

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Electricidad y Computación

"DISEÑO DE UN SISTEMA SCADA PARA UNA PLANTA DE ALMACENAMIENTO INTERMEDIO DE PALLETS LUCAS NULLE IMS 10"

INFORME DE MATERIA INTEGRADORA

Previo a la obtención del Título de:

INGENIERO EN ELECTRICIDAD ESPECIALIZACIÓN ELECTRONICA Y AUTOMATIZACIÓN INDUSTRIAL

CARLOS PATRICIO DURAN SALAZAR

VICENTE ALEXANDER ORTEGA PAZ

GUAYAQUIL – ECUADOR

AÑO: 2017

AGRADECIMIENTOS

Primero les doy gracias a Dios y a la Virgencita del Cisne por bendecirme, iluminarme, llenarme de mucho gozo y por darme toda esta sabiduría para solucionar cualquier problema que se presente, ya sea personal o profesional. Mis más sinceros agradecimientos a todo el personal de ESPOL, compañeros estudiantes, trabajadores y profesores, por su ayuda incondicional sin esperar algo a cambio supieron apoyarme con su granito de arena cuando más lo necesitaba, cuando salía mal en una lección o examen ellos fueron los que me ayudaban con el apoyo moral, con sus concejos y muchas veces con su conocimientos y sabiduría me ayudaban a solucionar un problema, siendo ellos quienes compartieron toda mi vida universitaria.

Vicente Alexander Ortega Paz

Agradezco a Dios y a mi mamá Gladys Salazar, que a pesar de mis errores, indecisiones y falencias siempre estuvo apoyándome de forma incondicional, a la vez un gran obstáculo emocional que represento ante todas las negatividades que solamente con el entendimiento y conocimiento hemos salido adelante con la motivación de uno mismo de poder llegar a la meta.

Carlos Patricio Durán Salazar

DEDICATORIA

El presente proyecto lo dedico a SONNIA JUDITH PAZ FLORES mi madre, JUAN VICENTE ORTEGA VALDIVIEZO mi padre y PAMELA STHEFANIA ORTEGA PAZ hermana de alguna u otra manera fueron los pilares más importantes para mí en esta dura lucha. He ganado una batalla, pero no la guerra, ahora soy lo que soy gracias a ellos. A pesar de mis errores ellos estuvieron hay siempre para apoyarme con su amor, cariño, paciencia y tiempo para que yo siga adelante. De corazón agradezco a estos pilares fundamentales en mi vida universitaria sin ellos no sé qué hubiese pasado.

Vicente Alexander Ortega Paz

El presente proyecto lo dedico a mí mismo, a mi hermana, a mi mama y a las personas que no tuvieron oportunidad de estudiar en una universidad, ya que aprendí a ser una persona humilde, constante perseverante y agradecido con lo que tengo.

Carlos Patricio Durán Salazar

TRIBUNAL DE EVALUACIÓN

MSc. Ricardo Alfredo Cajo Díaz

Douglastancal

Ph.D. Douglas Antonio Plaza Guingla

PROFESOR EVALUADOR

PROFESOR EVALUADOR

DECLARACIÓN EXPRESA

"La responsabilidad y la autoría del contenido de este Trabajo de Titulación, nos corresponde exclusivamente; y damos nuestro consentimiento para que la ESPOL realice la comunicación pública de la obra por cualquier medio con el fin de promover la consulta, difusión y uso público de la producción intelectual"

Carlos Durán Salazar

Ortega Paz Vicente

RESUMEN

El presente trabajo consiste en un diseño de un sistema Scada y la automatización del proceso secuencial de un sixpack de botellas en el subsistema de almacenamiento intermedio de pallets LUCAS-NÜLLE IMS 10, que consta de dos procesos: proceso de almacenamiento y liberación de pallets.

El proceso para funcionar correctamente necesita el PLC SIMATIC S7 300 de Siemens para cargar el programa, el panel Touch SIMATIC HMI TP 700 de Siemens para mostrar el funcionamiento del subsistema en el sistema Scada, el subsistema de almacenamiento intermedio IMS 10 y como herramienta principal utilizaremos el software TIA PORTAL V13 para realizar la programación con el lenguaje secuencial de Bloques FUP. Se procede a identificar las señales de entrada y salida para crear las variables que se utilizaran más adelante en la programación, al utilizar las funciones creadas con las variables se procede a compilar y cargar el programa.

Con las mismas variables de la programación se comenzara con el diseño del sistema Scada en el HMI, se configura las diferentes pantallas con las funciones del programa para tener una buena apariencia al momento que se haga la simulación, sea lo más real posible. Terminada la programación, cargado el programa al PLC y el diseño del sistema Scada. Se realiza la comunicación entre el subsistema de almacenamiento IMS 10 y el PLC S7 300 con el protocolo de Profibus DP. Por último se procede a realizar la simulación desde el sistema Scada se envía órdenes para que el subsistema funcione correctamente.

Por último se diseñara el modelado 3D del subsistema de almacenamiento intermedio IMS 10, como herramienta utilizaremos el Software Solidwork y las medidas reales de cada uno de los componentes.

INDICE GENERAL

AG	RADE	CIMIENTOS	ii			
DE	DEDICATORIAiii					
TR	RIBUNAL DE EVALUACIÓNiv					
DE	CLAR	CIÓN EXPRESA	v			
RE	SUME	۱	vi			
IN		ENERALv	/ii			
IN	INDICE DE FIGURAS 10					
IN		E TABLAS 1	1			
CA	CAPÍTULO 1 12					
1. DELIMITACION DEL PROBLEMA						
	1.1	Planteamiento del Problema1	2			
	1.2	Objetivos1	3			
		1.2.1 Objetivo General1	3			
		1.2.2 Objetivos Específicos13	3			
	1.3	Justificación1	3			
	1.4	Alcance1	4			
CA	PÍTUL) 2 1	6			
2.	ESTADO DEL ARTE 1		6			
	2.1	Antecedentes 1	6			
	2.2	Marco Teórico1	7			
		2.2.1 Sistema de transporte de DC1	7			

		2.2.2	Instrumentación del IPA 26:	20			
		2.2.3	Etapa de Control:	21			
		2.2.4	Componentes	24			
		2.2.5	Diagrama de Conexión de la planta IMS 10	27			
C		ULO 3					
3	s. M	ETOLOGÍ	A DE TRABAJO				
	3.	eamiento del Proceso					
	3.	2 Imple	mentación				
		3.2.1	PLC Siemens S7 300	29			
		3.2.2	Software de programación TIA PORTAL V13				
		3.2.3	Lenguaje de programación	31			
		3.2.4	Proceso para el almacenamiento de pallets	32			
		3.2.5	Procesos para liberación de pallets				
	3.	3 Categ	orías del software para modelado 3D	40			
		3.3.1	Programas para modelado 3D artístico	40			
		3.3.2	Programas para modelado 3D en ingeniería	41			
		3.3.3	Visión del modelado en 3D	43			
	3.	4 Solidy	work	44			
		3.4.1	Descripción de las pantallas en solidworks	45			
	3.	5 Diseñ	o del tablero de control	47			
	3.	6 Diseñ	o del Sistema Scada del Proceso				
CAPITULO 4							
4	. RI	ESULTAD	OS Y ANÁLISIS DE LA IMPLEMENTACIÓN	49			
	4.	1 Anális	Análisis Comparativo del subsistema IMS 10 49				

	4.1.1	Comunicación del Proceso	.50		
	4.1.2	Sistema Scada del proceso	.50		
	4.1.3	Modelado 3D del proceso	.51		
	4.1.4	Tablero de control	.52		
4.2	Análisi	s de los Resultados del Subsistema	. 53		
	4.2.1	Comunicación y Carga del Programa	.53		
	4.2.2	Resultados de la programación sobre el IMS 10	.54		
	4.2.3	Análisis Económico del Sistema	.57		
CONCLUSIONES Y RECOMENDACIONES					
BIBLIOG	RAFÍA.		. 61		
ANEXO [·]	1		. 63		
ANEXO 2	2		. 85		

INDICE DE FIGURAS

Figura 2.1: Cinta doble de transporte	18
Figura 2.2: Módulo esclavo PROFIBUS DP	19
Figura 2.3: Casquillos de puesta en marcha	20
Figura 2.4: Sensor magnético	20
Figura 2.5: Motor reductor DC	21
Figura 2.6: PLC SIEMENS SIMATIC S7-300	22
Figura 2.7: Estación de trabajo	23
Figura 2.8: Panel Touch HMI TP 700	24
Figura 2.9: Placa Portadora de Piezas de Trabajo	25
Figura 2.10: Cable de conexión serie 9/9 polos	25
Figura 2.11: Cable de interfaz de 25 polos Sub-D	26
Figura 2.12: Los cables de medición de Seguridad	26
Figura 2.13: Diagrama de Conexión del IMS 10	27
Figura 3.1: Proceso secuencial	28
Figura 3.2 Implementación del proceso	29
Figura 3.3: Elementos y Señalización del CPU 314C-2 PN/DP	30
Figura 3.4: Pantalla Principal	30
Figura 3.5: Pantalla de vista de redes	31
Figura 3.6: Diagrama de Secuencia Funcional (SFC)	32
Figura 3.7: Sensor magnetico izquierda	33
Figura 3.8: Cilindro de Parada	33
Figura 3.9: Cilindros Paralelos y de Elevación	34
Figura 3.10: Cilindros de Separación	35
Figura 3.11: Almacén lleno fin del proceso	36
Figura 3.12: Proceso de almacenamiento	37
Figura 3.13: Proceso de liberación	38
Figura 3.14: Sensor magnético derecha	39

Figura 3.15: Proceso de Liberación de pallets	. 39
Figura 3.16: Medidas reales de la planta	. 45
Figura 3.17: Pantalla inicial de solidworks	. 45
Figura 3.18: Pantalla principal de trabajo	. 46
Figura 3.19: Área de trabajo para el diseño	. 47
Figura 3.20: Desmontaje del tablero original	. 47
Figura 4.1: Funcionamiento de la Planta IMS 10	. 49
Figura 4.2: Pantalla principal del Scada	. 51
Figura 4.3: Simulación del Scada	. 51
Figura 4.4: Sensores	. 52
Figura 4.5: Modelado 3D	. 52
Figura 4.6: Tablero de control	. 53
Figura 4.7: Comunicación y Carga del PLC S7-300	. 54
Figura 4.8: Resultados de la Programación sobre el IMS10	. 55
Figura 4.9: Cambio en el Temp_2	. 56
Figura 4.10: Cambio en el tiempo	. 56

INDICE DE TABLAS

Tabla 4-1: Costos de los componentes de la planta del IMS 10 57

CAPÍTULO 1

1. DELIMITACION DEL PROBLEMA

En este capítulo se desarrollará la problemática que dio origen a este proyecto. La planta de producción Lucas-Nülle IPA 26, tiene la necesidad de automatizar el subsistema de almacenamiento intermedio de pallets LUCAS-NÜLLE IMS 10, con el fin de independizar el proceso para utilizarlo como herramienta de aprendizaje en el laboratorio de Control de Procesos Industriales.

1.1 Planteamiento del Problema

El cambio que propone el gobierno en el sector eléctrico es para mejorar la calidad de energía en nuestro país, involucrando en este proyecto a profesionales con excelencia y personas capacitadas con conocimientos de ingeniería, para realizar procesos óptimos que ayuden a mejorar la parte eléctrica e industrial.

La Escuela Superior Politécnica del Litoral (ESPOL) y la Facultad de Ingeniería en Electricidad y Computación (FIEC) cuenta con muchas herramientas, equipos y laboratorios para la destreza y desenvolvimiento de sus estudiantes. Entre estos está el Laboratorio de Control de Procesos Industriales, en el cual se realizan prácticas semanales de la materia de Control de Procesos Industriales aumentando la dificultad en cada practica que se realiza, al finalizar el curso se debe presentar un proyecto final que cosiste en automatizar un proceso industrial poniendo en práctica los conocimientos adquiridos en el curso.

Este laboratorio consta en sus instalaciones con un sistema de aprendizaje moderno de producción automática de un sixpack IPA 26 (Industrial Process Automation) perteneciente a la marca LUCAS-NÜLLE. Dicho sistema está conformado de seis subsistemas de trabajo que son: Estación de mezcla, Estación de almacenamiento intermedio, Estación de llenado de botellas, Estación de sellado, Estación de almacenamiento final, Estación de descorchado, cada subsistema puede trabajar individualmente o puede combinarse las estaciones y formar un nuevo sistema de producción.

Se pretende desarrollar un control secuencial de automatización para el subsistema de almacenamiento intermedio de pallets LUCAS-NÜLLE IMS 10, utilizando un controlador lógico programable (PLC) SIMATIC S7-300 de Siemens, un panel Touch SIMATIC HMI TP 700 de Siemens, sensores y actuadores que se usan comúnmente en los procesos industriales actuales, además se desea diseñar un sistema Scada Y modelado 3D para la planta de almacenamiento intermedio de pallets LUCAS NULLE IMS10.

1.2 Objetivos

1.2.1 Objetivo General

 Automatizar la planta de almacenamiento intermedio de pallets IMS 10 de LUCAS-NÜLLE para optimizar el uso del sistema.

1.2.2 Objetivos Específicos

- Determinar las entradas y salidas del proceso de la planta de almacenamiento intermedio de pallets IMS10 de LUCAS-NÜLLE.
- Diseñar un tablero para montar el controlador y periféricos.
 Establecer un controlador adecuado en base a estudio técnico económico.
- Implementar un modelo 3D de la planta con software de diseño asistido por computadora.
- Desarrollar un manual de prácticas para el control de la planta de almacenamiento intermedio de IMS 10 de LUCAS-NÜLLE.

1.3 Justificación

El presente trabajo tiene como propósito automatizar, modelar y configurar el subsistema de almacenamiento intermedio de pallets LUCAS-NÜLLE IMS 10.El subsistema puede trabajar de manera individual y en conjunto con los otros 5 subsistemas que forman parte de la planta de producción IPA 26, garantizando una mejor organización en los pallets, con la programación correspondiente, el almacén puede hacer las veces de almacén de entrega o de almacén para liberar pallets. El almacén intermedio ayuda a soportar el tráfico continuo de pallets evitando que se acumulen en el almacenamiento final del sistema.

Demostrando que en la industria existen varias plantas de almacenamientos necesarias, que no solamente sirven para guardar dicho material ya sea antes o después de su respectivo proceso, sino que el subsistema asegura un mejor transporte y proceso disminuyendo los posibles obstáculos que puedan presentarse en todo el sistema. Por lo que es necesario considerar algunos aspectos teóricos y prácticos que debe tener los estudiantes de la Facultad de Ingeniería en Electricidad y Computación de la carrera en Ingeniería en Electrónica y Automatización, para el manejo de materiales que son: movimiento, lugar, tiempo, espacio y cantidad familiarizándose con sus prácticas de algunos subsistemas de almacenamiento entre ellas la IMS10 en el laboratorio de control de proceso con el beneficio de poder incrementar la productividad y lograr una ventaja competitiva en el mercado.

