

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL.

FACULTAD DE INGENIERÍA MARÍTIMA, CIENCIAS BIOLÓGICAS OCEÁNICAS Y RECURSOS NATURALES

"Factibilidad de la maricultura de huayaipe (Seriola sp) como medida de adaptación ante el incremento de temperatura del mar por efectos del cambio climático para el sector pesquero -caso de estudio Jaramijó"

TRABAJO DE TITULACIÓN PREVIO A LA OBTENCIÓN DEL TÍTULO DE MAGISTER EN CAMBIO CLIMÁTICO

PRESENTADO POR:

ULISES AVENDAÑO VILLAMAR FAUSTO PAZOS NORIEGA

GUAYAQUIL – ECUADOR, 2017

AGRADECIMIENTO

A Dios Padre Todopoderoso, a las personas que de uno u otro modo colaboraron en la realización de este trabajo y especialmente a los Doctores Mercy Borbor Córdova, Gladys Rincón Polo, Enrique Blacio y Víctor Osorio por su invaluable ayuda y recomendaciones.

DEDICATORIA

A nuestros padres, esposas e hijos que han sido nuestra fuente de motivación y apoyo para realizar este trabajo.

TRIBUNAL DE GRADUACIÓN

Jorge Enrique Blacio Game, M.Sc Presidente

Mercy J. Borbor Cordova, Ph.D. Directora

Gladys Rincón Polo, Ph.D Vocal

DECLARACIÓN EXPRESA

"La responsabilidad del contenido de este trabajo de titulación, me corresponde exclusivamente; y el patrimonio intelectual de la misma a la ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL"

(Reglamento de Graduación de la ESPOL)

ULISES TIBERIO AVENDAÑO VILLAMAR

CC: 0916250251

FAUSTO GIOVANNI PAZOS NORIEGA

CC:0911991768

RESUMEN

Cambios en la abundancia de peces en el Ecuador estarían asociados a la sobre explotación pesquera de acuerdo al Instituto Nacional de Pesca (INP), sin embargo, también escenarios de cambio climático pueden provocar cambios en su abundancia y organización espacial en especies de resiliencia reducida. La susceptibilidad del sector camaronero a precipitaciones frecuentes y cambios en las condiciones principalmente biológicas en su fuente de agua por el incremento de temperatura, podrían afectar los rendimientos actuales de producción. El presente trabajo enfocado hacia la maricultura de huavaipe (Seriola rivoliana) se plantea como una medida de adaptación, que aliviaría los efectos directos e indirectos del cambio climático, en los sectores productivos mencionados. Rangos fisiológicos óptimos de oxígeno, temperatura, salinidad de la especie están dentro de la valoración físico-química y oceanográfica existentes a 1.7 millas náuticas de la punta de Jaramijó, Provincia de Manabí. Existe viabilidad financiera, TIR 9.3%, 12 meses, 60% sobrevivencia, 2.2 kg y FCA de 1,6 bajo un escenario conservador. Se requiere estudio de probabilidades de las variables analizadas en TIR 22,9% y VAN mayor a cero, si el cultivo es llevado a 12 meses, 2.5 kg de peso, 70% de sobrevivencia y FCA de 1.4, bajo un escenario optimista.

Palabras claves: Maricultura, medida de adaptación, cambio climático, TIR, VAN

SUMMARY

Changes in the abundance of fish in Ecuador would be associated with overfishing according to National Institute of Fisheries (INP), however, scenarios of climate change can also cause changes in their abundance and spatial organization in species of reduced resilience. The susceptibility of the shrimp sector to frequent rainfall and changes in mainly biological conditions in its water source, due to the increase in temperature could affect current yields. The present work focused on Almaco Jack mariculture (*Seriola rivoliana*), as a proposed adaptation measure, would alleviate the direct and indirect effects of climate change. Optimal physiological ranges of oxygen, temperature, and salinity of the species are within the physical, chemical and oceanographic values existing at 1.7 nautical miles from the tip of Jaramijó, Province of Manabí. There is financial viability, IRR 9.3%, 12 months, 60% survival, 2.2 kg and 1.6 of FCA under a conservative scenario. It is necessary to study the probabilities of the variables analyzed in IRR 22.9% and NPV greater than zero, if the culture is taken to 12 months, 2.5 kg of weight, 70% of survival and 1.4 of FCA, under an optimistic scenario.

Keywords: Mariculture, adaptation measure, climate change, IRR, NPV

Tabla de contenido

Capítulo 1 5 Marco teórico 5 1.1Cambio Climático: Adaptación 5 1.2. Efectos del Cambio climático en ecosistemas oceánicos 6 a) Incremento térmico 7 b) Surgencia costera 8 c) Aumento del nivel del mar 8 d) Rendimiento fisiológico 9 1.3 Potenciales medidas de adaptación para la pesca y la acuicultura frente al 1 Cambio Climático 10 1.4 Evidencia del cambio climático en el Ecuador 16 1.5 Maricultura y su potencial 19 1.6 El huayaipe como especie resiliente al cambio climático 20 1.7 Situación del cultivo de huayaipe en Japón y el mundo 21 1.8Taxonomía del género Seriola 22 1.9 Experiencias del cultivo de huayaipe en Ecuador 22 Capítulo 2 25 2 Marco metodológico 25 2.1 Tipo de Investigación 25 2.2 Estrategia de búsqueda de la información 25 2.3 Operacionalización de variables 26 2.4 Selección del área de estudio 28 2.5 Lineamientos técnicos y biológicos a considerar para la instalación	Introducción	1
Marco teórico	Objetivo general y específicos	4
Marco teórico		_
1.1Cambio Climático: Adaptación	•	
1.2. Efectos del Cambio climático en ecosistemas oceánicos a) Incremento térmico		
a) Incremento térmico	•	
b) Surgencia costera		
c) Aumento del nivel del mar	<i>'</i>	
d) Rendimiento fisiológico	,	
1.3 Potenciales medidas de adaptación para la pesca y la acuicultura frente al Cambio Climático	c) Aumento del nivel del mar	8
Cambio Climático	d) Rendimiento fisiológico	9
1.4 Evidencia del cambio climático en el Ecuador 16.5 Maricultura y su potencial 19.6 El huayaipe como especie resiliente al cambio climático 20.1.7Situación del cultivo de huayaipe en Japón y el mundo 21.8Taxonomía del género Seriola 22.9Experiencias del cultivo de huayaipe en Ecuador 22Marco metodológico 25.1 Tipo de Investigación 25.2 Estrategia de búsqueda de la información 25.2 Estrategia de búsqueda de la información 25.3 Operacionalización de variables 26.4 Selección del área de estudio 28.	1.3 Potenciales medidas de adaptación para la pesca y la acuicultura frente al	
1.5 Maricultura y su potencial	Cambio Climático	10
1.6 El huayaipe como especie resiliente al cambio climático 20 1.7Situación del cultivo de huayaipe en Japón y el mundo 21 1.8Taxonomía del género Seriola 22 1.9Experiencias del cultivo de huayaipe en Ecuador 22 Capítulo 2 25 2Marco metodológico 25 2.1 Tipo de Investigación 25 2.2 Estrategia de búsqueda de la información 25 2.3 Operacionalización de variables 26 2.4 Selección del área de estudio 28	1.4 Evidencia del cambio climático en el Ecuador	16
1.7Situación del cultivo de huayaipe en Japón y el mundo 21 1.8Taxonomía del género Seriola 22 1.9Experiencias del cultivo de huayaipe en Ecuador 22 Capítulo 2 25 2Marco metodológico 25 2.1 Tipo de Investigación 25 2.2 Estrategia de búsqueda de la información 25 2.3 Operacionalización de variables 26 2.4 Selección del área de estudio 28	1.5 Maricultura y su potencial	19
1.8Taxonomía del género Seriola221.9Experiencias del cultivo de huayaipe en Ecuador22Capítulo 2252Marco metodológico252.1 Tipo de Investigación252.2 Estrategia de búsqueda de la información252.3 Operacionalización de variables262.4 Selección del área de estudio28	1.6 El huayaipe como especie resiliente al cambio climático	20
1.9Experiencias del cultivo de huayaipe en Ecuador 22 Capítulo 2 25 2Marco metodológico 25 2.1 Tipo de Investigación 25 2.2 Estrategia de búsqueda de la información 25 2.3 Operacionalización de variables 26 2.4 Selección del área de estudio 28	1.7Situación del cultivo de huayaipe en Japón y el mundo	21
Capítulo 2252Marco metodológico252.1 Tipo de Investigación252.2 Estrategia de búsqueda de la información252.3 Operacionalización de variables262.4 Selección del área de estudio28	1.8Taxonomía del género Seriola	22
2Marco metodológico252.1 Tipo de Investigación252.2 Estrategia de búsqueda de la información252.3 Operacionalización de variables262.4 Selección del área de estudio28		
2Marco metodológico252.1 Tipo de Investigación252.2 Estrategia de búsqueda de la información252.3 Operacionalización de variables262.4 Selección del área de estudio28		
2Marco metodológico252.1 Tipo de Investigación252.2 Estrategia de búsqueda de la información252.3 Operacionalización de variables262.4 Selección del área de estudio28	Capítulo 2	25
2.1 Tipo de Investigación252.2 Estrategia de búsqueda de la información252.3 Operacionalización de variables262.4 Selección del área de estudio28	•	
2.2 Estrategia de búsqueda de la información252.3 Operacionalización de variables262.4 Selección del área de estudio28		
2.3 Operacionalización de variables262.4 Selección del área de estudio28	1	
2.4 Selección del área de estudio		
	<u>i</u>	
		20
de infraestructuras acuícolas	, e e e e e e e e e e e e e e e e e e e	20
2.6 Cálculos para el Dimensionamiento de Jaulas y entramado		
2.8Cálculos de esfuerzo para entramado marino	•	
•	•	

Capítulo 3	41
Discusión de los resultados	
3.1 Análisis de condiciones óptimas para el Cultivo de huayaipe	
(Seriola rivoliana) en el sector de Jaramijó-Provincia de Manabí	41
3.2 Cálculos de esfuerzo para sostenimiento de entramado marino	49
3.3 Cálculo Básicos del sistema de anclaje	
3.4 Determinación de costos y tiempo estimado de ejecución	54
3.5Escenarios de las diferentes variables productivas y no productivas	55
3.6Supuestos para la construcción del flujo de caja del proyecto	58
Conclusiones	61-62
Referencias bibliográficas	63
Anexos	69

INDICE DE TABLAS

Tabla IPotenciales medidas de adaptación al cambio climático en pesca y acuicultura	14
Tabla IIMedidas de adaptación en Ecuador bajo el enfoque de la maricultura	15
Tabla IIICambios proyectados de temperatura región costa	19
Tabla IVResumen de publicaciones consultadas en el ámbito de la maricultura	26
Tabla VMatriz de operación de variables	27
Tabla VIEstudio de factibilidad técnica, científica, biológica y ambiental para el establecimie	nto
de proyectos de maricultura destinados a las comunidades pesqueras artesanales	29
Tabla VIIFactores Físico - Químicos a considerarse para el cultivo de Seriola rivoliana	31
Tabla VIIIFuente de Información y metodología aplicada para el análisis de Factores Físic	:o -
Químicos previa a la instalación de infraestructura acuícola en el sector de Jaramijó	32
Tabla IXFuente de Información y metodología aplicada para el análisis de fuerzas a las que	son
sometidas las jaulas marinas.	36
Tabla XFormulas de fuerzas a considerarse para dimensionamiento de entramado marino	37
Tabla XIFormulas de fuerzas a considerarse para dimensionamiento de entramado marino	37
Tabla XIIFormulas para cálculos de sistema de fondeo.	38
Tabla XIIIVariaciones de Oxigeno en la bahía de Jaramijó - Provincia de Manabí	42
Tabla XIVVariaciones de Salinidad en la bahía de Jaramijó - Provincia de Manabí	45
Tabla XV Resumen de condiciones recomendadas para el Cultivo de huayaipe (Sera	iola
rivoliana) frente a las encontradas en el sector de Jaramijó- Provincia de Manabí	48
Tabla XVIResumen de cálculos de las fuerzas que interactúan sobre las jaulas para cultivo	
Seriola rivoliana.	50
Tabla XVIICaracterísticas de cadena para entramado	51
Tabla XVIIIEscala de cargas límite de ruptura de cadenas de carbono grado 80	52
Tabla XIXDensidades de cultivo en países productores de Seriola rivoliana	55
Tabla XXEstudios referenciales de crecimiento diario para Seriola rivoliana	56
Tabla XXI. Referencias de factor de conversión alimenticia para Seriola sp	56
Tabla XXIIRevisión bibliográfica de precios y mercados disponibles para Seriola sp	57
Tabla XXIIIResumen de variables usadas en los escenarios propuestos	57
Tabla XXIV Escenarios para el cultivo de huayaipe	57

INDICE DE FIGURAS

Figura 1 Número de barcos activos frente a desembarques totales. 1981 – 20112
Figura 2Proporción de la acuicultura de animales acuáticos en la producción total (1985-2014) 3
Figura 3 . Modelo conceptual de vulnerabilidad6
Figura 4 . Series cronológicas del contenido de calor anual mundial de los océanos (10 ²² J)7
Figura 5. Anomalías en la extensión de la banquisa en ambos Hemisferios9
Figura 6Exportaciones procedentes de la pesca en Ecuador (2006 al 2013)10
Figura. 7 Evolución de exportaciones procedentes de la acuicultura en Ecuador (2006-2013)11
Figura. 8 Cuantificación de pérdidas económicas ocasionadas por el Fenómeno de "El Niño" en
Ecuador 1982-198312
Figura 9. Mapa de zonas de producción acuícola vulnerables a inundaciones13
Figura 10. Análisis de Boxes (subregiones) y área de estudio analizados17
Figura 11. Valores mensuales promedio individuales de TSM para cada una de las subregiones
de la zona de estudio
Figura 12Caminos Representativos de Concentración (RCP). Fuente: IPCC (2007)18
Figura 13. Ranking por área de principales naciones que no realizan maricultura pero cumplen
con las condiciones apropiadas para la instalación de jaulas marinas y long lines. Fuente: FAO,
201320
Figura 14 . Producción de acuicultura mundial en jaulas por especies de peces22
Figura 15. Características morfológicas de <i>Seriola rivoliana</i> 24
Figura 16. Área de estudio propuesta a 1.7 millas de distancia de la franja costera del Puerto de
Jaramijó – Provincia de Manabí
Figura 17Elementos de una jaula marina
Figura 18Representación gráfica de las fuerzas a las que son sometidas las jaulas marinas35
Figura19 Distribución y variación de oxígeno en la columna de agua -Sector Jaramijó -
Provincia de Manabí42
Figura 20 Promedios Superficiales de Oxígeno Disuelto Estación Fija Manta43
Figura 21Variación de la temperatura superficial del mar (TSM) en la Provincia de Manabí
Periodo de 1983- 2013
Figura 22Variación de salinidad Jaramijó –Provincia de Manabí (1991-1995)45
Figura 23 Mapa hidrográfico I.O.A 103 "Punta Ballena-Punta San Mateo"46
Figura 24. Mapa de distribución de fondos en la Bahía de Jaramijó –Provincia de Manabí47
Figura 25. Diseño de entramado y disposición de jaulas flotantes
Figura 26. Cronograma de actividades para la implementación del proyecto54

ABREVIATURAS

GEI Gas de efecto invernadero

FAO Food and Agriculture Organization

INP Instituto Nacional de Pesca

ENSO El Niño- Southern Oscillation

TIR Tasa interna de retorno

VAN Valor actual neto

CMCC Convención Marco de las Naciones

Unidas sobre el Cambio Climático

NOOA National Oceanic and Atmospheric

Administration

INOCAR Instituto Oceanográfico de la Armada

INTRODUCCIÓN

El informe FAO (2016), sobre el estado de la pesca y acuicultura a nivel mundial, acoge los criterios y acuerdos emitidos durante la 21° Conferencia de las Partes (COP21) de la Convención Marco de las Naciones Unidas sobre el Cambio Climático desarrollada en París (Francia), de diciembre de 2015, que destaca la importancia de los servicios ecosistémicos que brindan los sistemas acuáticos continentales y oceánicos durante los procesos de regulación en temperatura y fijación de carbono. Además destaca la relevancia de revertir esta tendencia de sobreexplotación y contaminación para recuperar estos servicios ecosistémicos, así como su capacidad productiva (LA, C. A., & LA, A. Y, 2016).

En este ámbito, se ha identificado que la modificación más relevante para la pesca y acuicultura, asociada al cambio climático es el aumento progresivo de la temperatura media a escala global, además de conllevar a una serie de potenciales alteraciones perjudiciales para la pesca y la acuicultura, tales como, (I) pérdidas de costas por el aumento del nivel del mar; (II) acidificación oceánica; (III) alteraciones locales de la temperatura oceánica; (IV) variaciones de oxígeno ambiental; (V) aumento de la intensidad y periodicidad de tempestades; (VI) alteraciones en los patrones normales de circulación oceánica; (VII) cambios en los patrones de lluvia y caudales de ríos; (IX) alteraciones en los ciclos biogeoquímicos (nitrógeno, azufre, fósforo, carbono). Todos estos impactos pueden alterar las producciones de pesca y acuicultura; y por ende los medios de vida de las comunidades que dependen de estos sectores (Soto. D & Quiñones, 2013).

En el Ecuador según el Instituto Nacional de Pesca (INP), un enfoque analítico de los desembarques históricos totales de la flota cerquera-costera (de peces pelágicos pequeños) desde 1981 hasta 2011, han registrado un descenso del 360%, lo cual se traduce en 800.000 toneladas (t) que la flota ya no pesca. Los desembarques de esta pesquería han registrado 1.998.587 t como máximo para el año de 1985 y un mínimo de 175.947 t (2004), lo que se refleja en la figura 1, ésta reducción en la abundancia de las especies pelágicas pequeñas tradicionales se la relaciona a los probables efectos de la sobrepesca ejercida en años anteriores, la intensificación del esfuerzo pesquero, así como por las condiciones oceanográficas presentes en algunos años, tales como el evento cálido El Niño (1982-1983, 1987, 1991-1992, 1997-1998) frente a nuestras costas (INP, 2012). En relación al evento cálido "El Niño", autores como (Timmermann, 1999); (Hansen, 2006), mencionan que el recalentamiento mundial sería su origen, pero otros autores aseveran que los indicios aún no son concluyentes.

Según un estudio realizado por el Banco Mundial (2013), en un rango de tiempo de estudio (2030 y 2055), si estas tendencias de calentamiento global continúan, las proyecciones de las pesquerías a nivel mundial seguirán fluctuando, debido a que el cambio climático es un proceso continuo y cuyos impactos se plasmarían en años posteriores. No obstante, ya en 2030, el cambio climático es probable que afecte mercados mundiales de peces por los cambios en la distribución de la pesca a escala mundial y de los consiguientes patrones de comercio (Banco Mundial, 2013).

La FAO (Food and Agriculture Organization of the United Nations) ante escenarios de riesgos climáticos del sector pesca (bajos rendimientos pesqueros) y acuicultura recomienda como una estrategia de carácter nacional e internacional la promoción e inversión en infraestructura de acuicultura (Shelton, 2014), criterio que se acoge en el presente trabajo mediante la propuesta de implantación de jaulas de cultivo para especies bioacuáticas en mar abierto.

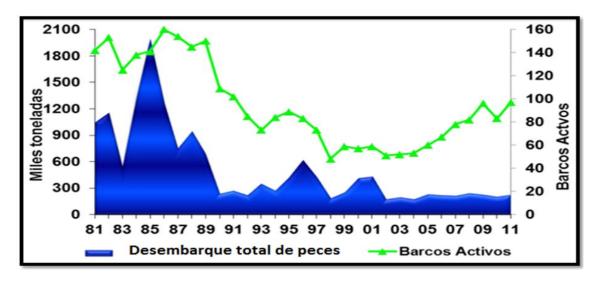


Figura 1 .- Número de barcos activos frente a desembarques totales. 1981 – 2011 Fuente: INP (2012)

El presente trabajo plantea ser una fuente de información y de discusión en materia de adaptación frente al cambio climático para la pesca y acuicultura en el país, especialmente para el sector pesquero nacional, que no es ajeno a una tendencia a nivel mundial como es la sobreexplotación pesquera y que a futuro sus tasas de captura de peces se verían aún más mermadas por efectos de la temperatura, en un eventual escenario de cambio climático. En el contexto de la acuicultura a nivel nacional, la producción se ha fundamentado en el monocultivo de camarón, lo que ha permitido la generación de plazas de trabajo e ingresos

económicos importantes, sin embargo esta actividad productiva históricamente ha sido influenciada por acontecimientos biológicos y físicos como el evento oceanográfico "El Niño" y enfermedades como los síndromes de la Gaviota (1986-1990); Taura (1992) y el virus de mancha blanca (1999), lo que mermó sus niveles de producción (Blacio Game, J. E., Vera Vera, V., & Sinche Chele, F., 2009). En relación a lo anterior, existe una necesidad inminente de diversificar al sector pesquero y acuícola a nivel nacional, con el fin de ofrecer mayores posibilidades de adaptación bajo diferentes escenarios de cambio climático (temperatura, acidez oceánica, alteraciones de los ciclos biogeoquímicos), así como ante acontecimientos inesperados tales como enfermedades o problemas relacionados con precios en el mercado nacional e internacional.

Nuestra propuesta se desarrolla mientras la importancia del sector acuícola a nivel mundial toma gran relevancia. La figura 2 muestra que para el año 2014 los peces recolectados de la acuicultura ascendieron a 73,8 millones de toneladas, representando cerca del 45% de la producción por pesca y acuicultura mundial, lo que se estimó en un valor de primera venta de 160.200 millones de USD (Ababouch et al., 2016).

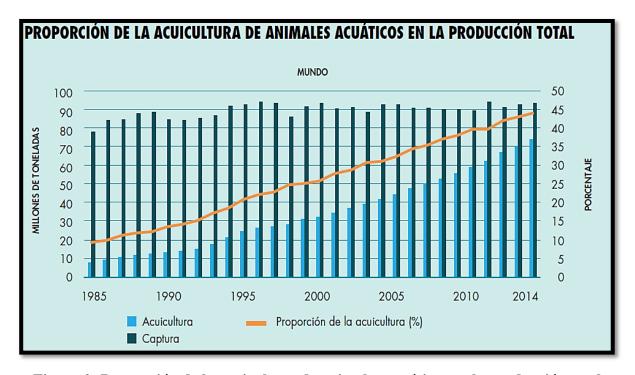


Figura 2.-Proporción de la acuicultura de animales acuáticos en la producción total (1985-2014)

Fuente: FAO (2016)

OBJETIVO GENERAL

1. Evaluar la viabilidad de un cultivo de huayaipe (*Seriola sp*) como una posible medida de adaptación ante el incremento de temperatura del mar como consecuencia de los efectos del cambio climático en ambientes marinos de nuestro país.

OBJETIVOS ESPECÍFICOS

- 1. Analizar las condiciones ambientales para el cultivo de huayaipe (*Seriola sp*) en el Ecuador, en función de variables físicas, químicas, biológicas y climáticas determinantes a partir de registros históricos.
- 2. Diseñar un prototipo de unidad productiva de jaulas marinas para el cultivo de huayaipe (*Seriola sp*) bajo la modalidad de ciclos continuos.
- 3. Evaluar mediante herramientas financieras TIR (Tasa interna de rentabilidad) y VAN (Valor actual neto) la rentabilidad del cultivo de huayaipe (*Seriola sp*) con fines de exportación.

CAPÍTULO 1

1. MARCO TEÓRICO

1.1 Cambio Climático: Adaptación

De acorde a lo establecido en la Convención Marco de las Naciones Unidas sobre el Cambio Climático (CMCC) el cambio climático es "Una variación del clima atribuido a la actividad humana que modifica la composición de la atmósfera mundial y que se suma a la variabilidad natural del clima observada durante períodos de tiempo comparables".

Dentro del Quinto informe de Evaluación del Grupo II de trabajo (GTII IE5-2014) del IPCC se establece a la Adaptación como al proceso mediante el cual los sistema humanos y naturales tratan de moderar o evitar los daños por efecto del clima real o proyectado sin descartar las posibles oportunidades de desarrollo que se puedan presentar, considerando la capacidad de adaptación de cada sistema., lo que definiría a la adaptación como las medidas necesarias presentes para enfrentar las eventualidades en el contexto climático

Vulnerabilidad y resiliencia.

Según el IPCC (2001), la vulnerabilidad se define en «función del tipo, magnitud y ritmo de la variación climática al que está expuesto el sistema, de su susceptibilidad y de su capacidad de adaptación». Estos elementos se describen en la figura 3, que distingue claramente los impactos de los factores de vulnerabilidad¹.

La vulnerabilidad de un individuo, de una comunidad o de un grupo social más amplio depende de su capacidad de respuesta ante factores de estrés externo que pueden ser causados por la variabilidad del ambiente o por cambios resultantes de fuerzas económicas o sociales que se originan fuera del ámbito local. Este es un concepto complejo que está determinado por una combinación de caracteres naturales y sociopolíticos y por la geografía. La vulnerabilidad puede acrecentarse por factores no ligados al clima –tales como la pobreza, la desigualdad, la inseguridad alimentaria, los conflictos, las enfermedades y la globalización – que repercuten en la exposición, susceptibilidad y capacidad de adaptación de los sistemas, comunidades e individuos (Daw et al., 2012).

La capacidad de recuperación (o resiliencia) es un concepto que se relaciona con la vulnerabilidad y la adaptabilidad. Se aplica cada vez más en el contexto de la ordenación de sistemas sociales y ecológicos enlazados tales como las pesquerías.

¹ (IPCC, 2001a, b, c). Glosario de términos basados en el Tercer Informe de Evaluación del IPCC.

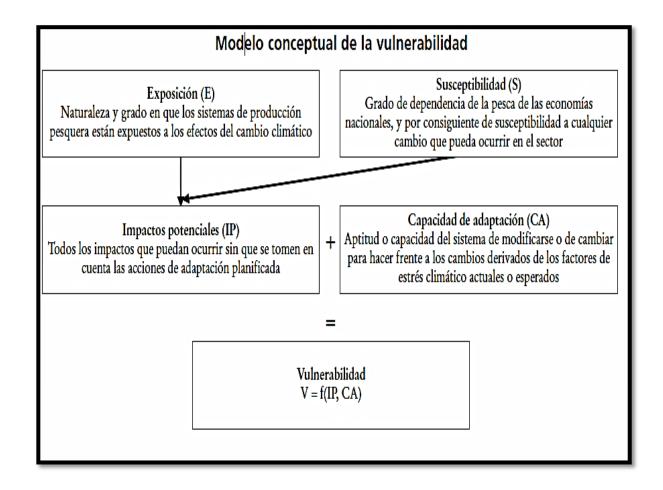


Figura 3 . Modelo conceptual de vulnerabilidad. Fuente: Allison et al (2009)

1.2 Efectos del cambio climático en ecosistemas oceánicos.

Las consecuencias que sufre el planeta por modificaciones antropogénicas, han permitido observar "en los últimos años numerosas variaciones de largo plazo en el forzamiento físico a escala mundial, regional y de las cuencas hidrográficas". Modificaciones observables en los procesos biológicos que sustentan la acuacultura y las pesquerías pueden servir para evaluar efectos del cambio climático a escala global, las que comprenden alteraciones en la intensidad y variabilidad en la circulación océano-atmosférica, los ciclos hidrológicos y los patrones estacionales (Barange y Perry, 2012a).

a) Incremento térmico.

La capacidad de absorción calórica de los océanos es alrededor de 1000 veces superior en comparación a la atmósfera, proceso que es importante en la regulación del clima. La interacción de los procesos físicos y biológicos en los océanos dan origen a complejos circuitos de retroalimentación de diversa índole, esta afirmación se refuerza con estudios de diversos autores (Levitus, 2005) y (Domingues, 2008), coinciden que los océanos a nivel mundial se ha recalentado notoriamente desde el año de 1955 y que al recalentamiento ha originado más del 80 % de los cambios registrados en el contenido de energía del sistema climático de la Tierra durante este período". Según cita (Bindoff, 2007) "Que los estudios han atribuido estos cambios a factores antropogénicos, y que en los modelos del cambio climático se ha subestimado la cantidad de calor absorbido por los océanos durante los últimos 40 años", esto se expone en la figura 4, en la que se observan diferenciaciones decádicas significativas en las series cronológicas mundiales, existiendo por el contrario grandes regiones donde los océanos se están enfriando (Barange y Perry, 2012b).

