ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Mecánica y Ciencias de la Producción

"Diseño de metodología para medir maquinabilidad de piezas fabricadas por manufactura aditiva"

PROYECTO INTEGRADOR

Previo la obtención del Título de:

Ingeniero Mecánico

Presentado por: Carlos Alfredo Avilés Bustamante Jessica Lisseth Bayas Sanchez

> GUAYAQUIL - ECUADOR Año: 2018

DEDICATORIA

El presente proyecto lo dedico a mis padres Lupe Isabel Sanchez Gonzalez y Francisco Alejandro Bayas Bustamante por ser mis guías durante este largo caminar, porque a pesar de los momentos de quiebre nunca me soltaron de la mano y permitieron que siguiera hacia adelante, por el constante apoyo incondicional, moral y económico, y por hacer posible este logro aportando en mi toda su confianza y esperanza de que algún día cumpliría mi meta.

A mi hermano y demás seres queridos que han estado presentes en el trayecto de mi vida estudiantil.

Jessica Lisseth Bayas Sanchez

DEDICATORIA

Dedico esta tesis a mi padre celestial, el creador de todo lo que amo, el que siempre me ha cuidado, con mi más sincero amor.

Carlos Alfredo Avilés Bustamante

AGRADECIMIENTOS

Agradezco a Dios por permitir que se efectúe este logro, a mis padres por ser mi principal fuente de enseñanza y valores, a mi hermano por ser mi compañero de aventuras y travesuras, a mis abuelitos por tenerme presente en sus oraciones, a mi familia en general por brindarme alegría y apoyo moral, a mis queridas amigas por compartir conmigo los más gratos y también angustiosos momentos, a esa persona especial y compañero que me ha brindado su amor y apoyo incondicional durante los últimos 3 años.

A mis profesores quienes me transmitieron su amplio conocimiento correspondiente a mi profesión, a mi tutor M.Sc. Fausto Maldonado por la constante asistencia ante las dudas surgidas durante la elaboración del proyecto, a mis compañeros en general.

Jessica Lisseth Bayas Sanchez

AGRADECIMIENTOS

El tiempo es un concepto difícil de explicar, pero creo que muchos concuerdan en que es una de las cosas más valiosas que alguien puede ofrecer. La realización de este documento es un símbolo del esfuerzo y del tiempo invertido de un grupo de personas, de su ayuda y oraciones, por lo que quiero agradecer de la manera más humilde:

A Dios,
A mis familiares y seres queridos,
A mis amigos y,
A mis profesores.
Carlos Alfredo Avilés Bustamante

DECLARACIÓN EXPRESA

"Los derechos de titularidad y explotación, nos corresponde conforme al reglamento de propiedad intelectual de la institución; *Carlos Alfredo Avilés Bustamante y Jessica Lisseth Bayas Sanchez* damos nuestro consentimiento para que la ESPOL realice la comunicación pública de la obra por cualquier medio con el fin de promover la consulta, difusión y uso público de la producción intelectual"

CAMOS AVILÉS ?

Carlos Alfredo Avilés Bustamante

Jessica Lisseth Bayas

EVALUADORES

M.Sc. Rodolfø Paz

PROFESOR DE LA MATERIA

aus ONR M.Sc. Fausto Maldonado

PROFESOR TUTOR

RESUMEN

La fabricación de componentes mediante el aporte controlado de material, a partir de un modelo virtual en tercera dimensión (3D), se conoce como fabricación o manufactura aditiva. A continuación, se realiza el diseño de una metodología para el estudio y análisis de la maquinabilidad de piezas fabricadas por este tipo de manufactura. Para lograrlo, se integran las operaciones más comunes de mecanizado y se utiliza la calidad superficial (rugosidad) como criterio de maquinabilidad. La aplicación de esta metodología contribuye en el ahorro de: tiempo de mecanizado, energía y materia prima. Lo cual colabora de forma positiva, en el cuidado del medio ambiente y al desarrollo de la industria.

Se prepararon dos grupos de 26 probetas, bloques de 30x30x10 mm y cilindros de 30 mm de diámetro x 60 mm de longitud, utilizados para los ensayos de fresado y torneado, respectivamente. La mitad de cada grupo, 13 piezas, se fabricaron en la impresora ProJet 3510 SD que utiliza la tecnología Material Jetting-Polyjet (MJP) y la mitad restante en la impresora Cube 3D que usa la tecnología de Modelado por Deposición Fundida (FDM). Se usó el Acrilonitrilo Butadieno Estireno (ABS) como material de ensayo (material de las impresiones 3D) y el Polytec 1000 como material base para medir la maquinabilidad. Los ensayos se realizaron en dos máquinas-herramientas; la fresadora CNC marca ROLAND, modelo MDX 40A, con una herramienta de acero rápido con punta recta para fresado frontal y; el torno CNC marca DMTG, modelo CKE6136z, con una herramienta con inserto de carburo con código ISO DNMG 150608-PM para cilindrado. Los ensayos se realizaron usando cinco valores de velocidad del husillo, de avance y profundidad de corte, para fresado y torneado. Para la adquisición de las rugosidades superficiales, se usó un rugosímetro portátil marca Phase II, modelo SRG-4500.

Las piezas maquinadas con la operación de torneado reflejaron un índice de maquinabilidad de 0,368 y de 0,701 para la tecnología MJP y FDM, respectivamente. Para fresado, se obtuvieron índices de 0,854 y de 0,982 para la tecnología MJP y FDM, respectivamente. Adicional a esto, se obtuvieron menores valores de rugosidad utilizando valores de avance y profundidad de corte bajos, junto con velocidades rotacionales altas para la tecnología MJP y medias para la FDM.

I

Finalmente, se concluye que la metodología desarrollada resulta ser en un proceso experimental confiable para medir maquinabilidad de piezas fabricadas por manufactura aditiva. Además, las piezas impresas por la tecnología FDM, presenta un índice de maquinabilidad más elevado que las piezas impresas por MJP. También, de forma general, para torneado, la maquinabilidad de las probetas es entre baja y media y, para fresado, es alta. Siendo la velocidad avance el parámetro de corte más influyente en el acabado superficial para todas las operaciones realizadas.

Palabras Clave: Maquinabilidad, rugosidad superficial, fresado, torneado.

ABSTRACT

The manufacture of components the controlled contribution of material, from a virtual model in the third dimension (3D), is known as manufacturing or additive manufacturing. Next, the design of a methodology for the study and analysis of the machinability of parts manufactured by this type of manufacturing is elaborated. To achieve this, the most common machining operations are integrated and the surface quality (roughness) is used as a machinability criterion. The application of this methodology contributes to saving: machining time, energy and raw material. Which contributes positively, in the care of the environment and the development of the industry.

Two groups of 26 tests, a slab of 30x30x10 mm and cylinders of 30 mm in diameter x 60 mm in length, were prepared for the milling and turning test, respectively. Half of each group, 13 pieces, is manufactured on the ProJet 3510 SD printer using Material Jetting-Polyjet (MJP) technology and the and the rest in the Cube 3D printer using the fused deposition modeling (FDM) technology. Acrylonitrile Butadiene Styrene (ABS) was used as the test material and Polytec 1000 was used as a base material to measure machinability. The test was carried out in two machine tools; the CNC milling machine brand ROLAND, model MDX 40a, with a High-speed steel tool with straight tip for frontal milling and; The CNC lathe marks DMTG, model CKE6136z, with a tool with an insert of carbide with ISO code DNMG 150608-PM for tuning. The tests were carried out using the values of spindle speed, feed rate and cutting depth, for milling and turning. For the acquisition of surface roughness, a portable Phase II rugosimeter, model SRG-4500, was used.

The machined parts with the turning operation reflected a machinability index of 0.368 and 0.701 for the MJP and FDM technology, respectively. For milling, indexes of 0.854 and 0.982 were obtained for the MJP and FDM technology, respectively. In addition to this, lower roughness values were obtained using low advance and depth of cut values, along with high rotational speeds for MJP technology and means for FDM.

Finally, it is concluded that the methodology developed turns out to be a reliable experimental process to measure the machinability of parts manufactured by additive manufacturing. Furthermore, the pieces printed by FDM technology, it has a higher machinability index than the pieces printed by MJP. Also, In general, for turning, the machinability of the test pieces is between low and medium, for milling is high. The speed advances the most influential cutting parameter in the surface finish for all the operations carried out.

Key Words: Machinability, surface roughness, milling, turning.

ÍNDICE GENERAL

RESUMENI
ABSTRACTIII
ÍNDICE GENERAL V
ABREVIATURAS
SIMBOLOGÍAIX
ÍNDICE DE FIGURASX
ÍNDICE DE TABLASXIII
ÍNDICE DE PLANOSXVII
CAPÍTULO 11
1. Introducción1
1.1 Descripción del problema1
1.2 Justificación del proyecto1
1.3 Objetivos2
1.3.1 Objetivo General2
1.3.2 Objetivos Específicos2
1.4 Marco teórico2
1.4.1 Maquinabilidad2
1.4.2 Rugosidad Superficial5
1.4.2.1 Medición de la rugosidad superficial7
1.4.3 Manufactura Aditiva8
1.4.3.1 Modelado por Deposición Fundida (FDM)10
1.4.3.2 Material Jetting – Polyjet (MJP)11
CAPÍTULO 212
2. Metodología12
2.1 Análisis del problema12
2.1.1 Caja negra12

2.1	.2	Pla	nteamiento de metodología experimental	13
2.2	Sel	ecci	ón de la mejor alternativa de metodología experimental	14
2.2	.1	Por	nderación de criterios	14
2.2	.2	Tab	ola Morfológica	16
	2.2.2	.1	Análisis de Tabla Morfológica	17
2.2	.3	Ма	triz de selección	19
	2.2.3	.1	Análisis de la matriz de selección de la mejor alternativa	20
2.3	Me	todo	logía de proceso experimental	21
2.4	Dis	eño	detallado	22
2.4	.1	Equ	uipos de impresión 3D	22
	2.4.1	.1	Cube 3D	22
	2.4.1	.2	ProJet 3510 SD	23
2.4	.2	Má	quinas-herramientas	24
	2.4.2	.1	Fresadora	24
	2.4.2	.2	Torno paralelo CNC	25
2.4	.3	Equ	uipo de medición	25
	2.4.3	5.1	Rugosímetro portátil	25
2.4	.4	De	scripción de materiales de ensayo	26
	2.4.4	.1	Preparación de las probetas de prueba	27
2.4	.5	He	rramienta de corte	31
2.4	.6	Sel	ección de las condiciones de corte	33
	2.4.6.1		Criterios de selección para condiciones de corte	34
	2.4.6	.2	Modelo de ensayo	35
	2.4.6	.3	Alternativas de condiciones de corte	40
2.5	Me	todo	logía experimental	44
2.5	.1	Pro	betas de prueba	44
2.5	.2	Pro	beta de material base	46

CAPÍTUL	O 3	48
3. Re	sultados y Análisis	48
3.1 C	Dperaciones de torneado	48
3.1.1	Rugosidad inicial	48
3.1.2	Primera fase de ensayos – Avance	48
3.1.3	Segunda fase de ensayos – Velocidad rotacional	50
3.1.4	Tercera fase de ensayos – Profundidad de corte	51
3.2 C	Operaciones de fresado	53
3.2.1	Rugosidad inicial	53
3.2.2	Primera fase de ensayos – Velocidad de avance	53
3.2.3	Segunda fase de ensayos – Velocidad rotacional	55
3.2.4	Tercera fase de ensayos – Profundidad de corte	56
3.3 E	nsayos en el material base Polytec 1000 - Acetal	58
3.3.1	Para torneado	58
3.3.2	Para fresado	59
3.4 C	cálculo del Índice de Maquinabilidad (IM)	59
3.5 A	nálisis de Costos	60
CAPÍTUL	O 4	62
4. Co	nclusiones y Recomendaciones	62
4.1 C	Conclusiones	62
4.2 R	Recomendaciones	63
BIBLIOG	RAFÍA	
APÉNDIC	ZES	

ABREVIATURAS

- ESPOL Escuela Superior Politécnica del Litoral
- ISO International Organization for Standardization
- MJP Material Jetting Polyjet
- FDM Fused Deposition Modeling
- FFF Fused Filament Fabrication
- CNC Control Numérico Computarizado
- IM Índice de Maquinabilidad
- 3D Tercera dimensión

SIMBOLOGÍA

m	Metro
mm	Milímetro
μm	Micras
in	Pulgada
ft	Pie
min	Minuto
h	Hora
gr	Gramo
rpm	Revoluciones por minuto
rev	Revoluciones
р	Profundidad de corte
f	Avance
fn	Velocidad de avance
Ν	Velocidad rotacional
Ra	Rugosidad superficial media
\$	Dólares americanos

ÍNDICE DE FIGURAS

Figura 1.1 Factores que afectan la maquinabilidad	3
Figura 1.2 Rasgos de la textura de una superficie	6
Figura 1.3 Orientaciones posibles de una superficie	6
Figura 1.4 Coordenadas para medir rugosidad usando la ecuación 1.2.	7
Figura 1.5 <i>(a)</i> Medición de la rugosidad con un estilete. (b) Trayectoria del estilete	8
Figura 1.6 Principales tecnologías de manufactura aditiva para materiales	
poliméricos y cerámicos	9
Figura 1.7 Esquema de proceso de la tecnología FDM	10
Figura 1.8 Esquema de proceso de la tecnología MJP	11
Figura 2.1 Caja Negra	13
Figura 2.2 Diagrama de bloques de la metodología del proceso experimental	21
Figura 2.3 Equipo de impresión Cube 3D	23
Figura 2.4 Equipo ProJet 3510SD	24
Figura 2.5 Esquema del equipo CNC ROLAND MDx-40A	24
Figura 2.6 Torno paralelo CNC modelo CKE6136Z	25
Figura 2.7 Rugosímetro digital SRG-4500	25
Figura 2.8 Esquema de plásticos técnicos	26
Figura 2.9 Probetas de tecnología FDM para torneado	29
Figura 2.10 Probetas de tecnología MJP para torneado	29
Figura 2.11 Probeta de tecnología FDM para fresado	30
Figura 2.12 Probeta de tecnología MJP para fresado	30
Figura 2.13 Probeta de material Polytec 1000 (Acetal)	31
Figura 2.14 Inserto DNMG 150608-PM.	32
Figura 2.15 Fresa helicoidal	33
Figura 3.1 Evolución de la rugosidad superficial media en función del avance,	
para ambas tecnologías de impresión 3D, en torneado	49
Figura 3.2 Evolución de la rugosidad superficial media en función de la	
velocidad del husillo, para ambas tecnologías de impresión 3D, en torneado	51
Figura 3.3 Evolución de la rugosidad superficial media en función de la	
profundidad de corte, para ambas tecnologías de impresión 3D, en torneado	52
Figura 3.4 Evolución de la rugosidad superficial media en función de la	
velocidad de avance, para ambas tecnologías de impresión 3D, en fresado	54

Figura 3.5 Evolución de la rugosidad superficial media en función de la	
velocidad del husillo, para ambas tecnologías de impresión 3D, en fresado	56
Figura 3.6 Evolución de la rugosidad superficial media en función de la	
profundidad de corte, para ambas tecnologías de impresión 3D, en fresado	57
Figura 0.1 Estructura o forma de Infill de pieza fabricada por tecnología FDM	104
Figura 0.2 Ilustración de una medición "Fuera de Rango" (F.R.) en una pieza	
fabricada por tecnología FDM	104
Figura 0.3 Piezas de trabajo de la primera fase de ensayo de la tecnología	
MJP para torneado	105
Figura 0.4 Piezas de trabajo de la tecnología MJP N. º3; a) primer ensayo,	
b) segundo ensayo (repetición)	105
Figura 0.5 Piezas de trabajo de la tecnología MJP N. º4; a) primer ensayo,	
b) segundo ensayo (repetición)	106
Figura 0.6 Piezas de trabajo de la tecnología MJP N. º5; a) primer ensayo,	
b) segundo ensayo (repetición)	106
Figura 0.7 Piezas de trabajo de la primera fase de ensayo de la tecnología	
FDM para torneado	107
Figura 0.8 Pieza de trabajo N.º 3 de la primera fase de ensayo de la tecnología	
FDM para torneado, presenta fallas en la superficie	107
Figura 0.9 Piezas de trabajo de la segunda fase de ensayo de la tecnología	
MJP para torneado y, la mejor probeta de la primera fase (N.º1)	108
Figura 0.10 Piezas de trabajo de la segunda fase de ensayo de la tecnología	
FDM para torneado y, la mejor probeta de la primera fase (N.º1)	108
Figura 0.11 Pieza de trabajo N.º 8 de la segunda fase de ensayo de la	
tecnología FDM para torneado, presenta fallas en la superficie	109
Figura 0.12 Piezas de trabajo de la tercera fase de ensayo de la tecnología	
MJP para torneado y, la mejor probeta de la segunda fase (N.º1)	109
Figura 0.13 Piezas de trabajo de la tercera fase de ensayo de la tecnología	
FDM para torneado y, la mejor probeta de la segunda fase (N.º9)	110
Figura 0.14 Pieza de trabajo N.º 13 de la tercera fase de ensayo de la	
tecnología FDM para torneado, presenta fallas en la superficie	110
Figura 0.15 Pieza de trabajo N.º 1 de la tecnología MJP para torneado,	
presenta el mejor acabado superficial	111

ÍNDICE DE TABLAS

Tabla 1.1 Intervalos de índice de maquinabilidad respecto al material base	4
Tabla 1.2 Criterios de ponderación de maquinabilidad	5
Tabla 1.3 Ventajas y limitaciones de la fabricación aditiva	8
Tabla 2.1 Planteamiento de metodología experimental	13
Tabla 2.2 Comparación por pares de criterios de selección para la mejor	
alternativa de metodología de proceso experimental	15
Tabla 2.3 Importancia relativa de los criterios de selección para la mejor	
alternativa de metodología de proceso experimental	15
Tabla 2.4 Tabla morfológica. Características y medios del diseño	17
Tabla 2.5 Alternativas de metodología de proceso experimental	18
Tabla 2.6 Matriz de selección de la mejor alternativa de metodología	
de proceso experimental	20
Tabla 2.7 Especificaciones técnicas de impresora Cube	22
Tabla 2.8 Ficha Técnica de ProJet 3510 SD.	23
Tabla 2.9 Datos técnicos del rugosímetro SRG 4500	26
Tabla 2.10 Propiedades mecánicas y térmicas de los materiales a ensayar	27
Tabla 2.11 Parámetros de impresión de las piezas de ensayo	28
Tabla 2.12 Características principales del material de trabajo para torneado	
Tabla 2.13 Características principales del material de trabajo para fresado	
Tabla 2.14 Profundidad de corte recomendada y avance de corte, métrico.	
Inserto T-Max P para torneado	32
Tabla 2.15 Características de la herramienta de corte para fresado	32
Tabla 2.16 Objetivos características, medios, criterios para acabado	
superficial y restricciones para obtener las mejores condiciones de corte	34
Tabla 2.17 Condiciones de corte para plásticos técnicos para operaciones	
de fresado y torneado	35
Tabla 2.18 Velocidad de corte y avance en sistemas inglés e internacional	
Tabla 2.19 Recomendaciones generales para operaciones de torneado	
Tabla 2.20 Intervalos de condiciones de corte.	
Tabla 2.21 Condiciones de corte referenciales para torneado	
Tabla 2.22 Velocidades de Corte y Avance para fresado	
Tabla 2.23 Condiciones de corte para fresado	

Tabla 2.24 Condiciones de corte para el fresado.	40
Tabla 2.25 Alternativas de condiciones de corte para torneado	41
Tabla 2.26 Alternativas de condiciones de corte para fresado	42
Tabla 2.27 Alternativas de condiciones de corte	43
Tabla 2.28 Propuesta de identificación de probetas ensayadas	44
Tabla 3.1 Medición de rugosidad superficial media de la primera fase del	
ensayo para torneado	48
Tabla 3.2 Medición de rugosidad superficial media de la segunda fase del	
ensayo para torneado	50
Tabla 3.3 Medición de rugosidad superficial media de la tercera fase del	
ensayo para torneado	52
Tabla 3.4 Medición de rugosidad superficial media de la primera fase del	
ensayo para fresado	54
Tabla 3.5 Medición de rugosidad superficial media de la segunda fase del	
ensayo para fresado	55
Tabla 3.6 Medición de rugosidad superficial media de la segunda fase del	
ensayo para fresado	57
Tabla 3.7 Medición de rugosidad media del material base para torneado	58
Tabla 3.8 Medición de rugosidad media del material base para fresado	59
Tabla 3.9 Costos de alquiler de máquinas herraminetas	61
Tabla 3.10 Costos de fabricación de las probetas	61
Tabla 3.11 Valor total final de costos de fabricación y experimentación	61
Tabla 0.1 Registro de piezas ensayadas, fabricadas por la tecnología MJP.	
para torneado	69
Tabla 0.2 Registro de piezas ensayadas, fabricadas por la tecnología FDM	
para torneado	70
Tabla 0.3 Registro de piezas ensayadas, fabricadas por la tecnología MJP.	
para fresado	71
Tabla 0.4 Registro de piezas ensayadas, fabricadas por la tecnología FDM	
para fresado	72
Tabla 0.5 Control de medición de rugosidad inicial de probetas de tecnología	
MJP para torneado	73
Tabla 0.6 Control de medición de rugosidad de las probetas de la primera	
fase de ensayos (avance) para torneado, tecnología MJP	75

Tabla 0.7 Control de medición de rugosidad de las probetas de la primera
fase de ensayos (avance) para torneado, tecnología FDM76
Tabla 0.8 Control de medición de rugosidad de las probetas de la segunda
fase de ensayos (velocidad rotacional) para torneado, tecnología MJP78
Tabla 0.9 Control de medición de rugosidad de las probetas de la segunda
fase de ensayos (velocidad rotacional) para torneado, tecnología FDM79
Tabla 0.10 Control de medición de rugosidad de las probetas de la tercera
fase de ensayos (profundidad de corte) para torneado, tecnología MJP81
Tabla 0.11 Control de medición de rugosidad de las probetas de la tercera
fase de ensayos (profundidad de corte) para torneado, tecnología FDM82
Tabla 0.12 Control de medición de rugosidad inicial de la probeta del material
base para torneado
Tabla 0.13 Control de medición de rugosidad de la probeta del material base
ensayada bajo las mejores condiciones de corte obtenidas para la tecnología
MJP en torneado
Tabla 0.14 Control de medición de rugosidad de la probeta del material base
ensayada bajo las mejores condiciones de corte obtenidas para la tecnología
FDM en torneado85
Tabla 0.15 Control de medición de rugosidad inicial de probetas de tecnología
MJP para fresado, medición longitudinal86
Tabla 0.16 Control de medición de rugosidad inicial de probetas de tecnología
MJP para fresado, medición transversal87
Tabla 0.17 Control de medición de rugosidad de las probetas de la primera fase
de ensayos (velocidad de avance) para fresado, tecnología MJP,
medición longitudinal
Tabla 0.18 Control de medición de rugosidad de las probetas de la primera fase
de ensayos (velocidad de avance) para fresado, tecnología MJP,
medición transversal
Tabla 0.19 Control de medición de rugosidad de las probetas de la primera fase
de ensayos (velocidad de avance) para fresado, tecnología FDM,
medición longitudinal90
Tabla 0.20 Control de medición de rugosidad de las probetas de la primera fase
de ensayos (velocidad de avance) para fresado, tecnología FDM,
medición transversal91

Tabla 0.21 Control de medición de rugosidad de las probetas de la segunda fase
de ensayos (velocidad rotacional) para fresado, tecnología MJP,
medición longitudinal93
Tabla 0.22 Control de medición de rugosidad de las probetas de la segunda fase
de ensayos (velocidad rotacional) para fresado, tecnología MJP,
medición transversal94
Tabla 0.23 Control de medición de rugosidad de las probetas de la segunda fase .
de ensayos (velocidad rotacional) para fresado, tecnología FDM,
medición longitudinal95
Tabla 0.24 Control de medición de rugosidad de las probetas de la segunda fase
de ensayos (velocidad rotacional) para fresado, tecnología FDM,
medición transversal96
Tabla 0.25 Control de medición de rugosidad de las probetas de la tercera fase
de ensayos (profundidad de corte) para fresado, tecnología MJP,
medición longitudinal
Tabla 0.26 Control de medición de rugosidad de las probetas de la tercera fase
de ensayos (profundidad de corte) para fresado, tecnología MJP,
medición transversal
Tabla 0.27 Control de medición de rugosidad de las probetas de la tercera fase
de ensayos (profundidad de corte) para fresado, tecnología FDM,
medición longitudinal
Tabla 0.28 Control de medición de rugosidad de las probetas de la tercera fase
de ensayos (profundidad de corte) para fresado, tecnología FDM,
medición transversal
Tabla 0.29 Control de medición de rugosidad inicial de la probeta del material
base para fresado101
Tabla 0.30 Control de medición de rugosidad de la probeta del material base
ensayada bajo las mejores condiciones de corte obtenidas para la
tecnología MJP en fresado102
Tabla 0.31 Control de medición de rugosidad de la probeta del material base
ensayada bajo las mejores condiciones de corte obtenidas para la
tecnología FDM en fresado103

ÍNDICE DE PLANOS

Plano 1. Placa	117
Plano 2. Eje	118

CAPÍTULO 1

1. INTRODUCCIÓN

1.1 Descripción del problema

La manufactura aditiva permite crear objetos agregando material, frecuentemente capa por capa, a través de modelos de cómputo; cuenta con una amplia gama de tecnologías para su aplicación, que permiten la fabricación de piezas en diferentes materiales y variadas geometrías. Este tipo de piezas son utilizadas en diversos campos como: médico, ingenieril, artístico, entre otros. Sin embargo, la funcionalidad de estas piezas se ve limitada por el acabado superficial obtenido después de su fabricación, con altas rugosidades y tolerancias.

