AÑO: 2019	PERIODO: SEGUNDO
MATERIA: CÁLCULO DE VARIAS VARIABLES	PROFESOR:
EVALUACIÓN: TERCERA	
TIEMPO DE DURACIÓN: 2 Horas	FECHA: FEBRERO 10 DE 2020

COMPROMISO DE HONOR

Firmo al pie del presente compromiso, como constancia de haber leído y aceptar la declaración anterior.

"Como estudiante de ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar".

FIRMA:	NÚMERO DE MATRÍCULA:	PARALELO:

PRIMER TEMA (10 puntos)

Conociendo que la ecuación $\ln z + x^2 - y + z - 1 = 0$ define a z como función implícita de x e y, obtenga: $\frac{\partial z}{\partial x}$; $\frac{\partial z}{\partial y}$; $\frac{\partial^2 z}{\partial x \partial y}$

Si la ecuación $\ln z + x^2 - y + z - 1 = 0$, define a z como función implícita de x e y, derivando respecto de x se obtiene

$$\frac{1}{z} \cdot \frac{\partial z}{\partial x} + 2x + \frac{\partial z}{\partial x} = 0$$

de donde
$$\frac{\partial z}{\partial x} = -\frac{2xz}{1+z}$$
.

Derivando la ecuación inicial respecto de y conseguimos

$$\frac{1}{z} \cdot \frac{\partial z}{\partial y} - 1 + \frac{\partial z}{\partial y} = 0 \tag{*}$$

y por tanto,
$$\frac{\partial z}{\partial y} = \frac{z}{1+z}$$
.

Si ahora derivamos la igualdad (*) respecto de x deducimos que

$$-\frac{1}{z^2} \cdot \frac{\partial z}{\partial x} \cdot \frac{\partial z}{\partial y} + \frac{1}{z} \cdot \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial x \partial y} = 0$$

y teniendo en cuenta la anteriores valores obtenidos de la derivadas parciales $\frac{\partial z}{\partial x}$ y $\frac{\partial z}{\partial y}$ se consigue la igualdad

$$\frac{2x}{(1+z)^2} + \frac{1}{z} \cdot \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial x \partial y} = 0$$

y por consiguiente,
$$\frac{\partial^2 z}{\partial x \partial y} = -\frac{2xz}{(1+z)^3}$$
.

Capacidades deseadas	Desempeño			
El estudiante sabe cómo obtener derivadas parciales de primer y segundo orden a partir de una función implícita	Inicial No interpreta la forma implícita de la función y por lo tanto no desarrolla proceso de derivación alguno.	En desarrollo Interpreta la forma implícita de la función, pero solo puede obtener correctamente una de las tres derivadas parciales solicitadas.	Desarrollado Interpreta la forma implícita de la función, pero solo puede obtener correctamente dos de las tres derivadas parciales solicitadas.	Interpreta la forma implícita de la función, obteniendo correctamente las tres derivadas parciales solicitadas.
	0	1-4	5-9	10

SEGUNDO TEMA (15 puntos)

Utilizando multiplicadores de Lagrange demuestre que el paralelepípedo de mayor volumen que se puede inscribir en una esfera de radio r ($x^2 + y^2 + z^2 = r^2$), es un cubo.

Nota: Utilice como función volumen del paralelepípedo V(x, y, z) = xyz

Con las consideraciones anteriores el problema anterior se puede escribir como:

máx
$$xyz \leftarrow f(\mathbf{x})$$

s.a. $x^2 + y^2 + z^2 - r^2 = 0 \leftarrow g_1(\mathbf{x})$
 $x, y, z \ge 0$

con $r \in \mathbb{R}$ fijo. Escribimos la función lagrangeana:

$$\mathcal{L}\left\{f, \mathbf{x}, \lambda\right\} = xyz + \lambda \left(x^2 + y^2 + z^2\right)$$

Calculamos todas las derivadas parciales:

$$\begin{array}{lll} \frac{\partial \mathcal{L}}{\partial x} & = & yz + 2\lambda x = 0 \\ \frac{\partial \mathcal{L}}{\partial y} & = & xz + 2\lambda y = 0 \\ \frac{\partial \mathcal{L}}{\partial z} & = & xy + 2\lambda z = 0 \\ \frac{\partial \mathcal{L}}{\partial \lambda} & = & x^2 + y^2 + z^2 - r^2 = 0 \end{array}$$

