

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería Marítima y Ciencias del Mar

Título del trabajo

Efectos del dióxido de cloro para el control de vibriosis en el camarón blanco (*Penaeus vannamei*).

PROYECTO INTEGRADOR

Previo a la obtención del título de Ingeniero Acuícola

Presentado por:

Jorge Samuel Segura Rivero

Víctor Ernesto Martínez Nieto

GUAYAQUIL - ECUADOR

Año: 2022

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

College of Maritime Engineering and Sea Science

Work title

Effects of chlorine dioxide for the control of vibriosis in white shrimp (*Penaeus vannamei*)

INTEGRATING PROJECT Prior to obtaining the title of Aquaculture Engineer

by:

Jorge Samuel Segura Rivero Víctor Ernesto Martínez Nieto

GUAYAQUIL - ECUADOR

Year: 2022

DEDICATORIA

Dedico esta tesis a Dios por darme la fuerza y guía todo este tiempo, a mis padres Jorge y Cecilia quienes con su paciencia, esfuerzo, consejos y apoyo incondicional me han formado e inculcado valores, siendo ellos mismos ejemplos a seguir, para ser una persona de bien, también por el apoyo a lo largo de mi etapa estudiantil y en todo momento de mi vida.

A toda mi familia porque con sus oraciones, consejos me apoyaron en toda mi carrera universitaria y a lo largo de la vida.

Finalmente, a la familia que hice en baloncesto, los amigos que hice a lo largo de mi vida y todas las personas especiales que me acompañaron en esta etapa, aportando a mi formación tanto profesional y como ser humano.

Samuel Segura.

DEDICATORIA

Dedico esta tesis a mis tíos y a mi hermano Nicolás, pero principalmente a mi mamá María Cristina Nieto y a mi tío Vicente Gastón Nieto. Fueron ellos quienes me apoyaron en los buenos y malos mementos que se presentaron en el trayecto de mi carrera. Por enseñarme siempre a afrontar cada obstáculo sin rendirme y ayudándome a demostrando cada día la mejor versión de mí.

A mis abuelitos Norma Gallino y Víctor Nieto quienes me ayudaron en todo momento durante mi trayecto universitario con sus enseñanzas, apoyos y consejos.

Finalmente, a mis amigos, seres cercanos que han estado para mí a lo largo de mi vida durante toda mi carrera, con sus valiosos y fraternos aportes para mejorar como persona y como profesional.

Víctor Martínez.

AGRADECIMIENTOS

Nuestros más sinceros agradecimientos a los diferentes departamentos y laboratorios de experimentación de la Facultad de Marítima en la ESPOL los cuales nos permitieron utilizar sus instalaciones para realizar este proyecto.

A nuestro tutor el Ph.D. Víctor Osorio Cevallos, quien estuvo presente en todo momento para guiarnos, aconsejarnos, enseñarnos y corregirnos durante todo el proyecto.

Al MSc. Jonathan Castro Lara por sus enseñanzas, paciencia y colaboración en esta investigación.

DECLARACIÓN EXPRESA

"Los derechos de titularidad y explotación, nos corresponde conforme al reglamento de propiedad intelectual de la institución; (Jorge Samuel Segura Rivero y Víctor Ernesto Martínez Nieto) y damos nuestro consentimiento para que la ESPOL realice la comunicación pública de la obra por cualquier medio con el fin de promover la consulta, difusión y uso público de la producción intelectual"

Jorge Samuel Segura Rivero

Víctor Ernesto Martínez Nieto

Victor Hortinez Wicto

EVALUADORES

VICTOR HUGO OSORIO CEVALLOS Firmado digitalmente por VICTOR HUGO OSORIO CEVALLOS Fecha: 2022.09.22 11:41:29 -05'00'

Wilfrido Argüello, Ph.D.PROFESOR DE LA MATERIA

Víctor Osorio, Ph.D.

TUTOR

RESUMEN

En los laboratorios de larvas el control y mitigación de vibrios en los animales y en el agua es de suma importancia, por lo que esta industria usa diferentes productos para la eliminación de estas bacterias, pero algunos productos usados para la desinfección son tóxicos, se mantienen en el medio por tiempos prolongados o no aceptados, también al no tener una sustancia adecuada para combatir estas bacterias ocurre la mortalidad de los animales y consiguiente perdidas económicas. por lo que el objetivo de este estudio fue "Determinar la toxicidad del dióxido de cloro en poslarvas de camarón P. vannamei y analizar la factibilidad de utilizar el compuesto para controlar vibrios sp. en los cultivos de camarón blanco", con estos antecedentes, se determinó la toxicidad de este compuesto químico en poslarvas, y se realizó la determinación de la concentración mínima inhibitoria (MIC). En el presente proyecto se determinó la mortalidad y se evaluó la toxicidad del dióxido de cloro (CIO₂) en poslarvas de camarón en el estadio PI14; que se sometieron a diferentes tratamientos de 1.00, 1.50, 2.00 mg/l de CIO₂. El diseño experimental contó con cuatro tratamientos, de cuatro réplicas de 30 poslarvas cada uno; con una población total de 480 poslarvas. Se contabilizó la mortalidad al cabo de 24 horas y se utilizó un análisis estadístico mediante la prueba de Turkey usando el programa RStudios para determinar las variaciones entre los tratamientos. Paralelamente, se realizó el MIC con concentraciones de 2.00, 1.75, 1.50, 1.25, 1.00, 0.75, 0.50, 0.25, 0.20, 0.15 mg/l de CIO₂, donde se observó las concentraciones en donde no había crecimiento bacteriano, y en las pruebas negativas se tomó una muestra para inocularla en una placa agar y demostrar si dicha concentración actúa como bacteriostático o bactericida. Los resultaron mostraron que a una concentración de 1 mg/l de ClO₂ los animales no muestran una toxicidad al químico y este actúa como bactericida.

Palabras clave: dióxido de cloro, ClO₂, MIC, mortalidad, Pl14, toxicidad, *Penaeus vannamie*.

ABSTRACT

In larval laboratories, the control and mitigation of vibrios in animals and water is of utmost importance, so this industry uses different products for the elimination of these bacteria, but some products used for disinfection are toxic, are kept in the environment for long periods of time or are not accepted industrially, also by not having an adequate substance to combat these bacteria occurs mortality of the animals and consequent economic losses, therefore, the objective of this study was the "Effects of chlorine dioxide for the control of vibriosis in white shrimp (Penaeus vannamei)", with this background, the toxicity of this chemical compound should be determined so that, once the amount of mortality produced by the product at different concentrations has been evaluated, the minimum inhibitory concentration test (MIC) is performed, in addition to a test to determine whether these concentrations act as a bacteriostatic or as a bactericide, and thus discover whether the concentration that prevents bacterial growth is toxic to the white shrimp postlarvae. In the present project, the mortality and toxicity evaluation of chlorine dioxide (ClO₂) in shrimp postlarvae at PI14 stage was determined, where the postlarvae were subjected to the treatments of 1.00, 1.50, 2.00 mg/l of ClO₂ and the control. We used 480 postlarvae with four replicates of 30 postlarvae per treatment and used observation to count the mortality of the postlarvae population in a 24-hour and a statistical analysis by Turkey test using the RStudios program. Then the MIC was performed with concentrations of 2.00, 1.75, 1.50, 1.25, 1.00, 0.75, 0.50, 0.25, 0.20, 0.15 mg/l of ClO₂, where the concentrations where there was no bacterial growth were observed, and in the negative tests a sample was taken to inoculate it in an agar plate to demonstrate if such concentration acts as bacteriostatic or bactericidal. The results showed that at a concentration of 1 mg/l of ClO₂, the animals do not show toxicity to the chemical and it acts as a bactericide.

Key words: chlorine dioxide, CIO₂, MIC, mortality, Pl14, toxicity, *Penaeus vannamei*.

ÍNDICE GENERAL

AGRAL	DECIMIENTOS	5
DECLA	RACIÓN EXPRESA	. 6
EVALU	ADORES	. 7
RESUM	1EN	. 8
ABSTR	ACT	9
CAPÍTU	JLO 1	17
1. Ir	ntroducción	17
1.1	Descripción del problema	18
1.2	Justificación del problema	20
1.3	Objetivos	20
1.3.1	Objetivo General	20
1.3.2	Objetivos Específicos	20
1.4	Marco teórico	21
1.4.1	Especie Penaeus vannamei	21
1.4.2	Bacterias patógenas en la Acuicultura	22
1.4.3	Género Vibrio	23
1.4.4	Concentración mínima inhibidora (MIC)	26
CAPÍTU	JLO 2	27
2. N	1etodología	27
2.1	Desinfección general de materiales y equipos	28
2.2	Diseño experimental del bioensayo	28
2.3	Obtención de los animales, agua y balanceado	29
2.3.1	Agua	29
2.3.2	Postlarvas de camarón (Penaeus vannamei)	29
2.3.3	Balanceado	30
2.4	Determinación del dióxido de cloro en el agua	31

2.5	Aclimatación de las postlarvas 3	31
2.6	Determinación de la toxicidad del ClO ₂	32
2.7	Concentración mínima inhibidora (MIC)	32
CAPÍ	TULO 33	35
3.	RESULTADOS Y ANÁLISIS	35
3.1	Resultados de la toxicidad del CIO ₂	35
3.2	Resultados MIC2	41
3.3	Análisis estadístico2	43
3.4	Análisis de costos	51
CAPÍ	TULO 45	53
4.	Conclusiones y recomendaciones	53
4.1	Discusión del caso	53
4.2	Conclusiones5	53
4.3	Recomendaciones5	54
Biblio	grafía	55
APÉN	NDICES5	58

ABREVIATURAS

CIO₂ Dióxido de cloro

FDA U.S. Food and Drug Administration

FAO Organización de las Naciones Unidas para la Alimentación y la

Agricultura

PL14 Expresión de los días que tiene el animal en la etapa de postlarva

MIC Concentración mínima inhibitoria

AHPND Enfermedad de la Necrosis Hepatopancreática Aguda

TSV Síndrome de Taura

IHHNV Necrosis hipodérmica y hematopoyética infecciosa

YHV Virus de la Cabeza Amarilla

IMNV Virus Mionecrosis Infecciosa

EHP Microsporidio Enterocytozoon hepatopenaei

SIMBOLOGÍA

I Litros

°C Grados centígrados

g Gramos

kg Kilogramos

mg Miligramos

mg/l Miligramos sobre litro

μl Microlitros

ppm Partes por millón

% Porcentaje

pH Potencial de hidrógeno

ÍNDICE DE FIGURAS

ilustración 1.1 Porcentaje de camarones infectados debido a la enfermedad con cada
especie de Vibrio. (Somboon, Purivirojkul, Limsuwan, & Chuchird, 2012)18
Ilustración 1.2 Participación de los principales grupos patógenos en pérdidas económicas
de la industria camaronera. (Figueredo, y otros, 2020)23
Ilustración 3.1 Gráfica de la mortalidad versus tiempo del grupo control (no expuesto al
CIO ₂) en la columna de agua. (Martínez & Segura, 2022)
Ilustración 3.2 Gráfica de la concentración 1 mg/l de ClO2 y mortalidad versus el tiempo
de exposición. (Martínez & Segura, 2022)37
Ilustración 3.3 Gráfica de la concentración 1.5 mg/l de CIO2 y mortalidad versus el tiempo
de exposición. (Martínez & Segura, 2022)39
Ilustración 3.4 Gráfica de la concentración 2 mg/l de ClO2 y mortalidad versus el tiempo
de exposición. (Martínez & Segura, 2022)40
Ilustración 3.5 Gráfica de la concentración promedio de CIO2 vs promedio de la
mortalidad vs tiempo41
Ilustración 3.6 Resultado de turbidez luego de 24 horas
Ilustración 3.7 Crecimiento bacteriano en placa de agar43
Ilustración 3.8 Análisis de varianza44
Ilustración 3.9 Resultados de la prueba de Turkey para las dosis45
Ilustración 3.10 Análisis de varianza46
Ilustración 3.11 Resultados de prueba de Turkey para el tiempo
Ilustración 3.12 Diagrama de cajas de las dosis entre la mortalidad vs tiempo. Se observa
la distribución de los datos en cada tiempo, obteniendo una similitud en las dosis de
control (color naranja), dosis 1 (color verde) y dosis 2 (color celeste), siendo la más
alejada de los demás datos la dosis 3 (color morado)48
Ilustración 3.13 Distribución de tiempo y mortalidad en función de las dosis. La dosis de
control (color naranja) es muy similar a la dosis 2 (color verde) y la dosis 3 (color celeste),
siendo la dosis 3 (color morado) la que más se sobresalga en cuanto a la mortalidad. 49
Ilustración 3.14 Tabla del análisis de varianza50
Ilustración 3.15 Media muestral de las mortalidades de cada dosis desde los 120 minutos.
Parece que las mortalidades no son iguales en las diferentes dosis50
Ilustración 3.16 Resultados de prueba de Turkey para la mortalidad y el tiempo mayor de
120 minutos

