

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Ciencias de la Tierra

"MODELO ESTRUCTURAL DEL ÁREA DENOMINADA ENAMI 25, PROYECTO DE EXPLORACIÓN MINERA LA BONITA, MEDIANTE LA INTERPRETACIÓN DE ANAGLIFOS ELABORADOS SOBRE MODELO DIGITAL DE ELEVACIÓN Y ORTOFOTOS ESCALA 1:5.000"

PROYECTO DE GRADO

Previo a la obtención del Título de:

INGENIERO EN GEOLOGÍA

Presentado por:

JORGE LUIS MONTESDEOCA CHUVA

MARÍA ALEXANDRA RAMÍREZ TORRES

GUAYAQUIL-ECUADOR

2017

AGRADECIMIENTO

Agradezco a mis padres, quienes que han sido mi apoyo constante e incondicional durante esta etapa, su apoyo emocional y económico me han permitido formarme como profesional. A mis hermanos, a Mary en especial, quien ha sido como una madre a lo largo de estos años de carrera.

Al M.Sc. Ángel Chávez y M.Sc. Daniel Garces, tutores de nuestro proyecto, por su apoyo y paciencia A mi compañera de tesis, por el trabajo en equipo. A ENAMI EP. a través de su equipo humano y técnico.

Jorge Luis Montesdeoca Chuva

AGRADECIMIENTO

A Dios por ser el eje fundamental de mi vida. A mi mami, por su entrega y su amor infinito que hace que me levante cada mañana y quiera ser mejor, a mi papi, por su confianza y apoyo incondicional en todas las etapas de mi vida, a mis abuelitos, por su amor y ternura, a mis tíos maternos, por su apoyo en todos los sentidos, esto es por ustedes también.

A mi ñaña, mi mejor amiga, mi compañera de alegrías y tristezas, gracias por tu ejemplo de esfuerzo y perseverancia. A mi ñaño, por creer en mí y ser la inspiración para cumplir mis sueños.

A Karen por estar conmigo en todos los momentos de mi vida sobre todo en los que más te he necesitado.

A Rodrigo, mi compañero, mi amigo, el soporte fundamental en el cumplimiento de este sueño, por creer en mi aun cuando yo no lo hacía, gracias por el ejemplo de lucha y esfuerzo todos los días. A Chorchi, mi compañero de tesis, gracias por cuidarme y ayudarme a ser mejor en el aspecto profesional y personal. A Elisa, una de las mejores personas que he conocido en mi vida, gracias por todo no sabes cuánto aprendí de ti.

Al M.Sc. Ángel Chávez y M.Sc. Daniel Garces, tutores de nuestro proyecto, por su apoyo y paciencia. A ENAMI EP. a través de su equipo humano y técnico.

María Alexandra Ramírez Torres

DEDICATORIA

A mis padres, Hilario y Delia, por su apoyo total e incondicional que han hecho esto posible.

A mis hermanos, Mary, Luli y Diego, por su apoyo y por brindarme siempre unión familiar.

Jorge Luis Montesdeoca Chuva

DEDICATORIA

A mis padres y a mis hermanos por ser la inspiración para levantarme cada mañana y tener la fuerte convicción de creer en mí.

"Ojalá creas en vos como nadie alguna vez creyó. Ojalá descubras que sos fuerte, infinitamente más fuerte que lo que te dijeron que eras" BleuMinette

María Alexandra Ramírez Torres

TRIBUNAL DE GRADUACIÓN

M.Sc. Ángel Chávez Cueva MIEMBRO EVALUADOR

M.Sc. Daniel Garces León **MIEMBRO EVALUADOR**

Ph.D. Eddy Sanclemente Ordoñez MIEMBRO EVALUADOR

DECLARACIÓN EXPRESA

"La responsabilidad del contenido de esta Tesis de Grado, nos corresponden exclusivamente; y el patrimonio intelectual de la misma, a la ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL"

(Reglamento de Exámenes y Títulos Profesionales de la Espol)

Jorge Luis Montesdeoca Chuva

María Alexandra Ramírez Torres

RESUMEN

La interpretación visual de lineamientos y contornos estructurales sobre anaglifos, elaborados en base a Modelos Digitales de Elevación e imágenes del área de estudio, constituye un elemento útil y eficiente en la caracterización e interpretación de las morfoestructuras.

La metodología utilizada en este trabajo se fundamenta en la interpretación visual con anaglifos a una escala 1:50000, la cual integra criterios visuales como: cambios en la forma del relieve, rupturas del terreno y cambios en los patrones de drenaje en la identificación de los lineamientos estructurales y la posterior delimitación de zonas propicias e interesantes para el alojamiento de depósitos minerales. Los resultados obtenidos en la interpretación visual fueron sujetos a una etapa de validación y comprobación mediante una campaña geológica realizada en el Área 1, la cual representó la zona más idónea geológicamente según los criterios visuales y estructurales analizados en trabajo de gabinete.

Posteriormente los datos recolectados en campo fueron sometidos a un análisis estructural de fallas y estructuras principales en el Área 1, para determinar tendencias generales en los lineamientos y direcciones de los paleoesfuerzos, principalmente los de compresión, los cuales han sido los generadores de tales estructuras. El análisis de fallas y la creación de una sección geológica en la zona de interés permitieron generar un modelo estructural en el sector de la quebrada El Bicundo, parte sur del Área 1.

El Área 1 está caracterizada estructuralmente por fallas rumbo dextrales, sinestrales y fallas normales e inversas, algunas de estas fallas poseen una dirección y relación directa con el patrón de fracturas del sistema de cizalla dextral regional de dirección SW-NE; pero, otras fallas no guardan relación con el modelo de fracturas, estas fallas posiblemente estén ligadas a un evento tectónico distinto al que generó las fallas concordantes con el modelo de fracturas propuesto.

Finalmente, con la integración de la información generada se determinó dos zonas de posible interés geológico, ubicadas en la parte NW y SE del sector de la quebrada El Bicundo, lugares donde se pudo haber emplazado fluidos mineralizantes.

ÍNDICE GENERAL

AGR	ADECIMIENTO	II
DEDI	ICATORIA	V
TRIB	UNAL DE GRADUACIÓN	VII
DECI	LARACIÓN EXPRESA	VIII
RESI	UMEN	IX
ÍNDIC	CE GENERAL	XI
ABRI	EVIATURAS	XV
SIMB	BOLOGÍA	XVI
ÍNDIO	CE DE FIGURAS	XVII
ÍNDIC	CE DE TABLAS	XXII
CAPÍ	ÍTULO 1	23
INTR	ODUCCIÓN	23
1.1.	Antecedentes	24
1.2.	Planteamiento del problema	

1.3. Justificación del problema27
1.4. Ubicación de la zona de estudio 28
1.5. Accesos, Clima y Vegetación
1.5.1. Accesibilidad 30
1.5.2. Clima y Vegetación 31
1.6. Objetivos
1.6.1. Objetivo General 32
1.6.2. Objetivos Específicos
CAPÍTULO 2
MARCO GEOLÓGICO 34
2.1. Geología Regional
2.1.1. Lito Estratigrafía Regional
2.1.1.1. Terrenos metamórficos de la Cordillera Real (Cretácico
Superior)
2.2. Geología Local 40
2.2.1. Concesión ENAMI 25 40
2.2.2. Unidades Litológicas en la Concesión ENAMI 25 42
2.3. Tectónica
2.4. Geología Estructural 51
2.4.1. Regional 51
2.4.2. Local

2.5. Geomorfología	55
CAPÍTULO 3	57
MARCO TEÓRICO	57
3.1. Teledetección aplicada al estudio de lineamientos estructurales	58
3.1.1. Imágenes de sensores remotos	59
3.1.2. Modelo de Elevación Digital	60
3.1.3. Anaglifo	61
CAPÍTULO 4	63
DATOS Y METODOLOGÍA	63
4.1. Datos	64
4.2. Metodología	65
4.2.1. Compilación y revisión de información	65
4.2.2. Procesamiento de insumos remotos	65
4.2.3. Interpretación estructural sobre insumos remotos	66
4.2.4. Geología de campo y validación de datos	67
4.2.5. Generación del Modelo estructural	68
4.2.5.1. Análisis de esfuerzos	68
4.2.5.2. Modelo estructural	73
CAPÍTULO 5	75
RESULTADOS	75

5.1. Ir	nterpretación estructural sobre insumos remotos	76
5.1	.1. Anaglifos	76
5.1	.2. Interpretación	77
5.2. 0	Geología de campo y validación de datos	85
5.3. G	Seneración Modelo Estructural	95
5.3	.1. Análisis de esfuerzos	95
5.3	.2. Modelo Estructural 1	102
CAPÍTI	ULO 6 1	06
ANÁLIS	SIS Y DISCUSIÓN DE RESULTADOS 1	06
6.1. P	Patrón común de deformación 1	107
6.2. P	Paleoesfuerzos y tendencias generales de fallas 1	109
CAPÍTI	ULO 7 1	16
CONCL	LUSIONES Y RECOMENDACIONES 1	16
7.1. C	Conclusiones 1	117
7.2. R	Recomendaciones 1	119
ANEXC	DS	

BIBLIOGRAFÍA

ABREVIATURAS

BGS CODIGEM	British Geologic Survey Corporación de Desarrollo e Investigación Geológico- Minero-Metalurgia
3D	Tres Dimensiones
ENAMI EP	Empresa Nacional Minera del Ecuador
Fm.	Formación
INEMIN	Instituto Nacional de Investigación Geológico Minero
Ma	Millones de años
MDE	Modelo de Elevación Digital
m.s.n.m	Metros sobre el nivel del mar
SIGTIERRAS	Sistema Nacional de Información y Gestión de Tierras
USGS	Rurales e Infraestructura Tecnológica United States Geologic Survey

SIMBOLOGÍA

°C	Grados centígrados
Au	Oro
Bio	Biotita
cm	Centímetros
Сру	Calcopirita
Cu	Cobre
Cv	Covelina
E	Este
На	Hectáreas
Horn	Hornblenda
Km	Kilómetros
m	Metros
mm	Milímetros
Мо	Molibdeno
Ν	Norte
NE	Noreste
NS	Norte-Sur
NW	Noroeste
Pb	Plomo
Plag	Plagioclasa
Ру	Pirita
Qz	Cuarzo
SE	Sureste
SW	Suroeste
Nx	Cinemática normal
Dx	Cinemática dextral
lx	Cinemática inversa
Sx	Cinemática sinestral
W	Oeste
Zn	Zinc

ÍNDICE DE FIGURAS

Figura 1.1	Mapa de ubicación de la zona de estudio
Figura 1.2	. Mapa de accesibilidad hacia la concesión ENAMI 25 30
Figura 2.1	. Mapa Geológico Local de la Concesión ENAMI 25 40
Figura 2.2	. Granodiorita de grano medio sector quebrada Copal
Figura 2.3	. Cuarzomonzonitas de grano grueso del sector río Chingual 43
Figura 2.4	. Sienita? color rojo ladrillo de grano medio a grueso en
	afloramiento en río Chingual, al Norte de río La Chispa 45
Figura 2.5	Diorita de grano medio en vía cerca de la quebrada La Prensa 46
Figura 2.6	. Evolución esquemática de las áreas oceánicas y continentales
	alrededor de la fosa ecuatoriana desde hace 20 Ma a.C. hasta el
	presente. Las flechas convergentes abiertas representan las
	direcciones de los máximos esfuerzos principales, mientras los
	símbolos sólidos representan la cinemática de las fallas 50
Figura 2.7	. Estructuras mayores y zonas de Ecuador y Sur de Colombia.
	1=Fosa; 2=fallas inversas/cabalgamiento; 3=fallas de rumbo;
	4=fallas normales; 5= pliegues; 6=zona Andina; 7=valle Inter-
	Andino;BAF=falla Bolivar-Amaguer;CSF=falla Chingual -La
	Sofía;CF=falla Cosanga; IF= falla Imantag; LF=falla Latacunga;

MNAF= fallas Mindo- Nono- Apuela; PF=falla Pallatanga;

	QF=pliegues Quito; RSF= falla Río Suaza
Figura 2.8.	Morfología de la zona de estudio55
Figura 3.1.	Rasgos geomorfológicos atribuidos a una zona de falla
	interpretados en imágenes LandSat 7 60
Figura 3.2.	MDE en niveles de grises (Izquierda). Mapa de sombras
	(Hillshade) lado derecho, generado a partir del MDE 61
Figura 3.3.	Mapa estructural en anaglifo elaborado a partir modelo digital de
	elevación y mosaico de imágenes radar
Figura 4.1.	Fallas conjugadas de tipo normal, inversa y de rumbo (a) y
	orientación de esfuerzos principales. (b) Representación de
	sistemas de fallas en la Red de Schmidt.
	sistemas de fallas en la Red de Schmidt. Fuente: (Rubilar, 1999)70
Figura 4.2.	sistemas de fallas en la Red de Schmidt. Fuente: (Rubilar, 1999)
Figura 4.2.	sistemas de fallas en la Red de Schmidt. Fuente: (Rubilar, 1999)
Figura 4.2.	sistemas de fallas en la Red de Schmidt. Fuente: (Rubilar, 1999)
Figura 4.2.	sistemas de fallas en la Red de Schmidt. Fuente: (Rubilar, 1999)
Figura 4.2. Figura 4.3.	sistemas de fallas en la Red de Schmidt. Fuente: (Rubilar, 1999)
Figura 4.2. Figura 4.3.	sistemas de fallas en la Red de Schmidt. Fuente: (Rubilar, 1999)
Figura 4.2. Figura 4.3. Figura 4.4.	sistemas de fallas en la Red de Schmidt. Fuente: (Rubilar, 1999)

