espol

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS

AÑO: 2019 - 2020	PERIODO: SEGUNDO TÉRMINO
MATERIA: ECUACIONES	PROFESORES: P1: Antonio Chong Escobar;
DIFERENCIALES	P4&6&11: Jennifer Avilés Monroy; P5&12: José Castro
COORDINADOR:	Carrasco; P7&17: C. Mario Celleri Mujica; P8&14: Elvis
Antonio Chong Escobar	Aponte Valladares; P9&15: Hernando Sánchez Caicedo; P16:
	Liliana Rebeca Pérez. (P: Paralelo)
EVALUACIÓN: TERCERA	FECHA: 10 DE FEBRERO DE 2020

COMPONENTE TEÓRICO			
TOTAL (de 100 Puntos)			

	COMPROMISO DE HONOR QUE SE DEBE LLENAR PARA QUE ESTE EXAMEN SEA CALIFICADO
Yo,	
al firn	nar este compromiso, reconozco que en el presente examen:
1)	cualquier instrumento de comunicación que hubiere traído, como teléfono celular, debo apagarlo y depositarlo junto con cualquier otra pertenencia en mi mochila, y ésta debo ubicarla en la parte frontal del aula. En el caso de no haber traído mochila, los instrumentos de comunicación los debo colocar sobre el escritorio del profesor.
2)	cualquier instrumento de comunicación, como teléfonos celulares, que se encuentre en mi poder (como en los bolsillos de mi ropa, etc.), será considerado como una prueba de intento de copia, aún cuando el instrumento se encuentre apagado, descargado, dañado, etc. En el caso de que se me detecte alguno de estos instrumentos, la(s) persona(s) responsables de la recepción de la evaluación me tomará(n) una foto junto con el dispositivo como evidencia, sin embargo, podré continuar en el aula resolviendo el examen luego de poner el instrumento de comunicación sobre el escritorio del profesor.
3)	no puedo usar abrigos , gafas , relojes ni gorras .
4)	no puedo girar esta primera carilla hasta que la(s) persona(s) responsable(s) de la recepción de la evaluación permita(n) iniciar.
5)	debo resolver la evaluación de manera individual, sin consultar con otro estudiante y sin consultar en libros, notas o apuntes.
6)	no puedo usar calculadora , ni cualquier otro instrumento para hacer cálculos como laptops o tablets.
7)	sólo puedo usar un bolígráfico, un lápiz, un borrador y un sacapuntas , mientras que todo lo demás, incluido cartucheras, debo ubicarlos dentro de mi mochila.
8)	sólo puedo comunicarme con la(s) persona(s) responsable(s) de la recepción de la evaluación.
9)	los temas los debo desarrollar de manera ordenada y clara.
Firmo	al pie del presente compromiso, como constancia de haber leído y aceptado todos sus 9 items.
	o estudiante de la ESPOL <u>me comprometo a combatir la mediocridad y actuar con</u> tidad, por eso no copio ni dejo copiar".
FIRMA	: NÚMERO DE MATRÍCULA: PARALELO:

Solución y Rúbrica

Tema 1 (14 Puntos)

En el proceso industrial de la elaboración de diluyente, uno de los componentes principales es el tolueno. Se observa que durante la elaboración de diluyente en cierta industria, dicho componente se está derramando del recipiente de almacenamiento, de modo que en la primera hora de la elaboración se derraman $\left(sen\left(\frac{\pi}{4(2)}\right)\right)$ litros, en la segunda hora se derraman $\left(sen\left(\frac{2\pi}{4(3)}\right)\right)^2$ litros, en la tercera hora se derraman $\left(sen\left(\frac{3\pi}{4(4)}\right)\right)^3$ litros, en la cuarta hora se derraman $\left(sen\left(\frac{4\pi}{4(5)}\right)\right)^4$ litros, y que este patrón se mantiene conforme avanzan las horas. Si este proceso industrial y el derrame de tolueno observado continuara infinitamente, entonces ¿la cantidad de tolueno total derramada sería convergente o divergente?