lustración 0.1 Sistema de bioensayo armado	.58
lustración 0.2 Tanques reservorios	.58
lustración 0.3 Acuarios rotulados con la concentración de CIO ₂	.59
lustración 0.4 Acuario con postlarvas de camarón	.59
lustración 0.5 Postlarvas de camarón en la experimentación con CIO ₂	.60
lustración 0.6 Fotómetro para la medición de CIO ₂	.60
lustración 0.7 Control de temperatura de los acuarios	.61
lustración 0.8 Placa de cultivo para bioensayo inoculados y filas rotuladas	.61
lustración 0.9 Cultivo del contenido en los pocillos en una placa de agar	.62
lustración 0.10 Placa de agar inoculada y sellada	.62
lustración 0.11 Placa de agar luego de las 24 horas de sembrada	.63
lustración 0.12 Pruebas de estrés y del ClO ₂ en las larvas del laboratorio	.63
lustración 0.13 Transporte del agua marina tratada del laboratorio hasta el laborato	orio
de piscicultura en la ESPOL	.64

ÍNDICE DE TABLAS

Tabla 1.1 Pérdidas económicas estimadas en camaronicultura causadas por algunas de
las enfermedades más importantes. (Figueredo, y otros, 2020)22
Tabla 1.2 Cronología global de las principales enfermedades infecciosas en camarones
Penaeidos. (Figueredo, y otros, 2020)23
Tabla 1.3 Límites para el crecimiento del Vibrio parahaemolyticus y su condición óptima
(ACHIPIA, 2017)25
Tabla 2.1. Cantidad y descripción de los materiales usados en el proyecto27
Tabla 2.2 Composición del balanceado LARVAMAX30
Tabla 2.3 Composición del balanceado LARFEED30
Tabla 2.4 Composición del balanceado ZEIGLER30
Tabla 2.5 Concentraciones del dióxido de cloro y cantidades de cada compuesto
(Martínez y Segura, 2022)33
Tabla 3.1 Acuarios de control de tiempo en minutos versus mortalidad. (Martínez 8
Segura, 2022)35
Tabla 3.2 Concentración de 1 mg/l de ClO2 versus el tiempo en minutos y la mortalidad
obtenida36
Tabla 3.3 Concentración de 1.5 mg/l de ClO2 versus el tiempo en minutos y la mortalidad
obtenida38
Tabla 3.4 Concentración de 2 mg/l de ClO2 versus el tiempo en minutos y la mortalidad
obtenida39
Tabla 3.5 Resultados del crecimiento bacteriano en las diferentes concentraciones de
dióxido de cloro. (Martínez & Segura, 2022)42
Tabla 3.6 Concentraciones del dióxido de cloro que actúan como bactericida. (Martínez
& Segura, 2022)43
Tabla 3.7 Dosis y numeración de estos para el respectivo análisis estadístico44
Tabla 3.8 Tiempo y numeración de estos para el respectivo análisis estadístico44
Tabla 3.9 Costos para la elaboración de la experimentación. (Martínez & Segura, 2022)
51
Tabla 3.10 Costos de diferentes productos y su comparación de precio con el volumer
total de desinfección

CAPÍTULO 1

1. INTRODUCCIÓN

El sector camaronero en el Ecuador ha llegado a ser una de las actividades de producción con mayor desarrollo, abriendo nuevas líneas de mercado hacia diferentes partes del mundo (CNA, 2021). Sin embargo, la presencia de enfermedades es un tema que detiene el crecimiento del cultivo de camarón y esto se debe a la incidencia de diversos agentes patógenos que cada día evolucionan y se vuelven más resistentes a los tratamientos. (Navarro, 2016)

En los últimos años la producción del camarón en el Ecuador ha incrementado de una manera progresiva y sostenible, llevando a que la mayoría de los productores implementen protocolos moderados con uso excesivo de insumos para poder satisfacer esta demanda que involucra la intensificación de su producción. Sin embargo, todo este proceso requiere de un control mucho más detallado, de formas de cultivos más específicas y de una aplicación de alimentos e insumos que sometan a los organismos a un crecimiento más rápido (España, 2021). La Vibriosis es una enfermedad bacteriana extracelular provocada por varias especies pertenecientes al género *Vibrio*. Estas bacterias en ciertas ocasiones poseen una patogénesis desconocida. (Cuéllar-Anjel, 2013)

La Vibriosis es la causante de mortalidades en cultivos de camarón generando de 6 a 8 mil millones de dólares en pérdidas anuales en diferentes países productores alrededor del mundo y afectando tanto al sector de hatcheries o laboratorios (larvicultura) como a las camaroneras en las etapas de engorde (Figueredo, et al., 2020);. La presencia de una vibriosis generalmente ocurre cuando existe un cambio drástico de las condiciones o parámetros ambientales causando así un aumento en la velocidad de la multiplicación bacteriana. (Cuéllar-Anjel, 2013)

En el anuario de pesca y medio ambiente de la universidad de Tailandia en el año 2012, se informó acerca de diferentes enfermedades del camarón producidas por vibrios, como las heces blancas (SHB), Enfermedad de la Necrosis Aguda del Hepatopáncreas (AHPND), y la enfermedad luminiscente, y se identificó el porcentaje de camarón infectados por cada especie de Vibrio identificado en la

hemolinfa y en el intestino como se aprecia en la ilustración 1.1. (Somboon, Purivirojkul, Limsuwan, & Chuchird, 2012)

% DE INFECCIONES DE CAMARONES POR LA

Ilustración 1.1 Porcentaje de camarones infectados debido a la enfermedad con cada especie de Vibrio. (Somboon, Purivirojkul, Limsuwan, & Chuchird, 2012)

ESPECIE DE VIBRIO ENFERMEDAD ESPECIE DE VIBRIO Hemolinfa Intestino V. Vulnificus 80 80 44 V. Fluviales 44 V. Parahaemolyticus 26 26 V. Alginolyticus 20 20 V. Damselae (Photobacterium 18 18 Damselae) V. Mimicus 8 8 V. Cholera (non01) 6 6

1.1 Descripción del problema

Los diferentes microrganismos que conforman el género Vibrio se han convertido en uno de los principales factores de mortalidad en el cultivo del camarón. La mortalidad producida por vibrios también es muy común en los laboratorios de larvas, por lo que es importante encontrar maneras seguras y amigables con el ambiente para el control de estos patógenos. (Somboon, Purivirojkul, Limsuwan, & Chuchird, 2012)

El dióxido de cloro al ser un desinfectante, también se lo usa al agregarlo al agua potable para la eliminación de virus, bacterias o algún tipo de organismos como parásitos que puedan causar enfermedades al ser humano. La Agencia De Protección Ambiental (EPA) recomienda que la concentración máxima de dióxido de cloro que se debe usar para el tratamiento del agua potable no debe ser mayor a 0.8 ppm. (World Health Organization, 2017)

Los camarones, al igual que otras especies en el sector acuícola, son susceptibles a contraer enfermedades ya sea en la producción natural como también en la producción en camaroneras o en laboratorios. Muchas de estas enfermedades se desarrollan durante el proceso del cultivo de la especie, aunque en ciertos casos se puede contraer la enfermedad por agentes externos. En muchas ocasiones al no tener un protocolo de acción que elimine estos patógenos dentro de los medios de cultivo esto generará pérdidas económicas al sector. Es por ello que la implementación de nuevas

herramientas o vías para combatir patógenos o bacterias ayudarán a bajar la tasa de mortalidad en los cultivos ya sean en camaroneras o en laboratorios de larvas de camarón. (Marcillo, 2003)

El dióxido de cloro puede ser usado para la desinfección del agua en piscinas camaroneras como piscícolas (sin animales en el agua) con una concentración de 250 mg/l de ClO₂ en el agua. Incluso materiales para los procesos de laboratorios de larvas, que necesitan una mejor limpieza y desinfección, pueden ser inmersos por al menos 1 hora en el agua con el producto agitando frecuentemente. Una dosificación continua de tan solo 3 mg/l no tiene ningún efecto adverso en la alcalinidad, salinidad, pH, OD del agua o en el fitoplancton, además de demostrar que una dosificación de 0.5 mg/l o menor es capaz de eliminar vibrios. (Flick, 2015)

En un estudio realizado por el Instituto de Ecología de la Universidad de Vilnius, Lituania en el año 2005, se analizaron los efectos de toxicidad del dióxido de cloro en la trucha arcoíris (*Oncorhynchus mykiss*) para determinar la sensibilidad de este organismo ante este compuesto y conocer las concentraciones máximas aceptables en los medios de cultivos (LC₅₀) a exposiciones de 96 horas durante un periodo de 20 días. Los resultados obtenidos indicaron que para luego de 96 horas la dosis aceptada para larvas fue de 2.2mg/l, mientras que para etapas juveniles/adultos fue de 1.6 mg/l. (Gintaras Svecevičius, 2005)

Songsrichun et al. 2020, indico que en el camarón tigre (*Penaeus monodon*) se usó una concentración de 0.25 ppm de dióxido de cloro para la eliminación de algunas especies de Vibrios; así mismo, con una concentración de 0.75 ppm de dióxido de cloro pudo eliminar el virus de la mancha blanca (WSSV) y el virus de la cabeza amarilla (YHS) en un intervalo de dos horas. (Songsrichun, Songpradit, Thapuksorn, & Supamattaya, 2000) El dióxido de cloro se emplea en una gran variedad de industrias, como la del gas, petróleo y alimentos. Por ejemplo, en la producción de alimentos y bebidas el dióxido de cloro se lo emplea en el agua actuando como un agente antimicrobiano para el procesamiento de aves de corral y para el lavado de todo tipo de alimentos que son para el consumo humano provenientes del sector agrícola. (Medina Guerra, 2020)

El dióxido de cloro también es empleado en hospitales y entornos sanitarios para esterilizar los equipos médicos y en laboratorios todo tipo de superficies, salas, habitaciones y herramientas. Estudios demuestran que usando las dosificaciones adecuadas el dióxido de cloro es seguro y eficaz para la eliminación de bacterias en áreas dentro de los hospitales (FDA, 2010). El dióxido de cloro es reconocido por la FDA

como un agente oxidante antimicrobiano. Este químico por ser un rápido degradante durante su uso, no es considerado como una preocupación tóxica de acuerdo con la determinación del GRAS (Generally Recognized as Safe). Además de ser aceptado, es usado directamente para el tratamiento de desinfección de frutas y vegetales con una solución de 3 ppm o menor, y también para la desinfección de las superficies de las industrias elaboradoras de alimentos. (Selective Micro Technologies, 2017)

1.2 Justificación del problema

El dióxido de cloro posee la capacidad de eliminar microorganismos en medios acuáticos incluyendo propagaciones bacterianas, fúngicas, esporas y virus. Posee alta capacidad de absorber y penetrar las paredes celulares y puede inhibir rápidamente la síntesis de proteínas para la destrucción de microorganismos. Estudios científicos han demostrado que no es dañino para las especies acuáticas cuando es utilizado en dosis adecuadas. Debido a la presencia constante de Vibriosis y otros agentes patógenos en el sector acuícola, el emplear dióxido de cloro bajo ciertos criterios y correctas dosificaciones podría ser una alternativa para contrarrestar la vibriosis en el cultivo de camarón a partir de postlarvas. Además, se eliminaría el uso de antibióticos y otros químicos que pueden no ser amigables con el ambiente.

