ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS

AÑO:	2017	PERÍODO:	PRIMER TÉRMINO
MATERIA:	Cálculo de una variable	PROFESOR:	
EVALUACIÓN:	TERCERA	FECHA:	11/septiembre/2017

COMPROMISO DE HONOR				
Yo,				
"Como estudiante de la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar".				
Firma:	NÚMERO DE MATRÍCULA:	PARALELO:		

1) (20 Puntos) Obtenga las siguientes antiderivadas:

a)
$$\int \frac{sen(2x)}{\left(1-cos^2(x)\right)^3} dx$$

b)
$$\int x^2 \cos(x) dx$$

2) (10 Puntos) Calcule:

$$\lim_{x \to +\infty} x + \sqrt[3]{1 - x^3}$$

3) (10 Puntos) Utilizando la definición $\,\xi-\delta\,$, demuestre que:

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4$$

4) (10 Puntos) Sea la región:

$$R = \left\{ (x, y) \in \mathbb{R}^2 \ \big/ \ \left(\frac{3}{2} x \le y \le \frac{6}{x} \right) \land (x > 0) \right\}$$

- a) Bosqueje R en el plano cartesiano.
- b) Calcule el volumen del sólido de revolución que se genera al rotar R alrededor del eje Y.

- 5) (10 Puntos) Dada la función $f \colon \mathbb{R} \mapsto \mathbb{R} \ \text{tal que} \ f(x) = x^4 4x^3$.
 - a) Realice un análisis de la monotonía de f.
 - b) Determine los extremos relativos de $\,f\,$.
 - c) Realice un análisis de la concavidad de $\,f.\,$
 - d) Determine los puntos de inflexión de $\,f\,$.
 - e) Bosqueje la gráfica de f en el plano cartesiano.

6) (20 Puntos) Calcule:

a)
$$\int_0^4 [|x-1| + \mu(x-2)] dx$$

b)
$$\int_{-2}^{2} \frac{1}{1-x^2} dx$$

7) (10 Puntos) Determine las ecuaciones de las rectas tangentes a la función $f: \mathbb{R} \mapsto \mathbb{R}$ definida por $f(x) = 4x^3 - 2x + 1$, que son paralelas a la recta y = 10x + 2.

De los siguientes ejercicios, SELECCIONE SOLAMENTE UNO y resuélvalo.

- 8) (10 Puntos) Una agencia de publicidad elabora afiches rectangulares, lo cual incluye el área imprimible (también rectangular) más dos márgenes de $2\ cm$ a la izquierda y también a la derecha, y $3\ cm$ de los márgenes superior e inferior.
 - Si un cliente necesita un afiche rectangular que tenga $480\ cm^2$ de área imprimible, justificando su respuesta con criterios de cálculo, calcule las dimensiones que debe tener el afiche rectangular para que el valor de su área sea mínimo.
- 9) (10 Puntos) Suponga que la función de demanda para cierto producto es lineal y viene dada por p(q)=400-2q (en donde p representa el precio unitario y q es el número de unidades producidas) y que la función de costo promedio por unidad producida es $\overline{c(q)}=0.2q+4+\frac{400}{q}$.

Justificando su respuesta con criterios de cálculo, determine:

- a) El nivel de producción en donde se maximizan las utilidades.
- b) Las utilidades máximas.