PRIMER TEMA

Considere el camino formado por: el segmento de la elipse $3x^2 + 2y^2 = 6$ en el primer cuadrante, el segmento de recta que va desde el punto (0,3) hasta el origen y el segmento de recta que va desde el origen hasta el punto (2,0).

Compruebe el Teorema de Green para el trabajo generado por el campo vectorial:

$$\vec{F}(x,y) = [2y - 3x, \quad 3x - 2y]$$

Al recorrer la curva C en sentido positivo.

Aplicando el teorema de Green:

Sea C la curva formada con los segmentos indicados en el enunciado.

Como C es cerrada, suave a trozos y $\vec{F}(x,y)$ es clase C^1 en la una región abierta que encierra de C, se cumple con las hipótesis del teorema de Green; entonces se define una región $D \in \mathbb{R}^2$ tal que su frontera es C, véase Figura 1, y se cumple que:

$$\oint_{C=\partial D} \vec{F} \cdot d\vec{r} = \iint_{D} \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} dA$$

Donde ∂D significa la frontera de la región D; M y N son las componentes del campo vectorial $\vec{F}(x,y)$.

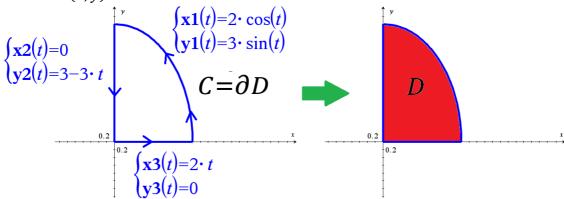


Figura 1. La curva cerrada y suave a trozos C encierra una región D, en la región D el campo vectorial F cumple las hipótesis del teorema de Green

En la integral doble:

$$\iint_{D} \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} dA$$

$$= \iint_{D} \frac{\partial}{\partial x} (3x - 2y) - \frac{\partial}{\partial y} (2y - 3x) dA = \iint_{D} 1 dA = A(D) = \frac{1}{4} \pi(2)(3) = \frac{3\pi}{2}$$

Si se usa el cambio a coordenadas polares generalizadas:

$$= \iint\limits_{D} 1 \, dA = \int\limits_{0}^{\frac{\pi}{2}} \int\limits_{0}^{1} 6 \, r dr d\theta = 6 \frac{r^2}{2} \Big|_{0}^{1} \frac{\pi}{2} = \frac{3\pi}{2} \qquad \begin{bmatrix} x = 2 \, r \cos \theta \\ y = 3r \sin \theta \\ J = (2)(3)r \end{bmatrix}$$

Usando la definición de integral de línea.

Los segmentos que forman a la curva C se parametrizan tal como se muestra en la Figura 1, y sus intervalos de parametrización son:

$$r_1(t) = [2\cos(t), 3\sin(t)]; 0 \le t \le \frac{\pi}{2}$$

 $r_2(t) = [0, 3-3t]; 0 \le t \le 1$

$$r_3(t) = [2t, 0]; 0 \le t \le 1$$

Se calcula cada integral de línea:

$$\oint_{C=\partial D} \vec{F} \cdot d\vec{r} = \int_{r_1} \vec{F} \cdot d\vec{r} + \int_{r_2} \vec{F} \cdot d\vec{r} + \int_{r_3} \vec{F} \cdot d\vec{r}$$

$$\int_{r_1} \vec{F} \cdot d\vec{r} = \int_{0}^{\frac{\pi}{2}} [6\sin(t) - 6\cos(t), 6\cos(t) - 6\sin(t)] \cdot [-2\sin(t), 3\cos(t)] dt$$

$$\int_{r_1} \frac{\vec{F}}{\vec{F}} \cdot d\vec{r} = \int_{0}^{\frac{\pi}{2}} [30\cos^2(t) - 6\sin(t)\cos(t) - 12 dt$$

$$= \int_{0}^{\frac{\pi}{2}} 30\cos^2(t) - 6\sin(t)\cos(t) - 12 dt$$

$$= \int_{0}^{\frac{\pi}{2}} 15(1 + \cos(2t)) - 3\sin(2t) - 12 dt = \frac{3\pi}{2} - 3$$

$$\int_{r_2} \vec{F} \cdot d\vec{r} = \int_{0}^{1} [-6t + 6, 6t - 6] \cdot [0, -3] dt = \int_{0}^{1} -18t + 18 dt = -9t^2 + 18t|_{0}^{1}$$

$$= 9$$

$$\int_{r_3} \vec{F} \cdot d\vec{r} = \int_{0}^{1} [-6t, 6t] \cdot [2, 0] dt = \int_{0}^{1} -12t dt = -6t^2|_{0}^{1} = -6$$

$$\oint_{C=\partial D} \vec{F} \cdot d\vec{r} = \frac{3\pi}{2} - 3 + 9 - 6 = \frac{3\pi}{2}$$