Figura 5.1. Anaglifos generados del área de estudio usando la herramienta
Anaglyph de Erdas Imagine76
Figura 5.2. Mapa de lineamientos y contornos interpretados en el área, en
base a criterios visuales y principalmente cambios en el patrón de
drenaje77
Figura 5.3. Esquema interpretado de la cinemática en ENAMI 25 79
Figura 5.4. Mapa de las 4 áreas interesantes, delimitadas en base a criterio
de mayor convergencia de lineamientos
Figura 5.5. Mapa de Área 1 cartografiada 82
Figura 5.6. Esquema interpretado de la cinemática en el Área 1 84
Figura 5.7. Microfallamiento de tipo dextral encontrado en la quebrada El
Copal
Figura 5.8. Planos deformados presentes en la quebrada El Copal
Figura 5.9. Zona de falla presente en la quebrada El Copal
Figura 5.10. Zona de diques encontradas en la quebrada El Copal
Figura 5.11. Falla de tipo normal cerca de la quebrada el Bicundo
Figura 5.12. Estrías que indican la cinemática de falla de tipo normal 90
Figura 5.13. Estrías que indican la cinemática de falla de tipo normal 90
Figura 5.14. Estrías que indican cinemática de falla de normal
Figura 5.15. Planos principales de fracturas levemente plegados con
tendencias NE-SW y zonas de contacto

Figura 5.16. Planos plegados asociados a falla inversa y contacto entre rocas
intrusivas (granodiorita y diorita)
Figura 5.17. Microfallamiento de tipo dextral de vetilla de cuarzo
Figura 5.18. Mapa geológico del sector El Bicundo, interpretado a partir de
mapeo de afloramientos a escala 1.2000
Figura 5.19. Diagrama de rosas mostrando la tendencia preferencial de las
estructuras. A) 148 Datos levantados en campo. B) 297 Datos de
ENAMI EP en conjunto con datos levantados en campo
Figura 5.20. Elementos del Datum
Figura 5.21. Esfuerzos en cada una de las fallas encontradas en campo 100
Figura 5.22. Mapa geológico del sector quebrada El Bicundo. La línea
continua negra representa a dirección y longitud de la sección
geológica Á-A 103
Figura 5.23. Sección geológica esquemática a lo largo del sector quebrada El
Bicundo, Área 1. En líneas punteadas muestran fallas inferidas en
base a datos de campo104
Figura 6.1. A) Diagrama de rosas mostrando el rumbo de las estructuras. B)
Comparación de los datos de campo con fallas regionales La
Bonita y La Sofia108
Figura 6.2. Patrones de fallas ligado a un sistema de fallas de cizalla dextral
de Suter et al (2008). A) Patrón obtenido a partir de la

	interpretación con anaglifos. B) Patrón de fallas teórico y C)
	Patrón de fallas elaborado con datos de campo 112
Figura 6.3.	Esquema simplificado del sistema de fracturas de cizalla dextral
	interpretado, donde se muestran las fallas medidas en campo,
	dentro del Área 1 113
Figura 6.4.	Mapa geológico del sector El Bicundo, donde se muestran las dos
	posibles zonas de interés geológico 115

ÍNDICE DE TABLAS

Tabla I. Resumen de trabajos previos realizados en el proyecto La Bonita. 25
Tabla II. Formaciones que constituyen la Geología Regional del Proyecto La
Bonita 399
Tabla III. Unidades Litológicas presentes en la concesión ENAMI 25
Tabla IV. Valores de Rake y sus respectivas fallas 97
Tabla V. Tabla de configuración de esfuerzos de fallas
Tabla VI. Set de compatibilidad tectónica de las fallas
Tabla VII. Valores de esfuerzos de los sets compatibles de fallas

CAPÍTULO 1 INTRODUCCIÓN

1.1. Antecedentes

(Tibaldi and Ferrari, 1991) en su estudio analizan la tectónica activa en los Andes ecuatorianos, abarcan la parte noreste de la Cordillera Real, esto con la ayuda de sensores remotos (imágenes satelitales, radar y fotografías aéreas), datos de microtectónica y sísmica, a fin de determinar un patrón de fallas en áreas poco accesibles, con énfasis en lineamientos estructurales que muestren morfología reciente, continuidad lineal y cambios en los drenajes.

El proyecto La Bonita ubicado en el flanco oriental de la Cordillera Real de los Andes ecuatorianos, comprende tres concesiones mineras inscritas: La Bonita, Rosa Florida y La Chispa, con una extensión de 13.590 hectáreas; además, una concesión en trámite que se denomina ENAMI 25 y que consta de 4.824 hectáreas (Anexo A).

De acuerdo al informe técnico interno de ENAMI EP del 31 de enero del 2017 y reportes previos a éste, se han desarrollado las siguientes actividades y trabajos dentro del área del proyecto: (Tabla I)

EMPRESA	AÑO	ACTIVIDADES	RESULTADOS
INEMIN /CODIGEM BSG (British Geologic Survey)	1994	Trabajos previos e investigaciones regionales, muestreo de sedimentos activos	0.1% de <i>Cu</i> y 0.1% de <i>Zn</i> en monzonitas de Rosa Florida y <i>Mo</i> , Identifican un prospecto de polimetálicos de <i>Cu- Pb-Zn</i> al sur La Sofía
Minera Australiana	1996 y 1998	Campaña de perforación en la mina El Encanto en Join- Venture con la empresa Peruvian Gold; exploración básica en La Chispa.	-
Saxon Gold S.A.	1998- 2001	Prospección y exploración inicial en los sectores de El Encanto y La Chispa	Dos sets principales ; Au dentro de una zona de cizalla y pórfidos de Cu junto a alteración potásica del Granito La Bonita
All Metals Minerals S.A.	2001- 2009	Exploración inicial.	Mineralización de Au asociada a sulfuros diseminados, cuarzo en vetas-brechas y metales preciosos
ENAMI EP	2013	Prospección y exploración sistemática como: mapeo geológico, muestreo de rocas y sedimentos activos	-
ENAMI EP	2016	Levantamiento geológico a escala 1:10.000; muestreo de suelos en malla 100 x100 m, tomando 217 muestras en total.	Resultados anómalos poco favorables, muestreo de rocas, obteniendo valores anómalos en <i>Au, Cu</i> y anomalías de <i>Zn</i> en las zonas altas de las quebradas Chorrera Chico y Bicundo

Tabla I. Resumen de trabajos previos realizados en el proyecto La Bonita

Fuente: ENAMI EP., 2017.

1.2. Planteamiento del problema

Se ha propuesto un modelo tectónico para la región ubicada en el flanco Este de la Cordillera Real, Tibaldi (1991) plantea la existencia de dos principales esfuerzos que han coexistido dentro de las diferentes partes de los Andes ecuatorianos durante el Pleistoceno y Holoceno, donde la parte externa de la cadena de los Andes incluyendo la Cordillera Real y el lado Oeste de la zona Subandina han sido sujetas a grandes esfuerzos principales de dirección ENE-WSW asociados a movimientos que son una combinación entre fallamiento inverso oblicuo dextral y fallamiento de cizalla dextral puro con direcciones NS y NNE, en donde se define una zona transpresiva de cizalla dextral, estos estudios se realizaron en base a información de sensores remotos, verificación en campo y sismicidad.

Tibaldi (1991) explica que la tectónica del área está dominada por un modelo cinemático en el cual el bloque de la corteza de la Cordillera Real está en forma de cuña, limitado al Este por una zona de cizalla dextral y al Oeste por una zona de cizalla sinestral, este movimiento es resultado de la convergencia oblicua entre la placa de Nazca y la placa Sudamericana.

El problema de estudio radicó en la falta de identificación detallada de la configuración estructural del área. Puesto que en concesiones adyacentes se ha evidenciado presencia de minerales de interés económico, fue de importancia analizar esta concesión y plantear las siguientes preguntas de investigación; ¿Cuáles son las estructuras geológicas que se encuentran dominando la zona de estudio? ¿Qué modelo estructural puede explicar la configuración de dichas estructuras en donde se puede haber emplazado mineral de interés económico?

Tratar de responder esta última pregunta fue el objetivo del presente estudio, mediante el planteamiento de un modelo estructural de la zona el cual permita definir zonas de acumulación de minerales de interés económico, a través de análisis de insumos de sensores remotos y validación en campo.

1.3. Justificación del problema

Para la determinación de zonas de interés geológico minero sobre concesiones mineras o áreas de complicado acceso que se encuentran en la etapa de prospección, existen técnicas eficientes y económicas como el análisis por medio de sensores remotos, que permiten evaluar la zona de estudio de manera precisa bajo criterios técnicos-geológicos.

Es por ello que sobre determinados sectores de la concesión minera ENAMI 25, Código 40000173 se realizó un estudio detallado de los contornos estructurales dominantes y direcciones preferenciales sobre el área, mediante el planteamiento y generación de un modelo estructural a partir de la interpretación de datos de campo: litología, rumbo y buzamiento de estructuras, integrado con información de sensores remotos: imágenes Landsat y ortofotos a escala 1:5.000, que podría contribuir a la definición de un patrón estructural que evidencia sitios o indicios favorables para la localización de posibles sectores de interés que alojen depósitos minerales con valor económico.

La definición de tales características estructurales sobre dicha área, permitirán obtener sólidos elementos de juicio para evaluar el potencial de la zona de estudio en cuanto a recursos mineros; además, esta investigación constituye un soporte a trabajos de exploración posteriores y aporta al conocimiento del marco geodinámico del noreste del Ecuador.

1.4. Ubicación de la zona de estudio

La zona de estudio se encuentra ubicada en el flanco oriental de la cordillera Real, en la provincia de Sucumbíos, en el Cantón Sucumbíos en la cabecera cantonal La Bonita. (Figura 1.1)

Figura 1.1. Mapa de ubicación de la zona de estudio Fuente: ENAMI EP., 2017.

1.5. Accesos, Clima y Vegetación

1.5.1. Accesibilidad

Figura 1.2. Mapa de accesibilidad hacia la concesión ENAMI 25 Fuente: ArcGis ESRI

El acceso a la concesión minera ENAMI-25 que forma parte del Proyecto La Bonita, se lo puede iniciar vía terrestre por la ruta Quito – Julio Andrade mediante vía de primer orden, 25 km hasta el poblado El Carmelo por vía de primer orden y finalmente hasta la Bonita a través de un camino de segundo orden de 60 km de longitud aproximadamente. Se puede acceder mediante vía área utilizando la ruta Lago Agrio, de Lago Agrio 100 km aproximadamente en camino de primer orden hasta la Parroquia Rosa Florida, y finalmente 15 Km en camino de segundo orden hasta el poblado La Bonita. (Figura 1.2)

Las vías de acceso al proyecto son lastradas en trayectos desde la Bonita-La Sofía y Rosa Florida-La Bonita, en las que existen caminos de verano y senderos, para adentrarse al interior del proyecto se requiere realizar trochas de avance, las cuales son intensamente controladas por factores climáticos.

1.5.2. Clima y Vegetación

La zona se caracteriza por poseer un clima monzónico, con una temperatura media anual que varía de los 10 a 13 °C y la precipitación media anual esta entre 1000 y 2000 mm de pluviosidad. Se evidencian dos estaciones, una lluviosa con un tiempo de duración de 5 a 8 meses y una estación relativamente seca de 4 meses.

El proyecto La Bonita se caracteriza por tener una cobertura vegetal densa con árboles de alturas no mayores a los 25 m; el sotobosque es cerrado, la mayor parte de suelo está cubierto de musgo, helechos y plantas rastreras.

1.6. Objetivos

1.6.1. Objetivo General

Determinar estructuras geológicas sobre el área denominada ENAMI 25, "Proyecto de Exploración Minera La Bonita" mediante el análisis de insumos de sensores remotos, para la localización de sectores favorables que generen ambientes o espacios que alojen minerales de interés.

1.6.2. Objetivos Específicos

Identificar contornos estructurales dominantes en el área denominada ENAMI 25, mediante anaglifos elaborados a partir de Modelo Digital de Elevación y ortofotos a escala 1:5000, para la localización de sectores favorables.

Determinar las direcciones preferenciales de los lineamientos estructurales mediante levantamiento y verificación de información en campo.

Crear secciones geológicas en áreas de mayor convergencia de estructuras, mediante software especializado (QProf) para la proyección de dichas estructuras en el subsuelo.

Generar un modelo estructural a partir de las secciones geológicas que permitan la determinación de posibles sectores de interés económico.

