepa 158 tenía un solo plásmido susceptible de estar presente en 4 diferentes formas dependiendo del protocolo de extracción utilizado. Refiriéndonos al manual del Kit Qiagen, se asumió que las bandas I, II, III, IV, correspondían a las formas: concatenada (I), linear (II), circular (III), y superenrollada simple cadena (IV).

El patrón de restricción del plásmido de la cepa 158 fue establecido para las enzimas Eco RI, Bam HI, Alu I y Hha (Fig. No. 12).
Fig. No. 12 Patrón de restricción de la cepa 158. La primera columna corresponde al ADN sin digerir y las siguientes a ADN digerido con las enzimas Eco RI, Bam HI, Alu I y Hha respectivamente.

Con Eco RI se observaron dos bandas de 4.4 y 2.21 Kb. en igual posición a las encontradas en el plásmido no digerido, lo que indica que esta enzima no corta al plásmido.

Al cortar el plásmido con Bam HI se produce una linearización del mismo, encontrándose una banda de 7.4 Kb.

La digestión con Alu I mostró cinco fragmentos de 1.2 Kb, 1.1 Kb, 680 pb y los dos últimos menores a 564 pb, menor peso del marcador utilizado, por lo cual no fue posible estimar los tamaños de estas dos bandas.

La enzima Hha mostró un patrón de restricción de cinco fragmentos, con los siguientes tamaños: 1.6 Kb,
La enzima Ilha mostró un patrón de restricción de cinco fragmentos, con los siguientes tamaños: 1.623 Kb, 1.234 Kb, 1.028 Kb, 687 pb y la última banda menor a 564 pb.

Las dos cepas, 158 e H1, identificadas bioquimicamente como *Vibrio alginolyticus* y utilizadas empíricamente en un laboratorio de larvas como probiótico, considerando que era la misma bacteria, mostraron finalmente diferencias genéticas, al menos, en la presencia/ausencia de un plásmido.

3.1.3 CARACTERIZACION E IDENTIFICACION ANTIGENICAS

Las bacterias son microorganismos fuertemente inmunoágenos cuando son inyectados en vertebrados, lo que significa que es posible tener anticuerpos que reaccionan con antígenos bacterianos. Los inmunosueros, conteniendo anticuerpos de tipo policlonales y por tanto poliespecíficos, no son adecuados para distinguir dos cepas de una misma especie bacteriana, debido a que su composición antígenica es muy similar. Al contrario, los anticuerpos monoclonales y por tanto monoespecíficos de un antígeno pueden constituir reactivos muy resolutivos para reconocer dos cepas estrechamente relacionadas.
Con esta perspectiva, fue utilizada una colección de anticuerpos monoclonales preparados con la cepa III y seleccionados en base a su ausencia de reactividad frente a otras especies de vibrios. La reactividad de los anticuerpos fue realizada con una prueba de tipo dot-biot. Los resultados condujeron a reconocer diferencias antígenicas entre las cepas III y 158 mediante el anticuerpo 2B6 (Tabla No. IV). Estos resultados muestran el gran interés de utilizar criterios antígenicos para caracterizar las bacterias y que permite reconocer fácilmente dos cepas de una misma especie aisladas de un mismo laboratorio.

TABLA No. IV. Listado de dieciséis híbridos, tres reconocen a las cepas III y 158 y trece reconocen sólo a la cepa III.

<table>
<thead>
<tr>
<th>HIBRIDOMA</th>
<th>III</th>
<th>158</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 B6</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>2 G1</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>2 B5</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>4 E1</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>12 E6</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>12 G6</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>13 F3</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>13 G6</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>14 A1</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>14 D4</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>14 G7</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>14 H7</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>15 E5</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>15 E2</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>15 D11</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>19 54</td>
<td>+++</td>
<td></td>
</tr>
</tbody>
</table>
Tomando en cuenta la estricta especificidad del anticuerpo 2B6 para la cepa III, fue escogido para desarrollar una prueba inmunológica de tipo colony-blot que era una herramienta necesaria para analizar in vivo las interacciones entre bacterias probiótica y patógena. El colony-blot es una prueba particularmente conveniente para reconocer colonias correspondientes a una cepa entre una mezcla bacteriana. Para analizar las interacciones in vivo es importante reconocer específicamente la bacteria probiótica y la bacteria patógena y cualquier otra bacteria presente en el tubo digestivo del animal experimental. El uso en paralelo de una prueba colony-blot específica de la bacteria probiótica y de otra específica de la bacteria patógena, permite reconocer colonias correspondientes a cada una de estas bacterias y, por deducción, las colonias correspondientes a las bacterias presentes en el tubo digestivo del animal experimental.

La prueba colony-blot fue relativamente fácil de desarrollar de acuerdo con las numerosas referencias existentes en esta área, consistiendo el trabajo en optimizar las concentraciones de anticuerpos primario y conjugado, y determinar el momento óptimo del cultivo de colonias que permita obtener señales
tiempo de incubación en el agar de más de 8 horas. Todos los controles, en cuanto a anticuerpos y cepas bacterianas fueron impecables, en particular las bacterias de la cepa 158 y la E22 (posiblemente patógena) no mostraron reacción con la prueba colony-blot.

3.2 ANALISIS DE LAS INTERACCIONES *in vivo* ENTRE BACTERIAS "PROBIOTICAS" Y PATOGENAS

Las cepas utilizadas en las interacciones, ILI y E22, como posibles probiótico y patógeno respectivamente, fueron escogidas en base a los siguientes antecedentes:

Las cepas ILI y 158 fueron utilizadas como probiótico en un laboratorio de larvas, la primera fue usada durante varias corridas con éxito relativo, no así la cepa 158 que fue aislada cuando se presentaron problemas en los tanques de cultivo del laboratorio. Para establecer la cepa que se utilizaría como probiótico en el modelo de estudio *in vivo*, un primer experimento fue realizado en el cual se evaluaron estas cepas en términos de patogenicidad o inocuidad, no encontrándose diferencias entre ellas. De acuerdo a estos resultados y, tomando en cuenta el comportamiento de estas cepas durante las corridas, los trabajos posteriores fueron realizados con la cepa ILI.
La cepa E22 fue aislada durante problemas de mortalidades con síndrome de tipo "bollitas" y su carácter patógeno fue estudiado en infecciones experimentales realizadas anteriormente (Aráuz, 1994). Así también, se cuenta con dos anticuerpos monoclonales que reconocen a esta bacteria (9H4 y 2C9).