El estudiante	Inicial	En desarrollo	Desarrollado	Excelente
sabe aplicar el teorema de Green y realizar su comprobación por medio de integrales de línea	No puede establecer correctamente el Teorema de Green ni las integrales de línea requeridas	Establece correctamente el Teorema de Green y las tres integrales de línea pero no resuelve correctamente ninguno de los dos métodos	Resuelve correctamente uno de los dos métodos pero comete errores en uno de ellos	Resuelve correctamente ambos métodos y comprueba la igualdad de la respuesta.
	0-5	6-15	16-24	25

SEGUNDO TEMA

Una partícula da una vuelta moviéndose sobre la curva r(t): $r(t) = [x(t), \ y(t)] = [2\cos{(t)} \ 2\sin{(t)}]; 0 < t \leq 2\pi$ Esta curva está en el plano, donde también actúa la función: $f(x,y) = \sqrt{9-x^2-y^2}$

Demuestre que en todos los puntos sobre los que se mueve la partícula, el valor de la máxima variación de la función f(x, y) es igual a $\frac{2\sqrt{5}}{5}$.

El gradiente de la función f(x, y):

$$\nabla f(x,y) = \begin{bmatrix} -x & -y \\ \sqrt{9 - x^2 - y^2}, & \sqrt{9 - x^2 - y^2} \end{bmatrix}$$

El gradiente en cada punto de la curva esta dado por:

$$\nabla f(r(t)) = \nabla f(x(t), y(t))$$

$$= \left[\frac{-2\cos(t)}{\sqrt{9 - (2\cos(t))^2 - (2\sin(t))^2}}, \quad \frac{-2\sin(t)}{\sqrt{9 - (2\cos(t))^2 - (2\sin(t))^2}} \right]$$
$$= \left[\frac{-2\cos(t)}{\sqrt{5}}, \quad \frac{-2\sin(t)}{\sqrt{5}} \right]$$

El valor de la máxima variación de f(x,y) es el módulo del gradiente:

$$\|\nabla f(r(t))\| = \left\| \left[\frac{-2\cos(t)}{\sqrt{5}}, \frac{-2\sin(t)}{\sqrt{5}} \right] \right\|$$

$$= \sqrt{\left(\frac{-2\cos(t)}{\sqrt{5}} \right)^2 + \left(\frac{-2\sin(t)}{\sqrt{5}} \right)^2}$$

$$= \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5}$$

Este es el valor de la máxima variación en los puntos de la curva r(t), es constante y no depende de t, i.e. es el mismo en todos los puntos de la curva.

Capacidades deseadas	Desempeño literal			
El estudiante debe	Inicial	En Desarrollo	Desarrollado	Excelente
ser capaz de aplicar el gradiente de una función para obtener el valor de máxima variación de una función	No sabe cómo obtener el gradiente de la función	Calcula correctamente el gradiente de la función pero comete errores al generalizarlo para cada	Deduce que el valor de máxima variación es el módulo del vector gradiente pero lo calcula mal	El estudiante desarrolla en forma correcta todo el ejercicio y demuestra lo solicitado
	0-3	punto de la curva 4-8	9-14	15

TERCER TEMA

Considere el paraboloide de ecuación:

$$z = a(x^2 + y^2); a \in \mathbb{R}^+$$

Utilice a=2.

Considere la recta L_1 que es una recta paralela al eje z y que pasa por el punto (1, 1, 5). Considere la recta L_2 que es normal al paraboloide y que inicia desde el punto de intercepción entre la recta L_1 y el paraboloide.

Encuentre el punto en que la recta L_2 intercepta al eje z.

La recta $L_1(t) = [2, 3, 5+t]; t \in \mathbb{R}$

La intercepción entre la recta L_1 y el paraboloide:

$$5 + t = 2(2^2 + 3^2) \Rightarrow t = 21$$

Punto de intercepción: (2, 3, 26)

La recta L_2 inicia en el punto (2, $\,$ 3, $\,$ 26) y es normal al paraboloide; el vector normal al paraboloide en el punto (2, 3, 26) es:

$$N = \begin{bmatrix} -\frac{\partial z}{\partial x} & -\frac{\partial z}{\partial y} & 1 \end{bmatrix} = \begin{bmatrix} -4x & -4y & 1 \end{bmatrix}|_{(2, 3, 26)} = \begin{bmatrix} -8 & -12 & 1 \end{bmatrix}$$