Solución:

Las cantidades derramadas forman la siguiente suseción:

$$\left\{\underbrace{\underbrace{sen\left(\frac{\pi}{4(2)}\right)}_{a_1}, \underbrace{\left(sen\left(\frac{2\pi}{4(3)}\right)\right)^2}_{a_2}, \underbrace{\left(sen\left(\frac{3\pi}{4(4)}\right)\right)^3}_{a_3}, \underbrace{\left(sen\left(\frac{4\pi}{4(5)}\right)\right)^4}_{a_4}, \ldots\right\}}_{}\right\}.$$

La cantidad total derramada se puede representar con la serie $\sum_{t=1}^{+\infty} a_t$, esto es:

$$\sum_{t=1}^{+\infty} \left(sen \left(\frac{t\pi}{4(t+1)} \right) \right)^t$$
.

Aplicando el criterio de la raíz a la serie planteada se tiene:

$$\lim_{t\to\infty} \sqrt[t]{\left(sen\left(\frac{t\pi}{4(t+1)}\right)\right)^t} = \lim_{t\to\infty} \left(sen\left(\frac{t\pi}{4(t+1)}\right)\right) = \lim_{t\to\infty} \left(sen\left(\frac{\pi}{4\left(1+\frac{1}{t}\right)}\right)\right) = sen\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}.$$

Dado que el resultado de este límite es menor que 1, la serie es convergente.

Por lo tanto, la cantidad total derramada de tolueno sería convergente si el proceso industrial y el derrame de tolueno observado continuara infinitamente.

Tema 2 (21 Puntos)

Usando el método de los valores y vectores propios, determine la solución general del siguiente sistema y luego obtenga y(3):

$$\begin{bmatrix} x'(t) \\ y'(t) \\ z'(t) \end{bmatrix} = \begin{bmatrix} -1 & 2 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix}.$$

Solución:

Sea A la matriz de coeficientes del sistema y sea $\mathbf{w}(t) = \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix}$ una solución vectorial del mismo.

Entonces, se plantea $w(t) = \varepsilon e^{rt}$, tal que r es un valor propio de A y ε un vector propio asociado a r.

Se halla los valores propios de
$$A$$
, usando la ecuación $det(A-rI)=0$, esto es: $\begin{vmatrix} -1-r & 2 & 1 \\ 0 & 1-r & 3 \\ 0 & 0 & -r \end{vmatrix}=0$. Resolviendo la ecuación o recordando que los valores propios de una matriz triangular superior son lo

Resolviendo la ecuación o recordando que los valores propios de una matriz triangular superior son los elementos de la diagonal principal se tiene que:

$$r_1 = -1, r_2 = 1 \text{ y } r_3 = 0.$$

 $r_1=-1, r_2=1 \ {\rm y} \ r_3=0.$ Para hallar el vector propio asociado a cada valor propio, se halla el espacio característico de cada valor propio

resolviendo el sistema $(A - rI)\beta_r = \mathbf{0}$, considerando el espacio característico β_r de la forma $\beta_r = (b)$:

Para
$$r_1 = -1$$
: se resuelve el sistema $(A - r_1 I)\beta_{r_1} = \mathbf{0}$, esto es, $\begin{pmatrix} 0 & 2 & 1 & 0 \\ 0 & 2 & 3 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$.

De acuerdo con la fila 3: c = 0.

De acuerdo con la filas 1: $2b + c = 0 \rightarrow b = 0$. Con c = 0 y b = 0 también se satisface la fila 2.

Entonces, se considera a como variable libre, es decir, $a \in \mathbb{R}$.

