CÁLCULO VECTORIAL PRIMERA EVALUACIÓN – SOLUCIÓN Y RÚBRICA PAO2 - 2022

PRIMER TEMA (21 puntos)

1.b) Dadas las funciones $f(x,y)=\sqrt{1+x^2+y^2}$ y $g(x,y)=x^2-y^2$, entonces los valores reales de a y b que provocan que las curvas de nivel $S_a(f)$ y $S_b(g)$ sean ortogonales son a>0 y b=0

Solución: La proposición es FALSA.

Si
$$a = \frac{1}{2} \Rightarrow S_{\frac{1}{2}}(f) = \left\{ (x, y) \in dom(f) : \frac{1}{2} = \sqrt{1 + x^2 + y^2} \right\}$$
. Note que:
$$\frac{1}{2} = \sqrt{1 + x^2 + y^2} \Rightarrow \frac{1}{4} - 1 = x^2 + y^2 \Rightarrow -\frac{3}{4} = x^2 + y^2$$

y por tanto $S_{\frac{1}{2}}(f)=\emptyset$, con lo cual no se puede establecer ortogonalidad entre curvas dado que no hay curva.

Capacidades deseadas	Desempeño			
El estudiante	Inicial	En desarrollo	Desarrollado	Excelente
domina la	No conoce la	Escribe la	Prueba que	Presenta una
definición de	definición de	condición de	existe	justificación
curvas de nivel	curva de nivel y	ortogonalidad	ortogonalidad	adecuada de que
y el concepto	solo posee	con los vectores	pero sin	la ortogonalidad
de	ideas vagas de	gradientes, pero	concluir para	no se da para los
ortogonalidad	cómo proceder	no hace algo con	que valores de	a>0, ya sea usando
entre curvas.	sin escribir algo	ello o escribe la	a y b ocurre o	el producto punto
	completamente	definición de	se percata que	entre gradientes o
	correcto.	curva de nivel	hay conjuntos	la definición de
		sin concluir.	de nivel de f	conjunto de nivel
			para a>0 que	con su conclusión
			son vacíos pero	respectiva.
			no concluye.	
	0-1	2-3	4-6	7

1.b) Si dos caras de un cubo se encuentran en los planos 3x-y+2z=5 y 3x-y+2z=7, entonces el volumen del cubo es $\frac{2\sqrt{14}}{49}u^3$

Solución: La proposición es VERDADERA.

- Llamemos π_1 : 3x y + 2z 5 = 0 y π_2 : 3x y + 2z 7 = 0.
- Si dos caras de un cubo se encuentran en dos planos paralelos, la arista a del cubo debe ser necesariamente la distancia entre ambos planos. Esta distancia es además la distancia de un punto de uno de los planos al otro, en este caso tomaremos el punto P con coordenadas $(x_0, y_0, z_0) = (1,0,1) \in \pi_1$ y calcularemos su distancia al plano π_2 : ax + by + c + d = 0 con a = 3, b = -1, c = 2, d = -7 mediante la fórmula:

$$a = d_{P\pi_2} = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}} = \frac{|(3)(1) + (-1)(0) + (2)(1) + (-7)|}{\sqrt{(3)^2 + (-1)^2 + (2)^2}} = \frac{2}{\sqrt{14}} = \frac{\sqrt{14}}{7}$$

Luego, el volumen del cubo es:

$$V = a^3 = \left(\frac{\sqrt{14}}{7}\right)^3 = \frac{\left(\sqrt{14}\right)^2(\sqrt{14})}{(7)^2(7)} = \frac{14\sqrt{14}}{(49)(7)} = \frac{2\sqrt{14}}{49} u^3$$

Capacidades deseadas	Desempeño				
El estudiante	Inicial	En desarrollo	Desarrollado	Excelente	
sabe aplicar	No puede	Interpreta	Una vez	Calculado el	
conceptos de	establecer que	correctamente la	obtenida la	volumen del cubo	
geometría	si las 2 caras del	distancia entre	distancia que	reconoce la	
analítica	cubo están en	planos como la	es la longitud	necesidad de	
tridimensional	planos	medida del lado	del lado del	racionalizar la	
para obtener el	paralelos, la	del cubo y la	cubo,	respuesta,	
volumen de un	medida del lado	expresa, luego	procede a	concluyendo que la	
cubo.	del cubo es la	reemplaza el	calcular el	expresión es	
	distancia entre	punto y los	volumen del	verdadera.	
	los planos.	coeficientes del	cubo.		
		plano y calcula la			
		distancia.			
	0-1	2-3	4-6	7	