La recta $L_2(t) = (2, 3, 26) + [-8, -12, 1]t = [2 - 8t, 3 - 12t, 26 + t]$ La intercepción de la recta $L_2(t)$ con el eje z:

[2 - 8t 3 - 12t 26 + t] = (0, 0, k)
$$\begin{cases} 2 - 8t = 0 \\ 3 - 12t = 0 \Rightarrow t = \frac{1}{4}; k = \frac{105}{4} \end{cases}$$
 Punto de intercepción: $\left(0, 0, \frac{105}{4}\right)$

El	Inicial	En desarrollo	Desarrollado	Excelente
estudiante sabe aplicar la teoría de planos y rectas relativos a una superficie	No sabe como obtener el parámetro t producto de la intersección de la recta 1 con la superficie	Obtiene correctamente el parámetro t, el punto de interseccion de la recta 1 con la superficie pero tiene problemas al calcular el vector normal al paraboloide	Desarrolla bien todo lo anterior pero comete errores al analizar la intersección de la recta 2 con el paraboloide o calcula mal el punto de intersección solicitado	El estudiante desarrolla en forma correcta todo el ejercicio y obtiene el punto solicitado
	0-3	4-8	9-14	15

CUARTO TEMA

Considera las superficies:

$$S_1: z = \sqrt{a^2 - x^2 - y^2}$$

$$S_2: x = y$$

$$S_3 = x = \frac{\sqrt{3}}{3}y$$

Sea Q el volumen acotado las superficies S_1, S_2, S_3 en el primer octante. Determine el valor de a tal que:

$$V(Q) = \pi$$

Usando el sistema cilíndrico, las variables se comportan según los mostrado en la Figura 2.

Figure 2.
$$V(Q) = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \int_{0}^{a} \sqrt{a^{2}-r^{2}} r \, dr \, dr \, d\theta = \theta \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} \int_{0}^{a} \sqrt{a^{2}-r^{2}} r \, dr$$

$$= \left(\frac{\pi}{3} - \frac{\pi}{4}\right) \int_{0}^{a} \sqrt{a^{2}-r^{2}} r \, dr \, \begin{bmatrix} u = a^{2} - r^{2} \\ du = -2r dr \\ \frac{du}{-2} = r dr \\ u(0) = a^{2} \\ u(a) = 0 \end{bmatrix} = \frac{\pi}{12} \int_{0}^{a^{2}} \sqrt{u} \frac{du}{2} = \frac{\pi}{24} \frac{u^{\frac{3}{2}}}{\frac{3}{2}} \Big|_{0}^{a^{2}} = \frac{\pi}{36} a^{3}$$

$$V(Q) = \frac{\pi}{36} a^{3} \Rightarrow \pi = \frac{\pi}{36} a^{3} \Rightarrow a = \sqrt[3]{36}$$

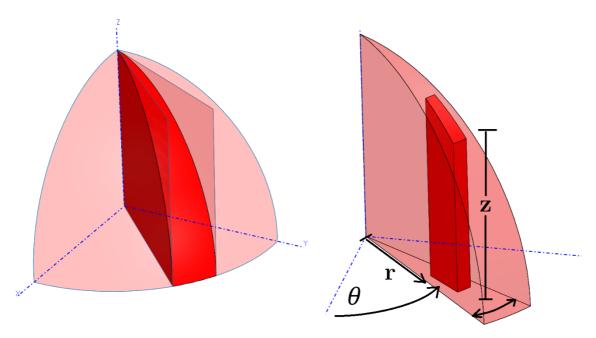


Figura 2. Uso del sistema cilindrico

Usando el sistema esférico, las variables se comportan según los mostrado en la XXX.
$$V(Q) = \int\limits_{\frac{\pi}{4}}^{\frac{\pi}{3}} \int\limits_{0}^{\frac{\pi}{2}} \int\limits_{0}^{a} \rho^{2} \sin\phi \ d\rho d\phi d\theta = \theta \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\rho^{3}}{3}\Big|_{0}^{a} - \cos\phi \Big|_{0}^{\frac{\pi}{2}} = \frac{\pi}{12} \frac{a^{3}}{3} \ (-0+1)$$

$$= \frac{\pi}{36} a^{3}$$

$$V(Q) = \frac{\pi}{36} a^{3} \Rightarrow \pi = \frac{\pi}{36} a^{3} \Rightarrow a = \sqrt[3]{36}$$