Así,
$$\beta_{r_1} = \left\{ \begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix} : a \in \mathbb{R} \right\} = \left\{ a \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} : a \in \mathbb{R} \right\}$$
. Entonces, un vector propio asociado a r_1 es: $\varepsilon_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

Para
$$r_2 = 1$$
: se resuelve el sistema $(A - r_2 I)\beta_{r_2} = \mathbf{0}$, esto es, $\begin{pmatrix} -2 & 2 & 1 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & -1 & 0 \end{pmatrix}$.

De acuerdo con la fila 3: $-c = 0 \rightarrow c = 0$. Con este valor, también se satisface la fila 2.

De acuerdo con la fila 1: $-2a + 2b + c = 0 \rightarrow -2a + 2b = 0$. Considerando a b como variable libre, esto es, $b \in \mathbb{R}$, se tiene que a = b.

Así,
$$\beta_{r_2} = \left\{ \begin{pmatrix} b \\ b \\ 0 \end{pmatrix} : b \in \mathbb{R} \right\} = \left\{ b \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} : b \in \mathbb{R} \right\}$$
. Entonces, un vector propio asociado a r_2 es: $\varepsilon_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$.

Para
$$r_3 = 0$$
: se resuelve el sistema $(A - r_3 I)\beta_{r_3} = \mathbf{0}$, esto es, $\begin{pmatrix} -1 & 2 & 1 & | & 0 \\ 0 & 1 & 3 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$.

De acuerdo con la fila 2: b + 3c = 0. Considerando a c como variable libre ($b \in \mathbb{R}$), se tiene que b = -3c. De acuerdo con la fila 1: $-a + 2b + c = 0 \rightarrow a = 2b + c \rightarrow a = -5c$.

Así,
$$\beta_{r_3} = \left\{ \begin{pmatrix} -5c \\ -3c \end{pmatrix} : c \in \mathbb{R} \right\} = \left\{ c \begin{pmatrix} -5 \\ -3 \\ 1 \end{pmatrix} : c \in \mathbb{R} \right\}$$
. Entonces, un vector propio asociado a r_3 es: $\varepsilon_3 = \begin{pmatrix} -5 \\ -3 \\ 1 \end{pmatrix}$.

La solución vectorial del sistema está dada por:

First sistema esta dada por:
$$\mathbf{w}(t) = c_1 \varepsilon_1 e^{r_1 t} + c_2 \varepsilon_2 e^{r_2 t} + c_3 \varepsilon_3 e^{r_3 t}; \ c_1, c_2, c_3 \in \mathbb{R},$$

$$\mathbf{w}(t) = c_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} e^{-t} + c_2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} e^{t} + c_3 \begin{pmatrix} -5 \\ -3 \\ 1 \end{pmatrix}; \ c_1, c_2, c_3 \in \mathbb{R}.$$

Las componentes de la solución del sistema están dadas por

fon del sistema están dadas por:
$$x(t) = c_1 e^{-t} + c_2 e^t - 5c_3$$

$$y(t) = c_2 e^t - 3c_3$$
 , tal que $c_1, c_2, c_3 \in \mathbb{R}$.
$$z(t) = c_3$$

Finalmente, $y(3) = c_2 e^3 - 3c_3$.

Tema 3 (21 Puntos)

Cambiando la expresión (at + by) por una nueva variable, determine la solución y(t) del problema de valor inicial $\frac{dy}{dt} = \frac{\hat{1}}{(at+by)^2} - \frac{a}{b}$; y(0) = 1, donde a < 0 y b > 0.