1.c) La ecuación $z^2=x^2+xy^2z$ define a z implícitamente como una función de x y y, entonces $\frac{\partial z}{\partial x}(1,1,2)=\frac{3}{4}$

Solución: La proposición es FALSA.

• Sea $F(x, y, z) = x^2 + xy^2z - z^2$. Podemos calcular la derivada parcial requerida como sigue:

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{2x + y^2 z}{xy^2 - 2z}$$

$$\frac{\partial z}{\partial x}(1,1,2) = -\frac{2(1) + (1)^2(2)}{(1)(1)^2 - 2(2)} = \frac{4}{3}$$

Capacidades deseadas	Desempeño			
El estudiante	Inicial	En desarrollo	Desarrollado	Excelente
sabe derivar	No sabe como	Interpreta bien la	Resuelve para	Evalúa en el punto
implícitamente	plantear la	derivación	la derivada	dado la derivada
una función que	derivación	implícita y	parcial	parcial solicitada,
representa un	implícita	procede con la	solicitada	concluyendo que
lugar	solicitada.	aplicación de la	despejando	la expresión es
geométrico en		regla de la	correctamente	falsa.
R ³ y evaluarla		potencia y la del	de la expesión	
en un punto		producto.	anterior.	
dado.	0-1	2-3	4-6	7

SEGUNDO TEMA (24 puntos)

Dada la función
$$\emptyset(x,y) = \begin{cases} \frac{x (1-\cos y) \sqrt{x^2+y^2}}{x^2+y^4}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

- a) Calcule la derivada direccional de $\emptyset(x,y)$, en el origen, para una dirección cualquiera (15 puntos).
- b) Es diferenciable $\emptyset(x,y)$ en el origen? Justifique su respuesta (9 puntos).

Solución:

a) Sea v̂ = (cos θ, sin θ) el vector unitario en una dirección arbitraria. Por definición, la derivada direccional de φ en (0,0) es, para sin θ, cos θ ≠ 0,

$$\begin{split} D_{\hat{v}}\phi(0,0) &= \lim_{h\to 0} \frac{\phi(h\cos\theta,h\sin\theta) - \overbrace{\phi(0,0)}^0}{h} \\ &= \lim_{h\to 0} \frac{h\cos\theta(1-\cos\left(h\sin\theta\right))|h|}{h^3(\cos^2\theta+h^2\sin^4\theta)} \\ &= \lim_{h\to 0} \frac{\cos\theta}{\cos^2\theta+h^2\sin^4\theta} \cdot \lim_{h\to 0} \frac{1-\cos\left(h\sin\theta\right)}{h\sin\theta} \frac{|h|\sin\theta}{h} \end{split}$$

El primer límite es $1/\cos\theta$ –asumiendo que $\cos\theta \neq 0$ —; en cuanto al segundo, si $y = h\sin\theta$:

$$\lim_{h \to 0} \frac{1 - \cos(h\sin\theta)}{h\sin\theta} = \lim_{y \to 0} \frac{1 - \cos y}{y} = 0$$

por la regla de L'Hôpital y, como $\frac{|h|\sin\theta}{h}$ es acotado, llegamos a que:

$$\lim_{h \to 0} \frac{1 - \cos(h\sin\theta)}{h\sin\theta} \frac{|h|\sin\theta}{h} = 0$$

Así, $D_{\hat{v}}\phi(0,0) = 0$ para todo $\theta \neq 0, \pi/2, \pi, 3\pi/2$, ya que dichos valores hacen que $\sin \theta = 0$ o $\cos \theta = 0$.

