

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS

AÑO:	2018	PERÍODO:	SEGUNDO TÉRMINO	PUNTAJE
MATERIA:			Mario Solorzano, Kenny Escobar, Francisco	TEMA 1
	ESTADÍSTICA INFERENCIAL	PROFESORES:	Moreira, Eva María Mera,	TEMA 2
			Joffre Sánchez, Johny Pambabay.	TEMA 3
EVALUACIÓN:	PRIMERA	FECHA:	22 de noviembre de 2018	TEMA 4

COMPROMISO DE HONOR							
Yo,							
Firma:							

TEMA 1 (25 puntos)

- 1. ¿Qué diferencia existe entre la Distribución o Densidad conjunta de una muestra y la función de verosimilitud? 3ptos.
- 2. Enuncie el Teorema de Rao y Cramer. 4ptos.
- 3. Se toma una muestra de tamaño n = 40 de una población X que es normal con media μ y varianza σ^2 , siendo los dos parámetros desconocidos. Le piden realizar una prueba de hipótesis para tomar una decisión en la resolución de un problema.
 - a) En el caso de hacer una inferencia para la media poblacional, ¿cuál es la variable aleatoria (estadístico de prueba) ideal para resolver el problema y qué distribución tiene la misma? 4ptos.
 - b) ¿Es posible utilizar otra variable aleatoria para la resolución del mismo problema? Si su respuesta es sí indique ¿cuál es la variable aleatoria y qué distribución tiene la misma? y si su respuesta es no, explique por qué. 4ptos.
 - c) En el caso de hacer una inferencia para la varianza poblacional, ¿cuál es variable aleatoria (estadístico de prueba) ideal para resolver el problema y qué distribución tiene la misma? 4ptos.
- 4. Si tenemos una muestra aleatoria de tamaño n = 5 tomada de una población X. Un cliente necesita tomar decisiones usando intervalos de confianza y pruebas de hipótesis en relación a la media poblacional, ¿qué supuesto necesita verificar para que su cliente pueda hacer estas inferencias? 3ptos.
- 5. Se conoce que la distribución de una variable aleatoria es Gamma con parámetro α y β, con varianza conocida, se desea tomar una decisión respecto al valor de la media, para lo cual se toma una muestra aleatoria de tamaño n de esta población y se hace un contraste de hipótesis.

Indique la condición necesaria a ser utilizada así como la variable aleatoria (estadístico de prueba) y que distribución tiene la misma para poder tomar una decisión. 3ptos.

TEMA 2 (25 puntos)

En una piscina dentro de una granja acuícola, existe una proporción P de tilapias, para estimar la proporción se ha decidido ir sacando peces de manera aleatoria desde el centro de la piscina, de esta forma:

- a) Siendo P la proporción de tilapias, ¿Cuál es la probabilidad de que la primera tilapia sea la décima en ser extraída?
- b) Si tres persona de manera independiente realizan la extracción de peces hasta encontrarse con la primera tilapia y se da que:
 - La primera persona obtiene la primera tilapia en la décima extracción
 - La segunda persona obtiene la primera tilapia en la décimo quinta extracción
 - La tercera persona obtiene la primera tilapia en la décimo octava extracción

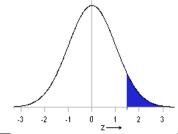
Escriba la función de verosimilitud y obtenga la estimación de máxima verosimilitud para P.

TEMA 3 (25 puntos)

Sea X_1 y X_2 dos muestras independientes de tamaño n_1 y n_2 con medias aritméticas \bar{x}_1 , \bar{x}_2 y varianzas s_1^2 , s_2^2 respectivamente, tomadas de dos poblaciones $X_1 \sim N(\mu_1, \sigma_1^2)$ y $X_2 \sim N(\mu_2, \sigma_2^2)$. Bajo estas condiciones,

- a) Determine la expresión matemática del intervalo de confianza simétrico para $\frac{\sigma_1^2}{\sigma_2^2}$, con $(1-\alpha)100\%$ de confianza. Nota: Tenga en cuenta que $F=\frac{\frac{\chi^2(\nu_1)}{\nu_1}}{\frac{\chi^2(\nu_2)}{\nu_2}} \sim F(\nu_1,\nu_2)$
- b) Se tienen datos de explotación del porcentaje de mineral de hierro al explotar dos yacimientos A y B, se tienen siete datos para el primero y cinco para el segundo, con $s_1^2 = 3.16$ y $s_2^2 = 5.05$. Construya un intervalo al 95% de confianza para $\frac{\sigma_1^2}{\sigma_2^2}$.