1.3 Objetivos

1.3.1 Objetivo General

Determinar la toxicidad del dióxido de cloro en postlarvas de camarón *P. vannamei* y analizar la factibilidad de utilizar el compuesto para controlar *vibrios sp.* en los cultivos de camarón.

1.3.2 Objetivos Específicos

- Determinar la toxicidad del dióxido de cloro (ClO₂) en concentraciones de hasta 2
 ppm durante 24 horas en postlarvas de camarón P. vannamei.
- Determinar la concentración mínima inhibitoria de dióxido de cloro para el Vibrio parahaemolyticus.
- Determinar la pertinencia o no del uso de dióxido de cloro para controlar vibriosis en cultivos postlarvas de camarón.

1.4 Marco teórico

1.4.1 Especie Penaeus vannamei

El camarón blanco del pacifico de la familia *Penaeus*, es la principal especie de cultivo en las costas del Ecuador, en donde casi el 100% de la producción le corresponde a la especie Penaeus Vannamei, debido a que es una de las especies más resistentes a cambios ambientales durante su proceso de desarrollo en cautiverio. (Gonzabay-

Crespin, Vite-Cevallos, Garzón-Montealegre, & Quizhpe-Cordero, 2021)

El camarón blanco es originario de la costa del océano Pacifico, que recorre desde Sonora, México en el norte, hacia centro y Sudamérica hasta el Perú, en agua donde la temperatura normalmente oscila entre los 24 a 27 a grados centígrados durante la mayor parte del año. La especie Penaeus Vannamei se la localiza en ambientes marinos tropicales. Esta especie en etapas adultas vive y se reproduce en mar abierto, mientras que en etapas larvarias migra normalmente a las costas para pasar su desarrollo juvenil. Su etapa juvenil y pre adulta se puede encontrar en estuarios, manglares o en lagunas costeras. (Anaya Rosas, 2005)

1.4.1.1 Clasificación Taxonómica

El camarón blanco taxonómicamente se encuentra en el *phylum* artrópoda ya que posee patas articuladas y dentro de la clase crustácea por que posee un caparazón externo o exoesqueleto. Perteneciente al orden Decápoda por poseer 5 pares de patas caminadoras. (FAO, 2009)

Reino: Animalia

Filo: arthropoda

Subfilo: Crustacea

Clase: Malascostraca

Orden: Decapoda

Suborden: Dendrobranchiata

Infraorden: Caridea

Familia: Penaeidae

Género: Litopenaeus

Especie: P. vannamei

1.4.2 Bacterias patógenas en la Acuicultura

En sistemas acuáticos, la población bacteriana posee un papel importante en la descomposición de materia orgánica y en el reciclaje de nutrientes; sin embargo, el sector acuícola cada vez se desarrolla más, intensificando su producción usando en mayores proporciones aditivos, compuestos orgánicos, disminución en las tasas de recambio de agua, incremento en la densidad de siembra y un mayor uso de alimento. Cada uno de estos aspectos son factores que crean un ambiente propicio para el crecimiento de variedad microbiana tanto patógena como oportunista. (Varela & Choc-Martínez, 2020)

El crecimiento de la población microbiana patógena actualmente es la mayor causante del incremento de mortalidad en los medios de cultivos y por ende de pérdidas económicas por problemas de malos protocolos que contrarresten estas enfermedades. De estas bacterias las del género *Vibrio* son las principales causantes de altas perdidas en la producción del camarón. Estudios realizados en el 2020 afirman que tanto EE. UU. y Asia perdieron cerca de 6 a 8 mil millones de dólares por infecciones de camarón con AHPND, enfermedad que es producida por una toxina que genera ciertas cepas de *Vibrio parahaemolyticus*. (Figueredo, y otros, 2020)

Tabla 1.1 Pérdidas económicas estimadas en camaronicultura causadas por algunas de las enfermedades más importantes. (Figueredo, y otros, 2020)

Enfermedad	Región		Totales (millones)
Lincinicada	América	Asia	
IHHNV	500 – 1.000		500 – 1.000
TSV	2.000	1.2000	3.200
WSSV	Mas de 2.000	Mas de 6.000	Mas de 8.000
YHV	ND	500	500
IMNV	ND	ND	1.200
AHPND	ND	ND	Mas de 6.000
EHP	ND	ND	1.000

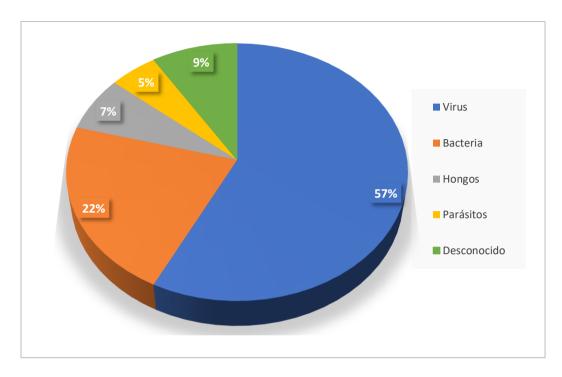


Ilustración 1.2 Participación de los principales grupos patógenos en pérdidas económicas de la industria camaronera. (Figueredo, y otros, 2020)

1.4.2 Género Vibrio

La familia *Vibrionaceae* está formada por bacilos gramnegativos que pueden tener o no motilidad, y entre ellas tenemos 3 géneros que son: *Vibrio, Aeromonas y Plesiomonas*. El género *Vibrio* está compuesto por microorganismos cuyo entorno natural son los ecosistemas marinos y fluviales. Son bacterias motiles, crecen en agar nutritivo incubadas a temperaturas de 35 grados centígrados en atmosfera aerobia y anaerobia. Este género posiblemente es el conjunto bacteriano más común presente en los medios acuícolas (cultivos de camarón). Consta de 130 especies confirmadas de las cuales 12 de ellas tiene la capacidad de infectar a humanos y 7 de ellas son vibrios patógenos de los más comunes que infectan a los sistemas de cultivos. (Figueredo, y otros, 2020) En la tabla 1.2 se aprecia las principales enfermedades que los camarones de la familia *Penaeidos* ha sufrido a través de los años, donde podemos observar las causadas por vibrios.

Tabla 1.2 Cronología global de las principales enfermedades infecciosas en camarones *Penaeidos.* (Figueredo, y otros, 2020)

Año Lugar Enfermedad Agente etiológico Tipo de patógeno

1971	Texas, EEUU	Micosis larval	Lagenidium sp.	Fúngico
1974	Florida, EEUU	Baculovirosis tetraédrica	Baculovirus penaei (BP)	Viral
1975	Georgia, EEUU	Enfermedad del camarón Algodonoso	Microsporidios	Fúngico
1978	Florida, EEUU	Infección por bacterias filamentosas	Leucothrix mucor	Bacteriand
1980	México	Baculovirosis esférica	MBV	Viral
1981	Hawái, EEUU	Necrosis hipodérmica y	IHHNV	Viral
		Hematopoyectica infecciosa		
1981	Japón	Necrosis Baculoviral de la	BMN	Viral
		glándula digestiva		
1982	Tailandia	Gregarinosis	Nematopsis spp.	Protista
1982	Tailandia	Fusariosis	Fusarium solani	Fúngica
1985	Malasia	Parvovirosis hepatopancreática	HPV	Viral
1988	Cuba	Haplosporidiosis	HPH	Protista
		hepatopancreática		
1989	Ecuador	Necrosis séptima de la	SHPN	Bacterian
		hepatopáncreas		
1990	Texas, EEUU	Hepatopancreatitis necrotizante	Hepatobacter penaei (NHP)	Bacterian
1991	Tailandia	Virosis de la cabeza amarilla	YHV	Viral
1992	Australia	Virosis vacuolizante del órgano	LOVV	Viral
		linfoide		
1992	Ecuador	Virosis del síndrome de Taura	TSV	Viral
1993	Japón	Enfermedad de las manchas blancas	WSSV	Viral
1993	Texas, EEUU	Gregarinosis larval	Paraophioidina	Protista
			scolecoides	
1996	Australia	Virosis de Mourilyan	MoV	Viral
1996	Australia	Virosis de la mortalidad de los	SMV	Viral
		reproductores		
1996	Australia	Virosis asociada a las branquias	GAV	Viral
2002	Brasil	Mionecrosis infecciosa	IMNV	Viral
2002	China	Nodavirosis de la mortalidad	CMNV	Viral
		encubierta		
2003	Tailandia	Microsporidiosis	Enterocytozoom	Fúngico
		hepatopancreática	hepatopenaei (EHP)	
2004	Belice	Nodavirus de Penaeus vannamei	PvNV	Viral
2004	Colombia	Espiroplasmosis	Spiroplasma penaei	Bacteriand

2008	Tailandia	Enfermedad de la deformidad del segmento abdominal	Desconocido (ASDD)	Idiopático
2008	Guatemala	Estreptococosis	Streptococcus sp.	Bacteriano
2009	China	Enfermedad de la necrosis agua de la hepatopáncreas	AHPND	Bacteriano
2014	China	Iridovirosis de hemocitos del camarón	SHIV	Viral
2016	Norteamérica	Infección amebiana	Paramoeba sp.	Protista

1.4.2.1 Vibrio parahaemolyticus

Los miembros del género Vibrio se han convertido en una de las limitaciones más importantes en la producción y comercio de la industria del camarón. Son las responsables de varias enfermedades y mortalidades de hasta el 100% en la producción. Estas infecciones se generan frecuentemente en criaderos, aunque también existen casos en piscinas de engorde. (Brock, 2009)

Las infecciones por vibriosis se las conocen como enfermedad del caparazón negro, necrosis hepatopancreática, putrefacción de la cola, branquias marrones, síndrome del intestino posterior y enfermedad bacteriana luminiscente. (Brock, 2009)

Algunos de los signos clínicos de una infección por vibrios en camarón son:

Pérdida del apetito, necrosis en los túbulos del hepatopáncreas, branquias amarillas y en algunos casos luminiscencia (Brock, 2009).

El *vibrio parahaemolyticus* es un bacilo gram negativo, aerobio, fermentador de glucosa, no de sacarosa, oxidasa positiva y ureasa variable, por lo que se requiere de medios selectivos salinos para su desarrollo. (ACHIPIA, 2017)

Tabla 1.3 Límites para el crecimiento del Vibrio parahaemolyticus y su condición óptima. (ACHIPIA, 2017)

Variables	Min-Max	Óptimo
Temperatura °C	5-43	37
pH	4.8-11	7.8-8.6
Actividad de agua	0.94-0.996	0.98

1.4.3 Concentración mínima inhibidora (MIC)

Según los laboratorios IDEXX, el MIC es la concentración más baja en la que una sustancia inhibe el desarrollo y crecimiento de una cepa bacteriana determinada. Esta prueba cuantitativa es usada mayormente en la determinación de antibióticos más efectivos, dando una decisión adecuada en cuanto al tratamiento de infecciones, así obtener una mayor probabilidad de éxito, además de ayudar contra la resistencia a los antibióticos. (IDEXX, 2022)

El valor crítico de una sustancia se define como la dilución más baja donde la bacteria muestra resistencia. No se puede comparar diferentes valores de MIC, sino en la diferencia que hay entre MIC y el valor crítico. (IDEXX, 2022)

CAPÍTULO 2

2. METODOLOGÍA

Para la fase experimental del presente proyecto ya sea en la fase de desinfección, construcción o armado del sistema se emplearon los siguientes materiales los cuales están desglosados por: número de unidades, material y características del material en la siguiente tabla.

Materiales

Tabla 2.1. Cantidad y descripción de los materiales usados en el proyecto.