CAPÍTULO 2 MARCO GEOLÓGICO

2.1. Geología Regional.

El área de estudio se encuentra ubicado en el flanco oriental de la Cordillera Real, al Noroeste de la provincia de Sucumbíos, en el Cantón Sucumbíos, el área de estudio presenta elevaciones de 1600 a 3500 m.s.n.m, el cual presenta un relieve escarpado con pendientes mayores a 40°, el proyecto regionalmente se encuentra representado por los terrenos metamórficos de la Cordillera Real, formaciones sedimentarias de la zona sub-andina y algunas rocas intrusivas que son de gran importancia en el contexto geológico regional (Tabla II), las cuales serán detalladas a continuación (ENAMI. EP, 2017) (Anexo B)

2.1.1. Lito Estratigrafía Regional

2.1.1.1. Terrenos metamórficos de la Cordillera Real (Cretácico Superior).

La Cordillera Real está compuesta por cinco terrenos Lito-Tectónicos de edad Paleozoica y Mesozoica que constituyen el basamento de la región, los mismos que están separadas por cuatro fallas regionales (Litherland, et al., 1994).

– Terreno Loja (Paleozoico-Triásico)

Limitado por el Frente Baños al Este y la Falla Llanganates al Oeste, constituido por cuarcitas, filitas negras (Subdivisión Chigüinda), esquistos pelíticos con moscovita y granate (Unidad Agoyán), aflorando continuamente desde Sigsipamba hasta el sur del Sector Huaca, anfibolitas (Unidad Monte Olivo) afloran en la zona de Monte Olivo al Oeste de la Bonita cortando a manera de sill los sedimentos pre-metamórficos Agoyán y Chigüinda. (Litherland, et al., 1994)

– Terreno Salado (Jurásico)

Está formado por metasedimentos volcánicos y metaandesitas calco alcalinas agrupadas dentro de la Unidad Cuyuja (Jurásica) posiblemente equivalentes laterales a la Unidad Misahuallí (Litherland, et al., 1994). El granito Azafrán (142+/- 1 Ma), se localiza en la parte Oeste del terreno e intruye localmente a las rocas carbonatadas (Jurásicas) de la Unidad Cerro Hermoso (Litherland, et al., 1994). Representa parte del magmatismo (Jurásico Medio-Cretácico Inferior) del segmento Norte de la Cordillera Real. (Litherland, et al., 1994).

– Terreno Alao (Jurásico)
Está definido entre el Frente Baños al Este y la Falla Peltetec al Oeste, constituido por rocas verdes intercaladas con esquistos verdes y pelíticos (Unidad Alao-Paute), metasedimentos (Subdivisión El Pan); metaturbiditas y metavolcánicos (Unidad Maguazo) y el cinturón ofiolítico (Unidad Peltetec) que aflora junto a la Subdivisión Cebadas del Terreno Guamote. (Litherland, et al., 1994).

- Terreno Guamote (Jurásico)

Se encuentra limitado entre las fallas regionales Ingapirca al Este y la falla Peltetec al Oeste, está constituido por cuarcitas y pizarras de la Subdivisión Punín y ortocuarcitas intercaladas con filitas de la Subdivisión Cebadas que forman un cinturón de 10 km de dirección NS entre Ibarra y Pimampiro. (Litherland, et al., 1994).

– Unidad Cuyuja (Jurásico?)

Compuesta por esquisto pelíticos grafíticos cruzados por vetas de Qz que contienen cianita, también se pueden encontrar intercalaciones de esquistos psamíticos y verdes (Litherland, et al., 1994). La Unidad Cuyuja, es una subdivisión metasedimentaria del terreno Salado que se evidencia principalmente al norte de la cordillera Real, posiblemente es un equivalente lateral con los volcánicos jurásicos de la unidad Misahuallí (Litherland, et al., 1994) la misma que puede ser correlacionable con el metamorfismo presente en el sector de La Bonita (ENAMI EP., 2017)

Terreno Amazónico (Jurásico-Cretácico Interior)

Limitado por la Falla Cosanga-Mendez al Oeste y por la Cuenca Oriente al Este, constituido por volcánicos y no volcánicos indiferenciados, rocas silíceas y deformadas (Unidad Misahuallí) que afloran junto a rocas de la Unidad Azafrán en el sector de La Bonita (ENAMI EP., 2017). Estas secuencias están intruidas por dioritas y granodioritas tipo I del Batolito de Zamora (Aspden et al., 1992b) que contiene el Plutón de Rosa Florida separado del Plutón La Bonita (Baldock, 1982) por el cinturón volcánico Misahuallí y la Falla Cosanga Méndez (Litherland, et al., 1994).

EÓN	ERA	PERIODO	ÉPOCA	UNIDAD LITOESTATIGRÁFICA	DESCRIPCIÓN LITOLÓGICA
				Terreno Amazónico	Volcánicos y no volcánicos diferenciados, rocas silíceas y deformadas.
				Terreno Amazónico Unidad Cuyuja Terreno Guamote Terreno Alao	Esquistos pelíticos, intercalaciones de esquistos psamíticos y verdes.
0		JURÁSICO	INFERIOR	Terreno Guamote	Cuarcitas y pizarras y ortocuarcitas intercaladas con filitas.
FANEROZOIC	MESOZIOCO			Terreno Alao	Rocas verdes intercaladas con esquistos verdes y pelíticos, metasedimentos, metaturbiditas y metavolcánicos
				Terreno Salado	Metasedimentos volcánicos y meta- andesitas calco alcalinas
		TRIÁSICO	_	Terreno Loja	Cuarcitas, filitas negras (Subdivisión Chigüinda), esquistos pelíticos con moscovita y granate (Unidad Agoyán),
					•

Tabla II. Formaciones que constituyen la Geología Regional del Proyecto La Bonita

Fuente: ENAMI EP., 2017.

2.2. Geología Local

2.2.1. Concesión ENAMI 25

Figura 2.1. Mapa Geológico Local de la Concesión ENAMI 25 Fuente: ENAMI, 2017

Dentro del área de estudio se puede observar una tendencia litológica de granodioritas, cuarzomonzoníticas hacia el extremo sureste entre el sector de Rosa Florida - El Vijagual, que presenta variaciones de rocas tipo cuarzo-dioritas hasta ocasionalmente sienitas? observadas en rodados las mismas que poseen minerales de plagioclasas y feldespatos alcalinos con variaciones de cuarzo, con vetillas de cuarzo-magnetita-especularita, que tienen tendencias NW-SE, el basamento está caracterizado por un intrusivo mayor masivo de textura macrocristalina fanerítica de tipo equigranular (Figura 2.1), con tonalidades blanquecinas a rosáceas debido al contenido de feldespatos. (ENAMI, 2017)

Diques de composición básica a intermedia se encuentran cortando las fases magmáticas, el tipo de roca va desde andesita a microdiorita, se observan fallamientos locales con pirita diseminada y escasa calcopirita producto posiblemente del corte o intrusión de estos diques. (ENAMI, 2017)

En los afluentes de la quebrada Bicundo se observan rodados con tonalidades grises a rosáceas con presencia de cuarzo y cantidades graduales de plagioclasas, feldespato potásico y muy puntualmente magnetita (ENAMI, 2017), para una mejor comprensión litológica se ha clasificado los tipos de litologías en cinco unidades que se describen a continuación. (Tabla III).

- 2.2.2. Unidades Litológicas en la Concesión ENAMI 25
 - Unidad Granodiorita

Figura 2.2. Granodiorita de grano medio sector quebrada Copal Fuente: ENAMI EP, 2017

Ubicada en la parte Norte de la concesión intercalada hasta la parte central con cuarzomonzonitas locales que intruyen como fingers dentro de esta unidad. Tiene una mayor predominancia en la parte Centro Norte y se extiende hasta el Oeste y al Este atravesando el Río Chingual donde se intercala con intrusiones dioríticas.

• Textura y composición

Se puede observar una textura fanerítica de grano grueso con componentes principales de cuarzo subhedral (20-25%),

feldespatos, plagioclasas de habito euhedral (40-20%) > ortosa, minerales máficos: anfíboles de hábito euhedral (10%) > piroxenos y micas (biotita), así como magnetita (10%) y pirita (+/-1%) diseminada en parches y +/- 1% de epidota dispuesta en vetillas. (Figura 2.2)

• Alteración

Escasa a incipiente excepto en las zonas donde se encuentran afectadas por vetas de cuarzo blanco donde se observa un halo de alteración en el borde las mismas, que incluyen spots de mineralización de Cu, Malaquita, Cpy y ocasionalmente Cv.

Unidad Cuarzomonzonita

Figura 2.3. Cuarzomonzonitas de grano grueso del sector río Chingual. Fuente: ENAMI EP, 2017

Localizada en la parte Norte de la concesión dispuesta en finger y en forma masiva en la parte Central hacia el Sur de la concesión en contacto con sienitas con disposición hacia el Este.

• Textura y composición

Roca plutónica de textura granular compuesta de cuarzo, ortosa, feldespato, plagioclasa, hornblenda, augita y biotita. (Figura 2.3)

o Alteración

Se presenta muy localmente rocas frescas con coloraciones verdosas correspondiendo a clorita. Esta unidad está siendo afectada por vetas y vetillas de sílica blanquecina que se observa en el Unidad Granodiorítica que se expone en ciertos sectores con muy restringidos halos de alteración.

– Unidad Cuarzosienita

Ubicada al Sur – Este de la concesión, se encuentra intruida por cuarzomonzonitas en forma de fingers.

• Textura y composición

Su textura fanerítica permite observar feldespatos potásicos los cuales le dan la coloración rojiza a la roca, en su composición mineralógica se puede apreciar cuarzo, biotita y como mineral accesorio pirita. (Figura 2.4)

Figura 2.4. Sienita? color rojo ladrillo de grano medio a grueso en afloramiento en río Chingual, al Norte de río La Chispa

Fuente: ENAMI EP, 2017

o Alteración

Escasa no presenta evidencia de flujos que afecten su estructura masiva, vetas y vetillas escasas, se puede decir que es un intrusivo tardío puesto que el evento principal (la granodiorita) seguido de la Cuarzomonzonita están intruidas por dos diques dioríticos y la Cuarzosienita.

Unidad Diorita

Figura 2.5. Diorita de grano medio en la vía cerca de la quebrada La Prensa Fuente: ENAMI EP, 2017.

Se halla ubicada en los varios sectores de la concesión intruyendo a las unidades más antiguas, en la parte Norte se puede apreciar en forma de diques y desde la quebrada Copal hacia el Sur se la encuentra como cuerpos irregulares hasta la quebrada La Chispa donde aflora nuevamente como diques.

Entre las quebradas Infiernillo, Bicundo y Chorrera Chico hacia la parte alta, estos cuerpos dioríticos (Figura 2.5) presentan interés geológico dado que varias muestras recolectadas han arrojado valores anomálicos de Au y Cu, los cuales describen el ítem contiguo de mineralización. Esta roca aflora como pequeños pulsos en dos sectores por lo que se presume es uno de los pulsos tardíos que se evidencia en el sector.

Unidad Volcánica

Localizada al Sur – Este de la concesión, en la confluencia del Río Chingual con la quebrada Blanca. Esta formación rocosa aflora en ambos márgenes del Río Chingual hacia el Sur siguiendo el drenaje.

• Textura y composición

Volcánicos de textura afanítica de grano fino intercalados, presente una tendencia estructural N090/65S.

UNIDAD	COMPOSICIÓN MINERAL	TEXTURA	ALTERACIÓN
Granodiorita	Qz, Bio, Py	Fanerítica	Escasa
Cuarzomon zanita	Qz, Ortosa, Fld, Plag, Augita, Horn, Bio	Fanerítica, granular	No presenta
Cuarzosieni ta	Fel K, Qz, Bio, accesorio Py	Fanerítica	Escasa
Diorita	-	-	-
Volcánica	-	Afanítica	-

Tabla III. Unidades Litológicas presentes en la concesión ENAMI 25

Fuente: ENAMI EP, 2017.

Según Pasguare et al (1990), la configuración actual de la zona de subducción ecuatoriana es el resultado de la evolución de una compleja zona a través del tiempo, los cambios en los mecanismos de deformación descritos en su trabajo coinciden con el principal estado de esta evolución causado por la reorganización de las placas litosféricas, en donde se propone tres eventos importantes de cambios en los movimientos de los esfuerzos:

- El primer evento se dio a finales del Oligoceno con el rompimiento de la Placa Farallón (25-26 Ma), y el comienzo de la actividad del centro de expansión Cocos-Nazca, la fractura de apertura que separa la Placa de Cocos del Norte de la Placa de Nazca estaba orientada ENE-WSW, pero a 25 Ma, hubo un importante cambio en el movimiento relativo de las placas dando como resultado una tendencia NE a ESE (Pilger, 1981) (Figura 2.6)
- Una reorganización completa de las placas litosféricas al Este del Pacífico Central pasó entre 10 y 5 Ma, que incluye la migración de la zona de Grijalva hacia el SE, hasta que entra a la fosa ecuatoriana y una nueva rotación en la dirección del movimiento relativo de la Placa de Nazca hacia el ENE.

 Durante el Pleistoceno, alrededor de 1 Ma, la Cordillera de Carnegie empieza a subducirse bajo la Placa Sudamericana durante este mismo periodo, la zona de fractura de Grijalva continua su migración hacia el Este. El tema estructural dominante en este tercer periodo en el desarrollo de la geodinámica del Ecuador estaba representado por la formación de un sistema de fallas de cizalla de tendencia NNE-SSW empezando desde el Golfo de Guayaquil.

