College of Maritime Engineering and Marine Sciences

Ship Structures II

First Evaluation

July 1st 2019

Student:

First part – theoretical concepts

1.- With lines, join items from left column with those on the right one, (5).

Selection of stiffener spacing
Structural detail design

Structural analysis

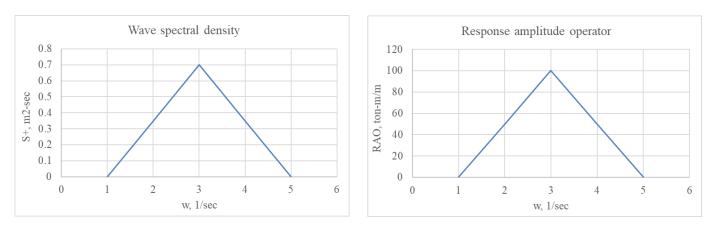
Rational design

Г

Solid mechanicsRule-based designSizing of bracketsStress levels

2.- Mention one advantage of the Rule-based design of ship structure compared to Rational design, (5):

.....


3.- Mention one disadvantage of the Rule-based design of ship structure compared to Rational design (5):

.....

4.- Because of weight and reactions at 3 bearings separated 1.5 meters between them, at a certain cross section of a shafting system, a bending moment of 1200 N-m results. The maximum normal stress cannot exceed 140 N/mm². The nominal diameter of the shaft is a random variable with Normal distribution, $N(\overline{D} = 4.25cm; \sigma_D = 0.05cm)$. What is an equivalent proposition to calculate the probability of failure, (10)?

a. <i>P[D'<3.73]</i>	b. <i>P[D'<2.73]</i>	c. <i>P</i> [<i>D</i> >4.25 <i>cm</i>]	d. <i>P[D'>2.73]</i>
-------------------------	-------------------------	--	-------------------------

5.- For a tanker ship (*L*: 109 m, *B*: 16.5 m, *D*: 8.3 m, *DWT*: 6500 ton, Δ : 9600 ton, *T*: 6.75 m), the midship bending moment has a response amplitude operator showed in the figure on the right; also for a certain sea state, a simplified spectral density function is estimated, see figure on the left. What is the *RMS* value of the random variable bending moment, (10)?

a. $\sigma_{BM} = 98.3 \ m$	b.	с.	d.
	$\sigma_{BM} = 118 \ ton - m$	$\sigma_{BM} = 1183 m$	$\sigma_{BM} = 503 \ ton - m$

6.- The total pressure on the bottom of a tanker ship (*L*: 109 m, *B*: 16.5 m, *D*: 8.3 m, *DWT*: 6500 ton, Δ : 9600 ton, *T*: 6.75 m) is calculated as 80.9 kN/m². What is the value for the dynamic part of that value, (10)?

a. $p_{dyn} = 13.1 \text{ N/mm}^2$	b. $p_{dyn} = 13.1 \text{ kN/m}^2$	c. $p_{dyn} = 131 \text{ N/mm}^2$	d. $p_{dyn} = 235 \text{ N/mm}^2$
------------------------------------	------------------------------------	-----------------------------------	-----------------------------------

I certify that during this exam I have complied with code of ethics of our university.

.....

College of Maritime Engineering and Marine Sciences

Ship Structures II

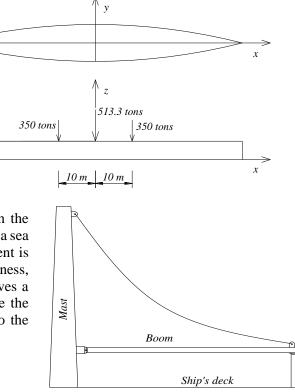
First Evaluation

July 1st 2019

1 ton

Student:

1.- The following frame is composed by a steel cable, 9 mm in diameter, and, a tube (D_o : 50 mm, D_i : 44 mm), and it is designed to lift a weight of 1 ton. The tube is horizontal, while the cable is connected to a pin, and forms an angle of 45 degrees with the horizontal. You are asked to analyze this frame to determine how structurally safe it is, (15).


2.- A simplified ship (L: 80 m, B: 10 m) with parabolic waterplane and vertical sides is to be quasistatically analyzed while it sail in waves: $B(x)=B(1-(2x/L)^2)[m] -40m < x < 40m$

Its hull weight distribution is simplified as: $w(x) = -0.005x^2 + 8.5$, ton/m, -40m < x < 40m

Consider that the cargo and machinery are represented by three concentrated forces, and are located as shown in the attached figure.

Calculate the maximum shear force when a simple wave sinusoidal wave of 3.0 m height acts on the ship hull, (25).

3.- Consider a boom resting on simple supports on the deck of a fishing vessel which operates at 13 knots in a sea state with significative height of 1.23 m. This element is built from steel tube: D_o : 20 cm and 4 mm in thickness, and, it is 8 m long. When the ship oscillates in waves a heave acceleration of 0.30g is developed. Calculate the maximum deflection that the boom supports due to the inertial load, (15).

Tube

1500 mm

jrml/2019

I certify that during this exam I have complied with code of ethics of our university.