RÚBRICA DEL PRIMER EXAMEN DE CÁLCULO DE VARIAS VARIABLES I TÉRMINO 2016-2017

- 1. (10 p.) Determine de ser posible:
 - a) Las ecuaciones paramétricas de la recta L que contiene los puntos (k, 0, 0) y (0, k, 0), con una constante k > 0.
 - Calcula un vector director de la recta......2 p.

 - \blacksquare Escribe correctamente las ecuaciones paramétricas de L............2 p.
 - b) La ecuación general del plano π , tal que contiene la recta L construida en el inciso a) y es paralelo al plano tangente a la superficie $2z = x^2 + y^2$ en el punto P(1,1,1).
- 2. (10 p.) Considere la función $f(x,y) = \begin{cases} \frac{x^3 y^3}{x y} & \text{; si } x \neq y \\ x + y & \text{; si } x = y \end{cases}$
 - a) Estudiar la continuidad de f en los puntos de la forma (a, a); $a \in \mathbb{R}$.

 - Argumenta adecuadamente que no existe continuidad en (a, a) con $a \neq 0$, $a \neq \frac{2}{3}$ 2 p.
 - Argumenta adecuadamente que existe continuidad en (0,0).......1 p.
 - b) Calcular las derivadas parciales de f en el origen.
 - Calcula correctamente $\frac{\partial f}{\partial x}(0,0)$1 p.
 - Calcula correctamente $\frac{\partial f}{\partial y}(0,0)$1 p.
 - c) ¿Es f diferenciable en el origen?

 - Reemplaza datos......1 p.
 - \blacksquare Argumenta adecuadamente que f no es diferenciable en (0,0).....2 p.

- 3. (10 p.) Considere la función $f(x, y, z) = (x y 1)log_2(z^2 + 1); (x, y, z) \in \mathbb{R}^3$. Empleando la fórmula de Taylor de 2º orden, aproxime f(0.1, -0.2, 0.9).
 - Plantea la fórmula de aproximación.................1 p.
 - Selecciona el punto adecuado (x_0, y_0)1 p.

 - Calcula correctamente $Hf(x_0, y_0)$3 p.
 - Reemplaza datos y simplifica correctamente................2 p.
- 4. (10 p.) Una función f(x,y) definida en un dominio D se dice que es homogénea de grado $n \in \mathbb{Z}^+$, si para todo $(x,y) \in D$ se cumple que:

$$\forall t > 0 \left[f(tx, ty) = t^n f(x, y) \right] \tag{*}$$

Demuestre que si f(x,y) es homogénea de grado n, entonces:

$$x\frac{\partial f}{\partial x}(x,y) + y\frac{\partial f}{\partial y}(x,y) = nf(x,y)$$

Sugerencia: Comience derivando (*) respecto a t.

- Define sustituciones adecuadas para derivar (*)......2 p.

- Sustituye expresiones, simplifica y concluye correctamente.................2 p.

5.	(10 p.) Determine las dimensiones de la cisterna rectangular cerrada con el mayor
	volumen posible, si el área de la superficie total es de 10 metros cuadrados.
	■ Plantea función objetivo y variables2 p.
	■ Plantea función restricción2 p.
	■ Plantea condición necesaria de Lagrange1 p.
	■ Plantea sistema de ecuaciones1 p.
	Resuelve correctamente el sistema planteado y obtiene punto crítico2 p.
	 Justifica adecuadamente que en dicho punto

se alcanza el máximo volumen......2 p.