College of Maritime Engineering, and Biological, Oceanical and Natural Resource Sciences

First Evaluation - Ship Vibrations
June, 2016

Student: \qquad
1.- Consider a floating dock, which pivots on one ends, as shown in the figure. Main dimensions are: $\mathrm{L}: 10 \mathrm{~m}, \mathrm{~B}: 3 \mathrm{~m}, \mathrm{y}$ T: 0.50 . Calculate the restoring moment per radian of rotation. (20)

2.- You are asked to write an expression for the motion of the slender rigid bar shown in the figure, that starts its motion with an angle of 5°; express your answer with the amplitude in complex format. Main characteristics of the system are: $M_{\text {bar }}=M_{\text {sphere }}=2 \mathrm{~kg}, L=80 \mathrm{~cm}, K=$ $20000 \mathrm{~N} / \mathrm{m}$, and $C=300 \mathrm{~N} \mathrm{~s} / \mathrm{m}$. (25)

3.- A model to analyze the system to operate valves is depicted in the following figure. The massless actuator ("lifter") moves vertically with harmonic motion, $y(t)$. Determine the amplitude of the resulting motion. (25)

4.- Deduce the equations of motion of the following system formed by two rigid bars both of uniform mass per unit length, m, pinned on its extreme ends, and with two springs connected in the following manner. Calculate its natural frequencies and mode shapes. Finally, plot mode shapes. (30)

jrml/2016