Solución:

Utilizando el cambio de variable
$$v = at + by$$
 se tiene que:
$$y = \frac{v}{b} - \frac{at}{b} \rightarrow \frac{dy}{dt} = \frac{1}{b} \frac{dv}{dt} - \frac{a}{b} .$$

Sustituyendo
$$(at + by)$$
 y $\frac{dy}{dt}$ en la ecuación diferencial:
$$\frac{1}{b}\frac{dv}{dt} - \frac{a}{b} = \frac{1}{v^2} - \frac{a}{b} \quad \rightarrow \quad \frac{1}{b}\frac{dv}{dt} = \frac{1}{v^2} \quad \rightarrow \quad v^2 dv = b dt.$$

Integrando la ecuación separable obtenida:

$$\int v^2 dv = \int b dt \quad \to \quad \frac{v^3}{3} = bt + c \; ; c \in \mathbb{R}.$$

Sustituyendo el cambio de variable para obtener y(t):

$$\frac{(at+by)^3}{3} = bt + c \quad \rightarrow \quad at + by = \sqrt[3]{3bt + 3c} \quad \rightarrow \quad y(t) = \frac{1}{b}\sqrt[3]{3bt + 3c} - \frac{a}{b}t.$$

Reemplazando la condición inicial y(0) = 1:

$$\frac{1}{b}\sqrt[3]{3c} = 1 \quad \to \quad c = \frac{b^3}{3}.$$

Por lo tanto, la solución del problema de valor inicial está dada por:

$$y(t) = \frac{1}{b}\sqrt[3]{3bt + b^3} - \frac{a}{b}t$$
; $a < 0$ y $b > 0$.

Tema 4 (22 Puntos)

Utilizando la transformada de Laplace, determine la solución de la ecuación y'(t) + f(t) = g(t); y(0) = 2, tal que $f(t) = \begin{cases} 0 & ; & 0 \le t < 10 \\ At & ; & t \ge 10 \end{cases}$ y $g(t) = \delta(t-3)$, donde δ denota la función delta de Dirac y A > 0.

Solución:

Expresando a la función f(t) en términos de la función escalón unitario:

$$f(t) = 0(\mu_0(t) - \mu_{10}(t)) + At(\mu_{10}(t)).$$

Entonces la ecuación se puede escribir como:

$$y'(t) + At(\mu_{10}(t)) = \delta_3(t).$$

Al aplicar la transformada de Laplace, denotada por L, y su propiedad de linealidad:

$$L[y'(t)] + AL[t\mu_{10}(t)] = L[\delta_3(t)].$$

Hallando las transformadas planteadas:

- L[y'(t)] = sY(s) y(0) = sY(s) 2,
- $L[t\mu_{10}(t)] = L[\mu_{10}(t)(t-10+10)] = L[\mu_{10}(t)(t-10) + 10\mu_{10}(t))] = e^{-10s} \frac{1}{s^2} + 10e^{-10s} \frac{1}{s}$
- $L[\delta_3(t)] = e^{-3s}$.

Sustituyendo se tiene:

$$sY(s) - 2 + A\left(e^{-10s} \frac{1}{s^2} + 10e^{-10s} \frac{1}{s}\right) = e^{-3s},$$

$$Y(s) = e^{-3s} \frac{1}{s} + \frac{2}{s} - e^{-10s} \frac{A}{s^3} - 10e^{-10s} \frac{A}{s^2}.$$

Aplicando la transformada inversa se tiene:

$$y(t) = L^{-1}[Y(s)],$$

$$y(t) = L^{-1}\left[e^{-3s}\frac{1}{s}\right] + L^{-1}\left[\frac{2}{s}\right] - L^{-1}\left[e^{-10s}\frac{A}{s^3}\right] - 10L^{-1}\left[e^{-10s}\frac{A}{s^2}\right],$$

$$y(t) = \mu_3(t) + 2 - \frac{A}{2}(t - 10)^2\mu_{10}(t) - 10A(t - 10)\mu_{10}(t); \ t \ge 0.$$

Tema 5 (22 Puntos)

Considere un circuito eléctrico en serie con un resistor de resistencia R = 100 ohmios, un inductor de inductancia L=10 henrios, un capacitor de capacitancia $C=\frac{1}{160}$ faradios y una fuente de voltaje dada por $f(t) = e^{-t}$ voltios. De acuerdo con la ley de Kirchhoff la ecuación que describe la carga q(t) del capacitor de este circuito es $L\frac{d^2q(t)}{dt^2} + R\frac{dq(t)}{dt} + \frac{1}{c}q(t) = f(t)$. Utilizando el método de variación de parámetros halle una solución particular para esta ecuación, y luego indique su solución general.

