## College of Maritime Engineering and Marine Sciences

## Ship Structures II

## First Evaluation

November 27th 2019
Student: $\qquad$

## Closed books

1.- You have to design a shaft which is clamped on one end and simply supported on the other, and supports a force which is a random variable with Normal distribution: mean= 1000 kg , st.dev. $=100$ kg . Total length of steel shaft is 2 meters.


If the design requirements specify that probability of exceedance has to be $10^{-3}$, select the diameter for the shaft. (35)
2.- Fatigue: Explain the reasons why welding is a major cause of fatigue damage in ship structures. (10)
3.- Hull beam bending.- A box barge (Length: 80, Breadth: 12, Depth: 6 m ) built with standard steel navigates in still water in the conditions depicted in the following figure. Estimate using the standard wave method the maximum bending moment in Sagging condition when navigates in sinusoidal sea waves of 3.0 meters in height.


Weight of hull and cargo may be considered as uniformly distributed. Cargo weight is 525 tons. (35)
4.- Inertial load.- A coast guard patrol boat ( $L: 40, B: 7.5, T: 3.0$ meter, $C_{B}: 0.52, V: 25$ knots) has a 5ton machinery for maneuvering in her aft compartment. Applying formulations from a ship classification society, the following values have been estimated: acceleration in heave: 6.53 $\mathrm{m} / \mathrm{s}^{2}$, and, amplitude and period of pitching: $20.3^{\circ}$ and 3.63 seconds. Estimate the inertial load and express it as a percentage of the static value. (20)


## Useful information:

Rayleigh distribution: $f(r)=\frac{r}{\sigma_{R}{ }^{2}} e^{-1 / 2\left(r / \sigma_{R}\right)^{2}}$, Normal distribution: $f(x)=\frac{1}{\sigma_{X}{ }^{2}} e^{-1 / 2\left(x / \sigma_{X}\right)^{2}}$
STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.