CANTIDAD	MATERIALES Y EQUIPOS	CARACTERÍSTICA
16	Acuarios de policarbonato (especiales	Capacidad de 9 litros
	para realizar bioensayos)	
2	Aireadores JAD S-4000B	Con 4 salidas de aire c/u
10 m	Manguera de plástico para acuario	Diámetro interno de 4 mm y externo de 6 mm
	JAD	
8	Acoples en forma de T plásticas	Se usan para la subdivisión de las líneas de aire
		para cada bandeja
20	Piedras difusoras	Esférica de 5 cm
2	Tanques ovalados	Capacidad de 750 litros. Usados como
		reservorio de agua. Rotulados tanques 1 y 2
1	Rollo plástico	Envolver las tapas de las bandejas
1	Regleta	Con 6 enchufes
2	Cobertores de tela	Largo: 2.00 m, Ancho: 1.50 m
1	Frasco de catalizador	El catalizador hace que el dióxido de cloro
		reaccione más rápido
1	Dióxido de cloro	CIO ₂
500 g	Funda de detergente Deja	Limpia el material sin afectar el material
		sometido
1	Cepa de Vibrio parahaemolyticus	Aislada e identificada mediante PCR
1	Rollo de cinta	De papel
2	Plumas	Color negro
1000	Post larvas de camarón	Penaeus vannamei pl14
100 g	Alimento balanceado	300-500 micras (dieta comercial)
1000 I	Agua marina tratada	Proporcionada por el laboratorio
1	Fotómetro HI97738	Medidor de CIO ₂ HANNA Instruments
2	Lavacaras	Plásticas de color naranja
2	Tachos	Plásticos

1	Solución APA	Medio de cultivo líquido
4	Calentadores de acuario RS200-W	Calefactor para acuarios tropicales
1	Balanza analítica	Para medir el balanceado a proporcionar
4	Focos incandescentes	Irradia calor a partir de la corriente eléctrica
40 g	Vitamina C	Eliminación de cloro en el agua
1	Placa de cultivo para bioensayo	De 92 pocillos
1	Funda de cucharas plásticas	
2	Tamiz de ojo pequeño	
1	Termómetro	
2	Lámparas HOMELIGHT	
4	Franelas	
1	Extensión eléctrica	
1	Manguera de jardín	
1	Mechero bunsen	
1	Autoclave	
	I	

2.1 Desinfección general de materiales y equipos

Se llenaron los tanques reservorios 1 y 2 con agua potable y se desinfectaron usando solución de cloro al 5%. Las bandejas se limpiaron con detergente y franelas de cocina, una vez enjugadas se sumergieron en los tanques con solución de cloro al 5%. Todos los materiales usados se enjuagaron con la mezcla de cloro de los tanques y se los dejó secar a la intemperie para eliminar la presencia del cloro y realizar el diseño experimental del sistema. Luego de la desinfección, se retiró el agua de los tanques y se los enjuagó con agua tratada con vitamina C para eliminar el cloro residual. Un gramo de vitamina C neutraliza 1 ppm de cloro en 455 litros de agua. (Organización Mundial de Sanidad Animal, 2006)

2.2 Diseño experimental del bioensayo

Para el diseño experimental del proyecto se usaron 16 acuarios (9 litros de capacidad c/u) sin aireación, que se colocaron en el mesón del Laboratorio de Piscicultura con una disposición de ocho por lado. Para incrementar la temperatura del laboratorio se usaron dos mecanismos: a) dos lámparas de luz incandescente y b) agua caliente obtenida mediante la introducción de dos calentadores de acuario en la misma cantidad de baldes plásticos de 20 litros cada uno.

Se muestra el diseño experimental en la ilustración 0.1. Cabe destacar que cada una de las bandejas experimentales se hallaban con sus respectivas tapas evitando así el ingreso de polvo o de algún cuerpo extraño al sistema como también el reservorio se encontraba cubierto con los cobertores de tela evitando así mismo cualquier contaminación externa, como se observa en la ilustración 0.2.

2.3 Obtención de los animales, agua y balanceado

En el ensayo se usaron postlarvas de camarón *P. vannamei*, en estadio Pl14 donadas por un laboratorio de larvas ubicada en el sector la Diablica, en la Provincia de Santa Elena. Este laboratorio acuícola se dedica a la producción y venta de postlarvas de camarón blanco.

La empresa nos proporcionó además el agua para los reservorios, las postlarvas (PI14) de camarón y el balanceado con las siguientes especificaciones:

2.3.1 Agua

El agua tratada de la siguiente manera:

- Para la desinfección del agua se suministraron 60 ml de cloro por tonelada de agua y se la dejó recirculando por aproximadamente 3 horas.
- 2. Pasado las 3 horas se procedió a agregar 10 g de vitamina c y 2 g de Tiosulfato sódico pentahidratado por tonelada de agua para eliminar la presencia de cloro en el medio. Luego de este proceso se dejó recirculando el agua durante 3 horas más para así tener ya el agua lista para los tanques de cultivos para los futuros recambios. (información suministrada por el Gerente Técnico del laboratorio de postlarvas).

2.3.2 Postlarvas de camarón (Penaeus vannamei)

Para la obtención de las postlarvas se coordinó con el laboratorio de larvas, en base a su cronograma de cultivo y de desarrollo larvario un día en específico en que nos pudieran proporcionar postlarvas de camarón de la especie (*Litopenaeus vannamei*) de PI14. Sabemos que estos organismos se estresan fácilmente, ya sea por el

transporte, falta de oxígeno, temperatura y otros parámetros los cuales podrían causar mortalidad.

2.3.3 Balanceado

El balaceado constó de la composición de la combinación del 33% de tres dietas diferentes, las cuales fueron las siguientes:

1.- LARVAMAX (6.6 kg)

Tabla 2.2 Composición del balanceado LARVAMAX.

Criterio	Porcentaje
Humedad	11%
Proteína	42%
Grasa	5%
Ceniza	12%
Fibra	5%
Tamaño	300-500 micras

2.- LARFEED (6.6 kg)

Tabla 2.3 Composición del balanceado LARFEED.

Criterio	Porcentaje	
Humedad	8%	
Proteína	50%	
Grasa	12%	
Ceniza	17%	
Fibra	2%	
Tamaño	300-500 micras	

3.-ZEIGLER (6.6 kg)

Tabla 2.4 Composición del balanceado ZEIGLER.

Criterio	Porcentaje	
Humedad	6%	
Proteína	55%	
Grasa	15%	
Ceniza	15%	
Fibra	1.5%	
Tamaño	300-500 micras	

La dieta usada para las postlarvas de camarón PI 14 en todo su proceso fue la mezcla de las tres dietas comerciales de alta concentración proteica.

2.4 Determinación del dióxido de cloro en el agua

Se realizaron diferentes pruebas para medir la concentración de este químico mediante el kit del fotómetro del dióxido de cloro modelo HI97738 de la marca Hanna instruments.

Se usaron dos tubos cilíndricos graduados (#1 y #2) con 25 ml de muestra en cada uno, de ahí se agregó 0.5 ml del reactivo A, se los tapó y agitó 5 veces. Luego, se agregó el paquete de reactivo B en el tubo #1, se lo tapó y agitó 5 veces. Después, a los dos tubos se le agrega 5 ml del reactivo C, se los tapó y agitó 5 veces. Posteriormente, se les agregó 5 ml del reactivo D a ambos tubos, se los tapó y agitó 5 veces. A continuación, Se colocó 10 ml del tubo #1 en la cubeta A, la que se tapó y se introdujo en el fotómetro. En el fotómetro se presionó "zero" para calibrar en cero. Finalmente, se colocó 10 ml del tubo #2 en la cubeta B, la que se tapó y se introdujo en el fotómetro, se presiona "read" y el fotómetro nos proporciona la medición del dióxido de cloro de la muestra en la unidad de concentración de mg/l. (HANNA Instruments, s.f.)

2.5 Aclimatación de las postlarvas

La funda en la que fueron transportadas las larvas se la abrió y se colocó el contenido en un acuario, se midió la temperatura y el oxígeno disuelto del agua de las postlarvas como también la del agua que se usó para la aclimatación. Se le introdujo una manguera con piedra difusora para airear la bolsa y se comenzó la aclimatación retirando 1 litro del agua de la pecera y añadiendo 1 litro del agua marina tratada, se esperó 30 minutos y se volvió a retirar y añadir otro litro de agua, así consecutivamente hasta realizar un recambio de agua del cien por ciento y el agua de la pecera sea la misma que la de las bandejas. Se alimentó y espero 30 minutos para visualizar la actividad de las larvas. Luego, se introdujo el tamiz, se pescaron las larvas y se las colocaron en las lavacaras para contabilizarlas con la ayuda de dos inyecciones con la punta doblada. Una vez que se contaron 30 larvas, se las

introdujo en una bandeja y se sigue contando hasta que se situaron 30 larvas en cada bandeja.

El agua marina tratada y la funda con las larvas provienen del mismo laboratorio, por lo que no se tomó en cuenta la salinidad de estas.

2.6 Determinación de la toxicidad del CIO₂

En los acuarios ya rotuladas se les agregó 4 litros del agua marina tratada, se colocó aireación y se dejó funcionando el sistema por tres días. Se realizaron 4 tratamientos de concentraciones diferentes, el primer tratamiento fue el control, con 0 mg/l de dióxido de cloro; y los otros tratamientos fueron de 1, 1.5 y 2 mg/l o ppm de dióxido de cloro (ClO₂). Se realizaron 4 réplicas de cada prueba y se las colocó en diferentes ubicaciones del mesón para garantizar la aleatoriedad de la prueba. Se introdujo 30 postlarvas en cada acuario, dando un tiempo de adaptación de dos horas antes de realizar la experimentación. Los ensayos de toxicidad tuvieron una duración de 24 horas, con alimentación cada 3 horas de 30 mg, sin aireación y sin recambio de agua. Se determinó la concentración de dióxido de cloro mediante el fotómetro HI97738 y se contabilizó las larvas muertas mediante la observación. Se realizaron las mediciones con el fotómetro cada 10, 30, 60, 120, 180, 240 y 300 minutos. Con las postlarvas en los acuarios, se le introdujo la concentración de dióxido de cloro estipulado para cada acuario y se observó la concentración del químico en el agua y la mortalidad en los tiempos que se realizaron las mediciones.

2.7 Concentración mínima inhibidora (MIC)

Para el desarrollo de este procedimiento necesitaremos los siguientes materiales:

- 50 ml de agua peptona
- 50 ml de solución salina de NaCl al 5% de NaCl
- Dióxido de cloro
- Microplacas de cultivo celular
- Pipetas de 20-200 μl, 100-1000 μl, 0.5-20 μl
- Placas de agar TSA al 2% de NaCl
- Tubos de 1.5 ml
- Tubos de ensayo

Medio de cultivo

Para las soluciones que se colocarán en cada tubo de 1,5 ml en base a las concentraciones, seguiremos la siguiente tabla: (Irith Wiegand, 2008)

Tabla 2.5 Concentraciones del dióxido de cloro y cantidades de cada compuesto. (Martínez y Segura, 2022)

Concentración ppm	Agua peptona ul	Solución salina 0.5% NaCl ul	Ácido orgánico ul	Volumen final ul
2	900	220	80	1200
1.75	900	230	70	1200
1.50	900	240	60	1200
1.25	900	250	50	1200
1.00	900	260	40	1200
0.75	900	270	30	1200
0.50	900	280	20	1200
0.25	900	290	10	1200
0.20	900	292	8	1200
0.15	900	294	6	1200

La mezcla de los componentes mencionados se realizó en un tubo de 1,5ml, donde se colocó un volumen fijo de 900ul de agua de peptona al 2% de NaCl, dejando como volumen variable 300ul comprendido entre solución salina al 2% de NaCl y una solución de dióxido de cloro a 30 ppm. Los cálculos de los volúmenes variables de dióxido de cloro se realizaron utilizado la ecuación EQ 2.1.

(2.1)
$$C_1 * V_1 = C_2 * V_2$$

$$C_1 * 300 ul = 2 ppm * 1200 ul$$

$$C_1 = 8ppm$$

Transcurridas las 24 horas de incubación, se observó la turbidez de cada uno de los pocillos inoculados, indicativo de crecimiento bacteriano. La concentración mínima inhibitoria (MIC) es la menor concentración en la cual no se obtuvo crecimiento bacteriano (no se observó turbidez). (Becton, Dickinson and Company, 2010)

- Si se observa turbidez es un indicativo de que la concentración del dióxido de cloro no fue suficiente para detener el crecimiento bacteriano, por ende, a esta concentración se la denominará R de resistente.
- Si no se observa turbidez puede indicar que la concentración del dióxido de cloro ha detenido el crecimiento de forma total o parcial de las cepas bacterianas.