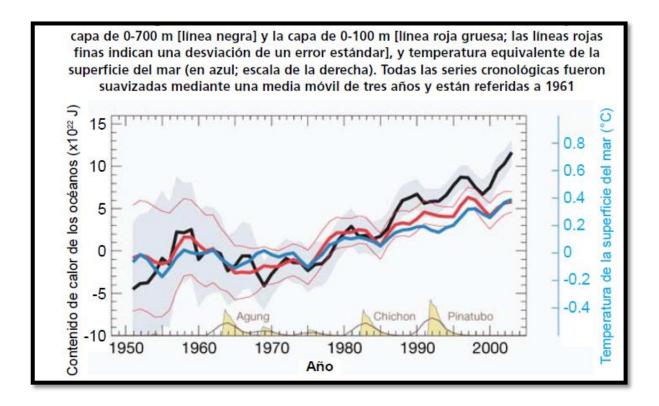


Figura 4 . Series cronológicas del contenido de calor anual mundial de los océanos $(10^{22} \, \mathrm{J})$

Tomado: Domingues et al (2012)

b) Surgencia costera.

En un estudio realizado por (Sarmiento, 2004) en el cual analiza la repercusión del cambio climático en los eventos de surgencia basándose en modelos de circulación global (MCG), concluye: "Estos fenómenos son contradictorios y las predicciones difieren unas de otras a escala global", salvo la zona comprendida hacia dos grados desde el ecuador donde uno de los MCG muestra una disminución. La importancia de este evento es analizada por (Bakun, 2004), en el que establecen que, las graves implicaciones en la variación de la surgencia costera a causa del cambio climático no se limitaría a eventos biológicos, sino que al existir una magnificación de este fenómeno en las próximas décadas, este se manifestaría a través de un descontrolado aumento del fitoplancton resultante de la rápida presencia del zooplancton herbívoro, la deposición de biomasa en el fondo marino y la erupción de gases de efectos invernadero nocivos" (Barange y Perry, 2012c).

c) Aumento del nivel del mar.

Muchas regiones de baja altitud se han visto afectadas por el aumento promedio del nivel del mar estimada a un ritmo anual de 1.8 mm desde el año de 1961; (Miller, 2004); (Church, 2004), sin embargo este promedio en el año 1993 aumento a 3.1 mm producto del derretimiento de nieve de glaciares y casquetes polares (Bindoff et al., 2007), esta tendencia se puede apreciar en la figura 5 en la que las variaciones en la extensión de la banquisa o hielo marino en el hemisferio norte (HN) tienen una tendencia negativa significativa con un nivel de confianza del 90 por ciento la que inicia en el año 1993 y tiene su máxima caída en el año 2008 (-0.8), y en el hemisferio sur (HS) la leve tendencia positiva no es significativa, además una de las conjeturas a lo expuesto. Según (Folland, 2001), índices de un aumento en el nivel del mar durante las últimas décadas puede coincidir con el aumento de la periodicidad e intensidad de los fenómenos de "El Niño".

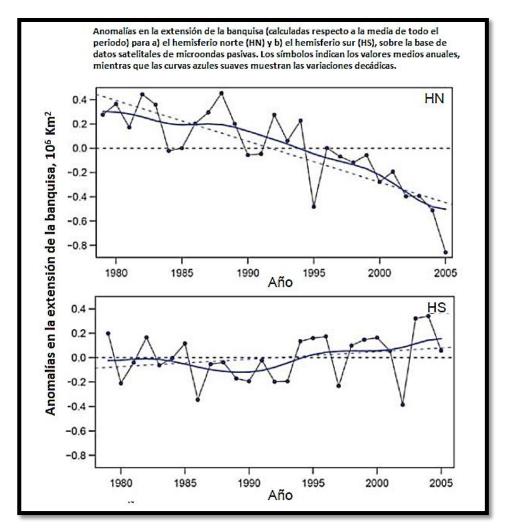


Figura 5. Anomalías en la extensión de la banquisa en ambos Hemisferios
Fuente: Lemke et al (2012)

d) Rendimiento fisiológico.

Las condiciones ambientales externas principalmente la temperatura afecta el ritmo metabólico de los organismos de "sangre fría" (poiquilotermos) lo que incluye a la gran mayoría de los organismos marinos y acuáticos, (Fry, 1971) describe que el mecanismo de tolerancia térmica en los peces implica "respuestas de tipo letal, de control y direccional", lo que les permite una rápida respuesta ante la temperatura con el fin de asegurar su supervivencia, mientras que (Magnuson, J.J., Crowder, L.B. & Medvick, P.A., 1979) plantearon la noción de "nicho térmico" por analogía con otros recursos tales como los alimentos o el espacio", y (Somero, 2012) afirma que la adaptación biológica obtenida a través de la evolución es el principal determinante de la tolerancia y supervivencia de una especie ante variaciones del clima.

1.3 Potenciales medidas de adaptación para la pesca y la acuicultura frente al cambio climático.

En Ecuador, la pesca y acuicultura están dentro de los principales rubros de exportación no petroleras, estas actividades de tipo productivo generan importantes rubros económicos, fuentes de trabajo, y el aseguramiento de la soberanía alimentaria de nuestros conciudadanos lo cual se refleja en un estudio del Banco Central del Ecuador (2014) en las que nos ilustra la evolución que ha tenido el sector pesquero (figura 6) desde el año 2006 (631 Millones USD FOB) al año 2013 Millones USD FOB) lo que equivale a un incremento acumulado del 281%.



Figura 6.-Exportaciones procedentes de la pesca en Ecuador (2006 al 2013). Fuente: PRO ECUADOR (2014)

Mientras que en la figura 7, para el mismo periodo de tiempo (2006) se obtuvo un ingreso de 588 Millones USD FOB y al año 2013 un rubro de 1838 Millones USD FOB lo que equivale a un incremento acumulado del 312.5% (PROECUADOR, 2014).

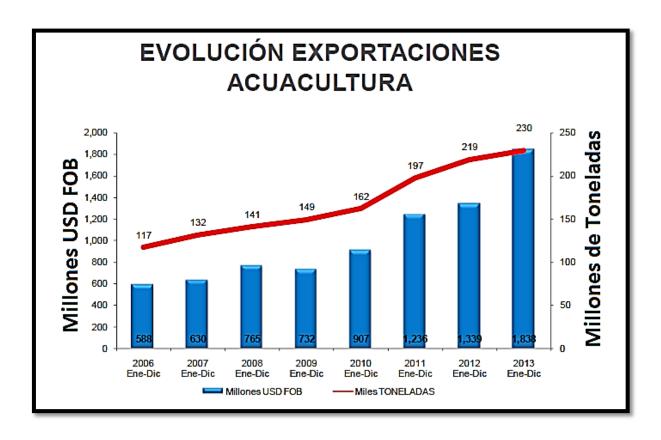


Figura. 7 Evolución de exportaciones procedentes de la acuicultura en Ecuador (2006-2013).

Fuente: PRO ECUADOR (2014)

Sin embargo, estas actividades de tipo productivo son muy vulnerables ante eventos climáticos extremos como el Fenómeno de "El Niño", según datos de la Comisión Económica para América Latina y el Caribe (CEPAL, 1983) en el evento ocurrido entre 1982 -1983, las pérdidas económicas en el Ecuador fueron de US\$ 640.6 millones, de los cuales se estimó que el (63%), corresponde a sectores productivos, (33%) infraestructura y (4%) los sectores sociales, en la figura 8, se aprecia el desglose de las pérdidas económicas incluido el rubro de pesca (USD \$ 117.2 millones de Dólares), debido a las anomalías positivas de la temperatura del agua de mar en las costas ecuatorianas provocaron, que las especies locales emigrasen hacia latitudes más favorables, lo que ocasionó una disminución de las capturas para consumo humano y producción de harina de pescado, todos estos factores ocasionaron efectos negativos en el crecimiento del PIB (producto interno bruto) en el país (Organización Panamericana de Salud, 2000).

Fenómeno El Niño Resumen de daños ocasionados - Ecuador 1982-1983 (Millones de dólares)				
Sector y subsector	<u>Daños</u> totales	<u>Daños</u> <u>directos</u>	<u>Daños</u> <u>indirectos</u>	Componente de importación y exportación a
Total nacional	640,6	533,9	106,7	
Sectores sociales Vivienda Salud Educación Transporte Transporte carretero Transporte ferroviario Vialidad urbana Infraestructura aeroportuaria	23,6 6,3 10,7 6,6 209,3 162 16,7 26,5 4,1	16,7 6 4,6 5,8 164,3 126,4 14,9 18,9 4,1	6,9 6,1 0,8 45 35,6 1,8 7,6	1,2 7 1,1 77,3 8,5 13,1 1,9
Sectores productivos Agricultura Ganadería Pesca Industria	405,6 202,7 31,1 117,2 54,6	351,4 202,1 22,1 117,2 10	54,2 0,6 9 44,6	94,3 4,5 2,2 23,2
Otros daños	2,1	1,5	0,6	0,6

Figura. 8 Cuantificación de pérdidas económicas ocasionadas por el Fenómeno de "El Niño" en Ecuador 1982-1983.

Fuente: CEPAL (2000)

La Subsecretaría de Acuacultura en base a información histórica, elaboró el mapa acuícola con zonas de susceptibilidad alta a inundarse, el cual se aprecia en la Figura 9, este mapa identifica las zonas camaroneras más vulnerables en cada provincia, las mismas que pudieran sufrir graves afectaciones en caso de que "El Niño" sea de gran intensidad, en la que se destaca zonas de mayor susceptibilidad a la Cuenca Baja del Guayas y Provincia de El Oro (Cámara Nacional de acuacultura, 2015) .

Figura 9. Mapa de zonas de producción acuícola vulnerables a inundaciones Fuente: CNA (2013)

Por lo anteriormente expuesto se recalca la gran importancia económica y social de estos sectores productivos para el país, requiriendo medidas de adaptación para la pesca y acuicultura a corto plazo, tales como: políticas de gobierno, apoyo o fomento de la capacidad de las comunidades en actividades técnicas específicas que abordan múltiples sectores.

Las actividades de adaptación pueden ser a corto o largo plazo, esta puede ser planificada o autónoma (es decir, la reacción espontánea a los cambios ambientales o acción planificada sobre la base de los cambios inducidos por el clima), ejemplos de adaptación autónoma en la pesca puede ser: cambiar el horario de las faenas o la ubicación de la pesca en nuevas áreas, o el desplazamiento de una especie objetivo por otra, mientras que la adaptación planificada puede ser la financiación de la investigación para la búsqueda de especies resistentes a la salinidad y fluctuaciones de temperatura para la acuicultura, todos estos criterios se acogen en la tabla I, la cual fue traducida de su idioma original inglés al español, en la que se destacan en color rojo las medidas de adaptación que a criterio de los autores de este trabajo son aplicables en nuestro país.

Tabla I.-Potenciales medidas de adaptación al cambio climático en pesca y acuicultura.

Impacto		
Reducción de productividad	Buscar acceso a altos precios de mercado	
	Incrementar esfuerzo pesquero (riesgo de sobrexplotación)	
	Selección genética para incrementar resiliencia en acuacultura	
	Traslado de infraestructura de jaula marinas	
	Búsqueda de alimentos apropiados a partir del reemplazo de harinas y aceites de pescado.	
	Migración a otra especie de captura (riesgo de sobreexplotación)	
	Investigación e inversión en pesca predictiva (riesgo de sobreexplotación)	
	Inversión en infraestructura para acuicultura.	
Variabilidad productiva incrementada	Diversificar el portafolio de medios de vida	
	Precauciones en manejo	
	Enfoque ecosistemico hacia una pesca y acuicultura de manejo adaptativo	
	Cambio hacia un cultivo basado en captura	
Reducción de ganancias	Diversificar el portafolio de medios de vida, mercados y productos	
	Retiro de la pesquería.	
	Reducir costos e incrementar eficiencia	
	Cambiar el manejo del alimento en acuicultura.	
	Cambio hacia un cultivo basado en captura	
Riesgos incrementados	Ajustes en el mercado de seguros.	
	Suscripción de seguros	
	Sistemas de precaución del clima	
	Red de comunicación mejorada	
	Talleres de aprendizaje e interpretación	
	Monitoreo de algas peligrosas.	
	Compensación por impactos	
Vulnerabilidad incrementada de aquellos	Defensas más fuertes como aljibes (riesgo de afectación en medios de vida)	
que viven cerca de ríos y costas	Defensas suaves. Rehabilitación de humedales (riesgo de afectación en medios de vida)	
	Sistemas de alerta temprana	
	Respuesta a desastres	
	Provisión de nueva infraestructura	
	Recuperación post-desastre	
	Fomentar la acuacultura de especies nativas para reducir impactos de escapes de peces	

Fuente: Daw et al (2014)

Mientras que en la tabla II, en base a las iniciativas realizadas por el Gobierno del Ecuador y la empresa privada donde se considera a la maricultura como uno de los ejes del cambio de la matriz productiva, se recogen algunas medidas adoptadas en el marco de "Potenciales medidas de adaptación al cambio climático en pesca y acuicultura."

Tabla II.-Medidas de adaptación en Ecuador bajo el enfoque de la maricultura.

		4 (* *) 1
Impactos	Medidas de Adaptación	Actividades y medidas Desarrolladas en el Ecuador
Reducción de Productividad	Inversión de estructura para acuicultura	 Cultivo de Cobia (Rachycentron canadum) ubicado a 9 millas de las costas del Puerto de Jaramijó -Provincia de Manabí. Cultivo de macroalga marina (Kappaphycus alvarezii) en la primera milla náutica de la zona costera de la Provincia de Santa Elena. Cultivo de Ostra Japonesa (Crassostrea gigas) realizado en las comunidades de Palmar, La Entrada, El real Alto en la Provincia de Santa Elena. Cultivo experimental de Camarón (Litopenaeus vannamei) en jaulas flotantes por parte del Instituto Nacional de Pesca realizada en Puerto Engabao –Playas; Cojimíes –Provincia de Manabí.
· Variabilidad productiva incrementada	Diversificar el portafolio de medios de vida	A partir del Año 2012 el Gobierno del Ecuador centra su esfuerzo en un proceso de cambio del patrón de especialización productiva de la economía que le permita al Ecuador generar mayor valor agregado a su producción, lo que se conoce como cambio de la matriz productiva, en la que se considera dentro de estas a la maricultura.
Reducción de ganancias	Diversificar el portafolio de medios de vida Cambio de Actividad	La maricultura reduciría la presión a la que son sometidos ciertos recursos pesqueros y se obtendrían producciones sostenibles en el tiempo.
Vulnerabilidad incrementada de aquellos que viven cerca de Ríos y Costas	Fomentar la acuicultura de especies nativas para reducir impactos por escape de peces	Se crea una normativa legal en Ecuador para regular las actividades de maricultura: • Acuerdo Ministerial 042 Instructivo para categorización de especies (2013). • Lista de especies aptas para Maricultura (2013). • Acuerdo Ministerial 023 Instructivo para el ordenamiento, control de concesiones y fomento de las actividades de Maricultura en el Ecuador (2015).

Fuente: Elaboración Autores

1.4 Evidencia del cambio climático en el Ecuador

a) Variación de temperatura en el mar ecuatoriano

El Ecuador posee un mar territorial que alcanza una extensión aproximada de 1 000 000 km², lo cual representa más de tres veces la superficie del área continental del país. En el mar territorial se presentan una serie de condiciones oceanográficas como la presencia de un sistema de corrientes, que incluyen la Corriente Fría de Humboldt y la Corriente Cálida de El Niño, y condiciones atmosféricas como la influencia de la zona de convergencia intertropical (ZCIT), que en su conjunto contribuyen a elevar los niveles de biodiversidad que allí imperan. El mar territorial ecuatoriano es considerado de gran importancia en el estudio de la presencia del fenómeno de El Niño, y de los impactos que se desprenden de su presencia, en particular en la región de la Costa Oeste de Sudamérica.

Sin embargo, las distintas amenazas climáticas y oceanográficas, incluido el incremento en la intensidad de fenómenos extremos como "El Niño o La Niña", tienen un alto potencial de motivar afectaciones no solamente sobre las condiciones físicas, químicas y biológicas en el mar territorial, sino también sobre los sistemas humanos y naturales asentados en la franja costera e incluso en zonas geográficas internas del continente, lo que resulta en ingentes afectaciones económicas. Por ello es fundamental desarrollar investigaciones, estudios y acciones de monitoreo sobre las condiciones en el océano, los eventos extremos que se suscitan en él y el clima predominante (Ministerio del Ambiente del Ecuador., 2017)

Estas consideraciones se acogen en la "Tercera comunicación Marco del Ecuador (Mayo, 2017) específicamente en el Capítulo 4, se analizó los "Avances en adaptación al cambio climático", en las que se refleja los principales hallazgos encontrados dentro de las iniciativas de investigación y monitoreo del fenómeno climático, así como los avances logrados en adaptación, en las que destacan estudios sobre el clima futuro y el marco político, de las cuales dentro de nuestro estudio nos referiremos a las evidencias oceanográficas del cambio climático en el mar ecuatoriano.

Bajo este antecedente, podemos tomar el estudio realizado por Ruperti, 2015; en el cual analiza el promedio mensual de temperatura superficial del mar (TSM) de siete regiones adyacentes (Boxes) de las costas del Ecuador, situando a Jaramijó dentro de la Box 5, fig. 10, el área total de este estudio se extiende desde los 84°W y entre las latitudes 4° S a 2° N, la data analizada comprende los años 1900 hasta 2014 (Ruperti, H., Carroll, D., & Breaker, L., 2015).

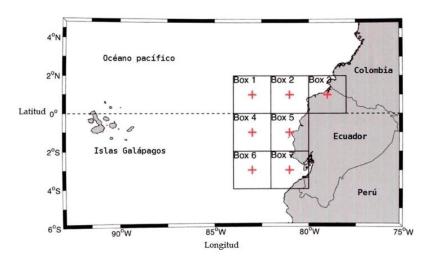


Figura 10. Análisis de Boxes (subregiones) y área de estudio analizados. Fuente: Ruperti et al (2015)

En la fig. 11, se aprecia que superpuesto a los valores mensuales, las curvas ajustadas (rojo) reducen la variabilidad de mes a mes ayudando a poner de manifiesto los patrones subyacentes en los datos, además se aprecia que la TSM aumentó más rápidamente durante los primeros años de los registros y este se acentúa hacia la costa y disminuye hacia el sur, además se identifican los principales eventos de calentamiento de "El Niño", en particular los ocurridos entre 1982-1983 y 1997-1998, para efecto de nuestro estudio, la zona de Jaramijó que se encuentra dentro del cuadrante 1°N, 81°W.

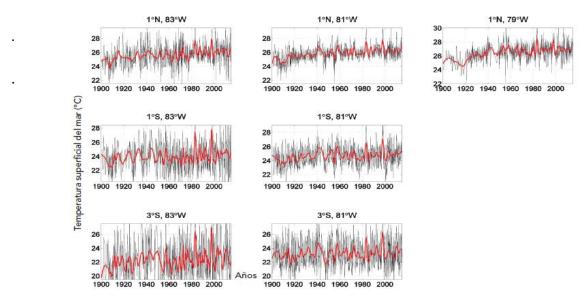


Figura 11. Valores mensuales promedio individuales de TSM para cada una de las subregiones de la zona de estudio. Fuente: Ruperti et al (2015)

Finalmente, dentro de este estudio se utilizaron las metodologías de la descomposición empírica en modos (EMD - siglas en inglés) y las técnicas de suavizado mediante ajuste local a los datos (LOWESS - siglas en inglés) para establecer tendencias en la variabilidad de la temperatura superficial del mar en la costa de Ecuador las que presenta una tendencia de aumento de alrededor de 0,0134 y 0,0137 (°C /año).

b) Variación de temperatura en la costa ecuatoriana

El estudio realizado por (Armenta. G, 2016) sobre "Proyecciones climáticas de precipitación y temperatura para Ecuador, bajo distintos escenarios de cambio climático", evalúa el cambio climático a partir de cuatro escenarios diferentes (RCP 2.6, 4.5, 6.0 u 8.5), figura 12, donde el comportamiento de la temperatura y la precipitación, depende del forzamiento radiactivo impuesto por la concentración esperada de GEI en las diferentes épocas de evaluación, es así que se generaron proyecciones y series de datos mensuales para los periodos futuros 2011-2040, 2041-2070 y 2071-2100, tabla III, para precipitación y las temperaturas media, máxima media y mínima media, proyectadas por 4 modelos globales de circulación (GCM), el proceso de selección de estos modelos se llevó a cabo a través de métricas para evaluar la representación del clima presente para el periodo 1981-2005 por parte de los modelos, comparando los datos con las series mensuales de datos observados de estaciones del Instituto Nacional de Meteorología e Hidrología (INAMHI).

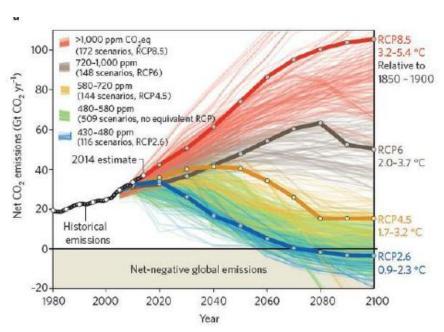


Figura 12.-Caminos Representativos de Concentración (RCP). Fuente: IPCC (2007)

Tabla III.-Cambios proyectados de temperatura región costa

CAMBIOS PROYECTADOS EN LA TEMPERATURA MEDIA (°C)				
AÑOS	RCP 2.6	RCP 4.5	RCP 6.0	RCP 8.5
2011-2041	0,78	0,91	0,73	0,87
2041-2070	1,10	1,62	1,54	1,85
2071-2100	1,0	2,2	2,41	2,91
CAMBIOS F	PROYECTADOS I	EN LA TEMPERA	ATURA MÁXIM	A (°C)
AÑOS	RCP 2.6	RCP 4.5	RCP 6.0	RCP 8.5
2011-2041	0,73	0,91	0,66	1,05
2041-2070	1,23	1,83	1,72	2,16
2071-2100	1,5	2,38	2,5	4,09
CAMBIOS I	PROYECTADOS	EN LA TEMPER	ATURA MINIM	A (°C)
AÑOS	RCP 2.6	RCP 4.5	RCP 6.0	RCP 8.5
2011-2041	0,66	0,85	0,63	0,86
2041-2070	1,13	1,52	1,40	1,99
2071-2100	1.0	2,2	2,41	2,91
CAMBIOS PROYECTADOS EN LA PRECIPITACIÓN (mm)				
AÑOS	RCP 2.6	RCP 4.5	RCP 6.0	RCP 8.5
2011-2041	1,1	1,7	1,8	4,4
2041-2070	4,10	6,8	5,20	10,3
2071-2100	2,8	9,9	8.0	14,6

Fuente: Ruperti et al (2015)

1.5 Maricultura y su potencial.

La FAO en 2013, sugirió que el potencial global de la acuicultura oceánica como un todo y para muchas naciones individualmente es grande por las siguientes razones:

- El 44% de las naciones costeras aún no practican maricultura
- Hay 0.3 millones de km de línea de costa donde la maricultura no ha sido aún practicada.
- Entre 93 países y territorios ya practican la maricultura y la mitad produce a relativa baja densidad no menos de 1 tonelada/km² de línea de costa
- Es bien conocido en la actualidad que la casi toda la maricultura toma lugar en aguas costeras abrigadas y no en aguas abiertas.

En la figura 13, se puede observar que se categoriza a Ecuador entre los dieciocho países no maricultores a nivel mundial con mayor potencial para ejercer esta actividad debido a que reúne las condiciones de velocidad de corrientes y profundidad deseables para maricultura con un poco más de 4000 Km² de área potencial para su desarrollo (FAO, 2013).

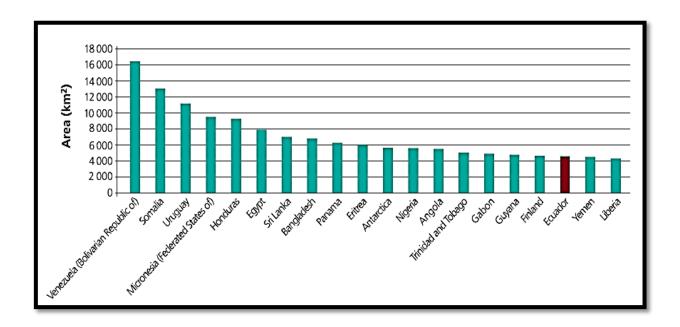


Figura 13. Ranking por área de principales naciones que no realizan maricultura pero cumplen con las condiciones apropiadas para la instalación de jaulas marinas y long lines. Fuente: FAO, 2013

Fuente: FAO (2013)

1.6 El huayaipe como especie resiliente al cambio climático.

Aunque los crustáceos tienen una mejor respuesta de adaptación a los cambios positivos de temperatura, y al enfocarnos a la especie local: camarón blanco (*Litopenaeus vannamei*), en la que se establece que para su desarrollo es importante evitar temperaturas del agua por debajo de 23°C y por encima de 34°C debido a que se reduce su tasa de alimentación y de crecimiento (Davis. A, Samocha. T, Boyd. C, 2004), sin embargo durante nuestra revisión documental se pudo revisar que los costos de producción en jaulas sería de alrededor de US \$ 4,7 por kg para animales con un peso promedio de 15 gramos (Paquottea . P, et al, 1998), lo que en la actualidad no lo volvería factible económicamente y como el espíritu de este trabajo es que, se considere la diversificación de otras especies acuícolas nativas, los autores consideramos como base, un estudio que valoró el riesgo al cambio climático de las especies en las 7 principales industrias acuícolas en Australia y se concluyó que, las

especies de peces en promedio, se clasificaron como de bajo riesgo en comparación con las especies de moluscos.

El atún rojo del sur (SBT) fue evaluad como relativamente resiliente para la etapa de engorde y larvicultura, el SBT puede verse impactado por cambios climáticos tanto positiva (por ejemplo, aumentos en la tasa de crecimiento) y negativamente (por ejemplo, aumentos en la ocurrencia de floraciones de algas nocivas); en esta especie queda la incertidumbre respecto a los impactos potenciales. La *Seriola lalandi* (YTK) obtuvo la puntuación de riesgo total más bajo (9), el cual fue inferior a la puntuación total de la sensibilidad (16) para esta especie. Esto se debe a que los impactos por el cambio climático se consideraron moderados, leves o positivos y se espera que estos aumentos en la temperatura, incrementen las tasas de crecimiento y la productividad durante la etapa de engorde (Zoë et al., 2013).

1.7 Situación del cultivo de huayaipe en Japón y el mundo

De acuerdo a (Nakada M., 2008) la producción de Seriola sp en Japón a partir de 1288 empresas en 2004 fue de 150.028 toneladas valoradas en millones de ¥ 111.2 (US \$ 1.334 millones). La maricultura de esta especie se ha desarrollado notablemente debido a la abundante oferta y el precio bajo de los juveniles capturados en la naturaleza (Mojako) y las sardinas se utilizan como el principal componente de los piensos para peces de harina de pescado. La larva obtenida a partir de laboratorio es mucha más cara. Otros elementos críticos que apoyaron el crecimiento de la maricultura de Seriola sp. Incluyen la existencia de abundantes sitios de cultivo adecuadas a lo largo de la costa japonesa y el desarrollo de técnicas innovadoras. El cultivo de Seriola sp. es prometedora debido a su fuerte vitalidad y el rápido crecimiento, y puede así expandirse a nivel mundial a través de la producción de juveniles. De acuerdo (Love, G., & Langenkamp, D., 2003), Seriola sp, es una nueva especie que actualmente se están desarrollando para la acuicultura en Australia. Aunque el cultivo de especies relacionadas, tales como S. quinqueradiata en Japón, es altamente dependiente de captura de alevines silvestres (Ottolenghi, 2004), la acuicultura de Seriola sp, en Australia se basa sobre las semillas. Hay actualmente dos criaderos comerciales en el sur de Australia para la producción de semillas de esta especie (FAO, 2008).