Una vez establecidas las cepas, fueron posteriormente utilizadas para analizar sus interacciones sobre la base de infecciones experimentales de larvas en el estadio de zoea 1. Este estadio fue conscientemente seleccionado debido a que en este momento las larvas son muy susceptibles a infecciones bacterianas, además en este estadio las larvas abren la boca y se puede iniciar el proceso de colonización del tubo digestivo por las bacterias presentes en el medio. Consecuentemente, es un estadio adecuado para realizar infecciones experimentales con bacterias con el propósito de determinar su patogenicidad, inocuidad o su capacidad de inhibir a bacterias patógenas mediante un proceso de tipo probiótico.

El principio de los análisis consiste en una serie de observaciones secuenciales, aunque no todas fueron realizadas en todas las experimentaciones: (i) la observación microscópica de los animales para detectar anomalías y en particular síntomas de tipo "bollitas", (ii) determinación de la actividad de las larvas, presencia de luminiscencia y
supervivencia, que fue difícil debido a mortalidades relacionadas con la manipulación de las larvas, la estimación de porcentaje de colonias amarillas y verdes, como posible indicador de la representación de bacterias E22 (o 158) y E22 respectivamente; (iv) numeración bacteriológica e identificación con pruebas de tipo colony- blot.

3.2.1 Experimentación 1

Esta primera experimentación tiene como objetivo probar la patogenicidad o inocuidad de las cepas E22 (3 botellas: 1, 7 y 16), 158 (3 botellas: 4, 5 y 11), 158 (3 botellas: 9, 12, 14), IL (3 botellas: 2, 8, 13). Cuatro botellas con larvas fueron utilizadas como control (3, 6, 10 y 15). Las infecciones de las larvas (zoea I, segundo día) fueron realizadas con introducción en la botella de 10^7 UFC/ml (determinación espectrofotométrica, resuspensión de las bacterias en solución salina 2.5% NaCl), sin recambio posterior del agua durante todo el período de la experimentación (48 horas). Veinticuatro horas p.l., 10 larvas de cada botella fueron separadas con el fin de detectar la presencia de síntomas de tipo "bolitas" (observación de células globosas de descamación en el hepatopáncreas, larvas semivacias, alertamiento). La
misma operación de observación microscópica fue repetida el segundo día.

Los resultados mostrados en la tabla No. V indican que en la botella control aproximadamente el 20% de las larvas mostraban síntomas de tipo "bolitas" a las 24 horas, mostrando las cepas 111 y 158 resultados similares con porcentajes de animales sintomáticos de 16 y 20% respectivamente. En las larvas infectadas con E22 y 134, posiblemente patógenas, estos porcentajes fueron del 86 y 60% respectivamente (ver fotos de larvas con "bolitas" en el anexo 3). Con el anticuerpo específico de E22 (2C9), colonias positivas fueron detectadas solamente en muestras infectadas con las cepas E22 y 134, resultados que concuerdan con la antigenicidad de las bacterias utilizadas en la Infección. Una fuerte luminiscencia fue observada sólo en larvas infectadas con las cepas E22 y 134.
Tabla No. V. Patogenidad o inocuidad de las cepas E22; 134 (V. harveyi), 158 e ILI (V. alginolyticus) en larvas de P. vannamei (zoea I, concentración de bacterias utilizada: 1x10^7 UFC/ml, sin recambio posterior de agua).

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Botella</th>
<th>Observación de síntomas Día 1</th>
<th>Observación de síntomas Día 2</th>
<th>Colony blot (ac. 3H4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>3</td>
<td>10%</td>
<td>10%</td>
<td>(*)</td>
</tr>
<tr>
<td>Control</td>
<td>6</td>
<td>40%</td>
<td>0%</td>
<td>(*)</td>
</tr>
<tr>
<td>Control</td>
<td>10</td>
<td>30%</td>
<td>20%</td>
<td>(*)</td>
</tr>
<tr>
<td>Control</td>
<td>15</td>
<td>0%</td>
<td>0%</td>
<td>(*)</td>
</tr>
<tr>
<td>E22</td>
<td>1</td>
<td>100%</td>
<td>60%</td>
<td>(*)</td>
</tr>
<tr>
<td>E22</td>
<td>7</td>
<td>100%</td>
<td>100%</td>
<td>(*)</td>
</tr>
<tr>
<td>E22</td>
<td>16</td>
<td>60%</td>
<td>50%</td>
<td>(*)</td>
</tr>
<tr>
<td>134</td>
<td>4</td>
<td>100%</td>
<td>80%</td>
<td>(*)</td>
</tr>
<tr>
<td>134</td>
<td>5</td>
<td>40%</td>
<td>70%</td>
<td>(*)</td>
</tr>
<tr>
<td>134</td>
<td>11</td>
<td>40%</td>
<td>50%</td>
<td>(*)</td>
</tr>
<tr>
<td>ILI</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>(*)</td>
</tr>
<tr>
<td>ILI</td>
<td>8</td>
<td>50%</td>
<td>60%</td>
<td>(*)</td>
</tr>
<tr>
<td>ILI</td>
<td>13</td>
<td>0%</td>
<td>10%</td>
<td>(*)</td>
</tr>
<tr>
<td>158</td>
<td>3</td>
<td>60%</td>
<td>50%</td>
<td>(*)</td>
</tr>
<tr>
<td>158</td>
<td>12</td>
<td>0%</td>
<td>0%</td>
<td>(*)</td>
</tr>
<tr>
<td>158</td>
<td>14</td>
<td>0%</td>
<td>0%</td>
<td>(*)</td>
</tr>
</tbody>
</table>

(*) Para colony-blot se tomó una réplica de cada botella.

(**) El porcentaje de enfermedad se realizó en base a la observación diaria de 10 larvas durante de 24 horas de haber sido infectadas.

En conclusión, parece que las cepas E22 y 134, sospechosas de patogenidad en laboratorio, indujeron más frecuentemente anomalías clínicas que las cepas empíricamente utilizadas como probiótico. Las larvas infectadas con estas cepas probióticas no
mostraron diferencias con las larvas control en términos de anomalías clínicas. Además, los análisis con las pruebas inmunológicas indicaron la presencia de bacterias E22 y 134 en la flora de las larvas 48 horas después de la infección, lo que indica la capacidad de estas bacterias de colonizar la larva. En lo que concierne a la modalidad de infección, parece que la introducción de 10^7 UFC/ml, sin cambio posterior del agua, conduce a una degradación de la calidad del agua, aparentemente nefasta para las larvas.

