

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS

AÑO:	2018	PERÍODO:	SEGUNDO TÉRMINO
MATERIA:	Cálculo de una variable	PROFESORES:	Argüello G., Baquerizo G., Chóez M., Crow P., Medina J., Mejía M., Ramos M., Ronquillo C.
EVALUACIÓN:	PRIMERA	FECHA:	19/noviembre/2018

1) (6 Puntos) Sea la función $f: \mathbb{R}^+ \mapsto \mathbb{R}$ cuya regla de correspondencia es:

$$f(x) = \begin{cases} \frac{x}{\pi}, & 0 < x < \frac{\pi}{2} \\ k, & x = \frac{\pi}{2} \\ \frac{\cos(x)}{\pi - 2x}, & x > \frac{\pi}{2} \end{cases}$$

Determine el valor numérico de $k \in \mathbb{R}$ para que la función f sea continua en todo su dominio.

Solución:

Para que f sea continua en $x = \frac{\pi}{2}$ debe cumplirse que:

$$\lim_{x \to \frac{\pi}{2}} f(x) = f\left(\frac{\pi}{2}\right)$$

Calculamos los límites laterales:

• Límite lateral por la izquierda:

$$\lim_{x \to \frac{\pi}{2}^{-}} \frac{x}{\pi} = \frac{\frac{\pi}{2}}{\pi} = \frac{1}{2}$$

• Límite lateral por la derecha:

Realizamos un cambio de variable:

$$u = \pi - 2x \implies x = \frac{\pi}{2} - \frac{u}{2}$$

$$x \to \frac{\pi^{+}}{2} \implies u \to 0^{+}$$

$$\lim_{x \to \frac{\pi^{+}}{2}} \frac{\cos(x)}{\pi - 2x} = \lim_{u \to 0^{+}} \frac{\cos\left(\frac{\pi}{2} - \frac{u}{2}\right)}{u} = \lim_{u \to 0^{+}} \frac{\sin\left(\frac{u}{2}\right)}{u} = \frac{1}{2}$$

Debido a que $\lim_{x \to \frac{\pi}{2}^-} f(x) = \lim_{x \to \frac{\pi}{2}^+} f(x)$, concluimos que $\lim_{x \to \frac{\pi}{2}} f(x) = \frac{1}{2}$. Con base en la

regla de correspondencia tenemos que $f\left(\frac{\pi}{2}\right)=k$. Entonces, para lograr la continuidad en dicho punto:

$$k = \frac{1}{2}$$

Rúbrica:

Capacidades deseadas	Desempeño				
El estudiante	Insuficiente	En desarrollo	Desarrollado	Excelente	
conoce sobre	No plantea la	Plantea la	Plantea la	Plantea la	
la continuidad	condición de	condición de	condición de	condición de	
de funciones	continuidad,	continuidad y	continuidad y	continuidad,	
de variable	ni calcula	calcula bien	calcula bien los	calcula bien los	
real y el	límites	solamente	dos límites	límites	
cálculo de	laterales, ni	uno de los	laterales, pero	laterales,	
límites a partir	evalúa la	dos límites	no concluye	compara con la	
de límites	función.	laterales.	correctamente	función	
notables.			sobre k .	evaluada y	
				concluye sobre	
				el valor de k .	
	0	1 – 2	3 – 4	5 – 6	

2) (4 Puntos) Dada la función $f \colon \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \mapsto \mathbb{R}$ definida por: $f(x) = x \ (sen(x) + 1)$

Aplicando el Teorema del Valor Intermedio, demuestre que existe por lo menos un valor c en el dominio de f tal que f(c)=2.

Solución:

El enunciado del Teorema del Valor Intermedio es el siguiente:

"Sea f una función definida en [a,b] y sea W un número entre f(a) y f(b). Si f es continua en [a,b], entonces existe al menos un número c entre a y b tal que f(c) = W".

Puesto que:

- y = x es una función continua para todo número real.
- Si y = sen(x) es una función continua para todo número real, entonces también y = sen(x) + 1 es una función continua para todo número real porque es la suma de dos funciones continuas.

Se infiere que f(x) = x (sen(x) + 1) también es continua para todo número real, porque es la multiplicación de dos funciones continuas. Esto es, la función f cumple con el antecedente del teorema.