Resolviendo:

$$x = -\frac{yz}{2\lambda} = \frac{z}{2\lambda} \frac{xz}{2\lambda}$$

$$y = -\frac{xz}{2\lambda} = \frac{x}{2\lambda} \frac{xy}{2\lambda}$$

$$z = -\frac{xy}{2\lambda} = \frac{y}{2\lambda} \frac{yz}{2\lambda}$$

De la primera ecuación, asumiendo que $x \neq 0$ (no tiene sentido este caso),

$$4\lambda^2 = z^2$$

Análogamente para la segunda y la tercera:

$$4\lambda^2 = x^2$$
$$4\lambda^2 = y^2$$

Es decir, sin determinar podemos concluir inmediatamente que dado que tanto x como y y tienen que ser positivos:

$$x_0 = y_0 = z_0$$

son las dimensiones buscadas, lo cual corresponde específicamente a un cubo y se demuestra as lo pedido. ■

Rúbrica

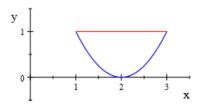
Capacidades deseadas	Desempeño			
El estudiante sabe cómo aplicar multiplicadores de Lagrange para resolver un ejercicio de optimización de una función de tres variables con una restricción.	Inicial No interpreta la aplicación y por lo tanto no puede definir la función objetivo, la restricción ni la función Lagrangiana.	En desarrollo Define la función objetivo, la restricción y la función Lagrangiana, pero comete errores al obtener sus derivadas parciales (1punto por cada una de las 4 derivadas)	Desarrollado Define la función objetivo, la restricción, la función Lagrangiana y sus derivadas parciales, pero comete errores en el procedimiento algebraico que le impide obtener que las tres medidas son iguales.	Excelente Define la función objetivo, la restricción, la función Lagrangiana y sus derivadas parciales, desarrolla correctamente la parte algebraica para obtener que las tres medidas son iguales y por lo tanto corresponde a un cubo.
	0	1-7	8-14	15

TERCER TEMA (20 puntos)

Sea la curva en el plano formada por el arco de parábola $y=x^2$; $1 \le x \le 3$ y el segmento que une a los puntos (3,1) y (1,1) recorrida en sentido antihorario., utilizando el Teorema de Green, calcule la integral:

$$\int_{C} \left(\frac{x^2 - y}{x^2} \right) dx + \left(\frac{2x^2 - 1}{x} \right) dy$$

Sean las componentes del campo $M(x,y) = \left(\frac{x^2 - y}{x^2}\right)$ y $N(x,y) = \left(\frac{2x^2 - 1}{x}\right)$



Además
$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x} \left(\frac{2x^2 + 1}{x} \right) = 2 - \frac{1}{x^2} \text{ y } \frac{\partial M}{\partial y} = \frac{\partial}{\partial y} \left(\frac{x^2 - y}{x^2} \right) = \frac{-1}{x^2}$$

Luego por el teorema de Green, considerando la curva en sentido antihorario

$$\int_{C} \left(\frac{x^2 - y}{x^2} \right) dx + \left(\frac{2x^2 - 1}{x} \right) dy = \iint_{D} 2dA = 2Area(D)$$

Donde D es la región encerrada por la curva

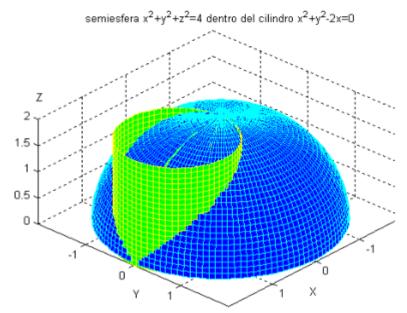
Como D: $1 \le x \le 3$, $(x-2)^2 \le y \le 1$ la integral resulta ser:

$$2\int_{1}^{3} \int_{(x-2)^{2}}^{1} dy dx = 2\left[\int_{1}^{3} y \Big|_{(x-2)^{2}}^{1}\right] dx = 2\left[\int_{1}^{3} (1 - (x-2)^{2}) dx\right] = 2\left[\int_{1}^{3} dx - \int_{1}^{3} (x-2)^{2} dx\right] = 2\left[2 - \frac{2}{3}\right] = \frac{8}{3}$$

Capacidades deseadas	Desempeño			
El estudiante sabe cómo interpretar y aplicar el teorema de Green para cálculo de integrales de línea.	Inicial No sabe cómo relacionar e interpretar el domino	En desarrollo Interpreta un dominio y lo representa gráficamente y parametriza la curva, pero no relaciona la integral a resolver con el teorema de Green.	Desarrollado Relaciona con el teorema de Green definiendo el campo e interpretando las derivadas parciales con el teorema de Green o intenta resolver sin usar el teorema, pero comete errores en el procedimiento.	Excelente Aplica la fórmula del teorema y determina que es igual al doble del área y calcula el área e interpreta el resultado correctamente o llega al resultado resolviendo la integral sin utilizar el teorema de Green
	U	1-8	9-12	12-20

