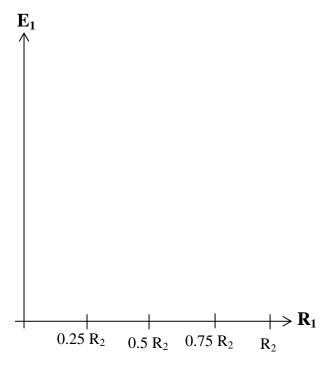

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL - FACULTAD DE ING. EN ELECTRICIDAD Y COMPUTACIÓN EXAMEN PARCIAL DE TEORÍA ELECTROMAGNÉTICA I 01/JULIO/2013

NOMBRE ALUMNO	PARALELO	PROFESOR		NOTA
		Ing. Alvarado 🗌	Ing. Del Pozo	
		Ing. Flores	Ing. Vásquez	


1.- (30%) Una carga está distribuida superficialmente según la expresión $\sigma_s = \sigma_0 \left(\frac{\rho - a}{\rho}\right)$ (c/m²)

donde σ_0 es una constante positiva. Esta carga ocupa un sector de un disco de radio interior \underline{a} , radio exterior \underline{b} y ángulo $\underline{\alpha}$, como indica la figura.

Calcule el valor (magnitud y dirección) del campo eléctrico en el punto P (vértice)

- 3.- (35%) Un capacitor de aire consta de dos esferas concéntricas de metal, de pared delgada, de radios R_1 (interior) y R_2 (exterior), respectivamente. Tienen aplicado un voltaje V entre las esferas.
- a) (15%) Calcule el campo eléctrico E_1 sobre la esfera conductora de radio R_1
- b) Si el radio exterior R₂ es fijo, y el radio interior R₁ puede variar:
 - (10%) Calcule el valor que debe tener $\mathbf{R_1}$ para que $\mathbf{E_1}$ sea mínimo, y cuál es el valor de este campo
 - (10%) Construya un gráfico E_1 vs. R_1 (ponga valores a la escala)

2.- (35%) Un capacitor de placas paralelas está elaborado utilizando dos placas circulares de radio \underline{a} , con la placa del fondo en el plano xy, centrada en el origen. La placa superior está ubicada en z=d, con su centro en el eje z. El potencial de la placa superior es V_0 ; la placa inferior está aterrizada. La región entre las placas está llena de dieléctrico con una permitividad que depende del radio ρ . La permitividad está dada por $\varepsilon(\rho) = \varepsilon_0(1+\frac{\rho}{\sigma})$

Calcular:

- a) (5%) La densidad de flujo D (magnitud y dirección)
- b) (15%) La capacitancia
- c) (15%) Las densidades de carga de polarización (superficiales y volumétrica)