Figura 2.6. Evolución esquemática de las áreas oceánicas y continentales alrededor de la fosa ecuatoriana desde hace 20 Ma hasta el presente. Las flechas convergentes abiertas representan las direcciones de los máximos esfuerzos principales, mientras los símbolos sólidos representan la cinemática de las fallas.

Fuente: Pasquarè et al., 1981.

2.4. Geología Estructural

2.4.1. Regional

El Ecuador continental se caracteriza por una región costera plana, un cinturón central montañoso que comprende las Cordilleras Occidental y Real y que está dividido por el Valle Interandino y una zona Sub-Andina que se inclina suavemente hacia la plataforma Amazónica.

La Cordillera Real comprende la parte Este de dos cadenas montañosas que definen los Andes ecuatorianos, representa la más oriental de las dos cordilleras, al norte, la Cordillera Occidental está separada de la Cordillera Real por el Valle Interandino; por otra parte, en el sur del Ecuador se presenta una única Cordillera (Aspden, Harrison, & Rundle, 1992). La Cordillera Real forma parte de un cinturón metamórfico que va desde Colombia hasta la frontera peruana y que ha sufrido varias etapas de orogénesis desde el Cretácico y probablemente desde el Paleozoico (Ferrari & Tibaldi, 1992).

Rasgos estructurales como la falla Cayambe-Chingual que se extiende por más de 70km desde el norte del Volcán Cayambe hasta el noreste de Colombia, fallas El Diviso y La Bonita que son paralelas a la falla Cayambe-Chingual (Figura 2.7), representan fallas de rumbo dextrales de dirección NE-SW (Ferrari & Tibaldi, 1992). Segmentos de fallas Sibundoy y Afiladores de Colombia que se prolongan en el segmento Chingual hacia Ecuador hasta la Zona Transpresiva Baeza, afectan tectónicamente el proyecto La Bonita (Tibaldi, Rovida and Corazzato, 2007). (Anexo C)

Figura 2.7. Estructuras mayores y zonas de Ecuador y Sur de Colombia. 1=Fosa; 2=fallas inversas/cabalgamiento; 3=fallas de rumbo; 4=fallas normales; 5= pliegues; 6=zona Andina; 7=valle Inter-Andino; BAF=falla Bolivar-Amaguer; CSF=falla Chingual -La Sofía; CF=falla Cosanga; IF= falla Imantag; LF=falla Latacunga; MNAF= fallas Mindo- Nono- Apuela; PF=falla Pallatanga; QF=pliegues Quito; RSF= falla Río Suaza.

Fuente: (Ego, Sébrier, & Carey, 1996).

Las fallas Cosanga-Méndez, el levantamiento Napo, la franja de cabalgamiento de la zona Subandina, el granito de Azafrán y el Plutón de Condue tienen una relación directa en los patrones de mineralización en el proyecto, a través de estructuras regionales generadas por tales rasgos tectónicos (ENAMI EP., 2017).

2.4.2. Local

El proyecto La Bonita está tectónicamente atravesado por fallas de cabalgamiento de tendencia regional NE-SW, dichas estructuras crean aperturas que son rellenadas por diques de composición intermedia, concordantes a las estructuras regionales y representadas por las fallas: La Sofía, La Bonita, Rosa Florida y falla Puerto Libre; por otra parte, en dirección E-W se prolonga la falla La Barquilla y otras en dirección perpendicular a las fallas mencionadas (Figura 2.7).

Existe una serie cronológica de intrusiones débilmente definida, puesto que observaciones de campo llevadas a cargo por ENAMI EP, muestran cuatro eventos intrusivos emplazados en cuerpos de edad jurásica-cretácica; el primero, en rocas plutónicas cuarzomonzonitas de texturas porfiríticas con fenocristales de cuarzo y feldespatos potásicos bien desarrollados, que alojan mineralización incipiente de piritas y especularitas; el segundo, comprende eventos volcánicos o lavas de composición basáltica a andesítica que no presentan mineralización; el tercer evento corresponde a rocas dioríticas de texturas porfiríticas con fenocristales de plagioclasas y con una pobre mineralización de sulfuros; el ultimo evento intrusivo o intramineral de composición diorítica a granodiorítica presenta una posible mineralización de magnetitas, calcosinas, piritas +/- calcopiritas y que conserva contemporaneidad con vetilleos de cuarzo masivo y blanco lechoso en la parte alta de la quebrada El Copal (ENAMI EP., 2017).

ENAMI EP sugiere que estructuras secundarias, interpretadas en sectores como El Copal, Infiernilla y Bicundo al sureste de la concesión Rosa Florida, habría favorecido la circulación de fluidos mineralizantes, creando así, un control estructural a la mineralización.

En el área de ENAMI 25, se han identificado estructuras regionales representadas por fallas de dirección preferencial NE-SW, las cuales predominan el área de estudio, con componentes dextrales de desplazamiento y que constituyen zonas compresivas y distensivas (Anexo D); las mismas que constituyen el factor principal en la generación de estructuras menores como: fallas locales normales e inversas con dirección

NW-SE y E-W y que han permitido en sectores altos de Chorrera Chico y El Bicundo, zonas silicificadas con mineralización pervasiva de minerales de hierro y cobre, vetilleos de cuarzo blanco tipo stockwork y mineralizaciones en parches.

2.5. Geomorfología

Figura 2.8. Morfología de la zona de estudio

El proyecto "La Bonita" presenta relieves accidentados con altitudes que van entre los 1400 y 3600 m.s.n.m., con pendientes mayores a 45° (Figura 2.8), característicos de la Cordillera Real y los levantamientos regionales, donde se desarrolla intensa actividad tectónica. En general los relieves son bastantes altos, disectados y muy variables, con predominio de pendientes fuertes, además, con rompimientos estructurales que están reflejados en grandes saltos. (ENAMI EP., 2017).

CAPÍTULO 3 MARCO TEÓRICO

3.1. Teledetección aplicada al estudio de lineamientos estructurales

La observación remota o teledetección es una técnica que permite la obtención de información de las características físicas y biológicas de los objetos situados en la superficie de la Tierra, mediante la detección a distancia usando un sensor, ya sea en forma de fotografías, registros electromagnéticos y eléctricos, datos de altura y temperatura; es necesario que exista entre los objetos y el sensor un flujo energético para que la teledetección sea posible.

Los datos provenientes de sensores remotos y Sistemas de Información Geográfica permiten la determinación de rasgos o características estructurales como fallas y pliegues, mejorando la cartografía e identificación de áreas propensas a fallamiento (Abdullah, Nassr, & Ghaleeb, 2013).

En el estudio realizado por Suter *et al* (2008) se utilizaron la combinación de observaciones en el Modelo Digital de Elevación, análisis de fotografías aéreas y trabajo de campo en la detección de estructuras y lineamientos, logrando buenos resultados.

En el presente trabajo se usaron diversos datos de sensores pasivos como: imágenes LandSat 7, Ortofotografías y MDE. A continuación, se describen los principios de funcionamiento y aplicaciones de los datos de los sensores remotos.

3.1.1. Imágenes de sensores remotos

La ortofotografía u ortofoto es la presentación fotográfica de un área de la superficie terrestre derivada de una fotografía aérea, en el que todos los elementos tienen la misma escala, libre de deformaciones y errores y que tienen la misma validez que un plano cartográfico (Santamaría, 2001).

Las imágenes LandSat 7 poseen 8 bandas, tres dentro del rango visible y las demás de mayor longitud de onda. Estas imágenes permiten generar mapas temáticos y estudiar cambios en la superficie de la tierra.

Autores como (Tibaldi, Rovida and Corazzato, 2007; Zhang *et al.*, 2013; Abdunaser, 2015; Didero *et al.*, 2016; Ibrahim, Watanabe and Yonezu, 2016) llevan a cabo una interpretación de estructuras geológicas a partir de imágenes Landsat 7, detectando fallas de tipo normales, inversas y de rumbo (Figura. 3.1).

Figura 3.1. Rasgos geomorfológicos atribuidos a una zona de falla interpretados en imágenes LandSat 7. Fuente: (Tibaldi, Rovida and Corazzato, 2007).

3.1.2. Modelo de Elevación Digital

Un Modelo Digital de Elevación es una estructura numérica de datos que describe la distribución espacial de la altura de la superficie de un terreno (Vinueza, 2012). Los MDEs son muy útiles en el reconocimiento de patrones de drenaje y rasgos topográficos (Figura 3.2), pues si estos tienen alta precisión temporal, geométrica y espacial, son usados por su alta eficiencia en cartografía y análisis estructurales. Los mapas de sombras

(Hillshade) generados a partir del MDE son capaces de presentar a detalle dependiendo de la resolución espacial las características geomorfológicas ligadas a zonas de fallamiento en la superficie terrestre.

Figura 3.2. MDE en niveles de grises (Izquierda). Mapa de sombras (Hillshade) lado derecho, generado a partir del MDE. **Fuente**: (ENAMI EP., 2017)

3.1.3. Anaglifo

Un anaglifo consiste en una imagen en dos dimensiones capaz de causar un efecto tridimensional, cuando se la observa con gafas especiales, estas gafas llevan un lente de color rojo (lado izquierdo) y uno de color azul/verde (lado derecho) (Calvo, 2008).

La generación de un anaglifo se basa en la proyección, en la que dos imágenes desfasadas se superponen, generando el efecto tridimensional en la zona de traslape. Un anaglifo permite realizar un análisis de aspectos geomorfológicos y estructurales (Figura 3.3). Ambos datos deben coincidir espacialmente para evitar errores en la generación del anaglifo (Posada, Ramirez, & Espejo, 2012).

Figura 3.3. Mapa estructural en anaglifo elaborado a partir modelo digital de elevación y mosaico de imágenes radar. Fuente: (Garzón, 2012)

CAPÍTULO 4 DATOS Y METODOLOGÍA

4.1. Datos

Los insumos cartográficos, información técnica, datos recopilados y tomados en campo y que se encuentran disponibles para el área de estudio comprenden la siguiente información:

- Informes técnicos, información recopilada y levantada en campo por ENAMI EP, constan los informes técnicos correspondientes a los años 2013, 2014, 2015 y 2016; además, artículos y documentos aplicables a la zona de estudio.
- Cartografía base, proporcionada por ENAMI EP y que consiste en datos vectoriales en formato shapefile (shp).
- Modelo Digital de Elevación, producto generado por el proyecto SIGTIERRAS con resolución de 30x30m.
- Ortofotografías producto generado por el proyecto SIGTIERRAS con resolución espacial de 30 cm.
- Imágenes multiespectrales LandSat 7 (año 2002) de libre acceso a través de la plataforma earthexplorer de la USGS.
- Datos de campo, comprenden las medidas estructurales de fallas, contactos y diaclasas y que corresponden a rumbo, buzamiento y rake de las estructuras en las estaciones visitadas en campo; también constan los datos proporcionados por ENAMI EP, referentes a medidas estructurales dentro del área de estudio.

4.2. Metodología

La metodología general utilizada que conllevó a alcanzar los objetivos planteados en este presente trabajo (Anexo E) comprendió las siguientes fases o etapas:

4.2.1. Compilación y revisión de información

Esta primera etapa comprendió la compilación y revisión de estudios previos, información geológica y estructural, cartografía base, imágenes LandSat 7 (año 2002), ortofotos e insumos de sensores y que corresponden al área de estudio.

4.2.2. Procesamiento de insumos remotos

Los datos de insumos remotos como: imágenes satelitales, ortofotos y MDE fueron procesados y se realizaron las correcciones visuales. Se generó un mapa de sombras (Hillshade) a partir del MDE; con la imagen del área de interés (Hillshade) y los datos de elevación del MDE se elaboró un anaglifo con la herramienta Anaglyph de ERDAS IMAGINE.

En un proceso paralelo, con las ortofotos y la información del MDE se generó un anaglifo en RGB. Estos productos fueron utilizados en el proceso posterior de interpretación de lineamientos y contornos estructurales.

4.2.3. Interpretación estructural sobre insumos remotos

Los productos obtenidos en el procesamiento anterior, como el anaglifo en base a la imagen Hillshade y el anaglifo en base a la ortofoto, sirvieron para la interpretación de los contornos de estructuras regionales y locales del área ENAMI 25.

La interpretación estructural fue basada en criterios visuales como: cambios en la forma del relieve, rupturas del terreno y cambios en los patrones de drenaje.

García et al (2008) establece que los patrones de drenaje son buenos indicadores de las características estructurales de un área dadas las premisas:

- a) Los ríos definen sus valles de acuerdo con la estructura geológica y a lo largo de falla y fracturas.
- b) Los ríos generalmente fluyen paralelos a la pendiente máxima.
- c) Las desviaciones desde un patrón dendrítico o flujo en una dirección oblicua al gradiente topográfico regional son tomadas como drenajes anómalos y pueden estar relacionados a discontinuidades litológicas y estructurales.

Este proceso fue realizado usando el software ArcMap 10.4 y Global Mapper.

4.2.4. Geología de campo y validación de datos

Para la definición de los lugares y afloramientos a visitar, se estableció un criterio, dando mayor prioridad a aquellos sectores donde había una mayor convergencia e intersección de estructuras interpretadas mediante insumos de sensores remotos. El trabajo de campo tuvo como propósito la validación y recopilación de la mayor cantidad de estructuras en el área de estudio. En campo se efectuaron las siguientes actividades:

- Reconocimiento y mapeo de las unidades geológicas locales en los distintos afloramientos.
- Toma de medidas estructurales como son el rumbo y buzamiento de las principales morfoestructuras presentes en las estaciones.
- Registro de coordenadas geográficas de los sectores visitados con el GPS y registro fotográfico.