Ahora bien, en la dirección $\theta = 0, \pi$, el vector unitario es $\hat{v}_1 = (\pm 1, 0)$ y la correspondiente derivada es:

$$D_{\hat{v}_1}\phi(0,0) = \lim_{h \to 0} \frac{\overbrace{\phi(\pm h,0)}^0 - \overbrace{\phi(0,0)}^0}{h} = 0$$

mientras que en la direcciones $\theta=\pi/2, 3\pi/2$ el vector unitario es $\hat{v}_2=(0,\pm 1)$ y la derivada es:

$$D_{\hat{v}_2}\phi(0,0) = \lim_{h \to 0} \frac{\overbrace{\phi(0,\pm h)}^0 - \overbrace{\phi(0,0)}^0}{h} = 0$$

Por lo tanto,

$$D_{\hat{v}}\phi(0,0) = 0$$
, $\forall \theta \in [0,2\pi]$

Capacidades deseadas	Desempeño			
El estudiante	Inicial	En desarrollo	Desarrollado	Excelente
sabe determinar	No establece	Define el vector	Obtiene el	Con toda la
la derivada	correctamente	unitario general, la	resultado final	información
direccional de	un vector	derivada	de la derivada	obtenida
una función en	unitario general	direccional	e intepreta	concluye que la
un punto dado y	ni el concepto	solicitada y	este resultado	derivada
para una	de la derivada	reemplaza en esta	en función del	direccional en el
dirección	direccional de	los datos	ángulo del	origen existe en
culaquiera.	una función en	requeridos,	vector unitario	todas las
	un punto en la	obteniendo el	definido al	direcciones y es
	dirección de ese	límite de un	inicio del	igual a cero.
	vector.	producto,	ejercicio.	
		resolviendo		
		correctamente		
		ambos límites de		
		manera		
		independiente.		
	0-3	4-9	10-14	15

b) Tenemos que ϕ es diferenciable en (0,0) si existen $\phi_x(0,0), \ \phi_y(0,0)$ y, además:

$$\lim_{(h,k)\to(0,0)}\frac{\phi(h,k)-\phi(0,0)-\phi_x(0,0)h-\phi_y(0,0)k}{\sqrt{h^2+k^2}}=0$$

Ahora bien, sabemos que las parciales de primer orden son las derivadas direccionales para $\theta = 0$ –para ϕ_x – y $\theta = \pi/2$ –para ϕ_y –, es claro que ambas existen y son iguales a cero. Como, además, $\phi(0,0) = 0$, el límite anterior se convierte en:

$$\lim_{(h,k)\to(0,0)} \frac{\phi(h,k)}{\sqrt{h^2 + k^2}} = \lim_{(h,k)\to(0,0)} \frac{h(1-\cos k)\sqrt{h^2 + k^2}}{(h^2 + k^4)\sqrt{h^2 + k^2}}$$
$$= \lim_{(h,k)\to(0,0)} \frac{h(1-\cos k)}{h^2 + k^4}$$

el cual **no** es cero ya que, si nos acercamos al origen por la parábola $h=k^2$ la fracción anterior tiende a:

$$\lim_{k \to 0} \frac{k^2(1-\cos k)}{k^4+k^4} = \frac{1}{2} \lim_{k \to 0} \frac{1-\cos k}{k^2} = \frac{1}{2}$$

Por tanto, ϕ no es diferenciable en el origen.

Capacidades deseadas	Desempeño			
El estudiante	Inicial	En desarrollo	Desarrollado	Excelente
sabe aplicar la definición de difrenciabilidad de una función en un punto determinado.	No establece correctamente el concepto de diferenciabilidad de una función en un punto determinado.	Reduce la expresión del límite considerando que las derivadas direccionales en el origen existen y son cero, así como la evaluación de la	Resuelve correctamente el límite siguiendo alguna determinada trayectoria.	Con el resultado del límite que es diferente de cero, concluye que la función no es diferenciable en el origen.
	0-1	función en el origen. 2-4	5-8	9

TERCER TEMA (15 puntos)

Sea u=f(x,y) de clase C^2 , con $x=e^s\cos(t)$ y $y=e^s\sin(t)$. Obtenga la expresión para $\frac{\partial^2 u}{\partial s^2}$