1.4 Alcance

En el presente proyecto se iniciará con una evaluación del estado actual del subsistema de almacenamiento intermedio de pallets LUCAS-NÜLLE IMS 10, el cual está conformado con Almacén para cuatro pallets cargados o diez descargados, un sensor de fin de carrera para la vigilancia del nivel de llenado, cilindro de parada de doble efecto, dos cilindros de sujeción, de acción simple, operados en paralelo, 6 válvulas de estrangulación de retención, una válvula distribuidora de 3/2 vías, 3 válvulas distribuidoras de 4/2 vías, interfaz de PLC con conector SUB-D de 25 polos y un sistema elevador telescópico, compuesto de dos cilindros elevadores paralelos, de acción doble y , sobre ellos, otro cilindro elevador de doble acción a prueba de torsiones [3]. Para posteriormente darle el mantenimiento adecuado para la correcta puesta en marcha de la misma con el diseño e implementación de un tablero de control en la operación de proceso de almacenamiento intermedio de pallets. Seguido se efectúa el reconocimiento y análisis del software para el desarrollo y modelado 3D del subsistema de almacenamiento intermedio de pallets IMS 10 para su debida visualización.

Para empezar con la automatización de la planta entrenadora de almacenamiento es necesario conocer de la operación los parámetros a considerar tomando en cuenta el funcionamiento correcto de cada entradas y salidas del PLC, sus actuadores y sensores que conforman la planta, luego se realiza la toma de mediciones de cada uno de sus componentes para implementar el modelado 3D mediante un software de diseño para la visualización desde un computador.

Por último se elabora una guía de prácticas para el reconocimiento de sensores, actuadores y que posee el subsistema de almacenamiento intermedio de pallets IMS 10 y su respectiva programación y funcionamiento para el desarrollo tecnológico del entorno y brindar seguridad, rapidez y control constante de las piezas.

CAPÍTULO 2

2. ESTADO DEL ARTE

En el presente capítulo se describirá las herramientas y materiales a utilizar en la mejora del problema planteado anteriormente con el subsistema de almacenamiento intermedio IMS 10.

2.1 Antecedentes

En el año 2015 la Escuela Superior Politécnica del Litoral adquirió un sistema de aprendizaje moderno de producción automática de un sixpack IPA 26 (Industrial Process Automation) perteneciente a la marca LUCAS-NÜLLE para el Laboratorio de Control de Procesos Industriales de la carrera de Ingeniería en Electricidad especialización Electrónica y Automatización Industrial, con el objetivo de simular procesos industriales más cercanos al área industrial de nuestro país.

Desde el 2015 se empezaron a realizar diferentes pruebas en los diferentes subsistemas, al principio se realizaron una serie de pruebas concernientes al funcionando de la planta IPA 26 con el profesor responsable del laboratorio el PhD. Douglas Plaza y sus respectivos ayudantes recibieron una demostración del manejo de la planta. En el año 2015 y 2016 los estudiantes que tomaron la materia integradora realizaron la automatización de los subsistemas de mezclado, llenado y envasado que se encuentran en la IPA 26 usando diagramas de control como GRAFCET realizaron la programación con el software TIA PORTAL V13.

El sistema de aprendizaje moderno de producción automática de un sickpack IPA 26 no está en completa operación porque no funcionan todos los subsistemas. El subsistema de almacenamiento de pallets no se ha encontrado guías para la correcta operación y su respectivo control, para ello es necesario realizar un análisis individual de dicho subsistema para poder dar marcha a la misma [1].

2.2 Marco Teórico

A continuación, se procede a describir la planta de trabajo IMS10, así como los programas y lenguajes de programación requeridos para la realización del proyecto.

2.2.1 Sistema de transporte de DC

La cinta transportadora es el sistema de transporte que sirve para conectar todos los subsistemas que conforman la planta industrial IPA 26, viene adaptada con una tarjeta electrónica de comunicación. Mediante este sistema se realiza el transporte del sixpack que se monta en un portador de piezas. Sirve de enlace entre sub-sistemas y se puede anexar con otras cintas transportadoras.

La cinta de transporte se compone de los siguientes módulos [2]:

Cinta doble de transporte.

En la Figura 2.1 que se muestra a continuación se puede observar la cinta transportadora con la respectiva descripción de sus componentes:

- 1. Correa de transporte, Longitud = 600mm.
- 2. Motor reductor de 24 VDC.
- 3. Sensor magnético de posición final derecha.
- 4. Módulo esclavo PROFIBUS DP.
- 5. Sensor magnético de posición final izquierda.

Figura 2.1: Cinta doble de transporte

Módulo esclavo PROFIBUS DP.

En la Figura 2.2 se puede observar la tarjeta electrónica de comunicación Profibus DP de la que hace uso la cinta transportadora y se realiza una descripción de sus componentes a continuación [4]:

- Alimentación de tensión "EXTERN IN" de la tarjeta electrónica (24VDC).
- 2. Puerto de comunicación para esclavo PROFIBUS DP.
- 3. Puerto D-SUB 9 polos para conexión directa con el controlador lógico programable.
- 4. Puerto D-SUB de 25 polos para conexión con los sub-sistemas de entrenamiento.
- 5. Entrada analógica externa "EXT" de 0-10 V para variar la velocidad de la cinta.
- Interruptor "SPEED" para selección de variación de velocidad de la cinta entre INT o EXT.
- 7. Potenciómetro "INT" para variación de velocidad de la cinta.
- 8. Bornes de entradas digitales para conexión de sensores.
- 9. Conectores M12 para conexión de sensores y actuadores adicionales.
- 10. Casquillos para la puesta en marcha de la cinta transportadora.

- 11. Interruptor "DIRECTION" para selección del sentido de dirección derecha o izquierda de la cinta.
- Conmutador para seleccionar la dirección del esclavo PROFIBUS DP.
- 13. Conexión del motor de la cinta transportadora.

Figura 2.2: Módulo esclavo PROFIBUS DP

Puesta en marcha de la cinta transportadora.

Para la puesta en marcha de la cinta transportadora los casquillos de alimentación de 24VDC "EXTERN IN" deben estar conectados.

Los casquillos de puesta en marcha "+24V" y "+24V OUT" deben estar puenteados.

El interruptor "SPEED" debe estar ubicado en la posición izquierda, de tal manera que mediante el potenciómetro "INT" podemos regular la velocidad de la cinta.

El interruptor "DIRECTION" se ubica en la posición izquierda o derecha dependiendo del sentido de desplazamiento de la cinta que deseamos [4].

Figura 2.3: Casquillos de puesta en marcha

En la Figura 2.3 se muestra la configuración de los casquillos de marcha "+24V" y "+24V OUT" para la puesta en marcha de la cinta transportadora.

2.2.2 Instrumentación del IPA 26:

Sensor magnético

Mediante los sensores magnéticos se puede obtener la posición de la pieza de trabajo durante su paso por las diferentes estaciones de trabajo; dicha pieza contiene un material magnético el cual permite su fácil detección al pasar por el sensor.

Cada estación de trabajo tiene un sensor magnético de entrada y salida por medio de los cuales se puede obtener la ubicación de la pieza de trabajo, inicial y final respectivamente; además se cuenta con tres sensores adicionales para poder cubrir las diferentes posiciones de las botellas del sixpack.

Figura 2.4: Sensor magnético

La Figura 2.4 muestra un sensor magnético detectando un pallet en la entrada de la estación de trabajo.

Motor Reductor DC

El sistema de transporte se encuentra gobernado por un motor reductor DC acoplado con dos correas de 60 cm que le da el movimiento de la pieza de trabajo por las diferentes estaciones de trabajo.

La tensión nominal de operación del motor es de 24 Vdc y puede girar hasta 1500 rpm; dentro de sistema IPA 26 se cuenta con uno de ellos por cada estación de trasporte IMS 1.2 que conforme el sistema de entrenamiento, ya que dicha estación es el vínculo que une los subsistemas individuales de la planta [6].

Figura 2.5: Motor reductor DC

En la Figura 2.5 se puede observar el motor con accionamiento de corriente continua el cual se encarga de dar el movimiento a la doble cinta transportadora.

2.2.3 Etapa de Control

Control Lógico Programable SIMATIC S7-300

Para realizar la programación del control secuencial del sistema de entrenamiento IPA 26 se cuenta con un equipo de marca reconocida a nivel industrial como lo es Siemens, con su producto de la línea de controladores lógicos programables SIMATIC el PLC S7-300 [8].

Figura 2.6: PLC SIEMENS SIMATIC S7-300

La Figura 2.6 muestra este controlador, el cual consta con una amplia gama de aplicaciones para el sector industrial tanto para procesos con arquitectura de control centralizada como descentralizadas; el PLC SIMATIC S7-300 presenta las siguientes características:

- CPU 314C-2 PN/DP.
- Voltaje de alimentación: 24 VDC.
- Software de programación: STEP 7. O
- Memoria de trabajo de 192 Kbyte.
- Memoria incorporada de 512Kbyte (Micro Memory Card).
- Entradas y salidas integradas. o Interfaz de comunicación integrada: MPI/PROFIBUS DP maestro/esclavo.

Figura 2.7: Estación de trabajo

El sistema de entrenamiento moderno IPA 26 ofrece además al usuario plataformas y varios accesorios para el uso del PLC formando un sistema modular tal como se muestra en la Figura 2.7 el cual está conformado por los siguientes componentes [5]:

- Consola estable con Riel DIN, para poder equipar por más módulos de la línea SIMATIC S7-300.
- o 24 entradas digitales de 24 VDC en conectores hembra de 4mm.
- 16 salidas digitales de 24 VDC en conectores hembra de 4mm.
- 4 entradas analógicas de 0-10V en conectores hembra de 4mm.
- salidas analógicas de 0-10V en conectores hembra de 4mm.
- Dimensiones: 297mm*456mm*125mm.
- Peso: 7Kg.

Panel Táctil SIMATIC TP 700

Uno de los avances más grandes en el mundo de la automatización industrial son las interfaces HMI (Interfaz Hombre-Máquina), las cuales sirven para llevar un entorno más cercano entre el usuario y el proceso a controlar o automatizar, permitiendo así convivir con un proceso industrial en tiempo real mediante paneles o pantallas táctiles para supervisión, control y monitoreo de posibles errores del proceso [9].

Dentro del sistema de entrenamiento moderno IPA 26 se cuenta con el panel TOUCH SIMATIC HMI TP 700 de la marca SIEMENS, el cual se puede observar en la Figura 2.8 y consta de las siguientes características:

Figura 2.8: Panel Touch HMI TP 700

- Pantalla táctil de 16 millones de colores y 7".
- Resolución de 800*400. o Software de Programación: TIA PORTAL Win CC Comfort.
- Puertos de comunicación Profinet (Ethernet Industrial). o 1
 Puerto de comunicación MPI/Profibus DP.
- Puertos de comunicación serial (USB).
- Voltaje de alimentación: 24 VDC.
- Dimensiones: 297mm*228mm*125mm.
- Peso: 3Kg.

2.2.4 Componentes

Placa Portadora de Piezas de Trabajo

También llamados pallets es un portador para alojamiento y transporte de piezas de trabajo sobre cintas transportadoras. El portador de piezas dispone de un sistema de identificación de 4 bits y un sensor de posición [5].

Figura 2.9: Placa Portadora de Piezas de Trabajo

Cable de conexión serie 9/9 polos

Cable Sub-D de 9 polos

- o Longitud: 2 m
- Conexión: 9 pines / 9 casquillos
- Asignación de contactos: 1:1

Figura 2.10: Cable de conexión serie 9/9 polos

La Figura 2.10 nos permite observar el cable para conectar la tarjeta de la cinta transportadora y la entrada /salida de los actuadores y sensores al PLC s7 300 para su respectiva comunicación.

Cable de interfaz de 25 polos, clavijero Sub-D / conector

Cable Sub-D de 25 polos

- o Longitud: 2m
- Conexión: conector de 25 pines / casquillo de 25 pines
 Asignación de contactos: 1:1

Figura 2.11: Cable de interfaz de 25 polos Sub-D

Los cables de medición de Seguridad

Figura 2.12: Los cables de medición de Seguridad

La Figura 2.12 nos muestra el Cable de medición de seguridad, con enchufes de 4mm, 100cm azul y rojo, 600 V, CAT III ~ 1000 V, CAT II / 32 A 2 apilables y a prueba de contacto que nos permite alimentar desde el tablero a la Tarjeta de la cinta transportadora y también conectar al multímetro para la respectiva medición.

2.2.5 Diagrama de Conexión de la planta IMS 10

Se requiere conectar de la siguiente manera los equipos que la conforman: de color rojo y azul se representa la alimentación de voltaje tanto para el HMI como para la estación de sellado, de color verde se representa el cable para la conexión Profinet entre Ordenador - PLC y PLC – HMI mientras que de color púrpura se muestra el cable para la conexión Profibus entre la tarjeta de comunicación de la estación y el PLC; finalmente el color gris es para indicar el cable de conexión Sub-D 25 para las entradas y salidas digitales del PLC.

La Figura 2.13 muestra el esquema de conexión de la estación de almacenamiento intermedio de pallets Lucas-Nülle IMS 10.

Figura 2.13: Diagrama de Conexión del IMS 10

CAPITULO 3

3. METOLOGÍA DE TRABAJO

En este capítulo se describen los métodos que se van a utilizar para el desarrollo del proyecto, el diseño de proceso de almacenamiento y liberación de pallets, el sistema Scada se diseñó en el software TIA PORTA V13, utilizando como interfaz el panel Touch SIMATIC HMI TP 700 de Siemens.

3.1 Planteamiento del Proceso

La Figura 3.1 nos muestra la secuencia del proceso, se desarrolla en lenguaje de bloques secuenciales FUP. Para el desarrollo se debe conocer totalmente el proceso del subsistema que tiene la planta IPA 26, luego para la programación de la planta se la realiza en bloques a través del Grafcet. Se procede hacer la comunicación con PROFIBUS DP; considerando todos los componentes que posee la planta ya sean sensores y actuadores. Para finalizar se compila y se carga el programa al controlador S7 300 para realizar la respectiva simulación.

Figura 3.1: Proceso secuencial

3.2 Implementación

Para su implementación, trabajamos con una herramienta muy didáctica y flexible que es compatible con la planta de almacenamiento intermedio IMS10 que es el controlador lógico programable (PLC) SIMATIC S7-300 con comunicación Profibus DP y multipunto para la tarjeta del IMS 10 y Profinet para el panel touch SIMATIC HMI TP 700 como nos muestra la Figura 3.2.

Figura 3.2 Implementación del proceso

3.2.1 PLC Siemens S7 300

Constituye un sistema de automatización universal, una solución óptima para aplicaciones en estructuras centralizadas y descentralizadas, Diseñado para soluciones de sistemas innovadores en la industria manufacturera. Dentro de la gama S7-300 existen varios módulos CPU, de acuerdo a las características con respecto a la tarjeta electrónica del almacenamiento intermedio IMS 10, escogimos el CPU 314C-2 PN/DP que es compatible con el módulo Profibus DP, para su comunicación mediante la interfaz física X1(MPI/DP), en la cual vamos a trabajar con entrada/salidas digitales como nos muestra la Figura 3.3.