TEMA 4 (25 puntos)


En una planta generadora de energía eléctrica se supone que la presión en cierta línea se mantiene a un promedio de 100 lb/pulg^2 en un periodo de cuatro horas. Si la presión media es mayor que 103 lb/pulg^2 durante un periodo de cuatro horas, podrían surgir complicaciones serias. Durante un periodo dado de cuatro horas, se toman n=30 mediciones de maneras aleatorias de una población que sigue una distribución normal $N(\mu, 16)$.

Postule el contraste de hipótesis unilateral, para probar H_0 : $\mu = 100$, contra H_a : $\mu > 100$ Defina como región crítica de la prueba al conjunto:

$$C = \{(X_1, X_2, \dots, X_{30}) \in \mathbb{R}^n | \bar{X} > 101.7\}$$

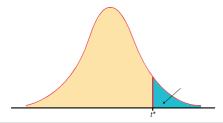

- a) Defina y determine error tipo I y la potencia de la prueba $\beta_{\gamma}(103)$ diseñada.
- b) Si se desea contrastar H_0 vs H_a donde el error tipo I es de 0.01 y el error tipo II es de 0.01, cuántas observaciones se necesitan para asegurar el contraste antes planteado.

TABLA Distribución Normal Estándar

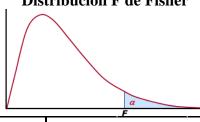

Z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,00	0,5000	0,4960	0,4920	0,4880	0,4840	0,4801	0,4761	0,4721	0,4681	0,4641
0,10	0,4602	0,4562	0,4522	0,4483	0,4443	0,4404	0,4364	0,4325	0,4286	0,4247
0,20	0,4207	0,4168	0,4129	0,4090	0,4052	0,4013	0,3974	0,3936	0,3897	0,3859
0,30	0,3821	0,3783	0,3745	0,3707	0,3669	0,3632	0,3594	0,3557	0,3520	0,3483
0,40	0,3446	0,3409	0,3372	0,3336	0,3300	0,3264	0,3228	0,3192	0,3156	0,3121
0,50	0,3085	0,3050	0,3015	0,2981	0,2946	0,2912	0,2877	0,2843	0,2810	0,2776
0,60	0,2743	0,2709	0,2676	0,2643	0,2611	0,2578	0,2546	0,2514	0,2483	0,2451
0,70	0,2420	0,2389	0,2358	0,2327	0,2296	0,2266	0,2236	0,2206	0,2177	0,2148
0,80	0,2119	0,2090	0,2061	0,2033	0,2005	0,1977	0,1949	0,1922	0,1894	0,1867
0,90	0,1841	0,1814	0,1788	0,1762	0,1736	0,1711	0,1685	0,1660	0,1635	0,1611
1,00	0,1587	0,1562	0,1539	0,1515	0,1492	0,1469	0,1446	0,1423	0,1401	0,1379
1,10	0,1357	0,1335	0,1314	0,1292	0,1271	0,1251	0,1230	0,1210	0,1190	0,1170
1,20	0,1151	0,1131	0,1112	0,1093	0,1075	0,1056	0,1038	0,1020	0,1003	0,0985
1,30	0,0968	0,0951	0,0934	0,0918	0,0901	0,0885	0,0869	0,0853	0,0838	0,0823
1,40	0,0808	0,0793	0,0778	0,0764	0,0749	0,0735	0,0721	0,0708	0,0694	0,0681
1,50	0,0668	0,0655	0,0643	0,0630	0,0618	0,0606	0,0594	0,0582	0,0571	0,0559
1,60	0,0548	0,0537	0,0526	0,0516	0,0505	0,0495	0,0485	0,0475	0,0465	0,0455
1,70	0,0446	0,0436	0,0427	0,0418	0,0409	0,0401	0,0392	0,0384	0,0375	0,0367
1,80	0,0359	0,0351	0,0344	0,0336	0,0329	0,0322	0,0314	0,0307	0,0301	0,0294
1,90	0,0287	0,0281	0,0274	0,0268	0,0262	0,0256	0,0250	0,0244	0,0239	0,0233
2,00	0,0228	0,0222	0,0217	0,0212	0,0207	0,0202	0,0197	0,0192	0,0188	0,0183
2,10	0,0179	0,0174	0,0170	0,0166	0,0162	0,0158	0,0154	0,0150	0,0146	0,0143
2,20	0,0139	0,0136	0,0132	0,0129	0,0125	0,0122	0,0119	0,0116	0,0113	0,0110
2,30	0,0107	0,0104	0,0102	0,0099	0,0096	0,0094	0,0091	0,0089	0,0087	0,0084
2,40	0,0082	0,0080	0,0078	0,0075	0,0073	0,0071	0,0069	0,0068	0,0066	0,0064
2,50	0,0062	0,0060	0,0059	0,0057	0,0055	0,0054	0,0052	0,0051	0,0049	0,0048
2,60	0,0047	0,0045	0,0044	0,0043	0,0041	0,0040	0,0039	0,0038	0,0037	0,0036
2,70	0,0035	0,0034	0,0033	0,0032	0,0031	0,0030	0,0029	0,0028	0,0027	0,0026
2,80	0,0026	0,0025	0,0024	0,0023	0,0023	0,0022	0,0021	0,0021	0,0020	0,0019
2,90	0,0019	0,0018	0,0018	0,0017	0,0016	0,0016	0,0015	0,0015	0,0014	0,0014
3,00	0,0013	0,0013	0,0013	0,0012	0,0012	0,0011	0,0011	0,0011	0,0010	0,0010