Solución: Tenemos que:

$$\mathbf{u} \underbrace{\mathbf{v}}_{\mathbf{v}} \underbrace{\mathbf{v}}_{\mathbf{t}}^{\mathbf{s}}$$

$$\frac{\partial u}{\partial s} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial s} = \frac{\partial u}{\partial x} e^{s} \cos(t) + \frac{\partial u}{\partial y} e^{s} \sin(t)$$

así, aplicando regla de la cadena a la función $\frac{\partial u}{\partial s}(x,y)$:

$$\frac{\partial^{2} u}{\partial s^{2}} = \frac{\partial}{\partial s} \left(\frac{\partial u}{\partial s} \right) = \frac{\partial}{\partial s} \left(\frac{\partial u}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial s} \right) = \frac{\partial}{\partial s} \left(\frac{\partial u}{\partial x} \frac{\partial x}{\partial s} \right) + \frac{\partial}{\partial s} \left(\frac{\partial u}{\partial y} \frac{\partial y}{\partial s} \right)$$

$$= \frac{\partial}{\partial s} \left(\frac{\partial u}{\partial x} \right) \cdot \frac{\partial x}{\partial s} + \frac{\partial u}{\partial x} \cdot \frac{\partial^{2} x}{\partial s^{2}} + \frac{\partial}{\partial s} \left(\frac{\partial u}{\partial y} \right) \cdot \frac{\partial y}{\partial s} + \frac{\partial u}{\partial y} \cdot \frac{\partial^{2} y}{\partial s^{2}}$$

$$= \left[\frac{\partial^{2} u}{\partial x^{2}} \frac{\partial x}{\partial s} + \frac{\partial^{2} u}{\partial x} \frac{\partial y}{\partial s} \right] \cdot \frac{\partial x}{\partial s} + \frac{\partial u}{\partial x} \cdot \frac{\partial^{2} x}{\partial s^{2}}$$

$$+ \left[\frac{\partial^{2} u}{\partial y \partial x} \frac{\partial x}{\partial s} + \frac{\partial^{2} u}{\partial y^{2}} \frac{\partial y}{\partial s} \right] \cdot \frac{\partial y}{\partial s} + \frac{\partial u}{\partial y} \cdot \frac{\partial^{2} y}{\partial s^{2}}$$

$$= \left[\frac{\partial^{2} u}{\partial x^{2}} e^{s} \cos(t) + \frac{\partial^{2} u}{\partial x \partial y} e^{s} \sin(t) \right] \cdot e^{s} \cos(t) + \frac{\partial u}{\partial x} \cdot e^{s} \cos(t)$$

$$+ \left[\frac{\partial^{2} u}{\partial y \partial x} e^{s} \cos(t) + \frac{\partial^{2} u}{\partial y^{2}} e^{s} \sin(t) \right] \cdot e^{s} \sin(t) + \frac{\partial u}{\partial y} \cdot e^{s} \sin(t)$$

$$= \frac{\partial^{2} u}{\partial x^{2}} e^{2s} \cos^{2}(t) + 2 \frac{\partial^{2} u}{\partial x \partial y} e^{2s} \cos(t) \sin(t) + \frac{\partial^{2} u}{\partial y^{2}} e^{2s} \sin^{2}(t) + \frac{\partial u}{\partial x} \cdot e^{s} \cos(t) + \frac{\partial u}{\partial y} \cdot e^{s} \sin(t)$$

Capacidades deseadas	Desempeño				
El estudiante sabe cómo aplicar correctamente la regla de la cadena.	Inicial No sabe cómo aplicar la regla de la cadena.	En desarrollo Aplica la regla de la cadena para las primera derivada, pero tiene problemas para calcular la segunda derivada y no logra demostrar lo planteado.	Desarrollado Aplica la regla de la cadena para las primera y segunda derivadas, pero comete errores al sumar los términos y esto impide llegar al resultado planteado.	Excelente Aplica la regla de la cadena para las primera y segunda derivadas, llegando al resultado planteado de una manera correcta y sin cometer errores.	
	0-2	3-6	7-14	15	

CUARTO TEMA (22 puntos)