3.2.2 Experimentación 2

En la experimentación precedente se consideró que la introducción de 10^7 UFC/ml sin recambio posterior conduce a una carga microorgánica excesiva y probablemente perjudicial para la viabilidad de las larvas. La experimentación 2 fue concebida para evaluar diferentes concentraciones de bacterias en las botellas y dos tiempos exposición de las larvas a las bacterias (1 ó 4 horas).

Una primera serie de botellas con larvas fueron sembradas con 10^4, 10^5, 10^6 y 10^7 UFC E22/ml (introducidas respectivamente con cerca de 0.3, 3, 30 y 300 ml de medio LB), realizando el recambio de agua una hora más tarde.
Durante los dos días siguientes no se observaron síntomas o signos clínicos y los colony-blot realizados no revelaron la presencia de bacterias E22 en la flora bacteriana de las larvas. Los resultados llevaron a la conclusión de que el tiempo de 1 hora de exposición a las condiciones mencionadas no es suficiente para que la bacteria pueda colonizar a las larvas (Tabla No. VI).

TABLA No. VI. Evaluación de diferentes concentraciones de la cepa E22 (1x10^4, 1x10^5, 1x10^6 y 1x10^7 UFC/ml) y tiempo de exposición de 1 hora en larvas zoea I.

<table>
<thead>
<tr>
<th>Concentración UFC/10</th>
<th>larvas</th>
<th>Luminiscencia en cajas Petri</th>
<th>Colony-blot % de reacción (ac. 2 C9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UFC E22/ ml</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 x 10^4</td>
<td>B1</td>
<td>0</td>
<td>0 %</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>12 A</td>
<td></td>
</tr>
<tr>
<td>1 x 10^5</td>
<td>B1</td>
<td>6 A</td>
<td>0 %</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>10 A</td>
<td>0 %</td>
</tr>
<tr>
<td>1 x 10^6</td>
<td>B1</td>
<td>2 A</td>
<td>0 %</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>76 A</td>
<td>0 %</td>
</tr>
<tr>
<td>1 x 10^7</td>
<td>B1</td>
<td>2 A</td>
<td>0 %</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>113 A</td>
<td>0 %</td>
</tr>
</tbody>
</table>

Una segunda serie de botellas con larvas fueron sembradas con 10^6, 10^7 y 10^8 UFC E22 o ILI/ml (previamente centrífugas y resuspendidas en solución salina al 2,5% de NaCl). El recambio de agua para esta prueba fue realizado 4 horas más tarde.
La observación de signos clínicos, efectuada 24 horas después de la exposición a la bacteria E22, no fue evidente en términos de reconocimiento de síntomas de tipo "bolitas", siendo los únicos signos observados no muy diferentes de los observados para ILI o el control. Es importante destacar que las muestras en contacto con 10^8 UFC ILI/ml presentaron altas mortalidades que podrían ser atribuidas a un proliferación excesiva de esta bacteria, que presenta un coeficiente de crecimiento muy rápido, de cerca de 3 veces más que E22.

El análisis de las colonias bacterianas aisladas de cada tipo de muestra es particularmente informativo (tabla No. VII). En efecto, para las muestras infectadas con diferentes concentraciones de ILI, solamente colonias amarillas fueron observadas, así como en la muestra de las larvas control. Estas colonias no fueron reconocidas por el anticuerpo 9H4, específico de la bacteria E22. Por el contrario, en las muestras correspondientes a larvas infectadas con la bacteria patógena E22 (productora de colonias verdes en TCBS), la mayoría de las colonias fueron verdes, alcanzando un 100% para la mayor concentración utilizada (10^8). Además, estas colonias verdes mostraron luminiscencia y fueron reconocidas por el anticuerpo específico de E22.
TABLA No. VII. Evaluación de diferentes concentraciones de ILI y E22 (1x10^6, 1x10^7 y 1x10^8 UFC/ml) en un tiempo de exposición de 4 horas en larvas de camarón, estadio zoa I, día 2.

<table>
<thead>
<tr>
<th>Concentración (UFC/ml)</th>
<th>UFC/10 larvas</th>
<th>Colónias amarillas</th>
<th>Colónias verdes</th>
<th>Luminescencia</th>
<th>% de reacción (ac. SH4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILI 1 x 10^6</td>
<td>B1 0</td>
<td>10 A</td>
<td></td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>B2 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILI 1 x 10^7</td>
<td>B1 10</td>
<td>10 A</td>
<td></td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>B2 13</td>
<td>13 A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILI 1 x 10^8</td>
<td>B1 0</td>
<td>10 A</td>
<td></td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>B2 28</td>
<td>28 A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E22 1 x 10^6</td>
<td>B1 0</td>
<td>233 A</td>
<td>210 V</td>
<td>+</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>B2 321</td>
<td>207 A</td>
<td>114 V</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>E22 1 x 10^7</td>
<td>B1 170</td>
<td>170 V</td>
<td></td>
<td>+</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>B2 330</td>
<td>330 V</td>
<td></td>
<td>+</td>
<td>100%</td>
</tr>
<tr>
<td>Controles</td>
<td>B1 0</td>
<td>4 A</td>
<td></td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>B2 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Estos resultados son muy interesantes ya que demuestran que es posible inducir una colonización mayoritaria de la larva zoa mediante 4 horas de exposición con concentraciones de 10^7 y 10^8 UFC/ml. Sin embargo, debido al protocolo del colony-blot, que es practicado sobre un homogenizado completo de las larvas, no es posible determinar si este proceso de colonización es localizado a nivel de tegumento.
externo del animal o si hay colonización del tubo digestivo.

3.2.3 Experimento 3

Con la información previamente obtenida una experimentación fue diseñada para explorar el efecto probiótico de la cepa III frente a la cepa E22. Con este objetivo, fue necesario realizar dos operaciones sucesivas de infección, la primera con la cepa probiótica III seguida por una segunda con E22. En la práctica una serie de bloensayos fueron realizados, con una primera exposición (I) durante 4 horas con 10^7 UFC/ml, seguida de un recambio de agua y una segunda exposición (II) similar un día más tarde.

Estos bloensayos fueron realizados por duplicado, introduciendo los controles adecuados:

- Control
- III (I)
- E22 (I)
- E22 (II)
- III (I) / III (II)
- III (I) / E22 (II)
- E22 (I) / III (II)
- E22 (I) / E22 (II)
Es importante señalar que análisis bacteriológicos y pruebas de colony-blot con el anticuerpo específico de E22 fueron realizados antes de iniciar la experimentación, a fin de determinar las características de las bacterias presentes en el agua y las larvas del laboratorio de origen y las algas del CENAIM, utilizadas en la alimentación de los animales del experimento. No se aislaron bacterias de las larvas y solamente bacterias de tipo amarillo y no reactivas al anticuerpo específico de E22 fueron aisladas del agua y de las algas.