1.2 Justificación del proyecto

Los procesos aditivos son considerados como sistemas adecuados para la fabricación de prototipos (modelos para visualización no funcionales) debido a las características mecánicas finales de los mismos. Sin embargo, con el avance de la tecnología y materiales para manufactura aditiva, actualmente se obtienen piezas con mejores propiedades mecánicas, resultando en que sean funcionales para aplicaciones de ingeniería.

Buscando ampliar el campo de aplicación de las piezas impresas en tercera dimensión (3D) y teniendo en cuenta las restricciones de funcionalidad que presentan por su acabado superficial, se plantea realizar un mecanizado posterior que permita a la pieza alcanzar una calidad de superficie más alta.

La aplicación de operaciones de maquinado a piezas fabricadas por manufactura aditiva produce menor desperdicio de material debido a las tolerancias que puede alcanzar, en comparación con otro proceso de manufactura, lo que implica, menor tiempo de mecanizado, menor consumo de energía y menor requerimiento de materia prima. Esto contribuye en forma

positiva al cuidado del medio ambiente, y permite a la industria ofrecer productos personalizados de calidad.

1.3 Objetivos

1.3.1 Objetivo General

Diseñar una metodología para el estudio y análisis de la maquinabilidad de un elemento fabricado mediante la tecnología de manufactura aditiva en un proceso convencional de mecanizado.

1.3.2 Objetivos Específicos

- 1. Establecer la maquinabilidad de piezas impresas en 3D.
- Analizar la influencia de diferentes condiciones de corte para el fresado o torneado de una pieza fabricada por manufactura aditiva.
- Determinar las mejores condiciones de corte que deben ser empleadas en el mecanizado de una pieza fabricada por manufactura aditiva para la obtención de una adecuada calidad superficial.

1.4 Marco teórico

1.4.1 Maquinabilidad

La maquinabilidad se refiere a la relativa facilidad que tiene un material para ser mecanizado, bajo las herramientas y condiciones de corte adecuados. Las propiedades de los materiales de trabajo, el tipo de operación de mecanizado, el material de la herramienta y las condiciones de corte influyen considerablemente en el desempeño del maquinado. Un buen desempeño implica que se obtuvo un buen acabado superficial, larga vida útil de la herramienta y poca impresión de fuerza y potencia. Respecto a las virutas, independiente de su tipo, si se enredan en la zona de corte pueden disminuir en gran manera el desempeño. (Schmid, 2008)

En la práctica de maquinado, usualmente, se considera que la vida útil de la herramienta y la rugosidad superficial son los criterios más importantes de la maquinabilidad. (Schmid, 2008). Sin embrago, esos criterios están influenciados por las condiciones, herramientas y fluidos de corte de la operación de mecanizado en particular, así como la forma de la herramienta. (Groover, 2007)

La Figura 1.1 muestra los diferentes factores influyentes en el mecanizado de materiales plásticos; en especial, los relacionados con los parámetros o condiciones de corte, a las propiedades del material y la herramienta de corte. (Francisco Mata Cabrera, 2011)

Fuente: (Francisco Mata Cabrera, 2011) Elaboración propia.

Desempeño relativo o Índice de Maquinabilidad (IM): La capacidad relativa de un material al mecanizado se expresa comúnmente por medio de un valor adimensional llamado índice de maquinabilidad. Se define como un patrón con relación al cual establecer comparaciones que nos permitan reconocer la mayor o menor facilidad/dificultad para el mecanizado. (Francisco Mata, 2010)

Para comparaciones, se establece un material como base y se le asigna un índice de maquinabilidad igual a uno (1). Se sugiere que el material seleccionado como base de comparación disponga de propiedades medias respecto a la gama de materiales existentes. La Tabla 1.1 señala los intervalos de ponderación del índice respecto al material base. (Groover, 2007)

Tabla 1.1 Intervalos de índice de maquinabilidad respecto al material base.

Material de Trabajo	IM
Más difícil de maquinar	<1.00
Material base	=1.00
Más fácil de maquinar	>1.00
Fuente: (Groover, 2007) Elaboración propia.	

Propuesta de índice de maquinabilidad: La rugosidad superficial es un criterio importante para evaluar la maquinabilidad de un material. (Francisco Mata, 2010). Con respecto a este parámetro, se propone un nuevo índice de maquinabilidad definido mediante la siguiente relación:

$$\frac{IM_{material \ de \ prueba}}{IM_{material \ base}} = \frac{Ra_{material \ base}}{Ra_{material \ de \ prueba}} ; IM_{material \ base} = 1$$

Obteniendo.

$$IM_{material \ de \ prueba} = \frac{R_{a \ (material \ base)}}{R_{a \ (material \ de \ prueba)}}$$
(1.1)

Siendo, $R_{a \ (material \ base)}$ la rugosidad superficial media (μm) del material definido como base de comparación, $R_{a \ (material \ de \ prueba)}$ la rugosidad superficial media (μm) del material de ensayado. Se espera obtener en un solo valor un indicador de la maquinabilidad que considere este criterio para así establecer comparaciones entre materiales.

La Tabla 1.2 muestra los criterios de ponderación de maquinabilidad establecidos (según criterio técnico) para el análisis, según la disposición del material al maquinado.

Criterio de ponderación de maquinabilidad		
%	Disposición al	
	maquinado	
0 - 40	Baja	
40 -70	Media	
70 - 100	Alta	
Evente: Elekeración presie		

Tabla 1.2 Criterios de ponderación de maquinabilidad.

Fuente: Elaboración propia.

1.4.2 Rugosidad Superficial

La rugosidad superficial depende de las características del material, y del proceso mediante el cual se formó la superficie; son pequeñas desviaciones de la superficie nominal de una pieza, espaciadas finamente; ocurren debido a la deflexión del trabajo, vibraciones, tratamientos térmicos, y factores similares.

La Figura 1.2 muestra un esquema de los rasgos de la textura de una superficie. La rugosidad está sobreimpuesta a la ondulación; desviaciones de espaciamiento mucho mayor que ocurren debido a la deflexión del trabajo, vibraciones, tratamientos térmicos y factores similares.

La orientación es el patrón de la textura de la superficie. La Figura 1.3 indica las orientaciones posibles de una superficie. La forma de la superficie está determinada por el método de manufactura utilizado, por lo general a partir de la acción de una herramienta de corte. En la superficie también se producen defectos que son irregularidades que ocurren en forma ocasional; incluyen grietas, rayaduras, inclusiones y otros defectos similares. Aunque algunos de los defectos se relacionan con la textura de la superficie también afectan su integridad. (Schmid, 2008)

Figura 1.2 Rasgos de la textura de una superficie.

Fuente: (Groover, 2007)

Figura 1.3 Orientaciones posibles de una superficie.

Fuente: (Schmid, 2008)

En la década de 1950 se adoptó internacionalmente el valor medio aritmético (*Ra*) como método para describir la rugosidad de una superficie, debido a su simplicidad y su amplio uso en la práctica de ingeniería.

El valor medio aritmético (Ra) se basa en el esquema de una superficie rugosa, como se muestra en la Figura 1.2. Se define como:

$$R_a = \frac{a+b+c+d+\cdots}{n}$$
(1.2)

En donde todas las ordenadas, *a*, *b*, *c*,..., son valores absolutos y *n* es la cantidad de lecturas.

La línea de referencia *AB*, en la Figura 1.4, se ubica de forma que la suma de las áreas arriba de la línea es igual a la suma de las áreas debajo de la misma. Frecuentemente, las unidades utilizadas para la rugosidad superficial son μ m (micras).

Figura 1.4 Coordenadas para medir rugosidad usando la ecuación 1.2. Fuente: (Schmid, 2008)

1.4.2.1 Medición de la rugosidad superficial

Para medir la rugosidad superficial se emplean instrumentos conocidos como rugosímetros superficiales. Estos equipos constan de un estilete de diamante que avanzan sobre el perfil en líneas rectas, llamadas recorrido. Los recorridos van desde 8mm hasta 25 mm (0,003 a 1 in).

El método consiste en procurar que el recorrido sea lo suficientemente grande para incluir 10 a 15 irregularidades de rugosidad, y toda la ondulación superficial. El estilete forma diferentes perfiles dependiendo del tipo de proceso de maquinado y acabados superficiales que presente la pieza, estos perfiles pueden estar en escalas verticales u horizontales.

La Figura 1.5 ilustra los componentes involucrados en la medición de la rugosidad superficial y la trayectoria del estilete.

Figura 1.5 (a) Medición de la rugosidad con un estilete. (b) Trayectoria del estilete. Fuente: (Schmid, 2008)

1.4.3 Manufactura Aditiva

La manufactura aditiva consiste en la conformación de piezas por medio de la deposición de un material, el cual es controlado a escalas diminutas. Debido a su eficiencia, son muchas las tecnologías que utilizan este tipo de manufactura. Además, se puede lograr buena precisión en el aporte de material, lo que presenta diversas posibilidades para el diseñador y para el desarrollo de productos y piezas de todo tipo con aplicaciones importantes en medicina, en la industria metalmecánica, entre otros. Por otro lado, el tiempo de proceso se reduce considerablemente, con el correcto uso.

La Tabla 1.3 enlista varias de las ventajas y limitaciones presentes en la manufactura aditiva.

Ventajas	Limitaciones
Complejidad geométrica, personalización	Tecnologías AM en desarrollo
Libertad creativa	Procesos periféricos y auxiliares
Adaptación al mercado	Desconocimiento de los diseñadores
Acceso a nuevos nichos de mercado	Disponibilidad y coste de la materia prima
Mecanismos integrados	Acabado superficial
Reducción de peso, productos aligerados	Velocidad de fabricación
Reducción del time to market	Calidad del producto y repetibilidad del proceso
Reducción de costes de procesos intermedios	Tamaño limitado de piezas
Procesos híbridos	Costes de la maquinaria

Tabla 1.3 Ventajas y limitaciones de la fabricación aditiva.

Fuente: (Zahera, 2012) Elaboración propia. Entre sus ventajas está: la personalización en masa, en donde se une la creatividad y el criterio de ingeniería; la complejidad geométrica; y procesos con desperdicio nulo, lo que conlleva a un ahorro de material (dinero). Entre sus limitaciones tenemos el acabado superficial; esta limitación se corrige combinando procesos convencionales (sustractivos) de mecanizado. (Zahera, 2012)

Las principales tecnologías de manufactura aditiva para materiales poliméricos y cerámicos se pueden clasificar como muestra la Figura 1.6.

Figura 1.6 Principales tecnologías de manufactura aditiva para materiales poliméricos y cerámicos.

Fuente: ((ATIGA), 2017). Elaboración propia. A continuación, describimos dos de las tecnologías de manufactura aditiva mostradas en la Figura 1.6. Estas son: Moldeado por Deposición Fundida (FDM) y Material Jetting-Polyjet (MJP).

1.4.3.1 Modelado por Deposición Fundida (FDM)

Conocida como Fused Deposition Modeling (FDM) o Fused Filament Fabrication (FFF), consiste en la deposición de un termoplástico fundido a través de un cabezal de extrusión de temperatura controlada, capa a capa, sobre una plataforma de fabricación. El tamaño máximo del modelo es de 914x610x914 mm. La Figura 1.7 ilustra el proceso de la tecnología de impresión FDM.

Figura 1.7 Esquema de proceso de la tecnología FDM. Fuente: 3D Natives

Compatible con muchos polímeros termoplásticos como ABS (Acrilonitrilo Butadieno Estireno), policarbonato, PPSF y ULTEM. El espesor mínimo de capa depende del material empleado, 0,13-0,25mm para ABS; 0,18-0,25mm para PC.

1.4.3.2 Material Jetting – Polyjet (MJP)

Este proceso consiste en la deposición de diminutas gotas de material, frecuentemente fotopolímero, a través de múltiples inyectores las mismas que se curan al interactuar con luz UV. La Figura 1.8 ilustra el proceso de la tecnología de impresión MJP.

Figura 1.8 Esquema de proceso de la tecnología MJP. Fuente: Loughborough University

El espesor mínimo de capa es de 0,017mm. Amplia gama de materiales, entre ellos están las resinas traslucidas, polipropileno, ABS o resinas elásticas. ((ATIGA), 2017)

CAPÍTULO 2

2. METODOLOGÍA

A fin de determinar un valor que indique la maquinabilidad de una pieza fabricada por manufactura aditiva, y que relacione uno de los criterios de maquinabilidad descritos en este proyecto con factores inherentes de los procesos de mecanizado como son los parámetros de corte, se establecerá una metodología con el proceso experimental que cumpla con esta condición. Además, con la experimentación realizada se determinarán los parámetros que mejoran dicho criterio evaluado de maquinabilidad.

Para la experimentación se realizarán las operaciones de mecanizado más comunes de fresado y torneado. Se registrará a detalle el procedimiento seguido, con el fin de crear una serie de pasos que servirán como guía para futuros trabajos sobre medición de la maquinabilidad de piezas impresas en 3D. Los resultados obtenidos serán analizados en el capítulo 3. Como material base se utilizará Polytec 1000 (Acetal), que se lo encuentra de manera comercial como un polímero para maquinado y, como material de prueba el Acrilonitrilo Butadieno Estireno (ABS), que es de los más comunes utilizados para impresión 3D en plástico.

2.1 Análisis del problema

El problema radica en seleccionar la metodología de proceso de experimentación más adecuada. Para una mejor visualización del problema que se desea solucionar, se hará uso de la caja negra y otras herramientas del proceso de diseño aplicables a nuestro tema de discusión.

2.1.1 Caja negra

La Figura 2.1 muestra la caja negra, en esta caja se enuncian los estados inicial y final del proceso de diseño sin especificar el método o camino utilizado para llegar del uno a otro.

2.1.2 Planteamiento de metodología experimental

A continuación, para visualizar de mejor forma la problemática y facilitar el planteamiento de las alternativas de solución, en la Tabla 2.1 se enuncian los objetivos, las características, los medios, los criterios de selección y las restricciones del proyecto.

Objetivos	Características	Medios	Criterios de selección	Restricciones
a) Determinar el índice de maquinabilidad de piezas de	a) Criterio de maquinabilidad	a) Rugosidad superficial b) Vida útil de la herramienta	a) Costo de experimentación b) Adquisición	<u>Equipos de</u> <u>medición</u> : a) Disponibilidad
matriz polimérica termoplásticas.		a) Velocidad de avance b) Velocidad	de datos c) Calibración de parámetros	b) Rango de medición
b) Obtener condiciones de corte que mejoren la maquinabilidad del material de prueba.	b) Parámetros o condición de corte	rotacional c) Profundidad de corte d) Fluido de corte e) Forma de la herramienta	de corte d) Influencia en la maquinabilidad e) Tiempo de experimentación	<u>Máquinas</u> <u>herramientas</u> : a) Rango de trabajo

Tabla 2.1 Planteamiento de metodología experimental.

Fuente: Elaboración propia.

2.2 Selección de la mejor alternativa de metodología experimental

Para la selección de la mejor alternativa de metodología de proceso experimental, se debe obtener el nivel de importancia de los criterios de selección mostrados en la Tabla 2.1. Luego, se generan las posibles alternativas de solución usando las herramientas de diseño necesarias, en base a criterio técnico. Finalmente, se forma la matriz de selección y se encuentra la mejor alternativa.

2.2.1 Ponderación de criterios

Para determinar el nivel de importancia de los criterios de selección usaremos la comparación por pares. Esta es una herramienta confiable y crucial en el proceso de diseño, para seleccionar la mejor solución. Los criterios de selección son establecidos en función de los requerimientos del cliente, descritos a continuación:

Requisitos del cliente

- Operación de mecanizado económica.
- Metodología de experimentación confiable.

Criterios de diseño

- A. Costo de experimentación: Experimentación que implique menos gastos, es decir la más económica.
- **B.** Adquisición de datos: Se busca obtener la mayor cantidad de datos con facilidad, evitando introducir el menor error humano posible.
- *C.* Calibración de los parámetros de corte: Se espera que la calibración o regulación de estos parámetros sea lo menos complicado posible.
- **D.** Influencia en la maquinabilidad: Aquellos parámetros de corte funcionales con mayor influencia sobre el criterio de maquinabilidad por analizar.
- *E.* Tiempo de experimentación: Se considera la mejor alternativa aquella metodología que tarde el menor tiempo posible, involucrando un proceso seguro.

Comparación por pares

Una vez definidos los criterios de selección se realiza la comparación por pares, como muestra la Tabla 2.2. Esta comparación nos permite determinar la relación entre cada uno de los criterios. Todos los criterios identificados se evalúan entre sí (todos contra todos, uno a la vez). Al finalizar la comparación los criterios quedan en el orden de mayor a menor importancia. En las celdas respectivas, se registra un valor entero entre cero (0) y dos (2), donde 0 significa la mínima calificación y 2 significa la máxima calificación.

Criterios de selección	Costo de experiment ación	Adquisición de datos	Calibración de los parámetros de corte	Influencia en la maquinabilidad	Tiempo de experimentación	Calificación
Costo de experimentación		0	2	0	2	4
Adquisición de datos	2		2	1	2	7
Calibración de los parámetros de corte	0	0		1	1	2
Influencia en la maquinabilidad	2	1	1		2	6
Tiempo de experimentación	0	0	1	0		1

 Tabla 2.2 Comparación por pares de criterios de selección para la mejor alternativa de metodología de proceso experimental.

Fuente: Elaboración propia.

Tabla 2.3 Importancia relativa de los criterios de selección para la me	∍jor
alternativa de metodología de proceso experimental.	

Criterio de selección	Calificación	Nivel de importancia [%]
Adquisición de datos	7	35
Influencia en la maquinabilidad	6	30
Costo de experimentación	4	20
Calibración de los parámetros de corte	2	10
Tiempo de experimentación	1	5
Total	20	100

Fuente: Elaboración propia.

Con la calificación obtenida en la Tabla 2.2, se calcula el nivel de importancia (en porcentaje) de los criterios de selección, como se refleja en la Tabla 2.3.

2.2.2 Tabla Morfológica

La tabla morfológica relaciona las características de la metodología experimental con los medios para desarrollarla. A partir de esta tabla se plantean las posibles alternativas de metodología de proceso experimental como indica la Tabla 2.4. Dicho lo anterior, se realiza un listado de las características de la metodología de proceso experimental, y luego una sub-lista de los medios para obtener estas características.

Características del diseño

- Criterio de maquinabilidad: Indicador de maquinabilidad.
- Parámetros o condiciones de corte: Variables que influyen los criterios de maquinabilidad.

Sub-lista de medios

- Criterio de maquinabilidad:
 - ✓ Rugosidad superficial.
 - \checkmark Vida útil de la herramienta.
- Parámetros de corte:
 - ✓ Velocidad de corte.
 - ✓ Velocidad de avance.
 - ✓ Profundidad de corte
 - ✓ Fluido de corte.
 - ✓ Forma de la herramienta de corte.

Los parámetros funcionales de corte son tres (Francisco Mata Cabrera, 2011). Entonces, según criterio técnico, se forman tres grupos de las posibles condiciones de corte a determinar. Se seleccionan las ternas más

representativas de las posibles combinaciones. La Tabla 2.4 refleja la tabla morfológica.

Medios	1	2	3		
Características					
Criterio de maquinabilidad	La vida útil de la herramienta	La rugosidad superficial			
	- Velocidad de avance	- Velocidad de avance	- Velocidad rotacional		
Parámetros o condiciones de corte	- Velocidad rotacional	- Fluido de corte	- Velocidad de avance		
	- Profundidad de corte	- Forma de la herramienta de corte	- Fluido de corte		

Tabla 2.4 Tabla morfológica. Características y medios del diseño.

Fuente: Elaboración propia.

2.2.2.1 Análisis de Tabla Morfológica

De la tabla morfológica se plantean seis posibles alternativas de metodología de proceso experimental, descritas a continuación:

Lista de alternativas de metodología de proceso experimental

- A. Determinar maquinabilidad de piezas fabricadas por manufactura aditiva mediante la medición de la rugosidad superficial variando los siguientes parámetros: velocidad de avance, velocidad rotacional y profundidad de corte.
- B. Determinar maquinabilidad de piezas fabricadas por manufactura aditiva mediante la medición de la rugosidad superficial variando los siguientes parámetros: velocidad de avance, fluido de corte y la forma de la herramienta de corte.
- C. Determinar maquinabilidad de piezas fabricadas por manufactura aditiva mediante la medición de la rugosidad superficial variando los siguientes parámetros: velocidad de avance, velocidad rotacional y fluido de corte.

