

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICA

Año: 2018-2019	Período: Segundo Término		
Materia: Cálculo de Varias Variables	Profesores: Geovanny Argüello, Nelson Córdova, David		
	De Santis, Rosa Díaz, Jorge Medina, Alex Moreno, Heydi		
	Roa, Pedro Ramos, Luz Rodríguez, Soraya Solís, Xavier		
	Toledo, José Vera.		
Evaluación: Primera	Fecha: 19 de noviembre de 2018		

COMPROMISO DE HONOR				
Yo,				
"Como estudiante de ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar".				
Firma:	NÚMERO DE MATRÍCULA:	PARALELO:		

RUBRICA DE LA PRIMERA EVALUACIÓN

1. (10 p.) Sean las rectas
$$L_1: \frac{x-7}{3} = \frac{y-2}{2} = \frac{1-z}{2}; L_2: \begin{cases} x = 2t-1 \\ y = -3t+1 \end{cases}; t \in \mathbb{R}.$$

$$z = 4t+1$$

- a) Hallar de ser posible el punto de intersección P entre ambas rectas.
 - Plantea sistema de ecuaciones para hallar P..........2 p.
 - Resuelve el sistema y obtiene los parámetros......2 p.
 - \blacksquare Calcula P.....1 p.
- b) Hallar de ser posible, la ecuación de la esfera con centro en P y que es tangente al plano $\pi: 2x+2y+z-1=0.$

 - \bullet Calcula la distancia del plano a P......1 p.
 - Escribe la ecuación canónica de la esfera correctamente.....2 p.

- 2. (10 p.) Dada la superficie $S: z=6-x^2-y^2; (x,y)\in\mathbb{R}^2$.
 - a) Si z = f(x, y), grafique los conjuntos de nivel CN_{α} de f, tal que $\alpha \in \{0, 6, 10\}$.
 - Plantea definición de conjunto de nivel......1 p.
 - Grafica correctamente cada conjunto de nivel (1 p. c/u)......3 p.
 - b) Si Q es el sólido acotado por S y el plano y+z=0, dibuje la proyección de Q sobre el plano YZ. Especifique la escala utilizada.
 - Realiza un bosquejo gráfico del sólido......2 p.
 - Grafica curvas de la proyección......2 p.
 - Dibuja la proyección indicando la escala......2 p.
- 3. (10 p.) Considere la función $f(x,y) = \begin{cases} \frac{1 \cos(\sqrt{x^2 + y^2})}{x^2 + y^2} & ; (x,y) \neq (0,0) \\ A & ; (x,y) = (0,0) \end{cases}$.
 - a) Calcule el valor de $A \in \mathbb{R}$ para que f sea continua en (0,0).
 - Plantea criterio de continuidad explicando que A sea el valor del límite de f en el punto (0,0)......2 p.
 - Calcula el valor del límite en (0,0).....2 p.
 - b) Con el valor A obtenido, determine $\frac{\partial f}{\partial x}(0,0)$ y $\frac{\partial f}{\partial y}(0,0)$.
 - Escribe definición de límite de una derivada parcial en el punto (0,0)......1 p.
 - Calcula correctamente el límite y especifica respuesta (0)......2 p.
 - Calcula la otra derivada parcial (0)......1 p.
 - c) Con los resultados obtenidos en los literales a) y b), justifique si es posible concluir que f es diferenciable en (0,0).
 Justifica que no es suficiente los resultados anteriores para concluir

diferenciabilidad en (0,0)...........2 p.

4. (10 p.) Sean las funciones

$$F(u,v) = (e^{\frac{u}{v}}, uv); u, v \in \mathbb{R}; v \neq 0,$$

$$G(x,y) = (1 - x^2y^2 - x - y, 1 + x^2 + y^2); x, y \in \mathbb{R}.$$

Empleando el teorema de la función compuesta:

- a) Justifique que $F \circ G$ es diferenciable en el punto (0,0).
 - Verifica hipótesis del teorema en el punto (0,0)......2 p.
 - Justifica correctamente......1 p.
- b) Calcule la matriz $D(F \circ G)(0,0)$.
 - Plantea el producto de las Jacobianas de acuerdo al teorema......1 p.
 - Calcula correctamente las Jacobianas (2 p. c/u)......4 p.
- 5. (10 p.) Dada la ecuación $xe^{z-1} \sqrt{yz} = 0$; x, y, z > 0 y sea $(x_0, y_0, z_0) = (1, 1, 1)$ un punto que la satisface.
 - a) Justifique que la ecuación define a $z = \phi(x, y)$, en una vecindad del punto (1, 1), con ϕ diferenciable en dicha vecindad.

 - Justifica correctamente......1 p.
 - b) Escriba la fórmula de Taylor de Primer Orden de ϕ en (1,1), expresándola en términos de x e y.
 - Plantea fórmula general de Taylor de Primer Orden......1 p.
 - Calcula correctamente las derivadas parciales
 en forma implícita (1 p. c/u).....2 p.

 - \blacksquare Reemplaza datos y especifica la fórmula en x e y................3 p.