- a) Dada la curva $r(t) = (3 2t^2, t^2 4t, 2t^2 1)$. Determine en t = 1:
 - a.1) El radio de curvatura (6 puntos)
 - a.2) La ecuaciones cartesianas del plano osculador y del del plano normal (8 puntos)
- b) Obtenga una parametrización para la curva $C: (2y+x)^2 = -4y(2-x) 4(x+1)$ (8 puntos)

Solución:

- a) Calcularemos algunas magnitudes que serán de utilidad en este apartado:
 - r(1) = (1, -3, 1)
 - Vector tangente unitario:

$$r'(t) = (-4t, 2t - 4, 4t) \Rightarrow ||r'(t)|| = \sqrt{(-4t)^2 + (2t - 4)^2 + (4t)^2} = 2\sqrt{9t^2 - 4t + 4}$$

$$T(t) = \frac{r'(t)}{\|r'(t)\|} = \frac{(-4t, 2t - 4, 4t)}{2\sqrt{9t^2 - 4t + 4}} = \left(\frac{-2t}{\sqrt{9t^2 - 4t + 4}}, \frac{t - 2}{\sqrt{9t^2 - 4t + 4}}, \frac{2t}{\sqrt{9t^2 - 4t + 4}}\right)$$

Vea que en t = 1, se tiene que:

- r'(1) = (-4, -2, 4) ||r'(1)|| = 6 $T(1) = \left(-\frac{2}{3}, -\frac{1}{3}, \frac{2}{3}\right) = \frac{1}{3}(-2, -1, 2)$

$$T'(t) = \left(\frac{-2\left(\sqrt{9t^2 - 4t + 4} - \frac{9t^2 - 2t}{\sqrt{9t^2 - 4t + 4}}\right)}{9t^2 - 4t + 4}, \frac{\sqrt{9t^2 - 4t + 4} - \frac{(9t - 2)(t - 2)}{\sqrt{9t^2 - 4t + 4}}}{9t^2 - 4t + 4}, \frac{2\left(\sqrt{9t^2 - 4t + 4} - \frac{9t^2 - 2t}{\sqrt{9t^2 - 4t + 4}}\right)}{9t^2 - 4t + 4}\right)$$

$$T'(t) = \left(\frac{4t - 8}{(9t^2 - 4t + 4)^{3/2}}, \frac{16t}{(9t^2 - 4t + 4)^{3/2}}, \frac{8 - 4t}{(9t^2 - 4t + 4)^{3/2}}\right) = 4\left(\frac{t - 2}{(9t^2 - 4t + 4)^{3/2}}, \frac{4t}{(9t^2 - 4t + 4)^{3/2}}, \frac{2 - t}{(9t^2 - 4t + 4)^{3/2}}\right)$$

$$\|T'(t)\| = 4\left(\sqrt{\frac{(t-2)^2+(4t)^2+(2-t)^2}{(9t^2-4t+4)^3}}\right) = 4\left(\sqrt{\frac{2(9t^2-4t+4)}{(9t^2-4t+4)^3}}\right) = \frac{4\sqrt{2}}{|9t^2-4t+4|}$$

Vea que en t = 1, se tiene que

- $T'(1) = \left(-\frac{4}{27}, \frac{16}{27}, \frac{4}{27}\right)$ $\|T'(1)\| = \frac{4}{9}\sqrt{2}$
- $N(1) = \frac{T'(1)}{\|T'(1)\|} = \left(-\frac{\sqrt{2}}{6}, \frac{4\sqrt{2}}{6}, \frac{\sqrt{2}}{6}\right) = \frac{\sqrt{2}}{6}(-1, 4, 1)$
- Vector Binormal en t = 1:

$$B(1) = T(1) \times N(1) = \frac{\sqrt{2}}{18} [(-2, -1, 2) \times (-1, 4, 1)] = \frac{\sqrt{2}}{18} (-9, 0, -9) = -\frac{\sqrt{2}}{2} (1, 01)$$

a.1) El radio de curvatura en t = 1 es:

$$r(1) = \frac{1}{k(1)} = \frac{\|r'(1)\|}{\|T'(1)\|} = \frac{6}{\frac{4}{9}\sqrt{2}} = \frac{27}{2\sqrt{2}} = \frac{27}{4}\sqrt{2}$$