| Z | . 00 | . 01 | . 02 | . 03 | . 04 | . 05 | . 06 | . 07 | . 08 | . 09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | . 50000 | . 50399 | . 50798 | . 51197 | . 51595 | . 51994 | . 52392 | . 52790 | . 53188 | . 53586 |
| 0.1 | . 53983 | . 54380 | . 54776 | . 55172 | . 55567 | . 55962 | . 56356 | . 56749 | . 57142 | . 57535 |
| 0.2 | . 57926 | . 58317 | . 58706 | . 59095 | . 59483 | . 59871 | . 60257 | . 60642 | . 61026 | . 61409 |
| 0.3 | . 61791 | . 62172 | . 62552 | . 62930 | . 63307 | . 63683 | . 64058 | . 64431 | . 64803 | . 65173 |
| 0.4 | . 65542 | . 65910 | . 66276 | . 66640 | . 67003 | . 67364 | . 67724 | . 68082 | . 68439 | . 68793 |
| 0.5 | . 69146 | . 69497 | . 69847 | . 70194 | . 70540 | . 70884 | . 71226 | . 71566 | . 71904 | . 72240 |
| 0.6 | . 72575 | . 72907 | . 73237 | . 73565 | . 73891 | . 74215 | . 74537 | . 74857 | . 75175 | . 75490 |
| 0.7 | . 75804 | . 76115 | . 76424 | . 76730 | . 77035 | . 77337 | . 77637 | . 77935 | . 78230 | . 78524 |
| 0.8 | . 78814 | . 79103 | . 79389 | . 79673 | . 79955 | . 80234 | . 80511 | . 80785 | . 81057 | . 81327 |
| 0.9 | . 81594 | . 81859 | . 82121 | . 82381 | . 82639 | . 82894 | . 83147 | . 83398 | . 83646 | . 83891 |
| 1.0 | . 84134 | . 84375 | . 84614 | . 84849 | . 85083 | . 85314 | . 85543 | . 85769 | . 85993 | . 86214 |
| 1.1 | . 86433 | . 86650 | . 86864 | . 87076 | . 87286 | . 87493 | . 87698 | . 87900 | . 88100 | . 88298 |
| 1.2 | . 88493 | . 88686 | . 88877 | . 89065 | . 89251 | . 89435 | . 89617 | . 89796 | . 89973 | . 90147 |
| 1.3 | . 90320 | . 90490 | . 90658 | . 90824 | . 90988 | . 91149 | . 91309 | . 91466 | . 91621 | . 91774 |
| 1.4 | . 91924 | . 92073 | . 92220 | . 92364 | . 92507 | . 92647 | . 92785 | . 92922 | . 93056 | . 93189 |
| 1.5 | . 93319 | . 93448 | . 93574 | . 93699 | . 93822 | . 93943 | . 94062 | . 94179 | . 94295 | . 94408 |
| 1.6 | . 94520 | . 94630 | . 94738 | . 94845 | . 94950 | . 95053 | . 95154 | . 95254 | . 95352 | . 95449 |
| 1.7 | . 95543 | . 95637 | . 95728 | . 95818 | . 95907 | . 95994 | . 96080 | . 96164 | . 96246 | . 96327 |
| 1.8 | . 96407 | . 96485 | . 96562 | . 96638 | . 96712 | . 96784 | . 96856 | . 96926 | . 96995 | . 97062 |
| 1.9 | . 97128 | . 97193 | . 97257 | . 97320 | . 97381 | . 97441 | . 97500 | . 97558 | . 97615 | . 97670 |
| 2.0 | . 97725 | . 97778 | . 97831 | . 97882 | . 97932 | . 97982 | . 98030 | . 98077 | . 98124 | . 98169 |
| 2.1 | . 98214 | . 98257 | . 98300 | . 98341 | . 98382 | . 98422 | . 98461 | . 98500 | . 98537 | . 98574 |
| 2.2 | . 98610 | . 98645 | . 98679 | . 98713 | . 98745 | . 98778 | . 98809 | . 98840 | . 98870 | . 98899 |
| 2.3 | . 98928 | . 98956 | . 98983 | . 99010 | . 99036 | . 99061 | . 99086 | . 99111 | . 99134 | . 99158 |
| 2.4 | . 99180 | . 99202 | 99224 | . 99245 | . 99266 | . 99286 | . 99305 | . 99324 | . 99343 | . 99361 |
| 2.5 | . 99379 | . 99396 | . 99413 | . 99430 | . 99446 | . 99461 | . 99477 | . 99492 | . 99506 | . 99520 |
| 2.6 | . 99534 | . 99547 | . 99560 | . 99573 | . 99585 | . 99598 | . 99609 | . 99621 | . 99632 | . 99643 |
| 2.7 | . 99653 | . 99664 | . 99674 | . 99683 | . 99693 | . 99702 | . 99711 | . 99720 | . 99728 | . 99736 |
| 2.8 | . 99744 | . 99752 | . 99760 | . 99767 | . 99774 | . 99781 | . 99788 | . 99795 | . 99801 | . 99807 |
| 2.9 | . 99813 | . 99819 | . 99825 | . 99831 | . 99836 | . 99841 | . 99846 | . 99851 | . 99856 | . 99861 |
| 3.0 | . 99865 | . 99869 | . 99874 | . 99878 | . 99882 | . 99886 | . 99889 | . 99893 | . 99896 | . 99900 |
| 3.1 | . 99903 | . 99906 | . 99910 | . 99913 | . 99916 | . 99918 | . 99921 | . 99924 | . 99926 | . 99929 |
| 3.2 | . 99931 | . 99934 | . 99936 | . 99938 | . 99940 | . 99942 | . 99944 | . 99946 | . 99948 | . 99950 |
| 3.3 | . 99952 | . 99953 | . 99955 | . 99957 | . 99958 | . 99960 | . 99961 | . 99962 | . 99964 | . 99965 |
| 3.4 | . 99966 | . 99968 | . 99969 | . 99970 | . 99971 | . 99972 | . 99973 | . 99974 | . 99975 | . 99976 |
| 3.5 | . 99977 | . 99978 | . 99978 | . 99979 | . 99980 | . 99981 | . 99981 | . 99982 | . 99983 | . 99983 |
| 3.6 | . 99984 | . 99985 | . 99985 | . 99988 | . 99986 | . 99987 | . 99987 | . 99988 | . 99988 | . 99989 |
| 3.7 | . 99989 | . 99990 | . 99990 | . 99990 | . 99991 | . 99991 | . 99992 | . 99992 | . 99992 | . 99992 |
| 3.8 | . 99993 | . 99993 | . 99999 | . 99994 | . 99994 | . 99994 | . 99994 | . 999995 | . 999995 | . 99995 |
| 3.9 | . 99995 | . 99995 | . 99996 | . 99996 | . 99996 | . 99996 | . 99996 | . 99996 | . 99997 | . 99997 |

Position of rotation above base line, as the lowest between: $Z=\operatorname{Min}\left[\frac{D}{4}+\frac{T}{2}, \frac{D}{2}\right]$. When having different accelerations: $a_{\text {equiv }}=\sqrt{\sum_{i} a_{i}{ }^{2}}$