4.2.5. Generación del Modelo estructural

4.2.5.1. Análisis de esfuerzos

Con la información recopilada y obtenida en la interpretación estructural sobre insumos de sensores remotos y los datos de geología de campo y validación, se creó una base de datos la cual contiene: rumbo, dirección de buzamiento, buzamiento, rake, cinemática de movimiento (Anexo F.). Usando estos datos se realizó proyecciones estereográficas y diagramas de rosa para la identificación de las direcciones preferenciales de los lineamientos estructurales y esfuerzos principales de la zona estudiada. La proyección estereográfica se utiliza para interpretar la orientación y geometría de estructuras (Fossen, 2010), por otro lado, los diagramas de rosas son una representación gráfica estadística, en forma de histograma circular que muestra los rangos de rumbo en sentido horario en este caso de estructuras geológicas.

Estos gráficos fueron elaborados con el software FaultKin 7.5 de Rick Allmendinger y GeoRose 0.4.3 de Yong Technology. A continuación, se detalla brevemente los métodos utilizados en el análisis de esfuerzos.

Método de Anderson

El método se basa en las relaciones geométricas que se observan entre las direcciones de stress principales y un sistema de fallas conjugadas, ya sea, en experimentos o en casos de fallas naturales. (Rubilar, 1999). (Figura 4.1) Las relaciones geométricas son las siguientes:

- La intersección de fallas conjugadas define la orientación de σ₂.
- El ángulo agudo entre un par de fallas conjugadas es 2θ, y se encuentra bisectado por σ₁.
- La dirección del deslizamiento (estría de la falla)
 queda definida por la intersección entre el plano
 de falla y el plano (σ₁, σ₃).
- El sentido del deslizamiento es tal que la cuña del material contenida en el ángulo se mueve hacia adentro.

Figura 4.1. Fallas conjugadas de tipo normal, inversa y de rumbo (a) y orientación de esfuerzos principales. (b) Representación de sistemas de fallas en la Red de Schmidt. Fuente: (Rubilar, 1999).

Método de los Diedros

Es un método cinemático que utiliza el DATUM de la falla de la población a analizar. En el caso de las fallas aflorantes en el terreno, pretende determinar la orientación en el espacio de los diedros de acortamiento y extensión asociados con la génesis de una determinada falla (Figura 4.2). El método se lo realiza a través del software FaultKin. Cada par de diedros posee respectivamente un eje de acortamiento (A) un eje de extensión (E), que resultan de un tratamiento estadístico de todos los ejes de acortamiento (A) y extensión (E) pertenecientes a las fallas. (Rubilar, 1999)

Figura 4.2. (a) Ploteo de los distintos tipos de fallas en la red de Schmidt, las flechas indican el sentido del movimiento del bloque colgante. (b) Diedros correspondientes a las fallas de (a), en blanco diedro de acortamiento (A) en gris se observa diedro de extensión (E).

Fuente: (Rubilar, 1999).

Existen tres sets de fracturas que pueden desarrollarse en una zona de falla (Figura 4.3). Estas son las denominadas fracturas de Riedel (R) 1 y 2, las fracturas "Y" y las fracturas P (fracturas PYR). Los planos sintéticos R1 se forman a un ángulo agudo (~ 15°) con la envolvente general de la zona de falla. Su arreglo geométrico es *en échelon,* es decir, paralelas, pero desfasadas entre ellas dentro de la zona de falla. Las fracturas antitéticas R2 son conjugadas con respecto a R1 y forman un ángulo de unos 75° con respecto a la envolvente de la zona de falla. También tenemos las fracturas Y, paralelas a la envolvente y condicionadas por el sentido de cizallamiento. Debido a la evolución dinámica de la zona de falla se producen ciertos fenómenos que pueden llevar a la rotación de los sets R1 y R2. Por otra parte, durante esta evolución puede aparecer un tercer set de fracturas, esto es, los planos P, formando un ángulo agudo con la envolvente. (Jillo and Oyarzun, 2013)

Fuente: Jillo & Oyarzun (2013)
En el análisis estructural de fallas se tomó el patrón de fracturas ligado a un sistema de cizalla dextral (Figura 4.3) modificado por (Ramsay, 1967; Waldron, 2005) como modelo de referencia en el análisis, en este, conforme aumenta la deformación, se generan cambios en sentido y tipología de las estructuras.

Figura 4.4. Diagrama mostrando el incremento de la deformación asociada con una deformación de cizalla simple a lo largo de un sistema dextral.

Fuente: (Ramsay, 1967; Waldron, 2005).

4.2.5.2. Modelo estructural

Se generó una sección geológica a partir de los datos estructurales levantados en el trabajo de campo y de la geología local interpretada y la proporcionada por ENAMI EP en el Área 1. Este perfil de aproximadamente 400 m de longitud se lo realizó a una escala horizontal 1:2000 y vertical 1:2500 en un lugar donde había una gran densidad de datos de estructuras, específicamente la parte sur del Área 1 y donde la Quebrada El Bicundo atraviesa. La generación de esta sección fue realizada con el complemento **qProf** del software QGIS Desktop 2.18.7.

Con base en los resultados obtenidos a partir de la interpretación visual con anaglifos, imágenes de sensores remotos, verificación de campo, cartografía geológica, análisis estructural de fallas y la sección geológica simplificada generada, se plantea un modelo estructural del Área 1, este modelo muestra la forma y distribución de las estructuras mapeadas en campo en el subsuelo y se lo presenta como un mapa geológico y una sección transversal vertical.

CAPÍTULO 5 RESULTADOS

5.1. Interpretación estructural sobre insumos remotos

5.1.1. Anaglifos

La interpretación de los lineamientos y contornos estructurales de la concesión ENAMI 25 fue realizada mediante la visualización de los anaglifos generados (Figura 5.1) a partir los valores de elevación del MDE y de las imágenes del área de interés (Hillshade u ortofoto).

Figura 5.1. Anaglifos generados del área de estudio usando la herramienta Anaglyph de Erdas Imagine. Fuente: Montesdeoca, J., Ramírez, M., 2017.

Los anaglifos generados permitieron la interpretación y digitalización de los lineamientos y estructuras sobre ENAMI 25, se digitalizaron un total de 76 estructuras de formas lineales y 3 formas circulares (Figura 5.2) tomando en cuenta los criterios visuales citados previamente.

En la Figura 5.2 se evidencia un dominio de lineamientos regionales de dirección NE-SW y NW-SE que cortan toda el área de la concesión; también se muestran lineamientos locales de dirección preferenciales NE-SW, E-W, NW-SE y N-S, así mismo se identificaron geoformas circulares paralelas a lineamientos estructurales en el área.

Los lineamientos interpretados junto con las características morfológicas y los patrones de desplazamiento en la red de drenaje, vinculados a un fallamiento de rumbo permitieron la interpretación visual de la cinemática (Figura 5.3), identificando fallas de cizalla dextrales de dirección NE-SW, estas estructuras según el modelo de Ramsay (1967) constituyen las fallas principales ligadas a la falla de cizalla regional Chingual-La Sofia y La Bonita, también se identificaron fallas sinestrales de dirección NW-SE que siguiendo el modelo de Ramsay representan las estructuras riedel antitéticas (R') y finalmente fallas dextrales de tendencia N-S que corresponden a las estructuras P.

Figura 5.3. Esquema interpretado de la cinemática en ENAMI 25. Fuente: Montesdeoca, J., Ramírez, M., 2017

La Figura 5.4 muestra las 4 áreas de interés delimitadas, las cuales fueron seleccionadas con el criterio de mayor

convergencia e intersección de estructuras. Para el área 1, parte central de la zona, se observan lineamientos regionales y locales de dirección NE-SW, E-W y NW-SE; en el área 2 se evidencian lineamientos de dirección NW-SE y geoformas circulares pertenecientes a posibles eventos intrusivos tardíos; en el área 3, situada al noreste de la concesión, se presentan estructuras paralelas con tendencia general NE-SW y finalmente en el área 4 se observan lineamientos estructurales de dirección preferencial NW-SE con estructuras que intersecan a las de dirección NE-SW.

Figura 5.4. Mapa de las 4 áreas interesantes delimitadas en base a criterio de mayor convergencia de lineamientos. Fuente: Montesdeoca, J., Ramírez, M., 2017.

A partir de criterios estructurales como la presencia de una mayor cantidad de lineamientos (Figura 5.5) cortando entre sí con respecto a otras áreas, se seleccionó el Área 1 para el trabajo de campo y validación de datos. Esta área comprende desde la Quebrada Chorrera chico hasta la Quebrada El Copal, exceptuado el rio Chingual.

Figura 5.5. Mapa de Área 1 cartografiada. **Fuente:** Montesdeoca, J., Ramírez, M., 2017.

En el Área 1 se realizó el análisis de la cinemática (Figura 5.6), donde se presenta un patrón de movimiento dextral de azimut NE-SW a lo largo de la quebrada el Bicundo que constituye según el modelo de Ramsay fracturas riedel sintéticas (R); en la parte norte del área siguiendo el rio Chingual se observa un patrón de movimiento sinestral que representa las fracturas riedel antitéticas (R') de dirección NW-SE. También se interpretó mediante los anaglifos generados, un cambio en el drenaje de la quebrada La Infiernilla posiblemente ligado al tectonismo, la misma que fue corroborada en el trabajo de campo.

Figura 5.6. Esquema interpretado de la cinemática en el Área 1. Fuente: Montesdeoca, J., Ramírez, M., 2017

5.2. Geología de campo y validación de datos

Como parte de la metodología utilizada en este proyecto se llevó a cabo una salida de campo, esto con el objetivo de reconocer las principales estructuras geológicas que se encuentran dominando el área de estudio, los datos fueron tomados en 97 estaciones con un total de 148 datos de rumbos, buzamientos, estrías de fallas (Rake), cinemática de movimiento, en los que se incluyen datos de fallas de tipo normal, inversa y de cizalla, planos de fracturas principales, diques, microdiques y microfallamientos. Cuatro quebradas: El Copal, Infiernilla, El Bicundo y Chorrera Chico fueron objetos principales de este estudio ya que en las mismas se encontró la mayor parte de afloramientos. Por lo tanto, se ha dividido el Área 1 en tres zonas para una mejor comprensión: zona Norte, Centro Norte y zona Sur.

Habiéndose definido el Área 1 como área de estudio, se tomaron 13 datos en la parte Norte en donde se encuentra la quebrada El Copal, donde se pudo reconocer diques desde 0.05 m a 1m de ancho (Figura 5.7 y 5.10) con tendencias al NE y posibles fallas con tendencias NE. (Figura 5.9), también se observaron planos deformados y acuñamientos de rocas intrusivas (Figura 5.8)

Figura 5.7. Componente dextral de microfallamiento encontrado en la quebrada El Copal. Fuente: Montesdeoca, J., Ramírez, M., 2017.

Figura 5.8. Planos deformados presentes en la quebrada El Copal. Fuente: Montesdeoca, J., Ramírez, M., 2017.

Figura 5.9. Zona de falla presente en la quebrada El Copal Fuente: Montesdeoca, J., Ramírez, M., 2017.

Figura 5.10. Zona de diques encontradas en la quebrada El Copal. Fuente: Montesdeoca, J., Ramírez, M., 2017.

En la parte centro norte se encuentra ubicada la Quebrada Infiernilla, en este sitio se tomaron 40 datos, en los que se reconoció planos principales de dimensiones que van desde los 10m hasta los 20m de longitud, así como estrías de falla de tendencias E-W indicando la cinemática de movimiento, también se observó microfallamiento de tipo sinestral (Figura 5.11)

Figura 5.11. Componente sinestral de microfallamiento localizado en la quebrada Infiernilla. Fuente: Montesdeoca, J., Ramírez, M., 2017.

En la parte Central se encuentra ubicada la Quebrada El Bicundo donde se tomaron 78 datos, donde se reconocieron la mayor cantidad de fallas de tipo normal con componente dextral, la cinemática de movimiento de estas fallas se pudo reconocer por las estrías de falla como se observa en las figuras (Figura 5.12 - 5.16). Pliegues de gran tamaño fueron observados (Figura 5.15 y 5.16) asociados a fallas inversas y contactos entre rocas intrusivas (granodiorita y diorita). Estos pliegues y planos principales de fracturas poseen tendencias NE-SW.

Figura 5.12. Estrías que indican la componente vertical de falla normal. **Fuente:** Montesdeoca, J.,

Ramírez, M., 2017.

Figura 5.13. Estrías que indican la componente vertical de falla normal. **Fuente:** Montesdeoca, J., Ramírez, M., 2017

Figura 5.14. Estrías que indican la componente vertical de falla normal. **Fuente:** Montesdeoca, J., Ramírez, M., 2017.

Figura 5.15. Planos principales de fracturas levemente plegados con tendencias NE-SW y zonas de contacto.

Fuente: Montesdeoca, J., Ramírez, M., 2017

Figura 5.16. Planos plegados asociados a falla inversa y contacto entre rocas intrusivas (granodiorita y diorita). **Fuente:** Montesdeoca, J., Ramírez, M., 2017.

