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Abstract. In this paper we present an approach to perform automated analysis 
of nematodes in population images. Occlusion, shape variability and structural 
noise make reliable recognition of individuals a task difficult. Our approach 
relies on shape and geometrical statistical data obtained from samples of 
segmented lines. We study how shape similarity in the objects of interest, is 
encoded in active contour energy component values and exploit them to define 
shape features. Without having to build a specific model or making explicit 
assumptions on the interaction of overlapping objects, our results show that a 
considerable number of individual can be extracted even in highly cluttered 
regions when shape information is consistent with the patterns found in a given 
sample set.  

Keywords: feature extraction, statistical shape analysis, segmentation, 
recognition. 

1   Introduction 

Many biological methods rely on molecular, biochemical and microbiological 
analysis of communities. One of the most studied families is the nematoda phylum 
given its well-described nervous system,  complete genome sequence and sensitivity 
to environmental changes that makes it attractive for biotechnology research and 
development. Spatial and temporal distribution  in nematode populations can be used 
as bio-indicators for soil management, variations between conventional and  new 
genetically modified plants, expressions of disease symptoms in crops, pesticide 
treatments and lately for measuring the impact of the  expected global warming. 

To study populations and their evolution, care has to be taken to resort to non 
destructive methods to avoid killing the individuals and collecting a considerable 
amount of specimens from different samples and control sets. Once the specimens are 
under the microscope the technician collects data related to length, area, spatial 
distribution that then are correlated to the rate of growth, biomass, feeding behavior, 
maturity index and other time-related metrics that are used to support or discard 
hypothesis about the sample set  under consideration. 
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As high resolution camera systems has become affordable for research labs, the 
increasing amount of digital image data in biological studies will require efficient and 
robust image analysis tools to generate accurate and reproducible quantitative results. 
In contrast to medical images, where imaging condition and sampling methods are 
highly controlled, biological images are inherently difficult to analyze because of 
sample variation, noise and clutter [1]. These problems can distort the shape 
measurements of the detected specimens if for instance overlapping specimens are 
regarded as one. 

In early papers, images containing single nematodes are examined [2]. After 
background correction, the image is thresholded and skeletonized, after which contour 
curvature patterns are used to identify the head and tail of the nematode. In a first step 
towards classifying C.Elegans behavioral phenotypes quantitatively, in [3] motion 
patterns are identified by means of a one-nematode tracking system, morphological 
operators and geometrical related features. Images of nematode populations were used 
in [4] to describe how to apply the scale space principles to linear object detection but 
no attempt is done to extract single specimens from the population.  

In practice much of the work is still very labour intensive. Using digitalization 
software, the user marks points along the nematode body and linear segments are 
interpolated.  The live-wire [5] approach can make the manual process easier since by 
following the contour a line is attracted to the nematode body but problems remains in 
cluttered regions where line information vanishes. In any case, the bulk of the 
recognition task is still done by hand for every single nematode. Certainly a 
discouraging scenario for researchers considering that a data set might consists of 
massive amounts of image data with possibly hundreds of specimens. 

Consequently the need of high-throughput screening of bio-images to fully 
describe biological processes on a quantitative level is still very much in demand [6]. 
Given the nature of these images, extracting reliable shape information for object 
identification with a restricted amount of image data, clutter and structural noise is a 
challenging task. However we consider that effective recognition  is a necessary step 
before any post-processing task, in particular if a computer vision based software tool 
is to be incorporated to derive statistical data from population samples [7] where 
accurate measurements are needed to provided truly meaningful information to bio-
researchers.  

Previous work on nematode population samples resort to intensity thresholding 
followed by filling, drawing and measuring operations in a semi-automatic fashion [8] 
and specimens are carefully placed apart from each other to prevent occlusion. 
Applying image processing techniques when dealing with several biological 
specimens that despite of belonging to the same class differ in shape and appearance 
makes parameter setting a complicated issue [9] and narrows the scope of possible 
applications. 

Unlike  previous efforts aimed at extracting shape clues from a set of single 
nematode images integrating them into a model and then finding the best possible fit 
on the image data [10]. This paper explore whether shape information can be captured  
by the utilization of a population of active contours. We believe that despite the 
inherent variability of nematode shapes in population images common patterns can 
play an important role in recognition not only in still images as those used in our 
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experiments  but in the video sequence when disambiguation methods in occluding 
scenarios are required. 

