

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL Examen de la Primera Evaluación

II Término - 4/diciembre/2009

Nombre: RÚBRICA	DEL	EXAMEN	Paralelo:
TOTAL IN C.		_ / (/ (101 _ 10	

111 171			
Examen:			
Lecciones:			
Deberes:			
Otros:			
Total:			

7771 🙏 Z 111 K. AT

TEMA No. 1 (5 PUNTOS)

Sea $f(x) = \begin{cases} x^2 - 2, x \in [0,3] \\ ax + b, x \in (3,5] \end{cases}$, determine los valores de a y b para que la recta y = ax + b tenga pendiente -2 y f sea continua en x = 3.

1.a.- Planteamiento

El valor de la pendiente es a=-2, por lo tanto: $y=-2x+b, \forall x \in (3,5]$.

Para que f sea continua en x=3, debe cumplirse que: $\lim_{x\to 3^+} f(x) = \lim_{x\to 3^-} f(x) = f(3)$

$$\lim_{x \to a} f(x) = \lim_{x \to a} (-2x + b) = -6 + b$$

$$\lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{+}} (-2x + b) = -6 + b$$
 Al ignalar las ecuaciones, se obtiene:
$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} (x^{2} - 2) = 7 = f(3)$$

$$-6 + b = 7 \implies b = 13$$

$$-6+b=7 \implies b=13$$

Esto es: a = -2 \wedge b = 13, y la regla de correspondencia sería:

$$f(x) = \begin{cases} x^2 - 2, & x \in [0,3] \\ -2x + 13, & x \in (3,5] \end{cases}$$

y al bosquejar su gráfica, se obtendría:



1.b.- Rúbrica

Desempeño			
Insuficiente	Regular	Satisfactorio	Excelente
No desarrolla	Intenta parcialmente	Establece el valor	Determina los
procesos coherentes	establecer la	de le pendiente y	valores de a y b ,
que conducen a	continuidad en	plantea la	desarrollando
determinar los	x = 3	continuidad en	procesos correctos
valores de a y b		x = 3 y no	
		concluye	
0	1 – 2	3 – 4	5

TEMA No. 2 (5 PUNTOS)

Sea $f(x) = \frac{1}{1-x}$; $\forall x \neq 1$, determine la regla de correspondencia y el máximo dominio posible de g(x) = f(f(x)).

2.a.- Planteamiento

$$f(f(x)) = \frac{1}{1 - f(x)} = \frac{1}{1 - \frac{1}{1 - x}} = \frac{1}{\frac{1}{1 - x}} = \frac{1 - x}{-x} = \frac{x - 1}{x}$$

La función g está definida: $\forall x \in \mathbb{R} - \{0,1\}$.

2.b.- Rúbrica

Desempeño			
Insuficiente	Regular	Satisfactorio	Excelente
No desarrolla	Maneja el concepto	Realiza las	Determina la regla
procesos coherentes	de composición de	operaciones	de correspondencia
que conducen a	funciones, pero no	adecuadas, pero no	adecuadamente y
determinar la regla	llega a determinar la	especifica el	especifica el dominio
de correspondencia	regla de	dominio	correcto
correcta	correspondencia		
0	1 – 2	3 – 4	5

TEMA No. 3 (5 PUNTOS)

Un estudiante de Cálculo Diferencial resolvió la siguiente indeterminación $\infty-\infty$, obteniendo:

$$\lim_{x \to +\infty} \left(\sqrt{x^2 - x - 1} - ax - b \right) = 0$$

A partir de este resultado, determine de ser posible, los valores de $\ a\ \ y\ \ b$.