Los resultados en la tabla No.VIII se prestan a comentarios muy interesantes.

En las larvas control se observan solamente colonias bacterianas amarillas, no luminiscientes y que no reaccionaron con el anticuerpo específico de E22 (9H4). Estas bacterias podrían corresponder a las bacterias asociadas con las algas y subsecuentemente con las larvas, prácticamente no se observaron larvas con signos clínicos de enfermedad.

En las muestras correspondientes a ILI (I) e ILI (II)/ILI (II) un gran número de bacterias fueron aisladas, todas de tipo amarillo, no luminiscente y no reaccionaron con el anticuerpo. Las larvas tampoco presentaron anormalías.
El crecimiento bacteriano de los cultivos de las larvas correspondientes a E22 (I), E22 (II) y E22 (I)/E22(II) fue muy abundante, con prácticamente todas las colonias de tipo verde, luminiscencia positiva y reconocidas por el anticuerpo específico. Entre el 40 y el 90% de estas larvas presentaron síntomas de enfermedad.

Las larvas expuestas a ILI antes o después de una exposición con E22 tuvieron una flora microbiana casi exclusivamente compuesta de bacterias de tipo verde, con luminiscencia positiva y reconocimiento del anticuerpo específico para E22. Del 70 al 100% de estas larvas presentaron síntomas de enfermedad.

Esta experimentación sugiere fuertemente que la bacteria E22 puede colonizar muy eficazmente las larvas sin ser perturbada por las bacterias ILI masivamente introducidas o por las bacterias asociadas a las algas. Además, esta bacteria E22 parece efectivamente patógena teniendo en cuenta el alto porcentaje de larvas que desarrollaron sintomatología.

Por otra parte, parece realista replantear la hipótesis de una función probiótica de la cepa ILI en el control del síndrome de "bollitas".
<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>UFC/10 larvas</th>
<th>Colonía-host % de muerte (acr. 9h)</th>
<th>Lumin. en cajón Petri % uniforme</th>
<th>Color de las coletas</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILI (I)</td>
<td>A 916</td>
<td>0%</td>
<td>-</td>
<td>Amarillo</td>
</tr>
<tr>
<td></td>
<td>B 933</td>
<td>0%</td>
<td>-</td>
<td>Amarillo</td>
</tr>
<tr>
<td>Control</td>
<td>A 23</td>
<td>0%</td>
<td>-</td>
<td>Amarillo</td>
</tr>
<tr>
<td></td>
<td>B 0</td>
<td>0%</td>
<td>-</td>
<td>Amarillo</td>
</tr>
<tr>
<td>ILI (II)</td>
<td>A 2776</td>
<td>0%</td>
<td>-</td>
<td>Amarillo</td>
</tr>
<tr>
<td></td>
<td>B 407</td>
<td>0%</td>
<td>-</td>
<td>Amarillo</td>
</tr>
<tr>
<td>E22 (I)</td>
<td>A 1881</td>
<td>100%</td>
<td>+</td>
<td>1880 v 1 A</td>
</tr>
<tr>
<td></td>
<td>B 1350</td>
<td>100%</td>
<td>+</td>
<td>1880 v 1 A</td>
</tr>
<tr>
<td>ILI (I) /</td>
<td>A 5021</td>
<td>99%</td>
<td>+</td>
<td>4992 v 2 A</td>
</tr>
<tr>
<td>E22 (II)</td>
<td>B 1697</td>
<td>98.30%</td>
<td>+</td>
<td>1688 v 17 A</td>
</tr>
<tr>
<td>E22 (I) /</td>
<td>A 17</td>
<td>100%</td>
<td>+</td>
<td>verde</td>
</tr>
<tr>
<td>E22 (II)</td>
<td>B 628</td>
<td>91%</td>
<td>+</td>
<td>verde</td>
</tr>
<tr>
<td>E22 (I) /</td>
<td>A 0</td>
<td>90%</td>
<td>+</td>
<td>verde</td>
</tr>
<tr>
<td>E22 (II)</td>
<td>B 111</td>
<td>85%</td>
<td>+</td>
<td>verde</td>
</tr>
<tr>
<td>E22 (II)</td>
<td>A 1624</td>
<td>88%</td>
<td>+</td>
<td>verde</td>
</tr>
<tr>
<td></td>
<td>B 5744</td>
<td>100%</td>
<td>+</td>
<td>verde</td>
</tr>
</tbody>
</table>
3.2.4 Experimentación 4

Esta experimentación fue enfocada hacia la interacción ILI y E22 en situación más favorable de precolonización del tubo digestivo de las larvas por la cepa ILI. Con este propósito, el primer contacto larva/ILI fue aumentado a 24 horas con dos altas concentraciones, 10^8 o 10^7 UFC/ml. Después de este tiempo, las larvas fueron expuestas durante 4 horas a concentraciones de 10^6 y 10^7 UFC/ml de E22.

En esta experimentación sólo fueron considerados los criterios relacionados a los tipos de colonias bacterianas, verdes y luminiscientes vs. amarilla no luminiscentes, a fin de determinar si como en la experimentación precedente la bacteria ILI no puede contrarrestar a la bacteria E22. Los resultados son presentados de forma sintetizada en la tabla No. IX

Como en la experimentación precedente, las larvas control y las larvas solamente expuestas a ILI tienen solo colonias de tipo amarillo, mientras que las larvas expuestas a E22 tuvieron solamente colonias verdes para la infección con 10^7 UFC/ml y una gran mayoría de colonias verdes resultante de la infección con 10^6. Estos resultados sugieren que, para esta última condición experimental (E22, 10^6), bacterias de tipo amarillo por ejemplo asociadas con las algas, fueron
capaces de participar en la colonización del tubo digestivo de las larvas.

Los análisis de las larvas expuestas a ILI antes de E22 revelaron un buen "efecto protector" por parte de ILI, ya que todas las muestras, a excepción de dos, contuvieron exclusivamente bacterias de tipo amarillo. Así, parece que estas condiciones experimentales de pre-exposición fueron más favorables para ILI en términos de prevenir el desarrollo de E22.

