

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

FACULTAD DE CIENCIA NATURALES Y MATEMÁTICAS

EXAMEN SEGUNDO PARCIAL DE TERMODINÁMICA QUÍMICA II

NOMBRE: FECHA:

Resolver detalladamente cada uno de los siguientes problemas. Cada respuesta debe ser enmarcada con un cuadro e indicar a que literal corresponde.

Tema 1

Para el sistema acetona (1)/metanol(2) una mezcla de vapor en la cual z_1 =0.25 y z_2 =0.75 se enfría a la temperatura T en la región de dos fases y fluye a una cámara de separación a una presión de 1 bar. Si la composición del producto líquido es de x_1 =0.175 y para mezclas líquidas de este sistema una buena aproximación es:

$$ln\gamma_1=0.64x_2^2$$

$$ln\gamma_2 = 0.64x_1^2$$

Determine:

- a) ¿Cuál es el valor requerido de Temperatura? (4 puntos)
- b) ¿Cuál es la composición de la fase vapor? (4 puntos)

Rúbrica Tema : Equilibrio de Fase Líquido Vapor: Ley de Raoult modificada					
Conductas y niveles de desempeño (Inicial/En desarrollo/Desarrollado/Excelente)					
	Sobre 8 puntos				
NIVELES DE EJECUCIÓN	INICIAL	EN DESARROLLO	DESARROLLADO	ALTO DESARROLLO	
capaz de desarrollar la relaciones	determina las presiones de	la presión de la mezcla con las	mostrando que existen dos	El estudiante realiza las iteraciones pertinentes hasta que determina las variables requeridas.	
Puntaje	0-2.0 puntos	2.0- 4.0 puntos	4.0 – 8.0 puntos	6.0 – 8.0 puntos	

Acetone(1): A₁ := 14.3145 B₁ := 2756.22 C₁ := 228.060 Methanol(2): A₂ := 16.5785 B₂ := 3638.27 C₂ := 239.500 P_{1sat}(T) :=
$$\exp\left(A_1 - \frac{B_1}{T + C_1}\right)$$
 P_{2sat}(T) := $\exp\left(A_2 - \frac{B_2}{T + C_2}\right)$ A := 0.64 $x_1 := 0.175$ $z_1 := 0.25$ $p := 100$ (kPa) $\gamma_1(x_1, x_2) := \exp(A \cdot x_2^2)$ $\gamma_2(x_1, x_2) := \exp(A \cdot x_1^2)$ P(x_1, T) := $x_1 \cdot \gamma_1(x_1, 1 - x_1) \cdot P_{1sat}(T)$... $+(1 - x_1) \cdot \gamma_2(x_1, 1 - x_1) \cdot P_{2sat}(T)$ F := 1

Guesses: V := 0.5 L := 0.5 T := 100 Given F = L + V $z_1 \cdot F = x_1 \cdot L + y_1(x_1, T) \cdot V$ $p = P(x_1, T)$ (L) V | := Find(L, V, T) $V = \frac{C_1 \cdot C_2}{C_2} \cdot C_3 \cdot C_4 \cdot C_5$ | $V := C_1 \cdot C_2 \cdot C_4 \cdot C_5$ | $V := C_2 \cdot C_4 \cdot C_5$ | $V := C_3 \cdot C_4 \cdot C_5$ | $V := C_4 \cdot C_5$ | $V := C_5 \cdot C_5$

 $y_1(x_1,T) = 0.307$ Ans.

Tema 2

T = 59.531 (degC)

Las presiones de vapor del nitrobenceno y del 1,2,3,5-tetraclorobenceno a 140 °C son 100 mm Hg y 40 mm de Hg respectivamente. Suponga comportamiento ideal.

- a) Determine la composición tanto en fase líquida como vapor de una mezcla líquida de los dos compuestos en equilibrio con un vapor a 140 °C, donde la disolución binaria tiene una presión de vapor total de 80 mm Hg? (6 puntos)
- b) ¿Cual será la presión de nitro benceno si se contamina con un 5% en peso de 1.1 difenil semicarbazida (C₆H₅)₂NNHCONH₂? (4 puntos)

Rúbrica Tema: Equilibrio de Fase Líquido Vapor: Soluciones binarias					
Conductas y niveles de desempeño (Inicial/En desarrollo/Desarrollado/Excelente)					
	Sobre 10 puntos				
NIVELES DE	INICIAL	EN DESARROLLO	DESARROLLADO	ALTO DESARROLLO	
EJECUCIÓN					
El estudiante es	El estudiante	El estudiante	El estudiante determina	El estudiante realiza un	
oupuz uo piuritoui oi	determina	determina las	las composiciones en la	balance de masa y por	
problema de tal forma	relaciona la	composiciones en la	fase vapor.	medio de la ley de Raoult	
que utiliza la ley de	presión total con	fase líquida.		halla la presión.	
Raoult.	las presiones				
	parciales				
Puntaje	0-2.0 puntos	2.0- 4.0 puntos	4.0 – 6.0 puntos	7.0 - 10.0 puntos	

- a)
- $X_{N} = 0.67$
- $X_T = 0.33$
- $y_N = 0.84$
- y_T=0.16
- b)
- $X_N = 0.97$
- P_N=97 mmHg

Tema 3

Una mezcla binaria de 1- Clorobutano(1)/clorobenceno(2) de fracción mol de la especie 1 de 0.50, se vaporiza de manera instantánea a una temperatura de 125 °C y una presión de 1.75 bar. Aplicar la ley de Raoult.