Figura 3.3: Elementos y Señalización del CPU 314C-2 PN/DP

3.2.2 Software de programación TIA PORTAL V13

El TIA PORTAL(Totally Integrated Automation Portal) es un innovador Software de programación sencillo de fácil uso que Incorpora las últimas versiones de Software de Ingeniería SIMATIC STEP 7 Profesional [7], que permite configurar y programar los controladores SIMATIC S7-1200, **S7-300**, S7-400, S7-1500 y WinAC ofreciendo un entorno de ingeniería unificado para todas las tareas de control, visualización y accionamiento través en el desarrollo de lenguajes de programación (LAD, FBD, STL, SCL y SFC).

Figura 3.4: Pantalla Principal

La Figura 3.4 nos muestra la pantalla principal con el controlador S7 300 que vamos a utilizar durante el proceso para cargar el programa.

Figura 3.5: Pantalla de vista de redes

La Figura 3.5 nos muestra la vista de redes con los diferentes dispositivos que vamos a usar en el proceso como: el PLC S7 300, panel touch HMI y los esclavos.

3.2.3 Lenguaje de programación

En la actualidad existen varios lenguajes de programación para los PLC entre ellos el más usado es el de escalera (Ladder), debido a que está basado en los esquemas eléctricos de control clásicos pero cuando empezaron a existir los sistemas mecatrónicos de control hubo una necesidad de implementar un lenguaje que encerrara las funciones lógicas, aritméticas incluyendo algunos componentes ladder y que mejor opción que mejor que el diagrama de secuencia funcional (SFC), que es un lenguaje gráficos bien estructurado que permite describir el desarrollo en el tiempo de distintas acciones dentro de un programa, compuesta por elementos llamados estados y transiciones, como se muestra en la Figura 3.6 En STEP 7 este lenguaje se denomina lenguaje gráfico de programación Grafcet.

Figura 3.6: Diagrama de Secuencia Funcional (SFC)

Al principio se realizó el lenguaje Grafcet para entender mejor el proceso individual, teniendo en cuenta que el desarrollo de la programación lo vamos a realizar en lenguaje de bloque con lo cual nos permite programar sin complejidad. Para realizar la programación debemos seleccionar FUP al momento de seleccionar los bloques ya que se relaciona el lenguaje Grafcet en TIA PROTAL V13 mediante bloques.

Se van a dividir en dos partes: En el proceso de llenado y liberado de pallets del sistema de control mediante la herramienta de programación GRAFCET con la identificación de cada uno de los sensores y cilindros con sus respectivas entradas y salidas, de cada proceso para el sistema.

3.2.4 Proceso para el almacenamiento de pallets

En la planta para dar inicio al proceso se lo puede realizar de forma física activando el selector o por medio del HMI con el botón de almacenar, luego se considera el sensor de posición B1 en la cual se activa cuando el pallet está avanzando en la posición inicial, como se muestra en la Figura 3.7.

Figura 3.7: Sensor magnetico izquierda

- 1. Sensor magnético de posición.
- 2. Portador de botellas
- 3. Pallet

Después de unos segundos antes que llegue el pallet se activa el cilindro de parada con la posición avance definiendo como salida. La Figura 3.8 nos muestra el cilindro de parada antes que se active y detenga el pallet justo debajo del almacén.

Figura 3.8: Cilindro de Parada

Una vez que el pallet se encuentra dentro del almacén se encuentran tres cilindros, dos que son paralelos que se van activar al mismo tiempo y en medio de los dos se encuentran el cilindro de elevación, como se muestra en la Figura 3.9, en la cual los cilindros ayudan al pallet a elevarse correctamente para su respectivo almacenamiento.

Figura 3.9: Cilindros Paralelos y de Elevación

En la Figura 3.9 se puede observar los cilindros que realizan la elevación de cada pallet a continuación una descripción de sus componentes:

- Cilindros paralelos M4, que se activan primero en la posición de adelanto.
- 2. Cilindro de elevación M3 en la posición de adelanto, que se encuentra en medio de los cilindros paralelos.
- Sensor magnético B7 en la posición de adelanto del cilindro elevador.
- 4. Sensor magnético B5 en la posición de retroceso del cilindro elevador.

- 5. Sensor magnético B6 en la posición de adelanto del cilindro paralelo.
- Sensor magnético B4 en la posición de adelanto del cilindro paralelo.

En la misma Figura 3.9, se observa uno de los cilindros posee un sensor de posición, que inicialmente están en la posición de retroceso. Al momento de activarse primero el cilindro paralelo en la posición de avance con el sensor de posición, el cilindro de elevación con el sensor de posición ayuda a los pallets para su almacenamiento.

El pallet queda ubicado correctamente en el almacén cuando se activan los cilindros de separación y el pallet queda sobre estos cilindros. Como nos muestra la Figura 3.10,

Figura 3.10: Cilindros de Separación

- 1. Plataforma para pallets
- 2. Cilindros de separación

Cuando el almacén se llene al tope con los pallets, se activa el sensor de fin de carrera mostrando un mensaje que aparecerá en la pantalla del HMI indicando que el almacén está lleno y luego los cilindros ya mencionados vuelven a sus posiciones iniciales.

Figura 3.11: Almacén lleno fin del proceso

- 1. Almacén
- 2. Sensor magnético. Final de carrera

La Figura 3.11 muestra cuando el almacén se va a llenar completamente antes que se active el sensor de fin de carrera.

Figura 3.12: Proceso de almacenamiento

La Figura 3.12 nos muestra el proceso de almacenamiento de los pallets que empieza con el sensor magnético izquierda después de unos segundos el cilindro de parada detiene los pallets para activar los cilindros paralelos y de elevación en posición de avance, al elevarse la plataforma los cilindros de separación se activan para ubicar correctamente los pallets en el almacén, para finalizar los cilindros paralelos y de elevación en posición de retroceso y regresan al estado inicial.

3.2.5 Procesos para liberación de pallets

Inicialmente el almacén se encuentra lleno y los cilindros se encuentran en la posición inicial, tal como se muestra en la Figura 3.13 activamos los cilindros paralelos en la posición de avance con el sensor de posición y luego el de elevación en la posición de avance con el sensor de posición para levantar la plataforma y bajar los pallets, entonces el cilindro de separación se mantiene activado hasta que se activen los cilindros paralelos y de elevación en posición de retroceso para liberar cada pallet, luego de haber bajado cada pallet los cilindros vuelven a la posición inicial para que el pallet sea transportado hasta activar el sensor magnético ubicado del lado derecho de la planta, con el fin de agilizar el proceso

Figura 3.13: Proceso de liberación

La Figura 3.14 nos muestra cómo se activa el sensor magnético del lado derecho de salida al momento que el último pallet es liberado.

Figura 3.14: Sensor magnético derecha

Figura 3.15: Proceso de Liberación de pallets

La Figura 3.15 nos muestra el proceso de liberación de los pallets empieza activando los cilindros paralelos y de elevación en posición de avance después de unos segundos se activan los cilindros de separación, luego se activan los cilindros paralelos y de elevación en posición de retroceso para que puedan ser liberados correctamente, por último los pallets son transportados hasta el sensor magnético derecha.

3.3 Categorías del software para modelado 3D

Los mejores programas para modelado en 3D que se encuentran actualmente disponibles en el mercado, diferenciados de acuerdo a tus necesidades o requerimientos creativos y profesionales. El software para modelado en 3D puede estar orientado hacia las artes, esculturas, cine, o a la ingeniería. A menudo puede ser difícil lograr un objetivo de diseño si estás utilizando el software incorrecto [10].

3.3.1 Programas para modelado 3D artístico

Para crear un modelo 3D artístico a continuación, se encuentran algunos programas de software que permiten lograr un objetivo [10].

ZBrush

Este programa es una solución todo en uno para realizar esculturas digitales, diseñado para aquellos que buscan crear una obra de arte. Esta herramienta se utiliza para la creación de modelos de alta resolución para su uso en juegos, modelos, y animación. ZBrush es más conocido por ser capaz de esculpir los detalles de media a alta frecuencia que fueron pintados tradicionalmente en mapas de relieve.

Blender

Este software de diseño 3D se utiliza normalmente para la creación de películas de animación, efectos visuales, arte, modelos 3D para impresión, aplicaciones 3D interactivas y juegos de video. Este programa es de gran alcance, y puede ser muy difícil de aprender. Este software es muy práctico para realizar mejoras y modificaciones a los archivos STL.

Lightwave

Este programa sirve para hacer el modelado en 3D y gráficos profesionales se utilizan normalmente para películas y televisión. Por lo general están orientados para el verdadero profesional del modelado en 3D. Incluyen motores de renderizado rápido que soportan características avanzadas tales como, reflexión realista y la refracción, radiosidad, cáusticos, y nodos. Estos paquetes se han utilizado en las grandes películas, como Avatar, Iron Man, y en varias escenas de la nueva Star Wars: The Force Awakens.

Sculptris

Este software de diseño 3D ofrece a los artistas mucha libertad para esculpir modelos con herramientas simples. Toma unos minutos para comenzar y el proceso se vuelve más fluido en la medida que el usuario se acostumbra a los comandos.

3.3.2 Programas para modelado 3D en ingeniería

Para Si usted está más interesado en el aspecto de ingeniería al crear un modelo en 3D, te sugiero los siguientes programas para modelado 3D [11].

123D Design

Esta es una versión reducida de Autodesk Inventor y parte de un conjunto de aplicaciones que incluyen herramientas para la exploración, la escultura, la electrónica, el diseño 2D y más. Este programa es de gran alcance y fácil de usar.

TinkerCAD

Esta herramienta es fácil de usar, se ejecuta en el navegador web. Utiliza el modelado booleano para hacer objetos utilizando formas como bloques de construcción. Combina las formas básicas para crear diseños más complejos.

Sketchup

Hecho originalmente para el diseño arquitectónico, este software es fácil de aprender, pero no va a proporcionar todas las herramientas que se encuentran con otro software. La robustez del archivo puede ser impredecible cuando se trata de la impresión en 3D.

OpenSCAD

Este software utiliza un lenguaje de programación para crear objetos, debes saber programar para poder utilizarlo.

FreeCAD

Es un software de modelado paramétrico, que le permite modificar fácilmente su diseño, e ir al historial del modelo y cambiar sus parámetros. Buen programa para convertir archivos STEP a STL.

Rhino

Este programa es uno de los programas más confiables para la conversión de tipos de archivo. La arquitectura abierta de Rhino les permite a los usuarios utilizar Rhino como plataforma de desarrollo: un SDK C ++ y una serie de métodos de secuencias de comandos (RhinoScript) permiten a los programadores de cualquier nivel de experiencia poder personalizar y automatizar Rhino y ampliar sus capacidades.

Mol

Diseñado para tener una interfaz de usuario intuitiva para reemplazar los programas de CAD complicados, este programa tiene como objetivo proporcionar una rápida creación de modelos para los diseñadores y artistas.

Autodesk Fusión 360

Este es el software de diseño 3D favorito entre la comunidad, este potente programa sirve tanto para el diseño en ingeniería como también para el diseño y modelado de formas, también posee características útiles para el mundo de la impresión en 3D como la capacidad de generar trayectorias para herramientas CNC.

Sculptris

Este software de diseño 3D ofrece a los artistas mucha libertad para esculpir modelos con herramientas simples. Toma unos minutos para

comenzar y el proceso se vuelve más fluido en la medida que el usuario se acostumbra a los comandos.

SolidWorks

Este software de grado profesional; SolidWorks suelen ser utilizados por los ingenieros de diseño profesionales. Dicho esto, pertenecen a la parte superior de las herramientas de diseño de la línea 3D.

Onshape

Este producto totalmente basado en la nube se ejecuta en todos los sistemas operativos dentro de un navegador web. Sus características están a la par con la mayoría de los líderes de la industria. Creado por el equipo de SolidWorks. Si estás familiarizado con Solidworks, te va ser muy fácil de usar.

3.3.3 Visión del modelado en 3D

El modelado de sólidos en 3D con SolidWorks agiliza la creación de piezas complejas y ensamblajes grandes. Crear modelos sólidos en 3D de sus diseños en lugar de dibujos en 2D:

- Agiliza el desarrollo y los detalles del diseño.
- Mejora la visualización y la comunicación.
- Elimina los problemas de interferencias del diseño.
- Comprueba la funcionalidad y el rendimiento del diseño.

Proporciona de forma automática la fabricación con modelos sólidos en 3D, necesarios al programar máquinas herramienta de CNC y equipo de prototipos rápidos.

Las operaciones clave de modelado de sólidos en 3D de SolidWorks le permiten:

 Crear modelos sólidos en 3D de cualquier pieza y ensamblaje, sin importar lo grande o complejos que sean.

- Mantener todos los modelos en 3D, dibujos en 2D y otros diseños y documentos de fabricación sincronizados gracias a la asociatividad, que realiza seguimientos y actualizaciones de forma automática.
- Hacer variaciones de los diseños rápidamente, mediante el control de los parámetros de diseño claves.
- Editar directamente el modelo con solo hacer clic y arrastrar geometría del modelo.
- Generar superficies para cualquier geometría en 3D, incluso formas estilizadas y orgánicas complejas.
- Analizar de forma instantánea el modelo en 3D para obtener cualquier propiedad de volumen y masa sólida (masa, densidad, volumen, momentos de inercia, etc.).

3.4 Solidwork

Solidworks es un programa de diseño mecánico en 3D que ahorra tiempo y costos de desarrollo, con el que puedes crear geometría usando solidos paramétricos para aumentar la productividad con las funciones del programa. El modelado de sólidos en 3D es un aspecto fundamental para el desarrollo de productos modernos y proporcionar la base para el diseño, la simulación y la fabricación de cualquier pieza y ensamblaje de una amplia gama de sectores, aplicaciones y productos.

Para diseñar el modelado en 3D de la planta de almacenamiento intermedio IMS 10 se utilizó como herramienta principal el software de diseño mecánico en 3D Solidworks, gracias a su fácil manejo de las herramientas para modelar en 3D, en él se simularon las diferentes piezas que tiene la planta IMS 10; para esto se tomaron las respectivas medidas de cada uno de los elementos que componen el IMS10 usando un flexómetro como podemos observar en la Figura 3.16, dado que no se tenía esos datos en los diferentes manuales del IPA26.