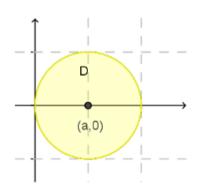
CUARTO TEMA (20 puntos)

Determine el área de la porción de la superficie de la semiesfera $x^2 + y^2 + z^2 = 4a^2 \ (z \ge 0)$ que es interior al cilindro $x^2 + y^2 - 2ax = 0$.



Teniendo en cuenta que el punto genérico $\left(x,y,z\right)$ está sobre la esfera, deberá verificar su ecuación, es decir $z=+\sqrt{4a^2-(x^2+y^2)}$ (recordemos $z\geq 0$), luego,

$$\begin{split} dS &= \sqrt{1 + f_x^{'2} + f_y^{'2}} = \sqrt{1 + \left(\frac{-x}{\sqrt{4a^2 - (x^2 + y^2)}}\right)^2 + \left(\frac{-y}{\sqrt{4a^2 - (x^2 + y^2)}}\right)^2} = . \\ &= \frac{2a}{\sqrt{4a^2 - (x^2 + y^2)}} \quad \Rightarrow \quad Area = \iint_{\mathcal{D}} \frac{2adxdy}{\sqrt{4a^2 - (x^2 + y^2)}} \end{split}$$



D es el dominio, en el plano XOY, limitado por la circunferencia de la figura, cuya ecuación se puede expresar como

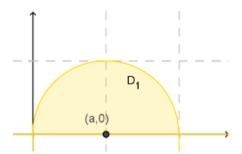
$$x^2 + y^2 - 2ax = 0$$

o bien

$$\left(x-a\right)^2+y^2=a^2$$

Podemos usar simetrías, ya que al cambiar y por -y no cambia la ecuación de la frontera del dominio ni la función subintegral, luego podemos escribir Área= $4\int_{D_1} \frac{adxdy}{\sqrt{4a^2-(x^2+y^2)}}$, siendo D_1 el semicírculo superior limitado por la circunferencia $x^2+y^2-2ax=0$ y el eje OX.

Podemos usar simetrías, ya que al cambiar y por -y no cambia la ecuación de la frontera del dominio ni la función subintegral, luego podemos escribir Área= $4\int_{\mathcal{D}_1} \frac{adxdy}{\sqrt{4a^2-(x^2+y^2)}}$, siendo \mathcal{D}_1 el semicírculo superior limitado por la circunferencia $x^2+y^2-2ax=0$ y el eje OX.



Hacemos el cambio a coordenadas polares:

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases}$$

$$dxdy = \frac{\partial(x,y)}{\partial(r,\theta)}drd\theta = rdrd\theta$$

En coordenadas polares, la ecuación de la circunferencia que limita el dominio D 'se convierte en $r=2a\cos\theta$, luego

$$\text{Area=} \, 4a \int \!\!\! \int \limits_{D'} \frac{r dr d\theta}{\sqrt{4a^2-r^2}} = 4a \int \!\!\! \int \limits_{0}^{\pi/2} d\theta \int \!\!\! \int \limits_{0}^{2a\cos\theta} \frac{r dr}{\sqrt{4a^2-r^2}}$$

Y resolviendo queda

$$\int_{0}^{2a\cos\theta} \frac{r.dr}{\sqrt{4a^{2}-r^{2}}} = \left[-\sqrt{4a^{2}-r^{2}}\right]_{0}^{2a\cos\theta} = \sqrt{4a^{2}}\left(1-\sqrt{1-\cos^{2}\theta}\right) = 2a(1-\sin\theta)$$

Capacidades deseadas	Desempeño			
El estudiante sabe cómo calcular el área de la superficie originada por la intersección de dos superficies en R ³	Inicial No sabe cómo relacionar e interpretar el domino ni puede obtener el dS requerido	En desarrollo Interpreta bien el escenario solicitado, obtiene el dS requerido y establece correctamente la integral doble respectiva, pero comete errores al interpretar las simetrías presentes en el ejercicio.	Desarrollado Interpreta bien el escenario solicitado, obtiene el dS requerido, establece correctamente la integral doble respectiva, aplica las simetrías presentes en el ejercicio, pero comete errores ene l proceso de integración ya sea en polares o en rectangulares.	Excelente Desarrolla correctamente el bosquejo, el dS, el integral de área, simetrías, cambio a coordenadas polares y llega a la respuesta correcta o comete pocos errores en la integración.
	0	1-8	9-17	18-20