Dado que $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ es el dominio de la función, se encuentre definida en ese intervalo, podemos evaluarla en los extremos de dicho intervalo, $a=-\frac{\pi}{2}$ y $b=\frac{\pi}{2}$.

$$f\left(-\frac{\pi}{2}\right) = -\frac{\pi}{2}\left(sen\left(-\frac{\pi}{2}\right) + 1\right) = -\frac{\pi}{2}(-1 + 1) = 0$$

$$f\left(\frac{\pi}{2}\right) = \frac{\pi}{2}\left(sen\left(\frac{\pi}{2}\right) + 1\right) = \frac{\pi}{2}(1+1) = \pi$$

Como sabemos que $0 \le 2 \le \pi$ y se cumplen todos los requisitos del teorema, se garantiza que:

$$\exists c \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] / f(c) = 2$$

Rúbrica:

Capacidades deseadas	Desempeño				
El estudiante	Insuficiente	En desarrollo	Desarrollado	Excelente	
conoce sobre	No plantea las	Verifica que la	Verifica que la	Verifica la	
el teorema	condiciones	función	función cumple	continuidad,	
del valor	requeridas en	cumple con la	con la condición	evalúa bien los	
intermedio	el teorema	condición de	de continuidad	extremos del	
para	del valor	continuidad	y evalúa bien	dominio y	
funciones	intermedio.	pero no	los dos	concluye que	
continuas.		evalúa bien.	extremos del	es posible	
			intervalo del	obtener el	
			dominio, pero	número que	
			no concluye.	satisface el	
				teorema.	
	0	1	2-3	4	

3) (6 Puntos) Dada la función:

$$f(x) = ln(x), \forall x > 0$$

- (a) (4 Puntos) Aplicando la definición de derivada, obtenga $D_xig(f(x)ig)$.
- (b) (2 Puntos) Determine la ecuación de la recta tangente a f en $x_0=e^3$.

Solución:

$$D_{x}(\ln(x)) = \lim_{h \to 0} \frac{\ln(x+h) - \ln(x)}{h} = \lim_{h \to 0} \frac{\ln\left(\frac{x+h}{x}\right)}{h} = \lim_{h \to 0} \frac{1}{h} \ln\left(\frac{x+h}{x}\right)$$

$$D_{x}(\ln(x)) = \lim_{h \to 0} \ln\left(1 + \frac{h}{x}\right)^{\frac{1}{h}} = \ln\left(\lim_{h \to 0} \left(1 + \frac{h}{x}\right)^{\frac{1}{h}}\right) = \ln(e)^{\frac{1}{x}} = \frac{1}{x}\ln(e)$$

$$D_{x}(\ln(x)) = \frac{1}{x}, \quad \forall x > 0$$

Evaluamos en $x_0 = e^3$ para obtener la ordenada correspondiente:

$$y_0 = f(e^3) = ln(e^3) = 3$$

Evaluamos la derivada en $x_0=e^3$ para obtener la pendiente:

$$m_T = D_x(f(x)) \Big|_{x=e^3} = \frac{1}{e^3}$$

La ecuación de la recta tangente en $P_0(e^3,3)$ es:

$$y-3=\frac{1}{e^3}(x-e^3) ; \forall x \in \mathbb{R}$$

Rúbrica del literal 3.a):

Capacidades deseadas	Desempeño				
El estudiante	Insuficiente	En desarrollo	Desarrollado	Excelente	
conoce la	No conoce	Conoce sobre	Conoce sobre la	Conoce sobre	
definición de	sobre la	la definición	definición de	la definición de	
derivada y	definición de de derivada derivada y derivada,				
calcula	derivada.	pero no	calcula bien el	calcula bien el	
límites a		calcula bien el	límite, pero no	límite y	
partir de		límite.	concluye.	concluye.	
límites					
notables.	0	1	2-3	4	

Rúbrica del literal 3.b):

Capacidades deseadas	Desempeño				
El estudiante	Insuficiente	En desarrollo	Excelente		
conoce sobre	No sabe lo	Obtiene la ordenada o la	Obtiene la ordenada		
ecuaciones de	que debe pendiente de la recta y la pendiente, y				
rectas tangentes	realizar.	tengante, pero no	escribe la ecuación		
a partir de		ambos valores.	de la recta tangente.		
derivadas.	0	1	2		

4) (12 Puntos) Obtenga $\frac{dy}{dx}$ para cada expresión:

(a) (2 Puntos)
$$y = \left(sen(\pi)\right)^2$$

Solución:

 π es una constante y la expresión $\left(sen(\pi)\right)^2$ también lo es, por lo tanto:

$$\frac{dy}{dx} = 0$$

Rúbrica del literal 4.a):

Capacidades deseadas	Desempeño			
El estudiante sabe derivar	Insuficiente Excelente			
una función constante.	No sabe cómo derivar.	Obtiene la derivada.		
	0	2		