Finalmente, obtenga la intensidad de corriente i(t) del circuito si se conoce que la relación entre i(t) y q(t)está dada por $i(t) = \frac{dq(t)}{dt}$

Solución:

Se halla la solución complementaria $q_c(t)$ resolviendo la ecuación: $10\frac{d^2q}{dt^2} + 100\frac{dq}{dt} + 160q = 0$. Para esto, se plantea la solución de la forma: $q(t) = e^{rt}$, con lo cual: $q'(t) = re^{rt}$ y $q''(t) = r^2e^{rt}$. Sustituyendo en la ecuación homogénea se tiene:

$$10r^2e^{rt} + 100re^{rt} + 160e^{rt} = 0 \rightarrow 10e^{rx}(r^2 + 10r + 16) = 0 \rightarrow (r+8)(r+2) = 0$$

Entonces, $r = -8$ y $r = -2$.
Así, $q_c(t) = c_1e^{-8t} + c_2e^{-2t}$; $c_1, c_2 \in \mathbb{R}$.

A continuación, se halla una solución particular para la ecuación no homogénea, cuya forma canónica es:

$$\frac{d^2q}{dt^2} + 10\frac{dq}{dt} + 16q = \frac{1}{10}e^{-t}$$
, de donde se define la función $g(t) = \frac{1}{10}e^{-t}$.

Usando el método de variación de parámetros, se plantea la solución particular de la forma:

$$q_p(t) = v_1 y_1 + v_2 y_2,$$

donde y_1 y y_2 son las soluciones linealmente independientes de la solución complementaria y tal que se satisfaga el sistema de ecuaciones:

$$\begin{cases} v_1' y_1 + v_2' y_2 = 0 \\ v_1' y_1' + v_2' y_2' = g(t) \end{cases}, \text{ esto es: } \begin{bmatrix} e^{-8t} & e^{-2t} \\ -8e^{-8t} & -2e^{-2t} \end{bmatrix} \begin{bmatrix} v_1' \\ v_2' \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{1}{10} e^{-t} \end{bmatrix}.$$

El Wronskiano, $W(y_1, y_2)$, está dado por: $\begin{vmatrix} e^{-8t} & e^{-2t} \\ -8e^{-8t} & -2e^{-2t} \end{vmatrix} = -2e^{-10t} + 8e^{-10t} = 6e^{-10t}$. Las soluciones del sistema son:

$$v_{1}' = \frac{\begin{vmatrix} \frac{1}{10}e^{-t} & -2e^{-2t} \\ \frac{1}{10}e^{-t} & -2e^{-2t} \end{vmatrix}}{W(y_{1},y_{2})} = \frac{-\frac{1}{10}e^{-3t}}{6e^{-10t}} = -\frac{1}{60}e^{7t} \quad \rightarrow \quad v_{1} = -\frac{1}{60}\int e^{7t} dt = -\frac{1}{420}e^{7t} + k_{1}; \ k_{1} \in \mathbb{R},$$

$$v_{2}' = \frac{\begin{vmatrix} e^{-8t} & 0 \\ -8e^{-8t} & \frac{1}{10}e^{-t} \end{vmatrix}}{W(y_{1},y_{2})} = \frac{\frac{1}{10}e^{-9t}}{6e^{-10t}} = \frac{1}{60}e^{t} \quad \rightarrow \quad v_{2} = \frac{1}{60}\int e^{t} dt = \frac{1}{60}e^{t} + k_{2}; \ k_{2} \in \mathbb{R}.$$