Se puede concluir que ILI tiene una función "probiótica" de tipo restrictivo frente a E22, pero otras experimentaciones son consideradas necesarias para optimizar el proceso de infección y la manipulación de las larvas, teniendo en cuenta el alto porcentaje de animales con signos de enfermedad en los controles y en las larvas infectadas.
<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>UFC/ 10 larvas</th>
<th>Luminiscencia en casas Petri</th>
<th>% enfermedad (no "bolitas")</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 1</td>
<td>47 A</td>
<td>-</td>
<td>60%</td>
</tr>
<tr>
<td>C 2</td>
<td>0</td>
<td>-</td>
<td>30%</td>
</tr>
<tr>
<td>Ll 10⁸ A</td>
<td>1086 A</td>
<td>-</td>
<td>70%</td>
</tr>
<tr>
<td>Ll 10⁸ B</td>
<td>6 A</td>
<td>-</td>
<td>50%</td>
</tr>
<tr>
<td>Ll 10⁷ A</td>
<td>27 A</td>
<td>-</td>
<td>70%</td>
</tr>
<tr>
<td>Ll 10⁷ B</td>
<td>560 A</td>
<td>-</td>
<td>70%</td>
</tr>
<tr>
<td>Ez 10⁸ A</td>
<td>2664 V/ 20 A</td>
<td>+</td>
<td>70%</td>
</tr>
<tr>
<td>Ez 10⁸ B</td>
<td>456 V/ 106 A</td>
<td>+</td>
<td>70%</td>
</tr>
<tr>
<td>Ez 10⁷ A</td>
<td>856 V</td>
<td>+</td>
<td>40%</td>
</tr>
<tr>
<td>Ez 10⁷ B</td>
<td>129 V</td>
<td>+</td>
<td>60%</td>
</tr>
<tr>
<td>Ll 10⁸/ Ez 10⁷ A</td>
<td>148 A</td>
<td>-</td>
<td>40%</td>
</tr>
<tr>
<td>Ll 10⁸/ Ez 10⁷ B</td>
<td>3 A</td>
<td>-</td>
<td>80%</td>
</tr>
<tr>
<td>Ll 10⁸/ Ez 10⁷ C</td>
<td>51 V/ 29 A</td>
<td>-</td>
<td>100%</td>
</tr>
<tr>
<td>Ll 10⁷/ Ez 10⁷ A</td>
<td>33 A</td>
<td>-</td>
<td>80%</td>
</tr>
<tr>
<td>Ll 10⁷/ Ez 10⁷ B</td>
<td>0</td>
<td>-</td>
<td>50%</td>
</tr>
<tr>
<td>Ll 10⁷/ Ez 10⁷ C</td>
<td>2280 A</td>
<td>-</td>
<td>80%</td>
</tr>
<tr>
<td>Ll 10⁶/ Ez 10⁶ A</td>
<td>27 A</td>
<td>-</td>
<td>50%</td>
</tr>
<tr>
<td>Ll 10⁶/ Ez 10⁶ B</td>
<td>2 V/ 31 A</td>
<td>-</td>
<td>60%</td>
</tr>
<tr>
<td>Ll 10⁶/ Ez 10⁶ C</td>
<td>3 A</td>
<td>-</td>
<td>70%</td>
</tr>
<tr>
<td>Ll 10⁵/ Ez 10⁶ A</td>
<td>0</td>
<td>-</td>
<td>20%</td>
</tr>
<tr>
<td>Ll 10⁵/ Ez 10⁶ B</td>
<td>29 A</td>
<td>-</td>
<td>30%</td>
</tr>
<tr>
<td>Ll 10⁵/ Ez 10⁶ C</td>
<td>0</td>
<td>-</td>
<td>25%</td>
</tr>
</tbody>
</table>
3.2.5 Experimentación 5

Consiste esencialmente en una repetición de la anterior, cambiando únicamente el tiempo de exposición a la bacteria I13, que fue reducido a 4 horas para evitar riesgos de proliferación bacteriana en el agua con un efecto posiblemente nefasto sobre las larvas.

Como en el caso anterior, se observaron animales débiles y mortalidades en los controles y en las larvas solamente infectadas por I13, siendo tales problemas aparentemente más fuertes que para las larvas sometidas a una doble exposición o a la simple exposición con E22. Los resultados que parece que se repiten corresponden a una capacidad relativa de las bacterias amarillas de controlar las bacterias verdes. Sin embargo, esta capacidad fue menos clara que cuando la bacteria I13 fue incubada no 4 sino 24 horas (experimento 4). Los resultados se presentan en la tabla No. X.
TABLA No. X. Interacción de ILI con E22. Concentraciones utilizadas: 1x10^6, 1x10^7 y 1x10^8 UFC/ml, con un tiempo de exposición de 4 horas para ILI y E22. En la tabla se encuentran los resultados del porcentaje de enfermedad, las colonias fijadas a las larvas, la luminescencia observada en las cajas Petri y el porcentaje de colonias que reaccionaron con los respectivos anticuerpos después de 24 horas. El macerado de larvas y la observación microscópica, corresponden a 24 horas después de la última infección.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>UFC/10 larvas</th>
<th>Luminesc. en cajas Petri</th>
<th>% Enfermedad</th>
<th>% de reacción</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>6</td>
<td>+</td>
<td>20%</td>
<td>17%</td>
</tr>
<tr>
<td>C2</td>
<td>2x10^1 A</td>
<td>+</td>
<td>10%</td>
<td>44%</td>
</tr>
<tr>
<td>C3</td>
<td>4 A</td>
<td>-</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>ILI 10^7 A</td>
<td>33 A</td>
<td>-</td>
<td>20%</td>
<td>60%</td>
</tr>
<tr>
<td>ILI 10^6 B</td>
<td>114 A</td>
<td>-</td>
<td>0%</td>
<td>100%</td>
</tr>
<tr>
<td>ILI 10^8 C</td>
<td>28 A</td>
<td>-</td>
<td>10%</td>
<td>44%</td>
</tr>
<tr>
<td>ILI 10^8 A</td>
<td>6 A</td>
<td>-</td>
<td>0%</td>
<td>20%</td>
</tr>
<tr>
<td>ILI 10^6 B</td>
<td>38 A</td>
<td>-</td>
<td>0%</td>
<td>100%</td>
</tr>
<tr>
<td>ILI 10^8 C</td>
<td>16 A</td>
<td>-</td>
<td>0%</td>
<td>37%</td>
</tr>
<tr>
<td>E22 10^6 A</td>
<td>0</td>
<td>+</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>E22 10^6 B</td>
<td>0</td>
<td>+</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>E22 10^8 C</td>
<td>0</td>
<td>+</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>E22 10^7 A</td>
<td>0</td>
<td>+</td>
<td>30%</td>
<td>100%</td>
</tr>
<tr>
<td>E22 10^7 B</td>
<td>0</td>
<td>+</td>
<td>30%</td>
<td>100%</td>
</tr>
<tr>
<td>E22 10^7 C</td>
<td>27 V</td>
<td>-</td>
<td>30%</td>
<td>100%</td>
</tr>
<tr>
<td>ILI 10^6/ E22 10^7 (A)</td>
<td>7x10^6 A</td>
<td>+</td>
<td>10%</td>
<td>21%</td>
</tr>
<tr>
<td>ILI 10^6/ E22 10^7 (B)</td>
<td>31x10^6 A</td>
<td>+</td>
<td>20%</td>
<td>66%</td>
</tr>
<tr>
<td>ILI 10^6/ E22 10^7 (C)</td>
<td>28x10^6 A</td>
<td>+</td>
<td>10%</td>
<td>65%</td>
</tr>
<tr>
<td>ILI 10^6/ E22 10^6 (A)</td>
<td>2 A</td>
<td>-</td>
<td>20%</td>
<td>0%</td>
</tr>
<tr>
<td>ILI 10^6/ E22 10^6 (B)</td>
<td>17 A</td>
<td>-</td>
<td>20%</td>
<td>0%</td>
</tr>
<tr>
<td>ILI 10^6/ E22 10^6 (C)</td>
<td>0</td>
<td>-</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>ILI 10^6/ E22 10^6 (A)</td>
<td>26x10^6 A</td>
<td>+</td>
<td>20%</td>
<td>95%</td>
</tr>
<tr>
<td>ILI 10^6/ E22 10^6 (B)</td>
<td>56x10^6 A</td>
<td>+</td>
<td>0%</td>
<td>92%</td>
</tr>
<tr>
<td>ILI 10^6/ E22 10^6 (C)</td>
<td>10^4 V</td>
<td>+</td>
<td>10%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Nota: Para las larvas expuestas a la cepa II se utilizó su respectivo anticuerpo (2B6). Para controles, larvas expuestas a E22 e interacciones, se utilizó el anticuerpo 2C9.