This paper is organized as follows. Section 2 shape models and the active contour 
approach are discussed. Shape statistics of detected nematodes are proposed and used 
for classification in Section 3. Results are shown in Section 4. Finally conclusions and 
further work are presented in Section 5. 

2   Active Contour Segmentation 

In general, nematodes in an image can be thought as lines of varying width along their 
length, wide in the center and narrow near both ends.  Although an important research 
body about linear structure detection particularly for vessel/neurite segmentation  has 
been developed in the past [11], parameter setting involves a trade off between the 
image-content coverage and conciseness [12] a critical problem when dealing with 
populations because as specimens overlap line information vanishes at junctions and 
structural noise appears when  nematodes’ internal organs become visible.  

Graph based search was proposed to integrate  line evidence  in [13] to detect 
networks of lines but recognition of individual objects require additional post 
processing steps, that given the lack of salient contour points make common shape 
representations less suitable for recognition. Capturing shape variation for instance by 
means of appearance/shape models [14] is a complex task in of worm-like objects 
given the absence of discriminant landmark points. Moreover, complex motion 
patterns prevent the use of linear systems to create a simple shape model. Although 
nonlinear systems has been devised [10] the complete range of nematode body 
configurations is still far from being model.   

Spatial arrangement of feature points at different scales were exploited in [15] to 
search a rigid wiry object in cluttered environment. In a similar vein but on non-rigid 
objects in this paper we propose the utilization of active contours energies to capture 
relevant statistical shape information for recognition applied to nematode detection in 
population images.  

Active contours introduced by Kass with a model called Snake [16] had drawn 
attention due to their performance in various problems. Segmentation and shape 
modeling in single images proved effective by integrating region-based information, 
stochastic approaches and appropriate shape constrains [17,18]. Active contours 
merge  image data and shape modeling through the definition of an linear energy 
function consisting of two terms: a data driven component (external energy), which 
depends on the image data, and a smoothness-driven component (internal energy)  
which enforces smoothness along the contour.  

extsnake EEE ⋅+⋅= βα int  (1) 

In parametric contours, the internal energy can be decomposed further in tension 
and bending energies, they report higher values as the contour stretches or bends 
during the evolution process. The goal is to minimize the total energy iteratively using 
gradient descent techniques while energy components balance each other. 
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The rationale behind the proposed approach is that given convergence of the active 
contour being mostly data-driven, appearance and geometrical information can be 
recover from their energy component values. We consider the analysis of  energy-
based derived features a natural way to explore the range of possible shape 
configurations in nematodes population images without: a)  having to build an 
specific model and b) making explicit constrains about the interaction of occluding 
objects [19]. 

In our experiments we chose the ziplock snake model [20]. This model is designed 
to work with open contours and initialization is limited to locating the contours’ end 
points.  Optimization is carried out from the end points towards the center of the 
contour so that the initial control points will be located progressively on the object 
surface and increases the probalilities of a correct segmentation.  Being parametric it 
can encode shape information [21] explicitly and  provide faster convergence than 
geodesic snakes.   
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The tension energy applied corresponds to the point distance distribution, the 
bending energy to the local curvature and a normalized version of the intensity image 
I was used as energy field. The number of control points n, should be selected big 
enough to capture the global variability of the nematode's shape without losing the 
discriminant power to recognize them individually.  

   

Fig. 1. Segmented contours in a nematode population image. Left: Initial end points and 
contours. Right: After convergence some contours are located on a single nematode others lie 
partially on background and sections of different nematodes. 
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Given a set of potential end points, either manually or automatically detected [3] 
contours without any particular initialization can be proposed and optimized until 
convergence. As the energy components interact with each other an number of 
contours will find the minimun energy on nematodes  whereas others will be trapped 
in clutter regions. Unless explicit and detailed analysis of every or at least most 
common cases is done, a particularly challenging task in non-rigid objects, there is no 
suitable way to distinguish between nematodes and clutter contours Fig.1. Hence the 
suggested solution in presented in the following section. 