QUINTO TEMA (15 puntos)

Determine el trabajo realizado por el campo de fuerzas:

 $\overrightarrow{F}(x,y,z)=(6xy-4z^2\cos x,2e^z+3x^2,2ye^z-8z\,senx)$, al mover una partícula a lo largo de la hélice circular $\overrightarrow{r}(t)=sen\;(\pi t)\widehat{i}+cos\;(\pi t)\widehat{j}+(2t+1)\;\widehat{k}$, $0\leq t\leq 1/2$.

Como $\nabla \times (6xy - 4z^2\cos x, 2e^z + 3x^2, 2ye^z - 8z\sin x) = \theta$ sobre \mathbb{R}^3 , el campo es conservativo.

$$\frac{\partial f}{\partial x} = 6xy - 4z^2 \cos x \Rightarrow f(x, y) = 3x^2y - 4z^2 \sin x + g(y, z)$$

$$\Rightarrow \frac{\partial f}{\partial y} = 3x^2 + \frac{\partial g}{\partial y} = 3x^2 + 2e^z , \frac{\partial g}{\partial y} = 2e^z y g(y, z) = 2ye^z + h(z)$$

Así,
$$f\left(x,y,z\right)=3x^{2}y-4z^{2}\sin x+2ye^{z}+h\left(z\right)$$
y ahora

$$\frac{\partial f}{\partial z} = -8z\sin x + 2ye^z + h'(z) = -8z\sin x + 2ye^z \Rightarrow h'(z) = 0 \text{ y } h(z) = 0.$$

Por lo tanto, un potencial de F es la función

$$f(x, y, z) = 3x^2y - 4z^2\sin x + 2ye^z.$$

Ahora, como $\vec{r}(0) = (0, 1, 1)$ y $\vec{r}(1/2) = (1, 0, 2)$ se concluye que

$$W = \int_{C} F \cdot d\vec{r} = f(1, 0, 2) - f(0, 1, 1)$$

= -16 sin 1 - 2e

Capacidades deseadas	Desempeño			
El estudiante sabe cómo determinar la cantidad de trabajo que le toma a un campo vectorial trasladar una partícula a lo largo de una trayectoria.	Inicial No interpreta el ejercicio como aplicación de una integral de línea de un campo vectorial.	En desarrollo Calcula el rotacional del campo vectorial y concluye que es conservativo, pero comete errores en la búsqueda de la función potencial.	Desarrollado Calcula el rotacional del campo vectorial y concluye que es conservativo, obtiene la función potencial, pero comete errores en el cálculo de la integral de línea sin importar el método que realice.	Excelente Calcula el rotacional del campo vectorial y concluye que es conservativo, obtiene la función potencial, y obtiene el valor de la integral de línea sin importar el método que realice o comete errores en el proceso.
	0	1-7	8-15	16-20

SEXTO TEMA (20 puntos)

Dada la función
$$f(x,y) = \begin{cases} \frac{yx^2-y^3}{x^2+y^2}, (x,y) \neq (0,0) \\ 0, \quad (x,y) = (0,0) \end{cases}$$

- a) Determine la continuidad de la función en el punto (0,0)
- b) Estudie la continuidad de las derivadas parciales $\frac{\partial f}{\partial x}$ y $\frac{\partial f}{\partial y}$ en el origen.
- c) ¿De los resultados obtenidos puede deducirse la diferenciabilidad de la función f(x, y) en el origen?

$$1.-f(0,0)=0$$

$$2. - \lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \frac{yx^2 - y^3}{x^2 + y^2} \stackrel{\left\{x - \rho\cos\theta\right\}}{=} \lim_{(x,y)\to(0,0)} \frac{\rho^3 sen\theta\cos^2\theta - \rho^3 sen^3\theta}{\rho^2} =$$

$$= \lim_{(x,y)\to(0,0)} \frac{\rho^3 \left(\cos^2\theta sen\theta - sen^3\theta\right)}{\rho^2} = \lim_{(x,y)\to(0,0)} \rho \left(\cos^2\theta - sen^2\theta\right) sen\theta =$$

$$= \lim_{(x,y)\to(0,0)} \rho\cos 2\theta sen\theta = 0$$

$$3.-f(0,0) = \lim_{(x,y)\to(0,0)} f(x,y)$$

Luego f(x,y) es continua en (0,0).

