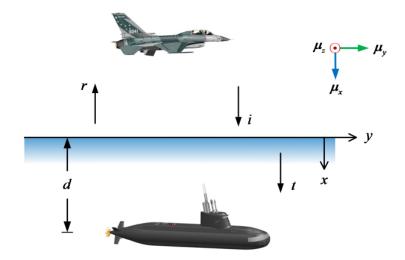
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

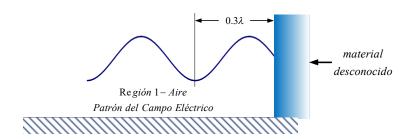
TEORÍA ELECTROMAGNÉTICA II

Profesor: ING. WASHINGTON MEDINA M. ()
ING. ALBERTO TAMA FRANCO (\checkmark)

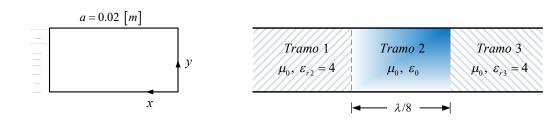

SEGUNDA EVALUACIÓN

Fecha: jueves 04 de febrero del 2016

Alumno:


PRIMER TEMA (30 puntos):

Un avión que vuela a $7 \ [km]$ de altura, desea enviar un mensaje a un submarino que se encuentra exactamente debajo de su casco. El transmisor del avión está ubicado justo bajas las alas y emite una onda electromagnética a una frecuencia de $10 \ [kHz]$, la cual atenúa su amplitud de campo eléctrico en la atmósfera a una razón de $0.01\% \ [V/m]$ por cada metro. Si el receptor del submarino, mismo que se encuentra a $10 \ [m]$ de profundidad, puede detectar hasta señales de amplitud de $1\times10^{-7} \ [V/m]$ y los parámetros constitutivos del agua de mar σ = 5 [S/m], ε_r = $80 \ y$ μ_r = 1, determine la densidad de potencia que debe irradiar el transmisor del avión.


SEGUNDO TEMA (40 puntos):

Una onda plana uniforme de f=150~[MHz] en el aire, incide perpendicularmente sobre un material de parámetros desconocidos. En el aire se forma una onda estacionaria con ROE=3, además se encuentra un mínimo a 0.3λ de la frontera de separación de las regiones. Encuentre la permitividad eléctrica relativa ε_r del material desconocido.

TERCER TEMA (30 puntos):

Al construir una Guía de Ondas de sección rectangular, no se llenó completamente de dieléctrico, cuyos parámetros constitutivos son: μ_0 , $4\varepsilon_0$, quedando un espacio vacío tal como se indica en la siguiente figura. Si se considera una onda incidente de f=10 [GHz] y con amplitud E_{z1}^+ que se propaga en dirección z, determinar la amplitud de la onda que se propaga en el extremo 3 de la precitada guía.