- D. Determinar maquinabilidad de piezas fabricadas por manufactura aditiva mediante la medición de la vida útil de la herramienta variando los siguientes parámetros: velocidad de avance, velocidad rotacional y profundidad de corte.
- E. Determinar maquinabilidad de piezas fabricadas por manufactura aditiva mediante la medición de la vida útil de la herramienta variando los siguientes parámetros: velocidad de avance, fluido de corte y la forma de la herramienta de corte.
- F. Determinar maquinabilidad de piezas fabricadas por manufactura aditiva mediante la medición de la vida útil de la herramienta variando los siguientes parámetros: velocidad de avance, velocidad rotacional y fluido de corte.

En la Tabla 2.5 se muestra la combinación de las alternativas enunciadas.

Alternativa	Enunciado: fabricadas	Determinar maquinabilidad de piezas por manufactura aditiva mediante
Alternativa	la medición de	variando los siguientes parámetros
A		Velocidad de avance, velocidad rotacional y profundidad de corte
В	La rugosidad superficial	Velocidad de avance, fluido de corte y la forma de la herramienta de corte.
С		Velocidad rotacional, velocidad de avance y fluido de corte
D		Velocidad de avance, velocidad rotacional y profundidad de corte
E	La vida útil de la herramienta	Velocidad de avance, fluido de corte y la forma de la herramienta de corte.
F		Velocidad rotacional, velocidad de avance y fluido de corte

Tabla 2.5 Alternativas de metodología de proceso experimental.

Fuente: Elaboración propia.

2.2.3 Matriz de selección

La matriz de selección nos permite encontrar la alternativa de solución más viable respecto a los criterios de selección definidos. Los criterios de selección con su indicador o sub-criterio son:

- Adquisición de datos: La mayor cantidad de datos con menor dificultad.
- Influencia en la maquinabilidad: Mayor influencia en la maquinabilidad.
- Costo de experimentación: El más económico.
- Calibración de los parámetros de corte: La más precisa y menos complicada.
- **Tiempo de experimentación:** El menor tiempo posible, comprendiendo un proceso seguro.

En la Tabla 2.6 se determina la influencia de los criterios y sub-criterios de selección respecto a las alternativas de metodología planteadas. Para cada alternativa, en la esquina inferior derecha de la celda de abajo, se registra un valor entero entre dos (2) y diez (10), donde 2 representa la mínima influencia y 10 la máxima influencia. Este valor se multiplica por el nivel de importancia correspondiente al criterio evaluado (según criterio técnico) y se registra su valor en la parte central de la celda superior. Al final, se suman los valores obtenidos para cada alternativa de metodología, este valor se llama grado de satisfacción.

Criterios	Adquisición de datos	Influencia en la maquinabilidad	Costo de experimentación	Calibración de los parámetros de corte	Tiempo de experimentación	Grado de
	0,35	0,30	0,20	0,10	0,05	satisfacción
Alternativa	Mayor cantidad; menor dificultad	Mayor posible	Menor posible	Mayor precisión; menor complejidad	Menor posible	
A	2,1	2,4	1,6	0,8	0,3	7,20
	6	8	8	8	6	
В	0,1225	1,2	0,8	0,4	0,1	2,62
	2	4	4	4	2	
С	1,4	1,8	1,2	0,6	0,2	5,20
	4	6	6	6	4	
D	0,49	2,4	1,6	0,8	0,3	5,59
	6	8	8	8	6	
E	0,7	1,2	0,8	0,4	0,1	3,20
	2	4	4	4	2	
F	1,4	0,6	1,2	0,6	0,2	4,00
	4	2	6	6	4	

Tabla 2.6 Matriz de selección de la mejor alternativa de metodología deproceso experimental.

Fuente: Elaboración propia.

2.2.3.1 Análisis de la matriz de selección de la mejor alternativa

De la Tabla 2.6 se obtiene que la mejor alternativa de metodología de proceso experimental a seguir en base a los requerimientos del cliente es la opción "A", con un grado de satisfacción de 7,2. Esta alternativa dice:

<u>Alternativa A</u>: "Determinar maquinabilidad de piezas fabricadas por manufactura aditiva mediante la medición de la rugosidad superficial variando los siguientes parámetros: velocidad de avance, velocidad rotacional y profundidad de corte."

2.3 Metodología de proceso experimental

Figura 2.2 Diagrama de bloques de la metodología del proceso experimental. Elaboración propia.

2.4 Diseño detallado

En esta sección se detallan las características de los equipos, máquinas herramientas, herramientas de corte y los parámetros de corte a utilizar en los procesos de mecanizado.

2.4.1 Equipos de impresión 3D

Los equipos de impresión 3D utilizados se describen a continuación:

2.4.1.1 Cube 3D

Esta impresora utiliza la tecnología de impresión por Modelado por Deposición Fundida (FDM). La Tabla 2.7 describe las características principales del equipo, el mismo que se muestra en la Figura 2.3.

Especificaciones técnicas Cube impresora 3D			
PESO Y DIMENSIONES	_		
Dimensiones del cubo (con	13.2 (w) x 13.5 (h) x 9.5 (d) pulgadas /		
cartucho:	33.5 (w) x 34.3 (h) x 24.1 (d) cm		
Sobre de funcionamiento:	28.9 (w) x 20.6 (h) x 15.8 (d) pulgadas /		
	73.4 (w) x 52.3 (h) x 40.1 (d) cm		
Peso del cubo (con	17 lbs / 7.7 kg		
cartucho):			
Dimensiones de la caja:	26.3 (w) x 20 (h) x 14.5 (d) pulgadas /		
	66.8 (w) x 50.8 (h) x 36.8 (d) cm		
Peso de la caja:	22 lbs / 10 kg		
PROPIEDADES DE IMPRESIÓ	ŹN		
Tecnología:	Modelado por deposición fundida (FDM)		
Imprimir chorros:	Chorros duales		
Tamaño máximo de diseño:	6 x 6 x 6 pulgadas / 15.25 x 15.25 x 15.25 cm		
Material:	Plástico ABS reciclable resistente o		
	plástico PLA compostable		
Grosor de la capa:	70 micras, modo rápido: 200 micras		
Soporta:	Totalmente automatizado, fácil de		
	despegar.		
Cartuchos duales:	Cada cartucho imprime de 13 a 14		
	creaciones medianas.		

Tabla 2.7 Especificaciones técnicas de impresora Cube.

Fuente: (Inc., 2018) Elaboración propia.

Figura 2.3 Equipo de impresión Cube 3D. Fuente: (Systems, 2018)

2.4.1.2 ProJet 3510 SD

La impresora ProJet 3510SD utiliza la tecnología de impresión MultiJet Printing (MJP) de 3D Systems. La Tabla 2.8 muestra las características principales del equipo en la Figura 2.4.

Ficha Técnica ProJet 3510 SD			
Volumen de Impresión (x,y,z)	298 x 185 x 203 mm		
Resolución	375 x 375 x 790 DPI (xyz); 32µ capas		
Precisión	(0.025-0.05 mm) por pulgada de dimensión de la pieza.		
Dimensiones	826 x 1429 x 1740 mm (con caja) 7 49 x 1194 x 1511 mm (sin caja)		
Peso	323 kg		
Rango de Temperatura	18 – 28 °C		
Print3D App	Monitorización y control remoto desde tabletas, ordenadores y smartphones.		

Tabla 2.8 Ficha Técnica de ProJet 3510 SD.

Fuente: (Inc., 2018) Elaboración propia.

Figura 2.4 Equipo ProJet 3510SD. Fuente: (Systems, 2018)

2.4.2 Máquinas-herramientas

Para el mecanizado de las probetas de ensayo se usan dos tipos de máquinas herramientas, descritos a continuación:

2.4.2.1 Fresadora

Para operaciones de fresado se utiliza el equipo didáctico de Fresado CNC "ROLAND MDx-40A", con 15000 rpm de velocidad máxima, como se muestra en la Figura 2.5. Posee una mesa de trabajo de 300x300 mm. (Ramirez, 2018).

Figura 2.5 Esquema del equipo CNC ROLAND MDx-40A. Fuente: (Corporation, 2019)

2.4.2.2 Torno paralelo CNC

Se utilizada, para la operación de torneado, el torno paralelo CNC "DMTG CKE6136z", de 5,5 KW de potencia y 2500 rpm de velocidad máxima, como se refleja en la Figura 2.6.

Figura 2.6 Torno paralelo CNC modelo CKE6136Z. Fuente: (CO.LTD, 2018)

2.4.3 Equipo de medición

2.4.3.1 Rugosímetro portátil

El valor de rugosidad de las superficies mecanizadas se lo materializará con el rugosímetro digital SRG-4500. La Figura 2.7 ilustra el equipo de medición.

Figura 2.7 Rugosímetro digital SRG-4500. Fuente: (INDUSTRY, 2019)

La Tabla 2.9 indica los datos técnicos del rugosímetro.

Datos Técnicos del Rugosímetro SRG – 4500			
Parámetros de Rugosidad	Ra, Rz, Rq, Rt,Rp, Rs, Rv, RSM,		
Superficial:	Rmax, Rm, R3z, Rsk, RPC, RMR		
Normas de Rugosidad			
Superficial:	130/DIN/313/ANSI		
Precisión de la medición:	≤ ± 10%		
Repetibilidad:	Menos de 0 igual a 6%		
	Ra, Rq:0.01-40 μm		
Pongo do Modición:	Rz, Ry, Rt, R3z, Rm:0.02-160 µm		
Rango de Medición.	Sm, S: 2-4000 μm		
	Rsk:0-100%		
Amplia unidad máxima:	0.7" (17.5 mm)		
Longitud de Corte:	.009/0.03/0.09"(.25/.8/2.5 mm)		
Sensor:	Tipo Inductancia		
Sensor Estilo:	Diamante radio 5 µm		
Fuerza de Recoger:	< 4mmN		
Filtro	RC, RC-RC,		
	Gaussian, D-P		
Salida de datos:	Si		

Tabla 2.9 Datos técnicos del rugosímetro SRG 4500.

Fuente: (s.a., 2018) Elaboración propia, en base a catálogo de fabricante.

2.4.4 Descripción de materiales de ensayo

Figura 2.8 Esquema de plásticos técnicos. Fuente: (Ensinger, 2017)

En cuanto a los materiales a experimentar, tomaremos dos de los plásticos técnicos existentes. La Figura 2.8 muestra un esquema de los plásticos técnicos.

Como material de prueba se elige el Acrilonitrilo butadieno estireno (ABS). Este es un plástico estándar, amorfo, con temperatura de servicio a largo plazo, utilizado frecuentemente por las impresoras 3D mencionadas anteriormente y, relativamente económico. Luego, como material para base de comparación, se elige el plástico de ingeniería Polytec 1000 (Acetal) o copolímero de polioximetileno, TECAFORM AH/AD.

La Tabla 2.10 muestra las propiedades mecánicas y térmicas de los materiales a ensayar.

Propiedades	AB	S	Polytec	Unidad
	Moldeo por	Impresión	1000	
	inyección	3D	(Acetal)	
Modulo de elasticidad	2030	1681,5	750	MPa
Dureza	-	76	62	Shore D
Temperatura de fusión	225 -245		135	0°C
Densidad	1,04		0,93	g/cm3
Ceficiente de expasión térmica (<150°C)	0,954		200	x10-6m/(m.K)

Tabla 2.10 Propiedades mecánicas y térmicas de los materiales a ensayar.

Fuente: (Ultimaker, 2017); (polypres, 2018) Elaboración propia

2.4.4.1 Preparación de las probetas de prueba

Antes de describir la geometría de las piezas de trabajo, mostramos en la Tabla 2.11 los parámetros de impresión las piezas de ensayo según la tecnología de impresión.

Parámetros de impresión	Piezas fabricadas por impresora ProJet - MJP	Piezas fabricadas por impresora Cube - FDM	Unidades
Raft	Si	Si	-
Espesor de capa	30-32	200	micrones
Porcentaje de Infill	100	10	%
Forma de Infill	Sólido	Panal	-
Anisotropía	No considerada	No considerada	-

Tabla 2.11 Parámetros de impresión de las piezas de ensayo.

Fuente: (Inc., 2018) Elaboración propia.

Para torneado

Se preparan probetas con forma de barra (cilíndrica) para una mejor sujeción, debido a la máquina herramienta. Se define un largo L de 60 [mm], considerando la distancia necesaria para el agarre, la zona de seguridad y distancia de medición de rugosidad. Luego, teniendo en cuenta la siguiente relación de la ecuación 2.1 para el largodiámetro, con el propósito de evitar vibraciones y deficiencia en el acabado, se toma un valor de L/D=2, obteniendo un diámetro D de 30 [mm].

> $\frac{L}{D} \leq 10$ (2.1) Fuente: (Romero, 2017)

La Tabla 2.12 indica las características principales del material de trabajo.

Tabla 2.12 Características principales del material de tra	abajo para
torneado.	

torneado.					
Material	Acrilonitrilo butadieno				
	estireno (ABS)				
Forma	Barra				
Longitud	60 [mm]				
Diámetro	30 [mm]				

Fuente: Elaboración propia.

La Figura 2.9 refleja las probetas de ensayo fabricadas mediante la tecnología FMD.

Figura 2.9 Probetas de tecnología FDM para torneado. Fuente: Elaboración propia.

La Figura 2.10 refleja las probetas de ensayo fabricadas por la tecnología MJP; a) pieza después de su fabricación (con cera) y, b) pieza luego de proceso de limpieza.

Figura 2.10 Probetas de tecnología MJP para torneado. Fuente: Elaboración propia.

Para fresado

Se preparan piezas en forma de bloque (placa), debido a la operación de fresado y a la sujeción con la bancada de la fresadora. Las dimensiones de la pieza de trabajo se reflejan en la Tabla 2.13, para estas, se consideró el rango de medición del rugosímetro.

Material Acrilonitrilo butadie estireno (ABS)				
Forma	Bloque			
Largo	30 [mm]			
Ancho	30 [mm]			
Alto	10 [mm]			

Tabla 2.13 Características principales del material de trabajo para fresado.

Fuente: Elaboración propia.

En las Figuras 2.11 y 2.12 se muestran las piezas recién fabricadas mediante la tecnología FDM y MJP, respectivamente.

Figura 2.11 Probeta de tecnología FDM para fresado. Fuente: Elaboración propia

Figura 2.12 Probeta de tecnología MJP para fresado. Fuente: Elaboración propia.

Respecto al material como base de comparación, se consiguieron dos probetas, como refleja la Figura 2.13; a) para torneado b) para fresado. Las dimensiones de la pieza de trabajo para torneado son de largo 50 mm y diámetro 60 mm, y para fresado, dimensiones de 200x40x40 mm de largo, ancho y alto respectivamente.

a)

b) **Figura 2.13 Probeta de material Polytec 1000 (Acetal).** Fuente: Elaboración propia.

2.4.5 Herramienta de corte

Para torneado

Se utiliza una herramienta negativa de carburo cementado (K10), estándar para operaciones de acabado, por lo que seleccionamos un inserto con código ISO "DNMG 150608-PM". Ver Figura 2.14.

Figura 2.14 Inserto DNMG 150608-PM. Fuente: (Coromant S. , 2018)

Debido a su elevada dureza en un amplio intervalo de temperaturas, su alto módulo elástico, su alta conductividad térmica y su baja dilatación térmica son utilizados frecuentemente. (Schmid, 2008). A continuación, en la Tabla 2.14 se muestra los intervalos de condiciones de corte para el inserto seleccionado.

Tabla 2.14 Profundidad de corte recomendada y avance de corte, métrico.Inserto T-Max P para torneado.

Inserto	Profundidad de corte p [mm]		Avance de corte f [mm/rev]		
	Min.	Max.	Min.	Max.	
DNMG150608-PM	0.50	6.00	0.15	0.50	
Fuente: (Coromant, Turning Tools, 2015)					

Elaboración propia.

Para fresado

Se utiliza una fresa helicoidal de acero de alta velocidad (HSS) de diámetro 6 mm, ver Tabla 2.15.

Material de herramienta	Acero de alta			
de corte	velocidad (HSS)			
Geometría	Helicoidal			
Diámetro	6 [mm]			
Euopto: CAMPRO				

Tabla 2.15 Características de la herramienta de corte para fresado.

Fuente: CAMPRO Elaboración propia. Los HSS son aceros altamente aleados que pueden mantener su dureza a elevadas temperaturas. Es muy utilizado en aplicaciones que involucran herramientas de formas complicadas, como fresas. (Groover, 2007)

La Figura 2.15 muestra la fresa helicoidal utilizada en operaciones comunes de acabado.

Figura 2.15 Fresa helicoidal. Fuente: (DOCPLAYER, 2019)

2.4.6 Selección de las condiciones de corte

Con el objetivo de seleccionar las mejores condiciones de corte, parámetros de corte con los que se obtiene mejor maquinabilidad, se establecen criterios asociados a acabado superficial.

Además, debemos tener en cuenta que los *termoplásticos* tienen baja conductividad térmica, un bajo módulo elástico y se suavizan por la temperatura. En consecuencia, maquinarlos requiere herramientas afiladas con ángulos positivos de ataque (para reducir las fuerzas de corte), ángulos grandes de alivio, pequeñas profundidades de corte y avance, velocidades relativamente altas y soporte apropiado de la pieza de trabajo. Puede ser necesario el enfriamiento externo de la zona de corte para evitar que las virutas se vuelvan gomosas y se peguen a las herramientas. El enfriamiento suele obtenerse mediante una corriente de aire, niebla de vapor o aceites solubles en agua. (Schmid, 2008)

La Tabla 2.16 refleja el planteamiento del sub-problema para una mejor comprensión.

Objetivo	Característica	Medios	Criterios asociados a acabado superficial	Restricciones
Obtener		a) Velocidad de avances	a) Velocidades de avance bajos	<u>Rango de</u> <u>trabajo:</u>
corte que mejoren la maquinabilidad del material de	Mejor acabado superficial	b) Velocidades rotacional	b) Velocidades medias y altas	a) Máquina herramienta
prueba		c) Profundidades de corte	c) Profundidades bajas	b) Herramienta de corte

Tabla 2.16 Objetivos características, medios, criterios para acabado superficial y restricciones para obtener las mejores condiciones de corte.

Fuente: Elaboración propia.

2.4.6.1 Criterios de selección para condiciones de corte

Para conseguir un buen acabado superficial al mecanizar materiales plásticos, y por ende una mejor maquinabilidad, describimos los siguientes criterios:

- <u>Avances Velocidades de avances</u>: Con velocidades bajas se obtiene mejores resultados de rugosidad. (Francisco Mata, 2010) (Francisco Mata Cabrera, 2011)
- <u>Velocidad de corte</u>: Conseguimos un mejor acabado superficial con velocidades de corte relativamente altas o medias. (Francisco Mata Cabrera, 2011) (Schmid, 2008)
- <u>Profundidad de corte</u>: Mejores resultados de maquinabilidad se obtienen con profundidades de corte bajas. (Francisco Mata Cabrera, 2011)

2.4.6.2 Modelo de ensayo

Se realizará un conjunto de ensayos a cinco diferentes avances (velocidades de avances, para fresado), así también cinco velocidades de corte (asociada a velocidad rotacional) y cinco profundidades de corte, con el fin de determinar las condiciones aptas para un criterio de acabado.

	Milling				Turnin	3			
	a_+	α_terance angle [*] γ rake angle [*] Υ Tangential feed Feed rate can be up to 0.02" / tooth		A the second sec		α clearance angle ['] γ rake angle ['] χ side angle ['] The nose radius r must be at least 0.02"			
	number of teeth	cutting speed [fpm]	feed rate [in/rev]		clearance angle	rake angle	side angle	cutting speed [fpm]	feed rate [in/rev]
TECAFINE PE, PP	Z1-Z2	820-1640	0.004-0.018		6-10	0-5	45-60	820-1640	0.004-0.018
TECAFINE PMP	71-72	820-1640	0 004-0 018		6-10	0-5	45-60	820-1640	0.004-0.018
TECARAN ABS	Z1-Z2	985-1640	0.004-0.018		5-15	25-30	15	655-1640	0.008-0.018
TECANYL	Z1 – Z2	985	0.006-0.018	٠	5-10	6-8	45-60	985	0.004-0.018 •
TECAFORM AD, AH	Z1 – Z2	985	0.006-0.018		6-8	0-5	45-60	985-1700	0.004-0.016
TECAMID, TECARIM, TECAST	Z1-Z2	820-1640	0.004-0.018		6-10	0-5	45-60	820-1640	0.004-0.018
TECADUR/TECAPET	Z1 – Z2	985	0.006-0.018		5-10	0-5	45-60	985-1310	0.008-0.016
TECANAT	Z1 – Z2	985	0.006-0.016	٠	5-10	6-8	45-60	985	0.004-0.018 •
TECAFLON PTFE, PVDF	Z1-Z2	490-1640	0.004-0.018		5-10	5-8	10	490-1640	0.004-0.012
TECAPEI	Z1 – Z2	820-1640	0.004-0.018	٠	10	0	45-60	1150 - 1310	0.004-0.012 •
TECASON S, P, E	Z1 – Z2	820-1640	0.004-0.018	٠	6	0	45-60	1150 - 1310	0.004-0.012 •
TECATRON	Z1-Z2	820-1640	0.004-0.018		6	0-5	45-60	820-1640	0.004-0.018
TECAPEEK	Z1 – Z2	820-1640	0.004-0.018		6-8	0-5	45-60	820-1640	0.004-0.018
TECATOR	Z1-Z2	197-325	0.002-0.014		6-8	0-5	7-10	325-395	0.002-0.003
TECASINT	Z1-Z2	295-325	0.002-0.014		2-5	0-5	7-10	325-395	0.002-0.003
Reinforced/filled TECA products	Z1-Z2	260-1475	0.002-0.016		6-8	2-8	45-60	490-655	0.004-0.018
* Reinforcing agents/fillers: Glass fibres, glass beads, carbon fibres, graphite, mica, talcum, etc.	 Preheat material to 250 °F Caution when using coolants: susceptible to stress cracking 								

Tabla 2.17 Condiciones de corte para plásticos técnicos paraoperaciones de fresado y torneado.

Como valor referencial de la velocidad de corte para el ensayo, se espera elegir una dentro del intervalo presentado en la Tabla 2.17, para el material de prueba (TECARAN ABS, rectángulo color rojo), pero, se percibe que la velocidad máxima alcanzada por las máquinas herramientas disponibles, están por debajo del intervalo mostrado.

La Tabla 2.18 muestra, en particular, las condiciones de corte para el ABS en sistema métrico, a partir de la tabla anterior. Se considera

Fuente: (Ensinger, 2017)

para torneado, pieza de diámetro 30mm y, para fresado, herramienta de diámetro 6mm.

Sistema de unidades	Inç	glés	Internacional		
Parámetros	Velocidad Avance Velocidad de		e Velocidad de Ava		Velocidad rotacional
Proceso	[ft/min]	[in/rev]	corte [m/min]	[mm/rev]	[RPM]
Torneado	655 – 1.640	0,008 - 0,018	199,64 - 499,87	0,20 - 0,45	2.118,25 – 5.303,79
Fresado	985 – 1.640	0,004 - 0,018	300,23 - 499,87	0,10 - 0,45	15.927,70 – 2.6518,93

Tabla 2.18 Velocidad de corte y avance en sistemas inglés e internacional.

Elaboración Propia.