Figura 3.16: Medidas reales de la planta

3.4.1 Descripción de las pantallas en solidworks

	1	
S SOLIDWORKS 🕨 📋	- 💕 - 🔚 - 🌭 - 🎒 - 🔍 - 🚦 🖆 🔙 -	Pieza2 *
Croquis Cota inteligente	<i>O</i> • Kai <u>Recordar</u> <u>Convertir</u> <u>Recordar</u> <u>Convertir</u> <u>Convertir</u> <u>Convertir</u> <u>Convertir</u> <u>Equidistanciar entidades <u>Convertir</u> <u>Equidistanciar entidades <u>Convertir</u> <u>Equidistanciar entidades <u>Convertir</u> <u>Equidistanciar entidades </u></u></u></u>	Capturas rápidas *
Operaciones Croquis Piezas so	dadas Calcular DimXpert Complementos de SOLIDWORKS SOLIDWORKS MBD 🛛 😋 👸 🏀	🔍 🗞 🎬 - 🗊 -
🤏 😤 🕀 🤗 👋	Nuevo documento de SOLIDWORKS	
Pieza2 (Predeterminado <com Bi Historial Sensores A Anotaciones</com 	Vina representación en 3D de un único	
- ⋚∃ Material <sin especificar=""> - ☆ Alzado - ☆ Planta - ☆ Vista lateral - ♣. Origen</sin>	una disposición en 3D de piezas y/o ot <u>ras</u> Ensambiaje	
- 🔟 Pieza soldada	un dibujo técnico en 2D, normalmente de una pieza o de un ensamblaje	
	Avanzado Aceptar Cancelar Ayuda	

Figura 3.17: Pantalla inicial de solidworks

La Figura 3.17 muestra la interfaz inicial la cual se utiliza para crear un nuevo documento puede ser una pieza o un ensamblaje de acuerdo a lo que queremos diseñar.

1. Botón. Crea un nuevo documento.

- 2. Botón. Crea una nueva pieza.
- 3. Botón. Crea un nuevo ensamblaje.
- 4. Botón. Crea un nuevo dibujo en 2D.

Figura 3.18: Pantalla principal de trabajo

La Figura 3.18 nos muestra la pantalla principal en cual podemos diseñar cualquier modelo en 3D, puede ser una pieza o un ensamblaje.

- 1. Botón. Crea un croquis en 2D y 3D en cualquier plano.
- Botón. Crea una cota inteligente que nos sirve para medir cualquier diseño en un plano.
- 3. Botones. Crean diferentes formas en el plano sea una recta, circulo o rectángulo.
- 4. Planos. Área de trabajo

Figura 3.19: Área de trabajo para el diseño

En la Figura3.19 podemos observar nuestro diseño 3D de la base principal del almacén de los pallets y la banda transportadora.

3.5 Diseño del tablero de control

Como referencia para la construcción del tablero de control didáctico que posee la planta IPA 26. Se tomó como medida el tablero existente, se tuvo que proceder a reconocer el tablero, tanto por fuera como por dentro del mismo, como en la Figura 3.20.

Figura 3.20: Desmontaje del tablero original

3.6 Diseño del Sistema Scada del Proceso

El diseño del sistema Scada en la planta IMS 10, se lo realiza en base a la programación ya existente dentro del programa, las señales que se utilizan para comunicar el PLC con el HMI, se crean nuevas variables para las nuevas funciones, con esas variables ya creadas se procede a programar. La pantalla del HMI se ha dividido en varias secciones; la primera será una visualización general del proceso donde se podrá observar el almacén de pallets, la banda transportadora con sus respectivos sensores y actuadores. La otra sección es un manual de ayuda con el fin que el usuario que vaya sin conocimientos a utilizar la planta tome las debidas precauciones al momento de iniciar el proceso. Dentro de esta sección podemos visualizar, el funcionamiento del proceso, las partes de la planta, funcionamiento del proceso en forma virtual y en forma física; por último en caso de emergencia que hacer o cómo reaccionar.

CAPITULO 4

4. RESULTADOS Y ANÁLISIS DE LA IMPLEMENTACIÓN

En el presente capitulo, durante el diseño e implementación del sistema se realizaron algunas mediciones y pruebas, para garantizar el funcionamiento de la planta correctamente. Durante el proceso se vio en la necesidad de realizar algún cambio debido a errores y fallas en la programación, para el funcionamiento adecuado para la automatización de la planta de almacenamiento intermedio IMS 10.

4.1 Análisis Comparativo del subsistema IMS 10

Existen sistemas mecatrónicos y equipos a nivel industrial en la ESPOL, como en el caso del almacenamiento intermedio IMS 10 como nos muestra Figura 4.1, que no contaba con el funcionamiento de la misma, pero gracias a la descripción de sus componentes físicas, sensores y actuadores. Se analizó las posibilidades técnicas y tecnológicas durante la implementación, existentes otros subsistemas para el proceso e investigación para las mejoras en el sistema de la IPA 26, para lograr una automatización optima y eficiente de la IMS 10, se debe realizar tal como se aprendió en las aulas de clases, cumpliendo con muy alto grado de satisfacción, con los objetivos planteados constituyendo una aportación importante al desarrollo industrial, y una referencia para la investigación de procesos industriales.

Figura 4.1: Funcionamiento de la Planta IMS 10

4.1.1 Comunicación del Proceso

La comunicación entre los dispositivos del proceso, se lo realizo mediante los protocolos; Profibus DP, para comunicarse con la tarjeta Profibus DP y el protocolo Profinet, este se utilizó para comunicar el HMI con el PLC.

El uso de la tarjeta Profibus DP, se tuvo que agregar el módulo de I/O (entrada-salida), hay que tener en cuenta que este dispositivo no pertenece a la familia de módulos I/O de siemens, por lo que se tendrá que instalar el Driver del fabricante, en este caso el de Lucas-Nülle. Tomando en consideración que al igual que cualquier otro módulo que se agregue al PLC, este ocupa parte de la memoria del controlador, por lo que se tuvo que tomar las debidas precauciones para designar las direcciones de memoria del esclavo Profibus, con el fin de no provocar un conflicto de uso de memoria, al momento de compilar el programa.

4.1.2 Sistema Scada del proceso

El sistema Scada que utiliza la planta IPA 26, carece de detalles, ya que solo se puede ingresar ciertos parámetros para el proceso, y como ya se mencionó anteriormente, no se cuenta con procesos individuales, así que, partiendo de esta necesidad, se procedió al desarrollo del Scada de la planta IMS10.

Para realizar el Scada del proceso, se seleccionó las variables concernientes al proceso. Para tener un mejor esquema lo más real posible de la planta se realizó un diseño mediante gráficos. Los sensores y actuadores fueron llamados con las variables creadas en el bloque de instrucciones, se podrán visualizar el estado de dichos dispositivos como nos muestra la Figura 4.2 y Figura 4.3.

Figura 4.2: Pantalla principal del Scada

Figura 4.3: Simulación del Scada

4.1.3 Modelado 3D del proceso

El modelado fue diseñado por partes la base principal del almacén cada sensor y actuador como nos muestra la Figura 4.4 y Figura 4.5.

Figura 4.4: Sensores

Figura 4.5: Modelado 3D

4.1.4 Tablero de control

Para tener una mayor accesibilidad a las diferentes plantas, se tiene que utilizar el tablero de control que posee la planta originalmente, esto obstaculiza el uso de otra planta ya que solo se puede operar una planta a la vez, por lo que significa una limitación. El tablero desarrollado en este proyecto, permite usar más de una planta a la vez, donde se aumenta la disponibilidad de los distintos procesos. El tablero didáctico de control, que se muestra en la figura 4.8, es una réplica bastante aproximada al que trae la planta IPA26, donde se utiliza el mismo esquema de trabajo, el diseño del tablero puede ser adaptado a cualquier controlador (PLC), ya que la disposición de las tarjetas de I/O e interface de comunicación, posee el estándar de conexión (terminal tipo bornera).

Figura 4.6: Tablero de control

4.2 Análisis de los Resultados del Subsistema

4.2.1 Comunicación y Carga del Programa

La utilización de un PLC Siemens S7 300 dentro del sistema de control dio una confiabilidad y precisión el cual hoy en día es usado por muchas de las industrias, las cuales confían en este sistema para llevar a cabo la automatización de sus procesos ya que tiene un hardware diseñado para trabajar en ambientes industriales haciendo que la probabilidad de fallo sea casi nula. Y logrando que parte de la comunicación entre el S7-300 y el IMS10 fuese robusta y adaptable, esto lo demuestra el protocolo Profibus DP que maneja la parte de interacción entre estos entes, y también el protocolo Profinet para la comunicación del S7-300 con el HMI, como funciona acorde a lo requerido en la automatización a través del programa Tía Portal V13

reconociendo fácilmente las direcciones IP de cada dispositivo como se observa en la Figura 4.7 listo para cargar el programa.

xtended download	to device						
	Configured acc	ess nodes of "PLC_1"					
	Device	Device type	Slot	Type	Address	Sub	net
	PLC 1	CPU 314C-2 PN/DP	2 X2	PN/IE	192,168,47,100	PN/	E 1
		CPU 314C-2 PN/DP	2 X1	PROFIBUS	2	PRC	FIBUS 1
							-
Type of the PG/PC interface: 🔍 PN//F							•
		PG/PC inte	rface:	Intel(R) PRO/1000 MT Network Connection			- • •
		Connection to interface/su	bnet:	PN/IE_1			-
		1st gat	eway:				- 🕐
	Compatible dev	vices in target subnet:			🛃 Show all compat	ible devices	
	Device	Device type	Туре	A	ddress	Target o	levice
New York	PLC_1	CPU 314C-2 PN/DP	PN/IE	1	92.168.47.100	PLC_1	
91. III	-	-	PN/IE	A	ccess address		
Flash LED							
Online status informati	ion:					<u></u> 1	tart search
	information						
Scan and informat	tion retrieval comple	eted.					1
Display only error	messages						~
						a 11	General
					Loa	10	<u>c</u> ancel

Figura 4.7: Comunicación y Carga del PLC S7-300

4.2.2 Resultados de la programación sobre el IMS 10

Se realizó la correcta carga del programa, tanto del proceso de llenado como el proceso de liberación al PCL S7-300 a través del software TIA portal V13, compilando toda su programación de bloques y sin ningún error tal como se observa en la Figura 4.7.

Figura 4.8: Resultados de la Programación sobre el IMS10

La Figura 4.8 nos muestra que no existieron errores de sintaxis, existieron algunos inconvenientes al momento de operar la planta, y es donde ahí se menciona la necesidad de realizar algunos cambios durante la implementación, pero solamente su programación.

Uno de los problemas que sucedió durante las pruebas, es que el pallet quedaba mal alineado con respecto a la plataforma quedando atrapado entre los filos del almacén debido a que estaba mal configurado el tiempo de desplazamiento de la banda que estaba en 2 segundos, pero lo cambiamos a 5 segundos tal como se observa en un fragmento de su programación de la Figura 4.9.

Figura 4.9: Cambio en el Temp_2

Y por último uno de las más importantes dificultades, es que empezaba a realizar un ciclo infinito en la parte de proceso almacenamiento, impidiendo que realice la parte de liberación, el único cambio que se realizó en su programación es agregando un contador, que almacena solamente 4 pallets tanto vacías como llenas, como se observa en la figura 4.10.

Figura 4.10: Cambio en el tiempo

4.2.3 Análisis Económico del Sistema

El estudio económico de la tecnología Lucas Nulle, está encaminado al análisis de los costos de las componentes e instalación de la planta de almacenamiento intermedio IMS 10 en dolares.

Items	Cant.	V. Unitario	V. Total
Estación de Almacenamiento intermedio	1	9,007.52	9,007.52
del material			
Segmento de cinta Transportadora doble	6	4,693.76	28,162.56
de 24V.			
Curva de 108 grados para segmento de	2	2,932.08	5,864.16
cinta transportadora			
Placas portadora de piezas de trabajo.	4	320.72	1,282.88
Cable de interfaz de 25 polos, clavijero	1	21.13	21.13
Sub-D / conector			
SIMATIC S7-300 14C-2 PN/DP	1	5,494.80	5,494.80
Touch Panel TP177B Trainer Package	1	2,597.68	2,597.68
Cable de medición de seguridad 4mm	1	12.01	12.01
100 cm azul			
Cable de medición de seguridad 4mm	1	9.50	12.01
100 cm azul			
Enchufe de conexión para Profibus con	1	141.36	141.36
casquillo PG y resistencia terminal.			
Cable de conexión para Profibus, por	1	3.95	3.95
metro			
		TOTAL	262000.81
		IVA 12%	314400.97
		SUBTOTAL	293440.90

Tabla 4-1: Costos de los componentes de la planta del IMS 10

En la presente Tabla 4.1, se tiene los costos que hemos tomado como referencia el valor de cada una de las componentes de la planta de almacenamiento intermedio IMS 10, que forma parte de un contrato que hizo la ESPOL en el 2015 por la adquisición del sixpack IPA 26 (Industrial Process Automation) perteneciente a la marca LUCAS-NÜLLE [10].

CONCLUSIONES Y RECOMENDACIONES

Se realizó con éxito el desarrollo de las guías prácticas, que describe su comunicación programación e implementación entre el controlador y la planta, para que en un futuro los estudiantes puedan automatizar sistemas de almacenamientos intermedios a nivel industrial.

Gracias a la revisión de los manuales que posee el fabricante del sistema mecatrónico Lucas Nulle y a la identificación de las entrada y salidas, se realizó con éxito la respectiva automatización de la planta de almacenamiento intermedio IMS10 con la correcta elección del PLC S7-300 que se lo utilizo para el control y por ende su optimización.

En la cual se ha validado algunos parámetros, como tiempo para alineación y posición de retroceso de los cilindros tanto el proceso de vaciado como el proceso de llenado, y un panel touch HMI TP-700 para la visualización del proceso.

Para no incurrir en el fallo en el funcionamiento, antes de correr por completo el programa, se debe realizar la respectiva simulación con el S7-PLCsim, forzando algunas entradas y salidas que se han definido en la programación del TIA Portal.

Se requiere la amplia inspección de la planta durante la implementación, para evitar que la paleta sea alinean mal con la plataforma de los cilindros de elevación y paralelo en el proceso de llenado, así poder realizar los cambios a los bloques temporizadores en la programación.

Para los respectivos cambios en la programación, es bueno validar algunos parámetros.

Se implementó con éxito de acuerdo al diseño y a sus parámetros la estación de trabajo del controlador S7-300 permitiendo que trabaje con las demás plantas mediante la comunicación Profibus DP y de manera aislada con la comunicación punto a punto.

Con la selección correcta del controlador S7-300, no solo identificamos las entradas y salidas de la planta IMS 10 sino que se implementó de manera exitosa su programación con el lenguaje de funciones secuenciales, mediante el diagrama grafcet para el control de la planta.

Se realizó con éxito el diseño del sistema Scada en TIA PORTAL para que el control del proceso sea mucho más real.

Para el modelamiento en 3D se pudo diseñar correctamente todos los componentes de la planta para tener una mejor visión de cada componente al momento de familiarizarse con cada uno d ellos.

BIBLIOGRAFÍA

[1] Lucas-Nülle. (2016). IPA 26 Flexible Produktionsanlage mit 6 Stationen [Online]. **Disponible en:** <u>https://www.lucas-nuelle.es/2273/apg/8313/IPA-26-</u>Planta-deproduccioacute;n-con-6-subsistemas.htm.