3.2.6 Experimentación 6

Esta experimentación, similar a la precedente, se enfoca de nuevo en el destino de la bacteria E22 en función de la preexposición a II, siendo esta vez utilizada a menor concentración para evitar su excesiva proliferación. Además fueron utilizadas dos tipos de pruebas inmunológicas para identificar II y E22 en las mezclas. Los resultados están representados en la tabla No. XI.

Las larvas infectadas con II presentaron solamente colonias amarillas, que fueron casi todas reconocidas por el anticuerpo específico de esta bacteria (2B6). Este resultado es interesante porque indica un papel mayoritario de la bacteria introducida en las botellas como colonizante comparativamente a las bacterias asociadas con las algas que fueron previamente mostradas negativas. A pesar de las menores concentraciones bacterianas (10^5 y 10^6), problemas de salud y supervivencia fueron observados en estas larvas.
En las muestras infectadas solamente con E22 las bacterias aisladas fueron mayoritariamente verdes y reconocidas por el anticuerpo específico de E22. Estos resultados confirmaron también que la bacteria introducida es la representante mayor de la flora asociada a las larvas al final del experimento. No obstante, las bacterias amarillas están presentes y podría ser interesante verificar si son efectivamente asociadas a algas o alimento balanceado que podrían ser vectores eficaces.

Las poblaciones bacterianas amarillas y verdes presentes en las muestras expuestas a ILI y a continuación a E22, parecen estar en proporciones relacionadas a las concentraciones iniciales. Cuando la bacteria E22 fue introducida a una concentración cien veces mayor que ILI, 24 horas más tarde, E22 fue la bacteria observada mayormente en la flora de la larva.

Cuando la bacteria E22 fue introducida a una concentración diez veces mayor o idéntica a la ILI, estas dos bacterias estuvieron presentes en proporciones más o menos equivalentes en la flora bacteriana.
<table>
<thead>
<tr>
<th># botellas</th>
<th>UFC/10 larvas</th>
<th>Luminiscencia en placas Petri</th>
<th>Colony blot</th>
<th>% de reacción</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>C2</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>ILI 10⁵ A</td>
<td>724 A</td>
<td>91%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>ILI 10⁵ B</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>ILI 10⁵ C</td>
<td>117 A</td>
<td>100%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>ILI 10⁶ A</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>ILI 10⁶ B</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>E22 10⁶ A</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>E22 10⁶ B</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>E22 10⁷ A</td>
<td>4 V</td>
<td>+</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>E22 10⁷ B</td>
<td>626 V/474 A</td>
<td>+</td>
<td>60%</td>
<td></td>
</tr>
<tr>
<td>ILI 10⁶/ E22 10⁶ (A)</td>
<td>2V/1A</td>
<td>+</td>
<td>66%</td>
<td></td>
</tr>
<tr>
<td>ILI 10⁶/ E22 10⁶ (B)</td>
<td>6V/13 A</td>
<td>+</td>
<td>32%</td>
<td></td>
</tr>
<tr>
<td>ILI 10⁶/ E22 10⁶ (C)</td>
<td>1V</td>
<td>+</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>ILI 10⁷/ E22 10⁷ (A)</td>
<td>468 V/15 A</td>
<td>+</td>
<td>91%</td>
<td></td>
</tr>
<tr>
<td>ILI 10⁷/ E22 10⁷ (B)</td>
<td>21 V/5 A</td>
<td>+</td>
<td>80%</td>
<td></td>
</tr>
<tr>
<td>ILI 10⁷/ E22 10⁷ (C)</td>
<td>8 V/15 A</td>
<td>+</td>
<td>33%</td>
<td></td>
</tr>
<tr>
<td>ILI 10⁷/ E22 10⁷ (D)</td>
<td>2 V/199 A</td>
<td>-</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>ILI 10⁷/ E22 10⁷ (E)</td>
<td>6 V/6 A</td>
<td>+</td>
<td>50%</td>
<td></td>
</tr>
</tbody>
</table>

Notas: Para las larvas expuestas a la cepa ILI se utilizó el anticuerpo 2B6. Para las larvas expuestas a E22 y en las interacciones se utilizó el anticuerpo 2C9.
CONCLUSIONES

Debido a los problemas de enfermedades bacterianas en los laboratorios de larvas y de las limitaciones en el uso de antibióticos por razones de costo y de resistencias, el uso de probióticos se ha convertido en una técnica relativamente frecuente, pero totalmente empírica.

Se puede considerar que el uso de bacterias probióticas es problemático desde dos puntos de vista.