A nivel de especies, hay alrededor de 80 especies actualmente cultivado en jaulas. De ellos, una especie (*Salmo salar*) representa aproximadamente la mitad (51 por ciento) de toda la producción del cultivo en jaulas (Figura 14), y otras cuatro especies (*Oncorhynchus mykiss*, *Seriola quinqueradiata*, *Pangasius spp.* y *Oncorhynchus kisutch*) representan alrededor de una cuarta parte de otro (27 por ciento) (FAO, 2007).

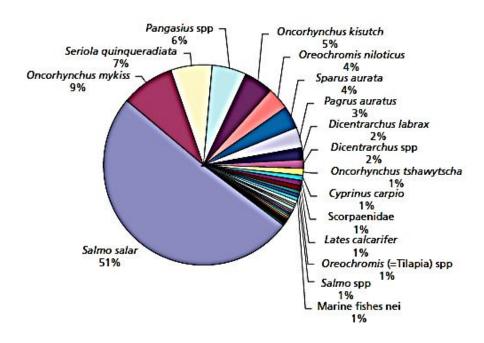


Figura 14 . Producción de acuicultura mundial en jaulas por especies de peces. Fuente: Halwart (2007)

1.8 Taxonomía del género Seriola

Los peces del género Seriola comúnmente conocidos como huayaipe pertenece al orden de los perciformes y a la familia carangidae en el Ecuador. Se ha reportado varias especies como *Seriola mazatlana, Seriola rivoliana, y Seriola peruana* (Blacio. E, Alvarez. R, 2002).

1.9 Experiencias del cultivo de huayaipe en Ecuador

En nuestro país se realizaron experiencias de cultivo con la especie nativa *Seriola rivoliana*, esta especie se encuentra en casi todo el mundo: Indo-Occidente Pacífico: Kenia hacia el sur hasta Sudáfrica y hacia el este hasta las islas Mariana y Wake en Micronesia, al norte de las islas Ryukyu, al sur hasta Nueva Caledonia y las islas Kermadec, ausente en el Mar Rojo y Polinesia Francesa. Probablemente en Seychelles, Pacífico oriental: Estados Unidos a Perú, incluidas las Islas Galápagos, Océano Atlántico: USA y al norte de Argentina, la distribución en el Atlántico oriental no está bien establecida. Recientemente reportado en la isla de Lampedusa en el Mediterráneo (Froese. R, Pauly.D, 2017).

En el año 1996, las primeras experiencias del cultivo de huayaipe en nuestro país, se realizaron en los canales de entrada de una camaronera, en la que ejemplares de huayaipe

fueron cultivados en 19 jaulas flotantes (25 peces/m3), los cuales se obtuvieron de desoves naturales de tres diferentes laboratorios (Cinco S.A., CRIDEC C.A. y Granjas Marinas El Rosario) (Benetti .D, et al, 1995). Los peces alcanzaron un peso de 2 - 3 libras en 6 meses y 4 - 5 libras en 10 meses, no se presentaron mortalidades altas durante los primeros 6 meses debido a enfermedades, pero estos al crecer debido al hacinamiento y descensos periódicos en la concentración de oxígeno disuelto en el medio (2mg/l), se presentó una mortalidad alta entre los 6 y 12 meses, la supervivencia final fue de 15% y la tasa de conversión alimenticia fue casi de 5.0 (Benedetti. D,Wilson. E, 1996).

Posteriormente el CENAIM (Centro Nacional de Acuicultura e Investigaciones Marinas) construido en 1990 por gestión de la Escuela Superior Politécnica del Litoral (ESPOL) con apoyo financiero del Gobierno de Japón, realizó experiencias con el huayaipe nativo *Seriola rivoliana*, desde abril 2002 a diciembre del 2002, en la cual se obtuvieron 87 desoves, provenientes de 8 reproductores, en los que se contabilizó los desoves viables y no viables, los mismos que se mantuvieron en diferentes tanques con el fin de evaluar el mejor tipo de tanque para efectos del cultivo larvario, este estudio fue motivado principalmente por el alto valor comercial que obtienen los peces del género Seriola en el mercado internacional.

Esta experiencia buscó ser la línea base para ir mejorando el porcentaje de supervivencia, que fue del 2.35 % al finalizar la fase de larvicultura (día 25 de vida) en la que se obtuvieron un lote de 180 adultos con un peso promedio de 888,36 gramos y una longitud promedio de 411.95 mm (Blacio, E., Darquea, J., & Rodríguez, S, 2003)

A partir de esta experiencia, el grupo técnico de investigadores del CENAIM continuó con nuevos ensayos y es así que en el año de 2005 se realizó el "Cultivo de huayaipe (Seriola rivoliana) en piscinas provistas de geomembranas" y el "Estudio de la factibilidad técnica y económica del cultivo de huayaipe (Seriola rivoliana) en piscinas con y sin geomembranas" en el primer estudio se realizó un análisis técnico-financiero de la factibilidad de adaptar este tipo de cultivo a la infraestructura camaronera subutilizada o no operativa en el sector acuícola nacional; visión que buscó promover la diversificación del sector acuícola del país. Dentro de este estudio se estableció que existen diferencias fundamentales de manejo en base a la infraestructura existente y la biología de esta especie, que se deben tener en consideración. Si bien los costos de producir un juvenil de huayaipe se encuentran altos en comparación a otras especies cultivables, éstos son equiparados con los precios de ventas que se dan en la Fase-2 del cultivo, lo permitiría que esta actividad siga mostrando su buen margen de utilidad, a pesar de considerarse nuevos ambientes para

el desarrollo de las dos fases de cultivo (Blacio Game, J. E., Vera Vera, V., & Sinche Chele, F., 2009a).

En el segundo estudio se evaluó la factibilidad técnica y económica del cultivo de huayaipe en piscinas excavadas, adaptadas para el cultivo intensivo de camarón, en las cuales en unas se colocó un recubrimiento de geomembrana y en otras no. Se controló los parámetros físicos-químicos (temperatura, oxígeno disuelto, pH, amonio e intensidad de luz), crecimiento, supervivencia y se hizo control microbiológico, buscando alguna diferencia entre ellos. Se demostró la adaptabilidad del huayaipe en piscinas con mejor resultado en las provistas con geomembrana y la factibilidad económica en el mercado internacional. (Espinoza, N., Blacio Game, J. E., & Escala, E, 2009b).

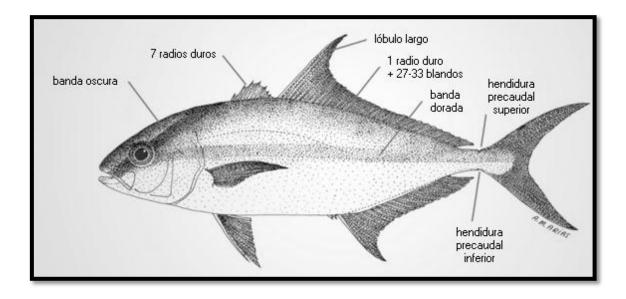


Figura 15. Características morfológicas de *Seriola rivoliana*Fuente: ICTIOTERM (2013)

CAPÍTULO 2

2. MARCO METODOLÓGICO

2.1 Tipo de Investigación

De acuerdo a los criterios para clasificar a los tipos de investigación descriptos por Baena, 2014 en su libro "Metodología de la Investigación" en la que define que existen tres grandes divisiones, la investigación documental, de campo y experimental las cuales pueden desarrollarse de forma independiente o ser complementarias entre sí, para tal efecto los autores del presente trabajo consideraremos los criterios utilizados en la investigación documental debido a que esta se define como "la búsqueda de una respuesta específica a partir de la indagación de documentos" (Guillermina, 2014), ya que por medio de un análisis sistemático y objetivo de la información existente se generarán nuevos conocimientos en una actividad aún incipiente en nuestro país bajo un enfoque de tipo adaptativo frente al cambio climático.

2.2 Estrategia de búsqueda de la información

La búsqueda de información consistió en utilizar la herramienta Google y Google Académico para la obtención de la mayor cantidad de información posible, discriminada por palabras claves como: maricultura, cambio climático, medidas de adaptación, Seriola, jaulas marinas, FAO, IPCC, precios Seriola, ABS (American Bureau of Shipping) jaulas marinas usadas de forma simple como combinada, tanto en inglés como en español para obtener cerca de 310 documentos de población y 102 documentos de muestra para referencias bibliográficas como se aprecia en la tabla IV.

Luego tras la revisión del título, resumen y conclusiones de cada documento se generan carpetas de información segmentadas por: 1) informes técnicos, 2) publicaciones indexadas, 3) publicaciones no indexadas, 4) infografía y 5) presentaciones (PowerPoint).

Dentro de esta búsqueda de información se excluyeron:

- Publicaciones o artículos en que se presentan datos aislados sin interpretación por parte del investigador principal.
- Artículos en etapa de revisión.
- Publicaciones en las que una vez realizado el análisis crítico se estableciera que no cumplan con criterios técnicos de información o que no se alineen al propósito de la investigación.

Tabla IV.-Resumen de publicaciones consultadas en el ámbito de la maricultura.

Ítem	Búsquedas	Presentaciones		Publicaciones indexadas		Infografías	Total
Google	310	4	3	42	51	2	102
Porcentaje		4%	3%	41%	50%	2%	100%

Fuente: Elaboración Autores

2.3 Operacionalización de variables

Con el fin de descomponer y analizar de forma deductiva las variables que conforman nuestro problema de investigación, se realizó una matriz de operación de variables, la que se aprecia en la Tabla V, la cual nos ayudó para tener coherencia entre los objetivos e indicadores, partiendo del principio que, la maricultura es una medida de adaptación frente al cambio climático, la cual se validó por medio de la revisión de información bibliográfica proporcionada por artículos científicos publicados en revistas indexadas y no indexadas relacionados al cambio climático y maricultura; también se acogen informes técnicos sobre medidas de adaptación recomendadas para la pesca y la acuacultura principalmente de la FAO, IPCC, NOOA (National Oceanic and Atmospheric Administration), una mención aparte merece la información recopilada sobre experiencias en el cultivo de huayaipe (Seriola rivoliana.) en Ecuador, la que recoge criterios técnicos considerando la biología y el entorno en que se desarrolla esta especie, la que se refuerza con datos de la empresa Ocean Farm primera industria pesquera del país que incursionó en la maricultura o cultivo de peces en jaulas fuera de las ocho millas náuticas y estudios de caracterización de la zona realizado por el INOCAR (Instituto Oceanográfico de la Armada) e información (no publicadas) proporciona por consultorías.

La revisión de documentos técnicos e ingenieriles acogen las formulas descriptas y recomendadas en el reglamento del "American Bureau of Shipping (ABS)", en sus versiones del año 2001 y 2006 las cuales son aplicadas en el "Estudio de fondeo Cultivo offshore de peces salmónidos IV región de Chile (Hurtado, 2011) que permiten el dimensionamiento de cálculos estructurales y esfuerzos a que son sometidas las estructuras destinadas a la actividad de maricultura. Para el análisis financiero se estimó la tasa interna de retorno (TIR), que es el indicador de rentabilidad de un proyecto, el cual determina la aprobación o rechazo de un proyecto de inversión y el valor actual neto (VAN) mide la rentabilidad absoluta neta que proporciona el proyecto una vez descontada la inversión inicial que se ha debido efectuar para llevarlo a cabo.

Tabla V.-Matriz de operación de variables.

Objetivos Especificos	Variables Dependientes	Indicadores	Técnica
Analizar las condiciones ambientales para el cultivo de huayaipe (Seriola sp.) en el Ecuador, en función de variables físicas, químicas, biológicas y climáticas determinantes a partir de registros históricos.	Concentraciones de Oxígeno Disuelto Temperatura Salinidad Profundidad Corrientes Marinas Tipos de sedimento marino	Miligramos por litro (mg/l) Temperatura (ºC) Partes por mil (‰) metros (m) Metro por segundo (m/s) Micras de espesor (μ)	Revisión Documental
Diseñar un prototipo de unidad productiva de jaulas marinas para el cultivo de huayaipe (Seriola sp.) bajo la modalidad de ciclos continuos	Fuerzas que interactúan en el sistema de Jaulas	kg	Revisión Documental y cálculos ingenieriles
. Evaluar mediante herramientas financieras TIR y VAN la rentabilidad del cultivo de huayaipe (Seriola sp.) con fines de exportación.	Precio del producto en mercado meta	Conocimientos teoricos sobre el dimensionamiento de estructuras orientadas para maricultura	Revisión Documental

Fuente: Elaboración Autores

2.4 Selección del área de estudio.

El área de estudio se muestra en la Figura 16, en la cual se aprecia un polígono de aproximadamente 740 hectáreas a 1.7 millas de distancia de la punta de Jaramijó, establecido entre las coordenadas UTM (Universal Transversal de Mercator):532949 (X), 9899260 (Y); 533386 (X), 9898422 (Y); 538233 (X), 9902012(Y); 537322 (X), 9903232

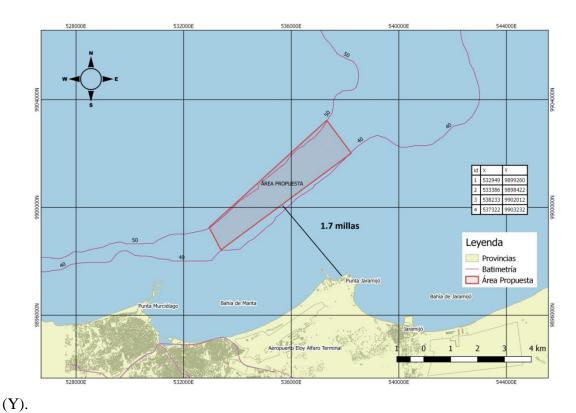


Figura 16. Área de estudio a 1.7 millas de distancia de la franja costera del Puerto de Jaramijó –Provincia de Manabí.

La factibilidad de este sitio se establece acorde al estudio realizado (2010) por la Subsecretaría de Recursos Pesqueros (SRP) en conjunto con la firma consultora Stratega BDS (Business Development Services), en el que se seleccionaron diez sitios de la costa ecuatoriana entre ellos Jaramijó en la que se realizó un estudio de factibilidad técnica, científica, biológica y ambiental para el establecimiento de proyectos de maricultura destinados a las comunidades pesqueras artesanales dentro de este estudio realizaron análisis de pesticidas, materia orgánica, metales pesados y granulometría; batimetría de barrido, muestreo de sedimento; muestras de agua para un análisis físico químico, en la tabla VI, se resumen estos criterios y las localidades donde se realizaron estos muestreos.

Tabla VI.-Estudio de factibilidad técnica, científica, biológica y ambiental para el establecimiento de proyectos de maricultura destinados a las comunidades pesqueras artesanales.

Estación	Batimetría	Estado Ambiente	Oxigeno	Temp	Salin.	Transp	Redox	Macro- infauna	Granulo- metría
Tonchigüe	Adecuada	Adecuado	Adecuado	Optimo	Adecuado	Adecuado	Adecuado	Adecuado	Adecuada
Mompiche	Adecuada	Adecuado	Adecuado	Optimo	Adecuado	Adecuado	Adecuado	Adecuado	Adecuada
Jama	Adecuada	Adecuado	Adecuado	Adecuado	Adecuado	Adecuado	Adecuado	Adecuado	Adecuada
Jaramijó	Adecuada	Adecuado	Adecuado	Adecuado	Adecuado	Adecuado	Adecuado	Adecuado	Adecuada
Playas	Adecuada	Adecuado	Adecuado	Adecuado	Adecuado	Adecuado	Adecuado	Adecuado	Adecuada
San Mateo	Adecuada	Adecuado	Adecuado	Adecuado	Adecuado	Adecuado	No Disponible	Adecuado	Adecuada
Ayangue	Adecuada	Adecuado	Adecuado	Adecuado	Adecuado	Adecuado	Adecuado	Adecuado	Adecuada
Salinas	Adecuada	Adecuado	Adecuado	Adecuado	Adecuado	Adecuado	No Disponible	Adecuado	Adecuada
Anconcito	Adecuada	Adecuado	Adecuado	Adecuado	Adecuado	Adecuado	Disponible	Adecuado	Adecuada
Puerto Bolívar	Perfil batimétrico inadecuado	Inadecuado	Inadecuado	Adecuado	Adecuado	Adecuado	Adecuado	No Disponible	Inadecuada

Fuente: Bennetti (2010)

2.5 Lineamientos técnicos y biológicos a considerar para la instalación de infraestructuras acuícolas en mar abierto

a) Lineamientos técnicos generales

La metodología aplicada en este trabajo acoge los criterios de la investigación documental, en este contexto la revisión bibliográfica se centró en la búsqueda de información que nos permita establecer ¿Cuáles son los criterios a considerar para la implantación de jaulas marinas?, para tal efecto en un análisis efectuado por (Alvarado, 2015), plantea que existen una serie de criterios técnicos a considerar desde los materiales a usarse para la construcción y estudios previos a la instalación de jaulas marinas, los cuales deben recoger aspectos biológicos, oceanográficos, ambientales, sociales y de tipo logístico. Dentro de este estudio menciona que, el material utilizado en la actualidad para la construcción de jaulas

es la tubería de polietileno de alta densidad (HDPE) debido a su versatilidad, resistencia y bondades que esta presenta, como someterse al proceso de termofusión, que prácticamente vuelve una sola pieza a las tuberías unidas, localmente esta se comercializa en rollos de 50 o de 100 metros en diámetros desde 20 hasta 110 mm, y en barras de 6 y 12 metros.

Además de esto Alvarado, considera que la presencia de un muelle pesquero o la implementación de una infraestructura de uso acuícola se vuelve vital para los trabajos de logística durante la fase de instalación y operación para realizar trabajos que permitan el mantenimiento y reparación del sistema de jaulas y entramado así como el transporte de operarios e insumos utilizados durante la fase de cultivo y cosecha.

En cuanto a las condiciones climáticas, oceanográficas y ambientales se deben evitar zonas cercanas a las desembocaduras de ríos y golfos, por ser sitios de elevada escorrentía y turbidez, así como sitios con oleaje moderado para facilitar los trabajos diarios en el cultivo. Se debe contar con la suficiente batimetría y estar lo suficientemente alejado de la costa para evitar la fuerza de corriente que se incrementa a medida que se acerca a la zona de playa. "En general se recomiendan fondos superiores a 20 metros y distancia mínima de 2 millas al punto más cercano de la costa", y en cuanto a corrientes marítimas preferentemente deben ser moderadas que permitan un adecuado intercambio de agua para evitar problemas en las instalaciones y en el crecimiento de los peces.

Para los aspectos sociales se considera que es necesario identificar a los otros usuarios y las posibles actividades que se desarrollan en un futuro no muy lejano ya sea en la zona costera o en las cercanías del sitio de instalación del entramado y jaulas marinas estas actividades comprenden pesca artesanal e industrial en todas sus modalidades, turismo, telecomunicación o de interés nacional (extracción de gas, petróleo militar, etc.), así como la disponibilidad de mano de obra local (Alvararado. J, Ruiz. Ch, 2015).

b) Parámetros de cultivo para Seriola rivoliana

Las especies del genero Seriola habitan en aguas cálidas, su desarrollo es óptimo en temperaturas que oscilan entre 18 °C y 29 °C, en el caso de temperaturas inferiores a 9 °C y superiores a 31 °C, los peces mueren, mientras que, a temperaturas inferiores a los 15 °C, su crecimiento disminuye. En cuanto a su rango de tolerancia a la salinidad esta se sitúa entre (33‰-16‰), y el nivel óptimo de oxígeno disuelto en el agua debe ser mayor a 4 ml/l (Espinoza, N., Blacio Game, J. E., & Escala, E., 2009)

Además de estas consideraciones se deben realizar monitoreos a la productividad primaria de las zonas de cultivos ante posibles "afloramiento" de plancton ya que estos pueden derivarse en "mareas rojas" que pueden causar daños al cultivo por ser algunas especies tóxicas o causar sofocamiento en los peces y provocarles la muerte por falta de oxígeno;

(Instituto Nacional de Pesca de México, 2004), estos parámetros técnicos anteriormente mencionados se resumen en la tabla VII.

Tabla VII.-Factores Físico – Químicos a considerarse para el cultivo de *Seriola rivoliana*.

VARIABLES	PARÁMETROS ÓPTIMOS DE CULTIVO	OBSERVACIONES
Concentraciones de Oxígeno Disuelto	>4 mg/l	Valores <4 mg/l provocan síntomas de stress como pérdida de apetito, nado errático, sofocación caracterizada por el "boqueo" en la superficie y muerte (< 2 mg/l).*
Temperatura	Máxima de 29 °C	Mayores de 31 °C los peces mueren y en temperaturas inferiores a 15 °C, los peces pierden el apetito y no crecen.*
Salinidad	33 ‰-	Se recomienda no ubicar jaulas en sitios cercanos a las desembocaduras de ríos, ya que una baja repentina de salinidad provocaría un fuerte estrés, que causaría la muerte de organismos, o reducirían sus niveles de alimentación, sin embargo no toleran salinidades por debajo de 16‰.*
Profundidad	> 20 m y máximo 40 m	Mayores profundidades aumentarían los costos asociados de la instalación y la poca profundidad generaría fondos anóxicos que afectarían a la fauna bentónica locales, así como el contacto de la jaula al sustrato y los organismos que allí habitan.**
Corrientes Marinas	Velocidades preferibles a 0.5 m/s	Esta permite el correcto intercambio de agua y por consiguiente de oxígeno disuelto, así como la dispersión de metabolitos y restos de alimentos, además de no causar la deformación de la forma normal de la jaula. **
Tipos de sedimento para fondeo	Fondos arenosos, limosos o arenosos	Estos tipos de fondos presentan una diversidad biológica baja con relación a los fondos donde se asientan organismos formadores de hábitat marinos como los corales. **

Mientras que en la tabla VIII, se resumen estos criterios y se indican la fuente de información a nivel local y la metodología utilizada, para en lo posterior graficarlas por medio del programa SigmaPlot versión 10.0, con el fin de evaluar la idoneidad del sitio de instalación en base a la revisión bibliográfica consultada.

Tabla VIII.-Fuente de Información y metodología aplicada para el análisis de Factores Físico —Químicos previa a la instalación de infraestructura acuícola en el sector de Jaramijó.

VARIABLE	TÍTULO DE PUBLICACIÓN	FUENTE	METODOLOGIA
Concentracion es de Oxígeno disuelto	Características Químicas de las masas de agua costeras Ecuatorianas durante los eventos ENSO de 1993-1998 * (Valencia T., 1998) ¹ .	Acta Oceanográfica del Pacífico. INOCAR, Ecuador, 8 (1), 1998.	Se colectaron muestras en la estación fija del INOCAR a 8 millas del Puerto de Manta
	Comportamiento del oxígeno disuelto en dos estaciones costeras La Libertad y Manta, como aporte al conocimiento del fenómeno "El Niño" (Carrillo, P., 2013) ² .	Acta Oceanográfica del Pacífico. INOCAR, vol. 17, n° 1, 2012.	usando botellas Van Dorn, cerrándose a (0, 10, 20, 30, 40, 50, 75 y 100 m), donde se tomaron alícuotas de 300 ml, su contenido se analizó por el método Iodométrico; que es la
	Comportamiento del oxígeno disuelto en la columna de agua de las estaciones fijas ecuatorianas 1988-2013 * (Carrillo, P., 2013) ³ .	Acta Oceanográfica del Pacífico INOCAR, vol. 18 nº 1, 2013.	oxidación del hidróxido de manganeso por el oxígeno del agua del mar, cuando se les añade ácido; el manganeso oxidado reacciona con vedere de notocio y para en libertad una
	Caracterización y evaluación de la calidad del agua de la bahía de Jaramijó - Provincia de Manabí durante el año 2008 * (Morán, 2013) ⁴ .	Acta Oceanográfica del Pacífico INOCAR, vol. 18 nº 1, 2013.	yoduro de potasio y pone en libertad una cantidad de yodo equivalente a la cantidad de oxígeno que se titula.
	Estudios básicos para instalar proyectos de maricultura oceánica en diez (10) sitios cercanos a puertos pesqueros artesanales en el Ecuador* (Bennetti, 2010) ⁵ .	Subsecretaría de Recursos Pesqueros y consultora Stratega BDS (Business Development Services), Enero, 2010.	Se hicieron perfiles de oxígeno disuelto (OD), a través de la columna de agua (0-18 m) con un CTDO (conductivity, temperature, depth and oxygen) marca RBR modelo XR-620, Con mediciones cada dos segundos.
Temperatura Superficial del mar	Análisis del comportamiento climático de los últimos 30 años, en las costas de Esmeraldas, Manta y Puerto Bolívar durante la época húmeda* (Del Salto, 2013) ⁶ .	Acta Oceanográfica del Pacífico vol. 18 nº 1, 2013	La información provino del Centro Nacional de Datos Marinos Costero (CENDO) y el área comprendió la franja costera del Ecuador, de Norte a Sur, donde INOCAR; mantiene su Red de Estaciones Costeras (Esmeraldas, Manta, y Puerto Bolívar), se aplicará para el estudio de las normales según lo establecido en la Organización Meteorológica Mundial (OMM), donde se visualizó el comportamiento climático en una serie de tiempo de 30 años.

Fuente: *(1), (2), (3), (4), (5), (6)

	Monthly Atmospheric and SST Indices* (NOOA, s.f.) ⁷ .	NOOA (http://www.cpc.ncep.noaa.gov/d ata/indices/sstoi.indices)	Boyas a la deriva que proporcionan datos sobre la temperatura de la superficie del mar, imágenes satelitales y sensores remotos.
Salinidad	Características Químicas de las masas de agua costeras Ecuatorianas en estaciones fijas: Península de Santa Elena y Puerto de Manta-Ecuador 1990-1995* (Valencia M., 1996) ⁸ .	Acta Oceanográfica del Pacífico. INOCAR, Ecuador, 8 (1), 1996.	Se colectaron muestras en la estación fija del INOCAR a 8 millas del Puerto de a profundidades (0, 10, 20, 30, 40, 50, 75 y 100 m),con un con un CTD (conductivity,
	Características Químicas de las masas de agua costeras Ecuatorianas durante los eventos ENSO de 1993-1998* (Valencia & 1998, 1996) ⁹	Acta Oceanográfica del Pacífico. INOCAR, Ecuador, 9 (1), 1996.	temperature, and depth)
	Consultoría para la elaboración de estudios básicos y de factibilidad para la implementación de proyectos de maricultura en 10 áreas del mar costero ecuatoriano para la diversificación productiva del sector pesquero artesanal * (Bennetti, 2010) ¹⁰ .	Subsecretaría de Recursos Pesqueros y consultora Stratega BDS (Business Development Services), Enero, 2010.	Se hicieron perfiles de oxígeno disuelto (OD), a través de la columna de agua (0-18 m) con un CTDO (conductivity, temperature, depth and oxygen) marca RBR modelo XR-620. Este instrumento realiza mediciones cada dos segundos.
Batimetría	Estudios básicos para instalar proyectos de maricultura oceánica en diez (10) sitios cercanos a puertos pesqueros artesanales en el Ecuador* (Bennetti, 2010) ¹¹ .	Subsecretaría de Recursos Pesqueros y consultora Stratega BDS (Business Development Services), Enero, 2010.	La determinación de la batimetría en las 10 estaciones se usó una unidad Garmin modelo 525S con la cual se logra almacenar en memoria información de la latitud, longitud y profundidad cada segundo en un área aproximada de 500 m² alrededor de cada estación.
	Levantamiento Hidrográfico*12	INOCAR, Carta I.O.A (Instituto Oceanográfico de la armada) 103	Revisión de Mapas de levantamiento hidrográfico del Ecuador.
Característica del Sedimento	Caracterización geomorfológica y sedimentológica de la bahía de Jaramijó, en la Provincia de Manabí* (Soledispa B., 2012) ¹³ .	INOCAR-Acta oceanográfica del Pacífico. vol. 17, n° 1, 2012	El área de estudio es la Bahía de Jaramijó, Provincia de Manabí con una embarcación se colecto a través de una draga de caída libre, tipo Van Veen; para el posicionamiento de las estaciones se utilizó el sistema GPS, en laboratorio la granulometría determinó utilizando métodos estándar de análisis.