Entonces, respecto a cada proceso de mecanizado, se tiene que:

Para torneado

Se opta por seleccionar un intervalo de trabajo para plásticos en general, como se observa en la Tabla 2.19. Para torno, el avance esta dado en mm/rev.

Luego, la Tabla 2.20 muestra un conjunto de intervalos principales de las condiciones de corte como: el disponible por el torno (se omite avance y profundidad ya que no consideramos restricciones para estos), el del inserto y el recomendado para operaciones de torneado en general.

Tabla 2.19 Recomendaciones generales para operaciones de
torneado.

Recomendaciones generales para operaciones de torneado					
Material de la pieza de trabajo					
Herramienta de corte	Carburo con recubrimiento de TiN				
Velocidad [m/min] 90 – 230					
Velocidad del husillo [rpm] 954,93 – 2.440,38					
Avance [mm/rev]	0,08 - 0,35				
Profundidad de corte [mm] 0,12 - 0,50					

Fuente: (Schmid, 2008) Elaboración propia.

Parámetro de corte	Velocidad del husillo [rpm]	Avance [mm/rev]	Profundidad [mm]
Torno CNC	750 – 2.500	-	-
Inserto K10	1432 – 2.440	0,15 – 0,50	0,50 - 6,00
Operaciones de torneado para plásticos	955 – 2.440	0,08 - 0,35	0,12 – 0,50

Tabla 2.20 Intervalos de condiciones de corte.

Elaboración propia, en base a referencias de fabricantes.

De modo que, los valores referenciales para cada parámetro de corte seleccionados según criterio técnico son:

- <u>Velocidad rotacional</u>: Se toma la máxima velocidad permitida por la máquina herramienta, la misma que es aproximadamente el máximo valor del intervalo recomendado, 2.500 rpm.
- <u>Avance</u>: La teoría indica que a menores avances se obtiene mejor acabado, pero se opta por tomar el menor avance permitido por el inserto, con el fin de despreciar variaciones en el radio de punta y considerar el avance como la única influencia; 0,150 mm/rev.
- <u>Profundidad de corte</u>: Al igual que el avance, se toma el menor valor recomendado para el inserto. Considerando que sea mayor que 1/3 del radio de punta RE para evitar imperfecciones en la superficie. (Coromant, El futuro de la fabricación es ahora, 2018). 0,500 mm.

La Tabla 2.21 ilustra las condiciones de corte referenciales para torneado.

Velocidad del husillo [rpm]	Avance [mm]	Profundidad [mm]				
2.500	0,150	0,500				

Para fresado

La Tabla 2.22 muestra dos intervalos de condiciones de corte recomendados para operaciones de fresado.

Elaboración propia.

Fresado	Velocidad de corte	Avance
Plastics international	950-1.600 ft/min	Máx 0,020 in/diente
Ensigner	985-1.640 ft/min	0,004-0,018 in/diente

Tabla 2.22 Velocidades de Corte y Avance para fresado.

Fuente: (Ensinger, 2017)

Es necesario obtener la velocidad rotacional del husillo a partir de la velocidad de corte recomendada en la Tabla 2.22, empleando la ecuación 2.2 que relaciona directamente ambos parámetros, establecida de la siguiente manera:

$$N = \frac{v}{\pi D} \qquad (2.2)$$

Donde;

v: velocidad de corte

D: diámetro de la fresa

Para este caso tomamos el valor de la velocidad de corte más alto que pertenezca al rango de las dos referencias utilizadas, mostradas en la Tabla 2.22.

$$v = 1.600 \frac{ft}{min} = 487.680 \frac{mm}{min}$$

Reemplazando en la ecuación 2.2

$$N = \frac{487.680 \text{ mm/min}}{\pi * 6 \text{ mm}}$$

Por lo tanto, la velocidad rotacional del husillo es igual a:

$$N = 25.872,23 \frac{\text{rev}}{\text{min}} \approx 26.000 \frac{\text{rev}}{\text{min}}$$

Según las especificaciones de la fresadora ROLAND CNC MDX-40A la velocidad máxima del husillo es de 15.000 rpm, por lo tanto, se tomará como fija esta velocidad rotacional para calcular la velocidad de avance lineal.

En el cálculo de la velocidad de avance lineal se utiliza la ecuación:

$$f_r = Nn_t f \qquad (2.3)$$

Donde;

 n_t : número de dientes de la fresa

f: avance por diente cortante (carga de viruta)

Según los criterios establecidos anteriormente en la Tabla 2.22 debe utilizarse el menor avance por diente recomendado que corresponde al valor de 0,004 in/diente, reemplazando en la ecuación 2.3 tenemos:

$$f_r = 15.000 \frac{\text{rev}}{\text{min}} * 4 \text{ diente } * 0,004 \frac{\text{in}}{\text{diente}}$$

$$f_r = 240 \frac{\text{in}}{\text{min}} \approx 6.096 \frac{\text{mm}}{\text{min}}$$

Según los datos obtenidos se desarrolla las siguientes condiciones de corte en la Tabla 2.23, para la operación de fresado.

Tabla 2.23 Condiciones de corte para fresado.	
Velocidad del Avance	

Herramienta	Velocidad de corte ([ft/min] – [m/min])	Velocidad del husillo [rpm]	Avance Lineal [mm/min]	Profundidad de corte [mm]
Fresa HSS 6	1 600 - 487 68	15 000	6 096	0.075
mm	1.000 - 407,00	13.000	0.030	0,075
		Elekeresián premie		

Elaboración propia.

Los valores de referencia de los parámetros de corte para el fresado quedan establecidos de la siguiente manera:

- <u>Velocidad rotacional</u>: Se emplea la velocidad máxima que puede producirse en el husillo de la fresadora, se establece como el mayor valor al que puede realizarse cada experimento 15.000 rpm.
- <u>Velocidad de avance</u>: Menores velocidades de avances producen mejores acabados superficiales, en este caso emplearemos un valor máximo para la velocidad de avance, cercano al valor determinando con la ecuación 2.3. Ya que en la fresadora no se ha mecanizado para valores tan elevados de velocidades de avances, se recomendó fijar como tope 2.500 mm/ min.
- <u>Profundidad de corte</u>: En este caso se deben optar por tomar las menores profundidades posibles, y como se van a comparar dos tipos de impresiones, debemos tomar en cuenta que para la impresión MDF el espesor mínimo de capa es de 200 micras (0,2 mm), por lo tanto, este parámetro debe ser menor al espesor de capa mínimo.

La Tabla 2.24 refleja las condiciones de corte referenciales para la operación de fresado.

Velocidad del	Avance	Profundidad
husillo [rpm]	[mm/min]	[mm]
15.000	Menor a 2.500	Menor a 0,2

Elaboración propia.

2.4.6.3 Alternativas de condiciones de corte

Para torneado

A partir de la Tabla 2.21 se generan las alternativas de condiciones de corte, como se muestra en la Tabla 2.25. Se realizan variaciones del 25% a partir del valor referencial, esto es:

- <u>Velocidad rotacional (rpm)</u>: Para la velocidad, se obtiene la diferencia de los límites superior e inferior, 1.550 rpm. A partir del valor referencial se realizan decrementos del 25% de esa diferencia, es decir 400 rpm.
- <u>Avance (mm/rev)</u>: Para el avance, se realizan incrementos del 25% del valor referencial, esto es 0,0375 mm/rev.
- <u>Profundidad de corte (mm)</u>: Al igual que el avance, se aumenta el 25% del valor inicial de profundidad, es decir 0,125 mm.

	Torneado						
Diám	etro de pieza [mm]	30					
Ítem	Velocidad del husillo [rpm]	Velocidad de corte [m/min]	Avance [mm]	Velocidad de avance [mm/min]	Profundidad [mm]		
1	900	9.549,30	0,150	1.432,39	0,500		
2	1.300	13.793,43	0,188	2.586,27	0,625		
3	1.700	18.037,56	0,225	4.058,45	0,750		
4	2.100	22.281,69	0,263	5.848,94	0,875		
5	2.500	26.525,82	0,300	7.957,75	1,000		

Tabla 2.25 Alternativas de condiciones de corte para torneado.

Elaboración propia.

Para fresado

De la Tabla 2.24 se obtienen las alternativas de condiciones de corte, como se muestra en la Tabla 2.26. Se realizan variaciones del 25% a partir del valor referencial, esto es:

 <u>Velocidad del husillo (rpm)</u>: En este caso la velocidad límite establecido es de 15.000 rpm, y a partir de este valor estimaremos cinco valores de velocidades decreciendo 2.500 rpm para cada caso.

Fresado						
Diáme	etro de pieza [mm]	6				
Ítem	Velocidad del husillo [rpm]	Velocidad de avance [mm/min]	Profundidad [mm]			
1	5.000	500	0,050			
2	7.500	1.000	0,075			
3	10.000	1.500	0,100			
4	12.500	2.000	0,125			
5	15.000	2.500	1,150			
	Elaboración propia.					

Tabla 2.26 Alternativas de condiciones de corte para fresado.

 <u>Avance (mm/rev)</u>: Para el avance, se sabe que el máximo valor debe ser de 2.500 mm/min, continuando con la variación empleada en el caso anterior (decreciendo 500 mm/min para cada ensayo) se tiene que el valor mínimo sería de 500 mm/ min.

• <u>Profundidad de corte (mm)</u>: Es un caso especial, ya que aquí se incrementan a cada valor 0,025 mm.

Una vez obtenidas las alternativas de las condiciones de corte, procedemos a generar la combinación de parámetros para la operación de mecanizado en particular.

Combinación de las alternativas de condiciones de corte e introducción al método de selección

Se mantiene constante dos parámetros de corte y, se combinan con cada valor del tercero. De aquí, por medio de criterios de acabado superficial (medición de rugosidad media) se obtiene el mejor valor (posterior al mecanizado). Luego, se fija este valor y se repite el proceso para el siguiente parámetro. De igual forma con la condición de corte restante. Un mejor detalle del procedimiento se mostrará en el procedimiento experimental. Para ilustrar de mejor forma las combinaciones de las alternativas de condiciones de corte, presentamos la Tabla 2.27. Según investigación previa, de las tres condiciones de corte definidas, el avance es el más influyente en criterios de acabado superficial. Por lo que será el primero en ser seleccionado.

	Tecnología 1. Modelado por deposición fundida (FDM)					
	Avance [mm/rev]					
N.º	f [mm/rev]	N [rpm]	p [mm]			
1	0,150					
2	0,188					
3	0,225	2.500	0,500			
4	0,263					
5	0,300					
Velocidad del husillo [rpm]						
N.º	N [rpm]	f [mm/rev]	p [mm]			
6	2.100		0,500			
7	1.700	Mojor avanco				
8	1.300	wejor avance				
9	900					
	I	Profundidad [mm]				
N.º	p [mm]	N [rpm]	f [mm/rev]			
10	0,625		Mojor avanco			
11	0,750	Major velocidad				
12	0,875		wejor avance			
13	1,000					

Tabla 2.27 Alternativas de condiciones de corte.

Elaboración propia

A fin de tener un mejor control y organización de las probetas ensayadas, proponemos en la Tabla 2.28 un código para identificar estas probetas.

N º	Tecnología	Operación	Condiciones de corte			Código interno (CI)	
14.	impresión	mecanizado	N [rpm]	f [mm/rev]	p [mm]		
1	MJP	Cilindrado	2.500	0,150	0,500	1MC-N2500-f0,150-p0,500	
2	MJP	Cilindrado	2.500	0,188	0,500	2MC-N2500-f0,188-p0,500	
3	MJP	Cilindrado	2.500	0,225	0,500	3MC-N2500-f0,225-p0,500	
4	MJP	Cilindrado	2.500	0,263	0,500	4MC-N2500-f0,263-p0,500	
5	MJP	Cilindrado	2.500	0,300	0,500	5MC-N2500-f0,300-p0,500	
	Elaboración propia						

Tabla 2.28 Propuesta de identificación de probetas ensayadas.

2.5 Metodología experimental

En esta sección se explican los pasos a seguir para determinar la maquinabilidad de piezas fabricadas por manufactura aditiva (de dos tipos de tecnologías) mediante dos operaciones de mecanizado. Comprenderá de tres fases. En la primera se determina el mejor avance (velocidad de avance en fresado); en la segunda, la mejor velocidad rotacional y; la tercera la profundidad de corte.

2.5.1 Probetas de prueba

Partimos desde la medición inicial de rugosidad superficial de una muestra de probetas de cada tecnología.

Mecanizado

Se recomienda que la primera probeta en mecanizar sea de la tecnología MJP, ya que la estructura interna del material nos permite realizar con menos restricciones el paso 5.

- Crear el código G para cada operación de mecanizado correspondiente a la primera fase, definiendo una distancia de seguridad para torneado (longitud mínima entre la herramienta y el punto fijo del husillo más próximo).
- 2. Preparar la máquina herramienta.

- **3.** Montar la pieza de trabajo y, comprobar que no existan vibraciones significativas en la pieza al girar el husillo.
- 4. Cargar el código y, revisar nuevamente que este correcto.
- 5. Definir el cero de la herramienta, se recomienda registrar la distancia entre el extremo de la pieza y un punto fijo del husillo como referencia de tal forma que se pueda ubicar la siguiente probeta a la misma distancia y ahorrar este paso.
- 6. Mecanizar la pieza de trabajo.
- 7. Desmontar e identificar la pieza de trabajo.
- Ubicar la probeta de la siguiente tecnología que se mecanizará bajo los mis parámetros de corte, verificando si existen vibraciones. Repetir el paso 6 y 7.
- **9.** Luego, repetir el procedimiento para las probetas restantes desde el paso 3 al 8 considerando la distancia referencial al ubicar la probeta de ensayo para poder omitir el paso 5.

Medición de rugosidad

- **1.** Preparar las probetas de ensayo, consiste en definir los puntos referenciales de medición.
- 2. Preparar el equipo de medición.
- 3. Ubicar una pieza de trabajo.
- Medir y registrar el valor de rugosidad superficial Ra en cada punto referencial. Repetir este paso hasta obtener tres mediciones confiables (error de medición menor al 12%), generando doce datos.
- 5. Luego, repetir desde el paso 3 hasta el 5 para las demás piezas de trabajo.

Análisis de datos

- Tabular los datos obtenidos de cada probeta, calculando principalmente la rugosidad Ra promedio (media aritmética), la desviación estándar y el error relativo de la media.
- 2. Generamos una gráfica a partir de los resultados reflejados.

3. Por medio de la gráfica, concluimos que el mejor parámetro es el que presente una menor rugosidad superficial (mejor acabado).

Ahora, se repite el procedimiento para las dos fases restantes.

2.5.2 Probeta de material base

Se busca también observar la aptitud del material base frente al mecanizado, maquinabilidad. Por lo que se mecaniza la pieza de trabajo de este material para las mejores condiciones de corte obtenidos para cada tecnología. Se mide la rugosidad inicial como referencia.

<u>Mecanizado</u>

- Crear el código G para cada operación de mecanizado, definiendo una distancia de seguridad para torneado (longitud mínima entre la herramienta y el punto fijo del husillo más próximo).
- 2. Preparar la máquina-herramienta.
- **3.** Montar la pieza de trabajo y, comprobar que no existan vibraciones significativas en la pieza al girar el husillo.
- 4. Cargar el código y, revisar nuevamente que este correcto.
- 5. Definir el cero de la herramienta.
- 6. Mecanizar la pieza de trabajo.
- 7. Desmontar e identificar la pieza de trabajo.

Medición de rugosidad

- **1.** Preparar la probeta de ensayo, consiste en definir los puntos referenciales de medición.
- 2. Preparar el equipo de medición.
- 3. Ubicar una pieza de trabajo.
- Medir y registrar el valor de rugosidad superficial Ra en cada punto referencial. Repetir este paso hasta obtener tres mediciones confiables (error de medición menor al 12%), generando doce datos.

Después, realizamos los mismos pasos para la condición de corte restante. Una vez terminado este proceso, pasamos al análisis de datos.

Análisis de datos

- Tabular los datos obtenidos de cada ensayo, calculando principalmente la rugosidad Ra promedio (media aritmética), la desviación estándar y el error relativo de la media.
- 2. Generamos una gráfica a partir de los resultados reflejados.
- Por medio de la gráfica, concluimos que las mejores condiciones de corte para este material son las que reflejen menor rugosidad superficial (mejor acabado).

Cálculo de maquinabilidad

A partir del mejor valor de rugosidad superficial del material base y empleando la ecuación 1.1, determinamos el índice de maquinabilidad de la probeta ensayada bajo los mejores parámetros de corte de cada tecnología.

CAPÍTULO 3

3. RESULTADOS Y ANÁLISIS

3.1 Operaciones de torneado

3.1.1 Rugosidad inicial

- Tecnología MJP: $R_{a \ (inicial)} = 4.718 \ \mu m$.
- Tecnología FDM: Fuera de rango (F.R.), como muestra en la Figura 0.2 en Apéndice C. Por lo que se asume una rugosidad igual al máximo valor del intervalo de medición, 40 μm.
- Material Polytec 1000 (Acetal): $R_{a (inicial)} = 0.444 \, \mu m$

3.1.2 Primera fase de ensayos – Avance

Primero se analizará el efecto del avance [mm/rev] sobre la rugosidad superficial media, para los dos tipos de tecnología de impresión 3D.

La Tabla 3.1 muestra las mediciones de rugosidad obtenidas para cada probeta de cada tipo de tecnología 3D, ensayadas a diferentes avances. La columna "N.^o (número de la probeta ensayada)" es una referencia de la identificación de la pieza ensayada.

N.º (número de la probeta ensayada)	Avance f [mm/rev] (parámetro de corte)	Rugosidad Ra [µm] <i>(MJP)</i>	Rugosidad Ra [µm] <i>(FDM)</i>
1	0,150	3,247	2,747
2	0,188	4,946	3,540
3	0,225	F.R.	3,577
4	0,263	F.R.	3,619

Tabla 3.1 Medición de rugosidad superficial media de la primera fase del
ensayo para torneado.

Fuente: Elaboración propia.

F.R.

5,429

0.300

5
Se observa que para avances mayores a 0,225 mm/rev no se puede determinar un valor de rugosidad (según el equipo utilizado e inspección tacto-visual), para las piezas fabricadas por la tecnología MJP. Ver Figuras 0.4, 0.5 y 0.6 en Anexo C.

La Figura 3.1 refleja la evolución de la rugosidad superficial media con el avance para cada probeta de cada tipo de tecnología de impresión. En la curva de la tecnología MJP se puede observar que, a medida que se incrementa el avance la rugosidad aumenta de manera brusca. En la curva de la tecnología FDM presenta una tendencia polinómica; se observa como la rugosidad aumenta con el incremento del avance. Las condiciones de corte con las que se mecanizaron las probetas número uno (1), de cada tecnología, presentan el mejor acabado superficial (menor rugosidad).

3.1.3 Segunda fase de ensayos – Velocidad rotacional

Luego, se analiza el efecto de la velocidad de rotación [rpm] sobre la rugosidad superficial media, para las dos tecnologías de impresión 3D. La Tabla 3.2 muestra las mediciones de rugosidad obtenidas para cada probeta de cada tipo de tecnología, maquinadas a diferentes velocidades de rotación.

N.º (número de la probeta ensayada)	Velocidad del husillo N [rpm] (parámetro de corte)	Rugosidad Ra [µm] <i>(MJP)</i>	Rugosidad Ra [µm] <i>(FDM)</i>	
1	2.500	3,247	2,747	
6 2.100		4,535	4,175	
7 1.700		4,608	3,404	
8 1.300		4,399	2,709	
9	900	4,014	2,111	

Tabla 3.2 Medición de rugosidad superficial media de la segunda fase del ensavo para torneado.

Fuente: Elaboración propia.

La Figura 3.2 refleja el comportamiento de la rugosidad superficial media para diferentes velocidades de rotación para cada probeta de cada tipo de tecnología de impresión 3D. Las curvas de rugosidad de las tecnologías de impresión MJP y FDM presentan un comportamiento polinómico ascendente hasta cierto punto y, luego, a la máxima velocidad de rotación ensayada el valor de rugosidad desciende en los dos casos. Siendo esta disminución del valor de rugosidad, más significativo en la probeta de la tecnología MJP. Las condiciones de corte a las que se mecanizó la probeta número uno (1), para la tecnología MJP, y la probeta número nueve (9), para la tecnología FDM, reflejan el mejor acabado superficial.

3.1.4 Tercera fase de ensayos – Profundidad de corte

Finalmente, se analiza el efecto de la profundidad de corte sobre la rugosidad superficial media, para los dos tipos de tecnología de impresión.

La Tabla 3.3 muestra las mediciones de rugosidad obtenidas para cada probeta de cada tipo de tecnología de impresión 3D, ensayadas a diferentes profundidades de corte. Siendo en la primera fila de datos, la probeta uno (1) para el tipo de tecnología MJP y la probeta nueve (9) para el tipo de tecnología FDM.

N.º (número de la probeta ensayada)	N.º (número de la probeta ensayada) Profundidad de corte p [mm] (parámetro de corte)		Rugosidad Ra [µm] (FDM a 900 [rpm])	
1; 9	1; 9 0,500		2,111	
10 0,625		4,317	2,806	
11 0,750		5,094	2,415	
12 0,875		4,542	2,477	
13 1,000		4,716	2,599	

Tabla 3.3 Medición de rugosidad superficial media de la tercera fase delensayo para torneado.

La Figura 3.3 refleja la evolución de la rugosidad superficial media con la profundidad de corte utilizada para cada probeta de cada tipo de tecnología de impresión.

Figura 3.3 Evolución de la rugosidad superficial media en función de la profundidad de corte, para ambas tecnologías de impresión 3D, en torneado.

Las curvas de rugosidad para las dos tecnologías de impresión presentan un comportamiento polinómico ascendente. No obstante, la curva de rugosidad de la tecnología FDM muestra un comportamiento relativamente constante, en referencia al valor de rugosidad inicial.

Las condiciones de corte a las que se mecanizó la probeta número uno (1), para la tecnología MJP, y la probeta número nueve (9), para la tecnología FDM, nuevamente reflejan el mejor acabado superficial respecto a las profundidades de corte ensayadas.

3.2 Operaciones de fresado

3.2.1 Rugosidad inicial

Antes de mecanizar el material se tomaron mediciones de referencia y se observó el comportamiento de estas.

- Tecnología MJP: $R_{a inicial} = 4.397 \, \mu m$
- Tecnología FDM: Fuera de rango, se asume $R_a = 40 \ \mu m$, máxima medición de rugosidad del rugosímetro SGR-4500. Ver Figura 0.2 en Apéndice C.
- Material Polytec 1000 (Acetal): $R_{a inicial} = 1.524 \, \mu m$

Las mediciones de rugosidades para las probetas maquinadas se realizaron en sentido transversal y longitudinal a la dirección de avance. Debido a que, las mediciones realizadas en el sentido transversal presentaron valores con menor error estándar relativo en comparación con las mediciones en el sentido longitudinal, se decidió realizar el análisis de rugosidad con las mediciones obtenidas en el sentido transversal.

3.2.2 Primera fase de ensayos – Velocidad de avance

Primero se analizó el comportamiento de la rugosidad superficial media en relación a diferentes velocidades de avance [mm/min], para las probetas de los dos tipos de tecnología de impresión 3D.