[2] Lucas-Nülle. (2016). Sistemas IMS de flujo de material [Online]. **Disponible** en: <u>https://www.lucas-nuelle.es/2273/apg/7789/Sistemas-IMS-de-flujo-de-</u> material.htm.

[3] Lucas-Nülle. (2016). Estaciones IMS [Online]. Disponible en: https://www.lucas-nuelle.es/2273/apg/7796/Estaciones-IMS.htm.

[5] Lucas-Nülle. (2016). IMS 10 Almacenmiento intermedio [Online]. Disponible
 en: <u>https://www.lucas-nuelle.es/2273/apg/7677/IMS-10-Almacenamiento-intermedio-.htm</u>.

[6] Lucas-Nülle. (2016). Umbausatz IMS Förderband [Online]. Disponible en: https://www.lucas-nuelle.es/2273/apg/8518/Umbausatz- IMSFouml;rderband.htm.

[7] Siemens AG. (1996). Tia portal [Online]. Disponible en: http://w5.siemens.com/spain/web/es/industry/automatizacion/simatic/Tia-Portal/tia_portal/Pages/TIA-Portal.aspx

[8] Siemens. (2011).SIMATIC S7-300 CPU 31xC y CPU 31 [Online].Disponibleen:

http://w5.siemens.com/spain/web/es/industry/automatizacion/simatic/controla dores_modulares/Documents/S7300ManualProducto.pdf. [9] Siemens. (2012). SIMATIC HMI HMI devices Comfort Panels [Online]. Disponible en:

https://cache.industry.siemens.com/dl/files/233/49313233/att_59649/v1/mi_co mfort_panels_operating_instructions_en-US_en-US.pdf.

 [10] Lawrence Ramdohr. (2016). Los Mejores Programas para Modelado en

 3D
 [Online].

 https://www.newzzniper.com/2016/02/21/losmejores-programas-para

 modelado-en-3d/.

[11] SolidWorks Corporation. (2017). Modelado de sólidos en 3D [Online].Disponibleen:https://www.solidworks.es/sw/products/3d-cad/3d-solidmodeling.htm.

[12] ESCUELA SUPERIOR POLITECNICA DEL LITORAL. (2015). CONTRATO No. 001-2015 [Online]. Disponible en: http://www.transparencia.espol.edu.ec/sites/transparencia.espol.edu.ec/files/c ontratos_colectivos/sr.%20juan%20chafla%20gonzalez.pdf.

[13] E. A. Férez-L. A. Miranda, "Control secuencial mediante grafcet del sistema de entrenamiento moderno ipa-23 de lucas nulle: mezclado, llenado y envasado de botellas," Trabajo final para la obtención del título, Fac. Ing. Elect. y Comp, Univ. Espol, Guayaquil, EC, 2016.

ANEXO 1

Lista de variables del PLC

A continuación, se muestra las direcciones asignadas a las entradas, salidas y marcas utilizadas en la programación como se muestra en la Figura_AN-1.

Variab	Variables PLC						
	Nombre	Tipo de datos	Dirección				
-	M_IMS10_INICIO	Bool	%6MO.0				
-	I_FIN_CARRERA	Bool	9610.6				
-	T_DELAY_ESTADO1	Timer	96TO				
-00	M_IMS10_START	Bool	96MO.1				
-00	I_IMS10_B8_SEPARACION	Bool	9610.5				
-000	M_RESET_CONTADOR	Bool	96MO.2				
-010	MW_CANTIDAD_PALLET	Int	96MWO				
-	T_DELAY_ESTADO2	Timer	96T1				
-00	I_IMS_10_B1_SENSOR_IZQUIERDA	Bool	9611.3				
-000	T_DELAY_ESTADO4	Timer	96T2				
-000	I_IMS_10_B5_CIL_PAR_AVANCE	Bool	9610.2				
-	T_DELAY_ESTADO6	Timer	96T3				
-910	I_IMS_10_B4_CIL_PAR_RETROCESO	Bool	96IO.1				
-00	I_IMS_10_B6_CIL_ELEV_RETROCESO	Bool	9610.3				
-00	Q_IMS_10_MOTOR_ADELANTE	Bool	%Q1.0				
-00	QS_IMS_10_MOTOR_LENTO	Bool	%Q1.2				
-000	Q_IMS_10_M3_CIL_NEU_ELEVADOR	Bool	%Q0.1				
-000	I_IMS_10_INICIO_FISICO	Bool	%1200.0				
-00	M_IMS_10_INICIO_HMI	Bool	%M0.3				
-00	Q_IMS_10_M2_CIL_MED_PARADA	Bool	%Q0.0				
-00	Q_IMS_10_M4_CIL_LAT_PARALELO	Bool	%Q0.2				
-000	I_IMS_10_ALMACENAR_FISICO	Bool	961200.1				
-	M_IMS_10_ALMACENAR_HMI	Bool	%M0.4				
-	Q_ESCLAVO8_MOTOR_ADELANTE	Bool	%Q3.0				
-	QS_ESCLAVO8_MOTOR_LENTO	Bool	%Q3.2				
-00	M_RESET_HMI	Bool	96M0.6				
-00	I_RESET_FISICO	Bool	961200.2				
-	M_IMS_10_LIBERAR	Bool	96M0.7				
-000	T_DELAY_ESTADO2_LIBERAR	Timer	96T4				
-	M_IMS_10_LIBERAR_HMI	Bool	96M1.1				
-	I_IMS_10_LIBERAR_FISICO	Bool	%1200.3				
-00	T_DELAY_ESTADO4_LIBERAR	Timer	9675				
-00	I_IMS_10_B2_SENSOR_DERECHA	Bool	9611.4				
-	T_DELAY_ESTADO8_LIBERAR	Timer	96TG				
-	Q_IMS_10_M5_CILINDRO_SEPARADOR	Bool	%Q0.3				
-	MW_NUMERO_PALLETS_HMI	Word	96MW2				
-	IMS10_INICIO_HMI	Bool	96M7.0				
-00	IMS_10_LIBERAR_HMI	Bool	96M7.1				
-	M_ALMACEN_LLENO	Bool	96M7.2				
-671	M VACIO	Bool	96M7.5				

Figura_AN-1: Dirección de entradas/salidas y marcas

Figura_AN-2: GRAFCET - Proceso de almacenado IMS10.

La Figura_AN-2 muestra el diagrama de control GRAFCET implementado en TIA PORTAL para el proceso de llenado correspondiente al almacén del IMS10, el detalle del listado de instrucciones por etapas y condiciones de transición para el proceso se presentan en la Tabla_AN-1. Descripción de las condiciones e instrucciones del proceso de almacenado de los pallets.

Comandos del estado 1	Nada				
Secuencia de transición del Estado 1 al 2	Al presionar cualquiera delas dos botoneras,				
	ya sea la física la del HMI para empezar				
	almacenar se verifica si los controles de				
	contador de paletas no estén en el almacén,				
	si se cumple empieza el proceso de				
	almacenamiento.				
Comandos del estado 2	Las piezas inicialmente juntas avanzan lento				
	al pasar a la otra banda cambia de velocidad				
	separándose a una cierta distancia y luego				
	se ordenan al pasar por la banda				
	transportadora de IMS10.				
Secuencia de transición del Estado 2 al 3	Luego que las piezas está bien formadas a				
	cierta distancia permitiendo que una por una				
	pase por el sensor B1 de la izquierda.				
Comando del Estado 3	Lentamente avance la paleta, después de				
	unos instantes. Se activa el cilindro de				
	parada B3 quedando la paleta dentro del				
	almacén.				
Secuencia de transición del Estado 3 al 4	Espera 6 segundos para que pase de un				
	estado a otro.				
Comando del Estado 4	Se activa el cilindro elevador				
Secuencia de transición del Estado 4 al 5	La paleta se encuentra en la posición de				
	avance activando el sensor B5 del cilindro				
	paralelo.				
Comandos del Estado 5	Aun el cilindro paralelo se encuentra				
	activado en la posición de avance y ahí				
	mismo se activa el cilindro de elevación para				
	que la paleta se almacene de una vez.				

Secuencia de transición del Estado 5 al 6	Espera 6 segundos para que pase de un				
	estado a otro.				
Comandos del Estado 6	Se desactiva el cilindro paralelo, una que la				
	paleta esta almacenada.				
Secuencia de transición del Estado 6 al 7	La plataforma se encuentra en la posición de				
	retroceso activándose el sensor B5 del				
	cilindro de parada.				
Comandos del Estado 7	El cilindro de elevación se desactiva				
	volviendo a la posición inicial.				
Secuencia de transición del Estado 7 al 8	A lo que el cilindro de elevación vuelve a la				
	posición de retroceso se activa el sensor de				
	posición B6.				
Comandos del Estado 8	Me indica que el almacén está lleno				
	(M_IMS_LLENO).				
Secuencia de transición del Estado 8 al 2	2 Me realiza la validación del contador de				
	pallets mayor a 4 y también si los pallets				
	topan al sensor final de carrera				
	(I_IMS_B9_SENSOR_FINAL_DE_CARRERA)				
	durante los 10 segundos, si cumplen				
	vuelven al estado continuando con el				
	proceso de almacenamiento de pallets.				
Secuencia de transición del Estado 8 al 1	Cuando el almacén termino de llenar los				
	pallets verificando si el contador ya termino				
	de contar los 4 pallets y de paso llego al tope				
	mediante la activación del sensor de final de				
	carrera				
	I_IMS_B9_SENSOR_FINAL_DE_CARRERA				

Tabla_AN-1: Proceso de almacenado del almacén IMS10

Condición de Transición entre etapas del Llenado

Dentro del bloque FB1 creamos las variables estáticas que servirán para la programación de la condición entre etapas, estas se muestran en la Figura_AN-3.

7	_	_	Cardia					
1		•	Static					
8	-00	•	ESTADO 1	Bool	0.0	false	✓	
9	-	•	ESTADO 2	Bool	0.1	false		
10	-	•	ESTADO 3	Bool	0.2	false		
11	-	•	ESTADO 4	Bool	0.3	false		
12	-	•	ESTADO 5	Bool	0.4	false		
13	-	•	ESTADO 6	Bool	0.5	false		
14	-	•	ESTADO 7	Bool	0.6	false	\checkmark	
15	-	•	ESTADO 8	Bool	0.7	false		
16	-	•	Temp					
17			<agregar></agregar>					

Figura_AN-3: Variables estáticas del bloque de función (FB) "Etapas".

Una vez ingresadas las variables estáticas proceder con la programación como se muestra a continuación.

Figura_AN-4: Condición de transición entre etapa 8 a etapa 1

Figura_AN-5: Condición de transición entre etapa 8 a etapa 2

Figura_AN-6: Condición de transición entre etapa 2 a etapa 3

Figura_AN-7: Condición de transición entre etapa 3 a etapa 4.

Figura_AN-8: Condición de transición entre etapa 4 a etapa 5

Figura_AN-9: Condición de transición entre etapa 5 a etapa 6

Figura_AN-10: Condición de transición entre etapa 6 a etapa 7

Figura_AN-11: Condición de transición entre etapa 7 a etapa 8

La Figura_AN-12 muestra el diagrama de control GRAFCET implementado en TIA PORTAL para el proceso de vaciado correspondiente al almacén del IMS 10, el detalle
del listado de instrucciones por etapas y condiciones de transición para el proceso se presentan en la Tabla_AN-12.

Descripción de las condiciones e instrucciones del proceso de almacenado de los pallets

Comandos del estado 1	Nada
Secuencia de transición del Estado 1 al	A lo que se presiona la botonera de liberar ya
2	sea la botonera física o la botonera del HMI,
	se realiza una comparación del contador de
	pallets mayor a cero indicando si hay o no
	pallets dentro del almacén, si se cumple pasa
	al estado 2.
Comandos del estado 2	Se activa el cilindro paralelo.
Secuencia de transición del Estado 2 al	La plataforma se encuentra en la posición de
3	avance del cilindro paralelo activándose el
	sensor de posición B5.
	(I_IMS_10_B5_CIL_PAR_AVANCE=1)
Comando del Estado 3	Se activa el cilindro elevador
Secuencia de transición del Estado 3 al	Espera 3 segundos para pasar del estado 3
4	al 4
Comando del Estado 4	Se activa el cilindro de elevación
Secuencia de transición del Estado 4 al	Espera 3 segundos para pasar del estado 3
5	al 4
Comandos del Estado 5	
Secuencia de transición del Estado 5 al	La paleta está lista para retroceder mediante
6	el cilindro paralelo
	(I_IMS_10_B5_CIL_PAR_RETROCESO=1)
Comandos del Estado 6	
Secuencia de transición del Estado 6 al	La paleta está lista para retroceder mediante
7	el cilindro de elevación
	(I_IMS_10_B6_CIL_ELEV_RETROCESO=1)

Una Vez que la paleta fue liberada del
almacén se activa la banda
(Q_IMS_10_MOTOR_ADELANTE) pasar a
la otra planta.
Se activa el sensor B2 después que la paleta
se ha liberado del almacén
(I_IMS_10_B2_SENSOR_DERECHA)
Me indica que el almacén está vacío
(M_IMS_10_VACIO_HMI)
Se realiza una comparación de pallets del
contador mayor a 0, verificando si aún hay
pallets dentro del almacén, si los hay continua
el proceso de liberación de los regresando al
estado 2.
Se realiza una comparación de pallets igual a
cero, validando si el almacén terminó de
liberar los pallets si se cumple, regresa al

 Tabla_AN-2: Proceso de liberación del almacén IMS10

Condición de Transición entre etapas del proceso de liberación

Dentro del bloque FB1 crear las variables estáticas que servirán para la programación de la condición entre etapas, estas se muestran en la Figura_AN-13.

Nombre	Tipo de datos
Input	
Output	
InOut	
✓ Static	
ESTADO 1.1	Bool
ESTADO 2.1	Bool
ESTADO 3.1	Bool
ESTADO 4.1	Bool
ESTADO 5.1	Bool
ESTADO 6.1	Bool
ESTADO 7.1	Bool
ESTADO 8.1	Bool
remp	
Constant	

Figura_AN-13: Variables estáticas del bloque de función (FB) "Etapas".

Una vez ingresadas las variables estáticas proceder con la programación como se muestra a continuación.

Figura_AN-14: Condición de transición entre etapa 8 a etapa 2

Figura_AN-15: Condición de transición entre etapa 8 a etapa 2

Figura_AN-16: Condición de transición entre etapa 8 a etapa 2

Figura_AN-17: Condición de transición entre etapa 8 a etapa 2

Figura_AN-18: Condición de transición entre etapa 8 a etapa 2

Figura_AN-19: Condición de transición entre etapa 8 a etapa 2

Figura_AN-20: Condición de transición entre etapa 8 a etapa 2

Instrucciones de las etapas

En el bloque FC1 programar las instrucciones que corresponden a cada etapa según se desarrolló en el Grafcet como nos muestra la Figura_AN-21.