Después se analiza si la concentración en la que no hubo crecimiento actúa como bactericida do bacteriostático.

- Bactericida: Si el dióxido de cloro ha provocado la muerte de la bacteria.
- Bacteriostático: Si la bacteria en presencia del dióxido de cloro solo ha detenido su crecimiento celular, sin embargo, si ya no se encuentra en contacto esta puede retomar su crecimiento normal.

Se procedió a rotular la tercera y cuarta fila, cada fila de la placa de cultivo celular de 96 pocillos, cada fila con 12 pocillos, las secciones de las concentraciones que íbamos analizar para así tener una mejor interpretación de los datos y observar si había o no crecimiento bacteriano, La confirmación del efecto bacteriostático o bactericida se realizó pasando una muestra con un asa de horquilla desde los pocillos en donde no se observó turbidez a una placa de TSA al 2% de NaCl; y se dejó incubando durante 24 horas a 35°C (ver ilustraciones 0.9, 0.10 y 0.11).

Luego del tiempo de incubación, se observó el crecimiento bacteriano en las placas de TSA al 2% de NaCl. Los resultados obtenidos en base al crecimiento se analizaron junto con lo obtenido en la placa de siembra líquida de la primera parte del MIC.

CAPÍTULO 3

3. RESULTADOS Y ANÁLISIS

3.1 Resultados de la toxicidad del CIO₂

Tabla 3.1 Acuarios de control de tiempo en minutos versus mortalidad. (Martínez & Segura, 2022)

	CONTROL	
	TIEMPO (min)	MORTALIDAD
ACUARIO 1	10	0
	30	0
	60	0
	120	1
	180	2
	240	7
	300	3
	TIEMPO (min)	MORTALIDAD
	10	1
	30	0
ACUARIO 2	60	0
ACUARIO 2	120	0
	180	0
	240	5
	300	8
	TIEMPO (min)	MORTALIDAD
	10	0
	30	0
ACUARIO 3	60	0
ACUARIO 3	120	0
	180	1
	180 240	1 4
	180 240 300	1 4 7
	180 240 300 TIEMPO (min)	1 4 7 MORTALIDAD
	180 240 300 TIEMPO (min) 10	1 4 7 MORTALIDAD 0
	180 240 300 TIEMPO (min) 10 30	1 4 7 MORTALIDAD 0 0
ACUARIO 4	180 240 300 TIEMPO (min) 10 30 60	1 4 7 MORTALIDAD 0 0
ACUARIO 4	180 240 300 TIEMPO (min) 10 30 60 120	1 4 7 MORTALIDAD 0 0 0
ACUARIO 4	180 240 300 TIEMPO (min) 10 30 60 120 180	1 4 7 MORTALIDAD 0 0 0
ACUARIO 4	180 240 300 TIEMPO (min) 10 30 60 120	1 4 7 MORTALIDAD 0 0 0

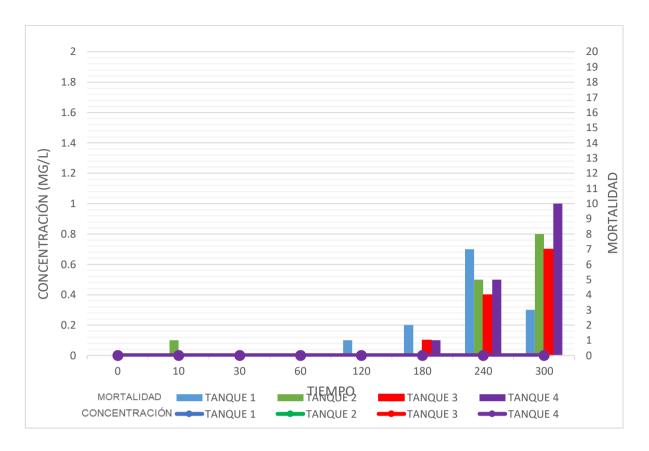


Ilustración 3.1 Gráfica de la mortalidad versus tiempo del grupo control (no expuesto al CIO₂) en la columna de agua. (Martínez & Segura, 2022)

Se observó mortalidad en todos los tratamientos, incluido el control, a partir de los 120 minutos de experimentación, que podrían estar relacionados a factores externos como la presencia de residuos de alimento, falta de oxígeno y recambio de agua.

Tabla 3.2 Concentración de 1 mg/l de CIO2 versus el tiempo en minutos y la mortalidad obtenida.

* animales muertos debido a otros parámetros y no por la presencia de dióxido de cloro (CIO₂). (Martínez & Segura, 2022)

Concentración 1 mg/l (l₀= 0.84 mg/l)						
	TIEMPO (min)	CONCENTRACIÓN (mg/l)	MORTALIDAD			
ACUARIO 1	10	0.77	1			
	30	0.71	0			
	60	0.54	0			
	120	0.31	0			
	180	0.09	3*			
	240	0.00	5*			
	300	0.00	7*			
ACUARIO 2	TIEMPO (min)	CONCENTRACIÓN (mg/l)	MORTALIDAD			
	10	0.74	1			

	30	0.68	1
	60	0.53	0
	120	0.29	0
	180	0.10	0
	240	0.00	2*
	300	0.00	7*
	TIEMPO (min)	CONCENTRACIÓN (mg/l)	MORTALIDAD
	10	0.76	1
	30	0.67	0
ACUARIO 3	60	0.51	0
ACUARIO 3	120	0.37	0
	180	0.12	1*
	240	0.01	3*
	300	0.00	6*
	TIEMPO (min)	CONCENTRACIÓN (mg/l)	MORTALIDAD
	10	0.72	0
	30	0.66	0
ACUARIO 4	60	0.49	0
ACUARIO 4	120	0.26	0
	180	0.07	1*
	240	0.00	2*
	300	0.00	8*

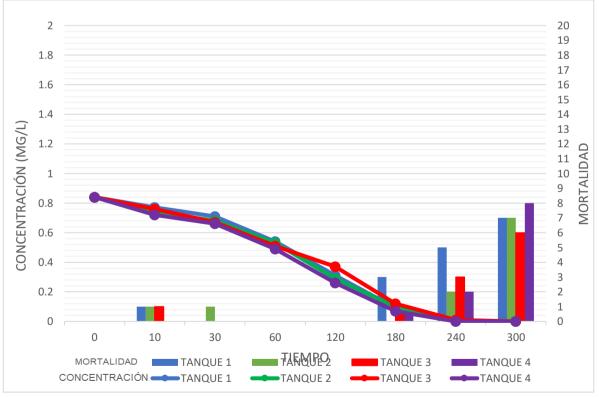


Ilustración 3.2 Gráfica de la concentración 1 mg/l de CIO₂ y mortalidad versus el tiempo de exposición. (Martínez & Segura, 2022)

Observando los resultados de la tabla e ilustración 3.2, la concentración de CIO₂ no produjo mortalidades significativas (nivel de confianza del 95%) en la población de postlarvas, la mayor mortalidad observada fue de 6.67% ocurriendo solo en el acuario 2

hasta las dos horas de exposición al CIO₂. Mediante un análisis estadístico se comprobó que los animales muertos después de los 120 minutos de estar en exposición del químico se deben a otro/s factor/es que no fuera el CIO₂, por lo que las muertes después de ese tiempo no se las contabilizaron para la mortalidad total por dióxido de cloro. El análisis estadístico se observa en el capítulo 3.3.

Tabla 3.3 Concentración de 1.5 mg/l de CIO2 versus el tiempo en minutos y la mortalidad obtenida.

^{*} animales muertos debido a otros parámetros y no por la presencia de dióxido de cloro (CIO₂). (Martínez & Segura, 2022)

	Concontraci	ión 1.5 mg/l (l0= 1.59 mg/l)	
	TIEMPO (min)		MORTALIDAD
	10	1.51	2
	30	1.43	1
	60	1.38	0
ACUARIO 1	120	1.25	0
	180	1.12	2*
	240	0.74	7*
	300	0.41	11*
	TIEMPO (min)	CONCENTRACIÓN (mg/l)	MORTALIDAD
	10	1.50	1
	30	1.47	1
	60	1.34	0
ACUARIO 2	120	1.27	0
	180	1.09	0
	240	0.66	5*
	300	0.35	7*
	TIEMPO (min)	CONCENTRACIÓN (mg/l)	MORTALIDAD
	10	1.50	0
	30	1.43	3
401145100	60	1.36	0
ACUARIO 3	120	1.21	0
	180	1.07	3*
	240	0.73	5*
	300	0.46	10*
	TIEMPO (min)	CONCENTRACIÓN (mg/l)	MORTALIDAD
	10	1.53	2
	30	1.46	1
ACUARIO 4	60	1.32	0
ACUARIO 4	120	1.21	0
	180	1.14	0
	240	0.87	4*
	300	0.31	9*

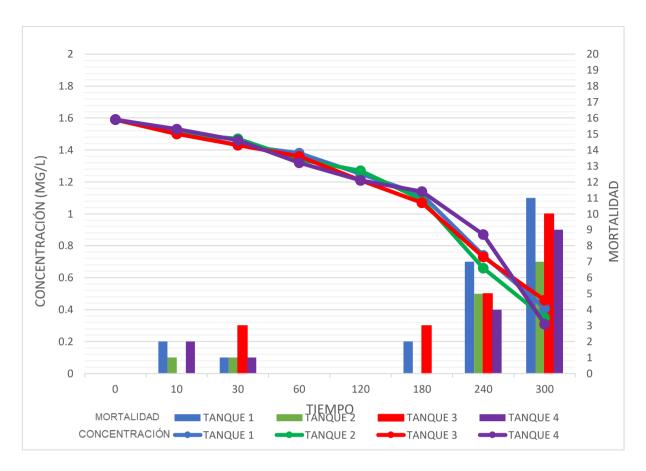


Ilustración 3.3 Gráfica de la concentración 1.5 mg/l de CIO2 y mortalidad versus el tiempo de exposición.

(Martínez & Segura, 2022)

Observando los resultados de la tabla 3.3, la concentración de ClO₂ no produce mortalidades mayores al 10% de la población durante la exposición a este química por una duración de 2 horas. Mediante un análisis estadístico se comprobó que los animales muertos después de los 120 minutos de estar en exposición del químico que se deben a otro/s factor/es que no fuera el ClO₂, por lo que las muertes después de ese tiempo no se las contabilizaron para la mortalidad total por dióxido de cloro. El análisis estadístico se observa en el capítulo 3.3.

Tabla 3.4 Concentración de 2 mg/l de CIO2 versus el tiempo en minutos y la mortalidad obtenida.

* animales muertos debido a otros parámetros y no por la presencia de dióxido de cloro (CIO₂). (Martínez & Segura, 2022)

Concentración 2 mg/l (l₀= 1.93 mg/l)						
	TIEMPO (min)	CONCENTRACIÓN (mg/l)	MORTALIDAD			
	10	1.81	2			
	30	1.82	2			
ACUARIO 1	60	1.69	3			
	120	1.50	0			
	180	1.34	0			
	240	0.72	5*			

	300	0.57	12*
	TIEMPO (min)	CONCENTRACIÓN (mg/l)	MORTALIDAD
	10	1.79	2
	30	1.74	3
ACUARIO 2	60	1.65	1
ACCARGO 2	120	1.53	1
	180	1.29	0
	240	0.62	8*
	300	0.46	13*
	TIEMPO (min)	CONCENTRACIÓN (mg/l)	MORTALIDAD
	10	1.83	3
	30	1.78	2
ACUARIO 3	60	1.64	2
ACUARIO 3	120	1.31	0
	180	1.19	2*
	240	0.76	8*
	300	0.52	8*
	TIEMPO (min)	CONCENTRACIÓN (mg/l)	MORTALIDAD
	10	1.81	4
	30	1.77	2
ACUARIO 4	60	1.61	3
ACUARIO 4	120	1.40	0
	180	1.27	1*
	240	0.73	6*
	300	0.58	11*

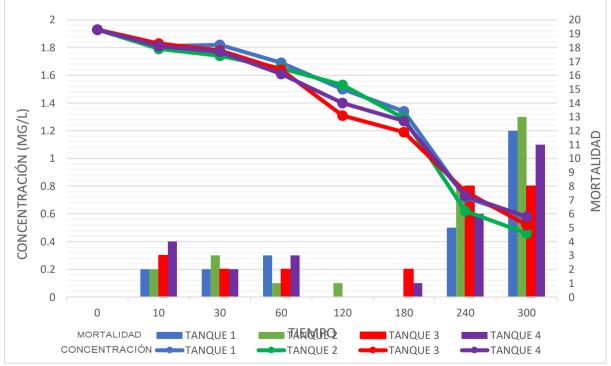


Ilustración 3.4 Gráfica de la concentración 2 mg/l de CIO2 y mortalidad versus el tiempo de exposición. (Martínez & Segura, 2022)

Observando los resultados de la tabla e ilustración 3.4, la concentración de ClO₂ no produce mortalidades mayores al 23% de la población. Mediante un análisis estadístico

se comprobó que los animales muertos después de los 120 minutos de estar en exposición del químico que se deben a otro/s factor/es que no fuera el ClO₂, por lo que las muertes después de ese tiempo no se las contabilizaron para la mortalidad total por dióxido de cloro. El análisis estadístico se observa en el capítulo 3.3.