(b) (2 Puntos) y = arc tan(2x)

Solución:

$$\frac{dy}{dx} = \frac{1}{1 + (2x)^2} \cdot (2) \qquad \Rightarrow \qquad \boxed{\frac{dy}{dx} = \frac{2}{1 + 4x^2}}$$

Rúbrica del literal 4.b):

Capacidades deseadas	Desempeño				
El estudiante	Insuficiente En desarrollo Excelente				
conoce sobre la derivada de una función trigonométrica inversa y la regla	No sabe cómo derivar.	Deriva la función trigonométrica inversa pero no aplica la regla de la cadena.	Deriva la función trigonométrica inversa y aplica la regla de la cadena.		
de la cadena.	0	1	2		

(c) (2 Puntos)
$$y = \sqrt{ln\left(\frac{x}{4}\right)}$$

Solución:

$$\frac{dy}{dx} = \frac{1}{2} \left(ln \left(\frac{x}{4} \right) \right)^{-\frac{1}{2}} \cdot \frac{1}{\frac{x}{\cancel{4}}} \cdot \frac{1}{\cancel{4}} \qquad \Rightarrow \qquad \boxed{\frac{dy}{dx} = \frac{1}{2x \sqrt{ln \left(\frac{x}{4} \right)}}}$$

Rúbrica del literal 4.c):

Capacidades deseadas		Desempeño	
El estudiante sabe	Insuficiente	En desarrollo	Excelente
derivar una potencia,	No sabe	Aplica la regla de la	Deriva la
aplicar la regla de la	cómo	potencia, pero no	potencia, el
cadena y derivar un	derivar.	aplica la regla de la	logaritmo y
logaritmo natural.		cadena.	aplica la regla de
			la cadena.
	0	1	2

(d) (3 Puntos)
$$4x - y^2 - \frac{1}{2}cos(y) = 0$$

Solución:

$$4 - 2y\frac{dy}{dx} + \frac{1}{2}sen(y)\frac{dy}{dx} = 0$$
$$\left(2y - \frac{1}{2}sen(y)\right)\frac{dy}{dx} = 4$$
$$\left[\frac{dy}{dx} = \frac{4}{2y - \frac{1}{2}sen(y)}\right]$$

(e) (3 Puntos) $y = x^{sen(x)}$

Solución:

$$ln(y) = ln(x^{sen(x)})$$

$$ln(y) = sen(x) \cdot ln(x)$$

$$\frac{1}{y} \cdot \frac{dy}{dx} = cos(x) \cdot ln(x) + sen(x) \cdot \frac{1}{x}$$

$$\frac{dy}{dx} = y \left(cos(x) ln(x) + \frac{1}{x} sen(x) \right)$$

$$\frac{dy}{dx} = x^{sen(x)} \left(cos(x) ln(x) + \frac{sen(x)}{x} \right)$$

Rúbrica de los literales 4.d) y 4.e):

Capacidades deseadas	Desempeño				
El estudiante	Insuficiente	En desarrollo	Desarrollado	Excelente	
conoce sobre	No sabe	Se equivoca	Deriva bien	Deriva bien	
derivación	cómo derivar.	en la	cada término	todos los	
implícita (o		derivación de	pero no	términos y	
logarítmica),		alguno de los	despeja	expresa	
regla de la		términos.	correctamente	correctamente	
potencia y			la expresión de	la derivada.	
derivada de			la derivada.		
una función					
trigonométrica					
(o un					
logaritmo					
natural y el					
producto).	0	1	2	3	

- 5) (8 Puntos) Dadas las funciones de variable real f y g derivables en \mathbb{R} . Se conoce que los puntos (-4,1) y (3,4) pertenecen a la gráfica de la función f y los puntos (-4,3) y (3,-2) pertenecen a la gráfica de g. También se conoce que: f'(-4)=3, f'(3)=-4, g'(-4)=-2 y g'(3)=6.
 - (a) Si $h = f \cdot g$, calcule h'(-4).

Solución:

Debe aplicarse la regla de la derivada para el producto de funciones:

$$h'(-4) = f'(-4)g(-4) + f(-4)g'(-4)$$

$$h'(-4) = (3)(3) + (1)(-2) = 9 - 2$$

$$h'(-4) = 7$$

(b) Si
$$k = (2f + 3g)^4$$
, calcule $k'(3)$.