Fuente: *(7), (8), (9), (10), (11), (12), (13)

2.6 Cálculos para el Dimensionamiento de Jaulas y entramado

Conocer las dimensiones de las jaulas que se instalarán dentro del entramado es sumamente importante ya que este nos definirá nuestros volúmenes de producción máximos y por ende los gastos necesarios para la logística, insumos, alimento balanceado, personal, mantenimiento, etc., así como los volúmenes proyectados de venta y otros que permitan el éxito de esta inversión, en la figura 17, se pueden observar los elementos que conforman una jaula marina para actividades de maricultura.

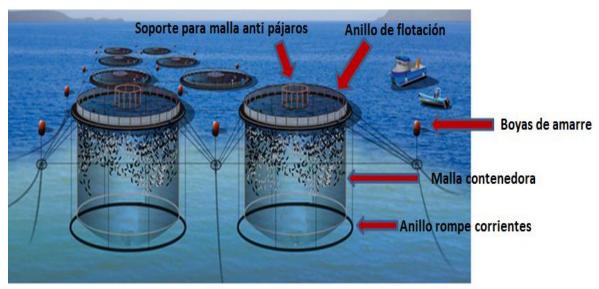


Figura 17.-Elementos de una jaula marina.

Fuente: Elaboración Autores

a) Ubicación y altura de las jaulas

La deposición de desecho particulado orgánico a partir de cultivos en jaulas marinas de peces hacia los fondos marinos pueden causar cambios en el bentos (Pérez & al, 2000). En este sentido, se definió la instalación del sitio a 1.7 millas de la costa desde la punta de Jaramijó donde se encuentra batimetrías de 40-50 m de profundidad y un diseño de jaulas con 15 m de altura de acuerdo a los siguientes motivos:

- Normativa legal determina la actividad de pesca artesanal dentro de las primeras 8 millas (Ley de Pesca del Ecuador).
- Profundidades mayores a 50 m encarece la inversión debido al uso de materiales y servicios de alto nivel de especialidad para instalación y mantenimiento.

• La altura entre el fondo de la jaula y el fondo marino (35 m) debe ser el doble o más de la altura de la jaula de producción (15 m) para ampliar la pluma de dispersión de sedimentos.

2.7 Cálculos de esfuerzo para entramado marino.

Una vez establecidas el tamaño de las jaulas se buscó información para dimensionar el entramado, en la tabla IX, se resume las fuerzas y esfuerzos que interactúan en esta infraestructura así como la fuente de referencia; para en lo posterior realizar los cálculos del sistema de entramado y el sistema de fondeo aplicando las formulas descritas y recomendadas en el reglamento del "American Bureau of Shipping (ABS)", en sus versiones del año 2001 y 2006, las cuales son aplicadas en el "Estudio de fondeo cultivo offshore de peces salmónidos IV región de Chile (Hurtado, 2011), y se detallan en la tabla X, en las que consideran al viento, corrientes marinas, altura de ola y esfuerzos que actúan sobre la estructuras como son peso de las redes, "fouling" producto de la adhesión de organismos a las mallas y estructuras que mantienen contacto con el mar, el peso de los animales de cultivos apoyados a la red, posibles cargas adicionales (operarios, y equipos para reparación o mantenimiento), como las principales fuerzas presentes en el medio que interactúan en el sistema de jaulas (Figura 18) , una vez determinadas estas fuerzas se dimensionara el sistema de anclaje.

Figura 18.-Representación gráfica de las fuerzas a las que son sometidas las jaulas marinas.

Fuente: http://www.aquafeed.co/redes-y-jaulas/

Tabla IX.-Fuente de Información y metodología aplicada para el análisis de fuerzas a las que son sometidas las jaulas marinas.

VARIABLES	TÍTULO DE PUBLICACIÓN	FUENTE	METODOLOGIA
Altura de olas	Régimen del oleaje en la zona de Jaramijó y Salinas * (San Martin, 2000) ¹ .	Acta Oceanográfica del Pacífico. INOCAR, Ecuador, 10(1), 2000.	La medición se realizó por medio de 2 olígrafos contenidos modelo SBE 26 para medir periodo y altura de ola cada 3 horas por 5 minutos la serie de datos cuenta con 8 horas diarias a partir de los datos se realiza un análisis de histograma de frecuencia y un análisis estacional del comportamiento de los valores.
Fuerza de viento	Características de las precipitaciones, la temperatura del aire y los vientos en la costa Ecuatoriana * (Gálvez, 2007) ² .	Acta Oceanográfica del Pacífico. Vol. 14, Nº 1. 2007.	El área de estudio comprende la red de Estaciones Costeras (Esmeraldas, Manta, La libertad, Puna y Puerto Bolívar), se complementó la información con datos mensuales de la Fuerza Aérea Ecuatoriana, e INAMHI de 1948 a 2006 y se obtuvieron los vientos predominantes por mes.
Altura de olas Fuerza de corriente marina	Caracterización Oceanográfica de la costa central ecuatoriana entre la punta del morro y Jaramijó, Ecuador* (Vera, 2009) ³ .	Acta Oceanográfica del Pacífico. Vol. 15, № 1. 2009.	El área de estudio comprende el interior del Golfo de Guayaquil hasta Jaramijó, los datos provienen de mediciones y observaciones realizadas por más de 10 años Las olas fueron medidas con sensores de presión, configurados (1-3 horas) para medir la altura y periodo de la ola, la medición de corrientes se la realizó utilizando flotadores acondicionados para medir corrientes entre 0 y 3 m de profundidad. Aplicando el método euleriano se obtuvo información de velocidad y dirección de las corrientes en un punto fijo por largos periodos de tiempo, a niveles superficiales y subsuperficiales.
Fuerza de viento	Análisis de las condiciones climáticas en Jaramijó durante la época seca y húmeda, período 2012-2013* (Regalado, 2014) ⁴ .	Acta Oceanográfica del Pacífico. Vol. 19, N° 2, 2014.	El estudio comparó monitoreos realizados en la Base Naval de Jaramijó (BASJAR) y la estación meteorológica convencional de Manta y se realizó el análisis a la serie de datos entre ambas estaciones.

Fuente: *(1), (2), (3), (4)

Tabla XI.-Formulas de fuerzas a considerarse para dimensionamiento de entramado marino.

Fuerzas generadas por el Viento		Fv: Fuerza del Viento, en Kg. Pa: Densidad del aire 0,125 kg seg² / m⁴ Ca: Coeficiente de resistencia del aire. V²: Velocidad del Viento. A: Área expuesta o superficie que tendrá impacto directo contra el
(Fv)	$Fv = \frac{1}{2} \times pa \times Ca \times V^2 \times A$	viento, en m ²
Fuerzas generadas por Corrientes Marinas (Fc)	$Fc = \frac{1}{2} p * Ca * V^2 * A$	 Fc: Fuerza de la Corriente, en Kg. ρ: Densidad del agua salada, 104 kg seg² / m⁴ Ca: Coeficiente de arrastre ("Drag Coefficient") V: Velocidad de la corriente. A: Área expuesta o superficie que tendrá impacto directo contra la corriente, en m².
	Fo = Fa + Fwd	Fo: Fuerza generada por olas, en Kg. Fwd: Fuerza de deriva (wave drift force), en Kg. Fa: Fuerza de Arrastre, en Kg.
	$Fwd = p \times g \times L \times Hs^2 / 16$	 ρ: Densidad del agua salada, 104 kg seg² / m⁴ g: Aceleración de Gravedad, 9,81 m / seg² L: Longitud del elemento de la estructura, en m. Hs: Altura de Ola Significativa
Fuerza generada por Olas (Fo).	$Fa = \frac{1}{2} * p * Cd * A * V^2$	 Cd: Coeficiente de Arrastre; 1,2 A: Área proyectada del miembro por metro de longitud. V: Velocidad relativa del agua normal a la superficie (orbital).
Esfuerzos que actúan sobre las	Fe = Pr + Pa.f + Pac + Pe +	Pr: Peso de las redes P.f: Peso debido al fouling Paf: Peso debido al anti fouling
jaulas.	Pc + Pp	Pe: Peso de la estructura
(Fe)		Pc: Peso de las posibles cargas adicionales Pp Peso de los peces apoyados sobre la red

Fuente: Hurtado, R (2011)

2.8 Calculo Básicos del sistema de anclaje

Una vez determinada las fuerzas que interactúan en las estructuras marinas (vientos, corrientes y altura de olas), se procederá al dimensionamiento del sistema de anclaje, el cual dará soporte a las estructuras de jaulas frente al medio marino, la tabla XII resume las fórmulas utilizadas para realizar estos cálculos, los cuales se refieren al peso de ancla, peso muerto y a la carga de ruptura de la cadena (Grado 80) la misma se establecerá revisando sus especificaciones técnicas en la que se indica su carga máxima de utilización o grado de ruptura en toneladas, además este contemplará un coeficiente de seguridad 1:4 según lo establece la norma DIN (Deutsches Institut für Normung) EN (European standards) 818-2 o ISO (International Organization for Standardization) 307.

Tabla XII.-Formulas para cálculos de sistema de fondeo.

DIMENSIONAMIENTO	FORMULAS	SIGNIFICADO DE SIGLAS
Dimensionamiento del peso de las anclas.	P. Ancla = (F/22)/0,50	F: Sumatoria de fuerzas frontal (280344,793 kg) 22: Coeficiente de peso. 0.50: % de corrección de prueba de tracción
Dimensionamiento de peso muerto	Pm = 1,745 x (1,12 x F/f)	1.745 : Constante1.12: ConstantesF: Fuerza obtenida en cadalínea de fondeo, en Kg.f: Factor adimensional portipo de fondo, 0,7 para arena.
Dimensionamiento de cadena	Dc= Σ (Fv+ Fc+ Fo+ Fe)/N°	Fv: Fuerza del Viento Fc: Fuerza de la Corriente marina Fo: Fuerza generada por olas, Fe Esfuerzos que actúan sobre las jaulas N°: Número de líneas de fondeo.

Fuente: Hurtado, R (2011)

2.9 Estimación de cálculos financieros para la rentabilidad del proyecto.

Se simularon tres escenarios: optimista, proyectado y pesimista; la asignación de valores a las variables productivas y económicas, que rigen la rentabilidad, fueron tomadas de investigaciones y proyectos comerciales y plasmados en una tabla de referencia. Los escenarios son aplicados a ciclos de cultivo de 180 y 360 días para obtener un producto de talla pequeña y mediana.

Se definió los costos asociados a la producción, administración y ventas, que de acuerdo a su naturaleza se los incluyeron dentro costos fijos o variables. Se realizaron cotizaciones que permitieron asignar los precios de mercados de bienes y servicios requeridos para la operación del proyecto. Se han considerado dentro de los costos variables a la adquisición de alevín, alimento balanceado y combustible para embarcación. Los costos variables comprenden los subcontratos y servicios, inversiones, materiales, suministros, préstamos y salarios.

Se construyó un flujo de caja, que incluyó variables productivas como peso de pesca, factor de conversión alimenticia y sobrevivencia, además de variables económicas como precios de alimento, alevín y de venta de huayaipe, para efectuar la simulación de los escenarios propuestos, que permitan reflejar una tasa interna de retorno determinada.

Los ingresos en el flujo de caja se calcularon en base al precio de venta de huayaipe en el mercado internacional, descontando 20% de ese precio, dado que se asume que el producto es entregado en una planta para su proceso y exportación. Dentro de los cálculos se consideró un préstamo a una entidad bancaria del 100% del monto total de inversión en el año 0 y 1, además del costo de operación del año 2, con su respectivo cronograma de pagos de capital e interés (Anexo 1). Otros gastos de inversión y operación fueron cotizados, segmentados por rubros y considerados para la elaboración de un flujo de caja para su posterior estimación del TIR y VAN (anexo 2

Variables productivas a considerar.

a) Densidad de cultivo

La densidad de siembra es el número de juveniles a sembrarse por unidad de volumen (m³) que tolere una capacidad de carga determinada para un sistema en cautiverio como estanques o jaulas, para su establecimiento se tomó a partir de referencias de cultivos de Seriola realizados en otros países, donde su cultivo es tradicional. Esta densidad no superó una proyección de biomasa de pesca de 25 kg/m³. Se asume como fuente de alevines, la

obtenida a partir de la compra y reingeniería de un laboratorio de larvas de camarón, compra de reproductores en USA y un tiempo de aprendizaje para el levantamiento de alevines de 18 meses. Esta variable se mantuvo fija en las simulaciones realizadas.

b) Crecimiento lineal diario y peso final

Incrementos de peso en el menor tiempo posible es lo ideal para sistemas de engorde, el peso final será dependiente de factores como temperatura del agua, densidad de siembra y calidad del alimento balanceado. Se tomaron como referencias de crecimientos lineales del género Seriola, obtenidos en diferentes cultivos comerciales y experimentales en diferentes regiones. El crecimiento lineal (gr/día) de un cultivo se obtiene de la relación del peso final (gramos) entre los días de cultivo a pesca. Se asumió un crecimiento lineal para cada escenario propuesto.

c) Sobrevivencia y factor de conversión alimenticia

La sobrevivencia del cultivo es porcentualmente la relación entre el número de animales pescados y los sembrados por cada jaula de cultivo, y puede variar por una mortalidad natural o una provocada por enfermedades. El factor de conversión alimenticia (Fca) es la relación entre el alimento total suministrado en el ciclo (kg) y la biomasa total pescada (kg), que nos permite evaluar por cada kilo de alimento, cuantos kilos de carne convirtió la especie de cultivo. Se toman como referencia de estas variables, en Seriola sp, los obtenidos en cultivos experimentales y comerciales en otras regiones. El alimento usado para el cultivo es el de trucha, disponible en el mercado ecuatoriano, que se ajusta a los requerimientos del 50% proteína y 20% de grasa para la especie de cultivo. Se asume en estas variables de cultivo, valores diferentes de acuerdo a los escenarios propuestos.

d) Precio, mercado y presentación del producto

Estas variables son sujetas a las preferencias del mercado objetivo. A partir de búsquedas web en los principales mercados asiáticos, europeos y americanos se obtuvieron precios referenciales para las presentaciones requeridas en dichos mercados. Se asumieron precios diferentes para dos tallas pequeña y mediana, en los escenarios propuestos.

CAPÍTULO 3

3. RESULTADOS

3.1 Análisis de condiciones óptimas para el Cultivo de huayaipe (Seriola rivoliaa) en el sector de Jaramijó- Provincia de Manabí.

En base a los lineamientos dados por Alvarado, 2015; Espinoza et al, 2009; Instituto Nacional de Pesca de México, 2004; se pudo buscar bibliografía relevante previa a la implantación de jaulas marinas la cual se resume en la Tabla VIII, en donde menciona la fuente de información tomada, (INOCAR, Subsecretaría de Recursos Pesqueros y consultora Stratega BDS, NOOA) y la forma de medición de estas variables físico – químicas, dichos resultados se expresan a continuación.

a) Concentraciones de Oxígeno Disuelto

De acuerdo a la información compilada en las publicaciones "Caracterización y evaluación de la calidad del agua de la bahía de Jaramijó - Provincia de Manabí durante el año 2008; y estudios básicos para instalar proyectos de maricultura oceánica en diez (10) sitios cercanos a puertos pesqueros artesanales en el Ecuador se sumó información referencial proporcionada por la empresa Ocean Farm, donde se pudo establecer que los promedios estacionales de oxígeno disuelto en la zona de la bahía de Jaramijó corresponden a un valor máximo de 6,82 mg/l y mínimo de 5,6 mg/l, a nivel superficial, mientras que para una profundidad 10 metros corresponde 6,76 mg/l, para la máxima y 6,69 mg/l, para el mínimo, tabla XIII, valores que en ambos casos se encuentran por encima del valor recomendado para el cultivo del cultivo de huayaipe (Seriola rivoliana) (> 5 mg/l, Tabla VII). Las variaciones mínimas y máximas de oxígeno disuelto que se dan a lo largo del día fueron graficados en la Figura 19, cabe mencionar que estas variaciones son dependientes de factores como: la actividad fotosintética del fitoplancton existente en la zona que genera oxígeno en las horas de mayor radiación solar y consume oxígeno en las horas en que no existe radiación solar, así como los fenómenos de mezcla de aguas por procesos físicos de advección (movimiento horizontal del aire causado principalmente por variaciones de la presión atmosférica cerca de la superficie y difusión.

Tabla XIII.-Variaciones de Oxigeno en la bahía de Jaramijó - Provincia de Manabí.

Concentraciones de Oxígeno Disuelto (ml/l)						
Referente de Información	Año	Profundidad (m)	Min	Max		
INOCAR ¹	2008	0	6.46	6.62		
	2008	0	6.82	6.72		
	2008	10	6.69	6.69		
	2008	10	6.76	6.69		
	2008	20	6.56	6.08		
	2008	20	6.67	6.5		
Estudio consultora Stratega ²	2009	10	5.82	5.9		
Empresa Ocean Farm ³	2016	0	5.6	6.5		

Fuente: (1), (2), (3)

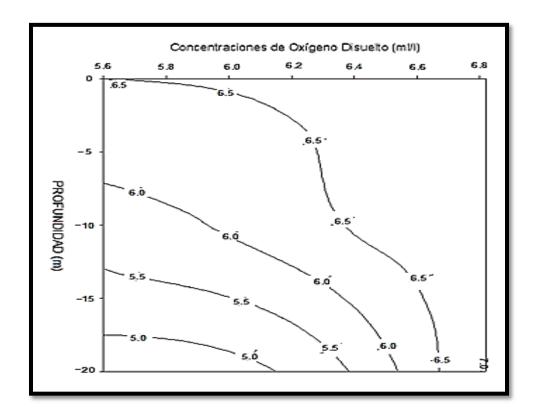


Figura 19.- Distribución y variación de oxígeno en la columna de agua -Sector Jaramijó -Provincia de Manabí. Fuente: Elaboración Autores

Para reforzar esta afirmación dentro del estudio "Comportamiento del oxígeno disuelto en dos estaciones costeras la Libertad y Manta, como aporte al conocimiento del fenómeno de "El Niño", del INOCAR, se establece que en la estación ubicada a 8 millas del Puerto de Manta, es un buen referente para la colecta de información ya que se encuentra muy próxima a la Bahía de Jaramijó, los promedios de oxígeno en esta estación fueron de 4.62 mg/l para la mínima en el año 1998 y 4.95 mg/l para la máxima en el año 1999 lo que se aprecia en la figura 20, donde a lo largo de 18 años no se observan variaciones por debajo de las condiciones críticas de oxígeno para el cultivo de *Seriola rivoliana* (< 2 mg/l, tabla VII).

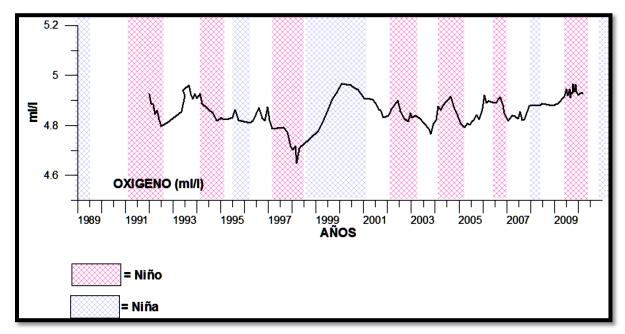


Figura 20.- Promedios Superficiales de Oxígeno Disuelto Estación Fija Manta.

Fuente: Carrillo, P (2013)

b) Temperatura Superficial del mar (TSM).

Para la estimación de este parámetro se realizó un análisis de serie de tiempo para el periodo de 1983 -2013 (31 años) en la cual se procesó un total de 93 datos (Anexo 2) esta información se obtuvo de las publicaciones: "Análisis del comportamiento climático de los últimos 30 años, en las costas de Esmeraldas, Manta y Puerto Bolívar durante la época húmeda" y Monthly Atmospheric and SST Índices de la NOOA (Tabla VIII), en la que se recoge el promedio mensual de TSM durante época seca y húmeda del perfil costero del

Ecuador (NOOA) y se la contrastó con información obtenida del INOCAR correspondiente a la época húmeda la cual fue tomada a través de su estación fija ubicada a 8 millas costa afuera del Puerto de Manta. En el grafico 21, se observa que la mínima temperatura registrada fue de 19,6 °C en el año 2007 en época seca y la máxima fue de 28.3 °C para la época húmeda en el año 1985 gráficamente se aprecia que no existe ningún valor por debajo de los 14 °C ni mayor a los 28.3 °C que son los rangos considerados como idóneo para el cultivo del cultivo de huayaipe (Seriola rivoliana, tabla VII.), por lo que se establece que esta variable se ajusta a los requerimientos de esta especie en este sector.

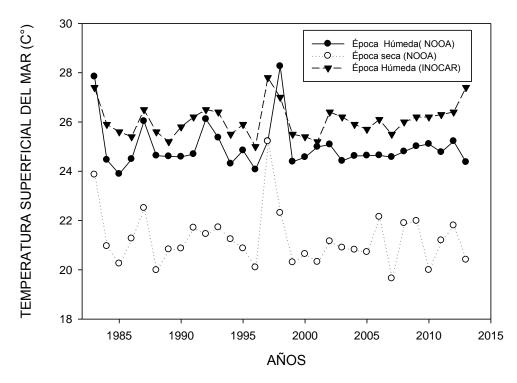


Figura 21.-Variación de la temperatura superficial del mar (TSM) en la Provincia de Manabí Periodo de 1983- 2013.

Fuentes: Elaboración Autores

c) Salinidad en agua de mar

Para establecer este parámetro químico en el agua de mar hay que considerar las características de las masas de agua frente a las costas de Manabí, los rangos para la mínima (33.4 ‰) se registró en el año 1993 y la máxima (34.8 ‰), se registraron en el año 1992; estos valores se detallan en la tabla XIV, y fueron tomados del estudio "Características químicas de las masas de agua costeras Ecuatorianas en estaciones fijas: Península de Santa Elena y Puerto de Manta-Ecuador 1990-1995" (Tabla VIII). A

continuación, en la figura 22, se puede observar que no existen valores por debajo de 33.4 ‰ de salinidad ni valores por encima de 35 ‰ los que nos indica que no existe una amplia variación de rangos ni cambios bruscos de esta y se establece una diferencia de 1.4 ‰ entre el máximo y el mínimo valor de salinidad promedio, lo que nos indica que este parámetro químico del agua del mar en el sector de Jaramijó se ajusta a los requerimientos óptimos para el cultivo de huayaipe (Seriola rivoliana, tabla VII).

Tabla XIV.-Variaciones de Salinidad en la bahía de Jaramijó - Provincia de Manabí.

	Salinidad	
Año	Min	Max
1991	34.4	34.6
1992	34.4	34.8
1993	33.4	34.2
1994	33.9	34.3
1995	34.4	34.6

Fuente: Valencia M, 1996.

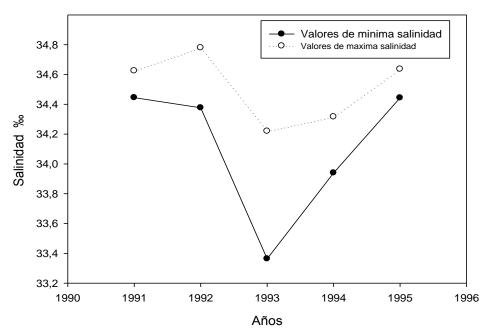


Figura 22.-Variación de salinidad Jaramijó – Provincia de Manabí (1991-1995).

Fuente: Elaboración Autores

d) Batimetría

El levantamiento hidrográfico efectuado por el INOCAR en 1980-1982, incluye información batimétrica de relieve, reflectividad acústica e interpretación geológica, abarca desde el suroeste de Colombia hasta el sur de Ecuador, para el caso específico de este sector esta información se refleja en la Carta IOA (Código dado por INOCAR a las diferentes cartas náuticas elaboradas por este Instituto) 103 (figura 23) en la que se establece que existe una profundidad de 31-47 m, entre la punta de la bahía de Jaramijó y 1,7 millas de distancia, lo que se acoge a lo descrito en la tabla VII, en la cual establece datos referenciales para el manejo del cultivo que establece batimetrías entre 20-40 m.

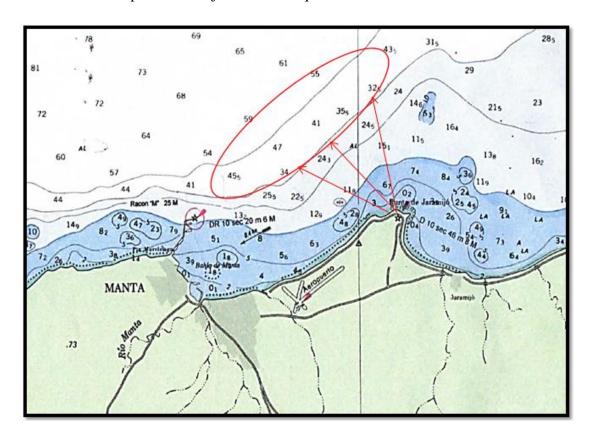


Figura 23 .- Mapa hidrográfico I.O.A 103 "Punta Ballena-Punta San Mateo" Fuente: INOCAR (1980-1982).

e) Característica del Sedimento de la zona de Jaramijó.

De acuerdo a los resultados del estudio "Caracterización geomorfológica y sedimentológica de la bahía de Jaramijó, en la Provincia de Manabí" (Tabla VIII), los sedimentos de fondo de la zona costera de la Bahía de Jaramijó se clasifican en cuatro tipos: limo, arena, arena-limosa y limo-arenoso, cuya distribución se aprecian en la figura 24, los cuales se distribuyen a lo largo de 45 estaciones (Anexo 3), el limo predomina en 20 estaciones con porcentajes que van del 99.54% al 77.71% mientras los fondos arenosos están presentes en 11 estaciones con valores de 98.07%, 80.49% y una mezcla de ambos en las restantes estaciones, por lo que de acorde a los parámetros establecidos en la tabla VII, esta zona se ajusta a los criterios para la instalación de infraestructura acuícola.

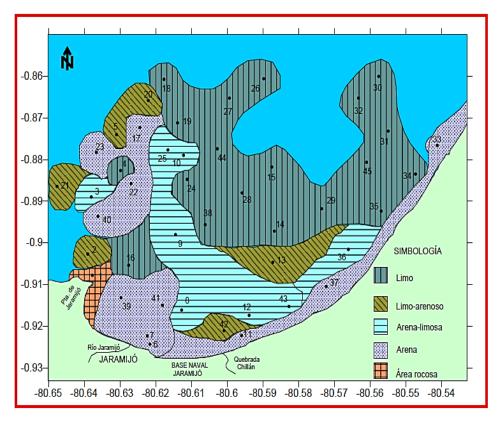


Figura 24. Mapa de distribución de fondos en la Bahía de Jaramijó –Provincia de Manabí.