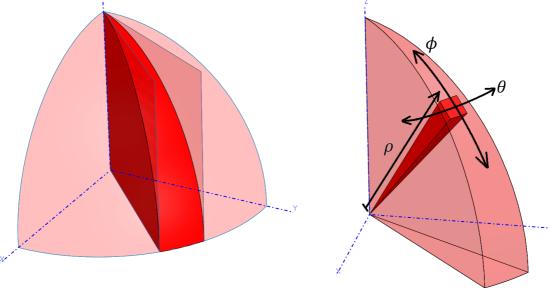


Figura 3. Uso del sistema esférico

El	Inicial	En desarrollo	Desarrollado	Excelente
estudiante sabe como calcular el volumen limitado por superficies en coordenadas cilíndricas o	No sabe como plantear el ejercicio en ninguno de los dos sistemas	Bosqueja el escenario tridimensional del ejercicios y plantea la integral triple en cualquiera de los dos sistemas	Desarrolla lo anterior pero comete errores en el cálculo de la integral y no llega a la respuesta deseada	El estudiante desarrolla en forma correcta todo el ejercicio y demuestra lo solicitado
esféricas	0-3	4-8	9-14	15

QUINTO TEMA

Sea C una curva dada por $ec{r}(t)=\left(rac{(1+t)^{3/2}}{3},rac{(1-t)^{3/2}}{3},rac{t}{\sqrt{2}}
ight)$, $con\ t\in I\subset\mathbb{R}$

- a) Determinar el mayor intervalo $I\,$ en el cual la curva ${\bf C}$ es regular.
- b) Calcular L(C), longitud de C, si $t \in I$
- c) Obtener el vector \hat{T} en el punto $P_0 = (\frac{1}{3}, \frac{1}{3}, 0)$ y sabiendo que el vector

binormal en t=0 es : $\hat{B}(0) = \left(-\frac{1}{2}, \frac{1}{2}, \frac{\sqrt{2}}{2}\right)$ calcule \hat{N} .

a) El intervalo I debe cumplir $1+t \ge 0$ $1-t \ge 0$ \Rightarrow $-1 \le t \le 1$

Y Para que la curva C sea regular se tiene que cumplir que: $\overrightarrow{r'}(t) \neq (0.0,0)$

$$\vec{r}'(t) = \left(\frac{(1+t)^{1/2}}{2}, -\frac{(1-t)^{1/2}}{2}, \frac{1}{\sqrt{2}}\right) \neq (0,0,0)$$

Por tanto, C es regular, y el intervalo es: I = [-1,1]

b) Dado que $t \in [-1,1]$, entonces la longitud de la curva está dada por la expresión

$$L(C) = \int_{a}^{b} \| \overrightarrow{r'}(t) \| dt, \quad t \in [a, b]$$

$$\| \overrightarrow{r'}(t) \| = \sqrt{\left(\frac{(1+t)^{1/2}}{2}\right)^{2} + \left(-\frac{(1-t)^{1/2}}{2}\right)^{2} + \left(\frac{1}{\sqrt{2}}\right)^{2}} = \sqrt{\frac{1+t}{4} + \frac{1-t}{4} + \frac{1}{2}}$$

$$\|\overrightarrow{r}(t)\| = 1$$

Por tanto

$$L(C) = \int_{-1}^{1} dt, t \in [-1,1]$$

$$L(C) = 2$$

c) Primero, obtendremos el punto
$$t_0$$
 tal que $\vec{r}(t_0) = P_0$

$$\vec{r}(t_0) = \left(\frac{(1+t_0)^{3/2}}{3}, \frac{(1-t_0)^{3/2}}{3}, \frac{t_0}{\sqrt{2}}\right) = \left(\frac{1}{3}, \frac{1}{3}, 0\right)$$

Es decir

$$\frac{(1+t_0)^{\frac{3}{2}}}{\frac{3}{3}} = \frac{1}{3}, \quad \frac{(1-t_0)^{\frac{3}{2}}}{3} = \frac{1}{3},$$

Entonces $\frac{t_0}{\sqrt{2}} = 0 \Rightarrow t_0 = 0$

pAra calcular los vectores calculamos primero

las normas
$$\|\vec{r}(0)\| = 1$$
, $\|\vec{r}(0) \times \vec{r}(0)\| = \frac{1}{2\sqrt{2}}$

Luego

$$\widehat{T}(0) = \frac{\overrightarrow{r'}(0)}{\left\|\overrightarrow{r'}(0)\right\|} \quad \Rightarrow > \widehat{T}(0) = \left(\frac{1}{2}, \frac{-1}{2}, \frac{\sqrt{2}}{2}\right)$$