Solución:

Debe aplicarse la regla de la derivada para la potencia, la suma y el producto de una función por una constante y la regla de la cadena:

$$k'(3) = 4(2f(3) + 3g(3))^{3} \cdot (2f'(3) + 3g'(3))$$

$$k'(3) = 4((2)(4) + (3)(-2))^{3}((2)(-4) + (3)(6)) = 4(8 - 6)^{3}(-8 + 18) = 4(8)(10)$$

$$k'(3) = 320$$

(c) Si
$$m = f \circ g$$
, calcule $m'(-4)$.

Solución:

Debe aplicarse la regla de la derivada de una composición de funciones más conocida como regla de la cadena:

$$m'(-4) = f'(g(-4)) \cdot g'(-4)$$

$$m'(-4) = f'(3) \cdot (-2) = (-4) \cdot (-2)$$

$$m'(-4) = 8$$

(d) Si
$$p = \frac{f}{g}$$
 , calcule $p'(3)$.

Debe aplicarse la regla de la derivada de un cociente de funciones:

$$p'(3) = \frac{g(3)f^{'}(3) - f(3)g^{'}(3)}{(g(3))^{2}}$$

$$p'(3) = \frac{(-2)(-4) - (4)(6)}{(-2)^{2}} = \frac{8 - 24}{4} = \frac{-16}{4}$$

$$p'(3) = -4$$

Rúbrica de los literales 5.a), 5.b), 5.c) y 5.d):

Capacidades deseadas	Desempeño					
El estudiante	Insuficiente En desarrollo Excelente					
conoce sobre	No sabe cómo Deriva la función según la Deriva bien la					
la regla de	derivar.	derivar. regla presente pero evalúa función y evalúa				
derivación	incorrectamente algún correctamente.					
presente en	término.					
cada literal.	0	1	2			

6) (8 PUNTOS) Dada la curva en coordenadas polares:

$$r = 2 \cos(3\theta)$$

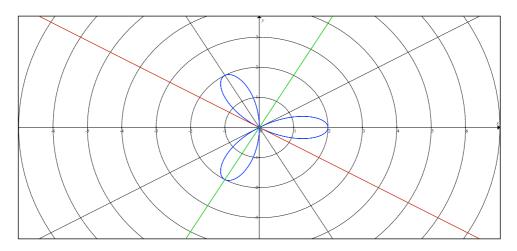
- (a) (1 Punto) Bosqueje la gráfica de esta curva en el plano polar.
- (b) (5 Puntos) Calcule el siguiente valor:

$$-\frac{1}{\frac{dy}{dx}\Big|_{\theta=\frac{5\pi}{6}}}$$

(c) (2 Puntos) Explique cuál es el significado geométrico del valor calculado en el literal (b) y represéntelo en la figura que elaboró.

Solución:

La gráfica de la rosa de 3 pétalos en el plano polar es la curva de color azul:



Para determinar $\frac{dy}{dx}$ a partir de $r=f(\theta)=2\cos(3\theta)$, se emplea derivación polar teniendo en cuenta que:

$$x = r \cos(\theta) = 2 \cos(3\theta) \cos(\theta)$$
 $y = r \sin(\theta) = 2 \cos(3\theta) \sin(\theta)$

Ahora, por definición:

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\frac{d}{d\theta} [2\cos(3\theta)\sin(\theta)]}{\frac{d}{d\theta} [2\cos(3\theta)\cos(\theta)]} = \frac{\frac{2}{d\theta} [\cos(3\theta)\sin(\theta)]}{\frac{d}{d\theta} [\cos(3\theta)\cos(\theta)]}$$

$$\frac{dy}{dx} = \frac{\left(\cos(3\theta)\right)' \, sen(\theta) + \cos(3\theta) \, \left(sen(\theta)\right)'}{\left(\cos(3\theta)\right)' \, \cos(\theta) + \cos(3\theta) \, \left(\cos(\theta)\right)'}$$

$$\frac{dy}{dx} = \frac{-3 \, sen(3\theta) \, sen(\theta) + \cos(3\theta) \, \cos(\theta)}{-3 \, sen(3\theta) \, \cos(\theta) - \cos(3\theta) \, sen(\theta)}$$