Fuente: Soledispa B (2012)

Nivel de cumplimiento

Tabla XV.- Resumen de condiciones recomendadas para el Cultivo de huayaipe (Seriola rivoliana) frente a las encontradas en el sector de Jaramijó- Provincia de Manabí.

variables Parámetros óptimos para

Resultado

de

Físico Químicas del área el cultivo (Espinoza et al de estudio (Jaramijó) 2009*; Alvararado. Ruiz. Ch, 2015) Oxígeno Disuelto SI NO Máximo a nivel superficial >4 mg/lX 6.82 mg/l. Mínimo a nivel superficial X 5.6 mg/l. Máximo entre 10-20 m de X profundidad 6.76 mg/l. Mínimo entre 10-20 m de X profundidad 6.69 mg/l. **Temperatura** SI NO Temperatura Mínima X Máxima de 29 °C, y puede registrada 19,6 °C Temperatura Máxima soportar hasta 31 °C X registrada 28.3 °C Salinidad SI NO Salinidad Mínima X Registrada 33.4 ‰ 33‰ Salinidad Máxima X Registrada 34.8 ‰ Batimetría SI NO Mínima 31 m > 20 m y máximo 40 m X Máxima 47 m X Tipo de sedimento SI NO Limoso - Arenoso Limoso – Arenoso X

3.2 Cálculos de esfuerzo para sostenimiento de entramado marino.

Para los cálculos de esfuerzos se utilizaron las formulas descritas y recomendadas en el reglamento del "American Bureau of Shipping (ABS)", en sus versiones del año 2001 y 2006, que fueron utilizadas en el estudio de Hurtado, 2011, las cuales se resumen en la Tabla X, en las que se consideran a las fuerzas generadas por el viento, corrientes marinas y esfuerzos que actúan sobre la estructura (Ver detalle de cálculos en Anexo 4).

a) Fuerzas generadas por el viento.

En cuanto a las infraestructuras sometidas a la acción del viento, esta fue dimensionada considerando la máxima velocidad (13,02 m/s) probable a ocurrir durante su etapa operativa, la cual se encuentra referenciada en el estudio "Características de las precipitaciones, la temperatura del aire y los vientos en la costa Ecuatoriana" (Tabla IX), conociendo esto, los cálculos se hicieron en base al área expuesta perpendicular al flujo de la estructura, obra muerta o pontón el resultado de esta fuerza superior (10.728,7) se expresa en Kg, .

b) Fuerzas generadas por corrientes marinas.

Para el diseño y cálculo de las fuerzas generadas por corrientes marinas sobre la infraestructura sumergidas se debe considerar factores como las corrientes de marea producidas por sicigia, viento y las influidas por factores atmosféricos, al igual que el viento, es una fuerza proporcional a la superficie expuesta y al cuadrado de la velocidad de la corriente (0,99 m/s durante pleamar y 0,77 m/s bajamar) valores que se encuentran referenciados en el estudio "Caracterización Oceanográfica de la costa central ecuatoriana entre la punta del morro y Jaramijó, Ecuador", (Tabla IX), el resultado de esta fuerza (246.269,2) se expresa en Kg.

c) Fuerza generada por olas.

En el cálculo de las fuerzas generadas por olas, se considera las fuerzas de arrastre e inercia más la fuerza de deriva, pero previamente se debe conocer la altura de ola significativa (0,6 m) el cual se encuentra referenciado en el estudio "Régimen del oleaje en la zona de Jaramijó y Salinas", (Tabla IX), el resultado de esta fuerza (6.304,6) se expresa en kg.

d) Esfuerzos que actúan sobre las jaulas.

En este se consideran el peso de las redes, fouling producto de la adhesión de organismos a las mallas y estructuras que mantienen contacto con el mar, el peso de los animales de cultivos apoyados a la red, posibles cargas adicionales (operarios, y equipos para reparación o mantenimiento), el resultado de estos esfuerzos (17.042,2) se expresa en Kg.

Tabla XVI.-Resumen de cálculos de las fuerzas que interactúan sobre las jaulas para cultivo de Seriola rivoliana.

Fuerza del viento (kg)	10.728,7
Fuerza de corriente (kg)	246.269,2
Fuerza por la Ola (kg)	6.304,6
Esfuerzos (Kg)	17.042,2
Total (Kg)	280.344,8

Fuente: Elaboración Autores

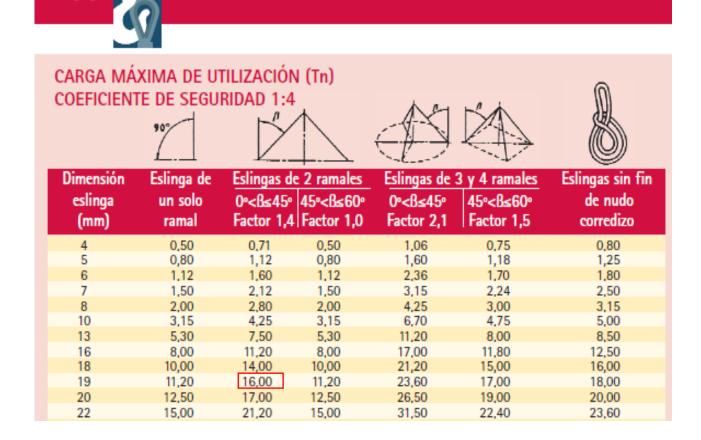
Al ser la propuesta de un sistema de entramado, la fuerza total a las que son sometidas las 6 jaulas (280,3 t) se dividirán para el número de líneas de fondeo (20), lo que resulta (14.02 t), ya que la característica de estos sistemas es dividir la tensión a la que son sometidos en varios puntos (líneas de fondeo) con el fin de mejorar su respuesta de resistencia a eventos extremos y da un mayor factor de seguridad en caso de la ruptura de un punto dentro de la línea del entramado marino, este resultado obtenido (14.02 t) es importante ya que este definirá la capacidad de carga de ruptura a la que será sometida la cadena .

3.3 Cálculo Básico del sistema de anclaje.

Una vez determinada las fuerzas que interactúan en las estructuras marinas se procedió al dimensionamiento del sistema de anclaje que está conformado por anclas, pesos construidos de hormigón, y cadenas de carbono grado 80 que son las utilizadas comercialmente para este tipo de estructuras.

- a) Dimensionamiento del peso de las anclas.- La importancia de las anclas es ejercer una fuerza de tracción ante las velocidades de las corrientes marina y su diseño permite tener una mayor superfície de "agarre" en fondos arenosos y limosos, la más utilizada son el tipo "arado", cuya capacidad de tracción es mayor en fondos arenosos o limosos, como se consideró 20 líneas de fondeos es necesario contar con igual nuero de anclas, el peso de cada una es de (25.485,9) este resultado se expresa en Kg.
- **b) Dimensionamiento de peso muerto.-** A cada peso muerto construido de hormigón le precederá un ancla, el valor obtenido (782.722,7 kg) se transformó a toneladas y se dividió para 2 obteniéndose (0.39 t), debido a que el ancla fracciona la fuerza a que es sometido este sistema a lo largo de los 20 puntos de fondeo.

c) Dimensionamiento de cadena. Para el dimensionamiento de la cadena según los resultados de esfuerzo se necesita una carga máxima de trabajo que soporte 14.02 t, sin embargo consideraremos 16 t, como factor de seguridad en la tabla XVII, se expresa las características de la cadena escogida los cuales deben cumplir con los parámetros establecidas en la norma DIN EN 818-2 O ISO 307, en la tabla XVIII se observa las diferentes cargas máximas de utilización de diferentes tipos de cadenas, por lo anteriormente expuesto se destaca en rojo la cadena que se escogió, con un factor de seguridad 1:4; así en este ámbito las dimensiones de jaulas de nuestra propuesta (25 m de diámetro y una altura de 15 metros) son comparables a las utilizadas en España para el cultivo de Lubina (Dicentrarchus labrax) y Dorada (Sparus aurata) que tienen un diámetro que va de 16 y 25 metros, con una profundidad de 10-12 metros de red lo que supone que cada jaula tiene un volumen de 2.000-6.000 m³ de capacidad (Ortega, 2008), lo que afirma la validez de nuestros cálculos, además la innovación en nuestra propuesta de tener una diferencia de tres metros de altura en las jaulas de cultivo, permitiría una mejor respuesta a los peces cultivados ante el incremento de las temperatura o disminución de los niveles de oxígeno ante un escenario de cambio climático ya que estos se concentraban a profundidades medias para evitar los bajos niveles de oxígeno en el fondo de las jaulas y las aguas cálidas superficiales en la parte superior de la jaula (Stehfest, 2017).


Tabla XVII.-Características de cadena para entramado.

Cadena Grado 80								
Carga Max de trabajo	16.000 kg; 16 (t)							
Coeficiente de seguridad	1:4							
Dimensión eslinga de 2 ramales	19 (mm)							

Fuente: Elaboración Autores

Tabla XVIII.-Escala de cargas límite de ruptura de cadenas de carbono grado 80.

CADENAS GRADO 80

Fuente: Bezabala (2017)

En la figura 25 se diseñó un esquema de sistema de entramado en base a los resultados obtenidos que consta de 12 anclas de (25.4 t), 20 tramos de cadena con una longitud de 125 m y un diámetro de 19 mm y 20 pesos muerto de (0.39 t), estos últimos son una adición para el fortalecimiento de los sistemas de cultivo así como la mejora de las unidades de cultivo (jaulas más resistentes o con profundidad ajustable) que son medidas de adaptación recomendadas para la acuicultura en el contexto del cambio climático (Llancabure, 2016) .

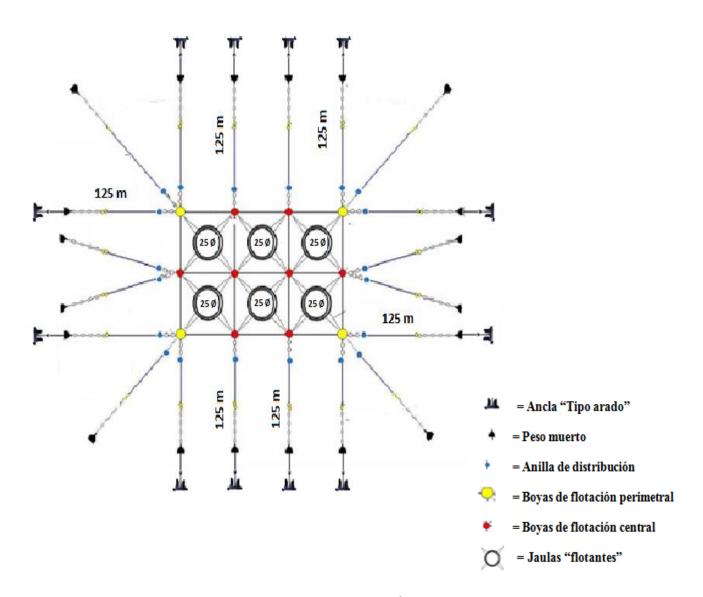
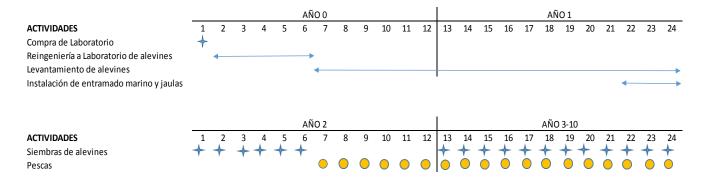



Figura 25. Diseño de entramado y disposición de jaulas flotantes. Fuente: Alvarado, 2015 con modificaciones.

3.4 Determinación de costos y tiempos estimado de ejecución

a) Costos de inversión preoperativa

Corresponden a la obra física, equipos y unidades de movilización necesarios para la producción. Entre los más representativos está la reconversión de un laboratorio de larvas de camarón de nuestra especie objetivo para el autoabastecimiento de juveniles y el entramado marino con sus 6 unidades de producción. Esta inversión representa \$6. 247.438 tal como se refleja en el Anexo I y se obtiene a partir de un préstamo bancario por el 100% del monto. Se consideró un cronograma de actividades, los cuales se aprecian en detalle en la figura 26 a continuación:

- + Actividad mensual destinada a siembras
- Actividad mensual destinada a pescas

Figura 26. Cronograma de actividades para la implementación del proyecto Fuente: Los autores

b) Ingresos

El año 0, año 1 y el primer semestre del año 2 corresponde a la implantación del proyecto e inicio de siembras de los juveniles, por tanto, a partir del segundo se perciben los primeros ingresos. Incrementos en los ingresos fueron considerados en función de incrementos de sobrevivencia de 2 puntos porcentuales al año y reducción del factor de conversión alimenticia de 2%, de forma conservadora hasta el décimo año.

c) Egresos

Son los gastos necesarios para llevar a cabo el inicio de las operaciones como el costo de alevín, alimento, contratos, combustible, salarios, imprevistos, depreciación y costo financiero que se pueden observar en el anexo 2.

3.5 Escenarios de las diferentes variables productivas y no productivas

Para la elección de un modelo de producción rentable se requirió asignar valores lo más reales posibles a las variables de producción que rigen la rentabilidad de una actividad acuícola, a partir de revisiones bibliográficas en países donde el cultivo de Seriola ya es tradicional. Todas estas variables van a fluctuar en relación a escenarios optimista, proyectado y pesimista tanto para el caso de un ciclo de cultivo de 6 meses o 12 meses.

a) Densidad de siembra

La revisión bibliográfica evidenció que, la densidad usada en cultivos de huayaipe en diferentes regiones está entre 20 y 50 individuos/m³, sin embargo, para nuestro ejercicio se ajusta a 15 y 30 individuos/m³ para ciclos de cultivo de 6 y 12 meses, respectivamente. En ningún caso se superó 27 kg/m³ de capacidad de carga de las jaulas a pesca. En la tabla XIX, se puede evidenciar densidades en diferentes regiones.

Tabla XIX.-Densidades de cultivo en países productores de Seriola rivoliana

Referencia bibliográfica	País de cultivo	Densidad (individuos/m3)			
FAO (2017)	Japón	4 a 7			
Instituto Nacional de Pesca (2004)	México	20			
Julio López (2015) Com.per	Japón	20			
Fujiya (1976)	Japón	50			
Nakada (2002)	Japón	31			

Elaboración: Autores

b) Crecimiento lineal diario

Las referencias encontradas de proyectos de investigación y sistemas de producción se referencian en la tabla XX, en estas se evidencia un crecimiento entre 3.8 y 10 g/día, sin embargo, entre 6 y 7 g/día son los crecimientos más consistentes encontrados. Se asigna 7, 6 y 5 g/día para escenarios optimista, proyectado y pesimista, respectivamente.

Tabla XIX.-Estudios referenciales de crecimiento diario para Seriola rivoliana.

REFERENCIAS	Especie	Temp.cultivo (Grados C)	Crec. (gr/d)
Instituto Nacional de Pesca de Mexico, 2004	S. lalandi	15-28	8.8
Kampachi&Universidad de Nebrasca, 2007	S. rivoliana		6.99
Benetti et al , 1995	S. rivoliana		6.3
Blacio, 2005	S. rivoliana		
BID, CAF, Ministerio Comercio Exterio, Proecuador,	R. canadum		7.29
Kona Blue Water Farms, 2006	S. rivoliana		7.0
Sagarpa & Instituto Nacional de Pesca, Araceli Avi	S. rivoliana		10
ICCM&ULPGC	S. rivoliana	18-24	3.8
Diversify, Programa de Unión Europea	S. dumerili		6.6

Fuente: Elaboración Autores

c) Sobrevivencia y factor de conversión alimenticia (FCA)

La tabla XXI, en cultivos de huayaipe de investigación y comerciales en diferentes países, expone sobrevivencias superiores al 50% y FCA entre 1.2 y 1.5. En el Ecuador, cultivos de cobia en Jaramijó experimentaron sobrevivencias del 50% y FCA de 1.7. Para nuestros escenarios se asumió una sobrevivencia de 70%, 60% y 50% para escenarios optimista, proyectado y pesimista.

Tabla XX. Referencias de factor de conversión alimenticia para Seriola sp.

REFERENCIAS	Especie	Temp.cultivo (Grados C)	Sobrev. (%)	FCA
Instituto Nacional de Pesca de Mexico, 2004	S. lalandi	15-28		1.5
Kampachi&Universidad de Nebrasca, 2007	S. rivoliana			1.45
Benetti et al , 1995	S. rivoliana		Muy alta	
Blacio, 2005	S. rivoliana			
BID, CAF, Ministerio Comercio Exterio, Proecuador,	R. canadum			
Kona Blue Water Farms, 2006	S. rivoliana			
Sagarpa & Instituto Nacional de Pesca, Araceli Avi	S. rivoliana		>90%	1.2
ICCM&ULPGC	S. rivoliana	18-24	57	
Diversify, Programa de Unión Europea	S. dumerili			

d) Precio y mercados disponibles para Seriola sp.

El huayaipe goza de gran aceptación en mercados de U.S, Japón, Australia e Italia. Como ejemplo, en mercados de U.S, las especies de Seriola son conocidos como "yellowtail"; en restaurants de sushi son referidos como hamachi (<5 kg), buri (>5 kg), kampachi (*Hawaiian yellowtail*), y hiramasa (*Seriola lalandi*) (Seefood Watch Report, 2008). La tabla XXII, expone precios de Seriola encontrados en mercados de Japón, Italia, USA y Brasil. Para fines de estimaciones financieras se promedió el precio internacional (\$9.27/kg), estimando un 15% de descuento (\$7.88/kg) como precio de pago local, para todos los diferentes escenarios y tallas. Se asume que se entrega el producto a una planta procesadora del país.

Fuente: Elaboración Autores

Tabla XXI.-Revisión bibliográfica de precios y mercados disponibles para Seriola sp.

Fecha	País	Nombre nativo	Nombre español	Mercado	Precio bajo (\$/kg)	Referencia
21-ene-17	Japón	はまち	Jurel	Tsukiji	7.06	sakanadesuyo.com/main4.php
21-ene-17	Italia	ricciola	Jurel	Chioggia	12.84	**
18-ene-17	Italia	ricciola	Jurel	Aci Trezza	12.84	**
19-ene-17	USA	yellowtail	Huayaipe	Subasta New England	4.77	nefsc.noaa.gov/read/socialsci/daily.php
19-ene-17	Brasil	yellowtail	Huayaipe	Ceagesp	8.82	www.fis.com/fis/marketprices/species.asp?l=e&specie=568

Fuente: Elaboración Autores

A continuación, en la tabla XXIII, el resumen de los valores asignados para cada variable dependientes o independientes de la producción tanto en caso de un ciclo de cultivo de 6 meses y 1 año.

Tabla XXIII.-Resumen de variables usadas en los escenarios propuestos

Variables	Optimista	Proyectado	Pesimista
Densidad (alevín/jaula)	105.000- 200.000	105.000- 200.000	105.000- 200.000
Crecimiento (gr/día)	7	6	5
Sobrevivencia (%)	70%	60%	50%
Factor de conversión alimenticia	1.4	1.6	1.8
Precio (\$/alevin)	1.2	1.2	1.2
Precio (\$/alimento)	1.4	1.6	1.8
Precio venta (\$/kg)	7.88	7.88	7.88
Imprevistos (%)	10%	15%	20%

3.6 Supuestos para la construcción del flujo de caja del proyecto

Si bien se cuenta con valores referenciales en las variables productivas bajo los distintos escenarios, sin embargo, este tipo de proyecto está planteado para 10 años, por lo que, la dinámica de las mismas puede variar.

Se usaron los siguientes supuestos proyectado a 10 años de la duración del proyecto, para todos los escenarios propuestos:

- El crecimiento lineal diario se mantiene fijo para los distintos escenarios, no se considera mejores tasas de crecimiento, pues no se cuenta con alimento balanceado específicamente formulado para Seriola, aunque las fábricas de alimento están en la capacidad de desarrollar y producir dicho alimento.
- La sobrevivencia se incrementa conforme suceden los años y termina en todos los escenarios hasta un 85%, debido al aprendizaje adquirido en las mejoras en el manejo técnico y tratamiento de potenciales enfermedades a los 10 años.
- El precio del alevín es fijo por el tiempo del proyecto, dado que representa el costo de producción por alevín en el laboratorio adquirido en el proyecto.
- El precio del alimento se incrementa en el tiempo del proyecto en 2% anual, iniciando con el precio planteado para los distintos escenarios, debido a potenciales incrementos de precio de parte del proveedor o la inclusión de aditivos en el alimento.
- El FCA del proyecto se reduce en 2% anual, considerando el aprendizaje en el establecimiento más cercano a la población real y en un mejor control en el sistema de alimentación durante el tiempo del proyecto.
- La maricultura es una actividad inédita en el Ecuador, por lo que los imprevistos están presentes. Porcentualmente se estableció un valor de improviso para cada escenario posible y se lo mantuvo por el tiempo del proyecto.

3.7 Estimación de TIR y VAN de acuerdo a escenarios productivos

Tabla XXIII.- Escenarios para el cultivo de huayaipe

ESCENARIO	Crecim gr/día	Me se s cultivo	Peso (kg)	Siembra Alevín/jaula	% Sob Año 2		Alim \$/kg	FCA Año 2	Imprev (%)	Biomasa pesca (kg/m3)	Producción Ton/jaula	Precio venta (\$/kg)	Costo (\$/kg) Año 2	TIR	VAN
OPTIMISTA	7	6	1.3	200,000	70%	1.2	1.2	1.4	10%	25	176	\$ 7.88	\$ 4.19	18.8%	\$ 16,829,801
ESPERADO	6	6	1.1	200,000	60%	1.2	1.4	1.6	15%	19	130	\$ 7.88	\$ 5.85	-1.1%	\$ (759,613)
PESIMISTA	5	6	0.9	200,000	50%	1.2	1.6	1.8	20%	13	90	\$ 7.88	\$ 7.77		\$ (11,759,365)
OPTIMISTA	7	12	2.5	105,000	70%	1.2	1.2	1.4	10%	26	185	\$ 7.88	\$ 3.13	22.9%	\$ 23,967,040
ESPERADO	6	12	2.2	105,000	60%	1.2	1.4	1.6	15%	19	136	\$ 7.88	\$ 4.42	9.3%	\$ 8,420,763
PESIMISTA	5	12	1.8	105,000	50%	1.2	1.6	1.8	20%	14	95	\$ 7.88	\$ 6.21	-7.1%	\$ (4,777,642)

Fuente: Elaboración Autores

Una vez simulado un flujo de caja (Anexo I) para cada escenario (optimista, proyectado y pesimista) tanto en el caso para ciclos de 6 y 12 meses (Tabla XXIV), bajo los supuestos establecidos, se evidencia que:

- Cultivos de 12 meses son más rentables que de 6 meses, debido a que el tiempo que conlleva dar mantenimiento y reinstalación de la jaula pescada es el doble en los ciclos de 6 meses, ya que son pescadas dos veces al año (30 días). Es importante acotar que, el lucro cesante al tener jaulas improductivas puede mermar la rentabilidad del proyecto, por eso es importante que la disponibilidad de alevines con un laboratorio propio y el cronograma de la operación sean prioridad en este tipo de proyectos. De no contar con autoabastecimiento de alevines y con el personal especializado para esta actividad no es recomendable iniciar una inversión.
- El resultado evidenció tres escenarios con TIR (Tasa interna de retorno) positivo. El menor TIR fue del 9.3% en un cultivo de 12 meses, 60% de sobrevivencia, fca de 1.6 bajo un escenario "esperado", es decir en condiciones de cultivo con expectativas de cumplimiento conservadoras. Esta rentabilidad puede representar casi el doble, de la que ofrecer como ejemplo, el Banco Pichincha por un certificado de depósito superior a los \$500.000 con una tasa del 4.75%. Si bien, literalmente el retorno y ganancias estarían garantizadas, otros costos de oportunidad para el nivel de la inversión pudieran ofrecer igual o mayor rentabilidad con menor riesgo. En este punto es importante recomendar que, este

tipo de proyectos deben contemplar la inversión de una planta procesadora de pescado y exportación para alcanzar los precios internacionales y garantizar una mayor TIR y la sostenibilidad del negocio.

- TIR del 18.8% y 22.9% y VAN superior a 1 son evidentemente superiores a tasas pasivas vigentes, sin embargo, en el fondo representan un riesgo alto, pues fueron construidas bajo un escenario optimista. No se descarta la inversión, pero se debe realizar un estudio de probabilidades, que nos permita definir que variable podemos ajustar antes de descartar el negocio. La mejor TIR es de 22.9%, alcanzada con peces de 2.5 kg, en 12 meses de cultivo, 70% de sobrevivencia y factor de conversión alimenticia de 1.4. En conclusión, se requiere estudios más profundos para la inversión bajo cualquier escenario.
- Es notorio que biomasas menores a 26 kg/m³ de biomasa de pesca resulta en una subutilización del sistema y por ende en un incremento en el costo/libra de producción en escenarios esperados como pesimistas, que resultaron en TIR igual o por debajo del costo de oportunidad.
- En el aspecto financiero, aproximadamente el costo más alto del sistema de producción es el alimento balanceado (50%) y la producción de alevines (25%), por lo que integrarse verticalmente en la cadena de producción, es decir, invertir para contar con una planta propia de proceso de pescado, favorece el acceso a los altos precios internacionales y puede tornar al proyecto más rentable bajo escenarios usando variables productivas más adversas o ante variaciones de precios en el mercado.

CONCLUSIONES

La investigación realizada en torno a la maricultura y al cultivo de Seriola en el mundo, sumado a las características físico-químicas y biológicas técnicamente apropiadas de la zona de implantación del proyecto propuesto evidencian, que un cultivo de huayaipe en el Ecuador puede ser considerado una importante alternativa como medida de adaptación ante el incremento de la temperatura superficial del mar y sus efectos, para sectores como la pesquería y acuicultura continental.

Existe en Ecuador suficiente evidencia con rigurosidad científica que respalda el incremento de la temperatura superficial del mar; al igual que la maricultura como medida de adaptación propuesta en el presente trabajo. 1269 observaciones en 115 años de estudio desde 1900 hasta 2014, analizados mediante una tendencia no lineal basadas en LOWESS en la zona propuesta para la instalación del proyecto, evidencian un cambio de temperatura promedio de 24.8 hasta 26.2 grados C, según Ruperti, et. Al, 2015.

Si usamos técnicas de suavizado mediante ajuste local a los datos (LOWESS-siglas en inglés), de acuerdo a Ruperti, et Al, 2015, podemos proyectar con una pendiente de tendencia (grados C/año) de 0,0093, una TSM de 27.2 grados C en 100 años, la cual podría superar el umbral fisiológico de ciertas especies acuáticas locales, teniendo como potencial efecto la migración de las mismas a otras regiones subtropicales. El sector pesquero, en especial puede verse afectado, al tener que identificar zonas de pescas más lejanas, modificar su arte de pesca para la captura de nuevas especies de interés comercial.

La mayor actividad de la acuicultura continental en el Ecuador se desarrolla en zonas bajas de estuario y bahía en Guayas y El Oro. En un escenario de calentamiento, la expansión térmica en el mar puede provocar procesos erosivos en las costas con liberación de energía; la dinámica poblacional de la cadena trófica experimentaría cambios, cuyo medio el agua, ingresa a los centros de producción de camarón pudiendo provocar cambios en las tasas metabólicas que modulan el crecimiento y sobrevivencia del camarón. A esto se sumaría, precipitaciones más frecuentes, que alteran las condiciones físico-químico de las fuentes de agua y pueden provocar cambios en logística o inversiones en infraestructura para continuar con los procesos productivos.

Proyectos productivos con visión resiliente, serán los que toleren de mejor manera los potenciales efectos del cambio climático. Para el sector pesquero y acuicultor, esta investigación plantea al huayaipe, especie resiliente de acuerdo a Zoë A. Doubleday, et al,

2013, implementando su cultivo en infraestructuras en mar abierto, cuyo nivel de especialización técnica ha tenido una importante evolución, como en los cultivos para salmón en Noruega y Chile.

Información bien documentada de la zona de implantación propuesta, revela que mantiene los rangos de temperatura, oxígeno y salinidad que requiere el huayaipe para su normal desarrollo. La batimetría de la zona de implantación, sumado a las condiciones oceanográficas locales como velocidad de viento, corrientes marinas, altura de olas se ajusta a la recomendación de expertos y a la tendencia mundial de alejar los sistemas de cultivo de las zonas costeras de mayor energía hacia zonas de pluma de dispersión de residuos más amplias y fondos limo-arcillosos de ecosistemas poco diversos.

En relación a lo anterior, los efectos de este incremento de temperatura, ya pudieran estar alterando a la pesca y acuicultura en mayor o menor medida, sin que estudios actuales puedan determinar lo que corresponda a cambio climático. En vista de aquello, resulta necesario que los diferentes actores del país, presenten alternativas de medidas de adaptación para la pesca y acuicultura.