3.a.- Planteamiento

$$\lim_{x \to +\infty} \left(\sqrt{x^2 - x - 1} - (ax + b) \right) = \lim_{x \to +\infty} \left(\sqrt{x^2 - x - 1} - (ax + b) \right) \cdot \frac{\sqrt{x^2 - x - 1} + (ax + b)}{\sqrt{x^2 - x - 1} + (ax + b)}$$

$$= \lim_{x \to +\infty} \frac{\left(x^2 - x - 1 \right) - \left(ax + b \right)^2}{\sqrt{x^2 - x - 1} + (ax + b)} = \lim_{x \to +\infty} \frac{x^2 - x - 1 - a^2 x^2 - 2abx - b^2}{\sqrt{x^2 - x - 1} + (ax + b)}$$

$$= \lim_{x \to +\infty} \frac{\left(1 - a^2 \right) x^2 - \left(1 + 2ab \right) x - \left(1 + b^2 \right)}{\sqrt{x^2 - x - 1} + (ax + b)}$$

Para que el límite planteado sea 0, los coeficientes que multiplican a x^2 y x en el numerador deben ser correspondientemete iguales a 0, por lo cual, se plantean las siguientes ecuaciones:

$$1-a^{2} = 0 -(1+2ab) = 0$$

$$a^{2}-1=0 1+2ab = 0$$

$$(a-1)(a+1) = 0 2ab = -1$$

$$[(a-1=0)\lor(a+1=0)] b = -\frac{1}{2a}$$

Como estamos analizando el comportamiento de la función en $+\infty$, el valor de $\left(a=-1\right)$ se descarta porque produciría que el límite planteado sea igual a ∞ , entonces la solución única es $\left(a=1\right) \wedge \left(b=-\frac{1}{2}\right)$.

3.b.- Rúbrica

Desempeño			
Insuficiente	Regular	Satisfactorio	Excelente
No desarrolla	Separa los límites y	Plantea el límite,	Plantea el límite y
procesos coherentes	utiliza	establece las	resuelve
	manipulaciones	condiciones para	correctamente las
	algebraicas	a y b en forma	ecuaciones para
	incorrectas	adecuada, pero no	determinar los
		llega a resultado	valores de a y b
		alguno	
0	1-2	3 – 4	5

TEMA No. 4 (5 PUNTOS)

Demuestre formalmente que:

$$\lim_{x \to 7} \frac{x^2 - 9x + 14}{x - 7} = 5$$

4.a.- Planteamiento

Utilice la definición:

$$\lim_{x \to 7} \frac{x^2 - 9x + 14}{x - 7} = 5 \equiv \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, \ 0 < \left| x - 7 \right| < \delta \Rightarrow \left| \frac{x^2 - 9x + 14}{x - 7} - 5 \right| < \varepsilon$$

Análisis Preliminar:

$$\left| \frac{(x-7)(x-2)}{x-7} - 5 \right| < \varepsilon$$

$$\left| (x-2) - 5 \right| < \varepsilon$$

$$\left| x - 7 \right| < \varepsilon$$

$$\left| \delta = \varepsilon \right|$$

Demostración formal:

$$\forall \varepsilon > 0 \; \exists \delta > 0, (\delta = \varepsilon), \; 0 < |x - 7| < \delta$$

$$\Rightarrow |x - 7| < \varepsilon$$

$$\Rightarrow |(x - 2) - 5| < \varepsilon$$

$$(x \neq 7) \Rightarrow \left| \frac{(x - 7)(x - 2)}{x - 7} - 5 \right| < \varepsilon$$

$$\Rightarrow \left| \frac{x^2 - 9x + 14}{x - 7} - 5 \right| < \varepsilon$$

4.b.- Rúbrica

Desempeño			
Insuficiente	Regular	Satisfactorio	Excelente
No desarrolla	Establece la	Realiza las	Demuestra
procesos coherentes	definición de límite	operaciones	correctamente el
	para la función dada	adecuadas según la	límite de la función,
	e intenta establecer	definición, pero se	iniciando a partir de
	la relación entre $arepsilon$	equivoca al hallar la	la desigualdad del
	y δ	relación entre $arepsilon$ y	antecedente y
		δ	llegando al
			consecuente
0	1 – 2	3 – 4	5

TEMA No. 5 (20 PUNTOS)

Evalúe, de ser posible, los siguientes límites:

a)
$$\lim_{x \to \infty} \left[xsen\left(\frac{1}{x}\right) + xsen\left(\frac{1}{x^2}\right) \right]$$

5.a.1.- Planteamiento

$$\lim_{x \to \infty} \left[x sen\left(\frac{1}{x}\right) + x sen\left(\frac{1}{x^2}\right) \right] = \infty \cdot 0 + \infty \cdot 0$$

