

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMATICAS

AÑO:	2016	PERIODO:	PRIMER TÈRMINO
MATERIA:	MATEMÁTICAS 1	PROFESORES:	ING. CAROLA PINOS U. ING. MIGUEL ANGULO
EVALUACIÓN:	PRIMERA	FECHA:	31 DE AGOSTO 2016

COMPROMISO DE HONOR		
Yo,		
"Como estudiante de ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar".		
Firma	NÚMERO DE MATRÍCULA:PARALELO:	

TEMA 1

(5 puntos) Utilizando la definición formal de derivada demuestre que:

 $D_x[Sec x]=SecxTanx$

TEMA 2

(10 puntos) Para la función
$$f(x) = \frac{3(x^2-4)}{(x^2-9)}$$

- a) Hallar intersecciones con los ejes de coordenadas
- b) Hallar asíntotas horizontal y vertical
- c) Hallar puntos críticos, establecer si son máximos o mínimos
- d) Hallar intervalos de concavidad
- e) Graficar f

TEMA 3

(20 puntos) Derive las siguientes funciones:

a)
$$f(x) = (3x^2 + x + 1)^3 arc sen(4^{2x} + 3^{2x} + 2^x + 1)$$

b)
$$y = 3b^2 arc \ tg \sqrt{\frac{x}{b-x}} - (3b + 2x) \sqrt{bx - x^2}$$

$$c)\sqrt{x^2+y^2} = c. arc tg \frac{y}{x}$$

d) Siendo $f(x-2) = x^3 + 1$ y $g(x) = f(arc \ tanx)$, calcular $(g^{-1})^{/}(9)$

TEMA 4 (10 puntos) (Cinco puntos cada literal)

a) Considere que la disminución de la presión sanguínea de una persona depende de la cantidad de cierta sustancia administrada a la persona. De modo que si se administran x miligramos de la sustancia, la disminución de la presión sanguínea es una función de x. Suponga que f(x) define esta función y que

$$f(x) = \frac{1}{2}x^2(k-x)$$

Si $x \in [0, k]$, donde k es una constante positiva. Determine el valor de x que ocasiona la mayor disminución de la presión sanguínea.

b)	Una bacteria celular es de forma esférica. Si el radio de la bacteria crece a una tasa de 0.01 μm (micra) por día cuando el radio de ésta es de 1.5 μm , ¿Cuál es la tasa de crecimiento del volumen de la bacteria en ese tiempo?

TEMA 5

(5 puntos) Hallar la ecuación de la recta tangente a la curva $\sqrt{y} + xy^2 = 5$ en el punto (4,1)