Para \hat{N} usamos el dato dado:

$$\widehat{N}(0) = \widehat{B}(0) \times \widehat{T}(0) \implies \widehat{N}(0) = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right)$$

Capacidades deseadas	Desempeño literal				
El estudiante debe	Inicial	En Desarrollo	Desarrollado	Excelente	
ser capaz de aplicar	No sabe	Aplica las	Aplica	El estudiante	
las fórmulas de	cómo	fórmula para	correctamente las	calcula en	
geometría vectorial	plantear el	calcular los	fórmulas, pero no	forma correcta	
	problema o	elementos,	llega a los	y expresa la	
	se	pero COMETE	resultados	respuesta de	
	confunde a	ERRORES	correctos	forma clara	
	la hora de				
	aplicar las				
	fórmulas.				
	0-3	4-8	9-14	15	

SEXTO TEMA

Empleando una transformación adecuada, evalué la integral $\iint_D \frac{y^2}{x^2} \sin(\pi x y) dA$, donde D es la región en el primer cuadrante encerrado por las hipérbolas xy = 1, xy = 4 y las rectas y = x, y = 5x.

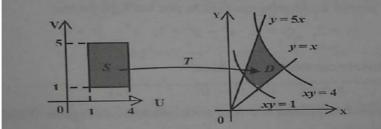
Encontremos la nueva región S que dependa de u y v, para ello consideremos u=xy, $v=\frac{y}{x}$, así

$$xy = 1 \Rightarrow u = 1$$
 $y = x \Rightarrow \frac{y}{x} = 1 \Rightarrow v = 1$
 $xy = 4 \Rightarrow u = 4$ $y = 5x \Rightarrow \frac{y}{x} = 5 \Rightarrow v = 5$

Por lo que $S = \{(u, v) : 1 \le u \le 4, 1 \le v \le 5\}$, Despejando x, y en función de u, v se tiene que

$$x = \left(\frac{u}{v}\right)^{\frac{1}{2}} \quad y \quad y = (uv)^{\frac{1}{2}}$$

$$T(u, v) = \left(x(u, v), y(u, v)\right) = \left(\left(\frac{u}{v}\right)^{\frac{1}{2}}, (uv)^{\frac{1}{2}}\right)$$



Ahora

$$\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} y & x \\ \frac{-y}{x^2} & \frac{1}{x} \end{vmatrix} = \frac{2y}{x} = 2v, \text{ de acá} \qquad \frac{\partial(x,y)}{\partial(u,v)} = \frac{1}{\frac{\partial(u,v)}{\partial(x,y)}} = \frac{1}{2v}$$

Otra forma es

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{1}{2\sqrt{uv}} & \frac{-1}{2v}\sqrt{\frac{u}{v}} \\ \frac{1}{2}\sqrt{\frac{v}{u}} & \frac{1}{2}\sqrt{\frac{u}{v}} \end{vmatrix} = \frac{1}{2v}$$

En consecuencia

$$\iint_{D} \frac{y^{2}}{x^{2}} \sin(\pi x y) dA = \int_{1}^{4} \int_{1}^{5} v^{2} \sin(\pi u) \left| \frac{1}{2v} \right| dv du$$
$$= \frac{1}{2} \int_{1}^{4} \int_{1}^{5} v \sin(\pi u) dv du$$
$$= \frac{-12}{\pi}$$

El	Inicial	En desarrollo	Desarrollado	Excelente
estudiante debe estar en la capacidad de resolver integrales dobles, mediante cambios de variables	Realiza los cambios de variables adecuados, y encuentra la region S que depende de u,v. Pero no encuentra la trasformacion T(u,v), no grafica las regiones, no encuentra el determinante del Jacobiano de T, no plantea la integral en funcion del cambio de variable, ni resulve las integrales	Realiza los cambios de variables adecuados, encuentra la region S que depende de u,v. Encuentra la trasformacion T(u,v), y grafica las regiones, pero no encuentra el determinante del Jacobiano de T, no plantea la integral en funcion del cambio de variable, ni resulve las integrales	Realiza los cambios de variables adecuados, encuentra la region S que depende de u,v . Encuentra la trasformacion T(u,v), grafica las regiones y encuentra el determinante del Jacobiano de T, pero no plantea la integral en funcion del cambio de variable, ni resulve las integrales	Realiza los cambios de variables adecuados, encuentra la region S que depende de u,v. Encuentra la trasformacion T(u,v), grafica las regiones, encuentra el determinante del Jacobiano de T, plantea la integral en funcion del cambio de variable, y resulve las integrales de forma correcta
	0-3	4-8	9-14	15