Rúbrica a.1):

Capacidades deseadas	Desempeño			
El estudiante	Inicial	En desarrollo	Desarrollado	Excelente
sabe calcular la	Calcula la	Expresa la	Resuelve	Racionaliza
curvatura para	primera y	curvatura en el	correctamente	correctamente
una trayectoria	segunda	punto dado y	la parte	el resultado de
en un punto	derivada de la	realiza las	algebraica de	la curva
dado.	trayectoria y las	operaciones de	la curvatura y	obtenido.
	evalúa en el	módulo de	obtiene el	
	punto dado.	producto cruz y	resultado.	
		módulo de la		
		primera derivada al		
		cubo, respectivas.		
	0-2	3-4	5	6

a.2) Con los valores calculados anteriormente se tiene:

• Plano osculador:

$$B(1) \cdot ((x, y, z) - r(1)) = 0$$
$$-\frac{\sqrt{2}}{2}(1, 0, 1) \cdot (x - 1, y + 3, z - 1) = 0$$
$$x + z - 2 = 0$$

• Plano normal:

$$T(1) \cdot ((x, y, z) - r(1)) = 0$$

$$\frac{1}{3}(-2, -1, 2) \cdot (x - 1, y + 3, z - 1) = 0$$

$$-2x + 2 - y - 3 + 2z - 2 = 0$$

$$2x + y - 2z + 3 = 0$$

Rúbrica a.2):

Capacidades deseadas	Desempeño			
El estudiante	Inicial	En desarrollo	Desarrollado	Excelente
sabe determinar	Calcula el vector	Realiza el producto	Resuelve para	Resuelve para la
las ecuaciones cartesianas del plano osculador y plano normal para una trayectoria en un punto dado.	tangente unitario en el valor de t dado.	cruz de los vectores tangente y normal unitarios en el valor de t dado.	la ecuación del plano osculador, obteniendo la expresión solicitada.	ecuación del plano normal, obteniendo la expresión solicitada.
	0-1	2-4	5-6	7-8

b)

$$(2y+x)^{2} = -4y(2-x)-4(x+1) \Rightarrow 4y^{2} + 4yx + x^{2} = -8y + 4yx - 4x - 4 \Rightarrow$$

$$\Rightarrow 4y^{2} + x^{2} = -8y - 4x - 4 \Rightarrow 4y^{2} + 8y + x^{2} + 4x + 4 = 0 \Rightarrow 4(y^{2} + 2y + 1) + x^{2} + 4x + 4 = 4$$

$$\Rightarrow 4(y+1)^{2} + (x+2)^{2} = 4 \Rightarrow (y+1)^{2} + \frac{(x+2)^{2}}{4} = 1$$

Observe que se obtiene la ecuación de una elipse, y

$$\frac{x+2}{2} = \cos t \quad \text{y} \quad y+1 = \sin t$$

satisfacen la ecuación:

$$\frac{(x+2)^2}{4} + (y+1)^2 = \cos^2 t + \sin^2 t = 1$$

En consecuencia, unas ecuaciones paramétricas de la curva C son:

$$x = -2 + 2\cos t$$
, $y = -1 + \sin t \text{ con } 0 \le t \le 2\pi$

Capacidades deseadas	Desempeño			
El estudiante	Inicial	En desarrollo	Desarrollado	Excelente
sabe determinar	Realiza el	Observa que	Comprueba	Expresa
las ecuaciones	trabajo	obtiene la ecuación	que se	correctamente
paramétricas de	algebráico	de una elipse y	satisface la	la
una curva	respectivo a	determina las	ecuación	parametrización
expresada en	partir de la	expresiones	original.	solicitada.
coordenadas	expresión	correctas para		
cartesianas.	cartesiana dada.	cos(t) y sen(t).		
	0-3	4-5	6-7	8

QUINTO TEMA (18 puntos)

Dadas las funciones $f: R^2 \to R$ tal que $f(x,y) = \left(cos(2y) + sen(xy)\right)$ y $g: R^2 \to R^2$ tal que $g(u,v) = \left(uv^2, v^2 + 3u^2\right)$.