Realice un cambio de variable:

$$u = \frac{1}{x} \implies x = \frac{1}{u}$$
$$x \to \infty \implies u \to 0$$

$$\lim_{x \to \infty} \left[x \operatorname{sen}\left(\frac{1}{x}\right) + x \operatorname{sen}\left(\frac{1}{x^2}\right) \right] = \lim_{u \to 0} \left[\frac{1}{u} \operatorname{sen}(u) + \frac{1}{u} \operatorname{sen}(u^2) \right] = \lim_{u \to 0} \left[\frac{\operatorname{sen}(u)}{u} + \frac{\operatorname{sen}(u^2)}{u} \right]$$

$$= \lim_{u \to 0} \frac{\operatorname{sen}(u)}{u} + \lim_{u \to 0} \frac{\operatorname{sen}(u^2)}{u^2} \cdot u$$

$$= 1 + 1(0) = 1$$

5.a.2.- Rúbrica

Desempeño			
Insuficiente	Regular	Satisfactorio	Excelente
No desarrolla	Realiza un cambio de	Evalúa	Halla correctamente
procesos coherentes	variable pertinente	correctamente el	los límites,
	que permite	límite de la función,	mostrando los
	transformar a un	pero no concluye	procesos correctos y
	límite conocido		completos
0	1-2	3 – 4	5

b)
$$\lim_{x\to 0} \left[\frac{sen(ax)}{x} \right]^{1+bx}$$
, $a \neq 0$

5.b.1.- Planteamiento

$$\lim_{x \to 0} \left[\frac{sen(ax)}{x} \right]^{1+bx} = \frac{0}{0} \quad (Indeterminado)$$

$$\lim_{x \to 0} \left[\frac{sen(ax)}{x} \right] \cdot \left[\frac{sen(ax)}{x} \right]^{bx} = \lim_{x \to 0} \left[\frac{sen(ax)}{x} \right] \cdot \lim_{x \to 0} \left[\frac{sen(ax)}{x} \right]^{bx}$$

$$= \lim_{x \to 0} \left[a \cdot \frac{sen(ax)}{ax} \right] \cdot \lim_{x \to 0} \left[a \cdot \frac{sen(ax)}{ax} \right]^{\lim_{x \to 0} bx}$$

$$= a(1) \cdot a(1)^{0} = a$$

5.b.2.- Rúbrica

Desempeño			
Insuficiente	Regular	Satisfactorio	Excelente
No desarrolla	Utiliza el teorema	Utiliza el límite	Evalúa
procesos coherentes	principal de límites,	notable, pero se	correctamente el
	pero no obtiene el	equivoca al	límite dado
	valor del límite	simplificar	
0	1 – 2	3 – 4	5

c)
$$\lim_{x \to 1^+} \left[\frac{x^2 - |x - 1| - 1}{x^2 - 1} \right]$$

5.c.1.- Planteamiento

$$\lim_{x \to 1^+} \left[\frac{x^2 - |x - 1| - 1}{x^2 - 1} \right] = \frac{0}{0} \quad (Indeterminado)$$

$$\lim_{x \to 1^{+}} \left[\frac{x^{2} - |x - 1| - 1}{x^{2} - 1} \right] = \lim_{x \to 1^{+}} \left[\frac{x^{2} - (x - 1) - 1}{x^{2} - 1} \right]$$

$$= \lim_{x \to 1^{+}} \left[\frac{x^{2} - x + 1}{x^{2} - 1} \right] = \lim_{x \to 1^{+}} \left[\frac{x(x - 1)}{(x - 1)(x + 1)} \right] = \frac{1}{2}$$