Favorablemente, el Ecuador cuenta con suficiente investigación científica en Huayaipe, cerró su ciclo de vida en cautiverio y en la actualidad el CENAIM, induce la reproducción de esta especie y hace levantamiento de alevines, de una especie nativa y de alto interés comercial. El engorde de la especie propuesta tampoco es una limitante, pues a la fecha un entramado marino se mantiene firme, con engorde de cobia a 9 millas de la costa de Jaramijó.

El proyecto tienes 3 escenarios donde es rentable con TIR superiores al costo de oportunidad que una tasa pasiva pueda ofrecer, sin embargo, sólo uno se construyó sobre variables estimadas de forma conservadora (esperada). En este escenario se obtuvo 9,3% de TIR en 12 meses de cultivo, pescado de 2.2 kg de peso, 60% de sobrevivencia y 1.6 de factor de conversión alimenticia. Esta información sugiere literalmente la inversión, sin embargo, se recomienda analizar otros costos de oportunidad en sectores productivos de igual importancia.

También se obtuvieron TIR atractivas del 18.8% y 22.9% sin embargo se debe acotar que fueron construidas bajo escenarios optimistas, es decir, si bien el negocio es rentable también es de alto riesgo, por lo que se recomienda un estudio de probabilidades de las variables analizadas para su ajuste y posterior decisión de inversión. Ningún escenario pesimista resultó rentable.

Referencias Bibliográficas

- A. M. Arias, M. d. (3 de 2013). *Ictioterm: Base de datos terminológicos y de identificación de especies pesqueras de las costas de Andalucía*. Obtenido de Ictioterm: http://www.ictioterm.es/
- Ababouch et al., 2. (2016). El Estado Mundial de la Pesca y Acuicultura. Oportunidades y desafíos. Roma: FAO.
- Adger et al., 2. (2012). El cambio climático y la pesca de captura: repercusiones potenciales, adaptación y mitigación. Roma: FAO.
- Allison et al., 2. (2009). El cambio climático y la pesca de captura : repercusiones potenciales, adaptación y mitigación. ROMA: FAO.
- Alvararado. J, Ruiz. Ch. (2015). Manual de construcción y manejo de jaulas flotantes para la maricultura del Ecuador. Guayaquil: Researchgate.
- Armenta. G, V. (2016). PROYECCIONES CLIMÁTICAS DE PRECIPITACIÓN Y TEMPERATURA PARA ECUADOR, BAJO DISTINTOS ESCENARIOS DE CAMBIO CLIMÁTICO. Quito.
- Avilés-Quevedo, M. A.-O. (2004). *Manual para el cultivo del jurel.* Mexico: Instituto nacional de la pesca.

 Obtenido

 https://www.gob.mx/cms/uploads/attachment/file/116473/manual_jurel.pdf
- Bakun, A. &. (2004). Greenhouse gas buildup, sardines, submarine eruptions and the possibility of abrupt degradation of intense marine upwelling ecosystems. Ecology Letters, 7(11), 1015-1023.
- Banco Mundial. (2013). *Pesca al 2030. Proyecciones de Pesca y Acuicultura.* Washington: Banco Mundial.
- Barange y Perry, 2. (2012). Repercusiones físicas y ecológicas del cambio climático en la pesca de captura marina y continental y en la acuicultura. En Cochrane et al., *Consecuencias del cambio climático para la pesca y acuicultura*. (pág. 237). Roma: FAO.
- Barange y Perry, 2. (2012). Repercusiones físicas y ecológicas del cambio climático en la pesca de captura marina y continental y en la acuicultura. En C. e. al, *Consecuencias del cambio climático para la pesca y acuicultura*. (pág. 237). Roma: FAO.
- Benedetti. D, Wilson. E. (1996). Estado actual y perspectiva del cultivo de peces marinos en el Ecuador., (págs. 5-14). Coquimbo, Chile.
- Benetti .D, et al. (1995). Cage and pond aquaculture of marine finish In Ecuador. World aquaculture.
- Benito, D. F. (2015). ANÁLISIS DE LA SITUACIÓN ECONÓMICA FINANCIERA DEL SECTOR PRODUCTOR DE LA DORADA (Sparus aurata L.), LUBINA (Dicentrarchus labrax L.) Y CORVINA (Argyrosomus regius A.), EN EL LITORAL MEDITERRANEO ESPAÑOL. España.
- Bennetti, D. (2010). Estudios básicos para instalar proyectos de maricultura oceánica en diez (10) sitios cercanos a puertos pesqueros artesanales en el Ecuador. . QUITO: Subsecretaría de Recursos Pesqueros y consultora Stratega BDS (Business Development Services), Enero, 2010.

- Bezabala. (30 de 07 de 2017). Cadenas y accesorios grado 80. Bilbao, España. Obtenido de http://www.bezabala.es/descargas/4cad80.pdf
- Bindoff, N. L. (2007). *Observations: oceanic climate change and sea level.* New York: Cambridge University.
- Blacio Game, J. E., Vera Vera, V., & Sinche Chele, F. (2009). *Cultivo de huayaipe, seríola rivoliana, en piscinas provistas de geomembranas*. Guayaquil: Repositorio Dspace.
- Blacio Game, J. E., Vera Vera, V., & Sinche Chele, F. (2009a). Cultivo de huayaipe, seríola rivoliana, en piscinas provistas de geomembranas. *DSpace*, 22.
- Blacio, E., Darquea, J., & Rodríguez, S. (2003). Avances en cultivo de huayaipe, Seriola rivoliana, en las instalaciones del Cenaim. *Mundo Acuícola*, 9, 21-24.
- Blacio. E, Alvarez. R. (2002). *Diversificación: Propuesta de Selección de Peces y Moluscos con potencial de cultivo*. Guayaquil: Fundación CENAIM-ESPOL.
- Cámara Nacional de acuacultura. (2015). BOLETIN MAPA DE RIESGO A INUNDARSE. Recuperado el 5 de 6 de 2017, de http://www.cna-ecuador.com/noticias-cna/1782-boletin-mapa-deriesgo-a-inundarse
- Carrillo, P. (2012). COMPORTAMIENTO DEL OXIGENO DISUELTO EN DOS ESTACIONES COSTERAS LA LIBERTAD Y MANTA, COMO APORTE AL CONOCIMIENTO DEL FENÓMENO "EL NIÑO".

 Guayaquil: INOCAR,ACTA OCEANOGRÁFICA DEL PACÍFICO. VOL. 17, N° 1, 2012.
- Carrillo, P. (2013). Comportamiento del oxígeno disuelto en dos estaciones costeras La Libertad y Manta, como aporte al conocimiento del fenómeno "El Niño". Guayaquil: INOCAR, ACTA OCEANOGRÁFICA DEL PACÍFICO. VOL. 17, N° 1, 2012.
- Castillo, N. (25 de 1 de 2016). Fundacion Sociedad Latinoamericana de Acuacultura. Recuperado el 6 de 12 de 2016, de Potenciales Impactos de la Acidificación de los Océanos para las Pesquerías y Acuicultura Marina en Ecuador: http://sla.org.ec/potenciales-impactos-de-la-acidificacion-oceanica/
- CEPAL. (2000). Crónicas de Desastres Fenómeno El Niño. En R. Perez, El Fenómeno El Niño en Ecuador (pág. 294). Washington, D.C.: Organización Panamericana de la Salud.
- Church, J. A. (2004). *Estimates of the regional distribution of sea level rise over the 1950–2000 period*. Journal of climate, 17(13), 2609-2625.
- CNA. (10 de 4 de 2013). *Cámara Nacional de Acuacultura*. Obtenido de http://www.cna-ecuador.com/noticias-cna/1782-boletin-mapa-de-riesgo-a-inundarse
- Cochrane, K. (2012). Consecuencias del Cambio Climático Para la Pesca y la Acuicultura: Visión de Conjunto del Estado Actual de Los Conocimientos Científicos. Roma: FAO.
- Davis. A, Samocha. T, Boyd. C. (2004). *Acclimating Pacific white shrimp, Litopenaeus vannamei, to Inland, low-salinity waters.* SRAC Publication No. 2601. 8 pp.
- Daw et al, 2. (2014). Climate change adaptation in fisheries and aquaculture. Roma: FAO.
- Daw et al., 2. (2012). Consecuencias del cambio climático para la pesca y acuicultura. En 2. Cochrane et al., El cambio climático y la pesca de captura: repercusiones potenciales, adaptación y mitigación (pág. 237). Roma: FAO.
- Daw, T. (2009). El cambio climático y la pesca de captura: repercusiones potenciales,. Roma: FAO.
- Del Salto, B. (2013). ANÁLISIS DEL COMPORTAMIENTO CLIMÁTICO DE LOS ÚLTIMOS 30 AÑOS, EN LAS COSTAS DE ESMERALDAS, MANTA Y. Guayaquil : INOCAR,ACTA OCEANOGRÁFICA DEL PACÍFICO VOL. 18 № 1, 2013.

- Domingues et al., 2. (2012). Consecuencias del cambio climático para la pesca y la acuicultura. En K. Cochrane, C. De Young, & D. y. Soto, *Visión de conjunto del estado actual de los conocimientos científicos* (pág. 246). Roma: FAO.
- Domingues, C. C. (2008). *Improved estimates of upper-ocean warming and multi-decadal sea*. Nature,453: 1090–1093.
- ECUADOR, P. (2014). Evolución Enero-Diciembre 2013 exportaciones ecuatorianas 2014.
- Espinoza, N., Blacio Game, J. E., & Escala, E. (2009b). Estudio de la factibilidad técnica y económica del cultivo de huayaipe (Seriola rivoliana) en piscinas con y sin geomembranas. *DSpace*, 9.
- Espinoza, N., Blacio Game, J. E., & Escala, E. (2009). Estudio de la factibilidad técnica y económica del cultivo de huayaipe (Seriola rivoliana) en piscinas con y sin geomembranas. Guayaquil: DSpace.
- FAO. (1999). Orientaciones tecnicas para la pesca responsable. Roma.
- FAO. (2007). Cage aquaculture: a global overview. Roma.
- FAO. (2008). Capture-based aquaculture. Global overview. FAO Fisheries Technical. Roma.
- FAO. (2008). CLIMATE CHANGE FOR FISHERIES AND AQUACULTURE. THE IMPORTANCE OF FISHERIES AND AQUACULTURE TO LIVE (pág. 18). ROMA: Publicaciones Food and Agriculture Organization of the United Nations.
- FAO. (2009). *La pesca y la acuicultura frente al cambio climático*. Recuperado el 25 de 11 de 2016, de http://www.fao.org/3/a-i1072s.pdf
- FAO. (2013). A global assessment of offshore mariculture potencial from a spatial perspective. Roma: fao.
- FAO. (2013). A global assessment of potential for offshore mariculture development from a spatial perspective. En J. A.-M. Kapetsky, *Potential for offshore mariculture development* (pág. 202). Roma: FAO.
- FAO. (2013). FAO Fishery Country Profile Ecuador. Roma.
- FAO. (2016). El estado mundial de la pesca y la acuicultura 2016. *Contribución a la seguridad alimentaria y la nutrición para todos* (pág. 224). Roma: FAO.
- Finol, T. (1996). Procesos y productos en la investigación documental. Maracaibo: EDILUZ, 1993.
- Fishbase. (2012). http://www.fishbase.org/. Recuperado el 13 de 01 de 2017, de http://www.fishbase.org/Nomenclature/ScientificNameSearchList.php?
- Folland, C. K. (2001). *Global temperature change and its uncertainties since 1861.* Geophysical Research Letters, 28(13), 2621-2624.
- Froese. R, Pauly.D. (3 de 9 de 2017). *FishBase.* Obtenido de FishBase.: http://www.fishbase.se/Summary/SpeciesSummary.php?id=1007&lang=spanish
- Fry, F. (1971). The effect of environmental factors on the physiology of fish. New York: USA, Academic .
- Gálvez, H. (2007). Características de las precipitaciones, la temperatura del aire y los vientos en la costa Ecuatoriana . Guayaquil: INOCAR, Acta Oceanográfica del Pacífico. Vol. 14, № 1. 2007.
- Grajales, T. (2000). Tipos de Investigación. Revista de Educación, 4.
- Guillermina, B. (2014). Metodología de la investigación. Mexico: Grupo Editorial Patria.
- Halwart, A. G. (2007). Cage aquaculture Regional reviews and global overview. En M. Halwart, D. Soto, & J. Arthur, *Cage aquaculture: a global overview* (pág. 241). Roma: FAO.
- Hansen, J. S.-E. (2006). *Global temperature change.* Proceedings of the National Academy of Sciences, 103(39), 14288-14293.

- Hurtado, R. (2011). *ESTUDIO DE FONDEO CULTIVO OFFSHORE DE PECES SALMONIDOS*. Puerto Montt: SERVICIOS Y ASESORIAS AMBIENTALES.
- ICTIOTERM. (03 de 2013). Base de datos terminológicos y de identificación de especies pesqueras de las costas de Andalucía. Obtenido de http://www.ictioterm.es/nombre_cientifico.php?nc=268
- INEC. (Diciembre de 2014a). www.ecuadorencifras.gob.ec. Obtenido de http://www.ecuadorencifras.gob.ec/documentos/web-inec/POBREZA/2014/Diciembre-2014/Presentacion Pobreza y Desigualdad diciembre 2014.pdf
- INP. (2012). Factibilidad de incremento del esfuerzo pesquero en la pesquería de peces pelágicos pequeños: Criterios técnicos. Guayaquil.
- Instituto Nacional de Pesca de México. (2004). Manual para el cultivo de Jurel. México.
- Jacumar. (2006). *Junta nacional asesora de cultivos marinos*. Recuperado el 27 de 7 de 2017, de http://www.mapama.gob.es/app/jacumar/especies/Documentos/Lubina.pdf
- LA, C. A., & LA, A. Y. (2016). El estado mundial de la pesca y la acuicultura. ROMA: FAO.
- Lemke et al., 2. (2012). Consecuencias del cambio climático para la pesca y la acuicultura. En K. Cochrane, C. De Young, & D. y. Soto, *visión de conjunto* (pág. 246). Roma: FAO.
- Levitus, S. A. (2005). Warming of the world ocean, 1955–2003. Geophysical Research Letters, 32(2).
- Llancabure, R. (5 de 12 de 2016). Acuicultura y cambio climático: De la vulnerabilidad a la adaptación. Recuperado el 29 de 7 de 2017, de https://sensorglobe.com/2016/12/06/acuicultura-y-cambio-climatico-de-la-vulnerabilidad-a-la-adaptacion/
- López-Alvarado, J. (2014). Desarrollo de la maricultura en el Ecuador:: situación actual y perspectivas. *Revista de Ciencias del Mar y Limnología.*, 15.
- Love, G., & Langenkamp, D. (2003). *Australian aquaculture-industry profiles for selected species*. ABARE EReport, (03.8).
- Magnuson, J.J., Crowder, L.B. & Medvick, P.A. (1979). *Temperature as an ecological resource*. Am. Zool.,19: 331–343.
- Mazzola, A. (2000). Cultivation of the Mediterranean amberjack, Seriola dumerili (Risso, 1810), in submerged cages in the Western Mediterranean Sea.
- Miller, L. &. (2004). Mass and volume contributions to twentieth-century global sea level rise. . Nature, 428(6981), 406.
- Ministerio del Ambiente del Ecuador. (2017). *Tercera Comunicación Nacional del Ecuador sobre Cambio Climático*. Quito: Manthra Comunicación.
- Morán, R. (2013). CARACTERIZACIÓN Y EVALUACIÓN DE LA CALIDAD DEL AGUA DE LA BAHÍA DE JARAMIJÓ PROVINCIA DE MANABÍ DURANTE. Guayaquil : AR, ACTA OCEANOGRÁFICA DEL PACÍFICO VOL. 18 № 1, 2013.
- Mundial, B. (2013). *Pesca al 2030. Proyecciones de la Pesca y Acuicultura.* Washington: Banco Mundial.
- Nakada, M. (2002). Desarrollo del cultivo de Seriola y soluciones para el futuro. *Reviews in Fisheries Science*, 10(3&4): 559–575.
- Nakada, M. (2008). *Capture-based aquaculture of yellowtail. Capture-based aquaculture.* Roma: FAO Fisheries Technical Paper, 508, 199-215.

- NOOA. (s.f.). *Monthly Atmospheric and SST Indices* . Recuperado el 20 de 6 de 2017, de National Oceanic and Atmospheric Administration: http://www.cpc.ncep.noaa.gov/data/indices/sstoi.indices
- Organización Panamericana de Salud. (2000). *Crónicas de Desastres Fenómeno El Niño.* Washington, D. C: OPS/OMS.
- Ortega, A. (2008). *Cultivo de dorada (Sparus aurata) | Cuadernos de Acuicultura* . Recuperado el 27 de 7 de 2017, de http://www.mapama.gob.es/app/JACUMAR/especies/Documentos/Cultivo Dorada.pdf
- Ottolenghi, F. S. (2004). *Capture-based aquaculture: the fattening of eels, groupers, tunas and yellowtails.* ROMA: FAO.
- Paquottea . P, et al. (1998). *Intensive culture of shrimp Penaeus vannamei in floating cages:* zootechnical, economic and environmental aspects. Salvador, Bahia, Brazil: sciencedirect.
- Pérez, O., & al, E. (2000). Sistema de Información Geográfica como una simple herramienta para ayudar a la modelación de la distribución de desechos particulados en jaulas marinas de peces.
- PROECUADOR, I. d. (2014). Evolución Enero -Diciembre 2013 exportaciones Ecuatorianas. Quito.
- Regalado, J. (2014). Análisis de las condiciones climáticas en Jaramijó durante la época seca y húmeda, período 2012-2013 . Guayaquil: INOCAR,Acta Oceanográfica del Pacífico. Vol. 19, N° 2, 2014.
- Ruperti, H., Carroll, D., & Breaker, L. . (2015). *Tendencias en la variabilidad de la temperatura superficial del mar en la costa de Ecuador.* Manabí: La Técnica: Revista de las Agrociencias. e-ISSN 2477-8982, (15), 100-113.
- San Martin, V. (2000). *Régimen del oleaje en la zona de Jaramijó y Salinas . .* Guayaquil: INOCAR, Acta Oceanográfica del Pacífico. INOCAR, Ecuador, 10(1), 2000.
- Sarmiento, J. S. (2004). *Response of ocean ecosystems to climate warming.* Global Biogeoch. Cycles 18, GB3003, .
- Seefood Watch Report. (2008). Farmed yellowtail. Seriola spp.
- Shelton, C. (2014). Climate Change Adaptation in Fisheries and Aquaculture. Compilation of initial examples. Roma: FAO.
- Soledispa, B. (2012). Caracterizacion Geomorfologica y sedimentologica de la Bahia de Jaramijo , en la Provincia de Manabi. Guayaquil : INOCAR -Acta Oceanografica del Pacifico Vol 17 N°1.
- Soledispa, B. (2012). Caracterización geomorfológica y sedimentológica de la bahía de Jaramijó, en la Provincia de Manabí. Guayaquil: INOCAR,ACTA OCEANOGRÁFICA DEL PACÍFICO. VOL. 17, N° 1, 2012.
- Somero, G. N. (2012). *The physiology of global change: linking patterns to mechanisms.* . Annual Review of Marine Science, 4, 39-61.
- Soto. D & Quiñones, R. (2013). Cambio climático y sus impactos en la pesca y la acuicultura. En D. &. Soto, *Cambio climático, pesca y acuicultura en América Latina* (pág. 344). ROMA: FAO.
- Stehfest, K. (2017). Respuesta del salmón atlántico Salmo salar a la temperatura y extremos de oxígeno disuelto establecidos mediante sensores ambientales transmitidos por animales. *Scientific Report*, 15. Recuperado el 29 de 7 de 2017, de http://www.aquahoy.com/i-d-i/sistemas-de-cultivo/29586-sensores-revelan-la-probable-respuesta-del-salmon-del-atlantico-al-cambio-climatico

- Timmermann, A. O. (1999). *Increased El niño frequency in a climated model forced by future greenhouse warming.* letters to nature, 398(6729), 694.
- Valencia, M. (1996). Características Químicas de las masas de agua costeras Ecuatorianas en estaciones fijas: Península de Santa Elena y Puerto de Manta-Ecuador 1990-1995. . Guayaquil: INOCAR, Acta Oceanográfica del Pacífico. INOCAR, Ecuador, 8 (1), 1996.
- Valencia, M., & 1998, e. a. (1996). Características Químicas de las masas de agua costeras Ecuatorianas durante los eventos ENSO de 1993-1998. Guayaquil: Acta Oceanográfica del Pacífico. INOCAR, Ecuador, 9 (1), 1998.
- Valencia, T. (1998). Características Químicas de las masas de agua costeras Ecuatorianas durante los eventos ENSO de 1993-1998. Guayaquil: INOCAR, Acta Oceanográfica del Pacífico. INOCAR, Ecuador, 8 (1), 1996.
- Vera, L. (2009). Caracterización Oceanográfica de la costa central ecuatoriana entre la punta del morro y Jaramijó, Ecuador. Guayaquil: INOCAR,ACTA OCEANOGRÁFICA DEL PACÍFICO. VOL. 15, № 1. 2009.
- Zoë et al., 2. (2013). Assessing the risk of climate change to aquaculture:. Australia: Aquacult Environ Interact.

ANEXO 1.- Flujo de caja para determinar la rentabilidad del cultivo de huayaipe (Seriola sp.) con fines de exportación.

	AÑO 1	AÑO 2	AÑO 3	AÑO 4	AÑO 5	AÑO 6	AÑO 7	AÑO 8	AÑO 9	AÑO 10
PRECIO DE VENTA		\$ 7.88	\$ 7.88	\$ 7.88	\$ 7.88	\$ 7.88	\$ 7.88	\$ 7.88	\$ 7.88	\$ 7.88
JUVENILES SEMBRADOS POR JAULA		105,000	105,000	105,000	105,000	105,000	105,000	105,000	105,000	105,000
PESO PESCA (Kg)		2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50
PRECIO DEL ALEVIN (\$/alevín)		\$ 1.20	\$ 1.20	\$ 1.20	\$ 1.20	\$ 1.20	\$ 1.20	\$ 1.20	\$ 1.20	\$ 1.20
PRECIO DEL ALIMENTO (\$/kg)		\$ 1.20	\$ 1.22	\$ 1.25	\$ 1.27	\$ 1.30	\$ 1.32	\$ 1.35	\$ 1.38	\$ 1.41
IMPREVISTOS	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%
PERIODO DE MANTENIMIENTO DE JAULAS AL AÑO (meses)		1	2	2	2	2	2	2	2	2
FACTOR DE CONVERSION ALIMENTICIA		1.40	1.37	1.34	1.32	1.29	1.27	1.24	1.22	1.19
SOBREVIVENCIA		70%	72%	74%	75%	77%	79%	81%	83%	85%

	AÑO 0	AÑO 1		AÑO 2	AÑO 3		AÑO 4		AÑO 5	ΑÑ	ÑO 6	AÑO)7	AÑO 8	AÑO	9	AÑO 10
BIOMASA STOCK Ton/jaula		0		184	1	38	193		198		203		208	213		218	224
INGRESOS POR VENTAS		\$ - !	\$	- \$	14,841,4	38 \$	\$ 15,212,525	\$ 1	15,592,838	\$ 15,	982,659	\$ 16,3	82,225	\$ 16,791,781	\$ 17,2	11,575	\$ 17,641,865
		 			COSTOS V	ARIAI	BLES										
COSTO DE PRODUCCION DE ALEVINES																	
(alevín/jaula/mes)	\$ -	\$ - :	\$	1,512,000 \$	1,512,0	00 \$	\$ 1,512,000	\$	1,512,000	\$ 1,	512,000	\$ 1,5	12,000	\$ 1,512,000	\$ 1,5	12,000	\$ 1,512,000
COMPRA DE ALIMENTO	\$ -	\$ - :	\$	3,704,400 \$	3,795,4	91 \$	\$ 3,888,822	\$	3,984,448	\$ 4,	082,426	\$ 4,1	82,813	\$ 4,285,668	\$ 4,3	91,053	\$ 4,499,029
SUBCONTRATOS Y SERVICIOS	\$ 102,000	\$ 107,100	\$	143,375	150,5	14 \$	\$ 158,071	\$	165,974	\$	174,273	\$ 1	82,987	\$ 192,136	\$ 2	01,743	\$ 211,830
COMBUSTIBLE PARA EMBARCACION	\$ -	\$ 26,400	\$	27,720 \$	29,1	06 \$	\$ 30,561	\$	32,089	\$	33,694	\$	35,379	\$ 37,147	\$	39,005	\$ 40,955
VARIOS (10%) DEL TOTAL (IMPREVISTOS)	\$ 10,200	\$ 13,350	\$	538,750	548,7	14 \$	\$ 558,945	\$	569,451	\$	580,239	\$ 5	91,318	\$ 602,695	\$ 6	14,380	\$ 626,381
TOTAL COSTOS VARIABLES	\$ 112,200	\$ 146,850	\$	5,926,245	6,035,8	55 \$	\$ 6,148,400	\$	6,263,964	\$ 6,	382,632	\$ 6,5	04,496	\$ 6,629,647	\$ 6,7	58,181	\$ 6,890,196
					COSTOS	FIJO	S										
COMPRA Y REMODELACION DE LABORATORIO	\$ 600,000	,	,														
SALARIOS	\$ 204,000	\$ 110,400	\$	115,920 \$	121,7	16 \$	\$ 127,802	\$	134,192	\$	140,901	\$ 1	47,947	\$ 155,344	\$ 1	63,111	\$ 171,267
EQUIPOS (incluye entramado y jaulas marinas)		\$ 810,299															
MATERIALES Y SUMINISTROS		\$ 71,688						\$	75,272								\$ 79,036
VEHICULOS (camioneta doble cabina)	\$ 45,000																
MONTACARGAS		\$ 30,000															
BARCO BASE		\$ 250,000															
DEPRECIACION (9 AÑOS)			\$ 2	235,709.67	235,7	10 \$	\$ 235,710	\$	235,710	\$	235,710	\$ 2	35,710	\$ 235,710	\$ 2	35,710	\$ 235,710
TOTAL COSTOS FIJOS			\$	235,710	235,7	10	\$ 235,710	\$	310,982	\$	235,710	\$ 2	35,710	\$ 235,710	\$ 2	35,710	\$ 314,746
TOTAL INVERSION INICIAL	\$ -961,200	\$ -5,833,482															
DEVOLUCION DE PRESTAMO		\$ 864,818	\$	864,818	864,8	18 \$	\$ 864,818	\$	864,818	\$	864,818	\$ 8	64,818	\$ 864,818	\$ 8	64,818	\$ 864,818
TOTAL COSTOS	\$ 961,200	\$ 2,284,055	\$	7,026,772 \$	7,136,3	32 \$	\$ 7,248,927	\$	7,439,763	\$ 7,	483,160	\$ 7,6	05,023	\$ 7,730,174	\$ 7,8	58,708	\$ 8,069,759
DIFERENCIA INGRESOS-EGRESOS	\$ -961,200	\$ -2,284,055	\$	-7,026,772	7,705,1	05 \$	\$ 7,963,597	\$	8,153,075	\$ 8,	499,499	\$ 8,7	77,202	\$ 9,061,606	\$ 9,3	52,867	\$ 9,572,106
COSTO UNITARIO (\$/kg)		:	\$	3.19	3.	16 \$	\$ 3.13	\$	3.13	\$	3.07	\$	3.05	\$ 3.02	\$	3.00	\$ 3.00

Fuente: Elaboración Autores

ANEXO 2. -Resumen financiero del proyecto

<u>Años</u>	<u>Capital</u>	Ingresos	<u>Costos</u>	<u>Ufilidad a.i</u>	Impuesto renta 30%	<u>Utilidad d.i</u>	<u>De</u>	preciación	<u>Beneficio</u>	Tasa de descuento 5.0%	•	Millones
0	\$ -6,794,682								\$ -6,794,682		\$	-6,794,682
1		\$ -	\$ 2,284,055	\$ -2,284,055	\$ -685,216	\$ -1,598,838	\$	-	\$ -1,598,838		\$	-1,522,703
2		\$ -	\$ 7,026,772	\$ -7,026,772	\$ -2,108,032	\$ -4,918,740	\$	235,710	\$ -4,683,031		\$	-4,247,647
3		\$ 14,841,488	\$ 7,136,382	\$ 7,705,105	\$ 2,311,532	\$ 5,393,574	\$	235,710	\$ 5,629,283		\$	4,862,787
4		\$ 15,212,525	\$ 7,248,927	\$ 7,963,597	\$ 2,389,079	\$ 5,574,518	\$	235,710	\$ 5,810,228		\$	4,780,089
5		\$ 15,592,838	\$ 7,439,763	\$ 8,153,075	\$ 2,445,922	\$ 5,707,152	\$	235,710	\$ 5,942,862		\$	4,656,388
6		\$ 15,982,659	\$ 7,483,160	\$ 8,499,499 💆	\$ 2,549,850	\$ 5,949,649	\$	235,710	\$ 6,185,359		\$	4,615,610
7		\$ 16,382,225	\$ 7,605,023	\$ 8,777,202	\$ 2,633,161	\$ 6,144,041	\$	235,710	\$ 6,379,751		\$	4,533,970
8		\$ 16,791,781	\$ 7,730,174	\$ 9,061,606	\$ 2,718,482	\$ 6,343,124	\$	235,710	\$ 6,578,834		\$	4,452,814
9		\$ 17,211,575	\$ 7,858,708	\$ 9,352,867	\$ 2,805,860	\$ 6,547,007	\$	235,710	\$ 6,782,717		\$	4,372,200
10		\$ 17,641,865	\$ 8,069,759	\$ 9,572,106	\$ 2,871,632	\$ 6,700,474	\$	235,710	\$ 6,936,184		\$	4,258,215
										VAN=	\$	23,967,040
										TIR=		22.9%

Fuente: Elaboración Autores

ANEXO 1. CRONOGRAMA DE PAGO DE CAPITAL E INTERÉS DE PRÉSTAMO BANCARIO.