TABLA Distribución T – Student

df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6
2	0.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60
3	0.765	0.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.92
4	0.741	0.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	0.727	0.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869
6	0.718	0.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	0.711	0.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	0.706	0.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041
9	0.703	0.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781
10	0.700	0.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587
11	0.697	0.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437
12	0.695	0.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318
13	0.694	0.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221
14	0.692	0.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140
15	0.691	0.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.073
16	0.690	0.865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.015
17	0.689	0.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.965
18	0.688	0.862	1.067	1.330	1.734	2.101	2.214	2.552	2.878	3.197	3.611	3.922
19	0.688	0.861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.883
20	0.687	0.860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.850
21	0.686	0.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.819
22	0.686	0.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.792
23	0.685	0.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.768
24	0.685	0.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.745
25	0.684	0.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.725
26	0.684	0.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.707
27	0.684	0.855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.690
28	0.683	0.855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.674
29	0.683	0.854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.659
30	0.683	0.854	1.055	1.310	1.697	2.042	2.147	2.457	2.750	3.030	3.385	3.646

TABLA Distribución F de Fisher

			. F					
Grados de libertad en el Denominador,	α	Grados de libertad en el Numerador, $ u_1$						
$ u_2$		4	5	6	7			
	0,1	4,11	4,05	4,01	3,98			
4	0,05	6,39	6,26	6,16	6,09			
	0,025	9,60	9,36	9,20	9,07			
	0,1	3,52	3,45	3,40	3,37			
5	0,05	5,19	5,05	4,95	4,88			
	0,025	7,39	7,15	6,98	6,85			
	0,1	3,18	3,11	3,05	3,01			
6	0,05	4,53	4,39	4,28	4,21			
	0,025	6,23	5,99	5,82	5,70			
	0.1	206	2.00	2.02	0.70			
	0,1	2,96	2,88	2,83	2,78			
7	0,05	4,12	3,97	3,87	3,79			
ı	0,025	5,52	5,29	5,12	4,99			