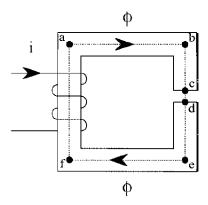
ESCUELA SUPERIOR POLITECNICA DEL LITORAL FACULTAD DE INGENIERIA MECANICA Y CIENCIAS DE LA PRODUCCION SEGUNDA EVALUACION DE ELECTROTECNIA PRIMER TERMINO ACADEMICO 2017

Prof.: M.Sc. Eduardo Mendieta R.	Paralelo 1	Fecha: 01 de Septiembre 2017
Alumno:PRIMER TEMA: (10 puntos)	mno:	
Determine la potencia máxima entregado	da por la fuente V ₁ .	


SEGUNDO TEMA: (15 puntos)

Determine:

- a) La potencia S entregada por la fuente V_1 (7 puntos)
- b) Las potencias P y Q en cada elemento del circuito (8 puntos)

TERCER TEMA: (10 puntos)

En el circuito magnético mostrado en la figura, la bobina tiene 100 vueltas y conduce una corriente de 5 A. La permeabilidad relativa en el núcleo macizo es de 9865. Las longitudes de los segmentos a lo largo de la trayectoria magnética son las siguientes: entrehierro = 1 cm, ℓ_{ab} y ℓ_{ef} = 12 cm, ℓ_{bc} y ℓ_{de} = 5 cm, ℓ_{fa} = 11 cm. La sección transversal en todas las secciones es de 5 cm2. Determine Φ y B.

CUARTO TEMA: (15 puntos)

Un vendedor de vehículos eléctricos pregona que cierto automóvil de 1300 kg puede acelerar desde el reposo hasta los 100 km/h en un tiempo de 10 s. Determine:

- a) La potencia media que desarrolla el motor DC tipo shunt (R_a = 1.4 Ω , R_f = 45 Ω) si las perdidas mecánicas son del 20% de la Potencia desarrollada en la armadura. (7 puntos)
- b) la corriente total entregada por la fuente DC si el voltaje aplicado a los terminales de entrada del motor es de 480 V. (8 puntos)