La Tabla 3.4 muestra las mediciones de rugosidad superficial obtenidos para los diferentes avances ensayados, manteniendo la velocidad de rotación (15.000 rpm) y profundidad de corte (0,075 mm) constantes. De los parámetros de cortes establecidos, el avance de 500 mm/min generó la mejor rugosidad superficial.

N.º (número de la probeta ensayada)	Velocidad de avance fn [mm/min] (parámetro de corte)	Rugosidad Ra [µm] <i>(MJP)</i>	Rugosidad Ra [µm] <i>(FDM)</i>	
1	500	0,973	2,105	
2	1.000	1,150	2,315	
3	1.500	1,391	2,230	
4 2.000		1,576	2,390	
5	2.500	1,590	2,791	

Tabla 3.4 Medición de rugosidad superficial media de la primera fase del ensayo para fresado.

Fuente: Elaboración propia.

En la Figura 3.4 se puede observar el comportamiento de la rugosidad superficial, tanto para el tipo de tecnología de impresión Polyjet como para la tecnología de Moldeado por Deposición Fundida.

Figura 3.4 Evolución de la rugosidad superficial media en función de la velocidad de avance, para ambas tecnologías de impresión 3D, en fresado. Fuente: Elaboración propia La curva de rugosidad de las piezas impresas con la tecnología Polyjet guarda una relación cuadrática, pero se logra apreciar que a medida que la velocidad de avance incrementa la rugosidad superficial aumenta. En el caso de la tecnología FDM, no se observan cambios bruscos de los valores de rugosidad, en referencia al valor de rugosidad inicial. Sin embargo, se puede apreciar un incremento mayor del valor de rugosidad con la máxima velocidad de avance ensayada.

3.2.3 Segunda fase de ensayos – Velocidad rotacional

Luego, se analiza el efecto de la velocidad de rotación sobre la rugosidad superficial media, para los dos tipos de tecnología de impresión.

En la Tabla 3.5 se observa que en el caso de la tecnología MJP la velocidad de rotación que obtuvo la mejor rugosidad superficial fue el mayor valor ensayado (15.000 rpm); mientras que, para la tecnología FDM la velocidad de rotación que obtuvo el mejor acabado superficial, fue el menor valor ensayado (5.000 rpm).

N.º (número de la probeta ensayada)	Velocidad del husillo [rpm] (parámetro de corte)	Rugosidad Ra [µm] <i>(MJP)</i>	Rugosidad Ra [µm] <i>(FDM)</i>	
6	5000	1,365	1,826	
7	7.500	1,257	2,258	
8	10.000	1,203	2,020	
9	12.500	1,149	2,781	
1	15.000	0,973	1,881	

Tabla 3.5 Medición de rugosidad superficial media de la segunda fase del
ensayo para fresado.

Figura 3.5 Evolución de la rugosidad superficial media en función de la velocidad del husillo, para ambas tecnologías de impresión 3D, en fresado. Fuente: Elaboración propia.

Como se puede observar en la Figura 3.5 la curva de rugosidad presentó un comportamiento especial para el tipo de impresión FDM; aquí se determinó que para los valores más bajos de velocidad rotacional se obtienen valores bajos de rugosidad, a diferencia de cuando se emplearon velocidades altas. En las piezas impresas con la tecnología MJP, el comportamiento de la curva de rugosidad mejora (muestra valores más bajos) con el aumento de la velocidad de rotación.

3.2.4 Tercera fase de ensayos – Profundidad de corte

Finalmente, se analiza el comportamiento de la rugosidad superficial media en relación a la profundidad de corte, para los dos tipos de tecnología de impresión 3D.

	ensayo para nesado.						
N.º (número de la probeta ensayada)	Profundidad de corte [mm] (parámetro de corte)	Rugosidad Ra [µm] <i>(MJP)</i>	Rugosidad Ra [µm] <i>(FDM)</i>				
10	0,050	1,122	1,442				
1; 6	0,075	0,973	1,826				
11	0,100	1,025	1,847				
12	0,125	1,092	1,650				
13	0,150	1,220	2,306				

Tabla 3.6 Medición de rugosidad superficial media de la segunda fase delensayo para fresado.

Como se describe en la Tabla 3.6 para la tercera fase de ensayos, se varió el parámetro de profundidad de corte y se conservaron constante los valores de velocidad de avance y de rotación, obtenidos previamente.

Al igual que en la segunda fase de ensayos, la rugosidad presentó un comportamiento distinto entre ambas tecnologías de impresión; para el caso de la tecnología MJP, el menor valor de rugosidad superficial fue obtenido con la profundidad de corte 0,075 mm, y en el caso de la

tecnología FDM, la menor rugosidad se obtuvo con la menor profundidad establecida (0,050 mm).

Como es mostrado en la Figura 3.6 en el caso de la tecnología MJP, se observó un comportamiento creciente de la rugosidad superficial, a medida que aumenta la profundidad de corte. Existe un punto (0,050 mm) donde a pesar de ser la más baja profundidad de corte, se presenta una rugosidad elevada ($R_a = 1,122 \ \mu m$). Para el caso de la tecnología FDM, no se observó un comportamiento estrictamente creciente, debido a que se presentaron ciertos datos aberrantes, pero se obtuvo que el mejor acabado superficial ocurre en ese punto (0,050 mm).

3.3 Ensayos en el material base Polytec 1000 - Acetal

Se analiza el efecto de las mejores condiciones de corte encontradas anteriormente en torneado y fresado sobre la rugosidad superficial media para el material Polytec 1000 (Acetal).

3.3.1 Para torneado

La Tabla 3.7 muestra las mediciones de rugosidad obtenidas al mecanizar el material base con los distintos grupos de condiciones de corte encontrados para torneado (mejores condiciones de corte que obtuvieron la menor rugosidad para las tecnologías de impresión ensayadas). La columna "N.º Ensayo" indica el grupo de condición de corte, siendo cero (0) la probeta sin mecanizar, uno (1) y dos (2) la probeta mecanizada con las mejores condiciones de corte para el tipo de tecnología MJP y FDM, respectivamente.

N.⁰ Ensayo	Rugosidad Ra [µm] (Polytec 100 – Acetal)	
0	0,444	
1	1,196	
2	1,479	

Tabla 3.7 Medición de rugosidad media del material base para torneado.

3.3.2 Para fresado

En la Tabla 3.8 se muestran los valores de rugosidad obtenidos con las condiciones de corte para fresado. La columna "N.º Ensayo" indica el grupo de condición de corte utilizado, siendo cero (0) la probeta sin mecanizar, uno (1) y dos (2) la probeta mecanizada con las mejores condiciones de corte para las tecnologías MJP y FDM, respectivamente.

Tabla 3.8 Medición de rugosidad media del material base para fresado.

N.⁰ Ensayo	Rugosidad Ra [µm] (Polytec 100 – Acetal)
0	1,524
1	1,416
2	0,831

Fuente: Elaboración propia.

3.4 Cálculo del Índice de Maquinabilidad (IM)

Para el cálculo del IM, se emplea la ecuación 1.1.

Para torneado

Tecnología MJP:

 $IM_{material \ de \ prueba} = \frac{1,196}{3,247}$ $IM_{material \ de \ prueba} = 0,368$

• Tecnología FDM:

$$IM_{material \ de \ prueba} = \frac{1,479}{2,111}$$
$$IM_{material \ de \ prueba} = 0,701$$

Para Fresado

Tecnología MJP:

 $IM_{material\ de\ prueba} = \frac{0,831}{0,973}$

 $IM_{material \, de \, prueba} = 0,854$

• Tecnología FDM:

 $IM_{material \ de \ prueba} = \frac{1,416}{1,442}$ $IM_{material \ de \ prueba} = 0,982$

De acuerdo a los índices de maquinabilidad obtenidos bajo el criterio de acabado superficial (rugosidad), la tecnología FDM obtuvo valores de maquinabilidad más altos que la tecnología MJP. Una hipótesis para explicar este resultado es que, como se utiliza la rugosidad como criterio principal de medición, las probetas fabricadas con la tecnología MJP cuentan con un buen acabado superficial al salir del equipo de impresión, por lo que, la rugosidad obtenida con el maquinado posterior no fue tan representativo. Caso contrario, las probetas fabricadas con la tecnología FDM al salir del equipo de impresión cuentan con un mal acabado superficial, por lo cual, con el maquinado posterior la rugosidad mejoró de manera más significativa, lo que se vio reflejado al calcular los índices de maquinabilidad para cada tecnología. Sin embargo, es importante mencionar que, para las dos tecnologías de impresión 3D, el mecanizado mejoró la rugosidad superficial en relación a su valor de rugosidad inicial (sin mecanizar). Para la tecnología MJP el porcentaje de mejora de la rugosidad superficial fue de 31.2% y 77.9% para las operaciones de torneado y fresado, respectivamente; y para la tecnología FDM el porcentaje de mejora de la rugosidad fue de 94.7% y 96.4% para las operaciones de torneado y fresado, respectivamente.

3.5 Análisis de Costos

Debido a que este trabajo es de tipo investigativo, se realizó un análisis de costos básico, detallando los costos de fabricación de las piezas analizadas y el alquiler de los equipos empleados para la experimentación. Los costos mencionados se muestran en las Tablas 3.9 y 3.10.

Máquina Herramienta	Alquiler precio/tiempo [\$/h]	Tiempo empleado [h]	Costo de alquiler [\$]		
ROLAND MDx-40A	12 10		120		
Torno paralelo DMTG CKE6136z	20	6	120		
Si	240				
Evente: Eleberación prezio					

 Tabla 3.9 Costos de alquiler de máquinas herraminetas.

Tabla 3.10 Costos de fabricación de las probetas.

Tecnolo impre	ogía de esión	Alquiler precio/tiempo [\$/h]	Tiempo empleado [h]	Costo del material precio/peso (\$/gr)	Peso del material [gr]	Costo del material [\$]	Costo Total [\$]
ProJet	Cilindro	10	12 0,9	0.0	782	703,8	976,8
3510SD	Placa			0,9	170	153,0	
Cuba	Cilindro		Б	0.5	782	391,0	501.0
Cube	Placa	5	5	0,5	170	85,0	501,0
Subtotal (\$)							1477,8

Fuente: Elaboración propia.

Finalmente, en la Tabla 3.11 se refleja el valor aproximado del costo total de fabricación y experimentación para el desarrollo del presente proyecto investigativo.

Tabla 3.11 Valor total final de costos de fabricación y experimentación.

Total [\$]	1717,8			
Fuente: Elaboración propia.				

CAPÍTULO 4

4. CONCLUSIONES Y RECOMENDACIONES

4.1 Conclusiones

Con los resultados obtenidos y las gráficas desarrolladas podemos concluir que la metodología diseñada cumplió con el objetivo principal de medir la maquinabilidad de piezas impresas en 3D. Además, se logró analizar la influencia de cada parámetro de corte evaluado sobre la rugosidad obtenida en la pieza maquinada y se obtuvieron las condiciones de corte con las que se logra mejorar la calidad superficial (rugosidad).

Las principales conclusiones que se pudieron obtener de los resultados obtenidos son:

- Respecto a las piezas manufacturadas por la tecnología Material Jetting– Polyjet (MJP), para ambas operaciones de mecanizado, la mejor respuesta al maquinado se consigue con velocidades de avance bajos, velocidades rotacionales altas y profundidades bajas.
- Para la tecnología MJP, en torneado, los valores de avance, velocidad rotacional y profundidad de corte para los cuales se obtuvo un mejor acabado superficial son: 0,15 mm/rev; 2.500 rpm y 0,5 mm, respectivamente.
- Para la tecnología MJP, en torneado, se obtuvo un índice de maquinabilidad de 0,368; lo que señala que presenta una baja disposición al mecanizado por este proceso (poca mejora de su rugosidad superficial), respecto al material base (Polytec 1000 – Acetal).
- Para la tecnología MJP, en fresado, los valores de velocidad de avance, velocidad rotacional y profundidad de corte para los cuales se consiguió una mejor calidad de superficie son: 500 mm/min; 15.000 rpm y 0,075 mm, respectivamente.
- Para la tecnología MJP, en fresado, se obtiene un índice de maquinabilidad igual a 0,854; lo que señala que tiene alta maquinabilidad

por este proceso (grande mejora de la rugosidad superficial), respecto al material base.

- Respecto a las piezas fabricadas por la tecnología de Modelado por Deposición Fundida (FDM), para ambas operaciones de mecanizado, la mejor calidad superficial se obtiene con velocidades de avance bajos, velocidades rotacionales medias y profundidades bajas. Para fresado, la velocidad rotacional muestra mayor influencia en el mecanizado, bajo criterios de acabado.
- Para la tecnología FDM, en torneado, los valores de avance, velocidad rotacional y profundidad de corte para los cuales se logró un mejor acabado superficial son: 0,15 mm/rev; 900 rpm y 0,5 mm, respectivamente y el índice de maquinabilidad alcanzado es de 0,701; lo que significa que es un material medianamente mecanizable por este proceso, respecto al material base.
- Para la tecnología FDM, en fresado, los valores de velocidad de avance, velocidad rotacional y profundidad de corte para los cuales se consiguió una mejor calidad de superficie son: 500 mm/min; 5.000 rpm y 0,05 mm, respectivamente y el índice de maquinabilidad obtenido es igual a 0,982; lo que indica que es un material con alta maquinabilidad, respecto al material base.
- Las piezas impresas por la tecnología de Modelado por Deposición Fundida (FDM), presentan un índice de maquinabilidad más elevado, en ambos procesos de mecanización.
- Finalmente, el avance es el parámetro de corte que mayor influencia presentó en el mecanizado de estas piezas, bajo criterios de acabado.

4.2 Recomendaciones

- Realizar una limpieza adecuada de las piezas impresas por la tecnología Material Jetting – Polyjet es importante para un correcto análisis, ya que de esto depende la rugosidad inicial que se mide.
- Para obtener un rango de profundidad de corte más amplio al mecanizar las piezas fabricadas por la tecnología de impresión FDM (reducir fallas en la superficie), se recomienda colocar el máximo porcentaje de Infill posible

en los parámetros de impresión y así, darle un mayor espesor de capa superficial que sea maquinable. Además, para el proceso de torneado, se recomienda, utilizar un método de sujeción de la pieza tipo boquilla para un apriete más homogéneo.

- Para ampliar y profundizar el estudio de la maquinabilidad de piezas impresas en 3D, se debe experimentar una mayor cantidad de valores de parámetros de corte, para obtener curvas de rugosidad más detalladas. Además, se deben ensayar integrando más tecnologías de impresión 3D.
- Para investigaciones futuras, adaptar este tipo de metodología experimental, enfocada a procesos de fabricación similares, pero empleando otro tipo de materiales como los metales.

BIBLIOGRAFÍA

Libros

- Groover, M. P. (2007). Fundamentos de manufactura moderna. México: Mc Graw Hill.
- Inc., 3. S. (2018). 3D Systems. Obtenido de https://www.3dsystems.com/sites/default/files/projet_3500_plastic_0115_usen_w eb.pdf
- Schmid, S. K.-S. (2008). MANUFACTURA INGENIERÍA Y TECNOLOGÍA. México: Pearson Educación.

Páginas web

- Corporation, R. D. (2019). *ROLAND*. Obtenido de https://www.rolanddga.com/es/productos/3d/mdx-40a-fresadora-sobremesa
- INDUSTRY, D. (2019). *phase II*. Obtenido de http://www.directindustry.es/prod/phase-ii/product-25675-654813.html
- s.a., M. (22 de Diciembre de 2018). CATÁLOGO TORNOS PARALELOS C.N.C. SERIE CKE. Obtenido de CATÁLOGO TORNOS PARALELOS C.N.C. SERIE CKE: www.micfasa.com.ar

Artículos de revista tomados de Internet

- (ATIGA), J. d. (2017). Oportunidades Industria 4.0 en Galicia. Estado del Arte de Fabricación Aditiva, 21-27.
- CO.LTD, D. M. (10 de Diciembre de 2018). *MACH*. Obtenido de Machine tool expert: https://dlmach.en.alibaba.com/
- Coromant, S. (2015). Turning Tools. Cutting tools from Sandvik Coromant, 114.
- Coromant, S. (- de de 2018). *El futuro de la fabricación es ahora*. Obtenido de Radio de punta de la plaquita y profundidad de corte: https://www.sandvik.coromant.com/
- Ensinger. (2017). Machining Recommendations for Semi-fihished engineering Plastics. *Ensinger*, 15.

- Francisco Mata Cabrera, J. P. (2011). Mecanizado de materiales compuestos de matriz termoplástica. Efecto de la profundidad de pasada en las fuerzas de corte y el acabado superficial. *Tecnología y Desarrollo.*, 4.
- Francisco Mata, J. P. (2010). Definición de un índice de maquinabilidad para materiales compuestos de matriz termoplástica a partir del estudio experimental. *Científica*, 180.
- polypres. (2018). POLYTEC 1000. España: .
- Romero, N. F. (2017). Ensayo de arranque de viruta para la obtención de parámetros de mecanizado del Technyl. *Trabajo de titulación*, Chile.
- Systems, 3. (Noviembre de 2018). 3D Systems. Obtenido de https://es.3dsystems.com/
- Ultimaker. (2017). Ficha de datos técnicos ABS. .: .
- Zahera, M. (2012). La fabricación aditiva, tecnología avanzada para el diseño y desarrollo de productos. XVI Congreso Internacional de Ingeniería de Proyectos, 2091-2095.

Artículos de revistas

 Ramirez, E. (2018). Guía para práctica de Laboratorio de Mecanización: Fresa CNC. Guayaquil-Ecuador.

APÉNDICES

APÉNDICE A

Clave de código interno para identificación de piezas de trabajo

<u>Ejemplo</u>

<u>Clave</u>

- 1. Número de pieza ensayada por tecnología. Número entero.
- 2. Tecnología de impresión 3D.
 - M: Material Jetting Polyjet.
 - F: Modelado por deposición fundida.
- 3. Operación de mecanizado.
 - C: Cilindrado torneado.
 - P: Planeado fresado.
- 4. Velocidad rotacional. Letra N seguida de cantidad de velocidad en rpm.
- 5. Avance. Letra f seguida de avance en mm/rev.
- 6. Profundidad de corte. Letra p seguida de profundidad de corte.

Identificación de piezas de trabajo ensayadas

• Para torneado

	IDENTIFICACIÓN DE PIEZAS ENSAYADA						
	Tecnología: Material Jetting - Polyjet						
	Operación de mecanizado: Torneado - Cilindrado						
		Primera	Fase: Av	ance f [mm/rev]			
N.º	Condiciones de corte			Código interno			
	N [rpm]	f [mm/rev]	p [mm]				
1		0,150		1MC-N2500-f0,150-p0,500			
2		0,188	88	2MC-N2500-f0,188-p0,500			
3	2.500	0,225	0,500	3MC-N2500-f0,225-p0,500			
4		0,263		4MC-N2500-f0,263-p0,500			
5		0,300		5MC-N2500-f0,300-p0,500			
	Se	gunda fase:	Velocid	ad rotacional N [rpm]			
	Conc	diciones de o	corte				
IN.º	N [rpm]	f [mm/rev]	p [mm]	Codigo interno			
6	2.100			6MC-N2100-f0,150-p0,500			
7	1.700	0 150	0.500	7MC-N1700-f0,150-p0,500			
8	1.300	0,150	0,500	8MC-N1300-f0,150-p0,500			
9	900			9MC-N0900-f0,150-p0,500			
	Те	ercera Fase:	Profund	idad de corte p [mm]			
N.º	Conc	diciones de o	corte	Código interno			
	N [rpm]	f [mm/rev]	p [mm]				
10			0,625	10MC-N2500-f0,150-p0,625			
11	2 500	0 150	0,750	11MC-N2500-f0,150-p0,750			
12	2.500	0,100	0,875	12MC-N2500-f0,150-p0,875			
13			1,000	13MC-N2500-f0,150-p1,000			

Tabla 0.1 Registro de piezas ensayadas, fabricadas por la tecnología MJP para torneado.

IDENTIFICACIÓN DE PIEZAS ENSAYADA						
	Tecnología: Modelado por deposición fundida					
	Operación de mecanizado: Torneado - Cilindrado					
		Primera I	Fase: Av	ance f [mm/rev]		
N º	Condiciones de corte		corte	Código interno		
	N [rpm]	f [mm/rev]	p [mm]			
1		0,150		1FC-N2500-f0,150-p0,500		
2		0,188		2FC-N2500-f0,188-p0,500		
3	2.500	0,225	0,500	3FC-N2500-f0,225-p0,500		
4		0,263	-	4FC-N2500-f0,263-p0,500		
5		0,300	-	5FC-N2500-f0,300-p0,500		
	Seg	gunda fase:	Velocid	ad rotacional N [rpm]		
	Cond	diciones de d	corte			
N.º	N [rpm]	f [mm/rev]	p [mm]	Codigo interno		
6	2.100	2.100 1.700 1.300 900	6FC-N2100-f0,150-p0,500			
7	1.700			0.500	7FC-N1700-f0,150-p0,500	
8	1.300		0,500	8FC-N1300-f0,150-p0,500		
9	900			9FC-N0900-f0,150-p0,500		
	Те	rcera Fase:	Profund	idad de corte p [mm]		
N.º	Cond	diciones de o	corte	Código interno		
	N	f	p			
10	[ɪpm]	[mm/rev]	[mm] 0.625	10EC-N0900-f0 150-p0 625		
11			0,020	11EC-N0900-f0 150-p0 750		
12	900	0,150	0,750	12EC-N0900-f0 150-p0 875		
13			1 000	13EC-N0900-f0 150-p1 000		
15			1,000	131 C-100800-10, 130-p1,000		

Tabla 0.2 Registro de piezas ensayadas, fabricadas por la tecnología FDM para torneado.

• Para fresado

	IDENTIFICACION DE PIEZAS ENSAYADA								
	Tecnología: Material Jetting - Polyjet								
	Operación de mecanizado: Fresado - Planeado								
Primera Fase: Avance f [mm/min]									
N 0	Conc	diciones de c	orte	Código interno					
	N [rpm]	f [mm/min]	p [mm]	Coulgo Interno					
1		500		1MP-N15000-f500-p0,075					
2		1.000		2MP-N15000-f1000-p0,075					
3	15.000	1.500	0,075	3MP-N15000-f1500-p0,075					
4		2.000		4MP-N15000-f2000-p0,075					
5		2.500		5MP-N15000-f2500-p0,075					
	Se	gunda fase:	Velocida	d rotacional N [rpm]					
N 0	Conc	liciones de c	orte	Cádigo intorno					
IN."	N [rpm]	f [mm/min]	p [mm]	Codigo interno					
6	5.000			6MP-N5000-f500-p0,075					
7	7.500	E00	0.075	7MP-N7500-f500-p0,075					
8	10.000	500	0,075	8MP-N10000-f500-p0,075					
9	12.500			9MP-N15000-f500-p0,075					
	Те	rcera Fase: I	Profundi	dad de corte p [mm]					
N 0	Conc	diciones de c	orte						
IN.*	N	f	р	Codigo interno					
	[rpm]	[mm/min]	[mm]						
10			0,050	10MP-N15000-f500-p0,5					
11	15.000	500	0,100	11MP-N15000-f500-p0,1					
12			0,125	12MP-N15000-f500-p0,125					
		1	1						

Tabla 0.3 Registro de piezas ensayadas, fabricadas por la tecnología MJP para fresado.