En primer lugar, las cepas utilizadas como probiótico son muy mal caracterizadas, generalmente sólo por el color de sus colonias (amarillas en medio TCBS). Esta caracterización es realmente rústica, en comparación con las técnicas actuales de bacteriología utilizadas en medicina humana y veterinaria y en agricultura. En este trabajo fueron consideradas dos cepas, ILI y 158, supuestamente "probióticas" como prototipo para evaluar la asociación de pruebas bioquímicas, genéticas y antigénicas. Dos cepas bacterianas, aisladas del mismo laboratorio y ambas determinadas como Vibrio alginolyticus sobre la base de 33 caracteres morfológicos y bioquímicos, fueron categóricamente diferenciadas con un solo criterio genético o un solo antigénico. En efecto una de las cepas, 158, fue caracterizada por la presencia de un plásmido, criterio genético particularmente importante, teniendo en cuenta la importancia fenotípica correspondiente a los genes plasmídicos tales como genes de resistencia a
antibióticos o genes correspondientes a proteínas bactericidas involucradas en una capacidad probiótica. La distinción entre las cepas estuvo también basada en la ausencia o presencia de un antígeno específicamente detectado, con el uso de anticuerpos monoclonales. Esta particularidad fue explotada para desarrollar una prueba inmunológica de tipo colony blot, particularmente útil como herramienta de análisis de las interacciones de IILI con otras cepas.

En segundo lugar, bacterias "probióticas" son usadas sin prácticamente ningún soporte experimental. Con el objetivo de llenar este vacío, fue concebido un modelo experimental in vivo que consistió en larvas de *Penaeus vannamei*, cepas bacterianas de la especie *Vibrio alginolyticus*, posiblemente probióticas, y cepas bacterianas de la especie *V. harveyi*, posiblemente patógenas. En este modelo, el estadio larvario seleccionado fue zoea 1 de *P. vannamei*, correspondiente al momento de apertura de la boca y consecuentemente correspondiente a un momento favorable para exponer las larvas a una suspensión bacteriana con el fin de infectarlas. Para el sistema protagonista bacteria patógena/bacteria probiótica en interacción con el camarón, fueron seleccionadas cepas sospechosas de causar síndrome de "bollitas" y de permitir buenas condiciones de cultivo respectivamente. En práctica, cepas con tales criterios fueron recogidas por Iliana Morales en su laboratorio y amablemente cedidas al CENAIM.
Con este modelo fue posible explorar algunas preguntas esenciales relacionadas con el fenómeno de probiosis en larvas de camarón.

Una primera pregunta de orden técnico, concernía la necesidad de poder controlar la flora bacteriana asociada a las larvas, particularmente a nivel del tubo digestivo. Los resultados de las experimentaciones permitieron concluir que este punto está prácticamente controlado, ya que las observaciones de colonias y los análisis con pruebas inmunológicas mostraron poblaciones bacterianas prácticamente homogéneas y monoespecíficas, como consecuencia de una exposición en el estado de zoea 1. Sin embargo, será necesario analizar mejor la localización de las bacterias para determinar la proporción en el tubo digestivo y sobre la cutícula. Estos tipos de análisis serán muy sencillos, teniendo en cuenta la disponibilidad de anticuerpos monoclonales que permiten practicar inmunohistología.

Una segunda pregunta concernía la naturaleza patógena de la cepa E22, muy usada en esta investigación. A pesar de la presencia del problema frecuente de debilidad observado en las larvas control y expuestas a bacterias, los resultados, en particular de la experimentación 1, parecen indicar que la bacteria E22 es efectivamente patogénica y capaz de inducir síntomas relacionados con el síndrome de "bollitas". Otras experimentaciones deberán ser realizadas, en particular con infecciones menos severas (concentración bacteriana/tiempo de
exposición) y tiempos de experimentación más largos. Un requisito indispensable es mejorar la tecnología de mantenimiento y manipulación de las larvas, que parecen ser un factor limitante en las experimentaciones.

En lo que respecta a ILI (u otras cepas posiblemente probióticas), la pregunta se sitúa a dos niveles. Primeramente, ¿es inocua la bacteria ILI para el camarón?, segunda, ¿tiene un efecto probiótico frente a la bacteria E22?

Para el primer punto parece que la bacteria ILI puede ser nociva para las larvas a las diferentes concentraciones probadas e incluso con tiempos cortos de exposición. Por tanto, los problemas observados con los controles y los problemas evidentes relacionados con la manipulación pueden ser un argumento a favor de su inocuidad mas que su patogenicidad. Además, el uso de esta bacteria durante mucho tiempo en un laboratorio de producción es otro argumento a considerar. Otras experimentaciones serán necesarias con parámetros optimizados para determinar de forma más concluyente la inocuidad de esta cepa, siendo tales experimentaciones realizadas paralelamente con bacterias patógenas a fin de determinar los niveles de infección soportados por las larvas para cada tipo de bacteria.

Finalmente, la última pregunta sobre la naturaleza probiótica de ILI frente a E22, necesitará más experimentaciones para ser resuelta. En efecto, los resultados de las preexposiciones a ILI antes de la exposición a la cepa patógena E22 parecen
corresponder a una competición "equitativa" para colonizar las larvas sin superioridad aparente de II, relacionada a una naturaleza probiótica con producción de factores anti E22.

Con estos resultados podemos considerar, que, de existir una hipótesis sobre probiosis, ésta podría corresponder a una fuerte ocupación de los epitelios digestivos por una bacteria inocua que impida la instalación de bacterias patógenas. Con el uso del modelo presentemente desarrollado, nuevas experimentaciones se están realizando dirigidas a la verificación de esta hipótesis. Experimentación con cultivos de células de Intestino y análisis inmunohistológico deberá ser desarrollado para analizar directamente el efecto citopático y capacidad de fijación de las bacterias a las células así como el mecanismo de competición y exclusión bacteriana.

En lo que concierne la hipótesis de un efecto de probiosis relacionado con la producción de bactericidas, las experimentaciones serán realizadas preferencialmente in vitro, simplemente por cultivo mixto entre cepas bacterianas consideradas "probióticas" y bacterias diana o por análisis de la toxicidad del sobrenadante obtenido de cultivos de bacterias "probióticas" sobre cultivos de bacterias diana. Sería importante verificar si las bacterias "probióticas" presentan plásmidos, que podrían estar relacionados con la producción de bactericidas.
1. Las técnicas de caracterización e identificación de bacterias actualmente practicadas en camaricultura están realmente obsoletas y deberían rápidamente evolucionar para integrar los criterios genéticos y antigenéticos que son absolutamente necesarios para reconocer una cepa. Además de la tecnología presentada en el documento, otras técnicas como la RAPD (Random Amplification of Polymorphic DNA) merecen ser exploradas por su gran interés en la determinación de la posición taxonómica a los niveles específico y subspecífico simultáneamente y relacionadas con caracteres fenotípicos.

