Faculty of Maritime Engineering and Marine Sciences

Mechanical Vibrations

Quiz 4 – V-dof, hydrodyn. properties, beam vibrations Jan. 26th, 2021

Student:

COMPROMISO DE HONOR

Reconozco que el presente examen está diseñado para ser resuelto de manera individual, y no se permite la ayuda de fuentes no autorizadas ni copiar.

Firmo al pie del presente compromiso, como constancia de haber leído y aceptar la declaración anterior.

1.- Let us consider the oscillation of a 40 cm long rigid bar pinned on its left end, and suspended by a first spring with stiffness 3E5 N/m, as shown in the figure. An external moment acting on its right end is a harmonic function with frequency 50 rad/sec. Determine the stiffness of the spring which supports the block with mass M on its right end, so that the angular motion of the bar is null. The mass of the rigid bar is 20 kg. (35)

COMPROMISO DE HONOR

Reconozco que el presente examen está diseñado para ser resuelto de manera individual, y no se permite la ayuda de fuentes no autorizadas ni copiar.

Firmo al pie del presente compromiso, como constancia de haber leído y aceptar la declaración anterior.

2.- In a propulsion system, the resonance in longitudinal vibration with the hydrodynamic excitation from the propeller occurs when the engine operates at 937 rpm. The system is composed by a 4-stroke diesel engine with 6 cylinders in V configuration, 750 hp@1200 rpm, reduction gear ratio of 2:1, and a propeller weighing 800 kg with 5 blades. Shaft is 25 meter-long and 15 cm in diameter, with material properties: Young modulus 2.068E11 N/m², Poisson ratio 0.30 and density 7800 kg/m³. Calculate the added mass of the propeller. (20)

COMPROMISO DE HONOR

Reconozco que el presente examen está diseñado para ser resuelto de manera individual, y no se permite la ayuda de fuentes no autorizadas ni copiar.

Firmo al pie del presente compromiso, como constancia de haber leído y aceptar la declaración anterior.

3.- You are asked to analyze the free vibration of a prismatic aluminum alloy beam of length L and built with a circular tube, which is clamped on one end and guided on the other. After some iterations it is found that one of the principal values $\beta_i L$ is 8.6394. (45)

i.- If the beam is 3.2 meter-long with a section of 10 cm in outside diameter and thickness of 5 mm, calculate the corresponding natural frequency. For the material take Young modulus of 6.89E10 N/m², Poisson ratio of 0.33, and specific weight of 25500 N/m³.

ii.- Deduce amplitude ratios and prepare a scheme of the corresponding mode shape and identify the number of the mode.

jrml/2021