5.c.2.- Rúbrica

Desempeño			
Insuficiente	Regular	Satisfactorio	Excelente
No desarrolla	Reconoce el límite	Utiliza la definición	Realiza todos los
procesos coherentes	lateral, pero se	del valor absoluto,	cálculos
	equivoca en el valor	pero no concluye	correctamente y
	absoluto		concluye en forma
			correcta
0	1 – 2	3 – 4	5

d)
$$\lim_{x\to 0} \left[1 + \tan^2\left(\sqrt{x}\right)\right]^{\frac{1}{2x}}$$

5.d.1.- Planteamiento

$$\lim_{x \to 0} \left[1 + \tan^{2} \left(\sqrt{x} \right) \right]^{\frac{1}{2x}} = 1^{\infty} \quad \left(Indeterminado \right)$$

$$\lim_{x \to 0} \left[1 + \tan^{2} \left(\sqrt{x} \right) \right]^{\frac{1}{2x}} = \lim_{x \to 0} \left[1 + \tan^{2} \left(\sqrt{x} \right) \right]^{\frac{1}{2x}} \frac{\tan^{2} \left(\sqrt{x} \right)}{\tan^{2} \left(\sqrt{x} \right)}$$

$$= \lim_{x \to 0} \left[1 + \tan^{2} \left(\sqrt{x} \right) \right]^{\frac{1}{\tan^{2} \left(\sqrt{x} \right)}} \frac{\tan^{2} \left(\sqrt{x} \right)}{2x}$$

$$= e^{\lim_{x \to 0} \frac{\tan^{2} \left(\sqrt{x} \right)}{2x}} = e^{\frac{1}{2} \lim_{x \to 0} \frac{\tan^{2} \left(\sqrt{x} \right)}{x}} = e^{\frac{1}{2} \lim_{x \to 0} \left[\frac{\tan(\sqrt{x})}{\sqrt{x}} \right]}$$

$$= e^{\frac{1}{2} \lim_{x \to 0} \left[\frac{\tan(\sqrt{x})}{\sqrt{x}} \right]} \lim_{x \to 0} \left[\frac{\tan(\sqrt{x})}{\sqrt{x}} \right]} = e^{\frac{1}{2} (1)(1)} = e^{\frac{1}{2}} = \sqrt{e}$$

5.d.2.- Rúbrica

Desempeño			
Insuficiente	Regular	Satisfactorio	Excelente
No desarrolla	Establece la	Manipula la	Realiza todos los
procesos coherentes	indeterminación 1^{∞} , intenta plantear, pero no lo logra	expresión para utilizar el límite notable, pero se equivoca al concluir	cálculos correctamente y concluye en forma correcta
0	1-2	3 – 4	5

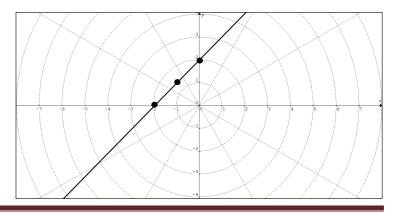
TEMA No. 6 (20 PUNTOS)

Califique las siguientes proposiciones como verdaderas o falsas, justificando su respuesta:

a) Los puntos $\left(2,\frac{\pi}{2}\right)$, $\left(\sqrt{2},\frac{3\pi}{4}\right)$ y $\left(2,\pi\right)$ pertenecen a una recta en el plano polar.

6.a.1.- Planteamiento

Al dibujar los puntos en el plano polar, se obtiene:



Para que pertenezcan a la misma recta, deben satisfacer una ecuación polar de la forma:

$$r = \frac{d}{\cos(\theta - \phi)}.$$

En este caso:
$$r = \frac{\sqrt{2}}{\cos\left(\theta - \frac{3\pi}{4}\right)}$$

Se puede observar que al reemplazar en la ecuación polar, se satisfacen los 3 puntos.

$$r = \frac{\sqrt{2}}{\cos\left(\frac{\pi}{2} - \frac{3\pi}{4}\right)} = \frac{\sqrt{2}}{\cos\left(-\frac{\pi}{4}\right)} = \frac{\sqrt{2}}{\frac{1}{\sqrt{2}}} = 2$$

$$r = \frac{\sqrt{2}}{\cos\left(\frac{3\pi}{4} - \frac{3\pi}{4}\right)} = \frac{\sqrt{2}}{\cos(0)} = \frac{\sqrt{2}}{1} = \sqrt{2}$$

$$r = \frac{\sqrt{2}}{\cos\left(\pi - \frac{3\pi}{4}\right)} = \frac{\sqrt{2}}{\cos\left(\frac{\pi}{4}\right)} = \frac{\sqrt{2}}{\frac{1}{\sqrt{2}}} = 2$$

Otra opción es transformar las coordenadas polares en cartesianas y constatar que pertenecen a la misma recta.