INTERES	8%		
AÑOS	10		
PRESTAMO	\$ 1,650,820		
PAGO	\$ 20,029.00		

meses	capital	interes	pago	saldo
			11.0.	\$ 1,650,820
1	9,024	11,005	20,029	1,641,796
2	9,084	10,945	20,029	1,632,713
3	9,144	10,885	20,029	1,623,568
4	9,205	10,824	20,029	1,614,363
5	9,267	10,762	20,029	1,605,097
6	9,328	10,701	20,029	1,595,768
7	9,391	10,638	20,029	1,586,378
8	9,453	10,576	20,029	1,576,925
9	9,516	10,513	20,029	1,567,408
10	9,580	10,449	20,029	1,557,829
11	9,643	10,386	20,029	1,548,185
12	9,708	10,321	20,029	1,538,478
13	9,772	10,257	20,029	1,528,705
14	9,838	10,191	20,029	1,518,867
15	9,903	10,126	20,029	1,508,964
16	9,969	10,060	20,029	1,498,995
17	10,036	9,993	20,029	1,488,959
18	10,103	9,926	20,029	1,478,857
19	10,170	9,859	20,029	1,468,687
20	10,238	9,791	20,029	1,458,449
21	10,306	9,723	20,029	1,448,143
22	10,375	9,654	20,029	1,437,768
23	10,444	9,585	20,029	1,427,324
24	10,514	9,515	20,029	1,416,811
25	10,584	9,445	20,029	1,406,227
26	10,654	9,375	20,029	1,395,573
27	10,725	9,304	20,029	1,384,848
28	10,797	9,232	20,029	1,374,051
29	10,869	9,160	20,029	1,363,183
30	10,941	9,088	20,029	1,352,241
31	11,014	9,015	20,029	1,341,227
32	11,087	8,942	20,029	1,330,140
33	11,161	8,868	20,029	1,318,979
34	11,236	8,793	20,029	1,307,743
35	11,311	8,718	20,029	1,296,432
36	11,386	8,643	20,029	1,285,046

meses	capital	interes	pago	saldo
37	11,462	8,567	20,029	1,273,584
38	11,538	8,491	20,029	1,262,045
39	11,615	8,414	20,029	1,250,430
40	11,693	8,336	20,029	1,238,737
41	11,771	8,258	20,029	1,226,967
42	11,849	8,180	20,029	1,215,117
43	11,928	8,101	20,029	1,203,189
44	12,008	8,021	20,029	1,191,181
45	12,088	7,941	20,029	1,179,094
46	12,168	7,861	20,029	1,166,925
47	12,249	7,780	20,029	1,154,676
48	12,331	7,698	20,029	1,142,344
49	12,413	7,616	20,029	1,129,931
50	12,496	7,533	20,029	1,117,435
51	12,579	7,450	20,029	1,104,856
52	12,663	7,366	20,029	1,092,192
53	12,748	7,281	20,029	1,079,445
54	12,833	7,196	20,029	1,066,612
55	12,918	7,111	20,029	1,053,694
56	13,004	7,025	20,029	1,040,689
57	13,091	6,938	20,029	1,027,598
58	13,178	6,851	20,029	1,014,420
59	13,266	6,763	20,029	1,001,154
60	13,355	6,674	20,029	987,799
61	13,444	6,585	20,029	974,355
62	13,533	6,496	20,029	960,822
63	13,624	6,405	20,029	947,198
64	13,714	6,315	20,029	933,484
65	13,806	6,223	20,029	919,678
66	13,898	6,131	20,029	905,781
67	13,990	6,039	20,029	891,790
68	14,084	5,945	20,029	877,706
69	14,178	5,851	20,029	863,529
70	14,272	5,757	20,029	849,257
71	14,367	5,662	20,029	834,889
72	14,463	5,566	20,029	820,426

meses	capital	interes	pago	saldo
73	14,559	5,470	20,029	805,867
74	14,657	5,372	20,029	791,210
75	14,754	5,275	20,029	776,456
76	14,853	5,176	20,029	761,603
77	14,952	5,077	20,029	746,652
78	15,051	4,978	20,029	731,600
79	15,152	4,877	20,029	716,449
80	15,253	4,776	20,029	701,196
81	15,354	4,675	20,029	685,842
82	15,457	4,572	20,029	670,385
83	15,560	4,469	20,029	654,825
84	15,664	4,366	20,029	639,162
85	15,768	4,261	20,029	623,394
86	15,873	4,156	20,029	607,521
87	15,979	4,050	20,029	591,542
88	16,085	3,944	20,029	575,456
89	16,193	3,836	20,029	559,264
90	16,301	3,728	20,029	542,963
91	16,409	3,620	20,029	526,554
92	16,519	3,510	20,029	510,035
93	16,629	3,400	20,029	493,407
94	16,740	3,289	20,029	476,667
95	16,851	3,178	20,029	459,816
96	16,964	3,065	20,029	442,852

meses	capital	interes	pago	saldo
97	17,077	2,952	20,029	425,775
98	17,190	2,839	20,029	408,585
99	17,305	2,724	20,029	391,280
100	17,420	2,609	20,029	373,859
101	17,537	2,492	20,029	356,323
102	17,654	2,375	20,029	338,669
103	17,771	2,258	20,029	320,898
104	17,890	2,139	20,029	303,008
105	18,009	2,020	20,029	284,999
106	18,129	1,900	20,029	266,870
107	18,250	1,779	20,029	248,621
108	18,372	1,657	20,029	230,249
109	18,494	1,535	20,029	211,755
110	18,617	1,412	20,029	193,138
111	18,741	1,288	20,029	174,396
112	18,866	1,163	20,029	155,530
113	18,992	1,037	20,029	136,538
114	19,119	910	20,029	117,419
115	19,246	783	20,029	98,173
116	19,375	654	20,029	78,798
117	19,504	525	20,029	59,295
118	19,634	395	20,029	39,661
119	19,765	264	20,029	19,896
120	19,896	133	20,029	0

ANEXO 2.- Valores de la TSM periodo de 1983 -2013 obtenidas de la estación fija del INOCAR Manta y NOOA.

Fuente	NOO	A	INOCAR
Años	Época húmeda	Época seca	Época húmeda
	(ºC)	(oC)	(ºC)
1983	27.8	23.9	27.4
1984	24.5	21.0	25.9
1985	23.9	20.3	25.6
1986	24.5	21.3	25.4
1987	26.0	22.5	26.5
1988	24.6	20.0	25.6
1989	24.6	20.8	25.2
1990	24.6	20.9	25.8
1991	24.7	21.7	26.2
1992	26.1	21.4	26.5
1993	25.4	21.7	26.4
1994	24.3	21.2	25.5
1995	24.8	20.9	25.9
1996	24.1	20.1	25
1997	25.2	25.2	27.8
1998	28.3	22.3	27
1999	24.4	20.3	25.5
2000	24.6	20.6	25.4
2001	25.0	20.3	25.2
2002	25.1	21.2	26.4
2003	24.4	20.9	26.2
2004	24.6	20.8	25.9
2005	24.6	20.7	25.7
2006	24.6	22.1	26.1
2007	24.6	19.6	25.5
2008	24.8	21.9	26
2009	25.0	22.0	26.2
2010	25.1	20.0	26.2
2011	24.8	21.2	26.3
2012	25.2	21.8	26.4
2013	24.4	20.4	27.4

ANEXO 3.- CARACTERIZACIÓN GEOMORFOLÓGICA Y SEDIMENTOLÓGICA DE LA BAHÍA DE JARAMIJÓ, EN LA PROVINCIA DE MANABÍ.

	BAHÍA DE	JARAMIJÓ	
ESTACION	ARENA	LIMO	TEXTURA
	(%)	(%)	
1			Área rocosa
2	31.23	68,77	Limo-arenoso
3	57.02	42.98	Arena-limosa
4	8.23	91.77	Limo
5	7.12	92.88	Limo
6	91.48	8.52	Arena
7	84.56	15.44	Arena
8	53.30	46.70	Arena-limosa
9	66.45	33.55	Arena-limosa
10	65.43	34.57	Arena-limosa
11	94.80	5.20	Arena
12	64.02	35.98	Arena-limosa
13	41.15	58.85	Limo-arenoso
14	7.40	92.60	Limo
15	5.71	94.29	Limo
16	11.19	88.81	Limo
17	83.12	16.88	Arena
18	15.47	84.53	Limo
19	0.46	99.54	Limo
20	27.27	72.73	Limo-arenoso
21	32.60	67.40	Limo-arenoso
22	92.29	7.71	Arena
23	92.77	7.23	Arena
24	11.98	89.02	Limo
25	60.83	39.17	Arena-limosa
26	0.67	99.32	Limo
27	11.12	88.88	Limo
28	3.45	96.55	Limo
29	4.12	95.88	Limo
30	0.65	99.35	Limo
31	0.87	99.13	Limo
32	1.21	98.79	Limo
33	93.47	6.53	Arena
34	22.29	77.71	Limo
35	13.12	86.88	Limo
36	50.26	49.79	Arena-limosa
37	88.53	11.47	Arena
38	1.87	98.13	Limo
39	92.91	7.09	Arena
40	80.49	19.51	Arena
41	98.07	1.93	Arena
42	26.49	73.51	Limo-arenoso
43	65.49	34.51	Arena-limosa
44	2.39	97.61	Limo
45	2.52	97.48	Limo

ANEXO 4.- CÁLCULOS DE FUERZAS QUE INTERACTÚAN EN EL SISTEMA DE JAULAS Y DEL SISTEMA DE FONDEO.

		_							
calculos de fondeo	•	a flotante	Fv = ½	х Ра х Са	x V² x A				
fuerza generada por los vie La Fuerza del Viento se calc		uionto ocupai	Í						
La ruerza dei Viento se caic	uia con la sig	urente ecuaci	UII.						
			Danda.				-	Laisanta (La)	
Fv : Fuerza del viento (Kg).			Donde:			kg	Fuerza de	l viento (kg) 0,000	
p : Densidad del aire (Kg. s	egV/mW)				0.125	kg seg² / m4 .	fuerza su		+
Cv : Coeficiente eólico.dep		de estructura	s. forma cilindrica		0,55	NG 306 / 1114.	Tuciza su	701101 10720,7200	
V : Velocidad del viento, (m					13,0203	m/s			
A : Area expuesta del conju	nto al viento	(m2).	Area total						
						m2			
		Area supe	rior del anillo		1841,04	m2			
	elocidad del		face do 1.20						
factor rafaga: se realiza una			raga de 1,38				sooficiants Falia	Cu = C - * Ch	
Vel. Max Nudos	donde:						coeficiente Eolico	Cv = Cs * Ch	0,5
factor rafaga		18,5 1,38					Cs : Coeficiente de formas.		cilindrica
1 Nudo= 0,51m/s		0,51					Ch : Coeficiente de altura.	1,1	
correccion de Vel. En Nudo:	s	25,53					en recentre de dicardi	-1/-	
Vel en m/s		13,0203							
Nota: los valores son tomados de									
A : Área expuesta o super	ficie que ten	drá impacto						Areas de las	
directo contra el					Area del marco	(m2)		jaulas	(m2)
A=D.flotadores*D.extjaula+		•							
porte*h.sopor		S				70.54)	Area 1	1178,
	etros (m)				area lado superior	78,54	•	Area 2	490,87
D. flotadores D. ext de jaula	0,5 25,0				Perimetro	78,54		Area 3	490,87
D.barandilla	25,0				- CHINCHO	70,34		Perimetro	78,5
D. jalua	25,0				altura (m)	1		Altura	1
D. soporte	25							diametro	2
H. soporte	1,5								
# de soportes	30								
								Perimetro 2(π) R	
Resultado de AREA	1762,5	m2						Pi	3,141
								radio	12,
A.estruc. =Area de estruct	ura de la nla	taforma que							
tendra impacto d									
		areas m2							
caseta		0			as totales				
Piso pasamano		0		Area total	m2			areas to	
red pajarera		0			0			Area total	m2
boya		0			1841,04			A1+A2+A3	2159,8
resultado de area		0							
				la sumatoria	de todas las areas	expuestas al vie	ento de manera frontal y lateral en	base	
Nota: algu	nos datos so	n asumidos				a la platafo	rma		

ALCULOS BASICOS DE ESF	FUERZO										
ALCULOS DE FONDEO			Fc = ½ *P * 0	Ca * V ² * A							
JERZA GENERADA POR C	ORRIENTE										
	La Fuerz		calcula con la siguiente	e ecuación:					fuerza de corrie		
. F Is la is at	(W.)		Donde:						f	0,000	
c : Fuerza de la corriente (: Densidad del agua salac		24)			104 F0	kg.seg2/m4			frontal	246269,25	
a : Coeficiente de arrastre			as cilindricas		2,1851	kg.segz/m4	_				
: Velocidad de la corrien		iluent), para ionii	as cilliuricas		0,990	m/s	1				
: Area expuesta o superf		rá impacto directo c	ontra la corriente (m2).		0,550	, 5					
			, ,			m2					
			area de total de	l cilindro	2199,12	m2					
							velocidad de la		1	Pleamar	bajamar
	de arrastre	(d/l) 14					Vol. Marin		Donde:	4.5	
Cd= 3,12 * (c	d/L)^2 + 2,73 *	(u/L) +1					Vel. Max en Nu 1 Nudo= 0,51m		0,5	1,8	1,4
Cd= coeficiente de		carga					conversion de I		0,3	0,9	0,7
: Diametro	25						error de registr		0,1	0,09	0,07
longitud(perimetro)	78,54							-	3,1	0,99	0,77
3 (,						Nota: los datos	son tomados de un estu	ıdio previopara l	,	
Cd=	2,1851							de referencia el valor o			
esta formula esta establec	cida para sacar	coeficiente									
de arrastre y el cd, es ur	na unidad adir	nensional									
	6.	. 17		(0)					(0)		
A : Area expuesta o	superficie qu	e tendrá impacto di	recto contra la corrient	e (m2).				Area del anillo de fibra			
									0		
i=			recto contra la corrient rma de la jaula: cilindro					Area del anillo de fibra area superior			
=		s calculos para la fo						area superior	39,270		
= t= A1 + perimetro+ A2		s calculos para la fo Donde:	rma de la jaula: cilindro						78,54		
		s calculos para la fo	rma de la jaula: cilindro					area superior Long. Perimetro	39,270		
at= A1 + perimetro+ A2 A1 : Area normal		s calculos para la fo Donde: 1178,1	rma de la jaula: cilindro					area superior	78,54		
t= A1 + perimetro+ A2 A1 : Area normal A2: area del circulo		s calculos para la fo Donde: 1178,1 490,875	ma de la jaula: cilindro Datos de area long. (m)	78,54				area superior Long. Perimetro	78,54		
t=A1+perimetro+A2 A1:Area normal A2: area del circulo A3=A2		Donde: 1178,1 490,875 490,875	Datos de area	78,54 25				area superior Long. Perimetro	78,54		
A1: Area normal A2: area del circulo A3= A2 t: Area total del cilindro # de jaluas	se realizan lo	Donde: 1178,1 490,875 490,875 2159,85	Datos de area long. (m) diametro (m) radio	78,54 25 12,5				area superior Long. Perimetro	78,54		
A1: Area normal A2: area del circulo A3= A2 t: Area total del cilindro # de jaluas	se realizan lo	s calculos para la fo Donde: 1178,1 490,875 490,875 2159,85	Datos de area long. (m) diametro (m) radio pi	78,54 25 12,5 3,1416				area superior Long. Perimetro altura (m)	78,54 0 0,5		
= t= A1 + perimetro+ A2 A1 : Area normal A2: area del circulo A3= A2 t: Area total del cilindro # de jaluas	se realizan lo	s calculos para la fo Donde: 1178,1 490,875 490,875 2159,85	Datos de area long. (m) diametro (m) radio pi	78,54 25 12,5 3,1416				area superior Long. Perimetro altura (m) Areas de las jaulas	78,54 0 0,5		
t= A1 + perimetro + A2 A1 : Area normal A2: area del circulo A3 = A2 t: Area total del cilindro # de jaluas ssultado de Area de supe	se realizan lo	Donde: 1178,1 490,875 490,875 2159,85 1 2159,85	Datos de area long. (m) diametro (m) radio pi	78,54 25 12,5 3,1416				area superior Long. Perimetro altura (m) Areas de las jaulas Area 1	0 39,270 78,54 0 0,5		
A1: Area normal A2: area del circulo A3= A2 t: Area total del cilindro # de jaluas esultado de Area de supe Area Total de incidencia	se realizan lo	s calculos para la fo Donde: 1178,1 490,875 490,875 2159,85 1 2159,85	Datos de area long. (m) diametro (m) radio pi	78,54 25 12,5 3,1416				area superior Long. Perimetro altura (m) Areas de las jaulas Area 1 Area 2	78,54 0 0,5 (m2) 1178,1 490,875		
t= A1 + perimetro + A2 A1 : Area normal A2: area del circulo A3 = A2 t: Area total del cilindro # de jaluas esultado de Area de supe	se realizan lo	Donde: 1178,1 490,875 490,875 2159,85 1 2159,85 te en (m2) m2	Datos de area long. (m) diametro (m) radio pi	78,54 25 12,5 3,1416				area superior Long. Perimetro altura (m) Areas de las jaulas Area 1 Area 2 Area 3	0 39,270 78,54 0 0,5		
at: Area normal A2: area del circulo A3= A2 t: Area total del cilindro # de jaluas esultado de Area de supe Area Total de incidencia	se realizan lo	s calculos para la fo Donde: 1178,1 490,875 490,875 2159,85 1 2159,85	Datos de area long. (m) diametro (m) radio pi	78,54 25 12,5 3,1416				area superior Long. Perimetro altura (m) Areas de las jaulas Area 1 Area 2	78,54 0 0,5 (m2) 1178,1 490,875		
at: Area normal A2: area del circulo A3= A2 t: Area total del cilindro # de jaluas esultado de Area de supe Area Total de incidencia	se realizan lo	Donde: 1178,1 490,875 490,875 2159,85 1 2159,85 te en (m2) m2 0	Datos de area long. (m) diametro (m) radio pi	78,54 25 12,5 3,1416				area superior Long. Perimetro altura (m) Areas de las jaulas Area 1 Area 2 Area 3 Datos	0 39,270 78,54 0 0,5 (m2) 1178,1 490,875		
at: Area normal A2: area del circulo A3= A2 t: Area total del cilindro # de jaluas esultado de Area de supe Area Total de incidencia	se realizan lo	Donde: 1178,1 490,875 490,875 2159,85 1 2159,85 te en (m2) m2	Datos de area long. (m) diametro (m) radio pi	78,54 25 12,5 3,1416				area superior Long. Perimetro altura (m) Areas de las jaulas Area 1 Area 2 Area 3 Datos	0 39,270 78,54 0 0,5 (m2) 1178,1 490,875		
A1: Area normal A2: area del circulo A3= A2 t: Area total del cilindro # de jaluas esultado de Area de supe Area Total de incidencia	se realizan lo	Donde: 1178,1 490,875 490,875 2159,85 1 2159,85 te en (m2) m2 0	Datos de area long. (m) diametro (m) radio pi	78,54 25 12,5 3,1416				area superior Long. Perimetro altura (m) Areas de las jaulas Area 1 Area 2 Area 3 Datos	0 39,270 78,54 0 0,5 (m2) 1178,1 490,875 490,875		
A1: Area normal A2: area del circulo A3= A2 t: Area total del cilindro # de jaluas sultado de Area de supe Area Total de incidencia	se realizan lo	Donde: 1178,1 490,875 490,875 2159,85 1 2159,85 te en (m2) m2 0	Datos de area long. (m) diametro (m) radio pi	78,54 25 12,5 3,1416				area superior Long. Perimetro altura (m) Areas de las jaulas Area 1 Area 2 Area 3 Datos Perimetro Altura	0 39,270 78,54 0 0,5 (m2) 1178,1 490,875		
at: Area normal A2: area del circulo A3= A2 t: Area total del cilindro # de jaluas esultado de Area de supe Area Total de incidencia	se realizan lo	Donde: 1178,1 490,875 490,875 2159,85 1 2159,85 te en (m2) m2 0	Datos de area long. (m) diametro (m) radio pi	78,54 25 12,5 3,1416				Areas de las jaulas Area 1 Area 2 Area 3 Datos Perimetro Altura diametro Perimetro 2(π) R	0 39,270 78,54 0 0,5 (m2) 1178,1 490,875 490,875		
A1: Area normal A2: area del circulo A3= A2 t: Area total del cilindro # de jaluas esultado de Area de supe Area Total de incidencia	se realizan lo	Donde: 1178,1 490,875 490,875 2159,85 1 2159,85 te en (m2) m2 0	Datos de area long. (m) diametro (m) radio pi	78,54 25 12,5 3,1416				area superior Long. Perimetro altura (m) Areas de las jaulas Area 1 Area 2 Area 3 Datos Perimetro Altura diametro Perimetro 2(π) R Pi	0 39,270 78,54 0 0,5 (m2) 1178,1 490,875 490,875 78,54 15 25		
at: Area normal A2: area del circulo A3= A2 t: Area total del cilindro # de jaluas esultado de Area de supe Area Total de incidencia	se realizan lo	Donde: 1178,1 490,875 490,875 2159,85 1 2159,85 te en (m2) m2 0	Datos de area long. (m) diametro (m) radio pi	78,54 25 12,5 3,1416				Areas de las jaulas Area 1 Area 2 Area 3 Datos Perimetro Altura diametro Perimetro 2(π) R	0 39,270 78,54 0 0,5 (m2) 1178,1 490,875 490,875 78,54 15 25 78,54 3,1416		
A1: Area normal A2: area del circulo A3= A2 t: Area total del cilindro # de jaluas esultado de Area de supe Area Total de incidencia	se realizan lo	Donde: 1178,1 490,875 490,875 2159,85 1 2159,85 te en (m2) m2 0	Datos de area long. (m) diametro (m) radio pi	78,54 25 12,5 3,1416				area superior Long. Perimetro altura (m) Areas de las jaulas Area 1 Area 2 Area 3 Datos Perimetro Altura diametro Perimetro 2(π) R Pi	0 39,270 78,54 0 0,5 (m2) 1178,1 490,875 490,875 78,54 15 25		
A1: Area normal A2: area del circulo A3= A2 t: Area total del cilindro # de jaluas esultado de Area de supe Area Total de incidencia	se realizan lo	Donde: 1178,1 490,875 490,875 2159,85 1 2159,85 te en (m2) m2 0	Datos de area long. (m) diametro (m) radio pi	78,54 25 12,5 3,1416				area superior Long. Perimetro altura (m) Areas de las jaulas Area 1 Area 2 Area 3 Datos Perimetro Altura diametro Perimetro 2(π) R Pi radio	0 39,270 78,54 0,5 0,5 1178,1 490,875 490,875 25 78,54 15 25 78,54 3,1416 12,5 2		
A1: Area normal A2: area del circulo A3= A2 t: Area total del cilindro # de jaluas esultado de Area de supe Area Total de incidencia	se realizan lo	Donde: 1178,1 490,875 490,875 2159,85 1 2159,85 te en (m2) m2 0	Datos de area long. (m) diametro (m) radio pi	78,54 25 12,5 3,1416				area superior Long. Perimetro altura (m) Areas de las jaulas Area 1 Area 2 Area 3 Datos Perimetro Altura diametro Perimetro 2(π) R Pi radio	0 39,270 78,54 0,5 0,5 1178,1 490,875 490,875 78,54 15 25 78,54 3,1416 11,5 2		
at: Area normal A2: area del circulo A3= A2 t: Area total del cilindro # de jaluas esultado de Area de supe Area Total de incidencia	se realizan lo	Donde: 1178,1 490,875 490,875 2159,85 1 2159,85 te en (m2) m2 0	Datos de area long. (m) diametro (m) radio pi	78,54 25 12,5 3,1416				area superior Long. Perimetro altura (m) Areas de las jaulas Area 1 Area 2 Area 3 Datos Perimetro Altura diametro Perimetro 2(π) R Pi radio areas total del cilino Area total	78,54 00,0,5 (m2) 1178,1 490,875 490,875 78,54 15 25 78,54 3,1416 12,5 21 170 de la jaula m2		
A1: Area normal A2: area del circulo A3= A2 t: Area total del cilindro # de jaluas esultado de Area de supe Area Total de incidencia	se realizan lo	Donde: 1178,1 490,875 490,875 2159,85 1 2159,85 te en (m2) m2 0	Datos de area long. (m) diametro (m) radio pi	78,54 25 12,5 3,1416				area superior Long. Perimetro altura (m) Areas de las jaulas Area 1 Area 2 Area 3 Datos Perimetro Altura diametro Perimetro 2(π) R Pi radio	0 39,270 78,54 0,5 0,5 1178,1 490,875 490,875 78,54 15 25 78,54 3,1416 11,5 2		
at: Area normal A2: area del circulo A3= A2 t: Area total del cilindro # de jaluas esultado de Area de supe Area Total de incidencia	se realizan lo	Donde: 1178,1 490,875 490,875 2159,85 1 2159,85 te en (m2) m2 0	Datos de area long. (m) diametro (m) radio pi	78,54 25 12,5 3,1416				area superior Long. Perimetro altura (m) Areas de las jaulas Area 1 Area 2 Area 3 Datos Perimetro Altura diametro Perimetro 2(π) R Pi radio areas total del cilino Area total	78,54 00,0,5 (m2) 1178,1 490,875 490,875 78,54 15 25 78,54 3,1416 12,5 21 170 de la jaula m2		