	IDENTIFICACIÓN DE PIEZAS ENSAYADA									
	Tecnología: Modelado por deposición fundida									
	Operación de mecanizado: Fresado - Planeado									
	Primera Fase: Avance f [mm/min]									
N.º	Con	diciones de c	Código interno							
	N [rpm]	f [mm/min]	p [mm]							
1		500		1FP-N15000-f500-p0,075						
2		1.000		2FP-N15000-f1000-p0,075						
3	15.000	1.500	0,075	3FP-N15000-f1500-p0,075						
4		2.000		4FP-N15000-f2000-p0,075						
5		2.500		5FP-N15000-f2500-p0,075						
	Segunda fase: Velocidad rotacional N [rpm]									
	Cone	diciones de c	orte							
N.º	N [rpm]	f [mm/min]	p [mm]	Código interno						
6	5.000			6FP-N5000-f500-p0,075						
7	7.500	E00	0.075	7FP-N7500-f500-p0,075						
8	10.000	500	0,075	8FP-N10000-f500-p0,075						
9	12.500			9FP-N0900-f12500-p0,075						
	Те	ercera Fase:	Profundi	dad de corte p [mm]						
N ⁰	Cone	diciones de c	orte	Código interno						
	N [rpm]	f [mm/min]	p [mm]							
10			0,050	10FP-N5000-f500-p0,05						
11	5 000	500	0,100	11FP-N5000-f500-p0,1						
12	5.000	500	0,125	12FP-N5000-f500-p0,125						
13			0,150	13FP-N5000-f500-p0,15						

Tabla 0.4 Registro de piezas ensayadas, fabricadas por la tecnología FDM para fresado.

APÉNDICE B

Medición de rugosidad superficial media (Ra)

• Para torneado

Rugosidad inicial

Tabla 0.5 Control de medición de rugosidad inicial de probetas de tecnología MJP para torneado.

CON	NTRO		IÓN DE RUGO								
т	ecno	logía: Mater	ial Jetting - Po	Desultadas							
Fecha	1	1-ene-19	Temperatura	23,3°C	Resultados						
Hora	09H	H30-11H30	Humedad	53,40%							
N.º	СІ	Punto referencial	Rugosidad Ra [µm]	Promedio parcial Ra [µm]	Media Aritmética y Medidas de dispersión						
			3,920		Media Aritmética Ra [µm]						
		а	3,219	4,420	4,248						
			6,121		Valor máximo [µm]						
			4,012		6,121						
		b	5,608	4,562	Valor mínimo [µm]						
0.1	ъ		4,067		3,219						
0-1	WO	ΜO	ΜO	МО	Mo	NO	MO		4,770		Varianza [µm2]
		с	4,298	4,324	0,724						
		3,903	Desviación estándar [µm]								
			3,727		0,851						
							d	3,694	3,685	Error estándar Relativo [%]	
			3,633		5,782						
			6,121		Media Aritmética Ra [µm]						
		а	3,034	4,163	 3,536						
			3,333		Valor máximo [µm]						
			2,741		 6,121						
		b	4,127	3,422	 Valor mínimo [µm]						
0-2	<u></u>		3,399		2,741						
0-2	No		3,045		 Varianza [µm2]						
		С	2,754	3,074	 0,830						
			3,424		Desviación estándar [µm]						
			3,920		 0,911						
		d	3,264	3,483	Error estándar Relativo [%]						
			3,266		7,440						
0-3	N	а	4,760	6,172	Media Aritmética Ra [µm]						

			8,117		6,693
			5,638		Valor máximo [µm]
			7,265		8,546
		b	7,400	7,737	Valor mínimo [µm]
			8,546		4,760
			6,496		Varianza [µm2]
		С	6,690	6,623	1,072
			6,684		Desviación estándar [µm]
			6,276		1,035
		d	6,249	6,242	Error estándar Relativo [%]
			6,200		4,465
		а	4,811		Media Aritmética Ra [µm]
			4,688	4,916	4,396
			5,249		Valor máximo [µm]
			3,999		5,707
		b	3,681	3,815	Valor mínimo [µm]
0-1	2		3,764		3,389
0-4	No		4,748		Varianza [µm2]
		С	5,707	5,147	0,533
			4,987		Desviación estándar [µm]
			4,006		0,730
		d	3,389	3,705	Error estándar Relativo [%]
			3,721		4,796
Pro	omedi	o de Medias	s aritméticas F	Ra [µm]	4,718

Primera fase de ensayos – Avance

CO	NTRO	L DE MEDIC	IÓN DE RUGOS	SIDAD												
٦	Tecno	logía: Materi	Descrite													
Fecha:	1	1-ene-19	Resultados													
Hora:	09H	H30-11H30	Humedad:	52,60%												
N.º	CI	Punto referencial	Rugosidad Ra [µm]	Promedio parcial Ra [µm]	Media Aritmética y Medidas de dispersión											
			3,334		Media Aritmética Ra [µm											
		а	3,330	3,276	3,247											
			3,165		Valor máximo [µm]											
			3,237		3,543											
	_	b	3,349	3,305	Valor mínimo [µm]											
	500		3,330		2,832											
1	-b0,		2,922		Varianza [µm2]											
	1MC-N2500-f0,150-	C-N2500-f0,150-	C-N2500-f0,150-	с	2,832	2,939	0,047									
					3,064		Desviación estándar [µm									
				C-N2500	C-N2500	C-N2500		3,543		0,218						
							C-N25	IC-N2	IC-N2(IC-N2(IC-N2(C-N2	C-N2	C-N2(C-N2(C-N2!
			3,341		1,935											
					a 5,374 5,323 5,395									5,374	Media Ar	Media Aritmética Ra [µm
						5,395	4,946									
	0		5,489		Valor máximo [µm]											
	8-p0,50	8-p0,50	8-p0,50	00 00 8 b 3,841	0,50		4,099		5,709							
					4,139	Valor mínimo [µm]										
_),18		4,477		3,841											
2	C-N2500-f0		4,439		Varianza [µm2]											
		C-N250	С	4,758	4,679	0,391										
				4,839		Desviación estándar [µm										
	2MC		5,614		0,625											
	7	7	0	d	5,709	5,569	Error estándar Relativo [%]									
			5,385		3,651											

Tabla 0.6 Control de medición de rugosidad de las probetas de la primera fase deensayos (avance) para torneado, tecnología MJP.

CO	NTRO	DL DE MEDIO	Posultados												
Tecno	ología	: Modelado													
Fecha:	1	1-ene-19	Temperatura:	22,0°C	Nesullauos										
Hora:	09ł	H30-11H30	Humedad:	61,80%											
N.º	CI	Punto referencial	Rugosidad Ra [µm]	Promedio parcial Ra [µm]	Media Aritmética y Medidas de dispersión										
			2,626		Media Aritmética Ra [µm]										
		а	2,656	2,635	2,747										
	0		2,624		Valor máximo [µm]										
	0,50		3,161		3,161										
)d-C	b	2,907	3,033	Valor mínimo [µm]										
	,15(3,031		2,607										
1	-f0		2,745		Varianza [µm2]										
	500	500	С	2,643	2,665	0,034									
	N N		2,607		Desviación estándar [µm]										
	1FC		2,698		0,185										
	-	-	d	2,626	2,654	Error estándar Relativo [%]									
			2,638		1,941										
	2FC-N2500-f0,188-p0,500		3,937		Media Aritmética Ra [µm]										
				а	4,007	3,950	3,540								
			3,905		Valor máximo [µm]										
		2FC-N2500-f0,188-p0,50	2FC-N2500-f0,188-p0,50	2FC-N2500-f0,188-p0,50	C-N2500-f0,188-p0,50	0,50		3,482		4,007					
						b	2,977	3,208	Valor mínimo [µm]						
							3,165		2,977						
2						:-N2500-f0,	-N2500-f0	2	-N2500-f0,	500-f0,	2500-f0,		3,360	3,193	Varianza [µm2]
												С	3,161		0,149
											3,059		Desviación estándar [µm]		
						3,715		0,385							
					21	2F	2F(2F	2F	5	d	3,738	3,809	Error estándar Relativo [%]	
			3,973		3,144										
			4,143		Media Aritmética Ra [µm]										
	_	а	3,209	3,507	3,577										
	500		3,169		Valor máximo [µm]										
	f0,225-p0,5		3,273		4,143										
		b	3,541	3,429	Valor mínimo [µm]										
3			3,472		3,169										
	-00		3,872		Varianza [µm2]										
	N25	с	3,904	3,885	0,109										
	- - -		3,878		Desviación estándar [µm]										
	3F		3,465		0,330										
		d	3,784	3,489	Error estándar Relativo [%]										

 Tabla 0.7 Control de medición de rugosidad de las probetas de la primera fase de ensayos (avance) para torneado, tecnología FDM.

			3,219		2,660										
			3,566		Media Aritmética Ra [µm]										
		а	3,583	3,548	3,619										
	0		3,494		Valor máximo [µm]										
),50		3,131		4,050										
	3-p(b	3,145	3,093	Valor mínimo [µm]										
	,26		3,003		3,003										
4	0-f0		3,917		Varianza [µm2]										
	250	с	3,917	3,835	0,135										
	Ž		3,672		Desviación estándar [µm]										
	4FO		4,050		0,368										
		-	-	-		-		d	3,995	4,002	Error estándar Relativo [%]				
			3,960		2,931										
			5,527		Media Aritmética Ra [µm]										
		а	5,561	5,495	5,429										
	Q		5,397		Valor máximo [µm]										
	0-p0,5(0-p0,50	0-p0,5(0-p0,5(5,274		5,788							
					0-p)d-0	<u>5</u> b 5,211 5,351	5,351	Valor mínimo [µm]						
_	,30		5,568		5,038										
5	0-fC		5,260	_	Varianza [µm2]										
	2-N2500	С	5,038	5,291	0,042										
			5,574		Desviación estándar [µm]										
	5F(5,533		0,205										
		d	5,417	5,579	Error estándar Relativo [%]										
														5,788	

Segunda fase de ensayos – Velocidad rotacional

Tabla 0.8 Control de medición de rugosidad de las probetas de la segunda fase deensayos (velocidad rotacional) para torneado, tecnología MJP.

CON	ITRO	L DE MEDIC							
т	ecno	logía: Materi	Posultados						
Fecha:	1	5-ene-19	Temperatura:	22,4°C	Resultatos				
Hora:	14H	H30-16H30	Humedad:	63,00%					
N.º	CI	Punto referencial	Rugosidad Ra [µm]	Promedio parcial Ra [µm]	Media Aritmética y Medidas de dispersión				
			4,532		Media Aritmética Ra [µm]				
		а	4,523	4,395	4,535				
	00		4,131		Valor máximo [µm]				
	0,5		5,480		5,480				
	50-F	b	5,038	5,275	Valor mínimo [µm]				
e	0,1		5,308		3,919				
0	00-f		3,919		Varianza [µm2]				
	121(с	3,929	3,940	0,272				
	- U		3,971		Desviación estándar [µm]				
	6M		4,506		0,522				
		d	4,645	4,528	Error estándar Relativo [%]				
			4,434		3,322				
			4,997	5,105	Media Aritmética Ra [µm]				
	50-p0,500	а	5,209		4,608				
		50-p0,500		5,108		Valor máximo [µm]			
			50-p0,5	50-p0,5		3,970		5,209	
					50-p	50-	50-	50-p	50-p
7	0,1		4,374		3,970				
'	-0C	9-f-0)-f(4,326		Varianza [µm2]		
	117	с	4,048	4,282	0,180				
	- U		4,472		Desviación estándar [µm]				
	ΝĽ		4,868		0,424				
		d	4,863	4,857	Error estándar Relativo [%]				
			4,839		2,655				
	0		4,241		Media Aritmética Ra [µm]				
	,500	а	4,030	4,143	4,399				
	0d-(4,158		Valor máximo [µm]				
	150		4,439		4,837				
8	-f0,	b	4,351	4,417	Valor mínimo [µm]				
	300		4,460		4,030				
	ž		4,837		Varianza [µm2]				
	Й	с	4,568	4,560	0,046				
	8	8		4,275		Desviación estándar [µm]			

			4,433		0,215
		d	4,614	4,477	Error estándar Relativo [%]
			4,383		1,413
			4,095		Media Aritmética Ra [µm]
		а	4,113	4,083	4,014
	00		4,041		Valor máximo [µm]
	00,5		3,366		4,464
	-05	b	3,550	3,488	Valor mínimo [µm]
0	0,1!		3,549		3,366
9	00-f		4,133		Varianza [µm2]
	100	с	4,464	4,324	0,124
	9MC-N		4,375		Desviación estándar [µm]
			4,026		0,352
		d	4,068	4,161	Error estándar Relativo [%]
			4,390		2,529

Tabla 0.9 Control de medición de rugosidad de las probetas de la segunda fase deensayos (velocidad rotacional) para torneado, tecnología FDM.

CON	TRO																			
Tecnolo	ogía:	Modelado p	Posultados																	
Fecha:	1	5-ene-19	Temperatura:	22,7°C	Resultatos															
Hora:	14H	H30-16H30	Humedad:	67,00%																
N.º	CI	Punto referencial	Rugosidad Ra [µm]	Promedio parcial Ra [µm]	Media Aritmética y Medidas de dispersión															
			4,457		Media Aritmética Ra [µm]															
		а	4,571	4,548	4,175															
	Q		4,615		Valor máximo [µm]															
),5(3,816		4,692															
	6FC-N2100-f0,150-p0	6FC-N2100-f0,150-p0	6FC-N2100-f0,150-p0	6FC-N2100-f0,150-p0	6FC-N2100-f0,150-p0	b	3,440	3,518	Valor mínimo [µm]											
						6FC-N2100-f0,15	6FC-N2100-f0,15	3,	3,297		3,297									
6								6FC-N2100-f0	6FC-N2100-f0	6FC-N2100-f0	6FC-N2100-f0	5FC-N2100-f0	:-N2100-fC	:-N2100-fC	2100-fC	2100-fC		4,630		Varianza [µm2]
																	210	с	4,231	4,518
																4,692		Desviación estándar [µm]		
														4,332		0,470				
										d	4,020	4,116	Error estándar Relativo [%]							
			3,996		3,249															
	6		3,512		Media Aritmética Ra [µm]															
	0-f0,15	а	3,426	3,564	3,404															
7))-f()0-f()0-f(0-f())-f())-f(3,755		Valor máximo [µm]									
1 170	1170		3,781		3,781															
	с С	b	3,180	3,428	Valor mínimo [µm]															
	ΥF		3,322		3,170															

			3,323		Varianza [µm2]									
		с	3,664	3,418	0,050									
			3,266		Desviación estándar [µm]									
			3,281		0,224									
		d	3,170	3,207	Error estándar Relativo [%]									
			3,171		1,899									
			2,882		Media Aritmética Ra [µm]									
		а	2,706	2,703	2,709									
	Q		2,522		Valor máximo [µm]									
	0,50		2,554		3,065									
)d-0	b	2,586	2,577	Valor mínimo [µm]									
	,15		2,590		2,522									
8	0-f0		2,735	2,610	Varianza [µm2]									
	130	с	2,573		0,034									
	Ž		2,523		Desviación estándar [µm]									
	8FC		2,966		0,185									
		d	3,065	2,947	Error estándar Relativo [%]									
			2,811		1,968									
			2,030		Media Aritmética Ra [µm]									
		а	1,823	1,937	2,111									
	Q		1,958		Valor máximo [µm]									
	0,50		2,372		2,668									
)d-0	b	1,966	2,110	Valor mínimo [µm]									
	C-N0900-f0,150		1,992		1,649									
9			2,668		Varianza [µm2]									
		с	2,630	2,641	0,132									
			2,624		Desviación estándar [µm]									
	9FC		1,649		0,364									
	0,	0,	0,	0	d	1,766	1,758	Error estándar Relativo [%]						

Tercera fase de ensayos – Profundidad de corte

CO	NTRO	JL DE MEDIC																	
	Tecno	ología: Mater	Resultados																
Fecha:	16-ene-19		Temperatura:	21,0°C	Resultatos														
Hora:	14	H30-16H30	Humedad:	68,00%															
N.º	CI	Punto referencial	Rugosidad Ra [µm]	Promedio parcial Ra [µm]	Media Aritmética y Medidas de dispersión														
			4,103		Media Aritmética Ra [µm]														
		а	3,927	4,067	4,317														
	325		4,172		Valor máximo [µm]														
	p0,6		4,268		4,750														
	50-	b	4,219	4,147	Valor mínimo [µm]														
10	f0,1	f0,1	f0,1		3,953		3,927												
10	-00		4,591		Varianza [µm2]														
	N25	С	4,369	4,461	0,068														
	Į		4,422		Desviación estándar [µm]														
	101		4,400		0,260														
			d	4,750	4,594	Error estándar Relativo [%]													
			4,633		1,742														
	V2500-f0,150-p0,750		5,358		Media Aritmética Ra [µm]														
		N2500-f0,150-p0,750	N2500-f0,150-p0,750	а	4,877	5,219	5,094												
				N2500-f0,150-p0,750	f0,150-p0,750	50-p0,750	50-p0,750	50-p0,750	50-p0,750		5,422		Valor máximo [µm]						
										50-p0,	50-p0,	50-p0,	50-p0,	50-p0,	50-p0,		5,503		5,664
																b	5,664	5,491	Valor mínimo [µm]
11							5,307		4,558										
• •						4,573		Varianza [µm2]											
					N25	N25	N25(N25	N25	N25	N25	С	4,889	4,817	0,132				
	ų		4,990		Desviación estándar [µm]														
	111		4,815		0,364														
		d	5,171	4,848	Error estándar Relativo [%]														
			4,558		2,063														
	75		5,011	_	Media Aritmética Ra [µm]														
	0,87	а	4,734	4,732	4,542														
	d-0		4,450		Valor máximo [µm]														
15(0-f0,15(4,879		5,011														
12		0-f0	b	4,407	4,684	Valor mínimo [µm]													
	250		4,765		4,092														
	Ž		4,466		Varianza [µm2]														
	2MC	С	4,297	4,446	0,068														
			4,574		Desviación estándar [µm]														

Tabla 0.10 Control de medición de rugosidad de las probetas de la tercera fase de ensayos (profundidad de corte) para torneado, tecnología MJP.

		d	4,382	4,308	0,261
			4,449		Error estándar Relativo [%]
			4,092		1,660
13		а	4,773	4,969	Media Aritmética Ra [µm]
			4,882		4,716
	0 0 0		5,253		Valor máximo [µm]
	p1,(b	4,719	5,006	5,294
	13MC-N2500-f0,150-		5,006		Valor mínimo [µm]
			5,294		4,030
		С	4,591	4,679	Varianza [µm2]
			4,583		0,148
			4,864		Desviación estándar [µm]
		d	4,215	4,210	0,384
			4,384		Error estándar Relativo [%]
			4,030		2,352

Tabla 0.11 Control de medición de rugosidad de las probetas de la tercera fase deensayos (profundidad de corte) para torneado, tecnología FDM.

CONTROL DE MEDICIÓN DE RUGOSIDAD					
Tecno	ología	a: Modelado	Posultados		
Fecha:	16-ene-19		Temperatura:	23,3°C	Resultatos
Hora:	14	H30-16H30	Humedad:	55,50%	
N.º	CI	Punto referencial	Rugosidad Ra [µm]	Promedio parcial Ra [µm]	Media Aritmética y Medidas de dispersión
	10FC-N0900-f0,150-p0,625	а	3,18	3,194	Media Aritmética Ra [µm]
			3,221		2,806
			3,182		Valor máximo [µm]
		b c	2,652	2,452	3,249
			2,338		Valor mínimo [µm]
10			2,365		2,338
10			2,677	2,637	Varianza [µm2]
			2,627		0,116
			2,606		Desviación estándar [µm]
		d	2,568	2,940	0,340
			3,249		Error estándar Relativo [%]
			3,002		3,497
11	11FC-N0900-f0,150-	а	2,484	2,525	Media Aritmética Ra [µm]
			2,307		2,415
			2,784		Valor máximo [µm]
		c b	2,206	2,294	2,818
			2,393		Valor mínimo [µm]
			2,284		2,130

			2 390		Varianza [um2]
		С	2,000	2,323	0.043
			2 450		Desviación estándar [um]
		d	2 435	2,515	0.208
			2 293		Error estándar Relativo [%]
			2.818		2.484
			2.979		Media Aritmética Ra [um]
		а	2,774	2,860	2,477
	75		2,828		Valor máximo [µm]
	0,8	b	2,501	2.398	2,979
	0-p		2,402		Valor mínimo [µm]
	0,1{		2,290		2,164
12	-00	с	2,164	2,276	Varianza [µm2]
	109(2,441		0,066
	ר∠ ט		2,223		Desviación estándar [µm]
	12F	d	2,345	2,372	0,258
			2,506		Error estándar Relativo [%]
			2,266		3,005
	50-p1,000	а	2,035	2,209	Media Aritmética Ra [µm]
			2,380		2,599
			2,212		Valor máximo [µm]
		b	2,403	2,592	3,387
13			2,711		Valor mínimo [µm]
	f0,1		2,663		2,035
	00	С	2,553	2,615	Varianza [µm2]
	13FC-N09		2,630		0,115
			2,662		Desviación estándar [µm]
		d	3,387	2,979	0,339
			2,808		Error estándar Relativo [%]
			2,742		3,764

Medición de rugosidad del material base Polytec 1000 – Acetal

> Medición 0. Rugosidad inicial.

Tabla 0.12 Control de medición de rugosidad inicial de la probeta del material base para torneado.

CONTROL DE MEDICIÓN DE RUGOSIDAD					
Ν	Nater	ial base: Po	Posultados		
Fecha:	2	2-ene-19	Temperatura:	21,2°C	Resultatos
Hora:	14H30-16H30		Humedad:	53,00%	
N.º	СІ	Punto referencial	Rugosidad Ra [µm]	Promedio parcial Ra [µm]	Media Aritmética y Medidas de dispersión
0	OMB	а	0,334	0,333	Media Aritmética Ra [µm]
			0,340		0,444
			0,325		Valor máximo [µm]
		b	0,463	0,435	0,568
			0,421		Valor mínimo [µm]
			0,421		0,325
		С	0,568	0,551	Varianza [µm2]
			0,565		0,007
			0,520		Desviación estándar [µm]
		d	0,410	0,456	0,084
			0,492		Error estándar Relativo [%]
			0,466		5,486

Fuente: Elaboración propia.

Medición 1. Ensayo realizado a las mejores condiciones de corte para la tecnología MJP.

Tabla 0.13 Control de medición de rugosidad de la probeta del material base ensayada bajo las mejores condiciones de corte obtenidas para la tecnología MJP en torneado.