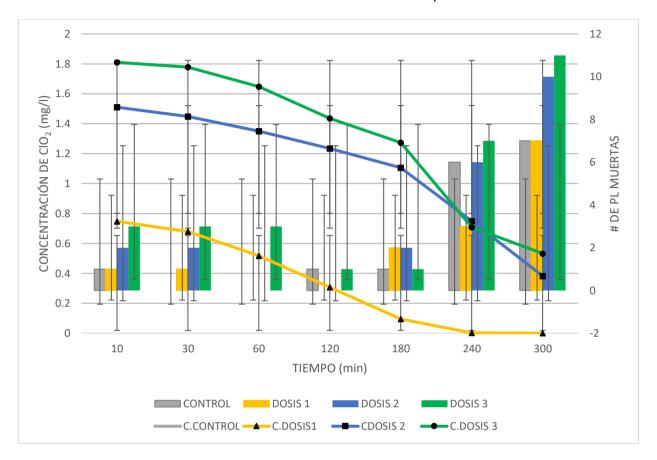


Ilustración 3.5 Gráfica de la concentración promedio de ClO₂ vs promedio de la mortalidad vs tiempo.

En la ilustración 3.5 se observa el promedio de la concentración de ClO₂ y la cantidad de muertos de las dosis y control con sus respectivas replicas. Se aprecia como la concentración de dióxido de cloro (líneas en la gráfica) decrece a medida que pasa el tiempo, las mortalidades (columnas en la gráfica) antes del minuto 120 son mínimas, ya que después del minuto 120 se comprobó mediante el análisis estadístico que las muertes son ocasionadas por otro/s factor/es ajenos al químico dióxido de cloro. También tenemos la desviación estándar de los parámetros, que demuestran que los datos son dispersos con respecto a la media de la población.

3.2 Resultados MIC

Resultados de crecimiento bacteriano en el medio de agua peptona se observan en la tabla 3.5 e ilustración 3.5

Tabla 3.5 Resultados del crecimiento bacteriano en las diferentes concentraciones del dióxido de cloro.

(Martínez & Segura, 2022)

# de pocillo (solución más bacteria)	Concentración dióxido de cloro en mg/l	Análisis
1	0.15	Crecimiento positivo
2	0.2	Crecimiento positivo
3	0.25	Crecimiento positivo
4	0.5	Crecimiento negativo
5	0.75	Crecimiento negativo
6	1	Crecimiento negativo
7	1.25	Crecimiento negativo
8	1.50	Crecimiento negativo
9	1.75	Crecimiento negativo
10	2	Crecimiento negativo

Ilustración 3.6 Resultado de turbidez luego de 24 horas.

Una vez revisados revisado el crecimiento bacteriano basados en la turbidez, se confirmó los pocillos en que no se observó turbidez tomando una muestra con el asa y sembrándola en una placa de TSA al 2% de NaCl sin dióxido de cloro; para saber si el producto funciona como bacteriostático o bactericida.

Luego de las 24 horas de inoculación se obtuvo el siguiente resultado:

Ilustración 3.7 Crecimiento bacteriano en placa de agar

Para el análisis en la placa de agar de la ilustración 3.6, se dividió la placa en 7 secciones las cuales son las 7 concentraciones que se analizaron, el cual se hizo un análisis en base a la observación se puede notar que hubo crecimiento en la sección 6 y 7. Los resultados son los siguientes:

Tabla 3.6 Concentraciones del dióxido de cloro que actúan como bactericida. (Martínez & Segura, 2022)

Sección	Concentración (mg/l)	Resultado
1	2	Actúa como bactericida
2	1.75	Actúa como bactericida
3	1.50	Actúa como bactericida
4	1.25	Actúa como bactericida
5	1.00	Actúa como bactericida
6	0.75	Actúa como bacteriostático
7	0.50	Actúa como bacteriostático

El valor obtenido de la concentración mínima inhibitoria (MIC, por sus siglas en inglés) fue de 1.00 mg/l de dióxido de cloro, donde se observó un efecto bactericida contra el vibrio parahaemolyticus.

3.3 Análisis estadístico

Modelo de análisis de varianza de dos factores:

$$Mortalidad_{ij} = Dosis_i + Tiempo_j + \varepsilon_{ij}$$

Para los niveles del factor 1:

$$i = \{n_1 = 28, n_2 = 28, n_3 = 28, n_4 = 28\}$$

Donde

Tabla 3.7 Dosis y numeración de estos para el respectivo análisis estadístico.

i	1	2	3	4	
Dosis	Control	Dosis 1	Dosis 2	Dosis 3	

Para los niveles del factor 2:

$$j = \{m_1 = 16, m_2 = 16, m_3 = 16, m_4 = 16, m_5 = 16, m_6 = 16, m_7 = 16\}$$

Donde

Tabla 3.8 Tiempo y numeración de estos para el respectivo análisis estadístico.

J	1	2	3	4	5	6	7
Tiempo (en min)	10	30	60	120	180	240	300

Contraste de hipótesis para el factor DOSIS:

$$H_0$$
: $Dosis_1 = Dosis_2 = \cdots = Dosis_4$

 H_a : No todas las Dosis_i son iguales

```
Analysis of Variance Table

Response: Mortalidad

Df Sum Sq Mean Sq F value Pr(>F)

Dosis 3 65.61 21.869 14.218 8.238e-08 ***

Tiempo 6 937.46 156.244 101.578 < 2.2e-16 ***

Residuals 102 156.89 1.538

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Ilustración 3.8 Análisis de varianza.

Ilustración 3.9 Resultados de la prueba de Turkey para las dosis.

- No existe diferencia entre la dosis 1 y la dosis de control
- No existe diferencia entre la dosis 2 y la dosis de control
- Existe diferencia entre la dosis 3 y la dosis de control
- Existe diferencia entre la dosis 2 y la dosis 1
- Existe diferencia entre la dosis 3 y la dosis 1
- Existe diferencia entre la dosis 3 y la dosis 2

Realizando la prueba de Turkey con un nivel de confianza del 95% se rechaza la hipótesis nula y se acepta la hipótesis alternativa. Se demostró que no existe diferencia significativa entre la dosis de control y la dosis 1 y 2, pero si hay diferencia significativa entre la dosis 3 (concentración mayor con 2 ppm) con todas las concentraciones, por lo que se puede concluir que la mortalidad obtenida no es la misma en las diferentes dosis.

Contraste de hipótesis para el factor Tiempo

 H_0 : $Tiempo_1 = Tiempo_2 = \cdots = Tiempo_7$ $H_a = No \ todos \ los \ Tiempos_i \ son \ iguales$

```
Analysis of Variance Table
Response: Mortalidad
           Df Sum Sq Mean Sq F value
                                          Pr(>F)
               65.61
                       21.869
                              14.218 8.238e-08 ***
Dosis
            6 937.46 156.244 101.578 < 2.2e-16 ***
Tiempo
Residuals 102 156.89
                        1.538
Signif. codes:
O '***'
               ( * * )
                   0.01 '*' 0.05 '.' 0.1 ' '1
        0.001
```

Ilustración 3.10 Análisis de varianza.