CALCULOS BASICOS	S DE ESFUERZO											
CALCULOS DE FONE	DEO											
FUERZA GENERADA	A POR OLAS		Fo = Fa + Fwd									
	Fuerza de	Ola se calcula co	n la siguiente ecu	acion				fuerza por la Ola	kσ			
	1 40124 40	Dono						frontal	6304,61			
Fo : Fuerza generad	la nor olas en Ko	Done		frontal	lateral			ITOIItai	0,00			
Fa : Fuerza de Arras				4486,96					0,00			
	riva (wave drift force	a \ an Va		1817,65	· ·							
rwu : ruerza de der	riva (wave uriit force	e), en kg.		1817,00	0,00							
										Ai	reas de las	
											jaulas	(m2)
										Area	1	1178,1
La fuerza de	arrastre por unidad	de longitud está	dada por:		FD = ½ * P * Cd	* A * V ²				Area		490,875
20.100120.00	uone poi uiiiudu	o.igituu catt	Donde:		r ou	· · ·		fuerza de Arrastre	ka .	Area	+	490,875
			Donae.					frontal	308499,62	Alea	Datos	
n. Danaidad dal as-		4\				104.50		irontai		Dari		
	ua salada (Kg. seg2/r					104,58			308499,62		metro	78,54
	Coeficiente de arrast		(2)			2,1851				Altu		15
	a del miembro por m		(m2).			20.0				dian	netro	25
	uerza de arrastre (K			frontal		39,3						
	uerza de arrastre (K					0,0						
V : Velocidad relati	va del agua normal	a la superficie (oi	rbital) (m/seg).			1					metro 2(π) R	78,54
										Pi		3,1416
										radio)	12,5
												2
							Areas de la					
Coe	eficiente de arrastre						plataforma	(m2)				
	T						area superior	2700				
Cd=	3,12 * (d/L)^2 + 2,7	3 * (d/L) +1						2700			areas tota	
	Donde:						Perimetro	78,54		Area	total	m2
Cd= coeficiente de	arrastre o de carga	(m)					altura (m)	0,5		A1+/	A2+A3	2159,85
d : Diametro		25										
L: longitud		78,54										
Cd=	2,1851											
esta formula esta e	stablecida para saca	r coeficiente de	arrastre y el cd, es	una unidad ad	imensional							
Fuerza de	Deriva ("wave drift	force")	Fwd=Pxgx	LxHs ² /16								
		Donde:	1 0	, -								
Fwd : Fuerza de dei	riva ("wave drift for						fuerza de Deriva	en kg				
	ia salada, kg seg²/r		10/1 00	kgseg2/m4			frontal	1817,652				
g : Aceleración de G		דוו		m/s2				0,000				
			9,81	111/52			lateral	0,000				
L : Longitud dei elei	mento de la estructi			1								
		itud en metros										
	frontal		78,54									
			0,00									
Hs : Altura de Ola Si	ignificativa,		0,6	m								

FUERZAS QUE	ACTUAN SOB	RE LA JAULA											
UERZAS EST/	ATICAS	Fe= Pr + Pa	.f + Pac + Pa	+ Pc + Pp									
		FUERZAS QUE	ACTUAN SOBR	E LA JAULA									
		Fe (kg)	1704	2,22									
Peso debido a	al fouling	Pf=2 *P. re	d										
CJO UCDIUO (Dor		u										
Pf: peso del fo		iuc.	2000										
	le acumulacion	n de foulina	2000										
P. red (kg)	ic acumulacioi	i ac iouillig	1000										
Numero de ja	nulac		1000										
P. f en total d			12000										
		o de la red es u											
NOI a. C		imado	iii valui										
	аргол	illiauo											
Doco do las no	osibles cargas	adicionalos			Doco do los	animales apoy	ados on la rod						
		r. + P. equipo			numeros d		140000	-					
N oper.	10				peso de ani		0,75	\vdash					
Peso Opera.	100				Ptotal anim		105000	-					
Peso Equip.	90				Numa na da	%	0,02		2400				
D // \	4000				Numero de		1		2100				
Pc: (kg)	1090				P. p en tota	ıl de jaulas (kg)	2100						
				Day 1-1	to the second								
	DE 0.	. 01 . 02		Peso de la es	structura								
		+ P2 + P3		1852,216							itos		
		nde:		kg/m	- 0.1		formulas			pi		3,1416	
	os elementos o	de flotación		30	P= (kg/m)*			P1	1602,216	D		8	
P2: Peso de la				0	P= (kg/m)*	pi *(D)		P2	0,00	D'		9	
P3: Peso de la	a superficie de	l del anillo de l	lotacion	250	P= kg			P3	250				

RESUMEN	DE RESULTAD	OS									
urza del viento (kg)			fuerza de corriente (kg								
UERZA POR JAULA	10728,720		FUERZA POR JAULA	246269,248				CALCULOS BASICOS I	DEL SISTEMA DE ANCLAJ	E	
UERZA POR 6 JAULAS	-		FUERZA POR 6 JAULAS	1477615,490			CAICIIOS	DE PESO MUERTO	Pancla = (F/22)	/0.50	
UERZA TONELADA	64,37		FUERZA TONEJADA	1477,62			0.120200	DET ESS INSERTS	(1,1=1)		
V 11.2.1.1 V 11.2.1.0.1.	0 1/01			, -			Peso del ancla		25485,890) kg	
							Tipo de Ancla		Arado		
							coeficiente de	peso	22)	
			FUERZAS QUE ACTU	AN SOBRE LA							
iuerza por la Ola	kg		JAULA					de prueba de traccion			
FUERZA POR JAULA	6304,61	ł	FUERZA POR JAULA	17042,22				uerzas frontal (kg)	280344,793		
FUERZA POR 6 JAULAS		1	FUERZA POR 6 JAULAS	102253,296			nota: Para calcu		e utiliza el valor de las s		s las fuerzas
FUERZA TONELADA	37,83		FUERZA TONELADA	102,25				PESO TONELADAS	25,486		
	S	SUMATORIA DE	FUERZAS				calculo de pesc	muerto	Pm = 1,745 x (1	,12 x F/f)	
			kg						, ,		
	Fuerz	za total	280344,793	280,3447925 tor	neladas	46,7241321		peso	muerto		782722,66
	FUERZA POR 6	FUERZA POR 6		1682,068755 tor		, ,		,,,,,	Donde:		, ,,,
							Pm : Peso Mue	rto de Hormigón, en K	g.		391361,33
lota: la sumatoria de	las fuerzas incl	uyen tambien l	a fuerza que actua sobre	la jaula			F : Fuerza obter	nida en cada línea de f	ondeo, en Kg.		280344,79
		Cadena de 3/8	de grado 80				f : Factor adime	nsional por tipo de fo	ndo, 0,7 para arena		0,7
carga li	<mark>mite de trabaj</mark> o)	conversion It	os a kg						PESO TONELADA	391,36
Carga max de trabajo	47178,92	lbs	1	lbs							
eargu mun uc navaju	21702,3032	kg	0,46	kg							
	Nota. La cade	na de grado 8 d	e 3/8 esta dentro de los	limites permitidos							

ANEXO 5. DETALLE DE MATERIALES Y SUMINISTROS

MATERIALES Y SUMINISTROS	AÑO 1	AÑO 2	AÑO 3	AÑO 4	AÑO 5	
Nombre: Baterías alcalinas tamano AA Cantidad: 30 cajas x 4 unidades(3.50US)	105		105			\$ 210
Nombre: Baterías alcalinas tamano AAA Cantidad: 30 cajas x 4 unidades(3.50US)	105		105			\$ 210
Nombre :CINTA PARA EMBALAJE COLOR CAFÉ DE 2" Cantidad: 30 unidades(0.75US)	22.5		22.5			\$ 45
Nombre :CINTA PARA EMBALAJE TRANSPARENTE DE 2" Cantidad: 30 unidades(0.75US)	22.5		22.5			\$ 45
Nombre :CINTA MASKINTAPE DE 2"X40 Cantidad: 30 unidades(1.30US)	39		39			\$ 78
Nombre :CINTA SCOTCH 18*25 GRANDE TRANSP Cantidad: 30 unidades(0.40US)	12		12			\$ 24
Nombre: **Chalecos salvavidas con cinta refleciva y pito (SOLAS)**Descripción Corta: **Seguridad maritima**Cantidad: **16(65USD)+A15	1040		1040			\$ 2,080
Nombre: **Aro de flotación para Embarcación (SOLAS)** Descripción Corta: **Seguridad maritima** Cantidad: **2(90USD)	180		180			\$ 360
Nombre: **Bengalas de señalización (SOLAS)** Descripción Corta: **Seguridad maritima** Cantidad: **12(50USD)	600		600			\$ 1,200
Nombre: **lámpara de mano recargable y resistente al agua** Descripción Corta: **Seguridad y vigilancia maritima** Cantidad: **6(50USD)	300		300			\$ 600
Nombre: **Binoculares de largo alcance y captura fotográfica descargable vía USB ** Descripción Corta: **Seguridad maritima** Cantidad: **4(250USD)	1000		1000			\$ 2,000
Nombre: **baterías a prueba de agua ** Descripción Corta: **Seguridad maritima** Cantidad: **4(120USD)	480		480			\$ 960
Nombre: **Botiquín de primeros auxilios ** Descripción Corta: **Seguridad maritima** Cantidad: **2(50USD)	100		100			\$ 200
Nombre: **Balanzas digitales gramera de 0.1 hasta 200 G ** Descripción Corta: **medición de de peso** Cantidad: **4(100USD)	400		400			\$ 800
Nombre: **Balanzas colgante tipo reloj de capacidad de 30 kg **Descripción Corta: **medición de de peso** Cantidad: **4(200USD)	800		800			\$ 1,600
Nombre: **Balanzas romana electrónica de base ** Descripción Corta: **medición de peso** Cantidad: **2(250USD)	500		500			\$ 1,000
Nombre: **Balanzas romana mecánica de base ** Descripción Corta: **medición de peso** Cantidad: **2(400USD)	800		800			\$ 1,600
Nombre: **Gavetas caladas apilables ** Descripción Corta: **Almacenamiento ** Cantidad: **50(30USD)	1500		1500			\$ 3,000
Nombre: **Gavetas sin calar apilables ** Descripción Corta: **Almacenamiento ** Cantidad: **50(30USD)	1500		1500			\$ 3,000
Nombre: **transportador de larvas 1 TN ** Descripción Corta: **Almacenamiento y transporte ** Cantidad: **2(1000USD)	2000		2000			\$ 4,000
Nombre: **Tinas cuadradas de media tonelada con base y tapa (transportador de pescado)** Descripción Corta: **transporte **Cantidad: **10 unidades (350USD)	3500		3500			\$ 7,000
Nombre: **Tinas circulares de media tonelada ** Descripción Corta: **Almacenamiento y transporte ** Cantidad: **2(250USD)	500		500			\$ 1,000
Nombre: ** Manguera de 1/2 " - 1" para Manómetro de uso industrial**Descripción Corta: **Almacenamiento y transporte . Cantidad: **3 mts(15USD)	45		45			\$ 90
Nombre: ** Llave francesa de 12 " para Manómetro de uso industrial** Descripción Corta: Cantidad: **4 unidades (14USD)	28		28			\$ 56
Nombre: ** Distribuidor de oxígeno** Descripción Corta: **Almacenamiento y transporte ** Cantidad: **2(50USD)	100		100			\$ 200
Nombre: ** Manguera de oxígeno de 5-6 mm** Descripción Corta: **Almacenamiento y transporte **Cantidad: **50 mts (1,50USD)	75		75			\$ 150
Nombre: ** Piedras difusoras de oxígeno** Descripción Corta: **Almacenamiento y transporte **Cantidad: **24 unidades (5USD)	120		120			\$ 240
Nombre: **RASQUETA K9 180 MM 868695 TO Mango largo de 1.040 mm.hoja endurecida y templada**Descripción Corta: **Limpieza y mantenimiento ** Cantidad: **10(42USD)	420		420			\$ 840

MATERIALES Y SUMINISTROS	AÑO 1	AÑO 2	AÑO 3	AÑO 4	AÑO 5	
Nombre: **Cepillos de cerda de metal** Descripción Corta: **Limpieza y mantenimiento ** Cantidad: **20(6USD)	120		120			\$ 240
Nombre: **Escobas plásticas** Descripción Corta: **Limpieza y mantenimiento ** Cantidad: **6(8USD)	48		48			\$ 96
Nombre: **Cepillos de mango largo y cerdas plásticas** Descripción Corta: **Limpieza y mantenimiento **Cantidad: **6(25USD)	150		150			\$ 300
Nombre: **Esponja limpia platos con fibra verde** Descripción Corta: **Limpieza y mantenimiento ** Cantidad: **20(3USD)	60		60			\$ 120
Nombre: **Franela** Descripción Corta: **Limpieza y mantenimiento ** Cantidad: **25 mts (2.0USD)	50		50			\$ 100
Nombre: **Waipe** Descripción Corta: **Limpieza y mantenimiento ** Cantidad: **20 lbs(3USD)	60		60			\$ 120
Nombre: **Flexómetro de tela (50 mts)** Descripción Corta: **Limpieza y mantenimiento ** Cantidad: **4(10US)	40		40			\$ 80
Nombre: **Flexómetro (3 mts)** Descripción Corta: **Limpieza y mantenimiento ** Cantidad: **4(8US)	32		32			\$ 64
Nombre: **Cuchillo de acero inxidable** Descripción Corta: **herramienta de corte para campo ** Cantidad: **4(25US)	100		100			\$ 200
Nombre: **Equipo de disección de acero inoxidable** Descripción Corta: **Análisis de muestra ** Cantidad: **2(50US)	100		100			\$ 200
Nombre: **Pinza de acero inoxidable punta chata** Descripción Corta: **Análisis de muestra ** Cantidad: **4(15US)	60		60			\$ 120
Nombre: **Pinza de acero inoxidable punta media** Descripción Corta: **Análisis de muestra ** Cantidad: **4(20US)	80		80			\$ 160
Nombre: **Pinza de acero inoxidable punta fina** Descripción Corta: **Análisis de muestra ** Cantidad: **4(00US)	80		80			\$ 160
Nombre: Placas cubre objeto espesor 0.13 a 0.17 y de 0.16 a 0.19. Tamaño de 22 x 22 mm. Descripción Corta: Análisis de muestra ** Cantidad: **5 cajas x 50 unidades (5US)	25		25			\$ 50
Nombre: **Placas porta objeto espesor 0.97 a 1.07 mm tamaño 75 x 25 mm** Descripción Corta: **Análisis de muestra ** Cantidad: **5 cajas x 50 unidades (10US)	50		50			\$ 100
Nombre: ** Pinza quirurgicas acero inoxidable punta fina Descripción Corta: ** Cantidad: ** 4(20US)	80		80			\$ 160
Nombre: ** Pinza quirurgicas acero inoxidable punta curva Descripción Corta: ** Cantidad: ** 4(20US)	80		80			\$ 160
Nombre: **Caja Petri de plástico 11 cm diámetro** Descripción Corta: **Análisis de muestra ** Cantidad: **5 paquetes por 20 unidades (10US)	50		50			\$ 100
Nombre: ** Hojas de Bisturi Nº 5** Descripción Corta: **Análisis de muestra ** Cantidad: **25(2,0US)	50		50			\$ 100
Nombre: **Hoja de Bisturi N° 10** Descripción Corta: **Análisis de muestra ** Cantidad: **25(2,5US)	62.5		62.5			\$ 125
Nombre: **Hielera grande de 20 L con cierre hermético y garruchas (ruedas)** Descripción Corta: **Transporte de muestra ** Cantidad: **4(250US)	1000		1000			\$ 2,000
Nombre: **Kit de herramientas (desarmadores planos, estrellas, playos, llaves,etc))** Descripción Corta: **herramientas ** Cantidad: **1 (350US)	350		350			\$ 700
Nombre: **IMPERMEABLES DE PESCA/AGUA (PVC) Azul L,M,XL. Descripción Corta: Prendas de proteccion Cantidad: **4(50US)	200		200			\$ 400
Nombre: **Botas de caucho 40,41,42** Descripción Corta: **Prendas de proteccion ** Cantidad: **6(15US)	90		90			\$ 180
Nombre: **Cascos protectores industriales** Descripción Corta: **Prendas de proteccion ** Cantidad: **6(16US)	96		96			\$ 192
Nombre: **Fajas lumbar** Descripción Corta: **Prendas de proteccion ** Cantidad: **4(25US)	100		100			\$ 200
Nombre: **Arnes de seguridad** Descripción Corta: **Prendas de proteccion ** Cantidad: **2(30US)	60		60			\$ 120
Nombre: **Guantes con pupos para muestreo** Descripción Corta: **Prendas de proteccion ** Cantidad: **24 PARES (2,5US)	60		60			\$ 120
Nombre: **Guantes de lana para muestreo** Descripción Corta: **Prendas de proteccion ** Cantidad: **24 PARES (2,0US)	48		48			\$ 96

MATERIALES Y SUMINISTROS	AÑO 1	AÑO 2	AÑO 3	AÑO 4	AÑO 5	
Nombre: **Blue jean para trabajo de campo (diferentes tallas). Descripción Corta: **Prendas de vestir** Cantidad: **24 UNIDADES (20US)	480		480			\$ 960
Nombre: **Botas de cuero impermeables HI-TEC sin punta de acero (diferentes tallas). Descripción Corta:Prendas de vestir Cantidad: **8 PARES (150US)	1200		1200			\$ 2,400
Nombre: **Camisetas tipo polo manga corta con logotipo INP para hombre tallas M , L, XL** Descripción Corta: **Prendas de vestir** Cantidad: **10(17US)	170		170			\$ 340
Nombre: **Chaleco con reflectores y logotipo INP tallas L, M ,XL. Descripción Corta: **Prendas de vestir** Cantidad: **20(26US)	520		520			\$ 1,040
Nombre: **Chompas rompeviento con logotipo INP para trabajo de campo tallas L, M ,XL** Descripción Corta: **Prendas de vestir** Cantidad: **20(30US)	600		600			\$ 1,200
Nombre: **Gorras con logotipo Descripción Corta: **Prendas de vestir** Cantidad: **20(10US)	200		200			\$ 400
Nombre: **Redes para jaulas ** Descripción Corta: **Material para construccion de jaulas. Cantidad: **24 unidades (1000US)	24000		24000			\$ 48,000
Nombre: **GAFAS PROTECTORAS INDUSTRIALES ** Descripción Corta: **Material para construccion de jaulas**Cantidad: **4 (20US)	80		80			\$ 160
Nombre: **GUANTES PARA MANEJAR SOLDADURA ** Descripción Corta: **Material para construccion de jaulas** Cantidad: **12 PARES (10US)	120		120			\$ 240
Nombre: **OREJERAS DE PROTECCION INDUSTRIALES** Descripción Corta: **Material para construccion de jaulas** Cantidad: **5 (30US)	150		150			\$ 300
Nombre: **Malla antipajaros** Descripción Corta: **Proteccion de cultivo** Cantidad: **16 (500US)	8000		8000			\$ 16,000
Nombre: **Palets de plástico** Descripción Corta: **Almacenaje de balanceado** Cantidad: **8 unidades(150US)	1200		1200			\$ 2,400
Nombre: **Aceite de pescado** Descripción Corta: **Para combinar balanceado** Cantidad: **10 toneles(300US)	3000		3000			\$ 6,000
Nombre: **Probióticos Bio Moss** Descripción Corta: **Para combinar balanceado** Cantidad: **750 kg(US)	1500		1500			\$ 3,000
Nombre: **Lona plástica** Descripción Corta: **Para tratamiento o medicacion** Cantidad: **300 mts(US)	350		350			\$ 700
Nombre: **RED DE PESCA DE 36 M DE LONGITUD Y 6M de profundidad**Descripción Corta: **Cosecha** Cantidad: ** 2 unidad(USI200)	2400		2400			\$ 4,800
Nombre: ** Materiales Fungibles (Fundas plásticas transparentes gruesas (capacidad un quintal) Cantidad: un millar	800		800			\$ 1,600
Nombre: **Materiales Fungibles (Fundas de polietileno talla grande) Cantidad: *1 millar	800		800			\$ 1,600
Nombre: **Materiales Fungibles (Fundas de polietileno talla mediana) Cantidad: *1 millar	750		750			\$ 1,500
Nombre: **Materiales Fungibles (Fundas de polietileno talla pequeña Cantidad: *1 millar	700		700			\$ 1,400
Nombre: **Materiales Fungibles (Cajas de cartón) Cantidad: *1 millar.	1500		1500			\$ 3,000
Nombre: ** Materiales Fungibles (Guantes quirúrgicos talla 9 caja x 100 pares). Cantidad: 11 cajas(20US)	220		220			\$ 440
Nombre: ** Materiales Fungibles (Papel toalla doble hoja reusable). Cantidad: 20 rollos (5,0US)	100		100			\$ 200
Nombre: ** Materiales Fungibles (Papel aluminio 0.2mm densidad 200SQ.FT 100m). Cantidad: 6(8,0US)	48		48			\$ 96
Nombre: ** Materiales Fungibles (cloro). Cantidad: 6 gal (3,0US)	18		18			\$ 36
Nombre: ** Materiales Fungibles (detergente) Cantidad: 17	40		40			\$ 80
Nombre: ** Materiales Fungibles (ambientador en spray) Cantidad: 12	30		30			\$ 60
Nombre: ** Reactivo (Alcohol). Cantidad: 10 gal	600		600			\$ 1,200
Nombre: ** Reactivo (Formol 4%). Cantidad: 11 gal	780		780			\$ 1,560
Nombre: ** Materiales de ferretería (Baldes industriales plásticos de 20 litros con mango de acero). Cantidad: **48	600		600			\$ 1,200
Nombre: ** Materiales de ferretería (Ictiometros de madera con regla de metal de 60 cm). Cantidad: **10 (25US)	250		250			\$ 500
Nombre: ** Materiales de ferretería (Hielera medIano de 50 litros aproxd con ruedas y agarraderas laterales). Cantidad: **4 (80US)	320		320			\$ 640
Nombre: **Material de campo (Pilas recargables AAA). Cantidad: **36	108		108			\$ 216
Nombre: ** Materiales de ferretería (Pilas recargables AA). Cantidad: **36	108		108			\$ 216
Nombre: ** Materiales de ferretería (Cargador para pilas AA y AAA) Cantidad: **4 (45US)	180		180			\$ 360
Nombre: ** Materiales Fungibles (Fundas plásticas para basura resistente y grandes) Cantidad: **30 paquetes x 24 unidades (3,0US)	90	<u> </u>	90	<u> </u>		\$ 180

ANEXO 6. DETALLE DE EQUIPOS

EQUIPOS	AÑO 1	AÑO 2	AÑO 3	AÑO 4	AÑO 5	
Nombre: **GPS. Descripción Corta: **Sistema de posicionamiento global. Cantidad: ** 2(600 USD c/u)					\$ 1,200	
Nombre: ** 1 entramado, 6 jaulas marinas y 8 boyas de delimitación Descripción Corta: **Sistema de posicionamiento global				\$ 450,000		
Nombre: **Oxigenómetro disuelto en cuerpos de agua Descripción Corta: **Determinación de oxígeno Cantidad: **2 (1,758 USD)					\$ 3,516	
Nombre: **refractómetro. Descripción Corta: **medición de sales disueltas** Cantidad: ** 2 (393 USD)					\$ 786	
Nombre: ** Termómetro de líquido rojo. Descripción Corta: **-10 ª a 50ª Cantidad: ** 3 (133 USD)					\$ 399	
Nombre: ** Embarcación de fibra de vidrio 7.20 con 2 remos de madera Descripción Corta: **transporte y logística. Cantidad: **1 (9000 USD)					\$ 9,000	
Nombre: **Motor FB 75 HP** Descripción Corta: **transporte y logística**. Cantidad: 2(12500 USD)					\$ 25,000	
Nombre: **cámara fotográfica a prueba de agua** Descripción Corta: **Documentacion fotográfica**.Cantidad: **2(500USD)					\$ 1,000	
Nombre: **cámara fotográfica submarina** Descripción Corta: **Documentacion fotográfica**. Cantidad: **2(1000USD)					\$ 2,000	
Nombre: **Tanque de oxígeno portátil de uso medico con mascarilla ** Descripción Corta: **Estabilazion en caso de accidentes en buceo ensistema de jaulas**Cantidad: **2(500USD)					\$ 1,000	
Nombre: **Equipo de buceo completo que incluya máscara nasal y radiocomunicacion submarina**.Cantidad: **5(5000USD)					\$ 250,000	
Nombre: **TERMOFUSIONADORA A TOPE MARCA RITMO MODELO BASIC 315** Descripción: **Maquinaria para construccion de jaulas**Cantidad: **1 unidad	\$ 24,000					
Nombre: **EXTRUSORA MANUAL MARCA RITMO MODELO STARGUN RSB40** Descripción Corta: **Maquinaria para construccion de jaulas** Cantidad: **1 unidad (14273US)	\$ 14,273					
Nombre: **Sierra Circular Dewalt Profesional 1350w** Descripción Corta: **Maquinaria para construccion de jaulas** Cantidad: **2 unidad (200US)	\$ 400					
Nombre: **BOBINA DE HILO DE POLIETILENO DE 5 MM** Descripción Corta: **Maquinaria para construccion de jaulas** Cantidad: **7 unidad (300US)	\$ 2,100					
Nombre: **Estereomicroscopio con sistema de captura de imágenes. Tiene campo claro, oscuro SZX10 con cámara digital software y computadora Cantidad: *1					\$ 10,000	
Nombre: ** Bomba de agua HONDA WH20XKIJ Descripción Corta: **Cantidad: ** 1					\$ 1,500	
Nombre: ** Generador HONDA modelo EU10i Descripción Corta: **. Cantidad: ** 1					\$ 1,400	
Nombre: ** Tanques de oxígeno 6 m3 Descripción Corta: ** Cantidad: ** 2(300 US)					\$ 600	
Nombre: ** Manómetros de oxígeno Descripción Corta: **. Cantidad: ** 2 (250 US)					\$ 500	
Nombre: **Microscopio Trinocular con sistema de captura de imágenes Descripción Corta: ** Cantidad: *1					\$ 5,000	
Nombre: **Computadoras portables (Procesamiento de información insitu Descripción Corta: ** Cantidad: *2					\$ 2,500	
Nombre: **Computadoras de escritorio (Procesamiento de información Descripción Corta: ** Cantidad: *2					\$ 2,000	
Nombre: **Router wifi escritorio (Procesamiento de información Descripción Corta: ** Cantidad: *1					\$ 75	
Nombre: **Impresora de toner multifunción (copia,scaner e impresión (Procesamiento de información Descripción Corta: ** Cantidad: *1					\$ 400	
Nombre: ** kit para determinación y fijacion bacteriana en campo : **1(1500US)					\$ 1,500	
Nombre: **Disco duro externo anti golpes 1 trb (Procesamiento de información Descripción Corta: ** Cantidad: *1					\$ 150	
TOTAL EQUIPOS	\$ 40,773	\$ -	\$ -	\$ 450,000	\$ 319,526	\$ 810,299

ANEXO 7. SUBCONTRATOS Y SERVICIOS

SUBCONTRATOS Y SERVICIOS	AÑO 1	AÑO 2	AÑO 3	AÑO 4	AÑO 5	
Nombre: Seguro de responsabilidad civil de 1 entramados por 1 años (jaulas marinas)	48,000	48,000	48,000	48,000	48,000	\$ 240,000
Nombre: Seguro de casco buque - lancha varios (Embarcación y motor fb)	7,000	7,000	7,000	7,000	7,000	\$ 35,000
Nombre: Seguro poliza de accidentes personales (personal y buzos)	12,000	12,000	12,000	12,000	12,000	\$ 60,000
Nombre: Seguro de produccion (cultivo de peces)	10,000					\$ 10,000
balizamiento para delimitacion de concesion para jaulas marinas (cultivo de peces)	15,000	15,000	15,000	15,000	15,000	\$ 75,000
Nombre:Servicio de monitoreo y vigilancia para jaulas marinas (cultivo de peces)	40,000	40,000	40,000	40,000	40,000	\$ 200,000
Nombre:Servicio de mantenimiento de Embarcación y motor fuera de borda (cultivo de peces)	12,000	12,000	12,000	12,000	12,000	\$ 60,000
Nombre:Servicio de mantenimiento de compresor de llenado de tanques de oxígeno para buceo (cultivo de peces)	9,600	9,600	9,600	9,600	9,600	\$ 48,000
Nombre:Servicio de recarga bajo demanda de oxígeno para transporte de alevines y equipo de seguridad jaulas marinas (Ing costas o Naval)	2,400	2,400	2,400	2,400	2,400	\$ 12,000
TOTAL SUBCONTRATOS Y SERVICIOS	\$ 156,000	\$ 146,000	\$ 146,000	\$ 146,000	\$ 146,000	\$ 740,000