Figura_AN-21: Bloques del Main

Figura_AN-23: Motor de encendido Hacia adelante Esclavo 8 y 9

Figura_AN-24: Avance Lento de la Banda

Figura_AN-25: Cilindro Neumático Para el Cilindro Elevador Central

Figura_AN-26: Cilindro Neumático Para el Cilindro Medio de Parada

Figura_AN-27: Cilindro Neumático Para EL Cilindro Lateral (Paralelo)

Figura_AN-28 Motor Encendido Lentamente Esclavo

Figura_AN-29: Reset del contador del pallet

Figura_AN-30: Transforma el valor del contador

Descripción de las pantallas del panel Touch SIMATIC HMI TP 700

Figura_AN-1.1: Plantilla de presentación de la planta IMS10

La Figura_AN-1.1 muestra la interfaz principal la cual se usa como plantilla para las pantallas HMI a crear para el sistema de entrenamiento IMS 10, y el botón "AYUDA" la cual se detalla un manual de ayuda para el usuario u operador que vaya a manejar la planta.

Pantalla de Información de los elementos que conforma IMS 10

Figura_AN-1.2: Elementos que conforman el Almacenamiento Intermedio

La Figura_AN-1.2 muestra la pantalla HMI la información del almacenamiento intermedio que describe en el marco teórico, la cual menciona cada uno de sus componentes a continuación:

1. Pallets

- 2. Sensor magnético B1 de Posición
- 3. Sensor magnético B9 Final de carrera
- 4. Cilindro de separación B8
- 5. Motor DC Reductor.
- 6. Los cilindros paralelos y de elevación
- 7. Cilindro de parada

ANEXO 2 GUIA DE PRÁCTICAS

PRACTICA 1

Programación y Simulación de la planta de almacenamiento intermedio IMS 10 con el PLC S7-300

Objetivos

Objetivo General

 Realizar la programación del proceso de almacenado y liberación de pallets de la planta IMS10 a través del programa TIA Portal V13 con el PLC S7-300.

Objetivos Específicos

- Conocer el funcionamiento del almacenado y liberado de pallets para realizar el gráfico funcional de control etapa/transición (GRAFCET).
- Identificación de cada una de los sensores y actuadores que conforman la IMS10, para el direccionamiento de entradas, salidas y marcas para un PLC S7 -300 y su simulación en el PCL SIM.
- Realizar la programación de secuencia de bloques funcionales a través de un gráfico funcional de control etapa/transición (GRAFCET).

Introducción

La siguiente guía de prácticas tiene como objetivo principal orientar al estudiante o practicante al entorno de programación de TIA PORTAL V13 SP1, la creación de un nuevo proyecto, elección de un controlador, la dirección IP del controlador, la asignación de dirección de entradas y salidas, programación en lenguaje de bloque y la simulación de un proceso básico.

Es necesario tener instalado en nuestra computadora el software TIA PORTAL V13 SP1 y STEP 7 PROFESIONAL V13 SP1.

Procedimiento

Creación de un nuevo proyecto

Se procede a abrir el software TIA PORTAL.

Figura_P.1.1: Software de programación TIA PORTAL V13 SP1

En la vista de proyecto dar clic a "Crear Proyecto" y escribir un nombre al proyecto, en este caso "Introducción", se puede elegir la ruta de guardado y el nombre del autor. Finalmente damos clic a crear como nos muestra la Figura_P.1.2.

Figura_P.1.2: Creación de un proyecto

Elección del controlador

En la ventana de Árbol de proyecto dar clic en "Agregar dispositivo", en "Controladores" buscar el "SIMATIC S7-300", y elegir la "CPU 314C 2PN/DP" la cual corresponde al controlador programable que posee el laboratorio de controles de procesos. Se debe verificar que la referencia y la versión coincidan con la que se muestra en la Figura_P.1.3.

Figura_P.1.3 Elección del controlador

Asignación de dirección de entradas y salidas digitales/análogas.

Dar clic a "Dispositivos y redes" y en la pestaña de "Vista de dispositivos" configuramos la dirección de entradas y salidas digitales/análogas tal como se muestra en la Figura_P.1.4.

Variab	Newbra	Tine de deter	Directión
	Nombre M IMS10 INICIO	lipo de datos Bool	Direction 95M0.0
		Bool	0400.6
		Timer	9670
		Peol	860.0
		Bool	2010.1
-		Bool	701U.5
	M_RESET_CONTADOR	6001	70WU.2
	MW_CANTIDAD_PALLET	Timor	10/1/WU 0/11
		nmer Baal	2011
	I_IMS_10_B1_SENSOR_IZQUIERDA	5001	7011.3
-	T_DELAY_ESTADO4	limer	1612
-	I_IMS_10_B5_CIL_PAR_AVANCE	Bool	9610.2
-	T_DELAY_ESTADO6	Timer	96T3
-000	I_IMS_10_B4_CIL_PAR_RETROCESO	Bool	9610.1
-00	I_IMS_10_B6_CIL_ELEV_RETROCESO	Bool	9610.3
-00	Q_IMS_10_MOTOR_ADELANTE	Bool	%Q1.0
-00	QS_IMS_10_MOTOR_LENTO	Bool	%Q1.2
-	Q_IMS_10_M3_CIL_NEU_ELEVADOR	Bool	96Q0.1
-000	I_IMS_10_INICIO_FISICO	Bool	961200.0
-00	M_IMS_10_INICIO_HMI	Bool	96MO.3
-00	Q_IMS_10_M2_CIL_MED_PARADA	Bool	%Q0.0
-00	Q_IMS_10_M4_CIL_LAT_PARALELO	Bool	%Q0.2
-00	I_IMS_10_ALMACENAR_FISICO	Bool	961200.1
-	M_IMS_10_ALMACENAR_HMI	Bool	96MO.4
-	Q_ESCLAVO8_MOTOR_ADELANTE	Bool	%Q3.0
-00	QS_ESCLAVO8_MOTOR_LENTO	Bool	%Q3.2
-00	M_RESET_HMI	Bool	96MO.6
-00	I_RESET_FISICO	Bool	961200.2
-00	M_IMS_10_LIBERAR	Bool	96MO.7
-00	T_DELAY_ESTADO2_LIBERAR	Timer	96T4
-	M_IMS_10_LIBERAR_HMI	Bool	96M1.1
-	I_IMS_10_LIBERAR_FISICO	Bool	961200.3
-00	T_DELAY_ESTADO4_LIBERAR	Timer	9675
-00	I_IMS_10_B2_SENSOR_DERECHA	Bool	9611.4
-	T_DELAY_ESTADO8_LIBERAR	Timer	96T6
-	Q_IMS_10_M5_CILINDRO_SEPARADOR	Bool	%Q0.3
-	MW_NUMERO_PALLETS_HMI	Word	%MW2
-00	IMS10_INICIO_HMI	Bool	%M7.0
-00	IMS_10_LIBERAR_HMI	Bool	96M7.1
-	M_ALMACEN_LLENO	Bool	96M7.2
-6711	M VACIO	Bool	%M7.5

Figura_P.1.4: Asignación de dirección de memoria de las entradas y salidas digitales/análogas

La dirección IP del controlador se ajusta en la ventana de propiedades tal como se muestra en la siguiente Figura_P.1.5.

PLC_1 [CPU 3	314C-2 PN/DP]					Ropiedades
General	Variables IO		Constantes de sistema	Textos		
▶ General	^				Agregar subred	
Interfaz MPI/D	P [X1]					
Interfaz PROF	INET [X2]		Protocolo IP			
DI 24/DO 16	=					
AI 5/AO 2		•		💽 Ajus	tar dirección IP	en el proyecto
Contaje		E			Dirección IP:	192 168 47 100
Posicionamie	ento	Þ				
Arrangue					Masc. subred:	255 . 255 . 255 . 0

Figura_P.1.5: Dirección IP del controlador

Lista de instrucciones

Ahora se procede a realizar la programación y simulación de un proceso secuencial básico que consiste en el accionamiento de una cinta trasportadora y posterior almacenamiento de un producto, para este caso se usa la metodología GRAFCET.

Descripción de la	as condiciones e	e instrucciones	de proceso	de llenado:
-------------------	------------------	-----------------	------------	-------------

Comandos del estado 1	Nada
Secuencia de transición del Estado 1 al 2	Al presionar cualquiera delas dos botoneras,
	ya sea la física la del HMI para empezar
	almacenar se verifica si los controles de
	contador de paletas no estén en el almacén,
	si se cumple empieza el proceso de
	almacenamiento.
Comandos del estado 2	Las piezas inicialmente juntas avanzan lento
	al pasar a la otra banda cambia de velocidad
	separándose a una cierta distancia y luego
	se ordenan al pasar por la banda
	transportadora de IMS10.
Secuencia de transición del Estado 2 al 3	Luego que las piezas está bien formadas a
	cierta distancia permitiendo que una por una
	pase por el sensor B1 de la izquierda.

Comando del Estado 3	Lentamente avance la paleta, después de
	unos instantes. Se activa el cilindro de
	parada B3 quedando la paleta dentro del
	almacén.
Secuencia de transición del Estado 3 al 4	Espera 6 segundos para que pase de un
	estado a otro.
Comando del Estado 4	Se activa el cilindro elevador
Secuencia de transición del Estado 4 al 5	La paleta se encuentra en la posición de
	avance activando el sensor B5 del cilindro
	paralelo.
Comandos del Estado 5	Aun el cilindro paralelo se encuentra
	activado en la posición de avance y ahí
	mismo se activa el cilindro de elevación para
	que la paleta se almacene de una vez.
Secuencia de transición del Estado 5 al 6	Espera 6 segundos para que pase de un
	estado a otro.
Comandos del Estado 6	Se desactiva el cilindro paralelo, una que la
	paleta esta almacenada.
Secuencia de transición del Estado 6 al 7	La plataforma se encuentra en la posición de
	retroceso activándose el sensor B5 del
	cilindro de parada.
Comandos del Estado 7	El cilindro de elevación se desactiva
	volviendo a la posición inicial.
Secuencia de transición del Estado 7 al 8	A lo que el cilindro de elevación vuelve a la
	posición de retroceso se activa el sensor de
	posición B6.
Comandos del Estado 8	Me indica que el almacén está lleno
	(M_IMS_LLENO).
Secuencia de transición del Estado 8 al 2	Me realiza la validación del contador de
	pallets mayor a 4 y también si los pallets
	topan al sensor final de carrera
	(I_IMS_B9_SENSOR_FINAL_DE_CARRERA)
	durante los 10 segundos, si cumplen
	vuelven al estado continuando con el
	proceso de almacenamiento de pallets.

Secuencia de transición del Estado 8 al 1	Cuando el almacén termino de llenar los
	pallets verificando si el contador ya termino
	de contar los 4 pallets y de paso llego al tope
	mediante la activación del sensor de final de
	carrera
	I_IMS_B9_SENSOR_FINAL_DE_CARRERA

Tabla_P.1.2: Detalle de las instrucciones del proceso de llenado del almacén
IMS 10

Descripción de las condiciones e instrucciones del proceso de liberación:

Comandos del estado 1		Nada
Secuencia de transición	del	A lo que se presiona la botonera de liberar ya
Estado 1 al 2		sea la botonera física o la botonera del HMI,
		se realiza una comparación del contador de
		pallets mayor a cero indicando si hay o no
		pallets dentro del almacén, si se cumple pasa
		al estado 2.
Comandos del estado 2		Se activa el cilindro paralelo.
Secuencia de transición	del	La plataforma se encuentra en la posición de
Estado 2 al 3		avance del cilindro paralelo activándose el
		sensor de posición B5.
		(I_IMS_10_B5_CIL_PAR_AVANCE=1)
Comando del Estado 3		Se activa el cilindro elevador
Secuencia de transición	del	Espera 3 segundos para pasar del estado 3
Estado 3 al 4		al 4
Comando del Estado 4		Se activa el cilindro de elevación
Secuencia de transición	del	Espera 3 segundos para pasar del estado 3
Estado 4 al 5		al 4
Comandos del Estado 5		

Secuencia de transición	del	La paleta está lista para retroceder mediante
Estado 5 al 6		el cilindro paralelo
		(I_IMS_10_B5_CIL_PAR_RETROCESO=1)
Comandos del Estado 6		
Secuencia de transición	del	La paleta está lista para retroceder mediante
Estado 6 al 7		el cilindro de elevación
		(I_IMS_10_B6_CIL_ELEV_RETROCESO=1)
Comandos del Estado 7		Una Vez que la paleta fue liberada del
		almacén se activa la banda
		(Q_IMS_10_MOTOR_ADELANTE) pasar a
		la otra planta.
Secuencia de transición	del	Se activa el sensor B2 después que la paleta
Estado 7 al 8		se ha liberado del almacén
		(I_IMS_10_B2_SENSOR_DERECHA)
Comandos del Estado 8		Me indica que el almacén está vacío
		(M_IMS_10_VACIO_HMI)
Secuencia de transición	del	Se realiza una comparación de pallets del
Estado 8 al 2		contador mayor a 0, verificando si aún hay
		pallets dentro del almacén, si los hay continua
		el proceso de liberación de los regresando al
		estado 2.
Secuencia de transición	del	Se realiza una comparación de pallets igual a
Estado 8 al 1		cero, validando si el almacén terminó de
		liberar los pallets si se cumple, regresa al
		estado 1.

Tabla_P.1.3: Detalle de las instrucciones del proceso de liberación del almacénIMS 10

Diseño y Construcción el Grafcet

El GRAFCET es un diagrama funcional que describe los procesos a automatizar, teniendo en cuenta las acciones a realizar, y los procesos intermedios que provocan estas acciones como nos muestra la Figura_P.1.6.

Figura_P.1.6: Estructura del Grafcet

Un GRAFCET está compuesto de:

ETAPA: define un estado en el que se encuentra el automatismo. Las etapas de inicio se marcan con un doble cuadrado.

ACCIÓN ASOCIADA: define la acción que va a realizar la etapa, por ejemplo conectar un contactor, desconectar una bobina, etc.

TRANSICIÓN: es la condición o condiciones que, conjuntamente con la etapa anterior, hacen evolucionar el GRAFCET de una etapa a la siguiente, por ejemplo un pulsador, un detector, un temporizador, etc.

Luego en base a la lista de instrucciones de la tabla 1 y tabla2, se procede a realizar el Grafcet con cada etapa con su respectiva acción y transición.

Programación de un proceso

Ahora se procede a realizar la programación y simulación de un proceso secuencial básico que consiste en el almacenamiento y liberación de paletas del IMS 10.

Creación de bloques de programa

En "Bloques de Programa" dar clic a "Agregar nuevo bloque", en esta parte se debe identificar los diferentes tipos de bloques que tenemos y el uso para cada uno en nuestra programación secuencial. **Bloques de Función (FB):** Los bloques de función depositan sus valores permanentes en los bloques de datos de manera que estos están disponibles tras procesar el bloque. En estos bloques se programan las condiciones de transición entre etapas.