```
> TukeyHSD(aov, which = "Tiempo")
  Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = Mortalidad ~ Dosis + Tiempo, data = data)
$Tiempo
           diff
                     lwr
                             upr
                                      p adi
30-10
        -0.2500 -1.56897 1.06897 0.9975033
60-10
        -0.6875 -2.00647 0.63147 0.7028490
120-10
        -1.1250 -2.44397 0.19397 0.1477385
180-10
        -0.1875 -1.50647 1.13147 0.9995115
                 2.49353 5.13147 0.0000000
240-10
         3.8125
300-10
         7.3125
                5.99353 8.63147 0.0000000
60-30
        -0.4375 -1.75647 0.88147 0.9534158
       -0.8750 -2.19397 0.44397 0.4239104
120-30
180-30
         0.0625 -1.25647 1.38147 0.9999993
240-30
         4.0625 2.74353 5.38147 0.0000000
300-30
         7.5625
                6.24353 8.88147 0.0000000
120-60
       -0.4375 -1.75647 0.88147 0.9534158
180-60
         0.5000 -0.81897 1.81897 0.9139939
240-60
         4.5000
                3.18103 5.81897 0.0000000
         8.0000
                 6.68103 9.31897 0.0000000
300-60
        0.9375 -0.38147 2.25647 0.3387708
180-120
         4.9375
240-120
                 3.61853 6.25647 0.0000000
         8.4375
                 7.11853 9.75647 0.0000000
300-120
240-180
         4.0000
                 2.68103 5.31897 0.0000000
300-180
         7.5000
                 6.18103 8.81897 0.0000000
300-240
        3.5000
                 2.18103 4.81897 0.00000000
```

Ilustración 3.11 Resultados de prueba de Turkey para el tiempo.

- No existe diferencia entre el tiempo de 30 min y 10 min
- No existe diferencia entre el tiempo de 60 min y 10 min
- No existe diferencia entre el tiempo de 120 min y 10 min
- No existe diferencia entre el tiempo de 180 min y 10 min
- Existe diferencia entre el tiempo de 240 min y 10 min
- Existe diferencia entre el tiempo de 300 min y 10 min
- No existe diferencia entre el tiempo de 60 min y 30 min

- No existe diferencia entre el tiempo de 120 min y 30 min
- No existe diferencia entre el tiempo de 180 min y 30 min
- Existe diferencia entre el tiempo de 240 min y 30 min
- Existe diferencia entre el tiempo de 300 min y 30 min
- No existe diferencia entre el tiempo de 120 min y 60 min
- No existe diferencia entre el tiempo de 180 min y 60 min
- Existe diferencia entre el tiempo de 240 min y 60 min
- Existe diferencia entre el tiempo de 300 min y 60 min
- No existe diferencia entre el tiempo de 180 min y 120 min
- Existe diferencia entre el tiempo de 240 min y 120 min
- Existe diferencia entre el tiempo de 300 min y 120 min
- Existe diferencia entre el tiempo de 240 min y 180 min
- Existe diferencia entre el tiempo de 300 min y 180 min
- Existe diferencia entre el tiempo de 300 min y 240 min

Mediante la prueba de Turkey con un nivel de confianza del 95% se rechaza la hipótesis nula y se acepta la hipótesis alternativa. Se demostró que no existe diferencia significativa entre los tiempos de 10, 30, 60, 120 y 180 minutos, pero a mayores tiempos que el ultimo mencionado si hay diferencia significativa, concluyendo que las mortalidades obtenidas no son iguales en los tiempos observados.

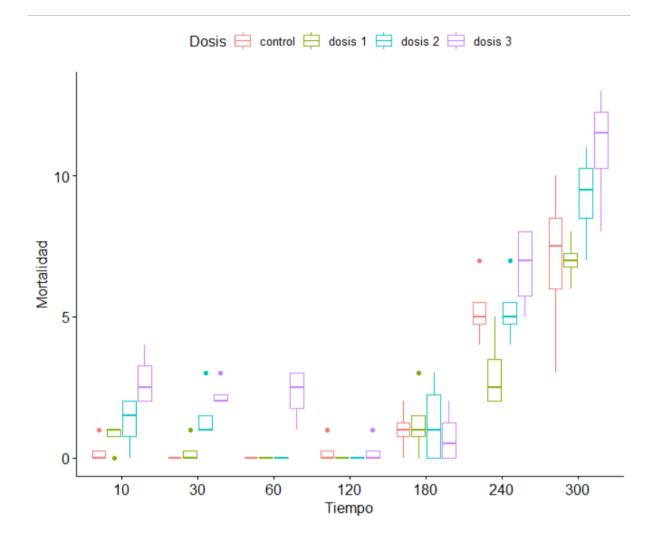


Ilustración 3.12 Diagrama de cajas de las dosis entre la mortalidad vs tiempo. Se observa la distribución de los datos en cada tiempo, obteniendo una similitud en las dosis de control (color naranja), dosis 1 (color verde) y dosis 2 (color celeste), siendo la más alejada de los demás datos la dosis 3 (color morado).

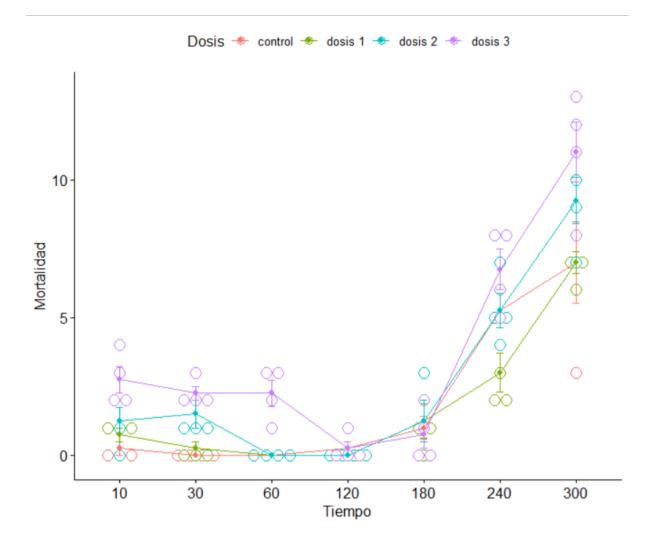


Ilustración 3.13 Distribución de tiempo y mortalidad en función de las dosis. La dosis de control (color naranja) es muy similar a la dosis 2 (color verde) y la dosis 3 (color celeste), siendo la dosis 3 (color morado) la que más se sobresalga en cuanto a la mortalidad.

Análisis de varianza de un factor.

$$Mortalidad_{ij} = Dosis_i + \varepsilon_{ij}$$

Para los niveles del factor 1:

$$i = \{n_1 = 16, n_2 = 16, n_3 = 16, n_4 = 16\}$$

Donde

Se usa la tabla 3.7

Analysis of Variance Table

Response: Mortalidad

Df Sum Sq Mean Sq F value Pr(>F)

Dosis 3 30.80 10.266 0.7174 0.5455

Residuals 60 858.56 14.309

Ilustración 3.14 Tabla del análisis de varianza.

Contraste de hipótesis para el factor DOSIS:

$$H_0$$
: $Dosis_1 = Dosi$

$$s_2 = \cdots = Dosis_4$$

 H_a : No todas las Dosis $_i$ son iguales

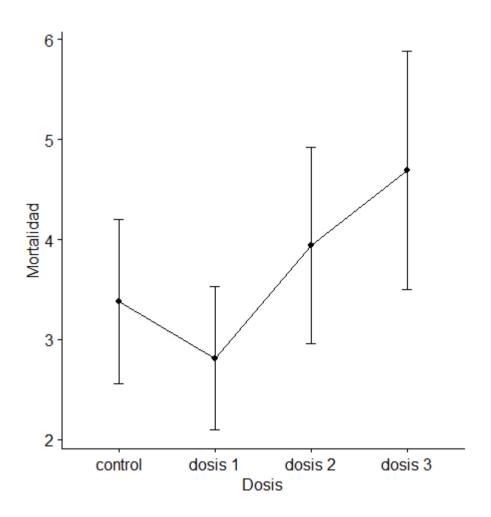


Ilustración 3.15 Media muestral de las mortalidades de cada dosis desde los 120 minutos. Parece que las mortalidades no son iguales en las diferentes dosis.

```
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = Mortalidad ~ Dosis, data = dmayor_120)