Con los resultados obtenidos y anulando las constantes
$$k_1$$
 y k_2 se obtiene:
$$q_p(t) = \left(-\frac{1}{420}e^{7t}\right)e^{-8t} + \frac{1}{60}e^t e^{-2t} = -\frac{1}{420}e^{-t} + \frac{1}{60}e^{-t} = \frac{1}{70}e^{-t}.$$

Entonces, la solución general está dada por:

$$q(t) = q_c(t) + q_p(t),$$

$$q(t) = c_1 e^{-8t} + c_2 e^{-2t} + \frac{1}{70} e^{-t} [Culombios]; c_1, c_2 \in \mathbb{R}.$$

Finalmente, la intensidad de corriente i(t) del circuito está dada por:

$$i(t) = \frac{dq(t)}{dt},$$

$$i(t) = -8c_1e^{-8t} - 2c_2e^{-2t} - \frac{1}{70}e^{-t} \text{ [Amperios]; } c_1, c_2 \in \mathbb{R}.$$

Tema 1 (14 Puntos)

Capacidades	Nivel de aprendizaje					
por evaluar						
Determinar la	Inicial	En desarrollo	Desarrollado	Excelencia		
solución de un	Plantea una	Plantea una serie	Plantea una serie	Plantea una serie		
problema de	serie	numérica que	numérica que	numérica que		
aplicación,	numérica que	describe al	describe al problema	describe al		
utilizando	describe al	problema y utiliza	y determina que	problema, determina		
series	problema,	criterios de	converge utilizando	que converge		
numéricas y	pero no	convergencia para	un criterio adecuado,	utilizando un criterio		
sus criterios	utiliza	analizarla, <u>pero no</u>	pero no redacta una	adecuado, y redacta		
de	criterio de	determina si la	conclusión acerca de	una conclusión		
convergencia.	convergencia	serie converge o	la convergencia de	acerca de la		
	alguno para	diverge dado que	la cantidad de	convergencia de la		
	analizarla.	no se satisfacen las	tolueno total	cantidad de tolueno		
		condiciones	derramada.	total derramada.		
		suficientes de los				
		criterios usados.				
Puntaje	[0,5]	(5,8]	(8, 12]	(12, 14]		

Tema 2 (21 Puntos)

Capacidades	Nivel de aprendizaje					
por evaluar						
Determinar la	Inicial	En desarrollo	Desarrollado	Excelencia		
solución de	Plantea la	Plantea la forma	Plantea la forma de la	Plantea la forma de la		
un sistema de	forma de la	de la solución	solución vectorial que	solución vectorial que		
ecuaciones	solución	vectorial que se	se busca, determina	se busca, determina		
diferenciales,	vectorial	busca, determina	los valores propios de	los valores propios de		
utilizando el	que se	los valores	la matriz de	la matriz de		
método de	busca, <u>pero</u>	propios de la	coeficientes del	coeficientes del		
los valores y	<u>no</u>	matriz de	sistema, halla los	sistema, halla los		
vectores	determina	coeficientes del	espacios	espacios		
propios.	los valores	sistema y plantea	característicos y halla	característicos, halla		
	propios de	los sistemas con	los respectivos	los respectivos		
	la matriz de	los que se hallan	vectores propios, <u>pero</u>	vectores propios y		
	coeficientes	los espacios	no presenta la	presenta tanto la		
	del sistema.	característicos,	solución del sistema ni	solución del sistema		
		pero no halla	el valor de $y(3)$.	como el valor de $y(3)$.		
		dichos espacios.				
Puntaje	[0, 3]	(3, 9]	(9, 18]	(18, 21]		

Tema 3 (21 Puntos)