b) i.- Analicemos la continuidad de la derivada parcial con respecto a x, en el origen

$$\begin{cases} \frac{\partial f(0,0)}{\partial x} = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{0}{h^2} - 0}{h} = \lim_{h \to 0} \frac{0}{h} = 0 \\ \frac{\partial f(x,y)}{\partial x} = \frac{2xy(x^2 + y^2) - (yx^2 - y^3)2x}{(x^2 + y^2)^2} = \frac{4xy^3}{(x^2 + y^2)^2} \end{cases}$$

entonces podemos escribir,

$$\frac{\partial f}{\partial x} = \begin{cases} \frac{4xy^3}{\left(x^2 + y^2\right)^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases}$$

analicemos su continuidad en el origen,

$$a)\frac{\partial f(0,0)}{\partial x} = 0$$

$$b) \lim_{(x,y)\to(0,0)} \frac{\partial f\left(x,y\right)}{\partial x} = \lim_{(x,y)\to(0,0)} \frac{4xy^3}{\left(x^2+y^2\right)^2} = \lim_{\rho\to 0} \frac{4\rho^4\cos\theta sen^3\theta}{\rho^4} = 4\cos\theta sen^3\theta$$

luego $\lim_{(x,y)\to(0,0)} \frac{\partial f(x,y)}{\partial x}$ no existe, de lo que se deduce que $\frac{\partial f(x,y)}{\partial x}$ no es continua en (0,0).

ii.- Analicemos la continuidad de la derivada parcial con respecto a y, en el origen:

$$\begin{cases} \frac{\partial f(0,0)}{\partial y} = \lim_{k \to 0} \frac{f(0,k) - f(0,0)}{k} = \lim_{k \to 0} \frac{\frac{-k^3}{k^2} - 0}{k} = \lim_{k \to 0} \frac{-k^3}{k^3} = -1\\ \frac{\partial f(x,y)}{\partial y} = \frac{\left(x^2 - 3y^2\right)\left(x^2 + y^2\right) - \left(yx^2 - y^3\right)2y}{\left(x^2 + y^2\right)^2} = \frac{x^4 - y^4 - 4x^2y^2}{\left(x^2 + y^2\right)^2} \end{cases}$$

resulta que,

$$\frac{\partial f}{\partial y} = \begin{cases} \frac{x^4 - y^4 - 4x^2y^2}{\left(x^2 + y^2\right)^2} & (x, y) \neq (0, 0) \\ -1 & (x, y) = (0, 0) \end{cases}$$

analicemos su continuidad en el origen,

$$a)\frac{\partial f(0,0)}{\partial y} = -1$$

$$b) \lim_{(x,y)\to(0,0)} \frac{\partial f(x,y)}{\partial x} = \lim_{(x,y)\to(0,0)} \frac{x^4 - y^4 - 4x^2y^2}{\left(x^2 + y^2\right)^2} = \lim_{\rho\to 0} \frac{\rho^4 \cos^4\theta - \rho^4 sen^4\theta - 4\rho^4 \cos^2\theta sen^2\theta}{\rho^4} = \lim_{\rho\to 0} \frac{\partial f(x,y)}{\partial x} = \lim_{(x,y)\to(0,0)} \frac{\partial f(x,y)}{\partial x} = \lim_{(x$$

$$=\cos^4\theta - sen^4\theta - 4\cos^2\theta sen^2\theta$$

luego $\lim_{(x,y)\to(0,0)} \frac{\partial f(x,y)}{\partial y}$ no existe, de lo que se deduce que $\frac{\partial f(x,y)}{\partial y}$ no es continua en (0,0).

Por tanto, de los resultados obtenidos no puede deducirse la diferenciabilidad de f(x,y) en el origen, (ninguna de las parciales es continua en el origen).

Capacidades deseadas	Desempeño			
El estudiante sabe cómo determinar continuidad de una función y de sus derivadas parciales en un punto, así como establecer condiciones de diferenciabilidad.	Inicial No sabe cómo establecer la continuidad de la función en el origen o comete errores en el cálculo del límite respectivo.	En desarrollo Determina correctamente la continuidad de la función en el origen, pero comete errores en la obtención de las derivadas parciales.	Desarrollado Determina correctamente la continuidad de la función en el origen, obtiene las derivadas parciales, pero comete errores en el análisis de su continuidad en el origen.	Excelente Determina correctamente la continuidad de la función en el origen, obtiene las derivadas parciales, determina su continuidad en el origen y establece la no diferenciabilidad de la función en el origen o comete errores en su conclusión.
	0-4	5-10	11-15	16-20