3   Shape Classification Using Contour Energy Features 

To select those contours corresponding to nematodes, we exploit the shape data 
available through the energy terms of the active contours. We define at global and 
local levels energy features distributions for both clutter Cl and nematode Nl contours 
classes. Let S be the set of contours, our  general measure Gi is defined as the 
expected value of the observed  energy component e for a given contour s in S. 
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A more local measure Li is defined as a n-dimensional vector formed by  the local 
value of the energy component estimated for every control point in given a contour s 
in S: 
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From data distributions obtained experimentally we found no clear feature clusters 
and seems difficult that any isolated feature would be able separate nematode from 
clutter contours. However some patterns in the image become evident, in particular 
for local feature distributions. Regarding the shape of the nematodes seems  that as 
the nematode gets thicker -in the central region-  becomes less flexible. Looking at the 
external energy features is also apparent that  distributions gradually displaces toward 
lower mean energy values since the nematode tend to be  is darker in the middle than 
on both ends. 

To combine features in a statistical framework we applied Bayes rule to classify 
contours in nematode and clutter classes. The ratio of the a posteriori probabilities of 
nematode to clutter class detection was define as discriminant function.  
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Assuming independence1 between energy components, conditional distributions 
can be readily defined for },{ ClNlw ∈  class using Gi and Li based feature sets. 

Regarding object features the prior was considered homogeneous and consequently 
discarded, for local features prior probabilities were defined by taking into account 
the distance dc  from a control point c to the closest end point.  

                                                           
1 This is a crude assumption because one could expect some correlation between energy terms. 
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In order to measure the discriminant power of the derived feature sets different 
combinations of energy feature were tested. For local features classification the 
experiments were repeated without prior probabilities to estimate the impact of prior 
information.  Also classification with different number of control points was performed 
by discarding an increasing number of  segments on both ends of the contour. 

4   Experimental Results 

The developed approach was tested on set consisting of 8 high resolution time-lapse 
images depicting populations of adult nematodes with approximately 200 specimens 
laying freely on agar substract. Straight contours were placed between every pair of end 
points manually segmented from ground truth  images within a distance equal to the 
maximum expected size of a nematode and iteratively optimized until convergence  
Fig. 1. Conditional distributions were derived from a training set of 30 randomly 
selected nematode and clutter contours. Given the non-gaussian nature of our data, 
conditional and prior distributions were fitted using gama and weibull pdfs respectively. 

Classification results are summarized in a table 1. The general features Gi, seem to 
have the lower discrimination power and in general true positive TP rate tend to 
increases as more energy feature types are added. But surprisingly results improves as 
the number of points is reduced, this is indicative that nematode and clutter contours  
have similar average energy distributions and only when the central part of the 
contour considered the difference is large enough to allow better classification mainly 
because the central part of clutter contours they tend to fall on the background. 

When considering local features Li, the tension energy proved being the most 
discriminant. Spatial distribution of control points can be explained by looking in the 
interaction between energies. Since the external energy is lower in the middle of the 
nematode control points tend to gather in that area, but as they move toward the 
center tension energy increases near both contour ends and pulls control points in the 
opposite direction. Therefore, the distance between the control points varies 
depending on the region a control point is located. Usually this region correspond to  
morphological structures inside the nematode.  

It must be noted that  only by combining several energy types the false positive FP 
rate can be consistently reduced. In particular, the bending energy allow us to filter 
out contours with sharp turns and the external energy. We also found that contours 
with spatial intensity distribution too different from those common to nematode or 
whose control points are located mostly on the image background can be rejected by 
considering in the external energy distribution. When the experiments were repeated 
without prior information  becomes manifest the need of more control points to 
improve the accuracy of the results.  
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Fig. 2. Contour classification examples: green contours classified as nematode and red as 
clutter. Left: Correct nematode contour recognition in presence of occlusion. Right: 
misclassified clutter contour that runs over a true nematode. 