Funciones (FC): Contienen rutinas de programa para tareas que se repiten a menudo, carecen de memoria. Aquí programamos las instrucciones de cada etapa.

Bloque de datos (DB): Los bloques de datos se asignan a los bloques de funciones, estos almacenan datos que pueden ser utilizados por cualquier bloque.

Bloques de organización (OB): Estos determinan la estructura del programa, aquí llamamos los bloques de funciones, bloques de datos y las funciones.

Figura_P.1.7: Ventana de bloques de programación

Añadir un bloque de función con el nombre "Etapas_FB", una función con el nombre "Instrucciones_Etapas", y un bloque de datos con el nombre "Etapas_DB" y por último el bloque de organización "Principal". Debemos verificar que el lenguaje de programación sea el de bloques (FUP).

Condición de Transición entre etapas

Dentro del bloque FB1 crear las variables estáticas que servirán para la programación de la condición entre etapas, estas se muestran en la Figura GA 11.

Nombre	Tipo de datos
Input	
Output	
InOut	
▼ Static	
ESTADO 1	Bool
ESTADO 2	Bool
ESTADO 3	Bool
ESTADO 4	Bool
ESTADO 5	Bool
ESTADO 6	Bool
ESTADO 7	Bool
ESTADO 8	Bool
ESTADO 9	Bool
THIN	

Figura_P.1.8: Variables estáticas del bloque de función (FB) "Etapas del Proceso de Almacenamiento de pallets"

Nombre	Tipo de datos
Input	
Output	
InOut	
▼ Static	
ESTADO 1.1	Bool
ESTADO 2.1	Bool
ESTADO 3.1	Bool
ESTADO 4.1	Bool
ESTADO 5.1	Bool
ESTADO 6.1	Bool
ESTADO 7.1	Bool
ESTADO 8.1	Bool
remp	
Constant	

Figura_P.1.9: Variables estáticas del bloque de función (FB) "Etapas del proceso de liberación de pallets"

Una vez ingresadas las variables estáticas proceder con la programación como se muestra a continuación.

En el bloque FC1 para programar las instrucciones que corresponden a cada etapa según como se desarrolló en el Grafcet para el proceso de almacenamiento y liberación de pallets.

Actividades a realizar

- Realizar el Grafcet del proceso de almacenamiento y liberación por separado, en base a la lista de instrucciones de la tabla 1 y 2.
- 2. Implementar su programación con el lenguaje de bloques funcionales.

PRACTICA 2

Diseño de un sistema Scada para el Almacenamiento Intermedio IMS10

Objetivos

Objetivo General

• Diseñar y simular un sistema Scada utilizando el HMI, para el control de proceso almacenamiento y liberación de pallets de la planta IMS10.

Objetivos Específicos

- Diseñar y dibujar cada uno de los módulos que conforma la planta de almacenamiento intermedio IMS10.
- Desarrollar la destreza para configurar las variables de entradas y salidas mediante la Identificación de cada una de las sensores y actuadores que conforman la IMS10 que se realizó en la programación
- Programar el HMI para el control de cada uno de las componentes que conforma la planta de almacenamiento intermedio.

Introducción

En esta sección se procederá a programar una interfaz HMI para el proceso básico descrito en la sección anterior, se detallará la creación de pantallas, configuración de botones e indicadores virtuales y demás elementos que se podrá utilizar para la representación gráfica de un proceso industrial.

Es necesario tener instalado en nuestra computadora el software TIA PORTAL V13 SP1 y STEP 7 PROFESIONAL V13 SP1.

Procedimiento

Para la creación de una interfaz HMI se continuará trabajando en el proyecto de nombre "Introducción".

Abrir un nuevo proyecto

Se procede a abrir el software TIA PORTAL.

Figura_P.2.1: Software de programación TIA PORTAL V13 SP1

En la vista de proyecto dar clic a "Abrir el Proyecto" y buscar un nombre al proyecto, en este caso "IMS10_INTEGRADORA", se puede elegir la ruta de guardado y el nombre del autor. Finalmente damos clic a crear, como se muestra en la Figura_P.2.2.

Figura_P.2.2: Software de programación TIA PORTAL V13 SP1

Elección del dispositivo HMI

Dirigirse a la ventana de "Árbol de proyecto" y dar doble clic en "Dispositivos y redes", en la parte de "Catálogo", buscar el dispositivo HMI que se desea utilizar, se elige el TP 700 que corresponde al panel touch del laboratorio de control de procesos industriales. Verificar que la versión del dispositivo es la que se indica en la Figura_P.2.3.

Árbol del proyecto 🛛 🖽 🖣	Introduccion Dispositivos y redes	• = ×	Catálogo de hardware 👘 🗊 🕨 🕨
Dispositivos	🚠 Vista de redes 📑 Vista de dispositivos	4	Opciones
	Conectar en red	3	
		~	✓ Catálogo
🗧 🖛 🛅 Introduccion 📃 🔺		=	<buscar></buscar>
Agregar dispositivo	PLC_1 CPU 314C-2 HM_1 TP700 Comf		Filtro
Dispositivos yredes			Controladores
Configuración de di			▼ 🔄 HMI
Configuración de diam			Ima SIMATIC Basic Panel
Blogues de programa			SIMATIC Panel
Objetos tecnológicos			- SIMATIC Comfort Panel =
🕨 🗟 Fuentes externas		- 12	4" Display
🕨 🔚 Variables PLC			- T Disolav
Tipos de datos PLC			IP/00 Comfort
 Tablas de observaci. 			6AV2 124-0G
Backups online		- 11	► KP700 Comfort
 Datos de proxy de d. 			► 🛱 9" Display
Pi Información del pro		v	▶ 🔂 12" Display
Avisos de PLC	< II > 75%	•	I5" Display
Módulos locales	🕺 Información 🕄 🐰 Diagnósti 4 🔺	3 E -	🕨 📄 19" Display 🛛 🗠
► HML 1 [TP700 Comfor			< II 5
< II >	General		✓ Información
✓ Vista detallada			Dispositivo:
	No hay 'propiedades' disponibles.		
Nombra	Actualmente no es nosible visualizar moniedades. Es		
Nombre	posible que no se haya seleccionado ningún objeto o		=
	que el objeto seleccionado no tenga propiedades		
	visualizabies.		TP700 Comfort
			Versión: 13.0.0.0

Figura_P.2.3: Elección del Panel Touch TP 700 Confort

Ajustar la dirección IP del HMI tal como se muestra en la Figura_P.2.4 y conectar el controlador con el HMI mediante una red Profinet.

Propiedades	E
HMI_RT_1 [TP700 Comfort	🖳 Propiedades 🚺 Información 🚯 🗓 Diagnóstico
General Variables I	Constantes de siste Textos
General	Agregar subred
Interfaz PROFINET [X1]	
Interfaz MPI/DP [X2]	Protocolo IP
Información	
Recursos de conexión	 Ajustar dirección IP en el proyecto
	Dirección IP: 192 . 168 . 0 . 10
	Másc. subred: 255 . 255 . 255 . 0

Figura_P.2.4: Asignación de Dirección IP al HMI

Diseño de una interfaz Gráfica

En esta parte se explica cómo crear una plantilla de trabajo que servirá como plantilla base para las demás pantallas del proyecto.

En la Figura_P.2.5 se muestran los pasos a seguir para añadir una plantilla de trabajo.

Figura_P.2.5: Creación de una plantilla de trabajo

En la ventana de herramientas se dispone de varias opciones como Objetos básicos, Elementos, Controles y Gráficos, estos servirán para la creación de las diferentes interfaces.

Descripción de las pantallas del panel TOUCH SIMATIC HMI TP 700

En la ventanilla de herramienta comenzamos a utilizarlo tal como se muestra en la figura para la elaboración de la 1ra plantilla, ósea la portada que es la plantilla de inicio, que se describe de la siguiente manera como en la Figura_P.2.6.

Heramientas # 1 +	ESCUELA SUPE	RIOR POLITÉCNI	CA DEL LITOR	AL:	FIEC
	FACULTAD DE INCENT	EDTA EN EL COTO	CIDAD V COS	HOLTACTON	
	FACOLIAD DE INGENI	CREACH ELECTR	TETOMD L COL	THUTACTOR	BLUND C HERICAN IN
 Objetos básicos 	E. L. L. L. L. L. L. M. M. M. L. M. L. J. M.	1.1. Laboration and the second statements of the second statements of the second statement of the second statements.	1.1.0.0.0111 (CT) 1.0.1.1	CONTRACTOR AND A DESCRIPTION	and the state of the state of the
	DISENO DE L	IN SISTEMA SEAL	A PADA HIMA		
A 🔺		the caroling sector	VIE P. MENTY, MERCY		
1 (1 (1 +))					(** **) ******
	PLANTA DE	ALMACENAMIENT	O INTERMEDI	0	
2 · + + + + + + + + + + + + + + + + + +					
at a second s	DE DAL	FERINGAS MILL	E-TMC 58		
* Elementos		LERG LUCAS, MOD	LC 1645 10		
10 10 1 10 10 10 10 10 10 10 10 10 10 10					
		CCTO DE CDADH	ACTOR		
1		EL TO DE GIRADU.	MLIUR		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.01 0 m 0 m 1 1 1 m 4 1 0 0 1	1 14 + + + + + + + + + + + + + + + + +	188-11 14 1441	
· · · · · · · · · · · · · · · · · · ·	AND TRACE	DAT MOCEMPTE NI	EWARINED ****		1.4.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
	UNCIEGAN	PRAY VILLING PL	EAPVINER	TRAVER DE THE	18 8 1 8 1 1 8 1 1 8 8 1 1 8 8 1
Controles	DIDANS	ALATAD CADLOS	DATOFITO		
The second the second beaution of the second		Charactery Constitution	P FIT MECHO		
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	the end of the calls		
		AN A COLUMN - FCILLA	DOD		
		MANQUE - LCOM	DOR		
· · · · · · · · · · · · · · · · · · ·		Y.Y. 100.001 . 0.1 10.			
1					
a transmit		1			(Inc.)
✓ Gráficos		1	1	11011 (STA	10.700
	1M5_10	PARIES		AY	UDA
. Dennatur de metéleur de				0000000	10000
• Carpetas de grances de		1			1000
Carpetas de gráficos pro					

Figura_P.2.6: Descripción de la ventanilla de herramienta y la pantalla HOME

Esta pantalla contiene los siguientes elementos:

- 1) Botón IMS_10, activa la etapa inicial del proceso.
- 2) Campo de Texto, carátula del proyecto.
- 3) Botón PARTES, describe cada uno de las componentes del sistema.
- 4) Botón AYUDA, permite al usuario informarse acerca del funcionamiento.

La siguiente pantalla "IMS 10" representa el Scada del subsistema de un proceso industrial descrito en la sección anterior, se la describe en la Figura_P.2.7.

Figura_P.2.7: Descripción de la pantalla del proceso

Configuración e Instrucciones de los elementos de las pantallas.

Al igual que en las practicas anteriores del hmi se deben colocar las botones, figuras, elementos para realizar dicho proceso con sus respectivas variables, pero adicionalmente proceso se debe elaborar las siguientes instrucciones.

Figura_P.2.8: Contador de pallets

Figura_P.2.9: Motor hacia adelante esclavo 8 y 9

Figura_P.2.10: avance lento de la banda

Figura_P.2.11: Cilindro elevador central

Figura_P.2.12: Cilindro medio de parada

Figura_P.2.13: Cilindro Neumático cilindro paralelo

Figura_P.2.14: Motor encendido lentamente esclavo 8

Figura_P.2.15: Resetear el contador del control de pallet

Figura_P.2.16: Cilindro neumático para el cilindro separador

Figura_P.2.17: Nuevo valor del contador

Figura_P.2.18: Menaje de almacén en vacío

Figura_P.2.19: Indicador de un pallets

Figura_P.2.20: Indicador de 2 pallets

Figura_P.2.21: Indicador de 3 pallets

Figura_P.2.22: Indicador de 4 pallets

Figura_P.2.23: Memoria del sensor izquierda

Figura_P.2.24: memoria del sensor derecha

Figura_P.2.25: Sensor separación

Figura_P.2.26: Botón de marcha presionado

Figura_P.2.27: Memoria fin de carrera9

Figura_P.2.28: Verificación de pallets y botellas

Figura_P.2.29: Mensaje de pallets sin botellas

Figura_P.2.30: Mensaje de Inicio

Figura_P.2.31: Mensaje de paro

Figura_P.2.32: Entrada del sensor Izquierda

Actividades a Presentar

- Programar las diferentes pantallas HMI tal como se muestran en la descripción de pantallas.
- 2. Simular a través de S7-PLC V13 SP1 el proyecto.
- 3. Presentar para la siguiente clase un informe detallado de la práctica 1.

PRACTICA 3

Comunicación del PLC S7-300 con la planta almacenamiento de intermedio IMS 10

Objetivos

Objetivo General

 Realizar la comunicación con la tarjeta esclavo Profibus DP y Punto a Punto y la estación de trabajo del PLC S7-300.

Objetivos Específicos

- Identificar la comunicación de las entradas y salidas propias de la planta.
- Implementación de cada una de los servidores IP que posee la planta, las tarjetas y la el panel touch HMI etc.

Introducción

La siguiente guía de aprendizaje tiene como objetivo principal orientar al estudiante o practicante al entorno de la comunicación ya sea por las tarjetas Profibus DP o Punto a Punto, para que pueda funcionar correctamente el PLC S7 300 y el panel Touch HMI TP 700.

Procedimiento

Implementación de la Comunicación Profibus

Cada estación de trabajo tiene designado una dirección física Profibus DP, se debe tener en cuenta este detalle para configurar con la misma dirección en nuestro programa. Se empleará la estación de trabajo IMS10, estación de almacenamiento intermedio IMS 10, la misma que tiene la dirección física Profibus DP no. 4, esta se puede observar en el módulo esclavo PROFIBUS DP que se muestra en la Figura.

Una vez verificada la dirección Profibus DP de la IPA 3, se procede a configurar en el proyecto. En la vista de dispositivos y redes añadir el controlador CPU 314C - 2 PN/DP y el dispositivo de campo IMS Interface.

Figura_P.3.2: Dispositivo de campo IMS Interface

En la vista de dispositivo y redes configuramos el tipo de red PROFIBUS DP para la estación de trabajo IMS10 y PROFINET para el HMI, como se muestra en la Figura_P.3.3.

Figura_P.3.3: Vista de Dispositivo y redes, Controlador y dispositivo de campo

El controlador debe tener la dirección 1 como nos muestra la Figura_P.3.4, ya que este hace de maestro Profibus, mientras que el dispositivo de campo IMS Interface debe tener la dirección 4 como en la Figura_P.3.4 correspondiente a la estación de trabajo IMS 10.