Determine:

- a) La composición de la fase vapor y líquido. (8 puntos)
- b) La fracción mol de vapor que se forma. (5 puntos)
- c) La fracción mol recuperada (definida como la relación para la especie 1 de moles en el vapor a moles en la alimentación). (5 puntos)

Rúbrica Tema : Equilibrio de Fase Líquido Vapor: vaporización Instantánea						
Conductas y niveles de desempeño (Inicial/En desarrollo/Desarrollado/Excelente)						
	Sobre 18 puntos					
NIVELES DE EJECUCIÓN	INICIAL	EN DESARROLLO	DESARROLLADO	ALTO DESARROLLO		
El estudiante es capaz de plantear las relaciones termodinámicas y realizar las iteraciones para llegar a los resultados.	El estudiante determina las presiones de vapor de los compuestos.	El estudiante identifica las incógnitas y empieza el proceso de iteración para el volumen.	El estudiante calcula las composiciones en base al volumen determinado anteriormente.	El estudiante determina las fracción mol recuperada.		
Puntaje	0-3.0 puntos	3.0- 5.0 puntos	5.0 – 13.0 puntos	13.0 – 18.0 puntos		

(a) (1) = acetone
(2) = acetonitrile
$$A := \begin{pmatrix} 14.3145 \\ 14.8950 \end{pmatrix}$$

$$B := \begin{pmatrix} 2756.22 \\ 3413.10 \end{pmatrix}$$

$$C := \begin{pmatrix} 228.060 \\ 250.523 \end{pmatrix}$$

$$n := rows(A)$$
 $i := 1...n$

$$i := 1 ... n$$

$$z_1 := 0.75$$

$$z_1 := 0.75$$
 $T := (340 - 273.15) \cdot degC$

$$z_2 := 1 - z_1$$

$$\begin{aligned} A_i - \frac{B_i}{\frac{T}{degC} + C_i} \\ Psat(i,T) := e & \frac{Psat(i,T)}{P} \end{aligned}$$

Guess:
$$V := 0.5$$

Given
$$\sum_{i=1}^{n} \frac{z_i \cdot k_i}{1 + V \cdot (k_i - 1)} = 1$$
 Eq. (10.17)

Eq. (10.16)
$$y_i := \frac{z_i \cdot k_i}{1 + V \cdot (k_i - 1)}$$

$$x_i := \frac{y_i \cdot P}{Psat(i, T)}$$

$$r := \frac{y_1 \cdot V}{z_1}$$

$$x_1 = 0.340$$

$$x_1 = 0.340$$
 $y_1 = 0.682$ $V = 0.469$ $r = 0.639$

$$V = 0.469$$

$$r = 0.639$$

Tema 4

Indique si es verdadero o falso, argumentando su respuesta. (2 puntos c/u)

a) La formulación gamma/phi de EVL es reducida a la ley de Raoult cuando phi y gamma tiene el valor de 1. (V)

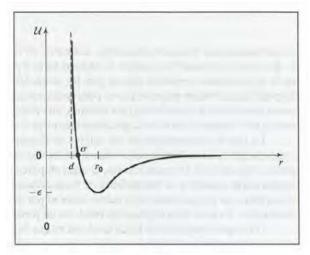
$$y_i \Phi_i P = x_i \gamma_i P_i^{\text{sat}}$$

b) Cuando las distribuciones de carga de las moléculas son eléctricamente neutras se considera que no existe atracción intermolecular. (F)

La ecuación de la energía potencial eelctróstática muestra que aun cuando las contribuciones son eléctricamente neutras hay una atracción neta entre ellas.

c) Los momentos dipolares permanentes se miden por la separación de carga neta dentro de la molécula. (V)

U=q*I; donde I es la distancia que separa las cargas.


	Rúbrica Tema : Equilibrio de Fase y Termodinámica Estadística				
Conductas y niveles de desempeño (Inicial/En desarrollo/Desarrollado/Excelente)					
	Sobre 18 puntos				
NIVELES DE EJECUCIÓN	INICIAL	EN DESARROLLO	DESARROLLADO	ALTO DESARROLLO	
capaz argumentar cada afirmación con la base teórica.	identifica parcialmente las	totalmente las sentencias verdaderas	El estudiante es capaz de argumentar parcialmente sus respuestas con la base teórica.	El estudiante es capaz de argumentar totalmente sus respuestas con la base teórica.	
Puntaje	0-2.0 puntos	2.0- 3.0 puntos	3.0 – 4.0 puntos	4.0 – 6.0 puntos	

Tema 5

El siguiente gráfico representa la variación de una variable Y vs. X.

- a) Indique que representa cada eje y su concepto. (2 puntos)
 - U: energía potencial intermolecular
 - R: separación intermolecular (entre los centro de carga de cada molécula)
- b) Ubique las 4 variables claves que se pueden identificar gráficamente. (2 puntos)

c) Explique el significado de cada una de ellas. (4 puntos)

D: diámetro de esfera dura es la medida de centro a centro donde U tiende al infinito.

σ: el diámetro de colisión se entiende el diámetro cuando U es cero.

Ro: separación de equilibrio donde el valor de U es mínimo y la fuerza neta intermolecular es cero.

€: es la profundidad de pozo es el valor absoluto del valor mínimo de U.

Rúbrica Tema : termodinámica estadística					
Conductas y niveles de desempeño (Inicial/En desarrollo/Desarrollado/Excelente)					
	Sobre 8 puntos				
NIVELES DE EJECUCIÓN	INICIAL	EN DESARROLLO	DESARROLLADO	ALTO DESARROLLO	
	comprende la relación gráfica que existe entre	identifica las variables que se	1	El estudiante es capaz de definir totalmente las variables que relacionan la energía potencial intermolecular con la distancia intermolecular	
Puntaje	0-2.0 puntos	2.0- 4.0 puntos	4.0 – 6.0 puntos	6.0 - 8.0 puntos	