Capacidades	Nivel de aprendizaje						
por evaluar							
Resolver una	Inicial	En desarrollo	Desarrollado	Excelencia			
ecuación	Cambia la	Cambia la	Cambia la expresión	Cambia la expresión			
diferencial	expresión	expresión	(at + by) por una	(at + by) por una			
de primer	(at + by) por	(at + by) por	nueva variable,	nueva variable, obtiene			
orden que se	una nueva	una nueva	obtiene la	la transformación para			
transforma	variable y	variable,	transformación para	y', sustituye dichas			
en separable	obtiene la	obtiene la	y', sustituye dichas	expresiones en la			
a través de	transformación	transformación	expresiones en la	ecuación, resuelve la			
un cambio de	para y', pero	para y' ,	ecuación, resuelve la	ecuación separable			
variable.	<u>no</u> sustituye	sustituye dichas	ecuación separable	obtenida, sustituye la			
	dichas	expresiones en	obtenida y sustituye	variable original, halla			
	expresiones en	la ecuación y	la variable original,	la constante de			
	la ecuación.	separa las	pero no halla la	integración utilizando			
		variables, pero	constante de	la condición inicial y			
		no resuelve la	integración utilizando	presenta la solución del			
		ecuación	la condición inicial.	problema de valor			
		obtenida.		inicial.			
Puntaje	[0,6]	(6, 11]	(11, 17]	(17, 21]			

Tema 4 (22 Puntos)

Capacidades	Nivel de aprendizaje						
por evaluar							
Determinar la	Inicial	En desarrollo	Desarrollado	Excelencia			
solución de	Aplica la	Aplica la	Aplica la transformada	Aplica la transformada			
un problema	transformada	transformada	de Laplace a la	de Laplace a la			
de valor	de Laplace a	de Laplace a la	ecuación, aplica la	ecuación, aplica la			
inicial,	la ecuación y	ecuación,	propiedad de	propiedad de			
usando la	luego aplica la	aplica la	linealidad de la	linealidad de la			
transformada	propiedad de	propiedad de	transformada, halla	transformada, halla			
de Laplace.	linealidad de	linealidad de la	todas las	todas las			
	la	transformada,	transformadas	transformadas			
	transformada,	halla las	planteadas, obtiene	planteadas, obtiene			
	pero no halla	transformadas	una expresión para la	una expresión para la			
	las	planteadas,	transformada de $y(t)$,	transformada de $y(t)$,			
	transformadas	excepto la	aplica la transformada	aplica la transformada			
	planteadas.	transformada	inversa con su	inversa con su			
		de f(t).	propiedad de	propiedad de			
			linealidad, pero no	linealidad, determina			
			determina las	las transformadas			
			transformadas inversas	inversas planteadas y			
			planteadas.	presenta $y(t)$.			
Puntaje	[0,4]	(4, 10]	(10, 17]	(17, 22]			

Tema 5 (22 Puntos)

Capacidades por	Nivel de aprendizaje				
evaluar					
Determinar la	Inicial	En desarrollo	Desarrollado	Excelencia	
solución de un	Halla la solución	Halla la solución	Halla la solución	Halla la solución	
problema de	complementaria	complementaria	complementaria	complementaria	
aplicación	de la ecuación	de la ecuación	de la ecuación que	de la ecuación que	
asociado a una	que define la	que define la	define la carga del	define la carga del	
ecuación	carga del	carga del	capacitor, plantea	capacitor, plantea	
diferencial	capacitor, pero	capacitor y	la forma de la	la forma de la	
ordinaria lineal de	no plantea la	plantea la forma	solución particular	solución particular	
segundo orden no	forma de la	de la solución	con el sistema que	con el sistema que	
homogénea,	solución	particular con el	debe satisfacer y	debe satisfacer,	
usando el método	particular.	sistema que	halla dicha	halla dicha	
de variación de		debe satisfacer,	solución	solución	
parámetros para		pero no halla	particular, pero no	particular,	
hallar una		los parámetros	presenta la	presenta la	
solución		de dicha	solución general	solución general	
particular.		solución	de la carga del	de la carga del	
		particular.	capacitor ni halla	capacitor y halla la	
			la intensidad de	intensidad de	
			corriente del	corriente del	
			circuito.	circuito.	
Puntaje	[0, 6]	(6, 10]	(10, 18]	(18, 22]	