PLC_1 [CPU 314C-2 PN/DP]		Rropiedades
General Variables IO	Constantes de sistema Textos	
▶ General	Subred: PROFIBUS_1	
Interfaz MPI/DP [X1]	Agregar subred	
Interfaz PROFINET [X2]		
► DI 24/DO 16	Parámetros	
► AI 5/AO 2	- and the dos	
▶ Contaje	Tipo de interfaz PROFIBUS	
Posicionamiento		
Arrangue	Dirección: 1	
Ciclo	Dirección más alta: 126	
Marca de ciclo	Velocidad de transferencia: 1,5 Mbits/s	

Figura_P.3.4: Dirección P-DP del controlador S7-300

IMS_10 [Mod	ule]		🔍 Propiedades
General	Variables IO	Constantes de sistema Textos	
General		Subred: PROFIBUS_1	
Dirección PRC	FIBUS	Agregar subred	7
Parámetros D	P generales		
Asignación de	e parámetros Hex	Parámetros	
Supervisión d	le respuesta		
SYNC/FREEZE	-	Dirección: 4	
Direcciones d	le diagnóstico	Dirección més alta: 126	
		Velocidad de transferencia: 1,5 Mbits/s	

Figura_P.3.5: Dirección P-DP del dispositivo de campo

Configuración de dirección de entradas y salidas del IMS 10

Para configurar la dirección de entradas/salidas digitales del IMS 10, se da doble clic al IMS Interface, se abrirá la vista general de dispositivos como se muestra en la Figura_P.3.6.

Vist	a general de dispositivos						
	Módulo	Rack	Slot	Dirección I	Dirección Q	Тіро	
		0	1				^
	▼ PLC_1	0	2			CPU 314C-2 PN/	
	Interfaz MPI/DP_1	0	2 X1	2047*		Interfaz MPI/DP	
	Interfaz PROFINET_1	0	2 X2	2046*		Interfaz PROFINET	∎
	DI 24/DO 16_1	0	25	200202	200201	DI 24/DO 16	
-	AI 5/AO 2_1	0	26	288297	200291	AI 5/AO 2	
•	Contaje_1	0	27	816831	816831	Contaje	
-	Posicionamiento_1	0	28	832847	832847	Posicionamiento	
		0	З				
		0	4				
		0	5				
		0	6				
		0	7				
		0	8				¥
<			1			>	1

Figura_P.3.6: Asignación de dirección de memoria de las entradas y salidas digitales/análogas

IMS	10_IN	TEGRADORA → PLC_1 [CPU	314C-2 PN/DP] • \	/ariables PLC	2						_ 7		×
						Variables	Ξ	Const	antes de	e usuari	o 🖉 Constantes de sister	ma	٦
	⊒ \$\$	⇒ 🕂 ñ1											
	/ariabl												
	M	ombre	Tabla de variabler	Tino de datos		Dirección		Perma	Visibl	Acces	Comentario		
43			Tabla de variables e	Bool	•	940.5		Nerrie			SENSOR DE SEPARACION		
44	-470		Tabla de variables e	Bool		%00.2					CILINDRO NELIMATICO PARA EL CI	. 1	
45	-		Tabla de variables e	Bool		%0.6					INDICADOR DE LI ENADO COMPLE	-TO	
46	-671	M IMS 10 LIBERAR	Tabla de variables e	Bool		%M0.7					PARA LIBERAR PALLETS		
47			Tabla de variables e	Bool		%1200.2							
48	-671	LIMS 10 B6 CIL ELEV RETRO	Tabla de variables e	Bool		%10.3					CILINDRO ELEVADOR EN POSICIO	N	
49	-470	M IMS 10 LIBERAR HMI	Tabla de variables e	Bool		%M1 1					LIBERAR VIRTUAL DEL PROGRAMA		
50	-		Tabla de variabl	Bool		%M0.0					INICIO DEL PROGRAMA		
51	-671	M RESET HMI	Tabla de variables e	Bool		%M0.6					RESET DEL CONTADOR HMI		
52	-	M IMS 10 ALMACENAR HMI	Tabla de variables e	Bool		%M0.4					START VIRTUAL DEL PROGRAMA PO	, - I	
53	-671		Tabla de variables e	Bool		%03.0					MOTOR ENCENDIDO HACIA ADELA	Α.	
54	-671		Tabla de variables e	Bool		%1200.1					START FISICO PARA EMPEZAR A AL		
55	-	OS ESCLAVOR MOTOR LENTO	Tabla de variables e	Bool		%03.2					MOTOR ENCENDIDO LENTAMENTE	F	
56	-00	MW CANTIDAD PALLET	Tabla de variables e	Int		%MM0					GUARDA LA CANTIDAD DE PALLET	5	-
57	-	T DESACTIVAR B8	Tabla de variables e	Timer		%T15					TEMPORIZADOR PARA DESCATIVAR	2	
58	-00		Tabla de variables e	Timer		%T14					SIN BOTELLAS		
59	-67	T DELAY ESTADO1	Tabla de variables e	Timer		%то					TIEMPO DE REINICIO DEL PROGRA	MA	
60	-		Tabla de variables e	Timer		%T13					VERIFICA SI HAY BOTELLAS Y PALI	E	≣
61	-00	T DELAY ESTADO2	Tabla de variables e	Timer		%T1					TIEMPO PARA IR AL ESTADO 2 DES	D	
62	-		Tabla de variables e	Timer		%T9					TEMPORIZADOR PARA EL SENSOR	17	
63	-00	T DELAY ESTADO4 LIBERAR	Tabla de variables e.	Timer		%T5					TIEMPO PARA LIBERAR DESDE EL	ES.	
64	-		Tabla de variables e.	Timer		%T8					TEMPORIZADOR VACIO		
65	-	T DELAY ESTADOS LIBERAR	Tabla de variables e.	Timer		%T6					TIEMPO PARA LIBERAR DESDE EL	ES	
66	-00	T DELAY ESTADO2 LIBERAR	Tabla de variables e.	Timer		%T4					TIEMPO PARA LIBERAR DESDE EL	ES	
67	-	T DELAY ESTADO4	Tabla de variables e.	Timer		%T2					TIEMPO PARA IR AL ESTADO 4 DES	D	
68	-00	T TEMP VALOR INICIAL	Tabla de variables e.	Timer		%T12					TEMPORIZADOR PARA PRENDER EL		
69	-	T TEMP SEPARADOR	Tabla de variables e.	Timer		%T11					TEMPORIZADOR PARA PRENDER EL		
70	-	T_TEMP_SENSOR_DERE	Tabla de variables e.	Timer		%T10					TEMPORIZADOR PARA EL SENSOR	D	
71	-00	T_DELAY_ESTADO6	Tabla de variables e.	Timer		%ТЗ					TIEMPO PARA IR AL ESTADO 6 DES	D	
72	-00	MW_NUMERO_PALLETS_HMI	Tabla de variables e.	Word		%MW2					MUESTRA LA CANTIDAD DE PALLE	т	
73		<agregar></agregar>											
	<				1				_	_		>	-
						Dec -	-		* Inf		O Diaméntian		Ń
						Propi	edad	ies	Lintor	mación			

Configuración de dirección de entradas y salidas del IMS 10

Figura_P.3.7: Lista de variables de entrada y salidas

Implementación de la Comunicación Punto a Punto

Para realizar la comunicación de punto a punto, se mantiene lo que es la configuración de entradas y salidas de la figura 15, lo que cambia son sus direcciones que posee la figura 16, por las propias que vienen en el manual del fabricante, quedando tal como se muestra en la Figura_P.3.8.

					Variables	Cons	tantes	de usuari	o 🗔 Constantes de sistema
9	10	⇒ ⊨ in				-			
1	/ariab	les PLC							
	N	lombre	Tabla de variables	Tipo de datos	- Dirección	Rema	Visibl	Acces	Comentario
3	-	OS IMS 10 MOTOR LENTO	Tabla de variables	Bool	501.2				MOTOR ENCENDIDO LENTAMENTE
	-0	O IMS 10 MOTOR ADELANTE	Tabla de variables	Bool	%01.0				MOTOR ENCENDIDO HACIA ADELAN
5	-	LIMS 10 INICIO FISICO	Tabla de variables	Bool	51202.2				INICIO FISICO DEL PROGRAMA
6		O INS 10 MH CIL LAT PARAL	Tabla de variables	Bool	\$0200.2				CILINDRO NEUMATICO PARA EL CILI
7	-	O INS 10 M2 CIL MED PARA	Tabla de variables	Bool	\$0200.0				CILINDRO MEDIO NEUMATICO PARA
81	•	M INS 10 INICIO HM	Tabla de variables	Bool	SMD.3				INICIO VIRTUAL DEL PROGRAMA POR
9	-0	I IMS 10 86 CIL ELEV RETRO	Tabla de variables	Bool	61200.3				CILINDRO ELEVADOR EN POSICION D.
0	-0	LING10 BS SEPARACION	Tabla de variables	Bool	\$1200.5				SENSOR DE SEPARACION
1		M_INS10_START	Tabla de variables	Bool	%M0.1				ARRANCAR EL PROCESO
2	-0	L.FIN_CARRERA	Tabla de variables	Bool	%/200.6				INDICADOR DE LLENADO COMPLETO
10	-0	M_RESET_CONTADOR	Tabla de variables	Bool	%M0.2				RESETEA EL CONTADOR DEL CONTR
1	•	LINS_10_84_CIL_PAR_RETROC_	Tabla de variables	Bool	51200.1				CILINDRO PARALELO EN POSICION D.
ŝ	-0	LIMS_10_85_CIL_PAR_AVANCE	Tabla de variables	Bool	/ %/200.2				CILINDRO PARALELO EN POSICION D.
5	-0	LIMS_10_81_SENSOR_IZQUIER_	Tabla de variables	Bool	%1201.3				SENSOR EN LA POSICION IZQUIERDA
1		LIMS_10_ALMACENAR_FISICO	Tabla de variables	Bool	\$1201.1				START FISICO PARA EMPEZAR A ALM
5	-0	M_INS10_INICIO	Tabla de variab	Bool	1 %M0.0				INICIO DEL PROGRAMA
<u>1</u>	-0	Q_IMS_10_M5_CILINDRO_SEPA	Tabla de variables	Bool	10200.3)				CILINDRO NEUMATICO PARA EL CILI
3.	-0	I_IMS_10_82_SENSOR_DERECHA	Tabla de variables	Bool	%1201.4				SENSOR EN LA POSICION DERECHA
1	-0	IMS10_INICIO_HM	Tabla de variables	Bool	%M7.0				BOTON PARA DAR INICIO O PARADA
ż	-0	M_VACIO	Tabla de variables	Bool	%M7.5				MEMORIA MENSAJE ALMACEN VACIO
8	•	M_ALMACEN_LLENO	Tabla de variables	Bool	%M7.2				MEMORIA PARA MOSTRAR MENSAJE
£.	-0	IMS_10_LIBERAR_HMI	Tabla de variables	Bool	%M7.1				BOTON PARA LIBERAR PALLETS DES
5.	-0	LINS_10_LIBERAR_FISICO	Tabla de variables	Bool	%1202.3				LIBERAR FISICO DEL PROGRAMA
6	-0	QS_ESCLAVO8_MOTOR_LENTO	Tabla de variables	Bool	%Q3.2				MOTOR ENCENDIDO LENTAMENTE E
7	-0	Q_ESCLAVOS_MOTOR_ADELA	Tabla de variables	Bool	%Q3.0				MOTOR ENCENDIDO HACIA ADELAN
£.	-0	MUMS_10_ALMACENAR_HM	Tabla de variables	Bool	%M0.4				START VIRTUAL DEL PROGRAMA POR
2	-0	M_RESET_HM	Tabla de variables	Bool	%M0.6				RESET DEL CONTADOR HM
3	-0	M_IMS_10_LIBERAR_HMI	Tabla de variables	Bool	%M1.1				LIBERAR VIRTUAL DEL PROGRAMA P
1	-0	M_IM5_10_LIBERAR	Tabla de variables	Bool	%M0.7				PARA LIBERAR PALLETS
2	-0	LRESET_FISICO	Tabla de variables	Bool	(61202.4)				RESET DEL CONTADOR FISICO
3		«Agregar»							
	1								

Figura_P.3.8: Direcciones de entradas y salidas físicas modificadas

Para interpretar la asignación de sus propias dirección de entradas/salidas digitales se debe observar la tabla del quickchart del IMS 10.

Carga del Programa al PLC S7-300 y al HMI

Tanto para la comunicación Profibus y punto a punto, se realiza el mismo procedimiento, que es dando click en el icono de cargar programa

Como se muestra en la Figura se configura el "Tipo de Interfaz PN/IE", y se da clic a "Iniciar búsqueda", aparecen los dispositivos compatibles con la subred, en este caso el CPU 300 que tiene como dirección IP default 192.168.0.1. Por último, dar clic a "Cargar" como nos muestra la Figura_P.3.9.

	Device	Device type	Slot	Type	Address	Subnet		
	PLC 1	CPU 314C-2 PN/DP	2 X2	PN/IE	192,168,47,100	PN/IE 1		
		CPU 314C-2 PN/DP	2 X1	PROFIBUS	2	PROFIBUS_1		
		The state PC/PC inte						
		lype of the PG/PC inte	rface:	PN/IE	1000 MT Network Con	naction		
		Connection to interface/su	ibnet:	PN/IE 1	TODO INT NELWORK COM			
		1st gat	eway					
	Device	Device type	Туре	A	ddress	Target device		
No. of the local division of the local divis	PLC_1	CPU 314C-2 PN/DF	PN/IE	1	92.168.47.100	PLC_1		
	-	-	PN/IE	A	ccess address	-		
Flash LED								
						<u>S</u> tart sear		
	on»							
ne status informati Retrieving device i	oformation							
ne status informati Retrieving device i Scan and informat	nformation ion retrieval comple	eted.						

Figura_P.3.9: Carga del software al PLC S7-300

Aparece la ventana de "Vista preliminar de carga" Figura_P.3.10, elegir "Cargar con coherencia" y clic a "Cargar".

Estado	1	Destino	Mensaje	Acción
†[0	▼ PLC_1	Listo para operación de carga.	
	0	Módulo simulado	La carga se efectúa en un PLC simulado.	
	0	 Software 	Cargar software en dispositivo	Cargar con coher 💌
	0	 Cargar en disp 	Bloques que no existen online.	
	0	Instrucione	(seleccionado)	Cargar en dispositivo
	0	Principal [O	(necesario para que el programa sea coherente)	Cargar en dispositivo
	0	Etapas_FB [(necesario para que el programa sea coherente)	Cargar en dispositivo
	0	Etapas_DB	. (necesario para que el programa sea coherente)	Cargar en dispositivo
<			III.	

Figura_P.3.10: Vista Preliminar de Carga

Por ultimo observamos que la operación de Carga ha sido exitosa y listo para las pruebas.

Actividades a realizar

- 1. ¿En qué se diferencia de la conexión física de Profibus y punto a punto?
- 2. ¿Cuáles son sus ventajas y particularmente para cual se los usa con respecto a la planta IMS 10?
- Realizar un diagrama esquemático de la conexión física de Profibus y punto a punto.