En el sector Sur está ubicada la Quebrada Chorrera Chico en la cual se tomaron 16 datos donde se pudieron reconocer planos principales, microfallamiento de tipo dextral (Figura 5.17) y una posible falla inversa.

Figura 5.17. Microfallamiento de tipo dextral de vetilla de cuarzo.

Fuente: Montesdeoca, J., Ramírez, M., 2017

La figura 5.18 muestra el mapa geológico interpretado en el sector Quebrada El Bicundo resultado del mapeo de afloramientos y estructuras a escala 1: 2000, donde se reconocieron tres tipos de texturas: textura 1 (Granodiorita), textura 2 (Granodiorita-Diorita) y textura 3 (Diorita mineralizada), las estructuras están representadas por fallas de tipo normal, inversa y de cizalla de componente dextral y sinestral.

Figura 5.18. Mapa geológico del sector El Bicundo, interpretado a partir de mapeo de afloramientos a escala 1.2000. Fuente: Montesdeoca, J., Ramírez, M., 2017.

5.3. Generación Modelo Estructural

5.3.1. Análisis de esfuerzos

Los 148 datos estructurales tomados en campo (Figura 5.19 A) y los 297 datos que son conjunto de datos proporcionados por ENAMI EP y datos levantados fueron ploteados en un diagrama de rosas, tomando el rumbo como parámetro de graficación. En el diagrama de rosa para el primer conjunto de datos se observa una dirección dominante ENE-WSW y en menor cantidad estructuras de tendencia NW-SE, para el set total de datos (Figura 5.19 B) se presentan dos direcciones preferenciales, una con dirección NE-SW y la segunda con tendencia NW-SE más acentuada con respecto al primer set de datos.

Figura 5.19. Diagrama de rosas mostrando la tendencia preferencial de las estructuras. A) 148 Datos levantados en campo. B) 297 Datos de ENAMI EP en conjunto con datos levantados en campo.

Fuente: Montesdeoca, J., Ramírez, M., 2017.

Para un análisis estructural de fallas fue necesario conocer los siguientes datos: rumbo, buzamiento, rake de la estría de falla y sentido de movimiento a lo largo de la estría de falla (establecidos con la ayuda de los criterios cinemáticos) (Figura 5.20). El conjunto de estos datos constituye el DATUM de la falla, las fallas que no consten con un DATUM completo no deben ser incluidas en el análisis.

Figura 5.20. Elementos del Datum. **Fuente**: Curso de Geología Estructural, 2017.

Se obtuvieron 10 datos de fallas los que incluyen: rumbo, buzamiento, rake o cabeceo, cinemática de falla y la disposición de cada uno de los sigmas ($\sigma_1, \sigma_2, \sigma_3$), estos parámetros determinados por los métodos Anderson y de Diedros y el uso de la Tabla IV, ayudaron al análisis estructural de fallas.

 Tabla IV.
 Valores de Rake y sus respectivas fallas

RAKE	TIPO DE FALLA		
0°-15°	Fallas de rumbo		
15°- 60°	Fallas de rumbo, pueden tener		
	componentes compresivos o		
	extensionales		
60°- 90°	60°- 90° Fallas normales o fallas inversas		
Fuente: EXPLOROCK, 2017			

En la siguiente tabla se muestran los resultados de las fallas analizadas:

N° Falla	Configuración de Diedros	Tendencia de Esfuerzos	Tipo de Falla
F1		NNW-SSE	Cizalla Dextral
F2		NW-SE	Falla inversa

F3	WSW- ENE	Extensión local por compresión
F4	 WSW- ENE	Extensión local por compresión
F5	NE-SW	Cizalla Sinestral
F6	E-W	Cizalla Dextral
F7	NE-SW	A T Cizalla Dextral
F8	NNE-SSW	Cizalla Sinestral

Fuente: Montesdeoca, J., Ramírez, M., 2017.

En el siguiente mapa (Figura 5.21) las 10 fallas medidas en campo, se han ploteado dentro del Área 1, la mayoría de las fallas están concentradas en el sector de la quebrada El Bicundo, zona de interés principal de este trabajo, estas fallas están alineadas en un sentido SE-NW y con una tendencia general SW-NE de los esfuerzos compresivos principales y que se observan en las falsillas Schmidt. También se muestra la distribución de las estructuras geológicas medidas a lo largo de las quebradas Copal e Infiernilla y de la vía principal dentro del Área 1.

Figura 5.21. Esfuerzos en cada una de las fallas encontradas en campo. Fuente: Montesdeoca, J., Ramírez, M., 2017.

Una vez determinados los esfuerzos principales de las 10 fallas se procedió a realizar una interpretación poblacional de las mismas, tomando en cuenta que el análisis se debe efectuar sobre rocas de la misma edad, el primer paso consistió en analizar la compatibilidad tectónica entre fallas bajo el modelo de Ramsay (1967), obteniéndose como resultado lo siguiente:

Set de Contabilidad	Fallas Asociadas	Configuración de Diedros	Tendencia
1	F6, F8, F9		NNE-SSW
2	F3, F5, F10		NE-SW
3	F1, F2		NNW-SSE

Tabla VI. Set de compatibilidad tectónica de las fallas

Tabla VII. Valores de esfuerzos de los sets compatibles de fallas

Set de	σ _{1,}		σ_2		$\sigma_{3,}$	
compatibilidad	Trend	Plunge	Trend	Plunge	Trend	Plunge
1	19.7	35.1	209	54.7	113	4.7
2	225	49	69	39	330	13
3	325	32	196	45	73	27

Fuente: Montesdeoca, J., Ramírez, M., 2017.

5.3.2. Modelo Estructural

En el Área 1 se han diferenciado e interpretado los principales estilos estructurales (geometrías y tendencias generales) que conforman el modelo, estos consisten en fallas principalmente inversas (Figura 5.23), pliegues asociados a fallas inversas, fallas normales paralelas a fallas de rumbo regionales y fallas rumbodeslizantes sinestrales y dextrales con componentes normales e inversos (Figura 5.22).

La zona de estudio está conformada por rocas ígneas plutónicas de edades Jurásicas que se encuentran plegadas y falladas, lo cual es producto de la subducción de la placa de Nazca bajo la placa Sudamericana y el consecuente escape del bloque Norandino.

La sección geológica de sentido SE-NW se realizó en el sector de la quebrada El Bicundo (Figura 5.22), lugar donde se localizó y tomó la mayor cantidad de datos estructurales.

Fuente: Montesdeoca, J., Ramírez, M., 2017.

En el lugar afloran tres litologías principales; la primera, consiste de una granodiorita de grano medio sin alteración y con Qz blanco presente en las fracturas (vetillas); la segunda, compuesta por una granodiorita+diorita con alteración de Qz blanco en fracturas y una diorita con alteración de Qz traslúcido y alteración cuarzo-sericita y la última litología que consiste en una diorita con vetilleo de Qz blanco y traslúcido como relleno en fracturas, esta diorita presenta mineralización.

Figura 5.23. Sección geológica esquemática a lo largo del sector quebrada El Bicundo, Área 1. Las líneas punteadas muestran fallas inferidas en base a datos de campo.

Fuente: Montesdeoca, J., Ramírez, M., 2017.

Las fallas inversas y de cabalgamiento de dirección de SW-NE, se encuentran cortando el sector El Bicundo, estas fallas representan un frente de cabalgamiento ligado a las estructuras inversas presentes en un sistema de cizalla dextral, este frente está afectando las litologías en el área, estas fallas de cabalgamiento son observables a lo largo de la quebrada El Bicundo (Figura 5.15 y 5.16).

De estudios previos, los cuales han establecido 4 eventos intrusivos en la zona (ENAMI EP., 2017), y dada las litologías presentes en el mapeo geológico realizado e interpretación de la sección geológica, la zona de estudio presenta características similares al último evento intrusivo; evento intrusivo o intramineral de composición diorítica a granodiorítica que presenta una mineralización de piritas +/- calcopiritas y que conserva contemporaneidad con vetilleos de cuarzo masivo y blanco lechoso.

CAPÍTULO 6 ANÁLISIS Y DISCUSIÓN DE RESULTADOS

Para el análisis de los resultados se han tomado en consideración los tres eventos tectónicos que posiblemente han ocurrido desde finales del Oligoceno hasta la actualidad, como se menciona en el capítulo 2, dentro del apartado 2.3. Tectónica. Tectónica.

Adyacente a la zona de estudio (Figura 5.2) Ferrari & Tibaldi (1991) reconocieron la existencia de un evento compresivo regional de dirección WSW-ENE, como resultado de la distribución vectorial de los esfuerzos compresivos se han generado regímenes transpresivos y transtensivos.

Movimientos regionales durante el Pleistoceno Tardío-Holoceno han generado fallas principales con tendencias NNE-SSW y N-S, entre las que se puede reconocer, la falla Chingual-La Sofia con una edad aproximadamente de 8600 a.C. y un desplazamiento de 35-64 metros según Egbue & Kellogg (2010). Las fallas Chingual-La Sofia y la Bonita tienen una actividad desde el Cuaternario, con tendencia NNE-NE, basados en dislocaciones, edades de desplazamientos de depósitos y morfologías, Tibaldi et al. (2007) sugieren una edad que va desde el Pleistoceno tardío de la falla Cayambe-Afiladores-Sibundoy (CASF) cuyo segmento en Ecuador es la falla Chingual-La Sofia, y fallas secundarias con tendencias NW-SE.

6.1. Patrón común de deformación

La comparación de la dirección de los sets de lineamientos interpretados en el anaglifo generado con el MDE y los datos tomados en campo (Figura 6.1.) con las fallas regionales La Bonita y Chingual - La Sofía, permiten definir un patrón de deformación similar en la orientación de la mayoría de los lineamientos, de dirección SW-NE, así mismo, las fallas locales (Tabla V) usadas para el cálculo de los paleoesfuerzos muestran una tendencia equivalente.

Figura 6.1. A) Diagrama de rosas mostrando el rumbo de las estructuras. B) Comparación de los datos de campo con fallas regionales La Bonita y Chingual-La Sofia.

Fuente: Montesdeoca, J., Ramírez, M., 2017.

Esta similitud en la orientación de los lineamientos, fallas y fracturas, ya sea, en la interpretación con anaglifos o en los datos de campo, representa un patrón de deformación similar casi horizontal de
dirección WSW-ENE que afecta el área (Figura 5.5). La tendencia SW-NE de las estructuras analizadas se correlaciona con la dirección de esfuerzos compresivos de sentido WSW-ENE determinadas por (Tibaldi and Ferrari, 1991; Tibaldi, 2005).

6.2. Paleoesfuerzos y tendencias generales de fallas

La evolución de la cinemática del área de estudio ha estado caracterizada desde el Mioceno hasta el presente según Pasguare et al (1990) por:

- Una rotación anti-horaria de los esfuerzos principales aplicados a la zona de convergencia.
- Un cambio hacia el sur de la aplicación de los máximos esfuerzos compresivos.
- 3. Una migración hacia el Este de la deformación tectónica.

El primer punto parece consistente con la rotación anti-horaria de ESE a ENE en la dirección de la Placa de Nazca, lo que podría ayudar a explicar la existencia de fallas que no se acomodan al modelo planteado (Figura 6.3), por otro lado la configuración actual de los esfuerzos guardan gran similitud con los esfuerzos analizados en el área de estudio como se muestra en la tabla VI, el set 1 y 2 con mínima diferencia entre sí guardan la tendencia general NNE-SSW del paleoesfuerzo compresional y que está representado por $\sigma 1'$ en la figura 6.2 C; mientras que, el set 3 no es compatible a la tendencia regional, por lo que, se lo puede explicar con la posible rotación propuesta por Pasquarè.

Las fallas medidas en campo de la figura 5.21 han sido agrupadas por tendencia y tipo de falla, representadas por la Falla II (F5 y F8) y la Falla IV (F1 y F7).

Las estructuras locales de tipo normal presentes en el área (Figura 5.22), reflejan un campo extensional dado por la deformación compresional regional de dirección WSW-ENE vinculado a la subducción oblicua de la Placa de Nazca bajo la placa Sudamérica, estas estructuras coinciden con el patrón teórico de fracturas de Riedel y el elaborado en base a la interpretación visual con los anaglifos, mientras que; las fallas inversas se encuentran oblicuas o casi paralelas (Figura 5.22) a la dirección del esfuerzo compresivo regional.

Las fallas de tipo dextral encontradas, tal como la Falla I (Figura 6.2.C) mapeada en campo de dirección NE-SW guardan similitud en dirección con las fallas (F1) interpretadas en base a los anaglifos (Figura 6.2.A.) y con las fallas propuestas por el modelo de Ramsay (1967) (Figura 6.2.B), estas fallas por su configuración espacial constituyen las sintéticas Riedel (R1). Las fallas dextrales de tendencia NW-SE representadas como Falla IV (Figura 6.2.C), no poseen relación con el modelo teórico de Ramsay ni con la interpretación con anaglifos, estas estructuras se sugiere, podrían estar ligadas a un esfuerzo de deformación de sentido NNE-SSW, esto como resultado de la rotación anti-horaria del esfuerzo principal aplicado a la zona de convergencia entre las placas de Nazca y la Sudamericana propuesto por (Pasquarè, Tibaldi and Ferrari, 1990).