CO	NTRO	DL DE MEDIO			
	Mate	rial base: Po	Posultados		
Fecha:	2	2-ene-19	Temperatura:	22,4°C	Resultatios
Hora:	14H30-16H30		Humedad:	55,00%	
N.º	СІ	Punto referencial	Rugosidad Ra [µm]	Promedio parcial Ra [µm]	Media Aritmética y Medidas de dispersión
	1MB-N2500-f0,150-	a	1,215	1,166	Media Aritmética Ra [µm]
			1,314		1,196
1			0,968		Valor máximo [µm]
		1MB-N250 201	1,338	1,144	1,338
			1,093		Valor mínimo [µm]
			1,001		0,968
	1,325		Varianza [µm2]		
---	-------	-------	-----------------------------		
с	1,309	1,297	0,016		
	1,257		Desviación estándar [µm]		
	1,221		0,126		
d	1,174	1,176	Error estándar Relativo [%]		
	1,133		3,030		

Medición 2. Ensayo realizado a las mejores condiciones de corte para la tecnología FDM.

Tabla 0.14 Control de medición de rugosidad de la probeta del material base ensayada bajo las mejores condiciones de corte obtenidas para la tecnología FDM en torneado.

CON	ITRO	L DE MEDIC											
Ν	later	ial base: Pol	Posultados										
Fecha:	2	4-ene-19	Temperatura:	20,8°C	Resultatos								
Hora:	14H	4H30-16H30 Humedad: 70,30%											
N.º	CI	Punto referencial	Rugosidad Ra [µm]	Promedio parcial Ra [µm]	Media Aritmética y Medidas de dispersión								
			1,513		Media Aritmética Ra [µm]								
										а	1,477	1,478	1,479
	00		1,445		Valor máximo [µm]								
	0,5(1,477	1,525	1,594								
	d-0	b	1,503		Valor mínimo [µm]								
2	0,15		1,594		1,319								
2)0-f(1,454		Varianza [µm2]								
	N9C	С	1,527	1,498	0,004								
	/B-		1,514		Desviación estándar [µm]								
	1		1,441		0,066								
		d	1,487	1,416	Error estándar Relativo [%]								
			1,319		1,281								

• Para fresado

Rugosidad inicial

Tabla 0.15 Control de medición de rugosidad inicial de probetas de tecnología MJP parafresado, medición longitudinal.

CON	ITRC	DL DE MEDIC	IÓN DE RUGO						
т	ecno	logía: Mater	ial Jetting - Pol	yjet	Pocult	adaa			
Fecha:	1	1-ene-19	Temperatura:	23,3°C	- Resultados				
Hora:	14	H30-16H30	Humedad:	53,40%					
	MEDICIÓN LONGITUDINAL								
N.º	СІ	Punto referencial	Rugosidad Ra [µm]	Promedio parcial Ra [µm]	Media Aritmética y Me	edidas de dispersión			
				а	0,963	0,975	Media Aritmética Ra [µm]	Varianza [µm2]	
			0,986	,	0,727	0,086			
0-1	1 Idwo	MP1	b	0,346	0,356	Valor máximo [µm]	Desviación estándar [µm]		
		5	0,366		0,986	0,294			
		с	0,882	0,851	Valor mínimo [µm]	Error estándar Relativo [%]			
			0,82		0,346	16,482			
		a dV b	0,886	0,878	Media Aritmética Ra [µm]	Varianza [µm2]			
			0,87		0,867	0,005			
0-2	MP2		0,918	0.917	Valor máximo [µm]	Desviación estándar [µm]			
	5		0,915		0,918	0,069			
			с	0,884	0,808	Valor mínimo [µm]	Error estándar Relativo [%]		
			0,731		0,731	3,265			
		а	0,360	0,336	Media Aritmética Ra [µm]	Varianza [µm2]			
			0,311		0,460	0,010			
0-3	MP3	b	0,531	0,500	Valor máximo [µm]	Desviación estándar [µm]			
	ō		0,468		0,550	0,102			
		С	0,542	0,546	Valor mínimo [µm]	Error estándar Relativo [%]			
		0,55	0,040	0,311	9,055				

Tabla 0.16 Control de medición de rugosidad inicial de probetas de tecnología MJP parafresado, medición transversal.

CON	NTRC	DE MEDIC	IÓN DE RUGO						
Т	ecno	logía: Mater	ial Jetting - Pol	yjet	Pocult	adas			
Fecha:	1	1-ene-19	Temperatura:	23,3°C	Resultados				
Hora:	14	H30-16H30	Humedad:	53,40%					
	MEDICIÓN TRANSVERSAL								
N.º	СІ	Punto referencial	Rugosidad Ra [µm]	Promedio parcial Ra [µm]	Media Aritmética y Me	edidas de dispersión			
		а	3,779	3,563	Media Aritmética Ra [µm]	Varianza [µm2]			
			3,346		4,305	0,392			
0-1	JP1	b	4,929	4,905	Valor máximo [µm]	Desviación estándar [µm]			
	ō		4,88	,	4,929	0,626			
	С				4,483	4,449	Valor mínimo [µm]	Error estándar Relativo [%]	
			4,415	,	3,346	5,937			
		а	1,880	1,883	Media Aritmética Ra [µm]	Varianza [µm2]			
			1,886		1,853	0,008			
0-2	AP2	d AP2	1,789	1.769	Valor máximo [µm]	Desviación estándar [µm]			
	0		1,748		2,001	0,090			
		с	2,001	1,909	Valor mínimo [µm]	Error estándar Relativo [%]			
			1,816		1,748	1,975			
		а	2,272	2,223	Media Aritmética Ra [µm]	Varianza [µm2]			
			2,173	,	3,818	2,798			
0-3	MP3	b	3,288	3,357	Valor máximo [µm]	Desviación estándar [µm]			
	ō		3,426		5,876	1,673			
		С	5,876	5,875	Valor mínimo [µm]	Error estándar Relativo [%]			
				5,873		2,173	17,885		

Primera fase de ensayos – Velocidad de avance

Tabla 0.17 Control de medición de rugosidad de las probetas de la primera fase de ensayos (velocidad de avance) para fresado, tecnología MJP, medición longitudinal.

CON	TRC		CIÓN DE RUGO				
Т	ecn	ología: Mate	rial Jetting - Po	lyjet	Resultados		
Fecha:	1	1-ene-19	Temperatura:	23,7°C	Result	au03	
Hora:	14	H30-16H30	Humedad:	52,60%			
			MEDICIÓ	ÓN LONGIT	UDINAL		
N.º	CI	Punto referencial	Rugosidad Ra [µm]	Promedio parcial Ra [µm]	Media Aritmética disper	a y Medidas de sión	
	075	а	1,125	1,096	Media Aritmética Ra [µm]	Varianza [µm2]	
	р0,		1,067		1,141	0,002	
1	00-f500-	b	1,181	1,189	Valor máximo [µm]	Desviación estándar [µm]	
	500		1,197		1,197	0.047	
	MP-N1	с	1,116	1.118	Valor mínimo [µm]	Error estándar Relativo [%]	
	Ļ		1 1 2	1,110	1.067	1 600	
	10	-	1,12		Media Aritmética	1,033	
	075	a	1,449	1 431	Ra [µm]	Varianza [µm2]	
	,0d-0C		1,412	1,101	1,500	0,004	
2	0-f10(b	1,579	1,517	Valor máximo [µm]	Desviacion estándar [µm]	
	500		1,455		1,579	0,060	
	IP-N1		1,471	1,497	Valor mínimo [µm]	Error estándar Relativo [%]	
	2N		1,522		1,412	1,626	
	075	а	1,384	1.349	Media Aritmética Ra [µm]	Varianza [µm2]	
	0-p0,		1,313	.,	1,378	0,002	
3	0-f150	b	1,414	1,393	Valor máximo [µm]	Desviación estándar [µm]	
	2000		1 371		1 414	0.041	
	N1		1,071			Error estándar	
	٩P-	с	1,337	1,375	Valor mínimo [µm]	Relativo [%]	
	31		1,413		1,313	1,206	
	5000-	а	1,477	1,546	Ra [µm]	Varianza [µm2]	
4	Ľ,		1,615		1,486	0,015	
	4MP	b	1,374	1,367	Valor máximo [µm]	Desviación estándar [µm]	

			1,359		1,628	0,124
		С	1,606	1.617	Valor mínimo [µm]	Error estándar Relativo [%]
		•	1,628	.,•	1,359	3,400
	075	2	1,801	1 816	Media Aritmética Ra [µm]	Varianza [µm2]
	0-p0,		1,831	1,010	1,748	0,005
5	-f250	b l	1,723	1 706	Valor máximo [µm]	Desviación estándar [µm]
Ũ	5000	2	1,869	1,700	1,899	0,074
P-N1	P-N1		1,721	1 910	Valor mínimo [µm]	Error estándar Relativo [%]
	5M	0	1,899	1,010	1,721	1,728

Tabla 0.18 Control de medición de rugosidad de las probetas de la primera fase de ensayos (velocidad de avance) para fresado, tecnología MJP, medición transversal.

COI	NTR	OL DE MEDI	CIÓN DE RUGO				
	Тесі	nología: Mate	erial Jetting - Pol	Dec. Reduc			
Fecha:	1	1-ene-19	Temperatura:	23,7°C	Result	Resultados	
Hora:	14	H30-16H30	Humedad:	52,60%			
			MEDICIÓ	N TRANSVE	RSAL		
N.º	CI	Punto referencial	Rugosidad Ra [µm]	Promedio parcial Ra [µm]	Media Aritmética disper	a y Medidas de sión	
	0,075	а	0,982	0,962	Media Aritmética Ra [µm]	Varianza [µm2]	
)d-C		0,941		0,973	0,001	
1	0-f50(b	0,939	0,925	Valor máximo [µm]	Desviación estándar [µm]	
	200		0,911	,	0,997	0,033	
	P-N1	c c	0,997	0,962	Valor mínimo [µm]	Error estándar Relativo [%]	
	1M		0,926		0,911	1,396	
	-0(b a	1,165	1,186	Media Aritmética Ra [µm]	Varianza [µm2]	
	100		1,207		1,150	0,003	
2	1-000s	b	1,113	1,080	Valor máximo [µm]	Desviación estándar [µm]	
	N15		1,047		1,207	0,056	
	2MP-1	С	1,171	1,165	Valor mínimo [µm]	Error estándar Relativo [%]	
			1,159		1,047	1,992	
	- ⁻	а	1,439	1,431	Media Aritmética Ra [µm]	Varianza [µm2]	
3	NF NF		1,422		1,391	0,004	
	e co	b	1,348	1,412	Valor máximo [µm]	Desviación estándar [µm]	

			1,475		1,475	0,064
		С	1,356	1,332	Valor mínimo [µm]	Error estándar Relativo [%]
			1,308	,	1,308	1,869
	-0	а	1,640	1.580	Media Aritmética Ra [µm]	Varianza [µm2]
	200		1,52	,	1,576	0,005
4	J-000	b	1,546	1,537	Valor máximo [µm]	Desviación estándar [µm]
	N15		1,527	,	1,695	0,072
	1-MP-I	С	1,541	1,618	Valor mínimo [µm]	Error estándar Relativo [%]
	7		1,695	,	1,520	1,864
	-0(а	1,586	1,564	Media Aritmética Ra [µm]	Varianza [µm2]
	250		1,542		1,590	0,003
5	1-000	b	1,633	1,590	Valor máximo [µm]	Desviación estándar [µm]
	N15		1,547		1,684	0,057
	SMP-I	с	1,552	1.618	Valor mínimo [µm]	Error estándar Relativo [%]
	4,	-	1,684	,	1,542	1,465

Tabla 0.19 Control de medición de rugosidad de las probetas de la primera fase de ensayos (velocidad de avance) para fresado, tecnología FDM, medición longitudinal.

CON	ITROL	DE MEDIC	IÓN DE RUGO										
Tecn	ología	: Modelado p	oor Deposición	Deputtedee									
Fecha:	11-ene-19		Temperatura:	22°C	Result	1005							
Hora:	14H30-16H30		Humedad:	61,80%									
			MEDICIÓN	N LONGITU	DINAL								
N.º	CI Punto Rugosidad Promedio referencial Ra [µm] Ra [µm]				Media Aritmética dispers	y Medidas de sión							
	5	0	2,064	2 1 1 0	Media Aritmética Ra [µm]	Varianza [µm2]							
	p0,07		2,173	2,119	1,744	0,159							
1	-f500-	-f500-	-f500-	-f500-	-f500-	-f500-	b	1,932	1,873	Valor máximo [µm]	Desviación estándar [µm]		
	5000	-	1,813	,	2,173	0,399							
	FP-N1	FP-N1	FP-N1	FP-N1	FP-N1	FP-N1	FP-N1	FP-N1	с	1,236	1.261	Valor mínimo [µm]	Error estándar Relativo [%]
	L		1,286	-,	1,236	9,329							
2	-P-	а	1,302	1 299	Media Aritmética Ra [µm]	Varianza [µm2]							
	2F N15	3	1,296	1,200	1,381	0,008							

			1 481		Valor máximo [um]	Desviación estándar [um]
		b	1.211	1,396		
			1,311		1,401	Error estándar
		С	1,361	1,282	Valor mínimo [µm]	Relativo [%]
			1,203		1,203	2,711
	5		4.004		Media Aritmética	
	,07	а	1,301	1,359	Ra [µm]	vananza [µmz]
	0-pC		1,357		1,553	0,286
	150		2 211		Valor máximo [um]	Desviación
3	1-OC	b	2,211	2,233		
	150(2,255		2,255	0,535
	N-c		1.087	4 004	Valor mínimo [um]	Error estandar Relativo [%]
	3FI	С	4,004	1,091	4 007	44.054
			1,094		1,087 Media Aritmética	14,051
	,075	а	1,417	1 326	Ra [µm]	Varianza [µm2]
	0d-0	ŭ	1,234	1,020	1,584	0,036
	200		4 740			Desviación
4	f-OC	b	1,748	1,669	Valor maximo [µm]	estandar [µm]
	150(1,59		1,748	0,191
	P-N	с	1,587	1.643	Valor mínimo [µm]	Relativo [%]
	4F	-	1,698	,	1,234	4,911
	75		4 000		Media Aritmética	
	0,07	а	1,020	1,780	Ra [µm]	vananza [µmz]
	d-0(1,731		2,202	0,158
-	f250	L	2.067	0.450	Valor máximo [µm]	Desviación estándar [µm]
5	-000	d	2 244	2,150	2 711	0.308
	15(2,244		2,111	Error estándar
	N-d	С	2,711	2,650	Valor mínimo [µm]	Relativo [%]
	5F		2,589		1,731	7,371

Tabla 0.20 Control de medición de rugosidad de las probetas de la primera fase de ensayos (velocidad de avance) para fresado, tecnología FDM, medición transversal.

CON	ITROL DE MEDIO	CIÓN DE RUGO					
Tecno	ología: Modelado	por Deposición	Pocultados				
Fecha:	11-ene-19	Temperatura:	22°C	Resultatos			
Hora:	Hora: 14H30-16H30 Humedad: 61,80%						
MEDICIÓN TRANSVERSAL							

N.º	СІ	Punto referencial	Rugosidad Ra [µm]	Promedio parcial Ra [µm]	Media Aritmética dispers	y Medidas de sión
	75		4.000		Media Aritmética	
	0,0	а	1,898	1,890	Ra [µm]	Varianza [µm2]
	-00		1,881		2,105	0,027
1)0-f5(b	2,105	2,043	[µm]	estándar [µm]
	500		1,981		2,313	0,163
	P-N1	с	2,313	2,135	Valor mínimo [µm]	Error estándar Relativo [%]
	1		1,956		1,881	3,161
	-0	а	2,212	2,020	Media Aritmética Ra [µm]	Varianza [µm2]
	100		1,828		2,315	0,045
	-f- K				Valor máximo	Desviación
2	000	b	2,448	2,351	[µm]	estándar [µm]
	N15		2,254		2,448	0,212
	2FP-I	с	2,285	2,313	Valor mínimo [µm]	Error estándar Relativo [%]
			2,34		1,828	3,742
			0.000		Media Aritmética	
	00	а	2,200	2,111	Ra [µm]	Varianza [µm2]
	-115		2,021		2,230	0,017
3	000	h	2.278	2 227		estándar [um]
5	150	b	2 196	2,237	2 421	0 130
	Z Z		2,100		2,121	Error estándar
	3FF	с	2,212	2,317	Valor mínimo [µm]	Relativo [%]
			2,421		2,021	2,378
					Media Aritmética	
	00	а	2,644	2,745	Ra [µm]	Varianza [µm2]
	f20		2,846		2,390	0,080
4	-00	h	2 127	0.054	Valor maximo	Desviacion estándar [um]
4	150	U	2,127	2,234	2.846	
	Z-		2,301		2,040	Error estándar
	4FF	с	2,399	2,268	Valor mínimo [µm]	Relativo [%]
			2,136		2,127	4,832
					Media Aritmética	
	00	а	3,006	2,928	Ra [µm]	Varianza [µm2]
	f25(2,849		2,791	0,046
	00-	L	2 803	0.740	Valor máximo	Desviación
5	150	a	2,000	2,743		
	ž	1	2,082		3,000	U,214 Frror estándar
	2FP	с	2,565	2,485	Valor mínimo [µm]	Relativo [%]
		Ĩ	2,405	_,	2,405	3,137

Segunda fase de ensayos – Velocidad rotacional

Tabla 0.21 Control de medición de rugosidad de las probetas de la segunda fase de ensayos (velocidad rotacional) para fresado, tecnología MJP, medición longitudinal.

CON	CONTROL DE MEDICIÓN DE RUGOSIDAD						
	Tecr	ología: Mater	ial Jetting - Pol	yjet	Resulta	dos	
Fecha:	1	15-ene-19	Temperatura:	22,4°C	result	1003	
Hora:	91	H30-11H30	Humedad:	63,00%			
			MEDICIÓ	N LONGITU	JDINAL		
N.º	CI	Punto referencial	Rugosidad Ra [µm]	Promedio parcial Ra [µm]	Media Aritmética dispers	y Medidas de sión	
	075	а	1,849	1,864	Media Aritmética Ra [µm]	Varianza [µm2]	
	-p0,		1,879		1,806	0,002	
6	00-f500	b	1,773	1,769	Valor máximo [µm]	Desviación estándar [µm]	
	1500		1,765		1,879	0,047	
	6MP-N	С	1,795	1,785	Valor mínimo [µm]	Error estándar Relativo [%]	
			1,774		1,765	1,065	
-p0,075	075	a a	1,240	1,273	Media Aritmética Ra [µm]	Varianza [µm2]	
	-p0,		1,305		1,261	0,001	
7)-f500	b	1,26	1,241	Valor máximo [µm]	Desviación estándar [µm]	
	750(1,221		1,305	0,032	
	MP-N		1,283	1,258	Valor mínimo [µm]	Error estándar Relativo [%]	
	71		1,232	,	1,221	1,044	
	075	а	1,035	1,049	Media Aritmética Ra [µm]	Varianza [µm2]	
	-p0,		1,062		1,078	0,053	
8	0-f500	b	0,891	0,851	Valor máximo [µm]	Desviación estándar [µm]	
Ū	000		0,81	,	1,399	0,230	
	MP-N1	c c	1,307	1,353	Valor mínimo [µm]	Error estándar Relativo [%]	
	8		1,399		0,810	8,707	
	-00	а	1,171	1,183	Media Aritmética Ra [µm]	Varianza [µm2]	
Q	150		1,195		1,051	0,022	
3	N-AM	b	1,098	1,056	Valor máximo [µm]	Desviación estándar [µm]	
	90 16	16		1,014		1,195	0,149

		C	0,884	0 860	Valor mínimo [µm]	Error estándar Relativo [%]	
		Ū	0,836	0,000	0,836	5,785	
Fuente: Elaboración propia.							

Tabla 0.22 Control de medición de rugosidad de las probetas de la segunda fase de ensayos (velocidad rotacional) para fresado, tecnología MJP, medición transversal.

CONTROL DE MEDICIÓN DE RUGOSIDAD							
	Тес	nología: Mate	rial Jetting - Poly	/jet	Resultados		
Fecha:		15-ene-19	Temperatura:	22,4°C			
Hora:	91	9H30-11H30 Humedad:		63,00%			
			MEDICIÓI	N TRANSV	ERSAL		
N,º	CI	Punto referencial	Rugosidad Ra [µm]	Promedio parcial Ra [µm]	Media Aritmética dispe	a y Medidas de rsión	
	,075	а	1,379	1,336	Media Aritmética Ra [µm]	Varianza [µm2]	
	-p0		1,293		1,365	0,004	
6)-f500	b	1,401	1,363	Valor máximo [µm]	Desviación estándar [µm]	
	000		1,325		1,451	0,060	
	AP-N5	С	1,316	1,384	Valor mínimo [µm]	Error estándar Relativo [%]	
	<u>6</u>		1,451	,	1,293	1,793	
),075	a	1,269	1,259	Media Aritmética Ra [µm]	Varianza [µm2]	
)-p(1,249		1,257	0,004	
7)-f50(b	1,183	1,169	Valor máximo [µm]	Desviación estándar [µm]	
	50		1,154		1,320	0,061	
	IP-N7	С	1,32	1,291	Valor mínimo [µm]	Error estándar Relativo [%]	
	N۲		1,262		1,154	1,972	
	0,075	а	1,124	1,123	Media Aritmética Ra [µm]	Varianza [µm2]	
	d-0		1,121		1,203	0,005	
8	0-f50	b	1,281	1,274	Valor máximo [µm]	Desviación estándar [µm]	
	000		1,267		1,281	0,068	
	P-N1	С	1,203	1,205	Valor mínimo [µm]	Error estándar Relativo [%]	
	8M		1,207		1,121	2,308	
	-000	а	1,116	1,088	Media Aritmética Ra [µm]	Varianza [µm2]	
q	115(1,06		1,149	0,002	
	MP-N	b	1,183	1,156	Valor máximo [µm]	Desviación estándar [µm]	
đ	96	96		1,129		1,183	0,047

	с	1,148	1,110	Valor mínimo [µm]	Error estándar Relativo [%]		
		1,071		1,060	1,653		
Fuente: Elaboración propia							

Tabla 0.23 Control de medición de rugosidad de las probetas de la segunda fase de ensayos (velocidad rotacional) para fresado, tecnología FDM, medición longitudinal.

CONTROL DE MEDICIÓN DE RUGOSIDAD								
Tecr	olog	jía: Modelado	o por Deposición	Fundida	Resultados			
Fecha:	1	5-ene-19	Temperatura:	27,2°C	i tesui	lauus		
Hora:	91	H30-11H30	Humedad:	67,00%				
			MEDICIÓI	N LONGITU	DINAL			
N,º	CI	Punto referencial	Rugosidad Ra [µm]	Promedio parcial Ra [µm]	Media Aritmétic dispe	a y Medidas de rsión		
	,075	а	1,725	1,777	Media Aritmética Ra [µm]	Varianza [µm2]		
	-p0		1,828		1,896	0,078		
6	00-f500	b	2,233	2,218	Valor máximo [µm]	Desviación estándar [µm]		
	50(2,202		2,233	0,280		
	6FP-N	С	1,731	1,637	Valor mínimo [µm]	Error estándar Relativo [%]		
	-		1 543		1 543	6.018		
	75	a 0/2	1,476	1,458	Media Aritmética Ra [µm]	Varianza [µm2]		
	o,0		1.44	,	1.369	0.143		
	1-00		,		Valor máximo	Desviación		
7)-f5	¢1-00¢	1,704	1,715	[µm]	estándar [µm]		
	50		1,725		1,725	0,378		
	ZN-q=		0,927	0.891	Valor mínimo [µm]	Error estándar Relativo [%]		
	7		0 854	,	0 854	11 275		
	75	а	0,854	0.846	Media Aritmética Ra [µm]	Varianza [µm2]		
	0,00		0.837	-,	1.381	0.561		
	-f500-p	h	0,963	0.007	Valor máximo [µm]	Desviación estándar [µm]		
8	-0000	u	0,851	0,907	2,327	0,749		
	⊏P-N1	С	2,327	2,324	Valor mínimo [µm]	Error estándar Relativo [%]		
	8	-	2,321	_,,,	0,837	22,136		
9	-Ч-	а	2,648	2,652	Media Aritmética Ra [µm]	Varianza [µm2]		
	16	-16 	<u>ы</u>		2,656		3,004	0,111

b	3,036	2 865	Valor máximo [µm]	Desviación estándar [µm]
5	2,694	2,000	3,352	0,333
	3,329	3 3/1	Valor mínimo [µm]	Error estándar Relativo [%]
C	3,352	5,541	2,648	4,530

Tabla 0.24 Control de medición de rugosidad de las probetas de la segunda fase de ensayos (velocidad rotacional) para fresado, tecnología FDM, medición transversal.