6.a.2.- Rúbrica

Desempeño			
Insuficiente	Regular	Satisfactorio	Excelente
No desarrolla procesos coherentes	Intenta pasar a coordenadas rectangulares los puntos, pero no construye la ecuación de la recta	Halla la ecuación de la recta en coordenadas polares o rectangulares, usando los puntos verifica que pertenecen a ella, pero no concluye como verdadera o	Da la ecuación de la recta, comprueba que cada punto pertenece a la recta y concluye como verdadera
0	1-2	falsa 3 – 4	5

b) Si f es una función impar, entonces no es acotada.

6.b.1.- Planteamiento

La proposición es FALSA, a continuación se muestra un contraejemplo:

Sea
$$f(x) = sen(x)$$
, f es impar, pero es acotada.

El contraejemplo permite demostrar que en la proposición planteada el antecedente es verdadero y el consecuente es falso, lo cual significa que la proposición es falsa.

6.b.2.- Rúbrica

Desempeño			
Insuficiente	Regular	Satisfactorio	Excelente
Califica como falsa, pero no justifica	Reconoce los conceptos de función impar o acotada, pero da un contraejemplo equivocado	Da un contraejemplo, pero no concluye como verdadera o falsa	Califica como falsa y realiza todas las justificaciones adecuadas
0	1-2	3 – 4	5

c) $\lim_{x \to a} f(x)$ existe, siempre que $\lim_{x \to a} |f(x)|$ exista.

6.c.1.- Planteamiento

La proposición es FALSA, a continuación se muestra un contraejemplo:

Sea
$$f(x) = sgn(x) = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \text{, entonces } |f(x)| = |sgn(x)| = \begin{cases} 1, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Observe que
$$\lim_{x\to 0}f\left(x\right)$$
 no existe, porque $\lim_{x\to 0^+}f\left(x\right)=1$ y $\lim_{x\to 0^-}f\left(x\right)=-1$. Sin embargo $\lim_{x\to 0}\left|f\left(x\right)\right|=1$, porque $\lim_{x\to 0^+}\left|f\left(x\right)\right|=1$ y $\lim_{x\to 0^-}\left|f\left(x\right)\right|=1$.

La proposición tiene la forma:

Si
$$\lim_{x \to a} |f(x)|$$
 existe, entonces $\lim_{x \to a} f(x)$ existe.

El contraejemplo permite demostrar que en la proposición planteada el antecedente es verdadero y el consecuente es falso, lo cual significa que la proposición es falsa.

6.c.2.- Rúbrica

Desempeño				
Insuficiente	Regular	Satisfactorio	Excelente	
Califica como falsa, pero no justifica	Da la implicación proporcionada en la proposición y concluye como falsa, pero da un contraejemplo incorrecto	Da un contraejemplo, pero no concluye como verdadera o falsa	Califica como falsa y realiza todas las justificaciones adecuadas	
0	1-2	3 – 4	5	

d) La función de variable real con regla de correspondencia $f(x) = \begin{cases} 2^{\frac{1}{x}}, & x < 0 \\ x^2, & x \ge 0 \end{cases}$ continua en x = 0.

6.d.1.- Planteamiento

Para que f sea continua en x=0 debe cumplirse que: $\lim_{x\to 0^+}f\left(x\right)=\lim_{x\to 0^-}f\left(x\right)=f\left(0\right).$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} (x^{2}) = 0$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \left(2^{\frac{1}{x}} \right) = 2^{-\infty} = 0$$

$$f(0) = 0$$

Por lo tanto, la proposición es VERDADERA.

6.d.2.- Rúbrica

Desempeño				
Insuficiente	Regular	Satisfactorio	Excelente	
Califica como	Intenta establecer la	Calcula los límites,	Califica como	
verdadera, pero no	continuidad en	establece la	verdadera y realiza	
justifica	x = 0 , pero se	continuidad, pero	todas las	
	equivoca en alguno	no la califica como	justificaciones	
	de los límites	verdadera o falsa	adecuadas	
	laterales			
0	1-2	3 – 4	5	