Table 1. Classification results for Gi and Li feature combinations, the shadowed cells 
correspond to the best Tp,Fp pair 

   Gi Li Li(no prior) 

n Energy set  Tp Fp Tp Fp Tp Fp 

8 {Et} 0.804 0.272 0.918 0.360 0.913 0.335 

8 {Eb} 0.707 0.348 0.918 0.545 0.908 0.520 

8 {Eext} 0.832 0.457 0.848 0.552 0.826 0.515 

8 {Et,Eb} 0.728 0.217 0.924 0.330 0.935 0.332 

8 {Et,Eext} 0.804 0.245 0.913 0.341 0.897 0.306 

8 {Eb,Eext} 0.755 0.272 0.918 0.456 0.886 0.405 

8 {Et,Eb,Eext} 0.761 0.201 0.908 0.306 0.924 0.284 

12 {Et} 0.266 0.082 0.908 0.317 0.918 0.316 

12 {Eb} 0.364 0.223 0.870 0.477 0.897 0.510 

12 {Eext} 0.641 0.364 0.793 0.466 0.832 0.515 

12 {Et,Eb} 0.223 0.082 0.902 0.284 0.940 0.307 

12 {Et,Eext} 0.288 0.065 0.891 0.291 0.891 0.295 

12 {Eb,Eext} 0.348 0.103 0.853 0.364 0.864 0.392 

12 {Et,Eb,Eext} 0.239 0.054 0.918 0.255 0.924 0.266 

16 {Et} 0.114 0.038 0.880 0.335 0.924 0.296 

16 {Eb} 0.255 0.141 0.826 0.477 0.880 0.488 

16 {Eext} 0.522 0.245 0.788 0.456 0.821 0.473 

16 {Et,Eb} 0.082 0.049 0.897 0.305 0.918 0.280 

16 {Et,Eext} 0.087 0.038 0.875 0.309 0.875 0.274 

16 {Eb,Eext} 0.190 0.054 0.848 0.360 0.875 0.366 

16 {Et,Eb,Eext} 0.065 0.022 0.913 0.273 0.902 0.248 
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Misclassified nematode contours fall in two broad categories: contour close to the 
image border where the contrast between foreground and background is poor and 
appearance information is lost and  those located in the perimeter of the sample 
affected  by optical distortion that produce unusual shape configurations different 
from  common patterns in the image set. Clutter contours can be mistakenly classified 
as nematode when  most of their control points converge towards a real nematode, for 
instance when two parallel nematodes are close to each other, also when in the 
presence of heavy overlapping a clutter contour manages to cover parts of different 
nematodes. 

Finally it should be noted that in occlusion cases, the more occluded is a nematode 
the less its discriminant function value. Structural noise introduced at junction regions  
due to the change of relative optical density affects negatively the convergence of 
contours and the feature values. Still we can recover a number of nematode from 
cluttered regions when enough shape information is retained. According to our 
experience in a local set overlapping of  contours – for instance  derived from 
common end point -  nematode have discriminant function value consistently higher 
than those corresponding to clutter contours. 

5   Conclusions 

In this paper we had studied a feature sets aimed at improving recognition of 
individual specimens in populations images, where structural noise, intensity 
variations, different shape configurations and occlusion are present. The inherent 
similarity of nematodes in populations provides valuable information for recognition 
that is capture during the evolution of well known parametric contour models, 
allowing us to use the shape and image data encapsulated in the energy terms directly 
for classification. By this approach we avoid building a complex shape model and 
take advantage of image and shape statistics to narrow the range of possible 
appearance and geometrical configurations to those commonly present in a given 
sample set. 

Our features based on energy component distributions were tested on manually 
segmented images in the framework of bayesian inference. Experimental results show 
how nematode and clutter contours can have similar statistics and only when less 
articulated nematode sections are considered rejection of significant number of clutter 
contours is obtain while retaining most of the nematode contours. Local features do 
not require prior knowledge of the location of stable object sections as the spatial 
distribution of contour points and its associated energy components effectively 
encode shape information. 

Known problems of contour based segmentation although still present do not 
prevent correct nematodes recognition when they differ from background or lie in 
relative isolation. Recognition in cluttered regions is as expected more difficult  but as 
long as meaningful detected sections of the nematode body are linked by a contour a 
positive classification is possible. We must point out that in practice only a 
representative sample of the population is needed to derive statistical data, our aim is 
to explore how to build such sample in a reliable way by exploiting image and shape 
regularities.   
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Future work will focus on extending our findings to video sequence in tracking of 
moving nematodes specifically when two or more nematode temporarily overlap and 
nematode identification is uncertain.  
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