CONTROL DE MEDICIÓN DE RUGOSIDAD						
Tech	ologi	ía: Modelado	por Deposición	Fundida	Result	ados
Fecha:	1	5-ene-19	Temperatura:	27,2°C		
Hora:	9⊦	130-11H30	Humedad:	67,00%		
			MEDICIÓ	N TRANSV	ERSAL	
N,º	СІ	Punto referencial	Rugosidad Ra [µm]	Promedio parcial Ra [µm]	Media Aritmética disper	a y Medidas de rsión
	,075	а	1,781	1,760	Media Aritmética Ra [µm]	Varianza [µm2]
	0d-		1,739		1,826	0,020
6	-f500	b	1,675	1,666	Valor máximo [µm]	Desviación estándar [µm]
_	000	-	1,657	,	2,023	0,142
	:P-N5	р-N5(2,023	1,965	Valor mínimo [µm]	Error estándar Relativo [%]
	9F		1,906		1,657	3,178
	,075	a	2,446	2,437	Media Aritmética Ra [µm]	Varianza [µm2]
	0d-		2,427		2,258	0,018
7)-f500	p 1500	2,242	2,247	Valor máximo [µm]	Desviación estándar [µm]
	500		2,252		2,446	0,133
	-P-N7	С	2,087	2,180	Valor mínimo [µm]	Error estándar Relativo [%]
	7F		2,272		2,087	2,403
	0,075	а	1,927	1,966	Media Aritmética Ra [µm]	Varianza [µm2]
)d-C		2,004		2,020	0,006
8	0-f50(b	1,98	1,999	Valor máximo [µm]	Desviación estándar [µm]
	000		2,017		2,154	0,076
	P-N1(С	2,154	2,100	Valor mínimo [µm]	Error estándar Relativo [%]
	8F		2,046		1,927	1,543
9	ЭFР-	а	2,982	2,883	Media Aritmética Ra [µm]	Varianza [µm2]
6	5	o .	2,784		2,781	0,151

b	3,089	3,075	Valor máximo [µm]	Desviación estándar [µm]
	3,061	,	3,089	0,389
с	2,273	2,255	Valor mínimo [µm]	Error estándar Relativo [%]
	2,236	,	2,236	5,713

✤ Tercera fase de ensayos – Profundidad de corte

Tabla 0.25 Control de medición de rugosidad de las probetas de la tercera fase de ensayos (profundidad de corte) para fresado, tecnología MJP, medición longitudinal.

CON	ITROL	DE MEDIC	IÓN DE RUGO	SIDAD				
-	Tecno	logía: Mater	ial Jetting - Poly	yjet	Pocult	ados		
Fecha:	16	ene-19	Temperatura:	21,0°C	i tesuit	au05		
Hora:	9H3	30-11H30	Humedad:	68,00%				
			MEDICIÓ	N LONGIT	UDINAL			
N,º	СІ	Punto referencial	Rugosidad Ra [µm]	Promedio parcial Ra [µm]	Media Aritmética disper	a y Medidas de sión		
	p0,05	а	1,138	1,122	Media Aritmética Ra [µm]	Varianza [µm2]		
	-003		1,105		1,150	0,001		
10	00-f5	b	1,192	1,146	Valor máximo [µm]	Desviación estándar [µm]		
	150	-	1,1	, -	1,192	0,038		
N-AM	MP-N	С	1,119	1,102	Valor mínimo [µm]	Error estándar Relativo [%]		
	10		1,084		1,084	1,364		
	0,01	a	1,172	1,179	Media Aritmética Ra [µm]	Varianza [µm2]		
	1-00		1,185		1,229	0,054		
11	00-f5(b	1,509	1,521	Valor máximo [µm]	Desviación estándar [µm]		
	150		1,533		1,533	0,233		
	N-N	С	1,005	1,011	Valor mínimo [µm]	Error estándar Relativo [%]		
	111		1,016		1,005	7,738		
	ģ	а	1,083	1,052	Media Aritmética Ra [µm]	Varianza [µm2]		
	-f50		1,021		1,078	0,001		
12	5000 ,125	b	1,072	1,058	Valor máximo [µm]	Desviación estándar [µm]		
	-N1 P0		1,043		1,083	0,028		
	I 2MP.	12MP	12MP	С	1,08	1,052	Valor mínimo [µm]	Error estándar Relativo [%]
	-		1,023		1,021	1,072		
13	13M P-	а	0,957	1,001	Media Aritmética Ra [µm]	Varianza [µm2]		

		1,045		1,103	0,011		
	b	1,108	1.081	Valor máximo [µm]	Desviación estándar [µm]		
		1,053	,	1,245	0,011 Desviación estándar [µm] 0,106 Error estándar Relativo [%] 3.929		
	с	1,245	1.222	Valor mínimo [µm]	Error estándar Relativo [%]		
		1,198	,	0,957	3,929		

Tabla 0.26 Control de medición de rugosidad de las probetas de la tercera fase de ensayos (profundidad de corte) para fresado, tecnología MJP, medición transversal.

CO	NTRC	DL DE MEDIO	CIÓN DE RUGO	DSIDAD		
	Tecn	ología: Mate	rial Jetting - Pol	yjet	Decul	hadaa
Fecha:	1	6-ene-19	Temperatura:	21,0°C	Result	18005
Hora:	9H	I30-11H30	Humedad:	68,00%		
			MEDICIÓ	N TRANSVI	ERSAL	
N,º	СІ	Punto referencial	Rugosidad Ra [µm]	Promedio parcial Ra [µm]	Media Aritmética y Medidas de dispersión	
	0,05	а	1,012	1.016	Media Aritmética Ra [µm]	Varianza [µm2]
	g-oc		1,02	,	1,122	0,026
10	00-f5(b	1,002	0,995	Valor máximo [µm]	Desviación estándar [µm]
	150		0,987		1,351	0,163
	IP-N	c c	1,351	1.317	Valor mínimo [µm]	Error estándar Relativo [%]
10N		1,282	.,	0,987	5,917	
0,01	0,01	а	1,218	1,196	Media Aritmética Ra [µm]	Varianza [µm2]
	д-ос		1,173	,	1,025	0,022
11	00-f5(b	0,965	0.978	Valor máximo [µm]	Desviación estándar [µm]
	150		0,99	- ,	1,218	0,148
	1P-N1	С	0,893	0,875	Valor mínimo [µm]	Error estándar Relativo [%]
	11N		0,857	,	0,857	5,883
	-0	5 a	1,087	1,062	Media Aritmética Ra [µm]	Varianza [µm2]
	-f50		1,037		1,092	0,012
12	5000 125	b	0,971	0,989	Valor máximo [µm]	Desviación estándar [µm]
	-N1		1,006		1,233	0,110
	12MP	С	1,218	1,226	Valor mínimo [µm]	Error estándar Relativo [%]
			1,233		0,971	4,124
13	SODO-	а	1,234	1,240	Media Aritmética Ra [µm]	Varianza [µm2]
13 13	13 N11		1,245	,	1,220	0,000

b	1,194	1,205	Valor máximo [µm]	Desviación estándar [µm]
	1,216	,	1,245	0,019
с	1,231	1.236	Valor mínimo [µm]	Error estándar Relativo [%]
	1,241	,	1,194	0,634

Tabla 0.27 Control de medición de rugosidad de las probetas de la tercera fase de ensayos (profundidad de corte) para fresado, tecnología FDM, medición longitudinal.

CON	NTRC	L DE MEDI	CIÓN DE RUGO						
Tecn	ología	a: Modelado	por Deposición	r Fundida	Resultados				
Fecha:	16	6-ene-19	Temperatura:	23,3°C	Result	auus			
Hora:	9H	30-11H30	Humedad:	55,50%					
	MEDICIÓN LONGITUDINAL								
N,º	CI	Punto referencial	Rugosidad Ra [µm]	Promedio parcial Ra [µm]	Media Aritmética disper	a y Medidas de rsión			
	o,05	а	0,986	0,898	Media Aritmética Ra [µm]	Varianza [µm2]			
	9-OC		0,81		1,137	0,032			
10	00-f5(b	1,151	1,125	Valor máximo [µm]	Desviación estándar [µm]			
	150		1,098		1,276	0,179			
	0FP-N	С	1,273	1,275	Valor mínimo [µm]	Error estándar Relativo [%]			
	1		1,276		Resulta UDINAL Media Aritmética dispers Media Aritmética Ra [µm] 1,137 Valor máximo [µm] 1,276 Valor mínimo [µm] 0,810 Media Aritmética Ra [µm] 1,581 Valor mínimo [µm] 1,581 Valor máximo [µm] 1,581 Valor mínimo [µm] 1,581 Valor máximo [µm] 1,583 Valor mínimo [µm] 1,838 Valor mínimo [µm] 1,838 Valor mínimo [µm] 1,838 Media Aritmética Ra [µm] 1,539 Valor máximo [µm] 1,684 Valor mínimo [µm] 1,250 Media Aritmética Ra [µm] 1,910 Valor máximo [µm] 1,910	6,437			
	0,01	00-f500-p0,01 a b	1,838	1,810	Media Aritmética Ra [µm]	Varianza [µm2]			
11)0-f500-p		1,782		1,581	0,039			
			1,457	1,447	Valor máximo [µm]	Desviación estándar [µm]			
	500		1,436		1,838	0,198			
	I FP-N	o 1FP-N	1,447	1,415	Valor mínimo [µm]	Error estándar Relativo [%]			
	7		1,383		1,383	5,121			
	0,125	а	1,631	1,621	Media Aritmética Ra [µm]	Varianza [µm2]			
)d-C		1,611		1,539	0,033			
12	0-f50(0-f50(0-f50	b	1,303	1,277	Valor máximo [µm]	Desviación estándar [µm]	
	500		1,25		1,684	0,183			
	=P-N5	с	1,684	1,616	Valor mínimo [µm]	Error estándar Relativo [%]			
	12		1,548		1,250	4,844			
	5000- 0 15	а	1,671	1,714	Media Aritmética Ra [µm]	Varianza [µm2]			
13			1,756		1,910	0,119			
	13FF fso	b	1,656	1,724	Valor máximo [µm]	Desviación estándar [µm]			

		1,792		2,403	0,346				
	0	2 403	2 290	Valor mínimo [um]	Error estándar Relativo [%]				
	C	2,100	2,300						
		2,357		1,656	7,386				

Tabla 0.28 Control de medición de rugosidad de las probetas de la tercera fase de ensayos (profundidad de corte) para fresado, tecnología FDM, medición transversal.

CON	ITRC		CIÓN DE RUG				
Tecno	ología	a: Modelado	por Deposición	Fundida	Posultados		
Fecha:	1	6-ene-19	Temperatura:	23,3°C	Resultates		
Hora:	9H	30-11H30	Humedad:	55,50%			
MEDICIÓN TRANSVERSAL							
N,°	CI	Punto referencial	Rugosidad Ra [µm]	Promedio parcial Ra [µm]	Media Aritmética disper	a y Medidas de sión	
	0,05	а	1,283	1.292	Media Aritmética Ra [µm]	Varianza [µm2]	
	0-p(5	1,3	.,	1,442	0,018	
10	00-f50	b	1,443	1,415	Valor máximo [µm]	Desviación estándar [µm]	
	1500		1,387		1,601	0,135	
	FP-N	С	1,601	1,589	Valor mínimo [µm]	Error estándar Relativo [%]	
	10		1,576		Resu /ERSAL Media Aritmética Ra [µm] 1,442 Valor máximo [µm] 1,601 Valor mínimo [µm] 1,283 Media Aritmética Ra [µm] 1,847 Valor máximo [µm] 1,905 Valor mínimo [µm] 1,671 Media Aritmética Ra [µm] 1,650 Valor máximo [µm] 1,650 Valor máximo [µm] 1,650 Valor máximo [µm] 1,843 Valor mínimo [µm] 1,360 Media Aritmética Ra [µm] 2,306 Valor máximo [µm]	3,820	
	0,01	а	1,793	1,732	Media Aritmética Ra [µm]	Varianza [µm2]	
	0-f500-p		1,671	,	1,847	0,007	
11		b	1,905	1,888	Valor máximo [µm]	Desviación estándar [µm]	
	500		1,87		1,905	0,082	
	FP-N	с	1,843	1,844	Valor mínimo [µm]	Error estándar Relativo [%]	
	-		1,845		1,671	1,817	
	0,125	а	1,468	1,414	Media Aritmética Ra [µm]	Varianza [µm2]	
	o-b(1,36		1,650	0,033	
12	0-f50	b	1,843	1,806	Valor máximo [µm]	Desviación estándar [µm]	
	500		1,769		1,843	0,181	
	ЕР-N	Ň-d_ c	1,639	1.612	Valor mínimo [µm]	Error estándar Relativo [%]	
	12		1,585		1,360	4,477	
	را 1 م	u a	1,993	1,916	Media Aritmética Ra [µm]	Varianza [µm2]	
13	N50		1,838		2,306	0,106	
	3FP-	b	2,695	2,613	Valor máximo [µm]	Desviación estándar [µm]	
	-		2,531		2,695	0,326	

		с	2,23	2.169	Valor mínimo [µm]	Error estándar Relativo [%]	
			2,107	,	1,838	5,773	
Fuente: Elaboración propia.							

* Medición de rugosidad del material base Polytec 1000 – Acetal

> Medición 0. Rugosidad inicial.

Tabla 0.29 Control de medición de rugosidad inicial de la probeta del material base parafresado.

CO	NTRC	DL DE MEDIO														
1	Vater	ial base: Po	Basultadaa													
Fecha:	2	2-ene-19	Temperatura:	21,2°C	Nesultauos											
Hora:	9⊦	130-11H30	Humedad:	53,00%												
	MEDICIÓN LONGITUDINAL															
N.º	СІ	Punto referencial	Rugosidad Ra [µm]	Promedio parcial Ra [µm]	Media Aritmética y Medidas de dispersión											
		а	1,500	1,464	Media Aritmética Ra [µm]	Varianza [µm2]										
			1,427		1,273	0,161										
0	OMB	b	0,749	0.761	Valor máximo [µm]	Desviación estándar [µm]										
			0,772		1,598	0,402										
					с	1,589	1,594	Valor mínimo [µm]	Error estándar Relativo [%]							
			1,598		0,749	12,883										
			MEDICIÓN	TRANSVER	SAL											
N.º	СІ	Punto referencial	Rugosidad Ra [µm]	Promedio parcial Ra [µm]	Media Aritmética y Medidas de dispersión											
												а	1,956	2,054	Media Aritmética Ra [µm]	Varianza [µm2]
			2,152		1,524	0,180										
0	OMB	b	1,143	1,161	Valor máximo [µm]	Desviación estándar [µm]										
			1,179		2,152	0,424										
			с	1,373	1,358	Valor mínimo [µm]	Error estándar Relativo [%]									
				1,343		1,143	11,367									

Medición 1. Ensayo realizado a las mejores condiciones de corte para la tecnología MJP.

Tabla 0.30 Control de medición de rugosidad de la probeta del material base ensayada bajo las mejores condiciones de corte obtenidas para la tecnología MJP en fresado.

CON	TRO	L DE MEDIC	ÓN DE RUGOS								
Ν	lateri	al base: Poly	/tec 1000 - Ace	tal	Posultados						
Fecha:	2	2-ene-19	Temperatura:	21,2°C	Resultatios						
Hora:	14	H30-16H30	Humedad:	53,00%							
			MEDICIÓ	ON LONGITU	JDINAL						
N.º	CI	Punto referencial	Rugosidad Ra [µm]	Promedio parcial Ra [µm]	Media Aritmética y Medidas de dispersión						
		а	0,485	0,479	Media Aritmética Ra [µm]	Varianza [µm2]					
			0,473		0,565	0,010					
1	MB	b	0,521	0.526	Valor máximo [µm]	Desviación estándar [µm]					
	-		0,531	,	0,692	0,099					
		с	0,687	0,690	Valor mínimo [µm]	Error estándar Relativo [%]					
			0,692		0,473	7,153					
			MEDICIÓ	ON TRANSV	ERSAL						
N.º	CI	Punto referencial	Rugosidad Ra [µm]	Promedio parcial Ra [µm]	Media Aritmética y Medidas de dispersión						
	1MB						а	0,754	0,738	Media Aritmética Ra [µm]	Varianza [µm2]
			0,722	-,	0,831	0,010					
1		ЧВ	MB	MB	b	0,802	0,809	Valor máximo [µm]	Desviación estándar [µm]		
		-	0,815	-,	0,986	0,098					
				С	0,905	0,946	Valor mínimo [µm]	Error estándar Relativo [%]			
			0,986		0,722	4,836					

Medición 2. Ensayo realizado a las mejores condiciones de corte para la tecnología FDM.

Tabla 0.31 Control de medición de rugosidad de la probeta del material base ensayadabajo las mejores condiciones de corte obtenidas para la tecnología FDM en fresado.

CC	NTR	OL DE MEDI	CIÓN DE RUGOS				
	Mate	erial base: Po	olytec 1000 - Acet	al	Boou	Itadaa	
Fecha:	2	2-ene-19	Temperatura:	21,2°C	Resultatios		
Hora:	9⊦	130-11H30	Humedad:	53,00%			
MEDICIÓN LONGITUDINAL							
N.º	CI	Punto referencial	Rugosidad Ra [µm]	Promedio parcial Ra [µm]	Media Aritmética y Medidas de dispersión		
		а	2,933	2,973	Media Aritmética Ra [µm] 1,792 Valor máximo [µm 3,013	Varianza [µm2]	
			3,013		1,792	0,837	
2	MB	d 2MB	1,183	1,188	Valor máximo [µm]	Desviación estándar [µm]	
	2		1,192		3,013	0,915	
		с	1,214	1,217	Valor mínimo [µm]	Error estándar Relativo [%]	
			1,219		1,183	20,841	
			MEDICIÓ	N TRANSVI	ERSAL		
N.º	CI	Punto referencial	Rugosidad Ra [µm]	Promedio parcial Ra [µm]	Media Aritmética y Medidas de dispersión		
		а	1,644	1.614	Media Aritmética Ra [µm]	Varianza [µm2]	
			1,583	,	1,416	0,038	
2	2MB	b	1,483	1,447	Valor máximo [µm]	Desviación estándar [µm]	
			1,41		1,644	0,195	
		с	1,171	1,187	Valor mínimo [µm]	Error estándar Relativo [%]	
			1,202		1,171	5,625	

APÉNDICE C

Fotos

• Para torneado

Figura 0.1 Estructura o forma de Infill de pieza fabricada por tecnología FDM. Fuente: Elaboración propia.

Figura 0.2 Ilustración de una medición "Fuera de Rango" (F.R.) en una pieza fabricada por tecnología FDM.

Figura 0.3 Piezas de trabajo de la primera fase de ensayo de la tecnología MJP para torneado. Fuente: Elaboración propia.

Figura 0.4 Piezas de trabajo de la tecnología MJP N. º3; a) primer ensayo, b) segundo ensayo (repetición).

Figura 0.5 Piezas de trabajo de la tecnología MJP N. º4; a) primer ensayo, b) segundo ensayo (repetición). Fuente: Elaboración propia.

Figura 0.6 Piezas de trabajo de la tecnología MJP N. º5; a) primer ensayo, b) segundo ensayo (repetición). Fuente: Elaboración propia.

Figura 0.7 Piezas de trabajo de la primera fase de ensayo de la tecnología FDM para torneado.

Fuente: Elaboración propia.

Figura 0.8 Pieza de trabajo N.º 3 de la primera fase de ensayo de la tecnología FDM para torneado, presenta fallas en la superficie. Fuente: Elaboración propia.

Figura 0.9 Piezas de trabajo de la segunda fase de ensayo de la tecnología MJP para torneado y, la mejor probeta de la primera fase (N.º1).

Figura 0.10 Piezas de trabajo de la segunda fase de ensayo de la tecnología FDM para torneado y, la mejor probeta de la primera fase (N.º1). Fuente: Elaboración propia.

Figura 0.11 Pieza de trabajo N.º 8 de la segunda fase de ensayo de la tecnología FDM para torneado, presenta fallas en la superficie.

Figura 0.12 Piezas de trabajo de la tercera fase de ensayo de la tecnología MJP para torneado y, la mejor probeta de la segunda fase (N.º1). Fuente: Elaboración propia.

Figura 0.13 Piezas de trabajo de la tercera fase de ensayo de la tecnología FDM para torneado y, la mejor probeta de la segunda fase (N.º9). Fuente: Elaboración propia.

Figura 0.14 Pieza de trabajo N.º 13 de la tercera fase de ensayo de la tecnología FDM para torneado, presenta fallas en la superficie. Fuente: Elaboración propia.

Figura 0.15 Pieza de trabajo N.º 1 de la tecnología MJP para torneado, presenta el mejor acabado superficial. Fuente: Elaboración propia.

Figura 0.16 Pieza de trabajo N.º 9 de la tecnología FDM para torneado, presenta el mejor acabado superficial.

• Para fresado

Figura 0.17 Piezas de trabajo de la tecnología MJP para fresado. Fuente: Elaboración propia.

Figura 0.18 Piezas de trabajo de la tecnología FDM para fresado. Fuente: Elaboración propia.

Figura 0.19 Piezas de trabajo de la tecnología MJP para fresado, rotuladas Fuente: Elaboración propia.

Figura 0.20 Piezas de trabajo de la tecnología FDM para fresado, rotuladas. Fuente: Elaboración propia.

Figura 0.21 Piezas de trabajo de la tecnología FDM para fresado, después del mecanizado.

Figura 0.22 Piezas de trabajo de la tecnología MJP para fresado, después del mecanizado.

Figura 0.23 Piezas de trabajo de la tecnología MJP para fresado, durante el mecanizado. Fuente: Elaboración propia.

Figura 0.24 Piezas de trabajo de la tecnología MJP para fresado, durante la medición de rugosidad superficial. Fuente: Elaboración propia

APÉNDICE D

<u>Planos</u>

A continuación, se muestran los planos de los dos tipos de piezas a ensayar, estos son:

- Plano 1. Placa
- Plano 2. Eje