2. Los controles epidemiológicos necesitan ser reforzados, en estrecha relación con los laboratorios, para recoger cepas utilizadas con éxito como probióticos y cepas que aparecen durante brotes epidémicos. Las primeras serán caracterizadas y su carácter probiótico estudiado. Las segundas, serán caracterizadas y sondas moleculares específicas serán usadas como reactivos de diagnóstico.

3. El modelo de estudio in vivo de las interacciones camarón/bacteria patógena/bacteria probiótica debería ser optimizado. Diferentes estadios, particularmente los comprendidos entre huevos y los anteriores a la apertura de la boca, serán estudiados para determinar las modalidades
de colonización del tubo digestivo. Con este fin, técnicas de análisis complementarias deberían ser desarrolladas, por ejemplo, técnicas de inmunohistología. Para entender mejor la importancia respectiva de los parámetros tiempo y momento de exposición y concentración bacteriana, otras experimentaciones deberían ser realizadas.

4. La comprensión de los fenómenos de probiosis y patogenicidad bacterianas se deberían realizar estudios en paralelo *in vivo* e *in vitro*. En efecto, mediante el co-cultivo de bacterias patógenas y probióticas, en ausencia y presencia de cultivos de células intestinales de camarón, será posible aprehender estos fenómenos a los niveles celulares y moleculares. Por ejemplo, detectar las toxinas bacterianas con efecto citopático o las toxinas bacterianas bactericidas.

5. La colaboración con laboratorios de producción de larvas, que utilizan actualmente probióticos "a ciegas", sería muy beneficiosa para analizar *in situ* la dinámica de poblaciones bacterianas, particularmente en situación de ruptura de equilibrio con la aparición de enfermedades bacterianas.
ANEXOS
ANEXO 1
EXTRACCION DE ADN PLASMIDICO
PREPARACION DE MEDIOS Y SOLUCIONES

METODO DE LISIS ALCALINA: MINIPREP

- Medio LB (Luria Bertani Medium)
 Disolver en 1 litro de agua destilada 0.5 gramos de extracto de levedura (Difco Laboratories, 0127-01-7), 1 gramo de bacto-triptona (Difco Laboratories, 0123-01-1), 2% de CINa y 1% de D-glucosa. Ajustar el pH a 7.0 y autoclavar por 15 minutos a 121°C y 15 libras de presión.

- GTE (Glucosa- Tris- EDTA)
 50 mM glucosa
 25 mM Tris-Cl, pH 8.0
 10 mM EDTA

- Solución NaOH/ SDS
 (Hidróxido de sodio/ Sodio dodecil sulfato)
 0.2 M NaOH
 1% SDS
 (Preparar la solución en el momento a partir de una solución de NaOH 10 M y una solución de SDS 10%).
- Acetato de Potasio
 29.5 ml de ácido acético glacial
 KOH en pastillas hasta que el pH sea de 4.8
 Agua destilada hasta 100 ml
 Mantener a temperatura ambiente. No autoclarar.

- TE (Tris-EDTA)
 10 mM Tris-Cl, pH 7.4, 7.5 u 8.0
 1 mM EDTA, pH 8.0

ELECTROFOREISIS EN GEL DE AGAROSA

Tampón de depósito 10 X
20% Ficoll 400
0.1 M Na₂EDTA, pH 8.0
1.0% SDS
0.25% (w/v) azul de bromofenol
0.25% (w/v) xylene cyanol

TAE (Tampón de electroforesis)
50X solución stock, pH 8.5
242 g Tris base
57.1 ml de ácido acético glacial
37.2 g de Na₂EDTA.2H₂O
Agua hasta completar 1 litro

* Información tomada de short protocols in Molecular Biology (Ausubel et al., 1992).*
ANEXO 2
SOUTHERN BLOT
PREPARACION DE SOLUCIONES

- **Digestión del gel**

 Solución desnaturalizadora
 1.5 M NaCl
 0.5 N NaOH
 Agua hasta completar 1 litro.
 Mantener a temperatura ambiente.

- **Neutralización**

 Solución Neutralizadora
 175.5 g NaCl 3 M
 6.7 g Tris.OH
 70.2 g Tris.Cl
 Agua hasta completar 1 litro
 Mantener a temperatura ambiente

- **Preparación del sistema de transferencia**

 Solución de transferencia 10X SSC
 Es preparada a partir de una solución stock 20X SSC
 NaCl 3M
 Citrato de sodio 0.3 M
Ajustar el pH a 7.0 con una solución de NaOH 10 N

- **Prehíbridación**
 Solución de prehíbridación: 5X SSC
 1 % de reactivo bloqueador
 0.1 % N-lauroilsarcosina
 0.02 % SDS
 Almacenar a -20°C

- **Híbridación**
 Combinar los ingredientes de la solución de prehíbridación excepto el agua. Adicionar 50 g de dextran sulfate (para tener una concentración final de 10 %) y mezclar. Completar hasta un volumen de 500 ml.

- **Lavado 1**
 2X SSC
 SDS 0.1 %

- **Lavado 2**
 0.1X SSC
 SDS 0.1 %

- **Revelado**
 Tampón 1
 Acíd maleico 0.1 M
 NaCl 0.15 M
 Ajustar el pH a 7.5 con NaOH
Autoclavar a 121 °C y 15 libras de presión.
Almacenar a 20 °C

Tampón 2
Solución bloqueadora al 1% en tampón 1

Tampón 3
10 mM Tris·HCl
1 mM EDTA
Ajustar el pH a 9.5
50 mM MgCl₂
Almacenar a 20 °C

Solución de coloración
45 µl de NBT
35 µl de X-fosfato
10 ml de tampón 3

Tampón 4
10 mM Tris·HCl
1 mM EDTA
pH 8.0
Almacenar a - 20 °C

a) Zoaa l, sin presencia de anomalías clínicas, 100X.
Larvas infectadas con E22. b) Desprendimiento del epitelio interno del hepatopáncreas, originado por la descamación de células que toman apariencia esférica ("bolitas"). 400X. c) Presencia de bolitas en el tracto digestivo, 100X.
Larvas infectadas con E22. d) Presencia de bolitas en el tracto digestivo, 200X. e) Estado avanzado de la enfermedad de bolitas, descamación del tracto digestivo, 200X.
REFERENCIAS BIBLIOGRÁFICAS

