AÑO: 2022	PERIODO: Primer Termino
MATERIA: MATEMATICAS AVANZADAS	PROFESORES: Eduardo Rivadeneira
EVALUACIÓN: Tercera	
TIEMPO DE DURACIÓN: 2 horas terrestres	FECHA: 16 de septiembre

COMPROMISO DE HONOR

Yo,	al firmar este compromiso, reconozco que el presente
examen está diseñado para ser resuelto de manera individual, que puedo usar una	calculadora ordinaria para cálculos aritméticos, un lápiz
o esferográfico; que solo puedo comunicarme con la persona responsable de l	a recepción del examen; y, cualquier instrumento de
comunicación que hubiere traído, debo apagarlo y depositarlo en la parte anterior	del aula, junto con algún otro material que se encuentre
acompañándolo. No debo además, consultar libros, notas, ni apuntes adicionales a	las que se entreguen en esta evaluación. Los temas debo
desarrollarlos de manera ordenada.	

Firmo al pie del presente compromiso, como constancia de haber leído y aceptar la declaración anterior.

"Como estudiante de ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar".

FIRMA: _____ NÚMERO DE MATRÍCULA: _____ PARALELO: _____

TEMA 1 (20 puntos)

Determinar la representación en Serie de Fourier de la función:

$$f(t) = \begin{cases} 0 & -2 < t < 0 \\ 1 & 0 < t < 2 \end{cases}, T = 4$$

TEMA 2 (20 puntos)

Resolver la siguiente ecuación usando el método de separación de variables:

$$\frac{\partial u}{\partial x} + 3\frac{\partial u}{\partial y} = 0$$

TEMA 2 (30 puntos)

Resolver el problema de Sturm-Liouville dado:

$$y'' + \lambda y = 0, y(0) = 0, y'(1) = 0$$

TEMA 3 (30 puntos)

Resolver la ecuación de flujo de calor en una barra infinita:

$$\begin{cases} \frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2} \\ u(x,0) = \varphi(x), \quad -\infty < x < +\infty \end{cases}$$