$Dosis

diff lwr upr p adj
dosis 1-control -0.5625 -4.09664 2.97164 0.9747500
dosis 2-control 0.5625 -2.97164 4.09664 0.9747500
dosis 3-control 1.3125 -2.22164 4.84664 0.7605433
dosis 2-dosis 1 1.1250 -2.40914 4.65914 0.8345977
dosis 3-dosis 1 1.8750 -1.65914 5.40914 0.5031090
dosis 3-dosis 2 0.7500 -2.78414 4.28414 0.9432295
```

Ilustración 3.16 Resultados de prueba de Turkey para la mortalidad y el tiempo mayor de 120 minutos.

- No existe diferencia entre la dosis 1 y la dosis de control
- No existe diferencia entre la dosis 2 y la dosis de control
- No existe diferencia entre la dosis 3 y la dosis de control
- No existe diferencia entre la dosis 2 y la dosis 1
- No existe diferencia entre la dosis 3 y la dosis 1
- No existe diferencia entre la dosis 3 y la dosis 2

Con el análisis estadístico mediante la prueba de Turkey, con un nivel de confianza del 95%, la hipótesis nula se acepta. Se comprobó que no existe diferencia significativa entre la mortalidad y las diferentes dosis, por lo que se puede aseverar que las mortalidades ocurridas luego de los 120 minutos son debido a factor/es externo/s y no por la exposición al químico ClO₂.

3.4 Análisis de costos

Para el análisis de costos se realizó una revisión en línea para conseguir valores referenciales, de los insumos, equipos, materiales y reactivos usados en el presente proyecto.

Ciertos reactivos y materiales como ácidos orgánicos, postlarvas y balanceado fueron donados por parte de un laboratorio de producción de larvas de camarón.

·			•			
Tabla de costos						
Materiales	Cantidad	Costo Unitario	Costo total			
Fiola/Matraz Erlenmeyer 500 ml	2	\$8.00	\$16			
Fiola/Matraz Erlenmeyer 250 ml	2	\$6.25	\$12.50			
Cajas Petri Mono plástica x20 unidades	1	\$6.25	\$6.25			
Tubos Falcon	30	\$0.20	\$6.00			

Tabla 3.9 Costos para la elaboración de la experimentación. (Martínez & Segura, 2022)

Funda Punta amarilla 200 μl	3	\$10	\$30
Funda punta azul 1000 μl	4	\$10	\$40
Pipeta Pasteur de plástico 3 ml x100 unidades	1	\$10	\$10
Medidor de dióxido de cloro HANNA h197738	1	\$400	\$400
Reactivos para el medidor (4 reactivos)	1	\$100	\$100
Agar TSA	1	\$100	\$100
Agua destilada	3	\$1.65	\$4.95
Calentadores	4	\$12	\$48
Lámparas	4	\$9	\$36
Focos incandescentes	10	\$1	\$10
Gavetas de 9 I	16	\$8	\$128
Aireadores de 4 salidas	2	\$20	\$40
Manguera para pecera (20m)	1	\$20	\$20
Piedras difusoras	25	\$0.19	\$4.75
Balanza digital	1	\$30	\$30
Termómetro digital	1	\$10	\$10
Pipeta automática graduable de 100-1000 μl	1	\$120	\$120
Pipeta automática graduable de 10-100 μl	1	\$100	\$100
TOTAL			\$1,272.45

Tabla 3.10 Costos de diferentes productos y su comparación de precio con el volumen total de desinfección.

Tabla de comparación						
PRODUCTO	Cantidad	Costo Unitario	Volumen total de desinfección	Costo para igualar el dióxido de cloro		
Dióxido de cloro	1 litro	\$50	100 000 litros	-		
Cloro concentrado al 10%	1 litros	\$1.65	10 000 litros	\$16.50		
Yodo liquido al 2.5%	1 litro	\$7.10	10 000 litros	\$71		
Ácidos orgánicos (ADISALM L)	1 litro	\$3.50	5 000 litros	\$70		

Se aprecia en la tabla 3.10 la comparación de diferentes productos con el dióxido de cloro, pero además del precio se tiene que apreciar la no toxicidad del productos ante los animales, también se tiene que el dióxido de cloro trabaja en un rango amplio de salinidad, pH, temperatura, alcalinidad y OD, por lo que lo hace el mejor producto para la desinfección y eliminación de vibrios.

CAPÍTULO 4

4. CONCLUSIONES Y RECOMENDACIONES

4.1 Discusión del caso

El dióxido de cloro se usa tradicionalmente en la acuicultura para desinfectar el suministro de agua de los tanques de reserva (Flick, 2015). Actualmente se ha aplicado ampliamente en el cultivo, ya sea en laboratorios o en piscinas de engorde para la eliminación de organismos patógenos o presencia de virus mejorando así la calidad del agua (Flick, 2015). La disminución del dióxido de cloro en el agua estará influenciada por varios aspectos como concentración de sólidos en suspensión, materia orgánica oxidable, compuestos inorgánicos como también el oxígeno disuelto. Pero bajo las concentraciones controladas de dióxido de cloro, este es un compuesto muy útil para la eliminación de patógenos, también para mejorar la calidad del agua, además de ser un producto no tóxico para los organismos y disminuyen las tasas de mortalidad por vibrios.

4.2 Conclusiones

Los resultados mostraron que para postlarvas PI14 a concentraciones de 0.5 a 2 ppm de dióxido de cloro no demuestra un elevado nivel de toxicidad. Siendo 0.5 ppm la concentración más baja causando mortalidades de hasta un 6.6%; mientras que en concentraciones de 2 ppm las mortalidades alcanzaban un 23% de la población, siendo porcentajes menores del 25% de la población.

La concentración mínima del dióxido de cloro para la eliminación de las bacterias fue 1.00 ppm, en esta concentración los organismos no se ven afectados por el químico. Sabemos anualmente se pierden de 6 mil a 8 mil millones de dólares en diferentes partes del mundo por temas de *vibrios* (Figueredo, y otros, 2020). Por lo que el uso del dióxido de cloro nos ayudaría en las larvicultura para el control y disminución de vibrios, además de disminuir las pérdidas de postlarvas, dando un incremento en la producción y reduciendo las pérdidas comerciales.

El uso del dióxido de cloro si es de carácter factible tanto para mejorar la calidad del agua como para el control de patógenos o virus que se encuentren en el medio. Este químico no solo elimina vibrios, también otras bacterias y esto es un factor a considerar.

4.3 Recomendaciones

- ♣ Para llevar a cabo la experimentación del proyecto y obtener los mejores resultados, recomendamos seguir todos los protocolos de bioseguridad ya sea tanto para transporte como para la supervivencia de las postlarvas con las que se trabajara para así tener muestras libres de alguna contaminación externa y que los resultados sean más precisos.
- Los reactivos y soluciones deben estar siempre rotulados para evitar confusión o posibles contaminaciones en los análisis
- ♣ Trabajar siempre con muestras que se encuentren en buen estado, es decir, que la postlarva tenga buena reacción, se alimente correctamente y que no presente algún signo clínico de patología.
- ♣ Este proyecto es tan solo una experimentación preliminar a baja escala que puede servir como un antecedente sobre el comportamiento de la especie P. Vannamei bajo concentraciones de dióxido de cloro para el control de vibrios.
- ♣ La temperatura es un factor crucial para este proyecto ya que al trabajar con organismos vivos muy pequeños y que están en crecimiento, estos requieren de una temperatura de que bordee de los 30 a 33°C y de una correcta alimentación cada 4 horas.

BIBLIOGRAFÍA

- ACHIPIA. (Agosto de 2017). *Vibrio parahaemolyticus*. Obtenido de Área Soporte al Análisis de Riesgo: https://www.achipia.gob.cl/wp-content/uploads/2018/03/Ficha-Peligro-08-Vibrio-parah-v01.pdf
- Anaya Rosas, R. E. (Junio de 2005). CULTIVO DE CAMARÓN BLANCO, Litopenaeus vannamei, Boone (1931), EN SISTEMA CERRADO A ALTA DENSIDAD.

 Obtenido de CENTRO DE INVESTIGACIÓN CIENTÍFICA Y DE EDUCACIÓN SUPERIOR

 DE ENSENADA:

 https://cicese.repositorioinstitucional.mx/jspui/bitstream/1007/1144/1/167251.pdf
- Becton, Dickinson and Company. (2010). *Medio BBL de enriquecimiento en tubo para el cultivo de Vibrio*. Obtenido de Alkaline Peptone Water: https://www.bd.com/resource.aspx?IDX=20796
- Brock, J. y. (2009). *DSM*. Obtenido de https://www.biomin.net/mx/especies/acuicultura/vibriosis/
- CNA. (Abril de 2021). Ecuador se convirtió en el segundo proveedor de camarón en Estados Unidos. Obtenido de ISSUU: https://issuu.com/revista-cna/docs/edicion_140/s/12192036#:~:text=Durante%20el%20primer%20trimestr e%20del.C%C3%A1mara%20Nacional%20de%20Acuacultura%20CNA.
- Condalab. (21 de Diciembre de 2020). *Agua Peptonada Alcalina*. Obtenido de Condalab: https://www.condalab.com/medios-de-cultivo-deshidratados/1146-11614-agua-peptonada-alcalina.html#/2-formato-500_g
- Cuéllar-Anjel, J. (Agosto de 2013). *Vibriosis in shrimp*. Obtenido de The Center for Food Security & Public Health: https://www.cfsph.iastate.edu/Factsheets/es/vibriosis-in-shrimp-es.pdf
- España, S. (24 de Julio de 2021). *El camarón ecuatoriano remonta la corriente*. Obtenido de EL PAÍS: https://elpais.com/economia/2021-07-25/el-camaron-ecuatoriano-remonta-la-corriente.html
- FAO. (2009). Penaeus vannamei (Boone, 1931) [Penaeidae]. Obtenido de FAO: https://www.fao.org/fishery/docs/DOCUMENT/aquaculture/CulturedSpecies/file/e s/es_whitelegshrimp.htm
- FDA. (1 de Octubre de 2010). *Miracle' Treatment Turns into Potent Bleach*. Obtenido de U.S. Food and Drug Administration: https://wayback.archive-

- it.org/7993/20170404163509/https:/www.fda.gov/ForConsumers/ConsumerUpdates/ucm228052.htm
- Figueredo, A., Fuentes, J. L., Cabrera, T., Patti, J., Silva, J., Ron, E., . . . Marcano, N. (13 de Mayo de 2020). *Bioseguridad en el cultivo de camarones penaeidos: una revisión*. Obtenido de AquaTechnica: https://doi.org/10.33936/at.v2i1.2409
- Flick, G. J. (2015). Chlorine dioxide (ClO2) can be used in many different applications within the aquaculture industry.
- Gintaras Svecevičius, J. Š. (2005). SpringerLink. Obtenido de https://link.springer.com/article/10.1065/espr2005.04.248
- Gonzabay-Crespin, Á. N., Vite-Cevallos, H. A., Garzón-Montealegre, V. J., & Quizhpe-Cordero, P. F. (8 de Septiembre de 2021). *Análisis de la producción de camarón en el Ecuador para su exportación a la Unión Europea en el período 2015-2020*.

 Obtenido de Polo del Conocimiento: https://dialnet.unirioja.es/descarga/articulo/8094522.pdf
- HANNA Instruments. (s.f.). *HI97738 Chlorine Dioxide Photometer*. Obtenido de Hanna Instruments:

 https://www.hannainstruments.co.uk/modules/teapotknowledgehub/uploads/man 97738 11 19-60bf4d86a175b.pdf
- IDEXX. (Junio de 2022). Guía microbiológica para interpretar la concentración mínima inhibitoria (CMI). Obtenido de IDEXX: https://www.idexx.es/files/micgui%CC%81a-microbiolo%CC%81gica-es.pdf
- Irith Wiegand, K. H. (2008). Obtenido de https://www.researchgate.net/profile/Kai-Hilpert/publication/5576597_Agar_and_broth_dilution_methods_to_determine_th e_minimal_inhibitory_concentration_MIC_of_antimicrobial_substance/links/560a 699708ae576ce63fd7d7/Agar-and-broth-dilution-methods-to-determi
- Marcillo, F. (2003). Crisis por la Mancha Blanca y Su Recuperación Actual. Obtenido de DSpace:
 https://www.dspace.espol.edu.ec/bitstream/123456789/8972/3/AnalisisWSSV200
 3.pdf
- Medina Guerra, E. (Junio de 2020). *Guía para uso de cloro en desinfección de frutas y hortalizas de consumo fresco, equipos y superficies en establecimientos*. Obtenido de Organismo Internacional Regional de Sanidad Agropecarua: https://www.oirsa.org/contenido/2020/Guia%20para%20uso%20de%20cloro%20 como%20desinfectante%20en%20establecimientos%2023.06.2020.pdf

- Morales, V., & CuéllaR-Anjel, J. (Octubre de 2014). *PATOLOGÍA E INMUNOLOGÍA DE CAMARONES PENAEIDOS*. Obtenido de Organismo Regional Internacional de Sanidad Agropecuaria: https://utm.edu.ec/fcv/acuicultura/images/acuicultura/pdf_revistas/Guia_Tecnica_Patologia_Inmunologia_de_Camarones_Penaeidos.pdf
- Navarro, N. P. (2016). *Revista de Biología Marina y Oceanografía*. Obtenido de https://scielo.conicyt.cl/pdf/revbiolmar/v51n3/art07.pdf
- Organización Mundial de Sanidad Animal. (2006). MÉTODOS PARA LA DESINFECCIÓN DE LOS ESTABLECIMIENTOS DE ACUICULTURA. Manual de pruebas de diagnóstico para los animales acuáticos, 54-69.
- Scelzo, M. A. (1997). Toxicidad del cobre en larvas nauplii del camarón comercial Artemesia longinaris Bate (Crustacea, Decapoda, Penaeidae). Obtenido de Investigaciones marinas: https://www.scielo.cl/scielo.php?pid=S0717-71781997002500013&script=sci_arttext#tab1
- Selective Micro Technologies. (4 de Abril de 2017). *Environmental Assessment*. Obtenido de U.S. Food and Drugs Administration: https://www.fda.gov/media/108323/download
- Somboon, M., Purivirojkul, W., Limsuwan, C., & Chuchird, N. (Enero de 2012). *Effect of Vibrio spp. in White Feces Infected Shrimp in Chanthaburi, Thailand.* Obtenido de KASETSART UNIVERSITY: https://li01.tci-thaijo.org/index.php/JFE/article/view/80769/64309
- Songsrichun, S., Songpradit, N., Thapuksorn, A., & Supamattaya, W. (2000). Effect of chlorine dioxide on black tiger shrimp (Penaeus monodon), pathogen and water quality. Thailand.
- Varela, A., & Choc-Martínez, L. F. (11 de Agosto de 2020). Técnicas diagnósticas para enfermedades bacterianas en camarones. Usos, alcances y limitaciones. Obtenido de SCielo.org: http://www.scielo.org.pe/pdf/rivep/v31n3/1609-9117rivep-31-03-e18165.pdf
- World Health Organization. (24 de Abril de 2017). *Guidelines for drinking-water quality*.

 Obtenido de World Health Organization:

 https://www.who.int/publications/i/item/9789241549950

APÉNDICES

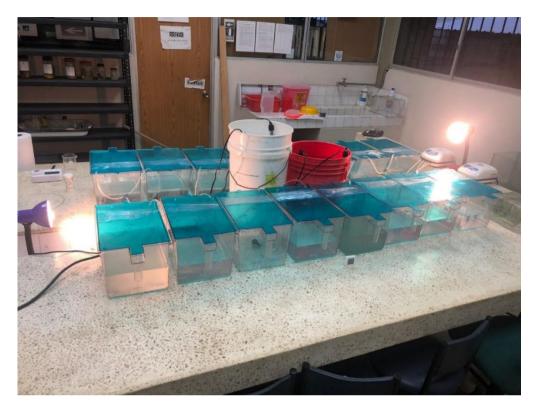


Ilustración 0.1 Sistema de bioensayo armado.

Ilustración 0.2 Tanques reservorios.

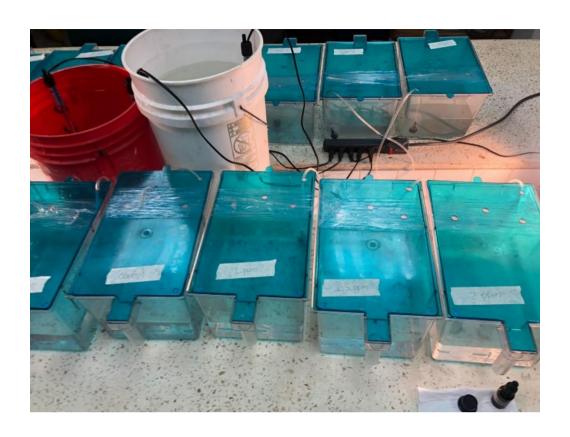


Ilustración 0.3 Acuarios rotulados con la concentración de CIO₂.

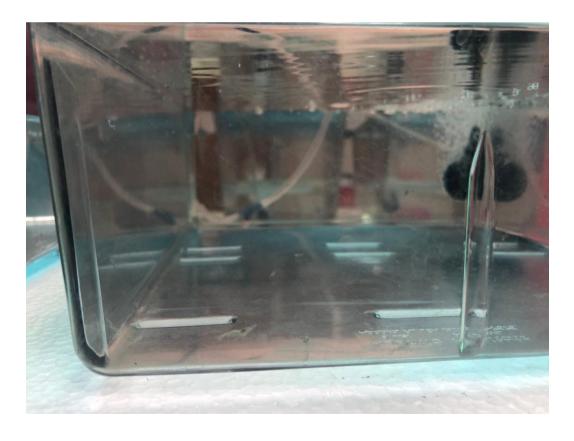


Ilustración 0.4 Acuario con postlarvas de camarón.



Ilustración 0.5 Postlarvas de camarón en la experimentación con CIO₂.

Ilustración 0.6 Fotómetro para la medición de CIO₂.

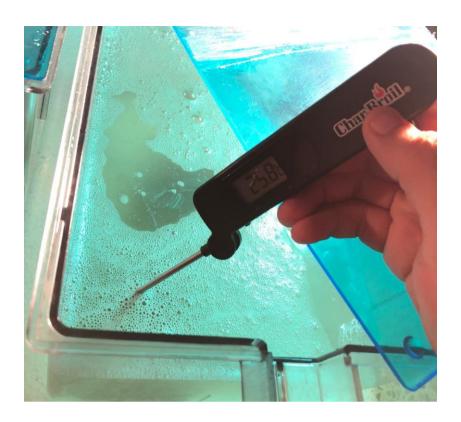


Ilustración 0.7 Control de temperatura de los acuarios.

Ilustración 0.8 Placa de cultivo para bioensayo inoculados y filas rotuladas.

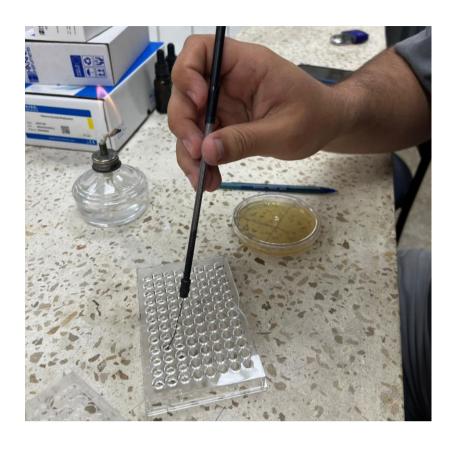


Ilustración 0.9 Cultivo del contenido en los pocillos en una placa de agar.

Ilustración 0.10 Placa de agar inoculada y sellada.

Ilustración 0.11 Placa de agar luego de las 24 horas de sembrada.

Ilustración 0.12 Pruebas de estrés y del CIO2 en las larvas del laboratorio.

Ilustración 0.13 Transporte del agua marina tratada del laboratorio hasta el laboratorio de piscicultura en la ESPOL.