Por otra parte, algunas fallas sinestrales como las Fallas III y V (Figura 6.2.C), muestran una dirección que va desde WNW-ESE a NW-SE y que guardan correspondencia con el patrón teórico y con el interpretado con anaglifos; pero, existen fallas sinestrales como la Falla II (Figura 6.2.C) con dirección NE-SW que no se adaptan con el modelo teórico ni con la interpretación realizada sobre los anaglifos, este sentido podría estar ligado a un régimen tectónico distinto al que generó las fallas sinestrales de tendencia NW-SE y que (Pasquarè, Tibaldi and Ferrari, 1990) atribuye a la rotación del esfuerzo de deformación principal.

Figura 6.2. Patrones de fallas ligado a un sistema de fallas de cizalla dextral. A) Patrón obtenido a partir de la interpretación con anaglifos. B) Patrón de fallas teórico de Suter et al (2008). C) Patrón de fallas elaborado con datos de campo.

Fuente: Montesdeoca, J., Ramírez, M., 2017.

Al relacionar las fallas mapeadas en campo (Figura 5.22) con el modelo teórico propuesto de fracturas para un sistema de cizalla dextral (Figura

4.4), se observa que las fallas (F3 y F4) normales concuerdan con el

modelo (Figura 6.3), las fallas (F9 y F10) sinestrales poseen una dirección dentro del rango aceptable del modelo y la falla F6 de tipo dextral posee una dirección SW-NE que se adapta al modelo; sin embargo, las demás fallas medidas (F1, F2, F5, F7 y F8) no concuerdan con el modelo y estarían asociadas a la rotación del régimen compresivo regional ya mencionado.

Figura 6.3. Esquema simplificado del sistema de fracturas de cizalla dextral interpretado, donde se muestran las fallas medidas en campo, dentro del Área 1.

Fuente: Montesdeoca, J., Ramírez, M., 2017.

En la Figura 6.4 se muestran dos posibles zonas de interés geológico, la zona 1 se encuentra ubicada al NW de la Quebrada el Bicundo donde se puedo reconocer dos fallas de tipo dextral (F1 y F7) alineadas entre sí y una falla de tipo sinestral (F10) relacionadas principalmente con la textura 3, donde ENAMI EP. ha reconocido un tren mineralizado, dada la geoquímica de Au y Cu proporcionada por ENAMI (Anexo G y Anexo H) la zona muestra valores anomálicos de mencionados elementos, los cuales podrían estar estrechamente vinculados con la actividad de estas fallas.

La zona 2 está ubicada al sureste de la quebrada El Bicundo (Figura 6.4), caracterizada por fallas principalmente normales (F4 y F3), falla inversa (F2) y falla sinestral (F5); las fallas F4, F3 y F2 están ubicadas sobre la textura 2 (Granodiorita-Diorita), la falla F5 está ubicada sobre la textura 3. Esta zona se podría considerar como un sector de posible interés geológico dado que la geoquímica de Au y Cu que se muestra en ese sector corresponde a valores anomálicos de los elementos antes mencionados (Anexo G y Anexo H) y dado que las fallas normales que se observan (Figura 6.4) se ajustan al modelo de Riedel y representan zonas de apertura en donde se podrían haber emplazado fluidos mineralizantes.

Figura 6.4. Mapa geológico del sector El Bicundo, donde se muestran dos posibles zonas de interés geológico. **Fuente:** Montesdeoca, J., Ramírez, M., 2017.

CAPÍTULO 7 CONCLUSIONES Y RECOMENDACIONES

7.1. Conclusiones

- En base a los anaglifos (Figura 5.1) elaborados a partir del MDE y las ortofotos 1:5000 se determinaron 4 zonas de interés, donde se encontraron la mayor cantidad de estructuras, a partir de estas se definió al Área 1 como área de estudio dado que en esta zona se encontró la mayor convergencia de lineamientos.
- Las direcciones preferenciales de los lineamientos y estructuras interpretadas y medidas en campo (Figura 6.1), poseen un patrón estructural similar a las fallas regionales Chingual-La Sofia y La Bonita de dirección SW-NE.
- La sección geológica Á-A de sentido SE-NW muestra fallas inversas y de cabalgamiento que afectan rocas ígneas plutónicas de edades Jurásicas en el sector El Bicundo y que consisten en granodioritasdioritas sin mineralización y dioritas mineralizadas, este frente de cabalgamiento está ligado al sistema de cizalla dextral, a la subducción de la placa de Nazca bajo la placa Sudamericana y el consecuente escape del bloque Norandino.
- Las 7 fallas de cizalla mapeadas (Figura 6.4) permitieron establecer un modelo estructural basado en el modelo de Riedel en donde las Fallas I de dirección NE-SW constituyen en el modelo teórico las sintéticas de Riedel (R1), las fallas sinestrales III y V las antitéticas (R2); al contrario la falla IV dextral de tendencia NW-SE y la falla II

de dirección NE-SW no se adaptan al modelo teórico, lo que se puede atribuir a una rotación antihoraria del esfuerzo principal propuesta por Pasquarè (1990).

En el área 1 (Figura 6.4) se pudo terminar dos zonas de posible interés geológico, la zona 1 ubicada al NW de la Quebrada el Bicundo, donde se pueden reconocer fallas de tipo dextral y sinestral relacionadas principalmente con la textura 3 donde ENAMI EP. ha reconocido un tren mineralizado el cual podría estar estrechamente vinculado con la actividad de estas fallas, la zona 2 ubicada al SE de la quebrada El Bicundo está caracterizada por fallas principalmente normales que se ajustan al modelo de Riedel y podrían ser zonas de apertura en donde se pudo haber emplazado fluidos mineralizantes.

7.2. Recomendaciones

- Al realizar una interpretación estructural visual sobre los anaglifos en base a insumos de sensores remotos, hay que tener muy en cuenta la escala de trabajo y la resolución espacial del MDE, ya que, de este valor, sea alto o bajo depende la correcta visualización de los lineamientos y contornos estructurales del área de estudio, por lo tanto, se recomienda el uso de MDEs con alta resolución espacial.
- Tomar la mayor cantidad de datos estructurales para un correcto análisis estructural de fallas y de paleoesfuerzos, especialmente datos referentes a fallas y sus indicadores cinemáticos (estrías, riedels, antiriedels, fibras recristalizadas y stepovers).
- Realizar un mapeo geológico y toma de datos estructurales de toda la concesión ENAMI 25, cubriendo las áreas interesantes que no han sido visitadas, pues estos datos aportarían con un nivel de confianza más elevado en los resultados.
- Para estudios posteriores realizar un análisis geocronológico de las distintas etapas de deformación a la cual ha sido sujeta el área de estudio.
- Relacionar los resultados obtenidos en este trabajo con un estudio petrográfico del área de interés, para de esa manera establecer la relación o no de la deformación estructural en la formación y localización de sectores de interés geológico-minero.

ANEXOS

ANEXO A. Mapa de ubicación del proyecto "La Bonita"

Fuente: ENAMI EP., 2017

ANEXO B. Mapa Geológico Regional del Proyecto Minero La Bonita

Fuente: ENAMI EP., 2017

ANEXO C. MAPA DE ESTRUCTURAS INTERPRETADAS EN EL PROYECTO LA BONITA

Fuente: ENAMI EP., 2017

ANEXO D. MAPA DE ESTRUCTURAS INTERPRETADAS EN LA CONCESIÓN ENAMI 25

Fuente: ENAMI EP., 2017

ANEXO E. MAPA DE ESTRUCTURAS INTERPRETADAS EN LA CONCESIÓN ENAMI 25

Fuente: Montesdeoca, J., Ramírez, M., 2017

ANEXO F. Mediciones estructurales recopiladas de ENAMI EP. y tomadas en campo en el Área 1.

TIPO DE ESTRUCTURA	DIRECCIÓN DE BUZAMIENTO	BUZAMIENTO	RAKE	CINEMÁTICA
Plano principal	342	80		
Plano principal	140	65		
Plano principal	165	54		
Fractura	165	63		
Plano principal	52	50		
Plano principal	182	66		
Plano principal	355	57		
Plano principal	8	32		
Plano principal	44	61		
Plano principal	215	54		
Plano principal	125	78		
Falla cizalla	37	71	45S	Normal-Dextral
Plano principal	25	70		
Plano principal	115	28		
Plano principal	110	34		
Plano principal	100	80		
Plano principal	125	83		
Plano principal	333	83		
Plano principal	341	35		
Plano principal	89	45		
Plano principal	10	70		
Contacto	150	68		
Plano de falla	328	28		
Contacto	330	83		
Plano principal	27	66		
Plano principal	322	78		
Plano principal	90	60		
Fractura	356	86		
Plano principal	324	84		
Plano de falla	294	86		
Falla inversa	321	81	86N	Inversa-Dextral
Fractura	38	70		
Falla normal	340	87	82N	Normal- Sinestral

Plano principal	112	28		
Falla normal	174	46	78S	Normal-Dextral
Falla normal	150	45	70S	Normal-Dextral
Falla cizalla	340	66	22S	Normal- Sinestral
Plano principal	124	79		
Plano principal	316	75		
Plano principal	4	86		
Plano principal	110	85		
Plano principal	115	60		
Plano principal	24	64		
Plano principal	13	59		
Plano principal	283	21		
Plano principal	17	58		
Plano principal	335	88		
Contacto	57	48		
Plano de falla	165	32		
Contacto	155	25		
Plano principal	195	85		
Plano principal	170	34		
Plano principal	261	65		
Plano principal	175	36		
Plano principal	171	41		
Plano principal	144	77		
Plano principal	330	48		
Plano principal	338	70		
Plano principal	270	18		
Plano principal	342	60		
Plano principal	345	46		
Plano principal	160	45		
Dique	123	46		
Plano principal	110	20		
Plano principal	324	24		
Falla cizalla	150	31	1N	Inversa-Dextral
Plano principal	320	60		
Plano principal	314	70		
Plano principal	156	58		
Plano principal	337	50		
Plano de falla	345	42		

Plano principal	286	28		
Plano principal	107	30		
Plano principal	5	32		
Falla local	354	46		
Plano principal	69	56		
Plano principal	55	84		
Plano principal	252	75		
Plano principal	152	48		
Falla cizalla	255	64	26N	Normal-Dextral
Plano principal	174	18		
Microdique	216	78		
Falla local	15	52		
Plano principal	290	86		
Plano principal	34	52		
Plano principal	44	48		
Plano principal	48	50		
Plano principal	197	62		
Plano principal	83	25		
Plano principal	55	59		
Contacto	30	39		
Contacto	130	85		
Plano principal	122	77		
Plano principal	100	84		
Plano principal	224	72		
Plano principal	354	55		
Contacto	45	30		
Plano principal	28	44		
Plano principal	108	33		
Plano principal	58	63		
Plano principal	5	84		
Plano principal	290	11		
Plano principal	358	71		
Plano principal	123	70		
Plano principal	113	60		
Plano principal	8	61		
Plano principal	309	78		
Plano principal	180	63		
Plano principal	160	81		
Plano principal	130	58		

