

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS

AÑO:	2018	PERÍODO:	SEGUNDO TÉRMINO
MATERIA:	Cálculo de una variable	PROFESOR:	
EVALUACIÓN:	TERCERA	FECHA:	11/febrero/2019

cc	OMPROMISO DE HONOR					
presente examen está diseñado para ser resuelto de m con la persona responsable de la recepción del examen y depositarlo en la parte anterior del aula, junto cor	al firmar este compromis nanera individual, con un lápiz o esferográfico; que solo p ; y, cualquier instrumento de comunicación que hubiere to n algún otro material que se encuentre acompañándolo e se entreguen en esta evaluación. Los temas debo desa	ouedo comunicarme raído, debo apagarlo o. No debo además,				
Firmo al pie del presente compromiso, como constancia de haber leído y aceptar la declaración anterior.						
"Como estudiante de la ESPOL me comprometo a comb	batir la mediocridad y actuar con honestidad, por eso no c	opio ni dejo copiar".				
Firma:	NÚMERO DE MATRÍCULA:	PARALELO:				

- 1) (20 Puntos) Justificando su respuesta, establezca si cada proposición es VERDADERA o FALSA.
 - a) La integral impropia:

$$\int_{-3}^{3} \frac{x \, dx}{\sqrt{9 - x^2}}$$

es Divergente.

b) Para la siguiente curva dada en forma implícita:

$$x \operatorname{sen}(y) - y \operatorname{cos}(2x) = 2x$$

La Pendiente de la Recta Tangente a esta curva en el punto $P\left(\frac{\pi}{2},\pi\right)$ es igual a $\frac{4}{2-\pi}$.

2) (15 Puntos) Dada la función $f: \mathbb{R} \mapsto \mathbb{R}$ definida así:

$$f(x) = \begin{cases} ax^2 + 4bx + 3, & x \le -1 \\ bx - 6, & x > -1 \end{cases}$$

- a) Determine los valores de las constantes $a\in\mathbb{R}$ y $b\in\mathbb{R}$ para que la función f sea derivable en todo su dominio.
- b) Con base en los valores de a y b previamente determinados, obtenga la regla de correspondencia de f^\prime .

- 3) (15 Puntos) Una bebida se saca de la refrigeradora a una temperatura de $10 \ [^{\circ}C]$ y se deja en una habitación donde la temperatura es de $25 \ [^{\circ}C]$. Según la ley de enfriamiento de Newton (calentamiento en este caso sería el término más apropiado), la temperatura $T \ [^{\circ}C]$ de la bebida variará en el tiempo $t \ [min]$ de acuerdo a la expresión $T(t) = 25 15e^{-0.02t}$.
 - a) Aplicando límites, obtenga la expresión de su asíntota horizontal.
 - b) Determine la expresión para la rapidez instantánea de calentamiento de la bebida.
 - c) Calcule la temperatura al cabo de una hora y la rapidez del cambio de tal temperatura transcurrido ese mismo tiempo.

4)	(15 Puntos	Dada la función	f: [0, 3]	$]\mapsto \mathbb{R}$	tal que:
٠,	1-0	, = = = = = = = = = = = = = = = = = = =	, . [- , -		

$$f(x) = |x - 1| - |x - 2|$$

Se define R como la región limitada por f y el eje X. Bosqueje R en el plano cartesiano y, mediante la integral definida, calcule su área.

		-	-						у				-	-	-			
													-					
\vdash																		<i>x</i>
							-								-			
	÷											-	-				-	

5) (20 Puntos) Obtenga las siguientes antiderivadas:

a)
$$\int (x+1) e^{2x+1} dx$$

$$b) \quad \int \frac{x^3}{x^2 - 9x + 20} \ dx$$

6)	(15 Puntos) Calcule la longitud del arco en el primer cuadrante de la parábola cuya ecuación es $y^2=12x$ para $x\in[0,1]$.