Evaluando:

$$\frac{dy}{dx}\Big|_{\theta=5\pi/6} = \frac{-3 sen\left(\frac{5\pi}{2}\right) sen\left(\frac{5\pi}{6}\right) + cos\left(\frac{5\pi}{2}\right) cos\left(\frac{5\pi}{6}\right)}{-3 sen\left(\frac{5\pi}{2}\right) cos\left(\frac{5\pi}{6}\right) - cos\left(\frac{5\pi}{2}\right) sen\left(\frac{5\pi}{6}\right)}$$

$$\frac{dy}{dx}\Big|_{\theta=5\pi/6} = \frac{-3(1)\left(\frac{1}{2}\right) + (0)\left(-\frac{\sqrt{3}}{2}\right)}{-3(1)\left(-\frac{\sqrt{3}}{2}\right) - (0)\left(\frac{1}{2}\right)} = \frac{-\frac{3}{2}}{\frac{3}{2}\sqrt{3}} = -\frac{1}{\sqrt{3}}$$

El valor calculado representa la pendiente de la recta tangente $m_T = \frac{dy}{dx}\Big|_{\theta=5\pi/6}$. Si obtenemos el valor negativo de su fracción recíproca, representa la pendiente de la recta normal.

$$m_N = -\frac{1}{\frac{dy}{dx}\Big|_{\theta=5\pi/6}} = \cancel{\frac{1}{\cancel{1}}} = \sqrt{3}$$

En el plano polar se han bosquejado las gráficas de ambas rectas, la recta de color rojo es la recta tangente y la recta de color verde es la recta normal.

Rúbrica:

Capacidades deseadas	Desempeño				
El estudiante	Insuficiente	En desarrollo	Desarrollado	Excelente	
sabe derivar una	No conoce	Bosqueja la	Bosqueja la	Bosqueja la	
ecuación polar,	sobre	gráfica de la	gráfica de la	gráfica de la	
funciones	derivación	rosa y realiza	rosa, realiza	rosa, realiza	
trigonométricas,	polar.	bien, o la	bien la primera	bien la primera	
la regla de la		derivada	derivada (con	derivada (con	
cadena y		polar del	las	las expresiones	
calcular		numerador o	expresiones	simplificadas) y	
pendientes con		la derivada	simplificadas)	evalúa bien e	
derivadas.		del	pero se	indica que el	
		denominador.	equivoca al	valor es la	
			evaluar.	pendiente de la	
				recta normal.	
	0	1-3	4 – 6	7 – 8	

7) (6 Puntos) Dada la curva en coordenadas paramétricas:

$$\begin{cases} x(t) = e^{-t} \\ y(t) = 2^{2t} \end{cases}$$

Obtenga:

$$\frac{d^2y}{dx^2}$$

Solución:

Por derivación paramétrica, la primera derivada $\frac{dy}{dx}$ se calcula así:

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\frac{d}{dt}(2^{2t})}{\frac{d}{dt}(e^{-t})} = \frac{2^{2t}ln(2)\cdot(2)}{e^{-t}\cdot(-1)} = -ln(2)\frac{2^{2t+1}}{e^{-t}}$$

La segunda derivada $\frac{d^2y}{dx^2}$ se calcula así:

$$\frac{d^{2}y}{dx^{2}} = \frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{\frac{d}{dt}}{\frac{dx}{dt}} = \frac{\frac{d}{dt} \left(-\ln(2) \frac{2^{2t+1}}{e^{-t}}\right)}{\frac{d}{dt} \left(e^{-t}\right)}$$

$$\frac{d^{2}y}{dx^{2}} = \frac{\frac{\ln(2)}{e^{-t}} \frac{\left[e^{-t} 2^{2t+1} \ln(2) \cdot (2)\right] - \left[2^{2t+1} (-e^{-t})\right]}{(e^{-t})^{2}}}{\frac{e^{-t}}{e^{-t}}}$$

$$\frac{d^{2}y}{dx^{2}} = \frac{\ln(2)e^{-t} 2^{2t+1} \frac{2\ln(2) + 1}{e^{-2t}}}{e^{-t}} \Rightarrow \frac{\frac{d^{2}y}{dx^{2}} = \ln(2) 2^{2t+1} (2\ln(2) + 1)e^{2t}}{e^{-t}}$$

Rúbrica:

Capacidades deseadas	Desempeño				
El estudiante	Insuficiente	En desarrollo	Desarrollado	Excelente	
conoce sobre	No conoce	Realiza bien o	Realiza bien o	Realiza bien la	
derivadas de	sobre	la primera	la primera	primera y la	
orden superior	derivadas de	derivada del	derivada y la	segunda	
y las aplica en	orden	numerador o	segunda	derivada (con	
ecuaciones	superior o	la del	derivdada pero	las expresiones	
paramétricas.	derivación	denominador.	tiene	simplificadas).	
	paramétrica.		problemas al		
			simplificar.		
	0	1 – 2	3 – 5	6	