College of Maritime Engineering, and Biological, Oceanical and NN.RR. Sciences

Ship Structures I

1st Evaluation

November/22/2018

Student: \qquad
1.- Shear stresses in bending: you are asked to analyze the combined stresses (normal and shear) in a box barge with double bottom, which has the following main dimensions $L: 45, \mathrm{~B}$: $10, D: 4, T: 2.5,4: 1025$, in meters and tons respectively. The double bottom of 1 m in height, includes a vertical keel. The bending moment and shear force acting on the hull section are: $10000 \mathrm{kN}-\mathrm{m}$ and 2000 kN , respectively. Calculate the principal stress (maximum) in each of the following positions: i.- deck at centerline, ii.- top of the side, and iii.- neutral axis of the section; use Mohr circle. (35)

2.- Energy methods: you are asked to analyze the shafting system of a Galápagos islands passenger ship, 600 shp@ 1800 rpm , with reduction gear of 4.05:1. The system includes three supports, an intermediate and two in the shaft tunnel, and the shaft is made of steel with a constant diameter of 12 cm . In the overhanging end of the shaft it is installed a Michigan Wheel propeller of diameter of 1.2 m , pitch ratio of 0.75 , 4-bladed, DAR: 0.75 and 200 kg of weight. Specific weight of steel is $76400 \mathrm{~N} / \mathrm{m}^{3}$.

You have to use Rayleigh-Ritz energy method, so propose a function to approximate the deflection of the shaft, $\tilde{v}(x)$, and estimate the maximum deflection of the shaft. (35)

3.- Plane stress: On a rectangular steel plate 8 mm in thickness, pairs of concentrated and distributed forces are applied simultaneously as shown in the figure. The plate has dimensions of $a: 2 \mathrm{~m}$, and $2 b: 0.80 \mathrm{~m}$, you are asked to calculate the final thickness in the center point of the plate, using one term for the distribution of the load on the edges. Each force F acting at center of the plate is 1000 kN , and the uniformly distributed force per unit length p_{o} is 500 N / mm. Does your answer make sense? (30)

Formulations of Mohr's circle:

$$
\sigma_{\theta}=\frac{\sigma_{x}+\sigma_{y}}{2}+\frac{\sigma_{x}-\sigma_{y}}{2} \cos 2 \theta+\tau_{x y} \sin 2 \theta .
$$

For plane stress with sinusoidal load on opposite edges:

$$
\begin{gathered}
C_{l}=\frac{2 A}{\alpha^{2}} \frac{\operatorname{senh} \alpha b+\alpha b \cosh \alpha b}{\operatorname{senh} 2 \alpha b+2 \alpha b}, \quad C_{4}=-\frac{2 A}{\alpha^{2}} \frac{\alpha \operatorname{senh} \alpha b}{\operatorname{senh} 2 \alpha b+2 \alpha b} . \\
\sigma_{x}(x, y)=\sum_{m=1}^{\infty} 2 q_{m} \operatorname{sen} \alpha_{m} x\left[\frac{\left(\alpha_{m} b \cosh \alpha_{m} b-\operatorname{senh} \alpha_{m} b\right) \cosh \alpha_{m} y-\alpha_{m} y \operatorname{senh} \alpha_{m} b \operatorname{senh} \alpha_{m} y}{\operatorname{senh} 2 \alpha_{m} b+2 \alpha_{m} b}\right] \\
\sigma_{y}(x, y)=\sum_{m=1}^{\infty}-2 q_{m} \operatorname{sen} \alpha_{m} x\left[\frac{\left(\alpha_{m} b \cosh \alpha_{m} b+\operatorname{senh} \alpha_{m} b\right) \cosh \alpha_{m} y-\alpha_{m} y \operatorname{senh} \alpha_{m} b \operatorname{senh} \alpha_{m} y}{\operatorname{senh} 2 \alpha_{m} b+2 \alpha_{m} b}\right] \\
\tau_{x y}(x, y)=\sum_{m=1}^{\infty}-2 q_{m} \cos \alpha_{m} x\left[\frac{\alpha_{m} b \cosh \alpha_{m} b \operatorname{senh} \alpha_{m} y-\alpha_{m} y \operatorname{senh} \alpha_{m} b \cosh \alpha_{m} y}{\operatorname{senh} 2 \alpha_{m} b+2 \alpha_{m} b}\right]
\end{gathered}
$$

jrml/2018

I declare that during this exam I have fulfilled the Code of Ethics of our university.