Plano principal 355 74 Image: style styl					
Plano principal 194 79 Image: style styl	Plano principal	355	74		
Plano principal 47 75 Image: constraint of the system	Plano principal	194	79		
Plano principal 135 45 Image: style styl	Plano principal	47	75		
Plano principal 165 68 Image: style styl	Plano principal	135	45		
Plano principal 156 60 Image: space spac	Plano principal	165	68		
Plano principal 295 7 Image: science	Plano principal	156	60		
Plano principal 115 45 Image: space spac	Plano principal	295	7		
Contacto 343 40 Normal- Sinestral Falla cizalla 132 59 47N Normal- Sinestral Plano principal 74 56	Plano principal	115	45		
Falla cizalla 132 59 47N Normal- Sinestral Plano principal 74 56	Contacto	343	40		
Plano principal 74 56 Image: style	Falla cizalla	132	59	47N	Normal- Sinestral
Plano principal 349 36 Image: style styl	Plano principal	74	56		
Plano principal 140 34 Plano principal 79 58 Plano principal 312 65 Dique 35 88 Dique 195 28 Plano principal 180 77 Dique 92 80 Plano principal 348 70 Contacto 64 42 Plano principal 358 50 Plano principal 6 32 Plano principal 242 10 Plano principal 350 47	Plano principal	349	36		
Plano principal 79 58 Image: style	Plano principal	140	34		
Plano principal 312 65 Image: style styl	Plano principal	79	58		
Dique 35 88	Plano principal	312	65		
Dique 195 28	Dique	35	88		
Plano principal 180 77 Image: style styl	Dique	195	28		
Dique 92 80 Image: style sty	Plano principal	180	77		
Plano principal 348 70 Image: style styl	Dique	92	80		
Contacto 64 42 Image: matrix state in the state	Plano principal	348	70		
Plano principal35850IPlano principal1786IPlano principal632IPlano principal24210IPlano principal35047IPlano principal35047IPlano principal2771IPlano principal34826IFalla cizalla2513NIxSxFalla cizalla2513NIxSxFalla local1873IPlano principal2082IFalla cizalla2417421SNormal-SinestralPlano principal18575IIPlano principal15251IIPlano principal15251IIPlano principal25120II	Contacto	64	42		
Plano principal1786Plano principal632	Plano principal	358	50		
Plano principal632	Plano principal	17	86		
Plano principal24210IPlano principal35047IPlano principal2771IPlano principal34826IFalla cizalla2513NIxSxFalla local1873IPlano principal26665IPlano principal2082IFalla cizalla2417421SNormal-SinestralPlano principal18575IPlano principal33941IPlano principal15251IPlano principal17073IPlano principal25120I	Plano principal	6	32		
Plano principal35047Image: scalar sc	Plano principal	242	10		
Plano principal2771Image: constraint of the systemPlano principal34826Image: constraint of the systemFalla cizalla2513NIxSxFalla local1873Image: constraint of the systemImage: constraint of the systemPlano principal26665Image: constraint of the systemImage: constraint of the systemPlano principal2082Image: constraint of the systemImage: constraint of the systemFalla cizalla2417421SNormal-SinestralPlano principal18575Image: constraint of the systemImage: constraint of the systemPlano principal15251Image: constraint of the systemImage: constraint of the systemPlano principal17073Image: constraint of the systemImage: constraint of the systemPlano principal25120Image: constraint of the systemImage: constraint of the system	Plano principal	350	47		
Plano principal34826Image: scalar sc	Plano principal	27	71		
Falla cizalla2513NIxSxFalla local1873Plano principal26665Plano principal2082Falla cizalla2417421SNormal-SinestralPlano principal18575Plano principal18575Plano principal13941Plano principal15251Plano principal25120	Plano principal	348	26		
Falla local1873Image: constraint of the second sec	Falla cizalla	2	51	3N	IxSx
Plano principal26665Image: scalar sc	Falla local	18	73		
Plano principal2082Falla cizalla2417421SNormal-SinestralPlano principal18575Plano principal33941Plano principal15251Plano principal17073Plano principal25120	Plano principal	266	65		
Falla cizalla2417421SNormal-SinestralPlano principal18575Plano principal33941Plano principal15251Plano principal17073Plano principal25120	Plano principal	20	82		
Plano principal18575Plano principal33941Plano principal15251Plano principal17073Plano principal25120	Falla cizalla	241	74	21S	Normal- Sinestral
Plano principal33941Plano principal15251Plano principal17073Plano principal25120	Plano principal	185	75		
Plano principal15251Plano principal17073Plano principal25120	Plano principal	339	41		
Plano principal17073Plano principal25120	Plano principal	152	51		
Plano principal 251 20	Plano principal	170	73		
	Plano principal	251	20		

Plano principal	8	72	
Diaclasa	42	70	
Diaclasa	42	20	
Diaclasa	210	65	
Diaclasa	50	200	
Diaclasa	28	320	
Diaclasa	72	240	
Diaclasa	75	310	
Diaclasa	20	40	
Diaclasa	72	330	
Diaclasa	72	330	
Diaclasa	68	35	
Diaclasa	25	220	
Diaclasa	170	80	
Diaclasa	80	140	
Diaclasa	80	20	
Diaclasa	22	170	
Diaclasa	58	70	
Diaclasa	30	340	
Diaclasa	25	340	
Diaclasa	30	360	
Diaclasa	60	20	
Diaclasa	40	60	
Diaclasa	62	140	
Diaclasa	70	330	
Diaclasa	28	10	
Diaclasa	65	100	
Diaclasa	48	270	
Diaclasa	55	40	
Diaclasa	15	345	
Diaclasa	48	60	
Diaclasa	20	260	
Diaclasa	15	20	
Diaclasa	60	190	
Diaclasa	50	280	
Diaclasa	45	300	
Diaclasa	30	140	
Diaclasa	60	270	
Diaclasa	60	335	

Diaclasa	70	50	
Diaclasa	50	30	
Diaclasa	59	57	
Diaclasa	65	10	
Diaclasa	54	26	
Diaclasa	25	26	
Diaclasa	30	335	
Diaclasa	60	60	
Diaclasa	40	75	
Dique	25	240	
Dique	30	110	
Dique	47	50	
Dique	68	310	
Dique	45	340	
Dique	25	60	
Dique	40	68	
Dique	40	35	
Dique	25	10	
Dique	30	30	
Dique	40	350	
Dique	20	120	
Dique	40	70	
Dique	60	110	
Dique	18	20	
Dique	80	130	
Dique	28	330	
Dique	68	20	
Dique	60	310	
Dique	50	20	
Dique	45	240	
Dique	35	20	
Dique	70	360	
Dique	65	10	
Dique	60	0	
Dique	90	0	
Dique	50	56	
Dique	80	25	
Dique	55	320	
Dique	30	140	

Dique	67	30	
Dique	50	225	
Dique	25	25	
Dique	65	55	
Dique	82	145	
Dique	60	140	
Dique	61	50	
Dique	61	25	
Dique	35	340	
Dique	64	30	
Dique	62	30	
Dique	25	340	
Dique	80	20	
Dique	55	345	
Dique	60	15	
Dique	55	345	
Dique	50	320	
Dique	48	0	
Dique	89	130	
Dique	72	65	
Dique	70	250	
Dique	40	340	
Dique	80	330	
Dique	59	30	
Dique	50	30	
Dique	38	70	
Falla Local	62	38	
Falla Local	28	170	
Falla Local	90	330	
Falla Local	72	60	
Falla Local	60	60	
Falla Local	32	40	
Falla Local	68	20	
Falla Local	56	110	
Falla Local	40	30	
Falla Local	38	50	
Falla Local	40	40	
Falla Local	28	140	
Falla Local	70	0	

Falla Local	65	5	
Falla Local	50	350	
Falla Local	70	45	
Falla Local	45	105	
Falla Local	42	25	
Falla Local	56	105	
Falla Local	72	120	
Falla Local	46	135	
Falla Local	90	110	
Falla Local	70	20	
Falla Local	70	230	
Falla Local	64	60	
Falla Local	75	200	
Falla Local	50	60	
Falla Local	68	180	
Falla Local	80	10	
Falla Local	25	125	
Fractura	36	350	
Fractura	67	355	
Fractura	60	345	
Fractura	89	290	
Veta Qz	70	360	
Veta Qz	78	155	
Veta Qz	80	310	
Veta Qz	75	20	
Veta Qz	61	50	
Veta Qz	60	330	
Veta Qz	65	140	
Veta Qz	55	35	
Veta Qz	22	100	
Veta Qz	73	10	
Vetilla	30	170	
Vetilla	25	140	

Fuente: Montesdeoca, J., Ramírez, M., 2017

ANEXO G. Mapa de porcentajes de ppm de Au

Fuente: Montesdeoca, J., Ramírez, M., 2017

ANEXO H. Mapa de porcentajes de ppm de Cu

Fuente: Montesdeoca, J., Ramírez, M., 2017

BIBLIOGRAFÍA

Abdullah, A., Nassr, S., & Ghaleeb, A. (2013). Remote Sensing and Geographic Information System for. *Journal of Geological Research,* 2013(201757).

Aspden, J., Harrison, S., & Rundle, C. (1992). New geochronological control for the tectono-magmatic evolution of the metamorphic basement,Cordillera Real and E! Ore Province of Ecuador. *Journal of South American Earth Sciences*, 77-96.

Abdunaser, K. M. (2015) 'Satellite Imagery for Structural Geological Interpretation in Western Sirt Basin , Libya: Implication for Petroleum Exploration', 5(1), pp. 8–25. doi: 10.5923/j.geo.20150501.02.

BALDOCK J.W. (1982) "Geología del Ecuador". Boletín de la explicación del mapa geológico del Ecuador, 66 pp.

Calvo, A. (2008). Tierra y tecnología, 71-74.

Didero, J. *et al.* (2016) 'Use of Landsat 7 ETM + Data for the Geological Structure Interpretation : Case Study of the Ngoura-Colomines Area , Eastern Cameroon', *Journal of Geosciences and Geomatics*, 4(3), pp. 61–72. doi: 10.12691/jgg-4-3-3.

Egbue, O. and Kellogg, J. (2010) 'Pleistocene to Present North Andean "escape", *Tectonophysics*. Elsevier B.V., 489(1–4), pp. 248–257. doi: 10.1016/j.tecto.2010.04.021.

Ego, F., Sébrier, M., & Carey, E. (1996). Do the Billecocha normal faults (Ecuador] reveal extension due to lithospheric body forces in the northern Andes? *Tectonophysics*, 255-273.

ENAMI EP. (2017). Informe Tecnico NI43-101. Quito.

ENAMI, E. (2017). Informe Técnico anual proyecto La Bonita 2017.

Fossen, H. (2010) *Structural Geology*, *Cambridge*. doi: 10.1017/CBO9780511777806.

Ferrari, L., & Tibaldi, A. (1992). Recent and Active Tectonics of the North-Eastern Ecuadorian Andes. *J. Geodynamics, 15*, 39-59.

Garzón, F. (2012). MODELAMIENTO ESTRUCTURAL DE LA ZONA LÍMITE ENTRE LA MICROPLACA DE PANAMÁ Y EL BLOQUE NORANDINO A PARTIR DE LA INTERPRETACIÓN DE IMÁGENES DE RADAR, CARTOGRAFÍA GEOLÓGICA, ANOMALÍAS DE CAMPOS POTENCIALES Y LÍNEAS SÍSMICAS. UNIVERSIDAD NACIONAL DE COLOMBIA, DEPARTAMENTO DE GEOCIENCIAS, Bogota.

Ibrahim, W. S., Watanabe, K. and Yonezu, K. (2016) 'Structural and lithotectonic controls on Neoproterozoic base metal sulfide and gold mineralization in North Hamisana shear zone, South Eastern Desert, Egypt: The integrated field, structural, Landsat 7 ETM+ and ASTER data approach', *Ore Geology Reviews*. Elsevier B.V., 79, pp. 62–77. doi: 10.1016/j.oregeorev.2016.05.012. Jillo, J. and Oyarzun, R. (2013) *Geología Estructural Aplicada a la Minería y Exploración Minera*. Madrid.

Litherland, M., Aspden, J., Jemielita, R., & Survey, B. G. (1994). *THE METAMORPHIC BELTS OG ECUADOR*. Ecuador: British Geological Survey.

Pardo, O. (2008). CARTOGRAFIA GEOLOGICA Y MODELAMIENTO ESTRUCTURAL DE LAS CUENCAS DE URABÁ Y SINÚ-SAN JACINTO A PARTIR DE LA INTERPRETACION DE IMÁGENES DE SENSORES REMOTOS Y MONITOREO SISMICO. DEPARTAMENTO DE GEOCIENCIAS, Bogota.

Pasquarè, G., Tibaldi, A. and Ferrari, L. (1990) 'Relationships between plate convergence and tectonic evolution in the Ecuadorian active thrust belt', (April 2015).

Pilger, R.H., 1981. Plate reconstructions, aseismic ridges, and low-angle subduction beneath the Andes. Geol. Soc. Amer. Bull., 92, p. 448-456.
Posada, E., Ramirez, H., & Espejo, N. (2012). *Manual de prácticas de percepción remota con el programa ERDAS IMAGINE 2011.* Bogota: Instituto Geográfico Agustín Codazzi.

Rubilar, H. N. (1999). *APUNTES DE GEOLOGIA ESTRUCTURAL.* Antofagasta. Santamaría, J. (2001). Integración de ortofotografía digital en sistemas de información geográfica y su aplicación a la revisión de la superficie catastral rústica. Departamento de Proyectos e Ingeniería Rural, Logroño.

Suter, F. *et al.* (2008) 'Structural imprints at the front of the Choc??-Panam?? indenter: Field data from the North Cauca Valley Basin, Central Colombia', *Tectonophysics*. Elsevier B.V., 460(1–4), pp. 134–157. doi: 10.1016/j.tecto.2008.07.015.

Tibaldi, A. (2005) 'Volcanism in compressional tectonic settings: Is it possible?', *Geophysical Research Letters*, 32(6), pp. 1–4. doi: 10.1029/2004GL021798.

Tibaldi, A. and Ferrari, L. (1991) 'Multisource remotely sensed data, field checks and seismicity for the definition of active tectonics in ecuadorian andes', *International Journal of Remote Sensing*, 12(11), pp. 2343–2358. doi: 10.1080/01431169108955262.

Tibaldi, A., Rovida, A. and Corazzato, C. (2007) 'Late Quaternary kinematics, slip-rate and segmentation of a major Cordillera-parallel transcurrent fault: The Cayambe-Afiladores-Sibundoy system, NW South America', *Journal of Structural Geology*, 29(4), pp. 664–680. doi: 10.1016/j.jsg.2006.11.008.

Vinueza, I. (2012). EVALUACIÓN DEL USO DE IMÁGENES ASTER EN LA DERIVACIÓN DE PARAMETROS MORFOMÉTRICOS PARA LA CARACTERIZACIÓN DE UNIDADES GEOMORFOLÓGICAS A ESCALA 1:25000 DE LA MICROCUENCA DEL Río CRISTAL. Sangolquí.

Zhang, W. *et al.* (2013) 'Remote sensing interpretation and extraction of structural information about active faults at Hangzhou, China, and their surroundings', *Journal of Earth Science*, 24(6), pp. 1056–1067. doi: 10.1007/s12583-013-0381-7.