- a) Determine la matriz diferencial $D[(f \circ g) (1, 1)]$ (10 puntos)
- Explique y justifique el significado de cada columna de la matriz obtenida en a) (8 puntos)

a)
$$D[(fog) (u,v)] = D[f]_{g(u,v)} D[g]_{(u,v)}$$

$$g(1,1) = (1(1)^2, (1)^2 + 3(1)^2) = (1,4)$$

$$D[(fog) (u,v)]_{(1,1)} = (y\cos(xy) - 2\sin(2y) + x\cos(xy))_{(1,4)} \begin{pmatrix} v^2 & 2uv \\ 6u & 2v \end{pmatrix}_{(1,1)}$$

$$D[(fog) (u,v)]_{(1,1)} = (4\cos(4) - 2\sin(8) + 1\cos(4)) \begin{pmatrix} (1)^2 & 2(1)(1) \\ 6(1) & 2(1) \end{pmatrix}$$

$$D[(fog) (u,v)]_{(1,1)} = (4\cos(4) - 2\sin(8) + \cos(4)) \begin{pmatrix} 1 & 2 \\ 6 & 2 \end{pmatrix}$$

$$= (4\cos(4) - 12\sin(8) + 6\cos(4) - 8\cos(4) - 4\sin(8) + 2\cos(4))$$

$$D[(fog) (1,1)] = (10\cos(4) - 12\sin(8) - 10\cos(4) - 4\sin(8))$$

Capacidades deseadas	Desempeño			
El estudiante	Inicial	En desarrollo	Desarrollado	Excelente
sabe obtener la	Expresa la	Evalúa la función g	Realiza los	Obtiene la
matriz	matriz solicitada	en el punto dado y	reemplazos	matriz
diferencial de	como producto	obtiene las	necesarios en	diferencial de
una	de las dos	matrices	ambas	orden 1x2
composición de	matrices	diferenciales de f y	matrices.	solicitada.
funciones en un	respectivas	g en el punto dado,		
punto dado.	relacionadas	realizando las		
	con ambas	derivadas		
	funciones f y g.	respectivas.		
	0-2	3-6	7-9	10

b) Cada columna de la matriz D[(fog)(1,1)] representa la derivada parcial de la función f con respecto a las variables u y v respectivamente en el punto dado (u,v)=(1,1), ya que se trata de la misma regla de la cadena, es decir:

$$\frac{\partial f}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u} \bigg|_{(x(u,v),y(u,v))} ; \frac{\partial f}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v} \bigg|_{(x(u,v),y(u,v))}$$

$$\frac{\partial f}{\partial u} = (y \cos(xy)) (v^2) + (-2 \sin(2y) + x \cos(xy)) (6u)$$

$$\frac{\partial f}{\partial u} = (4\cos(4))(1^2) + (-2\sin(8) + 1\cos(4))(6) = 10\cos(4) - 12\sin(8)$$

$$\frac{\partial f}{\partial v} = (y \cos(xy)) (2uv) + (-2 \sin(2y) + x \cos(xy)) (2v)$$

$$\frac{\partial f}{\partial v} = (4\cos(4))(2) + (-2\sin(8) + 1\cos(4))(2) = 10\cos(4) - 4\sin(8)$$

Se obtienen los mismos resultados que los hallados en la parte a) del ejercicio ya que son dos formas distintas de aplicar la regla de la cadena.

Capacidades deseadas	Desempeño				
El estudiante	Inicial	En desarrollo	Desarrollado	Excelente	
sabe interpretar	Expresa que cada	Expresa las	Realiza las	Obtiene como	
que el hallar la	columna de la	derivadas	derivadas de f	resultado que	
matriz	matriz obtenida	parciales de la	con respecto a	las expresiones	
diferencial de la	representa la	función f con	u y v, y	de las columnas	
función	derivada parcial de	respecto a las	reemplaza	de la matriz dan	
compuesta es lo	la función f con	variables u y v.	ambas en el	los mismos	
mismo que	respecto a las		punto	resultados que	
aplicar	variables u y v		requerido.	los aquí	
directamente la	respectivamente			obtenidos.	
regla de la	en el punto dado.				
cadena.	0-2	3	4-7	8	